WO2022068144A1 - 红光发射玻璃陶瓷及其制备方法与 led/ld 发光装置 - Google Patents

红光发射玻璃陶瓷及其制备方法与 led/ld 发光装置 Download PDF

Info

Publication number
WO2022068144A1
WO2022068144A1 PCT/CN2021/077874 CN2021077874W WO2022068144A1 WO 2022068144 A1 WO2022068144 A1 WO 2022068144A1 CN 2021077874 W CN2021077874 W CN 2021077874W WO 2022068144 A1 WO2022068144 A1 WO 2022068144A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
light
ceramic
emitting
red
Prior art date
Application number
PCT/CN2021/077874
Other languages
English (en)
French (fr)
Inventor
夏志国
胡桃
张勤远
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022068144A1 publication Critical patent/WO2022068144A1/zh
Priority to US17/842,812 priority Critical patent/US20220315477A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77344Aluminosilicates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the invention relates to the field of solid light-emitting materials, in particular to red light-emitting glass ceramics, a preparation method thereof, and an LED/LD light-emitting device.
  • White LEDs converted by fluorescent materials have many advantages such as energy saving, environmental protection, and long service life. They are considered to be the fourth generation of white light sources and are used in lighting and display fields. However, with the increase of the input current density, the LED chip faces the problem of "efficiency dip" that is not related to heat, which is not conducive to its application in high-brightness, high-power white light illumination and display.
  • the laser diode (LD) has no "efficiency dip” phenomenon under the input of high current density. It can output a high lumen density beam with a small beam spread angle, which is more promising in high-power applications and can be used as a high-brightness white light Program.
  • the realization method of laser white light adopts the fluorescence conversion material excited by blue laser.
  • the traditional way of encapsulating phosphors with organic silica gel is not suitable for laser lighting, because the physical and chemical stability of silica gel is poor, and aging will occur during high-power use. For this reason, all-inorganic fluorescent single crystals, ceramics, and glass-ceramics have attracted attention. However, only the yellow-green light-emitting fluorescent glass-ceramic/ceramic/single crystal of the garnet system can really meet the application requirements.
  • Red luminescent material is an indispensable part to obtain warm white light with high color temperature and low color rendering index.
  • the red light-emitting material for LED commercialized in the market is CaAlSiN 3 :Eu 2+ nitride red phosphor, which has high light-emitting quantum efficiency and good light-emitting thermal stability.
  • the present invention relates to a kind of red luminescent glass-ceramic containing cordierite as crystal phase, especially containing the chemical formula of Mg 2 Al 4 Si 5 O 18 :Eu 2+ cordierite as crystal phase and preparation technology thereof, aiming at developing High luminescence brightness, good luminescence thermal stability, red fluorescence conversion material.
  • the present invention also provides a method for preparing the above-mentioned red light emitting glass-ceramic, that is, by rationally designing the components of the precursor glass, using the melt cooling technology to prepare the precursor glass, and then preparing the inlaid cordierite micro/nano through crystallization heat treatment Crystal red glowing transparent glass ceramic.
  • the red light emission characteristics of the material can be optimized, and the red light emission originates from the emission of divalent europium ions in the cordierite crystal phase.
  • the material in the present invention can be excited by light in the 300-500 nanometer band, and emits broadband red light with a peak wavelength of 600-650 nanometers.
  • the material in the present invention has very excellent luminous stability, and can withstand high-density laser irradiation and the thermal effect brought by the laser.
  • the red light emitting glass ceramics of the present invention comprise a cordierite crystal phase with the chemical formula: A 2 Al 4 Si 5 O 18 :Eu 2+ , wherein A is at least one of Mg, Ca, Sr, Ba, Zn, etc. and contains at least Mg. It has the same crystal structure as Mg 2 Al 4 Si 5 O 18 .
  • a preparation method of high-efficiency red light-emitting transparent glass ceramics comprising the following steps:
  • the total molar amount of the above components is 100 mol%.
  • the glass matrix component contains at least four kinds of raw materials: SiO 2 , Al 2 O 3 , MgO and Eu 2 O 3 .
  • SiO 2 is preferably 15-75mol%, more preferably 30-70mol%;
  • Al 2 O 3 is preferably 10-40 mol%, more preferably 15-35 mol%;
  • MgO is preferably 10-40 mol%, more preferably 15-35 mol%
  • CaO is preferably 0-25mol%, more preferably 0-20mol%;
  • SrO is preferably 0-25mol%, more preferably 0-20mol%;
  • BaO is preferably 0-25mol%, more preferably 0-20mol%;
  • ZnO is preferably 0-25mol%, more preferably 0-20mol%;
  • Eu 2 O 3 is preferably 0.05-8 mol%, more preferably 0.1-7 mol%;
  • the obtained precursor glass is heated to a certain temperature by temperature program, and kept for a period of time to make it crystallized to obtain a red light emitting cordierite crystal phase glass-ceramic.
  • the raw materials MgO, CaO, SrO, BaO and ZnO in the glass component can also be replaced with their corresponding carbonates MgCO 3 , CaCO 3 , SrCO 3 , BaCO 3 and ZnCO 3 .
  • Eu 2 O 3 can also be replaced by EuF 3 , EuCl 3 , EuBr 2 and other raw materials containing europium.
  • the reducing atmosphere used may be a nitrogen-hydrogen mixed gas, an argon-hydrogen mixed gas, C powder reduction, CO and other reducing gases.
  • it is a nitrogen-hydrogen mixture.
  • the heating temperature is 1450-1700°C, preferably 1500-1600°C. Keep the temperature for 30 minutes to 8 hours, preferably 2-4 hours, to fully melt the powder.
  • the glass melt can be taken out from a high temperature and quickly poured into a mold for forming to obtain a block-shaped precursor glass, or the block-shaped precursor glass can be obtained by cooling in a furnace.
  • the reducing atmosphere used may be a nitrogen-hydrogen mixture, an argon-hydrogen mixture, C powder reduction, CO and other reducing gases.
  • it is a nitrogen-hydrogen mixture.
  • step (3) during the heating process, the heating rate is controlled to be 1-10°C/min, preferably 2-5°C/min.
  • step (3) heating to 700-1250°C, preferably 850-1150°C, in a tube furnace.
  • the temperature is kept for 5 minutes to 12 hours, preferably 10 minutes to 8 hours, to crystallize the precursor glass to obtain a transparent glass ceramic.
  • the preparation method specifically comprises the following steps:
  • the obtained precursor glass is put into the furnace again and heated to 850-1150°C at a heating rate of 2-5°C/min, and kept for 10 minutes to 8 hours to crystallize and obtain a block. Glass ceramics.
  • a red light-emitting cordierite glass-ceramic can be obtained, especially a cordierite glass-ceramic whose chemical formula is Mg 2 Al 4 Si 5 O 18 :Eu 2+ .
  • the material Under the excitation of 450 nm blue light, the material emits bright red light and has excellent resistance to thermal quenching.
  • a red light emission conversion type LED/LD light-emitting device comprising a package substrate, a blue-light LED chip/blue-light LD diode, and a fluorescent material capable of effectively absorbing the blue-light emission of the LED/LD and releasing red light; wherein, the The fluorescent material that releases red is the glass-ceramic containing cordierite crystal phase emitted by the above-mentioned red light;
  • a white light emission conversion type LED/LD light-emitting device comprising a light-emitting device including a package substrate, a blue LED chip/blue light LD diode, and a fluorescent material capable of effectively absorbing the blue light of the LED/LD and releasing yellow or green light and a red light-emitting device.
  • Fluorescent material wherein, the red-emitting fluorescent material is the above-mentioned red light-emitting glass-ceramic containing cordierite crystal phase
  • the invention also relates to the application of a glass ceramic, which is used as a red fluorescence conversion material in a conversion type LED/LD light-emitting device.
  • the red light emitting glass ceramic is coupled with a blue light LED chip or LD laser diode of about 445 nanometers, bright red light emission can be obtained.
  • the device has excellent performance, and through optimization, the luminous flux and lumen efficiency of the device can be further improved.
  • the present invention has the following technical effects:
  • the existing technology for preparing all-inorganic red fluorescent glass ceramics is as follows: after mixing commercial red fluorescent powder and low melting point glass powder, the two are sintered together. After the glass frit is melted at high temperature, the glass melt will react with the CaAlSiN 3 : Eu 2+ phosphor, which will lead to a decrease in the luminescence performance.
  • the red fluorescent glass-ceramic has not been prepared by means of glass crystallization, and the present invention adopts this technology to prepare the glass-ceramic containing the crystal phase of Mg 2 Al 4 Si 5 O 18 :Eu 2+ .
  • the glass-ceramic emits red light under the excitation of blue light, the internal/external quantum efficiency is as high as 94.5%/70.6%, and the thermal stability of light emission is excellent, which has potential practical value.
  • the red light-emitting device coupling the glass ceramic of the present invention with a blue laser has excellent performance, and the maximum luminous flux and lumen efficiency are ⁇ 274 lm and ⁇ 54 lm/W, respectively. It is superior to the red light LD device constructed with CaAlSiN 3 : Eu 2+ fluorescent ceramics.
  • the glass ceramics in the present invention can be applied to conversion type LED/LD light-emitting devices.
  • Fig. 1 is the X-ray diffraction pattern of red light emitting glass-ceramic sample in example 1;
  • Fig. 2 is the excitation and emission spectra of red light-emitting glass-ceramic samples in Example 1;
  • Fig. 3 is the test spectrum of quantum efficiency of red light-emitting glass-ceramic sample in Example 1;
  • FIG. 4 is a graph of the luminous flux and lumen efficiency as a function of laser power density for the red light-emitting glass-ceramic sample in Example 1.
  • the analytically pure SiO 2 , Al 2 O 3 , MgO and Eu 2 O 3 powders were accurately weighed according to the ratio of 40SiO 2 : 35 Al 2 O 3 : 24MgO : 1 Eu 2 O 3 (molar ratio) and placed in In the agate ball mill pot, mix and grind evenly and place in an alumina crucible, put into a tube furnace with nitrogen-hydrogen mixed gas, heated to 1450 ° C, and kept for 1 hour to melt. The melt is cooled with the furnace to obtain the precursor glass. Still in the mixed atmosphere of nitrogen and hydrogen, the bulk glass was heated to 1100 ° C and kept for 20 minutes to make it crystallized to obtain a red light emitting glass ceramic sample.
  • FIG. 1 X-ray diffraction data showed that Mg 2 Al 4 Si 5 O 18 :Eu 2+ micro-ceramics were prepared (as shown in Figure 1).
  • Figure 2 shows the excitation and emission spectra of the sample at room temperature.
  • the glass ceramic can emit light in the wavelength range of 500-850 nm under the excitation of near-ultraviolet light and blue light, and the emission color is red, corresponding to Eu 2+ : 5d 1 ⁇ 4f level transition.
  • the luminescent internal/external quantum efficiencies were 94.5%/70.6%, respectively (Fig. 3).
  • the device performance was tested by coupling the red emitting sample to a blue laser, and the maximum luminous flux and lumen efficiency were ⁇ 274 lumens and ⁇ 54 lumens/watt, respectively (Figure 4).
  • the analytically pure SiO 2 , Al 2 O 3 , MgO, CaO and Eu 2 O 3 powders were accurately weighed according to the ratio of 40SiO 2 : 30Al 2 O 3 : 20MgO: 9CaO: 1 Eu 2 O 3 (molar ratio)
  • the melt is cooled with the furnace to obtain the precursor glass.
  • the bulk glass was heated to 700 ° C, and kept for 12 hours to crystallize it to obtain a red light-emitting glass-ceramic sample.
  • Mg 1.5 Ca 0.5 Al 4 Si 5 O 18 :Eu 2+ nanocrystalline glass-ceramic was prepared, and the luminous internal/external quantum efficiency was 90%/70%, respectively.
  • the device performance was tested by coupling the red-emitting sample to a blue-light laser, and the maximum luminous flux and lumen efficiency were ⁇ 250 lumens and ⁇ 52 lumens/watt, respectively.
  • the analytically pure SiO 2 , Al 2 O 3 , MgO, BaO and Eu 2 O 3 powders were accurately weighed according to the ratio of 40SiO 2 : 30Al 2 O 3 : 20MgO: 9BaO: 1 Eu 2 O 3 (molar ratio)
  • the melt is cooled with the furnace to obtain the precursor glass.
  • the bulk glass was heated to 1000 ° C, and kept for 4 hours to crystallize it to obtain a red light-emitting glass-ceramic sample.
  • Mg 1.5 Ba 0.5 Al 4 Si 5 O 18 :Eu 2+ micro-ceramics were prepared, and the luminous internal/external quantum efficiencies were 96%/75% respectively.
  • the device performance was tested by coupling the red-emitting sample to a blue-light laser, and the maximum luminous flux and lumen efficiency were ⁇ 260 lumens and ⁇ 45 lumens/watt, respectively.
  • the analytically pure SiO 2 , Al 2 O 3 , MgO, SrO and Eu 2 O 3 powders were accurately weighed according to the ratio of 40SiO 2 : 30Al 2 O 3 : 20MgO: 9SrO: 1 Eu 2 O 3 (molar ratio)
  • the melt is cooled with the furnace to obtain the precursor glass.
  • the bulk glass was heated to 900 ° C, and kept for 10 hours to crystallize it to obtain a red light-emitting glass-ceramic sample.
  • Mg 1.6 Sr 0.4 Al 4 Si 5 O 18 :Eu 2+ nanocrystalline glass-ceramic was prepared, and the luminous internal/external quantum efficiency was 92%/65%, respectively.
  • the device performance was tested by coupling the red-emitting sample to a blue-light laser, and the maximum luminous flux and lumen efficiency were ⁇ 250 lumens and ⁇ 55 lumens/watt, respectively.
  • the analytically pure SiO 2 , Al 2 O 3 , MgO, ZnO and Eu 2 O 3 powders were accurately weighed according to the ratio of 40SiO 2 : 30Al 2 O 3 : 20MgO: 9ZnO: 1 Eu 2 O 3 (molar ratio)
  • the melt is cooled with the furnace to obtain the precursor glass.
  • the bulk glass was heated to 1050 ° C, and kept for 2 hours to crystallize it to obtain a red light-emitting glass-ceramic sample.
  • Mg 1.6 Zn 0.4 Al 4 Si 5 O 18 :Eu 2+ nanocrystalline glass-ceramic was prepared, and the luminous internal/external quantum efficiency was 85%/65%, respectively.
  • the device performance was tested by coupling the red-emitting sample to a blue-light laser, and the maximum luminous flux and lumen efficiency were ⁇ 220 lumens and ⁇ 45 lumens/watt, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Glass Compositions (AREA)

Abstract

一种红光发射玻璃陶瓷及其制备方法及应用该玻璃陶瓷的LED/LD发光装置,以可实现蓝光激发的红光发射的A 2Al 4Si 5O 18:Eu 2+堇青石为晶相材料,A为Mg、Ca、Sr、Ba、Zn中的至少一种且至少含有Mg;特别是含化学式Mg 2Al 4Si 5O 18:Eu 2+为晶相的红光发射玻璃陶瓷。

Description

红光发射玻璃陶瓷及其制备方法与LED/LD发光装置 技术领域
本发明涉及固体发光材料领域,尤其是涉及红光发射玻璃陶瓷及其制备方法与LED/LD发光装置。
背景技术
荧光材料转换的白光LED具有节能,环保,使用寿命长等众多优点,被认为是第四代白光光源而应用于照明和显示领域。但随着输入电流密度的增大,LED芯片面临着与热无关的“效率骤降”问题,不利于其在高亮度、大功率白光照明和显示中的应用。
激光二极管(LD)在高电流密度的输入下,无“效率骤降”现象,它可以输出光束扩散角小的高流明密度光束,在大功率应用中更具前景,可作为实现高亮度白光优选方案。激光白光的实现方式,采用的是蓝光激光激发的荧光转换材料。传统的有机硅胶封装荧光粉的方式不适用于激光照明,这是因为硅胶的物化稳定性能差,大功率使用过程中会发生老化。正因如此,全无机荧光单晶,陶瓷,和玻璃陶瓷受到了人们的关注。然而,真正能满足应用要求的只有石榴石体系的黄绿光发射荧光玻璃陶瓷/陶瓷/单晶。
众所周知,以蓝光LED/LD耦合黄绿光发射的玻璃陶瓷/陶瓷得到的白光光源色温偏高,显色指数低,阻碍了其应用。红色发光材料是获取高色温,低显色指数暖白光不可缺少的部分。目前,市场上商品化的LED用红色发光材料为CaAlSiN 3:Eu 2+氮化物红色荧光粉,它的发光量子效率高,发光热稳定性能好。为了研究其是否能应用于大功率LD器件,研究者们采用的方法有(1) 将CaAlSiN 3:Eu 2+氮化物红色荧光粉与低熔点玻璃粉混合,并在一定温度下使玻璃粉融化,制备得到CaAlSiN 3:Eu 2+玻璃陶瓷(文献: doi.org/10.1016/j.cej.2020.125983 和doi. 10.1016/j.jlumin.2020.117390 );(2) 对CaAlSiN 3:Eu 2+氮化物红色荧光粉进行SPS烧结得到陶瓷,为了使陶瓷致密化,并引入Si 3N 4和SiO 2作为烧结助剂(文献: doi.org/10.1039/C6TC02518H)。相比于CaAlSiN 3:Eu 2+粉体,采用这两种制备方法制备出的CaAlSiN 3:Eu 2+玻璃陶瓷/陶瓷,发光性能都发生了一定程度的下降,这是因为玻璃液和烧结助剂对CaAlSiN 3:Eu 2+存在着侵蚀。业界认为,氮化物荧光粉不适用于玻璃陶瓷的制备。显然,发光量子效率高,发光热光热稳定性能好的全无机红光发射玻璃陶瓷的发明制备意义重大,相关研究有望推动大功率白光光源的快速发展,但可惜的是,目前尚无能满足实际应用的优质红光发射玻璃陶瓷/陶瓷。
技术解决方案
本发明涉及了一种含堇青石为晶相的,特别是含化学式为Mg 2Al 4Si 5O 18:Eu 2+ 堇青石为晶相的红色发光玻璃陶瓷及其制备技术,目的在于发展出发光亮度高,发光热稳定性能好的,红色荧光转换材料。
本发明中还提供了上述红光发射玻璃陶瓷的制备方法,即通过合理设计前驱玻璃组份,并采用熔体冷却技术制备出前驱玻璃,随后通过晶化热处理,制备得到镶嵌堇青石微/纳米晶的红色发光透明玻璃陶瓷。通过调节玻璃组份和优化热处理工艺,可以优化该材料的红光发射特性,红光发光来源于二价铕离子在堇青石晶相中的发射。本发明中的材料可以被300-500纳米波段的光激发,发射出峰值波长位于600-650纳米的宽带红光。本发明中的材料具有非常优异的发光稳定性能,能承受高密度激光辐照和激光带来的热效应。
本发明所述的红光发射玻璃陶瓷包含化学式为:A 2Al 4Si 5O 18:Eu 2+的堇青石晶相,其中A为Mg, Ca,Sr,Ba,Zn等中的至少一种且至少含有Mg。与Mg 2Al 4Si 5O 18具有同样的晶体结构。
一种高效红光发射透明玻璃陶瓷的制备方法,包括以下步骤:
(1)  前驱玻璃基体的化学组分设计,该玻璃基体组分含量如下:
10-80mol%SiO 2;5-70mol%Al 2O 3;5-70mol%MgO;0-60mol%CaO;
0-60mol%SrO;0-60mol%BaO;0-60mol%ZnO;0.01-10mol%Eu 2O 3
上述组分的摩尔总量为100mol%。所述玻璃基体组分中至少含有SiO 2,Al 2O 3,MgO和Eu 2O 3四种原料。
进一步的,各组分的优选含量如下:
SiO 2优选为15-75mol%,更优选为30-70mol%;
Al 2O 3优选为10-40mol%,更优选为15-35mol%;
MgO优选为10-40mol%,更优选为15-35mol%;
CaO优选为0-25mol%,更优选为0-20mol%;
SrO优选为0-25mol%,更优选为0-20mol%;
BaO优选为0-25mol%,更优选为0-20mol%;
ZnO优选为0-25mol%,更优选为0-20mol%;
Eu 2O 3优选为0.05-8mol%,更优选为0.1-7mol%;
(2)  将SiO 2、Al 2O 3、MgO、CaO、SrO、BaO、ZnO和Eu 2O 3等粉体原料按照一定的组分配比称量,在玛瑙研钵中研磨均匀后置于坩埚中,还原性气氛下加热至一定温度、并保温一段时间使其熔融。而后,将熔融液体冷却得到块体透明前驱玻璃;
(3)  在还原性气氛下,将获得的前驱玻璃程序升温加热至一定温度,并保温一段时间使之晶化,得到红光发射堇青石晶相玻璃陶瓷。
进一步的,步骤(2)中,玻璃组份中原料MgO,CaO,SrO,BaO和ZnO也可以换成其对应的碳酸盐MgCO 3,CaCO 3,SrCO 3,BaCO 3和ZnCO 3。Eu 2O 3也可以换成EuF 3,EuCl 3,EuBr 2等含有铕元素的原料。
进一步的,步骤(2)中,采用的还原性气氛可以是氮氢混合气,氩氢混合气,C粉还原,CO等还原性气体。优选为氮氢混合气。
进一步的,步骤(2)中,加热温度为1450-1700℃,优选为1500-1600℃。保温30分钟至8小时,优选2-4小时使粉体充分融化。
进一步的,步骤(2)中,可以将玻璃熔体从高温取出并快速倒入模具中成形,得到块状前驱玻璃,也可以随炉冷却得到块状前驱玻璃。
进一步的,步骤(3)中,采用的还原性气氛可以是氮氢混合气,氩氢混合气,C粉还原,CO等还原性气体。优选为氮氢混合气。
进一步的,步骤(3)中,在升温过程中,控制升温速率为1-10℃/min,优选2-5℃/min。
进一步的,步骤(3)中,在管式炉中加热到700-1250℃,优选850-1150℃。保温5分钟至12小时,优选10分钟至8小时,使前驱玻璃发生晶化,得到透明玻璃陶瓷。
根据本发明,所述制备方法具体包括如下步骤:
(1)  将SiO 2、Al 2O 3、MgO、CaO、SrO、BaO、ZnO和Eu 2O 3等粉体原料按一定组分配比称量,在玛瑙球磨罐中混合并研磨均匀后置于氧化铝坩埚中,放入管式炉,并充以氮氢混合气,加热到1500-1600℃,保温2-4小时使之熔融。而后将玻璃熔体取出并快速倒入模具中成形得到块状前驱玻璃,也可随炉冷却得到前驱玻璃。
(2)  在氮氢还原性气下,将获得的前驱玻璃再次放入炉中以2-5℃/min升温速度加热到850-1150℃,保温10分钟至8小时,使之发生晶化,获得块状玻璃陶瓷。
本发明中,采用以上材料组分和制备工艺,可以获得红光发射堇青石玻璃陶瓷,特别是化学式为Mg 2Al 4Si 5O 18:Eu 2+堇青石玻璃陶瓷。在450 纳米蓝光激发下,该材料发出明亮的红光,抗热猝灭性能优异。
一种红光发光转换型LED/LD发光装置,包述发光装置包括封装基板、蓝光LED芯片/蓝光LD二极管,以及能够有效吸收LED/LD蓝光发光并释放红光的荧光材料;其中,所述释放红色的荧光材料为上述红光发射的含堇青石晶相的玻璃陶瓷;
一种白光发光转换型LED/LD发光装置,包括发光装置包括封装基板、蓝光LED芯片/蓝光LD二极管,以及能够有效吸收LED/LD蓝光发光并释放黄或绿光的荧光材料和释放红光的荧光材料;其中,所述释放红色的荧光材料为上述红光发射含堇青石晶相的玻璃陶瓷
本发明还涉及一种玻璃陶瓷的应用,所述玻璃陶瓷作为红色荧光转换材料应用于转换型LED/LD发光装置。
本发明中,将该红光发射玻璃陶瓷与445纳米左右的蓝光LED芯片或LD激光二极管耦合后,可以得到明亮的红光发射。器件性能优异,且通过优化,器件的光通量和流明效率还可以进一步提升。
有益效果
与现有技术相比,本发明具有如下技术效果:
现有制备全无机红色荧光玻璃陶瓷的技术为:将商业化红色荧光粉与低熔点玻璃粉混合后,二者共同烧结得到。由于玻璃粉高温熔化后,玻璃熔体会与CaAlSiN 3: Eu 2+荧光粉反应,这将导致发光性能下降。全无机红色荧光陶瓷也有相关研究,如厦门大学谢荣军老师采用SPS烧结技术,制备了CaAlSiN 3: Eu 2+荧光陶瓷,以该陶瓷构建的的红光LD器件性能是实现了最大光通量为203 lm和最大流明效率为42 lm/W的性能输出,该性能是迄今为止最佳的报道。
当前,未有采用玻璃结晶的方式制备红色荧光玻璃陶瓷,本发明采用该技术制备了含晶相为Mg 2Al 4Si 5O 18:Eu 2+的玻璃陶瓷。该玻璃陶瓷在蓝光激发下发射红光,内/外量子效率分别高达94.5%/70.6%,发光热稳定性能优异,具有潜在实用价值。将本发明中的玻璃陶瓷与蓝光激光耦合的红色发光器件性能优异,最大光通量和流明效率分别有~274 lm和~54 lm/W。要优于以CaAlSiN 3: Eu 2+荧光陶瓷构建的红光LD器件。本发明中的玻璃陶瓷可应用于转换型LED/LD发光装置。
附图说明
图1是实例1中红光发射玻璃陶瓷样品的X射线衍射图;
图2是实例1中红光发射玻璃陶瓷样品的激发和发射光谱;
图3是实例1中红光发射玻璃陶瓷样品量子效率测试图谱;
图4是实例1中红光发射玻璃陶瓷样品激光功率密度依赖的光通量和流明效率图。
本发明的实施方式
以下结合实例和附图对本发明的具体实施作进一步的具体说明,但本发明的实施方式和保护范围不限于此。
实施例1
将分析纯SiO 2、Al 2O 3、MgO和Eu 2O 3粉体,按40SiO 2:35 Al 2O 3:24MgO:1 Eu 2O 3 (摩尔比) 的配比精确称量后置于玛瑙球磨罐中,混合并研磨均匀后置于氧化铝坩埚中,放入通有氮氢混合气的管式炉中,加热到1450 °C后保温1小时使之熔融。熔体随炉冷却得到前驱玻璃。仍于氮氢混合气氛下,将块体玻璃加热到1100 °C,保温20分钟,使之晶化,得到红光发射玻璃陶瓷样品。
X射线衍射数据表明,制备得到了Mg 2Al 4Si 5O 18:Eu 2+微米晶玻璃陶瓷(如图1所示)。图2为样品在室温下的激发和发射光谱,该玻璃陶瓷可以近紫外光和蓝光激发下,发射出波长范围为500-850 nm的光,发光颜色为红色,对应于Eu 2+: 5d 1→4f能级跃迁。发光内/外量子效率分别为94.5%/70.6%(图3)。将该红光发射样品耦合蓝光激光测试了器件性,最大光通量和流明效率分别有~274流明和~54流明/瓦(图4)。
实施例2
将分析纯SiO 2、Al 2O 3、MgO、CaO和Eu 2O 3粉体,按40SiO 2:30Al 2O 3:20MgO:9CaO:1 Eu 2O 3 (摩尔比) 的配比精确称量后置于玛瑙球磨罐中,混合并研磨均匀后置于氧化铝坩埚中,放入通有氮氢混合气的管式炉中,加热到1700 °C后保温8小时使之熔融。熔体随炉冷却得到前驱玻璃。仍于氮氢混合气氛下,降块体玻璃加热到700 °C,保温12小时,使之晶化,得到红光发射玻璃陶瓷样品。
经测试,制备得到了Mg 1.5Ca 0.5Al 4Si 5O 18:Eu 2+纳米晶玻璃陶瓷,发光内/外量子效率分别为90%/70%。将该红光发射样品耦合蓝光激光测试了器件性,最大光通量和流明效率分别有~250流明和~52流明/瓦。
实施例3
将分析纯SiO 2、Al 2O 3、MgO、BaO和Eu 2O 3粉体,按40SiO 2:30Al 2O 3:20MgO:9BaO:1 Eu 2O 3 (摩尔比) 的配比精确称量后置于玛瑙球磨罐中,混合并研磨均匀后置于氧化铝坩埚中,放入通有氮氢混合气的管式炉中,加热到1700 °C后保温30分钟使之熔融。熔体随炉冷却得到前驱玻璃。仍于氮氢混合气氛下,降块体玻璃加热到1000 °C,保温4小时,使之晶化,得到红光发射玻璃陶瓷样品。
经测试,制备得到了Mg 1.5Ba 0.5Al 4Si 5O 18:Eu 2+微米晶玻璃陶瓷,发光内/外量子效率分别为96%/75%。将该红光发射样品耦合蓝光激光测试了器件性,最大光通量和流明效率分别有~260流明和~45流明/瓦。
实施例4
将分析纯SiO 2、Al 2O 3、MgO、SrO和Eu 2O 3粉体,按40SiO 2:30Al 2O 3:20MgO:9SrO:1 Eu 2O 3 (摩尔比) 的配比精确称量后置于玛瑙球磨罐中,混合并研磨均匀后置于氧化铝坩埚中,放入通有氮氢混合气的管式炉中,加热到1550 °C后保温6小时使之熔融。熔体随炉冷却得到前驱玻璃。仍于氮氢混合气氛下,降块体玻璃加热到900 °C,保温10小时,使之晶化,得到红光发射玻璃陶瓷样品。
经测试,制备得到了Mg 1.6Sr 0.4Al 4Si 5O 18:Eu 2+纳米晶玻璃陶瓷,发光内/外量子效率分别为92%/65%。将该红光发射样品耦合蓝光激光测试了器件性,最大光通量和流明效率分别有~250流明和~55流明/瓦。
实施例5
将分析纯SiO 2、Al 2O 3、MgO、ZnO和Eu 2O 3粉体,按40SiO 2:30Al 2O 3:20MgO:9ZnO:1 Eu 2O 3 (摩尔比) 的配比精确称量后置于玛瑙球磨罐中,混合并研磨均匀后置于氧化铝坩埚中,放入通有氮氢混合气的管式炉中,加热到1500 °C后保温5小时使之熔融。熔体随炉冷却得到前驱玻璃。仍于氮氢混合气氛下,降块体玻璃加热到1050 °C,保温2小时,使之晶化,得到红光发射玻璃陶瓷样品。
经测试,制备得到了Mg 1.6Zn 0.4Al 4Si 5O 18:Eu 2+纳米晶玻璃陶瓷,发光内/外量子效率分别为85%/65%。将该红光发射样品耦合蓝光激光测试了器件性,最大光通量和流明效率分别有~220流明和~45流明/瓦。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均包含在本发明的保护范围之内。

Claims (7)

  1. 一种红光发射玻璃陶瓷,其特征在于,所述玻璃陶瓷含有化学式为:A 2Al 4Si 5O 18:Eu 2+的堇青石晶相,所述A为Mg、Ca、Sr、Ba、Zn中的至少一种且至少含有Mg。
  2. 根据权利要求1所述的红光发射玻璃陶瓷,其特征在于,所述制备玻璃陶瓷的前驱体为一种玻璃基体,所述制备玻璃陶瓷的玻璃基体组分含量为:10-80mol%SiO 2,5-70mol%Al 2O 3,5-70mol%MgO,0-60mol%CaO, 0-60mol%SrO,0-60mol%BaO,0-60mol%ZnO,0.01-10mol%Eu 2O 3,玻璃基体组分的摩尔总量为100mol%;所述玻璃基体组分中至少含有SiO 2,Al 2O 3,MgO和Eu 2O 3四种原料。
  3. 权利要求1所述红光发射玻璃陶瓷的制备方法,其特征在于,包括如下步骤:
    (1)将原料SiO 2、Al 2O 3、MgO、CaO、SrO、BaO、ZnO和Eu 2O 3按照组分配比称量,混合并研磨均匀后在还原性气氛下加热,保温使之熔融,再冷却得到块体透明前驱玻璃;
    (2)在还原性气氛下,将所述步骤(1)获得的前驱玻璃加热,并保温使之晶化,得到红光发射堇青石晶相的玻璃陶瓷。
  4. 根据权利要求3所述的制备方法,其特征在于,所述原料MgO,CaO,SrO,BaO和ZnO中的一种或多种可用其对应的MgCO 3,CaCO 3,SrCO 3,BaCO 3和ZnCO 3碳酸盐替换。
  5. 根据权利要求3或4所述的制备方法,其特征在于,所述步骤(1)还原气氛为氮氢混合气、氩氢混合气、C粉还原或CO,加热温度为1450-1700℃,保温时间为30分钟-8小时;所述步骤(2)还原气氛为氮氢混合气、氩氢混合气、C粉还原或CO,加热温度为700-1250℃,保温时间为5分钟至12小时。
  6. 一种红光发光LED/LD发光装置,其特征在于,所述发光装置包括封装基板、蓝光LED芯片/蓝光LD二极管,以及能够有效吸收LED/LD蓝光发光并发出红光的荧光材料;其中,所述发射红色的荧光材料为权利要求1所述的红光发射玻璃陶瓷。
  7. 一种白光发光LED/LD发光装置,其特征在于,所述发光装置包括封装基板、蓝光LED芯片/蓝光LD二极管,以及能够有效吸收LED/LD蓝光发光并释放黄或绿光的荧光材料和释放红光的荧光材料;其中,所述释放红色的荧光材料为权利要求1所述的玻璃陶瓷。
PCT/CN2021/077874 2020-09-29 2021-02-25 红光发射玻璃陶瓷及其制备方法与 led/ld 发光装置 WO2022068144A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/842,812 US20220315477A1 (en) 2020-09-29 2022-06-17 Red light emitting glass ceramic and preparation method thereof, and led/ld light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011046618.3 2020-09-29
CN202011046618.3A CN112194376B (zh) 2020-09-29 2020-09-29 红光发射玻璃陶瓷及其制备方法与led/ld发光装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/842,812 Continuation US20220315477A1 (en) 2020-09-29 2022-06-17 Red light emitting glass ceramic and preparation method thereof, and led/ld light emitting device

Publications (1)

Publication Number Publication Date
WO2022068144A1 true WO2022068144A1 (zh) 2022-04-07

Family

ID=74007010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077874 WO2022068144A1 (zh) 2020-09-29 2021-02-25 红光发射玻璃陶瓷及其制备方法与 led/ld 发光装置

Country Status (3)

Country Link
US (1) US20220315477A1 (zh)
CN (1) CN112194376B (zh)
WO (1) WO2022068144A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194376B (zh) * 2020-09-29 2021-12-21 华南理工大学 红光发射玻璃陶瓷及其制备方法与led/ld发光装置
CN114672306A (zh) * 2022-03-28 2022-06-28 华南农业大学 一种近红外荧光粉、制备方法及其形成的led器件
CN115353375B (zh) * 2022-08-08 2023-06-27 广东省科学院资源利用与稀土开发研究所 一种二价铕离子激活的单基质全光谱白光陶瓷材料及其制备方法
CN115432924A (zh) * 2022-08-30 2022-12-06 浙江嘉利(丽水)工业股份有限公司 一种车用新型led橙红荧光玻璃陶瓷及其制备方法
CN115716707A (zh) * 2022-11-21 2023-02-28 福建师范大学 一种用于led照明的紫光激发玻璃陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206393A (ja) * 2004-01-20 2005-08-04 Nihon Yamamura Glass Co Ltd 発光ガラス
JP2007039303A (ja) * 2005-06-29 2007-02-15 Nippon Electric Glass Co Ltd 発光色変換部材
CN106495474A (zh) * 2016-10-11 2017-03-15 杭州电子科技大学 一种可用于温度探测的Eu2+/Eu3+双掺杂玻璃陶瓷复合材料及其制备方法和应用
CN107746709A (zh) * 2017-11-20 2018-03-02 山东省科学院新材料研究所 一种可调谐发光稀土离子掺杂Mg2Al4Si5O18荧光材料及其制备方法
CN110117160A (zh) * 2019-05-10 2019-08-13 福建江夏学院 一种微晶玻璃及其制备方法和应用
CN112194376A (zh) * 2020-09-29 2021-01-08 华南理工大学 红光发射玻璃陶瓷及其制备方法与led/ld发光装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7403034A (zh) * 1973-03-21 1974-09-24
MY109224A (en) * 1993-02-11 1996-12-31 Samsung Display Devices Co Ltd Mixed blue emitting phosphor.
JP4830223B2 (ja) * 2001-07-12 2011-12-07 宇部興産株式会社 高周波用誘電体磁器組成物の製造方法
US20030187117A1 (en) * 2002-03-29 2003-10-02 Starkovich John A. Materials and method for improving dimensional stability of precision electronic optical photonic and spacecraft components and structures
CN102225845B (zh) * 2011-05-06 2014-12-03 浙江大学 一种制备氧化锌纳米晶和稀土离子共掺的锌铝硅酸盐玻璃的方法
CN103289686A (zh) * 2012-02-28 2013-09-11 海洋王照明科技股份有限公司 铕掺杂铝硅酸盐发光材料、发光薄膜和薄膜电致发光显示器器件及它们的制备方法
CN103965897B (zh) * 2014-05-23 2016-03-30 四川大学 一种led用铝硅酸盐黄绿色荧光粉及其制备方法
CN107916104B (zh) * 2017-11-16 2020-08-18 华南理工大学 四价铬掺杂的近红外发光温度探测纳米材料及其制备与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206393A (ja) * 2004-01-20 2005-08-04 Nihon Yamamura Glass Co Ltd 発光ガラス
JP2007039303A (ja) * 2005-06-29 2007-02-15 Nippon Electric Glass Co Ltd 発光色変換部材
CN106495474A (zh) * 2016-10-11 2017-03-15 杭州电子科技大学 一种可用于温度探测的Eu2+/Eu3+双掺杂玻璃陶瓷复合材料及其制备方法和应用
CN107746709A (zh) * 2017-11-20 2018-03-02 山东省科学院新材料研究所 一种可调谐发光稀土离子掺杂Mg2Al4Si5O18荧光材料及其制备方法
CN110117160A (zh) * 2019-05-10 2019-08-13 福建江夏学院 一种微晶玻璃及其制备方法和应用
CN112194376A (zh) * 2020-09-29 2021-01-08 华南理工大学 红光发射玻璃陶瓷及其制备方法与led/ld发光装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KANG XIAOHONG: "Preparation and Luminescent Properties of Tailings Glass-Ceramics", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING TECHNOLOGY I, 15 July 2019 (2019-07-15), XP055918113 *
STEFANSKA DAGMARA, PRZEMYSLAW J. DEREN: "High Efficiency Emission of Eu2+ Located in Channel and Mg-Site of Mg2Al4Si5O18 Cordierite and Its Potential as a Bi-Functional Phosphor toward Optical Thermometer and White LED Application", ADVANCED OPTICAL MATERIALS, vol. 8, no. 22, 13 September 2020 (2020-09-13), XP055918108, DOI: 10.1002/adom.202001143 *
XIONG FENG: "The Study on the Preparation Process and Optical Properties of Eu3+:CaF2 Transparent Fluorescent Ceramic", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING TECHNOLOGY I, 15 July 2019 (2019-07-15), XP055918111 *

Also Published As

Publication number Publication date
CN112194376A (zh) 2021-01-08
US20220315477A1 (en) 2022-10-06
CN112194376B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
JP4617323B2 (ja) 新しい組成の黄色発光Ce3+賦活シリケート系黄色蛍光体、その製造方法及び前記蛍光体を包含する白色発光ダイオード
WO2022068144A1 (zh) 红光发射玻璃陶瓷及其制备方法与 led/ld 发光装置
KR101439567B1 (ko) 다방출 피크를 가지는 실리케이트계 발광물질들, 그를 제조하는 방법 및 그를 사용하는 광방출 장치들
US7998364B2 (en) Silicate phosphor and its manufacture method as well as light-emitting device using the same
CN110294597A (zh) 一种宽色域显示用铯铅溴钙钛矿量子点荧光玻璃及其制备方法和应用
CN111574062B (zh) 一种氮化物红光玻璃及其应用
CN108895314B (zh) 激光照明用氮化物荧光粉/玻璃复合光转换组件及其制备
CN103395997B (zh) 一种白光led用稀土掺杂透明玻璃陶瓷及其制备方法
KR20090093202A (ko) 백색 발광 다이오드 및 그의 제조방법
CN110316963B (zh) 一种荧光玻璃陶瓷材料以及含该材料的发光装置
KR20190013977A (ko) 형광분말, 이의 제조방법 및 이를 구비하는 발광소자
WO2013056408A1 (zh) 氮化物红色发光材料、包括其的发光件以及发光器件
CN110003908B (zh) 白光led用硅酸盐红色荧光粉及制备方法和白光led发光装置
CN114540015A (zh) 一种宽谱黄绿色发射氮氧化物荧光粉及制备方法
CN106634997A (zh) 一种复合磷酸盐荧光体及其应用
CN110240900B (zh) 一种Eu2+掺杂的窄带绿色发光材料、制备方法及照明与显示光源
Zheng et al. Phosphor in glass composited with CsPb (BrI) 3 perovskite nanocrystals embedded glass for high CRI WLED application
CN102381841B (zh) 一种黄绿色发光玻璃陶瓷材料及其制备方法
KR101510124B1 (ko) 백색 발광다이오드 소자용 청녹색 발광 형광체 및 그를 이용한 백색 led 소자
CN104073257B (zh) 一种硫代硅酸盐荧光体及其应用
CN116144357B (zh) 一种紫外激发的绿光发射荧光粉及其制备方法与应用
CN113620600B (zh) 一种复合玻璃材料的制备方法和应用
CN216818372U (zh) 一种荧光转换复合层及白光发光器件
CN110510871B (zh) 红蓝光双发射玻璃陶瓷转光器件及制备方法与园艺照明灯
CN117945652A (zh) 一种荧光粉-玻璃复合材料及其快速合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 25.05.23)

122 Ep: pct application non-entry in european phase

Ref document number: 21873811

Country of ref document: EP

Kind code of ref document: A1