WO2022065949A1 - 인돌리진 골격체 기반 ph 측정용 형광 화합물 및 이의 용도 - Google Patents

인돌리진 골격체 기반 ph 측정용 형광 화합물 및 이의 용도 Download PDF

Info

Publication number
WO2022065949A1
WO2022065949A1 PCT/KR2021/013127 KR2021013127W WO2022065949A1 WO 2022065949 A1 WO2022065949 A1 WO 2022065949A1 KR 2021013127 W KR2021013127 W KR 2021013127W WO 2022065949 A1 WO2022065949 A1 WO 2022065949A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
represented
group
mmol
Prior art date
Application number
PCT/KR2021/013127
Other languages
English (en)
French (fr)
Inventor
김은하
김현기
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of WO2022065949A1 publication Critical patent/WO2022065949A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds

Definitions

  • the present invention relates to an indolizine framework-based compound and uses thereof, and more particularly, to an indolizine framework-based compound, a method for preparing the same, a composition for measuring pH comprising the same, a pH measuring sensor array, use as a pH measuring agent, and It relates to a method for measuring pH.
  • Hydrogen ion concentration is a numerical value indicating the degree of acidity or alkalinity of a substance, and a method of accurately and quickly measuring pH in various fields such as biology, chemistry, or various industries is becoming important.
  • a method of measuring pH without power consumption it is well known as a colorimetric sensor.
  • the hydrogen ion concentration is detected through commonly used litmus paper and indicator. In this case, compared with the standard color change chart provided by the manufacturer, if the color is similar, it is difficult for the test subject to distinguish it with the naked eye.
  • the hydrogen ion concentration detection method using an electrode has problems in electrode contamination and frequent electrode replacement.
  • optical pH sensors In order to solve the above problem, optical pH sensors have been studied. However, most recently developed optical pH sensors are “single-wavelength” fluorescent sensors, which generally perform quantization and dequantization of organic dyes. It is to use quantum dots functionalized with polymers that respond to (deprotonation) or pH. They were “turn-off” type pH sensors that showed changes in luminescence intensity by swelling or aggregation of units responding to pH near the pKa value.
  • these systems have fundamental limitations due to their low signal-to-noise ratio and non-specific interference by materials near the sensor (Korean Patent Application Laid-Open No. 10-2017-0037554; Korean Laid-Open Patent Application) Patent No. 10-2016-0026593).
  • indolizine framework-based compounds for pH measurement (AFPHA and AFPHH) were developed. It was confirmed that the fluorescence pattern of these materials changed according to the change in pH.
  • AFPHA and AFPHH indolizine framework-based compounds for pH measurement
  • Another object of the present invention is to provide a composition for measuring pH, a pH measuring sensor array, use as a pH measuring agent, and a pH measuring method comprising an indolizine framework-based compound for measuring pH.
  • the present invention provides a compound represented by the following formula (1).
  • R 1 is and an aniline selected from the group consisting of;
  • the compound may be represented by the following Chemical Formula 2 or Chemical Formula 3.
  • R 1 is and an aniline selected from the group consisting of;
  • a pyridine group represented by; and A phenol (phenol group) selected from the group consisting of; Benzoic acid represented by (Benzoic acid group); or It is a boronic acid represented by .
  • Chemical Formula 2 may be represented by one or more selected from the group consisting of Chemical Formulas 2-1 to 2-15.
  • Chemical Formula 3 may be represented by one or more selected from the group consisting of the following Chemical Formulas 3-1 to 3-15.
  • the present invention provides a method comprising the steps of (a) reacting a compound of formula (A) and a compound of formula (B) to prepare a compound of formula (C);
  • R 1 is and an aniline selected from the group consisting of;
  • the present invention provides a composition for measuring pH comprising the compound.
  • the present invention provides a sensor array for measuring pH comprising the compound.
  • the present invention also provides the use of the compound as a pH measuring agent.
  • the present invention provides a method for measuring pH using the compound.
  • an indolizine skeleton-based compound was synthesized, and it was confirmed that the pH range to which it responds is different depending on the pKa value of the substituent.
  • a sensor array for pH measurement in which a total of 30 fluorescent materials including 15 AFPHA and 15 AFPHH were fixed, it was confirmed that minute pH changes can be measured at decimal point intervals by analyzing the fluorescence pattern change. .
  • FIG. 1 is a schematic diagram showing a method for preparing a compound of the present invention.
  • Figure 2 is a view showing the structure of the newly synthesized compounds.
  • FIG. 3 is a diagram showing pKa values according to the type of substituents at the R1 position of Formula 1;
  • AFPHA 3 and AFPHA 8 materials according to the change in pH are a view of observing the photophysical properties of AFPHA 3 and AFPHA 8 materials according to the change in pH.
  • 5 is a view of observing the degree of change in fluorescence intensity and wavelength according to pH change by preparing an indolizine skeleton-based compound as a comparative example.
  • AFPHA 2, AFPHH 2 and AFPHA 3 materials are a view of observing the photophysical properties of AFPHA 2, AFPHH 2 and AFPHA 3 materials according to the change in pH.
  • FIG. 7 is a diagram illustrating an embodiment of a fluorescent sensor array for pH measurement in which 15 kinds of AFPHA compounds and 15 kinds of AFPHH compounds, which are novel compounds of the present invention, are fixed in a solid phase, and the degree of fluorescence of the sensor array under UV conditions.
  • FIG. 8 is a diagram illustrating a change in a fluorescence pattern according to a change in pH using a fluorescence sensor array for pH measurement.
  • 9 is a view of observing the change in the fluorescence intensity of the AFPHA 2 material in the pH 2 ⁇ pH 4 conditions.
  • FIG. 10 is a view showing changes in fluorescence intensity of AFPHA 2 material when divided into pH 1 to 4, pH 4 to 8, and pH 9 to 12 ranges.
  • 11 is a view of observing the change in the fluorescence intensity of the AFPHA 3 material under pH 2 ⁇ pH 4 conditions.
  • pH 12 is a diagram illustrating changes in fluorescence intensity of AFPHA 3 material when divided into pH 1 to 4, pH 4 to 8, and pH 9 to 12 ranges.
  • the present invention relates to a compound represented by the following formula (1).
  • R 1 is and an aniline selected from the group consisting of;
  • the compound may be represented by Formula 2 or Formula 3 below.
  • R 1 is and an aniline selected from the group consisting of;
  • Chemical Formula 2 may be represented by one or more selected from the group consisting of Chemical Formulas 2-1 to 2-15.
  • Chemical Formula 3 may be represented by one or more selected from the group consisting of Chemical Formulas 3-1 to 3-15.
  • a novel compound based on the indolizine framework represented by Formula 1 was synthesized (FIG. 1), specifically 15 kinds of compounds represented by Formula 2, Formula 3 15 types of compounds represented by were synthesized, respectively (FIG. 2).
  • the compound represented by Formula 2 was named AFPHA, and the compound represented by Formula 2 was named AFPHH.
  • aniline, pyridine, phenol, benzoic acid or boronic acid may be used, and phenol and aniline have been demonstrated as efficient ionophores in PET-based pH sensors (Raul). Gotor et al., Anal Chem., 89(16):8437-8444, 2017).
  • Electron-withdrawing groups such as halogen (o-chloro and o,o-dichloro) or alkyl or alkyloxy (alkyloxy, o-methyl, By attaching electron-donating groups such as p-methyl, o-methoxy or p-methoxy), electrons can be controlled.
  • the ability to measure the pH of the compounds synthesized in the present invention was confirmed.
  • the fluorescence intensity of both materials changed according to the change in pH, and it was confirmed that the pH could be measured at decimal point intervals ( FIG. 4 ).
  • GxF 33, GxF 58, and GxF 63 which are indolizine framework-based compounds, were synthesized and their ability to measure their pH was confirmed.
  • GxF 33 and GxF 63 some changes in fluorescence intensity were observed, but a change in wavelength was observed.
  • AFPHA 2, AFPHH 2, and AFPHA 3 it was confirmed that a change in wavelength as well as a change in fluorescence intensity according to pH was observed.
  • the present invention provides a method for preparing a compound of formula (C) by reacting a compound of formula (A) and a compound of formula (B);
  • R 1 is and an aniline selected from the group consisting of;
  • a novel compound based on the indolizine skeleton represented by Formula 1 can be synthesized by the method shown in FIG. .
  • compound B is acylated using an alkyl halide.
  • acylation may be carried out without limitation using a conventional method known in the art.
  • compound B is 2-bromoacetophenone
  • compound A is R 3 A pyridine having a substituent is used.
  • an organic mixture solution of an alkyl halide and pyridine is stirred at an appropriate temperature (20° C. to 100° C.) for 1 to 24 hours to yield a pyridine salt compound.
  • the organic solvent used in the reaction may be a conventional organic solvent, and may be appropriately determined by those skilled in the art according to specific types of the alkyl halide and the pyridine compound.
  • acylated compound represented by the formula c obtained in step a) is reacted with ethyl acrylate, sodium acetate and copper acetate monohydrate (Copper(II) Acetate monohydrate) to form a compound represented by the formula D This is the step to obtain the compound.
  • the acylated compound organic mixture solution obtained in step a) is stirred at an appropriate temperature (50° C. to 120° C.) for 1 to 24 hours, followed by the usual extraction, drying, filtration, concentration and purification processes. Through this process, a compound represented by the formula (D) is obtained.
  • a conventional organic solvent may be used, and a person skilled in the art may appropriately determine according to the specific type of the compound.
  • the above reaction may be performed without limitation using a conventional method known in the art, preferably, first, the compound represented by Formula D is dissolved in an organic solvent, and lithium hydroxide, potassium hydroxide ), a strong base such as sodium hydroxide is added, and the resulting organic mixture solution is stirred at an appropriate temperature (50°C to 120°C) for 1 to 24 hours, followed by conventional extraction, drying, filtration, concentration and purification. Through the process, an intermediate represented by the formula E is obtained.
  • the resulting organic mixture solution is stirred at an appropriate temperature (50°C to 120°C) for 1 to 24 hours, followed by normal extraction and drying , filtration, concentration and purification to yield the compound represented by formula F.
  • a conventional organic solvent may be used, and a person skilled in the art may appropriately determine according to the specific type of the compound.
  • the above reaction may be carried out without limitation using a conventional method known in the art.
  • the compound represented by Formula G including the R 1 substituent is not particularly limited, and, preferably, aniline as the R 1 substituent , pyridine, phenol, benzoic acid or boronic acid may be used.
  • the compound represented by the formula G having a R 1 substituent and the compound represented by the formula F obtained in step c) in a conventional organic solvent are mixed with Pd(PPh 3 ) 4 and sodium carbonate, and the resulting The organic mixture solution is stirred at an appropriate temperature (50° C. to 120° C.) for 1 to 24 hours, and then undergoes conventional extraction, drying, filtration, concentration and purification processes to obtain the compound of the present invention.
  • a conventional organic solvent may be used, and a person skilled in the art may appropriately determine according to the specific type of the compound.
  • compositions and sensor array for pH measurement Composition and sensor array for pH measurement
  • the present invention relates to a composition for measuring pH comprising the compound.
  • the present invention relates to a sensor array for measuring pH comprising the compound.
  • a compound represented by Formulas 2-1 to 2-15 (AFPHA) or a compound represented by Formulas 3-1 to 3-15 (AFPHH) is patterned and fixed to a substrate.
  • AFPHA a compound represented by Formulas 2-1 to 2-15
  • AFPHH a compound represented by Formulas 3-1 to 3-15
  • filter paper is preferably used as the substrate, but the present invention is not limited thereto, and a material capable of fixing a fluorescent material may be used without limitation.
  • an array frame was prepared using wax printing on a filter paper for uniform application of fluorescent materials, and 15 AFPHA compounds and 15 AFPHH compounds, a total of 30 compounds, were coated with wax. Spotting was performed on the old array. As shown in FIG. 7 , a sensor array containing 30 new phosphors per fluorescent sensor array was prepared, and the luminescence degree of the fluorescent material was observed under UV light. In addition, as a result of observing a change in a fluorescence pattern according to a change in pH using the fluorescence sensor array for pH measurement, it was observed that the fluorescence pattern changes according to the pH ( FIG. 8 ).
  • the sensor array to which the AFPHA compound and AFPHH compound of the present invention are variously immobilized it is possible to effectively measure various pH ranges as well as a sensor array for measuring a specific pH, such as a low range or a high range, depending on the purpose. can be manufactured.
  • the present invention relates to the use of a compound as a pH measuring agent.
  • the ability to measure the pH of the compounds synthesized in the present invention was confirmed.
  • the fluorescence intensity of both materials changed according to the change in pH, and it was confirmed that the pH could be measured at decimal point intervals ( FIG. 4 ).
  • AFPHA 2, AFPHH 2 and AFPHA 3 it was confirmed that a change in wavelength as well as a change in fluorescence intensity according to pH was observed (FIG. 5).
  • a compound suitable for pH measurement can be prepared, and it was confirmed that the pH measurement ability varies depending on the type of substituent and the pKa value.
  • the AFPHA or AFPHH compound of the present invention has a suitable use for pH measurement because it has been shown that the degree of change in fluorescence intensity and wavelength according to pH change.
  • the present invention relates to a method for measuring pH using the following compound.
  • R 1 is and an aniline selected from the group consisting of;
  • the compound may be represented by Formula 2 or Formula 3 below.
  • R 1 is and an aniline selected from the group consisting of;
  • a pyridine group represented by; and A phenol (phenol group) selected from the group consisting of; Benzoic acid represented by (Benzoic acid group); or It is a boronic acid represented by .
  • Chemical Formula 2 may be represented by one or more selected from the group consisting of Chemical Formulas 2-1 to 2-15.
  • Chemical Formula 3 may be represented by one or more selected from the group consisting of Chemical Formulas 3-1 to 3-15.
  • the method comprises the steps of (a) contacting a substrate for measuring pH including the compound and a sample for measuring pH; and
  • the substrate for pH measurement in step (a) is a sensor array for pH measurement.
  • filter paper is used as the substrate, but the present invention is not limited thereto, and a material capable of fixing a fluorescent material may be used without limitation.
  • a novel fluorescent material based on an indolizine framework was synthesized to measure the pH.
  • the compound represented by Formula 1 was synthesized by the method shown in FIG. 1 and Scheme 1, and specifically, 15 types of AFPHA compounds and 15 types of AFPHH compounds were synthesized.
  • Multiplicity was expressed as: s(singlet); d(doublet); t(triplet); q(quartet); m(multiple); dd(doublet of doublet); ddd(doublet of doublet of doublet); dt(doublet of triplet); td(triplet of doublet); brs (broad singlet).
  • LRMS high-resolution mass spectrometry
  • the synthesized 15 kinds of AFPHA compounds and 15 kinds of AFPHH compounds are shown in FIG. 2 , and the synthesis method of each material is as follows.
  • IH-E Synthesized as in Scheme 2, specifically, 4-acetylpyridine (106 ⁇ L, 0.96 mmol) and 2-bromoacetophenone (2-bromoacetophenone, 200.0 mg, 1.01 mmol) containing DMF (4.0 mL) After stirring at 80° C. for 5 hours, ethyl acrylate (52 ⁇ L, 0.48 mmol), copper(II) acetate monohydrate (573 mg, 2.87 mmol) and sodium acetate (314.0 mg, 3.83 mmol) were added to 100° C. was stirred for 5 hours.
  • IH-B KOH (337 mg, 6.0 mmol) was added to methanol (4 mL) containing IH-E (200.0 mg, 0.60 mmol), followed by stirring at room temperature overnight.
  • the reaction mixture was acidified by addition of 6N HCl, and the resulting solid was obtained through filtration, washed with water and dried in a drying oven to obtain compound IH-A as a brown solid.
  • the obtained compound IH-A was used in the next step without further purification, and sodium bicarbonate (131 mg, 1.56 mmol) was added to DMF (2.0 mL) containing IH-A, and NBS (98 mg, 0.55 mmol) was added. ) was added in portions at 0 °C.
  • the reaction mixture was stirred at room temperature for 12 hours, the resulting crude product was washed with water, and the organic material was extracted three times with DCM. The extracted organic materials were combined, dried over anhydrous Na 2 SO 4 and concentrated.
  • IM-E Synthesized as in Scheme 18, specifically, DMF (15.0 mL) containing pyridine (564 ⁇ L, 7.00 mmol) and bromoacetophenone (1.46 g, 7.35 mmol) was stirred at 100 ° C. overnight, Ethyl acrylate (373 ⁇ L, 3.50 mmol), copper(II) acetate monohydrate (2.09 g, 10.5 mmol) and sodium acetate (1.72 g, 21.0 mmol) were added and stirred at 100° C. for 16 hours. After confirming that the reaction was complete by TLC, copper acetate was removed by filtration through a pad of celite, and the resulting filtrate was concentrated in vacuo.
  • IM-B KOH (7.06 g, 126 mmol) was added to methanol (20 mL) containing IM-E (616 mg, 2.10 mmol), followed by stirring at room temperature for 4 hours.
  • the reaction mixture was acidified by addition of 6N HCl, and the resulting solid was obtained through filtration, washed with water and dried in a drying oven to obtain compound IM-A as a white solid.
  • UV absorption of the final compound was measured using a UV-VISIBLE spectrophotometer (JASCO V-670, JASCO, INC. Japan), and the excitation fluorescence emission wavelength was measured using a JASCO fluorescence spectrophotometer (JASCO FP-8200, JASCO, INC.). Japan) was used.
  • Quantum yield absolute quantum yield was measured by the Absolute PL quantum yield measurement system (QE-2000, Otsuka Electronics, Japan).
  • the fluorescence intensity change of the AFPHA 3 and AFPHA 8 compounds according to the pH change was observed.
  • a pH solution corresponding to 1 to 12 was prepared by measuring the pH of a mixed solution of 1M sodium hydroxide solution and 1N hydrochloric acid solution using a glass electrode-based pH measuring device.
  • AFPHA 3 and AFPHA 8 synthesized in Example 1 were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 20 mg/mL to prepare a stock solution, followed by a 96-well black plate (96-well black plate). plate) was added to each well of a pH solution of 100 ⁇ L and a compound 100 ⁇ L, and after reacting for 1 minute, fluorescence sensitivity was measured using a plate reader of the SpectraMax iD5 model.
  • DMSO dimethyl sulfoxide
  • both the AFPHA 3 and the AFPHA 8 compounds changed the fluorescence intensity according to the pH change, and it was confirmed that the pH could be measured at decimal point intervals.
  • GxF 58 represented by Formula 5 were synthesized.
  • a sensor array in which 15 AFPHA compounds and 15 AFPHH compounds are patterned and fixed was fabricated.
  • an array frame was made using wax printing on filter paper. After designing the array frame using the Hancom Office Hangul 2010 program, xerox ColorQube was placed on HYUNDAI MICRO qualitative filter paper (No. 22). Printing with wax was performed using an 8870. The wax-coated qualitative filter paper was heated at a temperature of about 150° C. for 5 minutes with an array frame. The thickness of the wire before heating is 0.7 mm, and the thickness of the wire after heating is melted by the heat to become 1.0 mm. Then, after the prepared array frame was sufficiently cooled for 1 hour, the stock solution of 15 AFPHA compounds and 15 AFPHH compounds prepared in 10 mM dimethyl sulfoxide (DMSO) solvent was coated with wax. After spotting, the array coated with the compounds was dried in a dry oven for 10 minutes.
  • DMSO dimethyl sulfoxide
  • a sensor array containing 30 new phosphors per fluorescent sensor array having a size of 2.5 cm X 3.0 cm was prepared, and the luminescence level of the fluorescent material was observed under UV light.
  • Fluorescence pattern change according to pH change was observed using the fluorescent sensor array for pH measurement prepared in Example 4.
  • the pre-exposure image of the fluorescent sensor array was taken with a cell phone camera, and then, 0.15 ⁇ L of the pH solution was dropped into each cell of the fluorescent sensor array using a micropipette. After that, it was dried in a dry oven for 10 minutes, and then an image after exposure was taken with a cell phone camera.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

본 발명은 인돌리진 골격체 기반 pH 측정용 화합물 및 이의 용도에 관한 것으로, 보다 상세하게는 인돌리진 골격체 기반 pH 측정용 화합물, 이의 제조방법, 및 이를 포함하는 pH 측정용 조성물, pH 측정 센서 어레이 및 pH 측정방법에 관한 것이다. 본 발명에서는 인돌리진 골격체 기반 pH 측정용 화합물을 합성하였으며, 치환기의 pKa 값에 따라 감응하는 pH 범위가 다른 것을 확인하였다. 또한, AFPHA 15종 및 AFPHH 15종을 포함한 총 30개의 형광물질이 고정된 pH 측정용 센서 어레이를 제작한 결과, 형광 패턴 변화를 분석하여 미세한 pH 변화를 소수점 단위 간격으로 측정할 수 있음을 확인하였다.

Description

인돌리진 골격체 기반 PH 측정용 형광 화합물 및 이의 용도
본 발명은 인돌리진 골격체 기반 화합물 및 이의 용도에 관한 것으로, 보다 상세하게는 인돌리진 골격체 기반 화합물, 이의 제조방법, 이를 포함하는 pH 측정용 조성물, pH 측정 센서 어레이, pH 측정제로서의 용도 및 pH 측정방법에 관한 것이다.
수소이온농도(pH)는 물질의 산성 또는 알칼리성의 정도를 나타내는 수치로 생물학, 화학 또는 다양한 산업체 등 여러 분야에서 정확하고 빠르게 pH를 측정하는 방법이 중요해지고 있다. 기존 전력 소비 없이 pH를 측정하는 방법으로는 비색계 센서로 많이 알려져 있다. 주로 사용을 많이 하는 리트머스 종이와 지시약을 통해 수소이온농도를 검출하게 되는데, 이때 제조사에서 제공해주는 표준 색변화 차트와 비교할 시, 유사한 색을 나타내는 경우 피실험자가 육안으로 구별하기 어려운 점이 있다. 또한 전극봉을 이용하는 수소이온농도 검출 방식은 전극봉 오염, 잦은 전극봉 교체의 문제가 있다고 알려져 있다.
상기 문제점을 해결하기 위해, 광학적 pH 센서가 연구되고 있으나, 최근에 개발되어온 광학적 pH 센서들은 대부분이 "단파장(single-wavelength)" 형광 센서로, 이들은 일반적으로 유기 염료의 양자화(protonation), 탈양자화(deprotonation) 혹은 pH에 반응하는 고분자로 기능화시킨 양자점(quantum dots)을 이용하는 것이다. pKa 값 부근에서 pH에 반응하는 유닛들이 팽창 (swelling) 혹은 응집(aggregation)함으로써 발광강도의 변화를 보이는 “turn-off” 형태의 pH 센서들이었다. 그러나 실용적인 응용면에서, 이러한 시스템들은 낮은 신호 대 잡음비(signal-to-noise ratio)와 센서 근처의 물질들에 의한 비특이적 간섭으로 근본적인 한계가 있다 (대한민국공개특허 제10-2017-0037554호; 대한민국공개특허 제10-2016-0026593호).
이와 같은 한계의 존재 때문에, 두 개 혹은 그 이상의 형광체들의 pH에 따른 발광강도의 비율변화(ratiometric)에 의한 색 변화(color-switching) pH 센서에 대한 연구가 진행되기 시작했다. ratiometric color-switching pH 센서는 크기에 따라 발광파장이 변하고 높은 양자 효율(quantum yield)를 보이는 양자점의 경우가 이 같은 목적에 잘 부합하지만, 일반적으로 pH에 민감한 성분을 이용해 표면을 추가적으로 기능화 처리해야 하는 단점이 있다.
이에, 본 발명에서는 위와 같은 단점을 보완하기 위하여 pH에 감응하는 새로운 형광물질을 디자인함과 동시에 종이 기반 센서 개발을 위해 예의 노력한 결과, 인돌리진 골격체 기반 pH 측정용 화합물(AFPHA 및 AFPHH)을 개발하였으며, 이들 물질이 pH 변화에 따라 형광패턴이 변화하는 것을 확인하였다. 또한, AFPHA 15종 및 AFPHH 15종을 포함한 총 30개의 형광물질이 고정된 pH 측정용 센서 어레이를 제작한 결과, 미세한 pH 변화를 일 단위가 아닌 소수점 단위 간격으로 형광 패턴변화를 이용하여 분석할 수 있음을 확인하고, 본 발명을 완성하였다.
본 발명의 목적은 인돌리진 골격체 기반 화합물 및 이의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 인돌리진 골격체 기반 pH 측정용 화합물을 포함하는 pH 측정용 조성물, pH 측정 센서 어레이, pH 측정제로서의 용도 및 pH 측정방법을 제공하는 데 있다.
상술한 목적을 달성하기 위해,
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2021013127-appb-img-000001
상기 화학식 1에서,
R1
Figure PCTKR2021013127-appb-img-000002
Figure PCTKR2021013127-appb-img-000003
Figure PCTKR2021013127-appb-img-000004
로 구성된 군에서 선택된 아닐린(anilline group);
Figure PCTKR2021013127-appb-img-000005
또는
Figure PCTKR2021013127-appb-img-000006
로 표시되는 피리딘(pyridine group);
Figure PCTKR2021013127-appb-img-000007
,
Figure PCTKR2021013127-appb-img-000008
Figure PCTKR2021013127-appb-img-000009
로 구성된 군에서 선택된 페놀(phenol group);
Figure PCTKR2021013127-appb-img-000010
로 표시되는 벤조산(Benzoic acid group); 또는
Figure PCTKR2021013127-appb-img-000011
로 표시되는 보론산(Boronic acid)이며, R2는 수소 또는 아세틸이다.
본 발명의 바람직한 일실시예에 있어서, 상기 화합물은 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.
[화학식 2]
Figure PCTKR2021013127-appb-img-000012
[화학식 3]
Figure PCTKR2021013127-appb-img-000013
상기 화학식 2 또는 화학식 3에서,
R1
Figure PCTKR2021013127-appb-img-000014
Figure PCTKR2021013127-appb-img-000015
Figure PCTKR2021013127-appb-img-000016
로 구성된 군에서 선택된 아닐린(anilline group);
Figure PCTKR2021013127-appb-img-000017
또는
Figure PCTKR2021013127-appb-img-000018
로 표시되는 피리딘(pyridine group);
Figure PCTKR2021013127-appb-img-000019
,
Figure PCTKR2021013127-appb-img-000020
Figure PCTKR2021013127-appb-img-000021
로 구성된 군에서 선택된 페놀(phenol group);
Figure PCTKR2021013127-appb-img-000022
로 표시되는 벤조산(Benzoic acid group); 또는
Figure PCTKR2021013127-appb-img-000023
로 표시되는 보론산(Boronic acid)이다.
본 발명의 바람직한 다른 일실시예에 있어서, 상기 화학식 2는 하기 화학식 2-1 내지 화학식 2-15로 구성된 군에서 선택된 1종 이상으로 표시될 수 있다.
[화학식 2-1]
Figure PCTKR2021013127-appb-img-000024
[화학식 2-2]
Figure PCTKR2021013127-appb-img-000025
[화학식 2-3]
Figure PCTKR2021013127-appb-img-000026
[화학식 2-4]
Figure PCTKR2021013127-appb-img-000027
[화학식 2-5]
Figure PCTKR2021013127-appb-img-000028
[화학식 2-6]
Figure PCTKR2021013127-appb-img-000029
[화학식 2-7]
Figure PCTKR2021013127-appb-img-000030
[화학식 2-8]
Figure PCTKR2021013127-appb-img-000031
[화학식 2-9]
Figure PCTKR2021013127-appb-img-000032
[화학식 2-10]
Figure PCTKR2021013127-appb-img-000033
[화학식 2-11]
Figure PCTKR2021013127-appb-img-000034
[화학식 2-12]
Figure PCTKR2021013127-appb-img-000035
[화학식 2-13]
Figure PCTKR2021013127-appb-img-000036
[화학식 2-14]
Figure PCTKR2021013127-appb-img-000037
[화학식 2-15]
Figure PCTKR2021013127-appb-img-000038
본 발명의 바람직한 또 다른 일실시예에 있어서, 상기 화학식 3은 하기 화학식 3-1 내지 화학식 3-15로 구성된 군에서 선택된 1종 이상으로 표시될 수 있다.
[화학식 3-1]
Figure PCTKR2021013127-appb-img-000039
[화학식 3-2]
Figure PCTKR2021013127-appb-img-000040
[화학식 3-3]
Figure PCTKR2021013127-appb-img-000041
[화학식 3-4]
Figure PCTKR2021013127-appb-img-000042
[화학식 3-5]
Figure PCTKR2021013127-appb-img-000043
[화학식 3-6]
Figure PCTKR2021013127-appb-img-000044
[화학식 3-7]
Figure PCTKR2021013127-appb-img-000045
[화학식 3-8]
Figure PCTKR2021013127-appb-img-000046
[화학식 3-9]
Figure PCTKR2021013127-appb-img-000047
[화학식 3-10]
Figure PCTKR2021013127-appb-img-000048
[화학식 3-11]
Figure PCTKR2021013127-appb-img-000049
[화학식 3-12]
Figure PCTKR2021013127-appb-img-000050
[화학식 3-13]
Figure PCTKR2021013127-appb-img-000051
[화학식 3-14]
Figure PCTKR2021013127-appb-img-000052
[화학식 3-15]
Figure PCTKR2021013127-appb-img-000053
또한, 본 발명은 (a) 화학식 A의 화합물 및 화학식 B의 화합물을 반응시켜, 화학식 C의 화합물을 제조하는 단계;
(b) 상기 화학식 C의 화합물과 에틸아크릴레이트(ethyl acrylate), 아세트산나트륨(sodium acetate) 및 구리아세트산 모노수화물(Copper(II) Acetate monohydrate)을 반응시켜 화학식 D의 화합물을 제조하는 단계;
(c) 상기 화학식 D의 화합물을 강염기 및 강산과 반응시켜 화학식 E의 화합물을 제조하는 단계;
(d) 상기 화학식 E의 화합물 및 NBS(N-Bromosuccinimide)를 반응시켜 화학식 F의 화합물을 제조하는 단계; 및
(e) 상기 화학식 F의 화합물 및 화학식 G의 화합물을 반응시켜 화학식 1의 화합물을 제조하는 단계를 포함하며, 하기 반응식 1로 표시되는 화학식 1의 화합물의 제조방법을 제공한다:
[반응식 1]
Figure PCTKR2021013127-appb-img-000054
상기 화학식 1에서,
R1
Figure PCTKR2021013127-appb-img-000055
Figure PCTKR2021013127-appb-img-000056
Figure PCTKR2021013127-appb-img-000057
로 구성된 군에서 선택된 아닐린(anilline group);
Figure PCTKR2021013127-appb-img-000058
또는
Figure PCTKR2021013127-appb-img-000059
로 표시되는 피리딘(pyridine group);
Figure PCTKR2021013127-appb-img-000060
,
Figure PCTKR2021013127-appb-img-000061
Figure PCTKR2021013127-appb-img-000062
로 구성된 군에서 선택된 페놀(phenol group);
Figure PCTKR2021013127-appb-img-000063
로 표시되는 벤조산(Benzoic acid group); 또는
Figure PCTKR2021013127-appb-img-000064
로 표시되는 보론산(Boronic acid)이며, R2는 수소 또는 아세틸이다.
다른 목적을 달성하기 위해,
본 발명은 상기 화합물을 포함하는 pH 측정용 조성물을 제공한다.
또한, 본 발명은 상기 화합물을 포함하는 pH 측정용 센서 어레이를 제공한다.
또한, 본 발명은 상기 화합물의 pH 측정제로서의 용도를 제공한다.
또한, 본 발명은 상기 화합물을 이용한 pH 측정방법을 제공한다.
본 발명에서는 인돌리진 골격체 기반 화합물을 합성하였으며, 치환기의 pKa 값에 따라 감응하는 pH 범위가 다른 것을 확인하였다. 또한, AFPHA 15종 및 AFPHH 15종을 포함한 총 30개의 형광물질이 고정된 pH 측정용 센서 어레이를 제작한 결과, 형광 패턴 변화를 분석하여 미세한 pH 변화를 소수점 단위 간격으로 측정할 수 있음을 확인하였다.
도 1은 본 발명의 화합물의 제조방법을 나타낸 모식도이다.
도 2는 신규 합성된 화합물들의 구조를 나타낸 도면이다.
도 3은 화학식 1의 R1 위치의 치환기 종류에 따른 pKa 값을 나타내는 도면이다.
도 4는 pH 변화에 따른 AFPHA 3 및 AFPHA 8 물질의 광물리적 특성을 관찰한 도면이다.
도 5는 비교예로 인돌리진 골격체 기반 화합물을 제작하여, pH 변화에 따른 형광 강도 및 파장 변화 정도를 관찰한 도면이다.
도 6은 pH 변화에 따른 AFPHA 2, AFPHH 2 및 AFPHA 3 물질의 광물리적 특성을 관찰한 도면이다.
도 7은 본 발명의 신규 화합물인 15개 종의 AFPHA 화합물 및 15개 종의 AFPHH 화합물을 고체상으로 고정한 pH 측정용 형광 센서 어레이 구현예 및 UV 조건에서 센서 어레이의 형광 정도를 나타낸 도면이다.
도 8은 pH 측정용 형광 센서 어레이를 이용하여 pH 변화에 따른 형광 패턴 변화를 관찰한 도면이다.
도 9는 pH 2 ~ pH 4 조건에서 AFPHA 2 물질의 형광 강도 변화를 관찰한 도면이다.
도 10은 pH 1 ~ 4, pH 4 ~ 8 및 pH 9 ~12 범위로 나누었을 때, AFPHA 2 물질의 형광 강도 변화를 관찰한 도면이다.
도 11은 pH 2 ~ pH 4 조건에서 AFPHA 3 물질의 형광 강도 변화를 관찰한 도면이다.
도 12는 pH 1 ~ 4, pH 4 ~ 8 및 pH 9 ~ 12 범위로 나누었을 때, AFPHA 3 물질의 형광 강도 변화를 관찰한 도면이다.
pH 측정용 화합물
본 발명은 일관점에서, 하기 화학식 1로 표시되는 화합물에 관한 것이다.
[화학식 1]
Figure PCTKR2021013127-appb-img-000065
상기 화학식 1에서,
R1
Figure PCTKR2021013127-appb-img-000066
Figure PCTKR2021013127-appb-img-000067
Figure PCTKR2021013127-appb-img-000068
로 구성된 군에서 선택된 아닐린(anilline group);
Figure PCTKR2021013127-appb-img-000069
또는
Figure PCTKR2021013127-appb-img-000070
로 표시되는 피리딘(pyridine group);
Figure PCTKR2021013127-appb-img-000071
,
Figure PCTKR2021013127-appb-img-000072
Figure PCTKR2021013127-appb-img-000073
로 구성된 군에서 선택된 페놀(phenol group);
Figure PCTKR2021013127-appb-img-000074
로 표시되는 벤조산(Benzoic acid group); 또는
Figure PCTKR2021013127-appb-img-000075
로 표시되는 보론산(Boronic acid)이며, R2는 수소 또는 아세틸이다.
바람직하게, 상기 화학식 1은 상기 화합물은 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.
[화학식 2]
Figure PCTKR2021013127-appb-img-000076
[화학식 3]
Figure PCTKR2021013127-appb-img-000077
상기 화학식 2 또는 화학식 3에서,
R1
Figure PCTKR2021013127-appb-img-000078
Figure PCTKR2021013127-appb-img-000079
Figure PCTKR2021013127-appb-img-000080
로 구성된 군에서 선택된 아닐린(anilline group);
Figure PCTKR2021013127-appb-img-000081
또는
Figure PCTKR2021013127-appb-img-000082
로 표시되는 피리딘(pyridine group);
Figure PCTKR2021013127-appb-img-000083
Figure PCTKR2021013127-appb-img-000084
Figure PCTKR2021013127-appb-img-000085
로 구성된 군에서 선택된 페놀(phenol group);
Figure PCTKR2021013127-appb-img-000086
로 표시되는 벤조산(Benzoic acid group); 또는
Figure PCTKR2021013127-appb-img-000087
로 표시되는 보론산(Boronic acid)이다.
보다 바람직하게, 상기 화학식 2는 하기 화학식 2-1 내지 화학식 2-15로 구성된 군에서 선택된 1종 이상으로 표시될 수 있다.
[화학식 2-1]
Figure PCTKR2021013127-appb-img-000088
[화학식 2-2]
Figure PCTKR2021013127-appb-img-000089
[화학식 2-3]
Figure PCTKR2021013127-appb-img-000090
[화학식 2-4]
Figure PCTKR2021013127-appb-img-000091
[화학식 2-5]
Figure PCTKR2021013127-appb-img-000092
[화학식 2-6]
Figure PCTKR2021013127-appb-img-000093
[화학식 2-7]
Figure PCTKR2021013127-appb-img-000094
[화학식 2-8]
Figure PCTKR2021013127-appb-img-000095
[화학식 2-9]
Figure PCTKR2021013127-appb-img-000096
[화학식 2-10]
Figure PCTKR2021013127-appb-img-000097
[화학식 2-11]
Figure PCTKR2021013127-appb-img-000098
[화학식 2-12]
Figure PCTKR2021013127-appb-img-000099
[화학식 2-13]
Figure PCTKR2021013127-appb-img-000100
[화학식 2-14]
Figure PCTKR2021013127-appb-img-000101
[화학식 2-15]
Figure PCTKR2021013127-appb-img-000102
보다 바람직하게, 상기 화학식 3은 하기 화학식 3-1 내지 화학식 3-15로 구성된 군에서 선택된 1종 이상으로 표시될 수 있다.
[화학식 3-1]
Figure PCTKR2021013127-appb-img-000103
[화학식 3-2]
Figure PCTKR2021013127-appb-img-000104
[화학식 3-3]
Figure PCTKR2021013127-appb-img-000105
[화학식 3-4]
Figure PCTKR2021013127-appb-img-000106
[화학식 3-5]
Figure PCTKR2021013127-appb-img-000107
[화학식 3-6]
Figure PCTKR2021013127-appb-img-000108
[화학식 3-7]
Figure PCTKR2021013127-appb-img-000109
[화학식 3-8]
Figure PCTKR2021013127-appb-img-000110
[화학식 3-9]
Figure PCTKR2021013127-appb-img-000111
[화학식 3-10]
Figure PCTKR2021013127-appb-img-000112
[화학식 3-11]
Figure PCTKR2021013127-appb-img-000113
[화학식 3-12]
Figure PCTKR2021013127-appb-img-000114
[화학식 3-13]
Figure PCTKR2021013127-appb-img-000115
[화학식 3-14]
Figure PCTKR2021013127-appb-img-000116
[화학식 3-15]
Figure PCTKR2021013127-appb-img-000117
본 발명은 구체적인 일구현예에서, pH 측정을 위해, 상기 화학식 1로 표시되는 인돌리진 골격체 기반의 신규한 화합물을 합성하였으며(도 1), 구체적으로 화학식 2로 표시되는 화합물 15종, 화학식 3으로 표시되는 화합물 15종을 각각 합성하였다 (도 2). 상기 화학식 2로 표시되는 화합물은 AFPHA로 명명하였으며, 상기 화학식 2로 표시되는 화합물은 AFPHH로 명명하였다.
상기 화학식 2 또는 화학식 3으로 표시되는 화합물에서 R1기는 아닐린, 피리딘, 폐놀, 벤조산 또는 보론산 등을 사용할 수 있으며, 페놀와 아닐린은 PET 기반 pH 센서에서 효율적인 이온투과담체(ionophore)로 입증되었다 (Raul Gotor et al., Anal Chem., 89(16):8437-8444, 2017). 페놀성 수산기의 밀도에 따라 pKa 값이 변하는 벤젠고리에 할로겐(halogen; o-chloro and o,o-dichloro)과 같은 전자흡인기(electron-withdrawing groups) 또는 알킬 또는 알킬옥시(alkyloxy, o-methyl, p- methyl, o-methoxy or p-methoxy)와 같은 전자 공여기(electron-donating groups)를 부착하면 전자를 조절할 수 있게 된다.
또한, 본 발명에서는 R1에 치환기의 pKa에 따라 감응할 수 있는 pH 의 범위가 달라짐을 확인하였다 (도 3).
본 발명의 구체적인 다른 일구현예에서, 본 발명에서 합성한 화합물들의 pH 측정능을 확인하였다. AFPHA 3 및 AFPHA 8 화합물의 광물리학적 특성을 관찰한 결과, 두 물질 모두 pH 변화에 따라 형광 강도가 변하는 것을 확인하였으며, 소수점 단위 간격으로 pH를 측정할 수 있음을 확인하였다 (도 4).
비교예로 인돌리진 골격체 기반 화합물인 GxF 33, GxF 58, GxF 63를 합성하여, 이들의 pH 측정능을 확인한 결과, GxF 33 및 GxF 63의 경우 형광 강도 변화가 일부 관찰되지만, 파장 변화는 관찰되지 않은 것으로 확인된 반면(도 5), 본 발명의 화합물인 AFPHA 2, AFPHH 2 및 AFPHA 3의 경우, pH에 따른 형광 강도 변화 뿐만 아니라, 파장 변화가 관찰되는 것을 확인하였다.
즉, 인돌리진 골격구조를 가진 화합물 모두가 pH 측정용으로 적합한 것은 아니나, pH에 감응하는 치환기를 도입함으로써 pH 측정용으로 적합한 화합물을 만들어 낼수 있으며, 치환기의 종류 및 pKa 값에 따라 pH 측정능이 달라지는 것을 확인하였다. 본 발명의 AFPHA 또는 AFPHH 화합물은 pH 변화에 따라 형광 강도 및 파장 변화 정도가 보이는 것으로 나타났으므로 pH 측정에 적합한 것 확인하였다.
pH 측정용 화합물 제조방법
본 발명은 다른 관점에서, (a) 화학식 A의 화합물 및 화학식 B의 화합물을 반응시켜, 화학식 C의 화합물을 제조하는 단계;
(b) 상기 화학식 C의 화합물과 에틸아크릴레이트(ethyl acrylate), 아세트산나트륨(sodium acetate) 및 구리아세트산 모노수화물(Copper(II) Acetate monohydrate)을 반응시켜 화학식 D의 화합물을 제조하는 단계;
(c) 상기 화학식 D의 화합물을 강염기 및 강산과 반응시켜 화학식 E의 화합물을 제조하는 단계;
(d) 상기 화학식 E의 화합물 및 NBS(N-Bromosuccinimide)를 반응시켜 화학식 F의 화합물을 제조하는 단계; 및
(e) 상기 화학식 F의 화합물 및 화학식 G의 화합물을 반응시켜 화학식 1의 화합물을 제조하는 단계를 포함하며, 하기 반응식 1로 표시되는 화학식 1의 화합물의 제조방법을 제공한다:
[반응식 1]
Figure PCTKR2021013127-appb-img-000118
상기 반응식 1에서 상기 R1
Figure PCTKR2021013127-appb-img-000119
Figure PCTKR2021013127-appb-img-000120
Figure PCTKR2021013127-appb-img-000121
로 구성된 군에서 선택된 아닐린(anilline group);
Figure PCTKR2021013127-appb-img-000122
또는
Figure PCTKR2021013127-appb-img-000123
로 표시되는 피리딘(pyridine group);
Figure PCTKR2021013127-appb-img-000124
,
Figure PCTKR2021013127-appb-img-000125
Figure PCTKR2021013127-appb-img-000126
로 구성된 군에서 선택된 페놀(phenol group);
Figure PCTKR2021013127-appb-img-000127
로 표시되는 벤조산(Benzoic acid group); 또는
Figure PCTKR2021013127-appb-img-000128
로 표시되는 보론산(Boronic acid)이며, R2는 수소 또는 아세틸이다.
구체적으로, 도 1에 나타난 방법으로 상기 화학식 1로 표시되는 인돌리진 골격체 기반의 신규한 화합물을 합성할 수 있으며, 보다 구체적으로 본 발명에 따른 화합물의 제조방법을 단계별로 상세히 설명하면 다음과 같다.
a) 단계: 피리딘 물질의 아실화
본 단계에서는 화합물 B를 알킬 할라이드를 이용하여 아실화 한다.
상기의 아실화는 당업계에서 알려진 통상의 방법을 이용하여 제한 없이 수행될 수 있는데, 본 발명에서는 상기 알킬 할라이드로서 화합물 B는 2-브로모아세토페논(2-bromoacetophenone)를, 화합물 A로 R3 치환기를 갖는 피리딘을 사용한다.
구체적으로 알킬 할라이드와 피리딘의 유기혼합물 용액을, 적정 온도(20℃ 내지 100℃)에서 1 ~ 24시간 동안 교반하여 피리딘 염 화합물을 산출한다. 이때, 상기 반응을 보내는데 있어 사용되는 유기용매는 통상의 유기용매를 사용할 수 있으며, 알킬할라이드 및 피리딘 화합물의 구체적인 종류에 따라 당업자가 적절히 결정할 수 있다.
b) 단계: 1,3-디폴라 고리화 반응
a) 단계에서 얻어진 아실화된 화학식 c로 표현되는 화합물을 에틸아크릴레이트(ethyl acrylate), 아세트산나트륨(sodium acetate) 및 구리아세트산 모노수화물(Copper(II) Acetate monohydrate)을 반응시켜 화학식D 로 표현되는 화합물을 얻는 단계이다.
구체적으로, 상기 a) 단계에서 얻어진 아실화된 화합물 유기혼합물 용액을, 적정 온도 (50℃ 내지 120℃)에서 1 ~ 24시간 동안 교반한뒤, 통상의 추출, 건조, 여과, 농축 및 정제 과정을 거쳐 화학식 D로 표현되는 화합물을 산출한다. 이때, 상기 반응을 보내는데 있어 사용되는 유기용매는 통상의 유기용매를 사용할 수 있으며, 화합물의 구체적인 종류에 따라 당업자가 적절히 결정할 수 있다.
c)단계: Br 치환기 도입 단계
화학식 D로 표현되는 화합물을 비누화 반응(Saponification)과 브롬화 (Bromination) 반응을 거쳐 화학식 E 및 화학식 F로 표현되는 화합물을 얻는 단계이다.
상기의 반응은 당업계에서 알려진 통상의 방법을 이용하여 제한 없이 수행될 수 있는데, 바람직하게는 먼저 상기 화학식 D로 표현되는 화합물을 유기용매에 용해 시키고 수산화리튬(Lithium hydroxide), 수산화칼륨(Potassium hydroxide), 수산화 나트륨(sodium hydroxide)과 같은 강염기를 첨가 하고 생성된 유기혼합물 용액을 적정 온도(50℃ 내지 120℃)에서 1 ~ 24시간 동안 교반한뒤, 통상의 추출, 건조, 여과, 농축 및 정제 과정을 거쳐 화학식 E로 표시되는 중간 물질을 얻어 낸다. 이후 중간 물질을 적절한 유기용매에 녹이고 이후 NBS(N-Bromosuccinimide)를 처리한후 생성된 유기혼합물 용액을 적정 온도 (50℃ 내지 120℃)에서 1 ~ 24시간 동안 교반한뒤, 통상의 추출, 건조, 여과, 농축 및 정제 과정을 거쳐 화학식 F로 표현되는 화합물을 산출한다. 이때, 상기 반응을 보내는데 있어 사용되는 유기용매는 통상의 유기용매를 사용할 수 있으며, 화합물의 구체적인 종류에 따라 당업자가 적절히 결정할 수 있다.
d) 단계: Suzuki coupling 단계
화학식 F로 표현되는 화합물을 화학식 E로 표현되는 화합물과 Pd 촉매를 사용하여 반응 시켜 본 발명의 화합물을 얻는 단계이다.
상기의 반응은 당업계에서 알려진 통상의 방법을 이용하여 제한 없이 수행될 수 있는데, 먼저 상기 R1 치환기를 포함하는 화학식 G로 표현되는 화합물은 특별히 제한되지 않으며, 바람직하게는 경우 R1 치환기로 아닐린, 피리딘, 폐놀, 벤조산 또는 보론산 등을 사용할 수 있다. 상기의 반응은, 통상의 유기용매 내에서 R1 치환기를 갖는 화학식 G로 표현되는 화합물과 c) 단계에서 얻어진 화학식 F로 표현되는 화합물을 Pd(PPh3)4과 Sodium carbonate와 혼합하고, 생성된 유기혼합물 용액을 적정 온도 (50℃ 내지 120℃)에서 1 ~ 24시간 동안 교반한뒤, 통상의 추출, 건조, 여과, 농축 및 정제 과정을 거쳐 본 발명의 화합물을 얻어 낸다. 이때, 상기 반응을 보내는데 있어 사용되는 유기용매는 통상의 유기용매를 사용할 수 있으며, 화합물의 구체적인 종류에 따라 당업자가 적절히 결정할 수 있다.
pH 측정용 조성물 및 센서 어레이
본 발명은 또 다른 관점에서, 상기 화합물을 포함하는 pH 측정용 조성물에 관한 것이다.
본 발명은 또 다른 관점에서, 상기 화합물을 포함하는 pH 측정용 센서 어레이에 관한 것이다.
본 발명에 있어서, 상기 센서 어레이는 기판에 화학식 2-1 내지 화학식 2-15로 표시되는 화합물(AFPHA) 또는 화학식 3-1 내지 화학식 3-15로 표시되는 화합물(AFPHH)이 패턴화 되어 고정되어 있을 수 있다. 본 발명에서는 기판으로 바람직하게 필터 페이퍼를 사용하였으나, 이에 한정되지 않고 형광 물질을 고정할 수 있는 물질을 제한없이 사용할 수 있다.
본 발명의 구체적인 일구현예에서는, 형광 물질들의 균일한 도포를 위하여 필터 페이터 상에 왁스 프린팅을 활용하여 어레이 틀을 제조하였으며, 15개의 AFPHA 화합물 및 15개의 AFPHH 화합물, 총 30개의 화합물을 왁스로 코팅된 어레이에 스팟팅(spotting)을 하였다. 도 7과 같이, 형광센서 어레이당 30 가지의 신규 형광체가 들어간 센서 어레이를 제조하였으며, 형광 물질의 발광정도를 UV 상에서 관찰하였다. 또한, 상기 pH 측정용 형광 센서 어레이를 이용하여 pH 변화에 따른 형광 패턴 변화를 관찰한 결과, pH에 따라 형광 패턴이 변하는 것을 관찰하였다 (도 8).
나아가, AFPHA 2 화합물의 pH 2 ~ pH 4 조건에 따른 형광 패턴 변화를 관찰한 결과, pH 2와 pH 3 사이에 형광 강도가 현저하게 감소한 것으로 확인되었다. pH 1 ~ 4, pH 4 ~ 8 및 pH 9 ~ 12 범위로 나누었을 때, pH 4 ~ 8 사이에서는 형광 강도의 차이가 관찰되지 않았지만, pH 1 ~ 4 및 pH 9 ~ 12 사이에서는 pH 변화에 따른 형광 강도 변화가 분명하게 관찰되었다 (도 9 및 도 10).
AFPHA 3 화합물의 pH 2 ~ pH 4 조건에 따른 형광 패턴 변화를 관찰한 결과, pH 변화에 따라 형광강도 차이가 분명하게 관찰되는 것을 확인하였다. pH 1 ~ 4, pH 4 ~ 8 및 pH 9 ~ 12 범위로 나누었을 때, pH 9 ~ 12 사이에서는 형광 강도의 차이가 관찰되지 않았지만, pH 1 ~ 4 및 pH 4 ~ 8 사이에서는 pH 변화에 따른 형광 강도 변화가 분명하게 관찰되었다 (도 11 및 도 12).
즉, 본 발명의 AFPHA 화합물 및 AFPHH 화합물이 다양하게 고정된 센서 어레이를 이용하면 다양한 범위의 pH를 효과적으로 측정할 수 있을 뿐만 아니라, 목적에 따라 낮은 범위 또는 높은 범위와 같이 특정 pH를 측정하는 센서 어레이의 제조가 가능하다.
본 발명은 또 다른 관점에서, 화합물의 pH 측정제로서의 용도에 관한 것이다.
전술한 바와 같이, 본 발명의 구체적인 다른 일구현예에서, 본 발명에서 합성한 화합물들의 pH 측정능을 확인하였다. AFPHA 3 및 AFPHA 8 화합물의 광물리학적 특성을 관찰한 결과, 두 물질 모두 pH 변화에 따라 형광 강도가 변하는 것을 확인하였으며, 소수점 단위 간격으로 pH를 측정할 수 있음을 확인하였다 (도 4). 본 발명의 화합물인 AFPHA 2, AFPHH 2 및 AFPHA 3의 경우, pH에 따른 형광 강도 변화뿐만 아니라, 파장 변화가 관찰되는 것을 확인하였다(도 5). 즉, 인돌리진 골격구조를 가진 화합물에 pH에 감응하는 치환기를 도입함으로써 pH 측정용으로 적합한 화합물을 만들어 낼 수 있으며, 치환기의 종류 및 pKa 값에 따라 pH 측정능이 달라지는 것을 확인하였다. 본 발명의 AFPHA 또는 AFPHH 화합물은 pH 변화에 따라 형광 강도 및 파장 변화 정도가 보이는 것으로 나타났으므로 pH 측정에 적합한 용도를 갖는다.
본 발명은 또 다른 관점에서, 하기 화합물을 이용한 pH 측정방법에 관한 것이다.
[화학식 1]
Figure PCTKR2021013127-appb-img-000129
상기 화학식 1에서,
R1
Figure PCTKR2021013127-appb-img-000130
Figure PCTKR2021013127-appb-img-000131
Figure PCTKR2021013127-appb-img-000132
로 구성된 군에서 선택된 아닐린(anilline group);
Figure PCTKR2021013127-appb-img-000133
또는
Figure PCTKR2021013127-appb-img-000134
로 표시되는 피리딘(pyridine group);
Figure PCTKR2021013127-appb-img-000135
,
Figure PCTKR2021013127-appb-img-000136
Figure PCTKR2021013127-appb-img-000137
로 구성된 군에서 선택된 페놀(phenol group);
Figure PCTKR2021013127-appb-img-000138
로 표시되는 벤조산(Benzoic acid group); 또는
Figure PCTKR2021013127-appb-img-000139
로 표시되는 보론산(Boronic acid)이며, R2는 수소 또는 아세틸이다.
바람직하게, 상기 화학식 1은 상기 화합물은 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.
[화학식 2]
Figure PCTKR2021013127-appb-img-000140
[화학식 3]
Figure PCTKR2021013127-appb-img-000141
상기 화학식 2 또는 화학식 3에서,
R1
Figure PCTKR2021013127-appb-img-000142
Figure PCTKR2021013127-appb-img-000143
Figure PCTKR2021013127-appb-img-000144
로 구성된 군에서 선택된 아닐린(anilline group);
Figure PCTKR2021013127-appb-img-000145
또는
Figure PCTKR2021013127-appb-img-000146
로 표시되는 피리딘(pyridine group);
Figure PCTKR2021013127-appb-img-000147
,
Figure PCTKR2021013127-appb-img-000148
Figure PCTKR2021013127-appb-img-000149
로 구성된 군에서 선택된 페놀(phenol group);
Figure PCTKR2021013127-appb-img-000150
로 표시되는 벤조산(Benzoic acid group); 또는
Figure PCTKR2021013127-appb-img-000151
로 표시되는 보론산(Boronic acid)이다.
보다 바람직하게, 상기 화학식 2는 하기 화학식 2-1 내지 화학식 2-15로 구성된 군에서 선택된 1종 이상으로 표시될 수 있다.
[화학식 2-1]
Figure PCTKR2021013127-appb-img-000152
[화학식 2-2]
Figure PCTKR2021013127-appb-img-000153
[화학식 2-3]
Figure PCTKR2021013127-appb-img-000154
[화학식 2-4]
Figure PCTKR2021013127-appb-img-000155
[화학식 2-5]
Figure PCTKR2021013127-appb-img-000156
[화학식 2-6]
Figure PCTKR2021013127-appb-img-000157
[화학식 2-7]
Figure PCTKR2021013127-appb-img-000158
[화학식 2-8]
Figure PCTKR2021013127-appb-img-000159
[화학식 2-9]
Figure PCTKR2021013127-appb-img-000160
[화학식 2-10]
Figure PCTKR2021013127-appb-img-000161
[화학식 2-11]
Figure PCTKR2021013127-appb-img-000162
[화학식 2-12]
Figure PCTKR2021013127-appb-img-000163
[화학식 2-13]
Figure PCTKR2021013127-appb-img-000164
[화학식 2-14]
Figure PCTKR2021013127-appb-img-000165
[화학식 2-15]
Figure PCTKR2021013127-appb-img-000166
보다 바람직하게, 상기 화학식 3은 하기 화학식 3-1 내지 화학식 3-15로 구성된 군에서 선택된 1종 이상으로 표시될 수 있다.
[화학식 3-1]
Figure PCTKR2021013127-appb-img-000167
[화학식 3-2]
Figure PCTKR2021013127-appb-img-000168
[화학식 3-3]
Figure PCTKR2021013127-appb-img-000169
[화학식 3-4]
Figure PCTKR2021013127-appb-img-000170
[화학식 3-5]
Figure PCTKR2021013127-appb-img-000171
[화학식 3-6]
Figure PCTKR2021013127-appb-img-000172
[화학식 3-7]
Figure PCTKR2021013127-appb-img-000173
[화학식 3-8]
Figure PCTKR2021013127-appb-img-000174
[화학식 3-9]
Figure PCTKR2021013127-appb-img-000175
[화학식 3-10]
Figure PCTKR2021013127-appb-img-000176
[화학식 3-11]
Figure PCTKR2021013127-appb-img-000177
[화학식 3-12]
Figure PCTKR2021013127-appb-img-000178
[화학식 3-13]
Figure PCTKR2021013127-appb-img-000179
[화학식 3-14]
Figure PCTKR2021013127-appb-img-000180
[화학식 3-15]
Figure PCTKR2021013127-appb-img-000181
구체적으로, 상기 방법은 (a) 상기 화합물을 포함하는 pH 측정용 기판과 pH 측정 시료를 접촉하는 단계; 및
(b) 화합물의 형광 강도 또는 파장 차이를 이용하여 시료의 pH를 측정하는 단계로 수행될 수 있다.
상기 (a) 단계의 pH 측정용 기판은 pH 측정용 센서 어레이로, 본 발명에서는 기판으로 필터 페이퍼를 사용하였으나, 이에 한정되지 않고 형광 물질을 고정할 수 있는 물질을 제한없이 사용할 수 있다.
[실시예 1]
인돌리진 기반 신규 형광 물질 합성
본 발명에서는 pH를 측정하기 위해 인돌리진 골격체 기반의 신규한 형광 물질을 합성하였다.
도 1 및 반응식 1에 나타난 방법으로 화학식 1로 표시되는 화합물을 합성하였으며, 구체적으로, 15종의 AFPHA 화합물 및 15종의 AFPHH 화합물을 합성하였다.
1H 및 13C NMR 스펙트럼은 JEOL ECZ-600R (JEOL Ltd, Japan)를 사용하여 기록되었으며, 화학적 이동(chemical shift)은 내부 테트라메틸실란 표준의 ppm의 낮은 장(downfield) 범위를 측정하였다.
다중도(multiplicity)는 다음과 같이 표시하였다: s(singlet); d(doublet); t(triplet); q(quartet); m(multiplet); dd(doublet of doublet); ddd(doublet of doublet of doublet); dt(doublet of triplet); td(triplet of doublet); brs(broad singlet).
커플링 상수는 Hz로 기록하였다. 질량 분석(routine mass analyses)은 역상컬럼(C-18, 50Х 2.1mm, 5㎛)이 구비된 LC/MS 시스템과 전자 분무 이온화(ESI) 또 는 대기압 화학 이온화(APCI)를 이용한 광다이오드 분석 탐지기 상에서 수행되었다.
화합물의 분자량 분석은 고분해능 질량분석기(LRMS; high-resolution mass spectrometry)에 의해 확인하였다. LRMS 분석은 LCMS-2020 (Shimadzu, 일본) 를 사용하여 수행하였다.
합성한 15종의 AFPHA 화합물 및 15종의 AFPHH 화합물은 도 2에 나타내었으며, 물질 각각의 합성 방법은 다음과 같다.
<AFPHA 1 ~ 15>
IH-E : 하기 반응식 2와 같이 합성하였으며, 구체적으로, 4-아세틸피리딘(106 μL, 0.96 mmol) 및 2-브로모아세토페논(2-bromoacetophenone, 200.0 mg, 1.01 mmol)이 포함된 DMF(4.0 mL)을 80℃에서 5시간 동안 교반한 다음, 에틸아크릴레이트(52 μL, 0.48 mmol), 구리(II) 아세테이트 모노하이드레이트(573 mg, 2.87 mmol) 및 소듐 아세테이트(314.0 mg, 3.83 mmol)를 첨가하여 100℃에서 5시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 구리아세테이트를 셀라이트 패드를 통한 여과에 의해 제거하고, 생성된 여과액을 진공하에서 농축시켰다. 생성된 조생성물을 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:5 - EA 40%)로 정제하여 황색 고체의 화합물 IH-E(120.7 mg, 75.8% yield)를 수득 하였다.
NMR 분석결과는 하기와 같다.
1H NMR (400 MHz, CDCl3) δ 9.83 (d, J = 7.2 Hz, 1H), 8.90 (s, 1H), 7.80 (m, 3H), 7.54 (m, 4H) 4.38 (q, J = 7.2 Hz, 2H), 2.69 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 195.7, 185.8, 163.7, 139.4, 138.3, 134.3, 132.1, 129.2, 128.9, 128.8, 128.7, 123.9, 121.1, 112.6, 109.5, 60.8, 26.6, 14.9; LRMS (ESI) m/z calcd for C20H18NO4 [M+H]+: 336.12 ,found: 336.15.
IH-B : IH-E(200.0 mg, 0.60 mmol)가 포함된 메탄올(4 mL)에 KOH(337 mg, 6.0 mmol)를 첨가한 후, 실온에서 하룻밤 동안 교반하였다. 반응 혼합물에 6N HCl를 첨가하여 산성화시킨 다음, 생성된 고체를 여과를 통해 수득한 후, 물로 세척하고 건조오븐에서 건조시켜 갈색고체의 화합물 IH-A를 수득하였다.
수득한 화합물 IH-A는 추가 정제없이 바로 다음 단계에 사용하였으며, IH-A이 포함된 DMF(2.0 mL)에 소듐 바이카보네이트(131 mg, 1.56 mmol)를 첨가하고 및 NBS(98 mg, 0.55 mmol)를 0℃에서 부분적으로 첨가하였다. 상기 반응 혼합물을 상온에서 12시간 동안 교반한 다음, 생성된 조생성물을 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:5 - EA 20%)로 정제하여 황색 고체의 화합물 IH-B(135.2 mg, 76.3% 수율)를 수득 하였다.
NMR 분석결과는 하기와 같다.
1H NMR (400 MHz, CDCl3) δ 9.85 (d, J = 7.4 Hz, 1H), 8.17 (s, 1H), 7.80 (dd, J = 8.2 Hz, 1.6 Hz, 2H), 7.52 (m, 5H), 2.71 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.3, 184.8, 139.5, 135.2, 132.2, 131.9, 129.1, 128.6, 128.3, 127.5, 123.9, 119.2, 112.0, 94.1, 26.7; LRMS (APCI) m/z calcd for C17H13BrNO2 [M+H]+: 342.01; found: 342.20.
[반응식 2]
Figure PCTKR2021013127-appb-img-000182
AFPHA 1:
[반응식 3]
Figure PCTKR2021013127-appb-img-000183
IH-B(20.7 mg, 0.06 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-피리딜보론산(4-pyridyllboronic acid, 8.9 mg, 0.02 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(tetrakis(triphenyl phosphine)palladium(0), 9.0 mg, 0.3 mol%) 및 소듐 카보네이트(sodium carbonate, 11.0 mg, 0.10 mmol)를 첨가한 후, 100℃에서 10시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:1 - EA 50%)로 정제하여 하기 화학식 2-1로 표시되는 황색 고체의 화합물 AFPHA 1 (1.5 mg, 16.9 % 수율)을 수득 하였다.
[화학식 2-1]
Figure PCTKR2021013127-appb-img-000184
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.88 (d, J = 7.5 Hz, 1H), 8.19 (s, 1H), 7.83 (d, J = 7.6 Hz, 2H), 7.71 (dd, J = 12.7, 5.9 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.45 (dd, J = 7.3, 1.5 Hz, 1H), 7.42 (dd, J = 10.9, 5.9 Hz, 2H), 7.39 (d, J = 7.6 Hz, 2H), 6.81 (d, J = 4.6 Hz, 1H), 2.67 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.1, 185.5, 140.3, 131.8, 131.6, 131.3m 129.2, 128.5, 128.3, 125.6, 120.1, 118.5, 114.5, 111.6 105.4, 102.0, 26.4, 17.3, 16.6; LRMS (ESI) m/z calcd for C22H17N2O2 [M+H]+: 341.12; found: 341.2650
AFPHA 2:
[반응식 4]
Figure PCTKR2021013127-appb-img-000185
IH-B(20.7 mg, 0.06 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 3-아미노-4-메틸페닐보론산(3-amino-4-methylphenylboronic acid, 27.0 mg, 0.18 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(21.0 mg, 0.3 mol%) 및 소듐 카보네이트(19.0 mg, 0.18 mmol)를 첨가한 후, 100℃에서 19시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:4 - EA 25%)로 정제하여 하기 화학식 2-2로 표시되는 황색 고체의 화합물 AFPHA 2 (11.6 mg, 52.5% 수율)를 수득 하였다.
[화학식 2-2]
Figure PCTKR2021013127-appb-img-000186
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.90 (d, J = 7.5 Hz, 1H), 8.44 (s, 1H), 7.85 (m, 2H), 7.58 (m, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.46 (dd, J = 7.0, 2.4 Hz, 2H), 7.17 (d, J = 7.6 Hz, 1H), 6.89 (m, 2H), 6.18 (m, 1H), 2.64 (s, 3H), 2.24 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.1, 185.5, 140.3, 131.8, 131.6, 131.3m 129.2, 128.5, 128.3, 125.6, 120.1, 118.5, 114.5, 111.6 105.4, 102.0, 26.4, 17.3, 16.6; LRMS (ESI) m/z calcd for C24H21N2O2 [M+H]+: 369.15; found: 369.3428.
AFPHA 3:
[반응식 5]
Figure PCTKR2021013127-appb-img-000187
IH-B(17.4 mg, 0.04 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-아미노벤젠보론산(4-aminobenzeneboronic acid, 25.0 mg, 0.14 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(19.5 mg, 0.3 mol%) 및 소듐 카보네이트(19.4 mg, 0.14 mmol)를 첨가한 후, 100℃에서 1시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:1 - EA 50%)로 정제하여 하기 화학식 2-3으로 표시되는 적색 고체의 화합물 AFPHA 3(14.1 mg, 82.9% 수율)을 수득 하였다.
[화학식 2-3]
Figure PCTKR2021013127-appb-img-000188
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.89 (d, J = 7.5 Hz, 1H), 8.38 (s, 1H), 7.85 (d, J = 7.8 Hz, 2H), 7.56 (m, 1H), 7.51 (t, J = 7.5 Hz, 2H), 7.43 (m, 1H), 7.42 (s, 1H), 7.36 (d, J = 8.2 Hz, 2H), 6.80 (d, J = 8.2 Hz, 2H), 3.80 (s, 2H), 2.63 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.7, 185.5, 146.0, 140.3, 134.5, 131.6, 131.5, 129.3, 129.2, 128.4, 128.2, 125.1, 124.1, 123.7, 122.4, 120.0, 115.7, 111.5, 26.3; LRMS (ESI) m/z calcd for C23H19N2O2 [M+H]+: 355.14; found: 355.2327.
AFPHA 4:
[반응식 6]
Figure PCTKR2021013127-appb-img-000189
IH-B(39.5 mg, 0.10 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-(디메틸아미노)페닐보론산(4-(dimethylamino)phenyl boronic acid, 45.5 mg, 0.43 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(231.0 mg, 20.0 mol%) 및 소듐 카보네이트(108 mg, 1.01 mmol)를 첨가한 후, 100℃에서 19시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:4 - EA 25%)로 정제하여 하기 화학식 2-4로 표시되는 황색 고체의 화합물 AFPHA 4(43.5 mg, 99.7% 수율)를 수득 하였다.
[화학식 2-4]
Figure PCTKR2021013127-appb-img-000190
NMR 분석결과는 하기와 같다.
1H NMR (400 MHz, CDCl3) δ 10.02 (d, J = 7.2 Hz, 1H), 8.11 (s, 1H), 7.87 (d, J = 7.2 Hz, 2H), 7.57 (d, J = 7.2 Hz, 2H), 7.52 (d, J = 7.6 Hz, 1H), 7.48 (s, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.05 (dd, J = 7.4 Hz, 2.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 2H), 3.02 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 185.2, 166.7, 149.8, 140.3, 133.8, 131.5, 129.2, 129.0, 128.4, 127.3, 125.8, 125.4, 125.1, 125.0, 123.2, 122.3, 121.0, 116.1, 116.0, 113.2, 109.4, 47.1, 41.0, 34.7; LRMS (ESI) m/z calcd for C24H20F3N2O [M+H]+: 409.14; found: 409.20.
AFPHA 5:
[반응식 7]
Figure PCTKR2021013127-appb-img-000191
IH-B(10.1 mg, 0.03 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-(디메틸아미노)벤젠보론산(4-(diethylamino)benzeneboronic acid, 6.8 mg, 0.03 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(12.0 mg, 0.3 mol%) 및 소듐 카보네이트(11.2 mg, 0.10 mmol)를 첨가한 후, 100℃에서 3시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:3 - EA 35%)로 정제하여 하기 화학식 2-5로 표시되는 적색 고체의 화합물 AFPHA 5(10.7 mg, 74.5% 수율)를 수득 하였다.
[화학식 2-5]
Figure PCTKR2021013127-appb-img-000192
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.89 (d, J = 7.6 Hz, 1H), 8.43 (s, 1H), 7.86 (d, J = 7.1 Hz, 2H), 7.57 (m, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.43 (m, 4H), 6.80 (d, J = 8.6 Hz, 2H), 3.42 (q, J = 7.1 Hz, 4H), 2.64 (s, 3H), 1.22 (t, J = 7.1 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 195.8, 185.4, 140.4, 134.5, 131.4, 129.3, 129.2, 128.4, 128.2, 124.9, 122.8, 120.4, 112.3, 111.4, 44.6, 26.3, 12.7; LRMS (ESI) m/z calcd for C27H27N2O2 [M+H]+: 411.20; found: 411.3622.
AFPHA 6:
[반응식 8]
Figure PCTKR2021013127-appb-img-000193
IH-B(5.3 mg, 0.01 mmol)를 포함하고 DMF 및 물이 1 : 1로 혼합되어 있는 용액에 4-(디프로필아미노)페닐보론산(4-(dipropylamino)phenylboronic acid, 11.9 mg, 0.05 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(19 mg, 0.3 mol%) 및 소듐 카보네이트(17.0 mg, 0.16 mmol)를 첨가한 후, 100℃에서 3시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:2 - EA 50%)로 정제하여 하기 화학식 2-6으로 표시되는 적색 고체의 화합물 AFPHA 6(6.1 mg, 92.8% 수율)을 수득 하였다.
[화학식 2-6]
Figure PCTKR2021013127-appb-img-000194
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.88 (d, J = 7.4 Hz, 1H), 8.43 (s, 1H), 7.85 (d, J = 7.1 Hz, 2H), 7.57 (dd, J = 10.4, 4.2 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.44 (dd, J = 7.3, 1.8 Hz, 1H), 7.41 (t, J = 4.3 Hz, 3H), 6.75 (d, J = 8.8 Hz, 2H), 3.30 (m, 4H), 2.64 (s, 3H), 1.66 (dd, J = 15.1, 7.5 Hz, 4H), 0.96 (t, J = 7.3 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 195.8, 147.6, 140.4, 131.4, 129.2(2), 128.4, 128.2, 124.9, 122.8, 120.4, 112.2, 111.4, 54.1, 53.0, 51.9, 47.6, 29.8, 26.3, 20.5, 11.6; LRMS (ESI) m/z calcd for C29H31N2O2 [M+H]+: 439.23; found:.439.3939
AFPHA 7:
[반응식 9]
Figure PCTKR2021013127-appb-img-000195
IH-B(17.8 mg, 0.05 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-니트로벤젠보론산(4-nitrobenzeneboronic acid, 26.0 mg, 0.15 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(18.0 mg, 0.3 mol%) 및 소듐 카보네이트(16.5 mg, 0.15 mmol)를 첨가한 후, 100℃에서 6시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:3 - EA 35%)로 정제하여 하기 화학식 2-7로 표시되는 주황색 고체의 화합물 AFPHA 7(9.2 mg, 46.0% 수율)을 수득 하였다.
[화학식 2-7]
Figure PCTKR2021013127-appb-img-000196
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, ) δ 9.97 (dd, J = 7.4, 0.9 Hz, 1H), 8.44 (dd, J = 1.8, 0.9 Hz, 1H), 8.36 (m, 2H), 7.87 (dd, J = 8.2, 1.3 Hz, 2H), 7.75 (m, 2H), 7.62 (ddd, J = 6.9, 4.0, 1.3 Hz, 1H), 7.59 (s, 1H), 7.54 (m, 3H), 2.69 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.4, 185.7, 146.6, 140.8, 139.7, 133.0, 131.9, 129.1, 128.7, 128.6, 128.4, 125.9, 124.6, 124.4, 118.9, 118.7, 112.4, 26.5; LRMS (ESI) m/z calcd for C23H17N2O4 [M+H]+: 385.11; found: 385.2183.
AFPHA 8:
[반응식 10]
Figure PCTKR2021013127-appb-img-000197
IH-B(23.4 mg, 0.06 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-하이드록시페닐보론산(4-hydroxyphenyl boronic acid, 20.0 mg, 0.13 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(71.1 mg, 0.3 mol%) 및 소듐 카보네이트(22.0 mg, 0.20 mmol)를 첨가한 후, 100℃에서 2시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:2 - EA 45%)로 정제하여 하기 화학식 2-8로 표시되는 황색 고체의 화합물 AFPHA 8(20.6 mg, 84.9% 수율)을 수득 하였다.
[화학식 2-8]
Figure PCTKR2021013127-appb-img-000198
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, (CD3)2SO) δ 9.80 (d, J = 7.5 Hz, 1H), 9.60 (s, 1H), 8.42 (s, 1H), 7.86 (d, J = 7.8 Hz, 2H), 7.65 (t, J = 7.2 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H), 7.52 (t, J = 8.4 Hz, 3H), 7.49 (s, 1H), 6.91 (d, J = 8.5 Hz, 2H), 2.67 (s, 3H); 13C NMR (100 MHz, (CD3)2SO) δ 195.8, 184.3, 156.8, 139.5, 133.4, 131.6, 131.3, 129.2, 128.9, 128.5, 127.4, 124.3, 123.9, 122.8, 121.3, 119.9, 115.9, 111.4, 26.3; LRMS (ESI) m/z calcd for C23H18NO3 [M+H]+: 356.12; found: 356.2470.
AFPHA 9:
[반응식 11]
Figure PCTKR2021013127-appb-img-000199
IH-B(14.3 mg, 0.041 mmol)를 포함하고 DMF 및 물이 1.5 : 1로 혼합되어 있는 용액에 3-하이드록시페닐보론산(3-hydroxyphenylboronic acid, 12.0 mg, 0.083 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(15 mg, 0.3 mol%) 및 소듐 카보네이트(14.0 mg, 0.125 mmol)를 첨가한 후, 100℃에서 3시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:4 - EA 25%)로 정제하여 하기 화학식 2-9로 표시되는 황색 고체의 화합물 AFPHA 9(13.0 mg, 89.3% 수율)를 수득 하였다.
[화학식 2-9]
Figure PCTKR2021013127-appb-img-000200
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, (CD3)2SO) δ 9.92 (d, J = 7.5 Hz, 1H), 8.44 (s, 1H), 7.85 (m, 2H), 7.59 (m, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.49 (s, 1H), 7.47 (dd, J = 7.5, 1.9 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.05 (m, 1H), 6.85 (dd, J = 8.0, 2.1 Hz, 1H), 5.24 (s, 1H), 2.66 (s, 3H); 13C NMR (100 MHz, (CD3)2SO) δ 195.9, 185.6, 156.3, 140.1, 135.6, 134.7, 132.1, 131.7, 130.5, 129.2, 128.5, 128.4, 125.7, 123.9, 121.5, 120.7, 119.7, 115.1, 114.4, 111.8, 26.5; LRMS (ESI) m/z calcd for C24H20F3N2O [M+H]+: 356.12; found: 356.2586.
AFPHA 10:
[반응식 12]
Figure PCTKR2021013127-appb-img-000201
IH-B(12.9 mg, 0.03 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 2-하이드록시페닐보론산(2-hydroxyphenylboronic acid, 10.0 mg, 0.07 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(13.0 mg, 0.3 mol%) 및 소듐 카보네이트(12.0 mg, 0.11 mmol)를 첨가한 후, 100℃에서 6시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:3 - EA 35%)로 정제하여 하기 화학식 2-10으로 표시되는 황색 고체의 화합물 AFPHA 10(10.2 mg, 77.6% 수율)을 수득 하였다.
[화학식 2-10]
Figure PCTKR2021013127-appb-img-000202
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, (CD3)2SO) δ 9.83 (dd, J = 7.4, 0.7 Hz, 1H), 9.76 (s, 1H), 8.31 (m, 1H), 7.86 (m, 2H), 7.65 (m, 1H), 7.57 (t, J = 7.6 Hz, 2H), 7.54 (m, 2H), 7.44 (dd, J = 7.6, 1.7 Hz, 1H), 7.22 (m, 1H), 7.01 (dd, J = 8.1, 0.9 Hz, 1H), 6.93 (td, J = 7.4, 1.0 Hz, 1H), 2.63 (s, 3H); 13C NMR (100 MHz, (CD3)2SO) δ 195.8, 184.2, 154.5, 139.6, 134.4, 131.5, 130.9, 130.8, 128.8, 128.6, 128.4, 127.3, 126.6, 122.7, 121.0, 120.0, 119.5, 118.0, 116.1, 111.3, 26.3; LRMS (ESI) m/z calcd for C23H18NO3 [M+H]+: 356.12; found: 356.3013.
AFPHA 11:
[반응식 13]
Figure PCTKR2021013127-appb-img-000203
IH-B(13.3 mg, 0.03 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-하이드록시메틸페닐보론산(4-hydroxymethylphenylboronic acid, 18.0 mg, 0.11 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(13.5 mg, 0.3 mol%) 및 소듐 카보네이트(12.3 mg, 0.11 mmol)를 첨가한 후, 100℃에서 3시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:1 - EA 50%)로 정제하여 하기 화학식 2-11로 표시되는 황색 고체의 화합물 AFPHA 11(12.4 mg, 88.3% 수율)을 수득 하였다.
[화학식 2-11]
Figure PCTKR2021013127-appb-img-000204
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.93 (dd, J = 7.4, 0.9 Hz, 1H), 8.42 (dd, J = 1.8, 0.9 Hz, 1H), 7.86 (dd, J = 8.1, 1.2 Hz, 2H), 7.59 (m, 3H), 7.53 (d, J = 7.8 Hz, 2H), 7.51 (dd, J = 4.8, 3.2 Hz, 3H), 7.48 (dd, J = 7.4, 1.9 Hz, 1H), 4.78 (s, 2H), 2.65 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.7, 185.6, 140.2, 140.0, 133.4, 132.1, 131.7, 129.2, 128.5(2), 128.4, 127.9, 125.6, 121.5, 119.7, 111.8, 65.2, 26.4; LRMS (ESI) m/z calcd for C24H20NO3 [M+H]+: 370.14; found: 370.3155.
AFPHA 12:
[반응식 14]
Figure PCTKR2021013127-appb-img-000205
IH-B(16.0 mg, 0.04 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 3-하이드록시메틸페닐보론산(3-hydroxymethylphenylboronic acid, 21.0 mg, 0.14 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(16.0 mg, 0.3 mol%) 및 소듐 카보네이트(15.0 mg, 0.14 mmol)를 첨가한 후, 100℃에서 6시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:1 - EA 50%)로 정제하여 하기 화학식 2-12로 표시되는 황색 고체의 화합물 AFPHA 12(11.2 mg, 65.9% 수율)를 수득 하였다.
[화학식 2-12]
Figure PCTKR2021013127-appb-img-000206
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.93 (dd, J = 7.4, 0.9 Hz, 1H), 8.42 (dd, J = 1.8, 0.9 Hz, 1H), 7.86 (dt, J = 8.4, 1.7 Hz, 2H), 7.59 (m, 2H), 7.53 (dd, J = 5.5, 3.9 Hz, 2H), 7.51 (m, 3H), 7.47 (dd, J = 7.4, 1.9 Hz, 1H), 7.37 (dt, J = 7.1, 1.6 Hz, 1H), 4.79 (s, 2H), 2.65 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.7, 185.6, 142.0, 140.2, 134.7, 134.4, 132.1, 131.6, 129.4, 129.2, 128.5, 128.4, 127.5, 126.9, 125.9, 125.7, 123.9, 121.7, 119.7, 111.8, 65.3, 26.4; LRMS (ESI) m/z calcd for C24H20NO3 [M+H]+: 370.14; found: 370.2758.
AFPHA 13:
[반응식 15]
Figure PCTKR2021013127-appb-img-000207
IH-B(15.1 mg, 0.04 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 2-하이드록시메틸페닐보론산(2-hydroxymethylphenylboronic acid, 20.0 mg, 0.13 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(115.0 mg, 0.3 mol%) 및 소듐 카보네이트(14.0 mg, 0.13 mmol)를 첨가한 후, 100℃에서 6시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:2 - EA 45%)로 정제하여 하기 화학식 2-13으로 표시되는 황색 고체의 화합물 AFPHA 13(15.0 mg, 92.3% 수율)을 수득 하였다.
[화학식 2-13]
Figure PCTKR2021013127-appb-img-000208
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.92 (dd, J = 7.4, 0.9 Hz, 1H), 8.09 (dd, J = 1.9, 0.9 Hz, 1H), 7.85 (dd, J = 8.2, 1.3 Hz, 2H), 7.63 (dd, J = 7.5, 1.1 Hz, 1H), 7.56 (m, 1H), 7.53 (s, 1H), 7.49 (m, 3H), 7.45 (m, 1H), 7.41 (ddd, J = 15.0, 7.4, 1.6 Hz, 2H), 4.61 (s, 2H), 2.59 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.8, 185.6, 140.0, 139.5, 131.7, 131.1, 129.2, 129.1, 128.5, 128.4, 128.2(2), 127.3, 123.6, 119.7, 119.6, 111.7, 63.3, 26.4; LRMS (ESI) m/z calcd for C24H20NO3 [M+H]+: 370.14; found: 370.3383.
AFPHA 14:
[반응식 16]
Figure PCTKR2021013127-appb-img-000209
IH-B(22.3 mg, 0.06 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 3-플루오로-4-하이드록시벤젠보론산(3-fluoro-4-hydroxybenzeneboronic acid, 30.4 mg, 0.19 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(68.0 mg, 0.3 mol%) 및 소듐 카보네이트(21.0 mg, 0.19 mmol)를 첨가한 후, 100℃에서 7시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:4 - EA 25%)로 정제하여 하기 화학식 2-14로 표시되는 황색 고체의 화합물 AFPHA 14(20.4 mg, 84.1% 수율)를 수득 하였다.
[화학식 2-14]
Figure PCTKR2021013127-appb-img-000210
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, (CD3)2SO) δ 10.02 (s, 1H), 9.80 (dd, J = 7.4, 0.9 Hz, 1H), 8.43 (dd, J = 1.8, 0.9 Hz, 1H), 7.87 (m, 2H), 7.65 (m, 1H), 7.59 (m, 2H), 7.56 (m, 2H), 7.52 (m, 1H), 7.36 (dd, J = 8.3, 1.4 Hz, 1H), 7.08 (dd, J = 9.2, 8.4 Hz, 1H), 2.68 (s, 3H); 13C NMR (100 MHz, (CD3)2SO) δ 195.9, 184.3, 139.4, 133.4, 131.6, 131.5, 129.0, 128.5, 127.5, 124.7, 124.2(2), 122.9, 119.8, 118.3, 118.2, 115.8, 115.7, 111.5, 26.4; LRMS (ESI) m/z calcd for C23H17FNO3 [M+H]+: 374.11; found: 374.2948.
AFPHA 15:
[반응식 17]
Figure PCTKR2021013127-appb-img-000211
IH-B(14.7 mg, 0.04 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 5-플루오로-2-하이드록시벤젠보론산(5-fluoro-2-hydroxybenzeneboronic acid, 20.0 mg, 0.12 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(15.0 mg, 0.3 mol%) 및 소듐 카보네이트(14.0 mg, 0.12 mmol)를 첨가한 후, 100℃에서 6시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:1 - EA 50%)로 정제하여 하기 화학식 2-15로 표시되는 황색 고체의 화합물 AFPHA 15(13.2 mg, 82.2% 수율)를 수득 하였다.
[화학식 2-15]
Figure PCTKR2021013127-appb-img-000212
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.88 (dd, J = 7.4, 0.9 Hz, 1H), 8.14 (dd, J = 1.9, 0.9 Hz, 1H), 7.82 (dd, J = 8.2, 1.3 Hz, 2H), 7.58 (m, 1H), 7.49 (m, 4H), 7.03 (m, 3H), 5.24 (s, 1H), 2.62 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.7, 185.5, 157.9, 156.3, 149.4, 139.8, 135.3, 132.3, 131.9, 129.1, 128.6, 128.4, 126.9, 124.2, 121.1, 119.8, 117.3, 117.2(2), 116.1, 115.9, 112.0, 26.4; LRMS (ESI) m/z calcd for C23H17FNO3 [M+H]+: 374.11; found: 374.2410.
<AFPHH 1 ~ 15>
IM-E : 하기 반응식 18과 같이 합성하였으며, 구체적으로, 피리딘(564 μL, 7.00 mmol) 및 브로모아세토페논(1.46 g, 7.35 mmol)이 포함된 DMF(15.0 mL)을 100℃에서 하룻밤 동안 교반한 다음, 에틸아크릴레이트(373 μL, 3.50 mmol), 구리(II) 아세테이트 모노하이드레이트(2.09 g, 10.5 mmol) 및 소듐 아세테이트(1.72 g, 21.0 mmol)를 첨가하여 100℃에서 16시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 구리아세테이트를 셀라이트 패드를 통한 여과에 의해 제거하고, 생성된 여과액을 진공하에서 농축시켰다. 생성된 조생성물을 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA:Hexane = 1:6 - EA 15%)로 정제하여 황색 고체의 화합물 IM-E(616 mg, 60% 수율)를 수득 하였다.
NMR 분석결과는 하기와 같다.
1H NMR (400 MHz, CDCl3) δ 9.83(d, J = 7.2 Hz, 1H), 8.25(dd, J = 9.0 Hz, 1.2 Hz, 1H), 7.73(d, J = 7.2 Hz, 2H), 7.71(s, 1H), 7.46(d, J = 7.2 Hz, 1H), 7.40(t, J = 7.2 Hz, 2H), 7.29(t, J = 8.0 Hz, 1H), 6.93(t, J = 7.0 Hz, 1H), 4.29(q, J = 7.0 Hz, 2H), 1.31(t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 184.8, 163.4, 139.5, 139.3, 131.1, 128.7, 128.6, 128.4, 128.0, 127.2, 122.1, 121.2, 119.0, 114.9, 105.9, 59.9, 14.5; LRMS (ESI) m/z calcd for C18H16NO3 [M+H]+: 294.11; found: 294.15.
IM-B : IM-E(616 mg, 2.10 mmol)가 포함된 메탄올(20 mL)에 KOH(7.06 g, 126 mmol)를 첨가한 후, 실온에서 4시간 동안 교반하였다. 반응 혼합물에 6N HCl를 첨가하여 산성화시킨 다음, 생성된 고체를 여과를 통해 수득한 후, 물로 세척하고 건조오븐에서 건조시켜 흰색고체의 화합물 IM-A를 수득하였다.
수득한 화합물 IM-A는 추가 정제없이 바로 다음 단계에 사용하였으며, IM-A이 포함된 DMF(10.0 mL)에 소듐 바이카보네이트(529 mg, 6.30 mmol)를 첨가하고 및 NBS(561 mg, 3.15 mmol)를 0℃에서 부분적으로 첨가하였다. 상기 반응 혼합물을 상온에서 12시간 동안 교반한 다음, 생성된 조생성물을 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:8 - EA 12%)로 정제하여 황색 고체의 화합물 IM-B(590 mg, 93.6% 수율)를 수득 하였다.
NMR 분석결과는 하기와 같다.
1H NMR (400 MHz, CDCl3) δ 10.04 (d, J = 6.8 Hz, 1H), 7.78 (d, J = 6.4 Hz, 2H), 7.61 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.50 (d, J =7.6 Hz, 2H), 7.37 (s, 1H), 7.30 (dt, J = 7.7 Hz, 1.2 Hz, 1H), 7.00 (dt, J = 7.0 Hz, 1.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 184.0, 140.3, 136.9, 131.3, 129.0, 128.8, 128.5, 127.2, 125.4, 122.3, 117.3, 114.8, 89.9, 47.1, 34.8; LRMS (ESI) m/z calcd for C15H11BrNO [M+H]+: 290.99; found: 290.95.
[반응식 18]
Figure PCTKR2021013127-appb-img-000213
AFPHH 1:
[반응식 19]
Figure PCTKR2021013127-appb-img-000214
IM-B(21.6 mg, 0.07 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-피리딜보론산(26.5 mg, 0.21 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(25.0 mg, 0.3 mol%) 및 소듐 카보네이트(22.8 mg, 0.21 mmol)를 첨가한 후, 100℃에서 12시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:1 - EA 50%)로 정제하여 하기 화학식 3-1로 표시되는 황색 고체의 화합물 AFPHH 1(5.1 mg, 23.7% 수율)을 수득 하였다.
[화학식 3-1]
Figure PCTKR2021013127-appb-img-000215
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.98 (d, J = 7.1 Hz, 1H), 7.79 (m, 3H), 7.53 (m, 6H), 7.36 (m, 1H), 7.19 (m, 1H), 6.94 (t, J = 6.8 Hz, 1H), 6.53 (d, J = 4.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 185.1, 149.6, 140.4, 136.6, 132.2, 132.1, 131.4, 129.5, 129.0, 128.5(2), 126.4, 125.7, 122.1, 117.3, 114.9; LRMS (ESI) m/z calcd for C20H15N2O [M+H]+: 299.11; found: 299.1516.
AFPHH 2:
[반응식 20]
Figure PCTKR2021013127-appb-img-000216
IM-B(23.2 mg, 0.07 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 3-아미노-4-메틸페닐보론산(46.7 mg, 0.30 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(33.0 mg, 0.3 mol%) 및 소듐 카보네이트(33.0 mg, 0.3 mmol)를 첨가한 후, 100℃에서 6시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:2 - EA 33%)로 정제하여 하기 화학식 3-2로 표시되는 황색 고체의 화합물 AFPHH 2(20.4 mg, 81.2% 수율)를 수득 하였다.
[화학식 3-2]
Figure PCTKR2021013127-appb-img-000217
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, (CD3)2SO) δ 9.92 (d, J = 7.0 Hz, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.81 (dd, J = 7.9, 0.9 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.6 Hz, 2H), 7.42 (m, 1H), 7.36 (s, 1H), 7.18 (t, J = 6.9 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 6.90 (s, 1H), 6.74 (d, J = 7.6 Hz, 1H), 4.92 (s, 2H), 2.08 (s, 3H); 13C NMR (100 MHz, (CD3)2SO) δ 183.3, 140.2, 135.4, 131.9, 131.0, 130.4, 128.6, 128.3, 128.0, 125.4, 124.1, 121.1, 118.0, 117.6, 114.7, 54.9, 17.1; LRMS (ESI) m/z calcd for C22H19N2O [M+H]+: 327.14; found: 327.3095.
AFPHH 3:
[반응식 21]
Figure PCTKR2021013127-appb-img-000218
IM-B(15.0 mg, 0.04 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-아미노벤젠보론산(25.1 mg, 0.14 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(17.0 mg, 0.3 mol%) 및 소듐 카보네이트(15.0 mg, 0.14 mmol)를 첨가한 후, 100℃에서 3시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:3 - EA 25%)로 정제하여 하기 화학식 3-3으로 표시되는 황색 고체의 화합물 AFPHH 3(13.6 mg, 90.7% 수율)을 수득 하였다.
[화학식 3-3]
Figure PCTKR2021013127-appb-img-000219
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 10.01 (dt, J = 7.2, 1.0 Hz, 1H), 7.82 (dt, J = 3.4, 1.4 Hz, 3H), 7.53 (m, 1H), 7.47 (m, 2H), 7.37 (s, 1H), 7.34 (m, 2H), 7.21 (ddd, J = 8.8, 6.7, 1.0 Hz, 1H), 6.95 (td, J = 6.9, 1.2 Hz, 1H), 6.76 (m, 2H), 3.74 (s, 2H).; 13C NMR (100 MHz, CDCl3) δ 184.5, 145.3, 141.1, 136.5, 130.9, 129.1(5), 128.3(2), 125.0(2), 124.7, 122.0, 118.1, 117.9, 115.6, 114.2, 29.8; LRMS (ESI) m/z calcd for C21H17N2O [M+H]+: 313.13; found: 313.2500.
AFPHH 4:
[반응식 22]
Figure PCTKR2021013127-appb-img-000220
IM-B(27.5 mg, 0.11 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-(디메틸아미노)페닐보론산(149 mg, 0.90 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(231.0 mg, 20.0 mol%) 및 소듐 카보네이트(95.7 mg, 0.90 mmol)를 첨가한 후, 100℃에서 11시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:4 - EA 25%)로 정제하여 하기 화학식 3-4로 표시되는 황색 고체의 화합물 AFPHH 4(67.0 mg, 87% 수율)를 수득 하였다.
[화학식 3-4]
Figure PCTKR2021013127-appb-img-000221
NMR 분석결과는 하기와 같다.
1H NMR (400 MHz, CDCl3) δ 10.02 (d, J = 7.6 Hz, 1H), 7.87 (s, 1H), 7.84 (d, J = 6.4 Hz, 2H), 7.53 (d, J = 7.6 Hz, 1H), 7.49 (d, J = 7.6 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H), 7.39 (s, 1H), 7.21 (dt, J = 7.8 Hz, 1.2 Hz, 1H), 6.95 (dt, J = 7.0 Hz, 1.2 Hz, 1H), 6.82 (d, J = 8.8 Hz, 2H), 2.99 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 183.9, 149.3, 140.9, 136.2, 130.6, 128.8, 128.7, 128.6, 128.0, 124.7, 124.3, 122.5, 121.8, 121.3, 118.1, 117.7, 113.9, 112.8, 40.7; LRMS (ESI) m/z calcd for C23H21N2O [M+H]+: 341.16; found: 341.15.
AFPHH 5:
[반응식 23]
Figure PCTKR2021013127-appb-img-000222
IM-B(16.0 mg, 0.05 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-(디에틸아미노)페닐보론산(30.5 mg, 0.15 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(18.0 mg, 0.3 mol%) 및 소듐 카보네이트(17.0 mg, 0.15 mmol)를 첨가한 후, 100℃에서 2시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:2 - EA 33%)로 정제하여 하기 화학식 3-5로 표시되는 갈색 고체의 화합물 AFPHH 5(17.3 mg, 90.3% 수율)를 수득 하였다.
[화학식 3-5]
Figure PCTKR2021013127-appb-img-000223
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 10.03 (dt, J = 7.0, 1.0 Hz, 1H), 7.87 (dt, J = 8.9, 1.2 Hz, 1H), 7.84 (m, 2H), 7.54 (m, 1H), 7.49 (m, 2H), 7.41 (m, 2H), 7.39 (s, 1H), 7.21 (ddd, J = 8.9, 6.7, 1.1 Hz, 1H), 6.96 (td, J = 6.9, 1.3 Hz, 1H), 6.77 (m, 2H), 3.40 (q, J = 7.1 Hz, 4H), 1.20 (t, J = 7.1 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 184.3, 146.7, 141.2, 136.5, 130.8, 129.1(2), 128.2, 124.9, 124.5, 122.0, 121.5, 118.5, 118.0, 114.1, 112.2, 44.5, 12.7; LRMS (ESI) m/z calcd for C25H25N2O [M+H]+: 369.19; found: 369.3269.
AFPHH 6:
[반응식 24]
Figure PCTKR2021013127-appb-img-000224
IM-B(13.0 mg, 0.05 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-(디프로필아미노)페닐보론산(10.0 mg, 0.05 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(16.0 mg, 0.3 mol%) 및 소듐 카보네이트(14.0 mg, 0.13 mmol)를 첨가한 후, 100℃에서 3시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:2 - EA 33%)로 정제하여 하기 화학식 3-6으로 표시되는 흑색 고체의 화합물 AFPHH 6(10.0 mg, 50.4% 수율)을 수득 하였다.
[화학식 3-6]
Figure PCTKR2021013127-appb-img-000225
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 10.01 (dt, J = 7.1, 1.1 Hz, 1Hz), 7.85 (dt, J = 8.9, 1.2 Hz, 1H), 7.82 (m, 2H), 7.52 (m, 1H), 7.48 (m, 3H), 7.38 (m, 2H), 7.37 (s, 1H), 7.20 (ddd, J = 8.9, 6.7, 1.1 Hz, 1H), 6.94 (td, J = 6.9, 1.3 Hz, 1H), 6.71 (m, 1H), 3.26 (m, 4H), 1.63 (dd, J = 15.2, 7.5 Hz, 4H), 0.94 (t, J = 7.4 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 184.3, 147.1, 141.2, 136.5, 130.8, 129.1, 129.0, 128.2, 124.9, 124.5, 122.0, 121.3, 118.5, 118.0, 114.1, 112.0, 53.0, 20.5, 11.6; LRMS (ESI) m/z calcd for C27H29N2O [M+H]+: 397.22; found: 397.3389.
AFPHH 7:
[반응식 25]
Figure PCTKR2021013127-appb-img-000226
IM-B(14.7 mg, 0.04 mmo)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-니트로벤젠보론산(25.0 mg, 0.14 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(17 mg, 0.3 mol%) 및 소듐 카보네이트(16.0 mg, 0.14 mmol)를 첨가한 후, 100℃에서 6시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:3 - EA 35%)로 정제하여 하기 화학식 3-7로 표시되는 황색 고체의 화합물 AFPHH 7(15.4 mg, 93.7% 수율)을 수득 하였다.
[화학식 3-7]
Figure PCTKR2021013127-appb-img-000227
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 10.05 (dt, J = 7.1, 1.0 Hz, 1H), 8.30 (m, 2H), 7.93 (dt, J = 9.0, 1.1 Hz, 1H), 7.84 (dd, J = 8.2, 1.2 Hz, 2H), 7.72 (m, 2H), 7.59 (m, 1H), 7.3 (m, 3H), 7.38 (ddd, J = 8.9, 6.8, 1.1 Hz, 1H), 7.07 (td, J = 6.9, 1.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 185.1, 146.0, 141.8, 140.5, 136.5, 131.4, 129.5, 129.0, 128.5, 127.9, 126.5, 125.8, 124.5, 123.1, 117.3, 115.0(2); LRMS (ESI) m/z calcd for C21H15N2O3 [M+H]+: 343.10; found: 343.2666.
AFPHH 8:
[반응식 26]
Figure PCTKR2021013127-appb-img-000228
IM-B(30.4 mg, 0.10 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-하이드록시페닐보론산(28.0 mg, 0.20 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(44.0 mg, 0.38 mol%) 및 소듐 카보네이트(32.0 mg, 0.30 mmol)를 첨가한 후, 100℃에서 12시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:4 - EA 20%)로 정제하여 하기 화학식 3-8로 표시되는 황색 고체의 화합물 AFPHH 8(28.9 mg, 92.2% 수율)을 수득 하였다.
[화학식 3-8]
Figure PCTKR2021013127-appb-img-000229
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, (CD3)2SO) δ 9.92 (d, J = 7.2 Hz, 1H), 9.49 (s, 1H), 7.94 (d, J = 8.9 Hz, 1H), 7.82 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7.3 Hz, 1H), 7.55 (t, J = 7.5 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.39 (m, 2H), 7.16 (t, J = 6.9 Hz, 1H), 6.86 (t, J = 5.5 Hz, 2H); 13C NMR (100 MHz, (CD3)2SO) δ 183.7, 156.8, 140.7, 135.8, 131.5, 129.3, 129.2, 128.9, 128.5, 125.9, 125.0, 124.5, 121.6, 118.3, 117.6, 116.3, 115.2, 55.4; LRMS (ESI) m/z calcd for C21H16NO2 [M+H]+: 314.11; found: 314.2612.
AFPHH 9:
[반응식 27]
Figure PCTKR2021013127-appb-img-000230
IM-B(19.1 mg, 0.06 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 3-하이드록시페닐보론산(17.5 mg, 0.12 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(21.0 mg, 0.3 mol%) 및 소듐 카보네이트(20.0 mg, 0.18 mmol)를 첨가한 후, 100℃에서 3시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:3 - EA 25%)로 정제하여 하기 화학식 3-9로 표시되는 황색 고체의 화합물 AFPHH 9(17.2 mg, 87.2% 수율)를 수득 하였다.
[화학식 3-9]
Figure PCTKR2021013127-appb-img-000231
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, (CD3)2SO) δ 9.92 (d, J = 6.9 Hz, 1H), 9.49 (s, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.82 (d, J = 7.1 Hz, 2H), 7.61 (t, J = 7.3 Hz, 1H), 7.55 (t, J = 7.4 Hz, 2H), 7.44 (s, 1H), 7.42 (d, J = 8.6 Hz, 1H), 7.25 (t, J = 7.8 Hz, 1H), 7.18 (t, J = 6.8 Hz, 1H), 7.04 (d, J = 8.2 Hz, 1H), 7.03 (s, 1H), 6.73 (dd, J = 8.0, 1.6 Hz, 1H); 13C NMR (100 MHz, (CD3)2SO) δ 183.4, 157.6, 140.1, 135.4, 135.1, 131.1, 130.0, 128.7, 128.3, 128.1, 125.7, 124.4, 121.3, 118.3, 117.7, 116.8, 114.8, 114.1, 113.5; LRMS (ESI) m/z calcd for C21H16NO2 [M+H]+: 314.11; found: 314.2405.
AFPHH 10:
[반응식 28]
Figure PCTKR2021013127-appb-img-000232
IM-B(17.2 mg, 0.05 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 2-하이드록시페닐보론산(16.0 mg, 0.11 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(20.0 mg, 0.3 mol%) 및 소듐 카보네이트(18.0 mg, 0.17 mmol)를 첨가한 후, 100℃에서 6시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:4 - EA 20%)로 정제하여 하기 화학식 3-10으로 표시되는 황색 고체의 화합물 AFPHH 10(10.6 mg, 59.3% 수율)을 수득 하였다.
[화학식 3-10]
Figure PCTKR2021013127-appb-img-000233
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, (CD3)2SO) δ 9.93 (d, J = 6.9 Hz, 1H), 9.56 (s, 1H), 7.81 (m, 2H), 7.72 (d, J = 8.9 Hz, 1H), 7.61 (t, J = 7.3 Hz, 1H), 7.55 (t, J = 7.5 Hz, 2H), 7.45 (s, 1H), 7.37 (m, 2H), 7.17 (m, 2H), 6.97 (d, J = 8.1 Hz, 1H), 6.89 (dd, J = 10.9, 4.2 Hz, 1H); 13C NMR (100 MHz, (CD3)2SO) δ 183.2, 154.5, 140.3, 136.3, 131.0, 130.5, 128.6, 128.3, 128.1, 127.8, 126.4, 124.8, 121.0, 120.6, 119.3, 118.8, 115.9, 114.5, 113.9; LRMS (ESI) m/z calcd for C21H16NO2 [M+H]+: 314.11; found: 314.1819.
AFPHH 11:
[반응식 29]
Figure PCTKR2021013127-appb-img-000234
IM-B(16.8 mg, 0.05 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 4-하이드록시메틸페닐보론산(26.0 mg, 0.16 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(18.0 mg, 0.3 mol%) 및 소듐 카보네이트(18.0 mg, 0.16 mmol)를 첨가한 후, 100℃에서 4시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:3 - EA 25%)로 정제하여 하기 화학식 3-11로 표시되는 황색 고체의 화합물 AFPHH 11(17.4 mg, 95.0% 수율)을 수득 하였다.
[화학식 3-11]
Figure PCTKR2021013127-appb-img-000235
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 10.03 (dt, J = 7.1, 1.0 Hz, 1H), 7.87 (dt, J = 9.0, 1.2 Hz, 1H), 7.84 (dd, J = 8.2, 1.3 Hz, 2H), 7.55 (m, 3H), 7.50 (m, 2H), 7.46 (s, 1H), 7.45 (d, J = 8.2 Hz, 2H), 7.27 (m, 1H), 7.00 (td, J = 6.9, 1.3 Hz, 1H), 4.74 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 184.7, 140.9, 139.3, 136.5, 134.2, 131.0, 129.2, 129.1, 128.3, 128.2, 127.7, 125.5, 125.2, 122.3, 117.6, 117.4, 114.4, 65.3; LRMS (ESI) m/z calcd for C22H18NO2 [M+H]+: 328.13; found: 328.2564.
AFPHH 12:
[반응식 30]
Figure PCTKR2021013127-appb-img-000236
IM-B(15.0 mg, 0.04 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 3-하이드록시메틸페닐보론산(23.0 mg, 0.14 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(17.0 mg, 0.3 mol%) 및 소듐 카보네이트(16.0 mg, 0.14 mmol)를 첨가한 후, 100℃에서 6시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:2 - EA 33%)로 정제하여 하기 화학식 3-12로 표시되는 황색 고체의 화합물 AFPHH 12(12.3 mg, 75.2% 수율)를 수득 하였다.
[화학식 3-12]
Figure PCTKR2021013127-appb-img-000237
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 10.01 (dt, J = 2.5, 1.5 Hz, 1H), 7.86 (m, 1H), 7.82 (dd, J = 8.5, 1.5 Hz, 2H), 7.54 (m, 2H), 7.50 (m, 3H), 7.44 (s, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.29 (m, 1H), 7.24 (ddd, J = 9.0, 6.8, 1.2 Hz, 1H), 4.75 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 184.7, 141.8, 140.8, 136.5, 135.0, 131.0, 129.1(2), 129.0, 128.3, 127.2, 126.5, 125.6, 125.3, 125.2, 122.3, 117.6, 117.5, 114.4, 65.3; LRMS (ESI) m/z calcd for C22H18NO2 [M+H]+: 328.13; found: 328.2573.
AFPHH 13:
[반응식 31]
Figure PCTKR2021013127-appb-img-000238
IM-B(14.5 mg, 0.04 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 2-하이드록시메틸페닐보론산(22.0 mg, 0.14 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(17.0 mg, 0.3 mol%) 및 소듐 카보네이트(15.0 mg, 0.14 mmol)를 첨가한 후, 100℃에서 6시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:3 - EA 35%)로 정제하여 하기 화학식 3-13으로 표시되는 황색 고체의 화합물 AFPHH 13(15.3 mg, 97.4% 수율)을 수득 하였다.
[화학식 3-13]
Figure PCTKR2021013127-appb-img-000239
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 10.01 (dt, J = 7.1, 1.1 Hz, 1H), 7.82 (m, 2H), 7.59 (m, 1H), 7.51 (m, 1H), 7.47 (ddt, J = 5.2, 3.0, 1.4 Hz, 3H), 7.44 (s, 1H), 7.38 (m, 3H), 7.19 (ddd, J = 8.9, 6.7, 1.1 Hz, 1H), 6.98 (td, J = 6.9, 1.3 Hz, 1H), 4.61 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 184.7, 140.7, 139.6, 137.4, 133.0, 131.1(2), 129.1, 128.9, 128.7, 128.3, 127.9, 127.8, 127.0, 125.1, 122.1, 117.6, 115.4, 114.4, 63.4; LRMS (ESI) m/z calcd for C22H17NO2 [M+H]+: 328.13; found: 328.2573.
AFPHH 14:
[반응식 32]
Figure PCTKR2021013127-appb-img-000240
IM-B(18.7 mg, 0.06 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 3-플루오로-4-하이드록시페닐보론산(30.0 mg, 0.18 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(22.0 mg, 0.3 mol%) 및 소듐 카보네이트(20.0 mg, 0.18 mmol)를 첨가한 후, 100℃에서 7시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:3 - EA 35%)로 정제하여 하기 화학식 3-14로 표시되는 황색 고체의 화합물 AFPHH 14(17.9 mg, 90.1% 수율)를 수득 하였다.
[화학식 3-14]
Figure PCTKR2021013127-appb-img-000241
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 10.03 (dt, J = 7.0, 1.0 Hz, 1H), 7.82 (m, 3H), 7.56 (m, 1H), 7.50 (ddd, J = 6.5, 4.4, 1.2 Hz, 2H), 7.39 (s, 1H), 7.28 (m, 1H), 7.22 (ddd, J = 8.3, 2.0, 0.9 Hz, 1H), 7.07 (m, 1H), 7.00 (td, J = 6.9, 1.3 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 184.7, 140.8, 136.4, 131.1, 129.2, 129.0, 128.4, 125.3(2), 124.5, 124.4, 122.2, 117.8(2), 117.4, 115.2, 115.1, 114.4 ; LRMS (ESI) m/z calcd for C21H14FNO2 [M+H]+: 332.10; found: 332.2499.
AFPHH 15:
[반응식 33]
Figure PCTKR2021013127-appb-img-000242
IM-B(14.4 mg, 0.04 mmol)를 포함하고 DMF 및 물이 2 : 1로 혼합되어 있는 용액에 5-플루오로-5-하이드록시페닐보론산(22.0 mg, 0.14 mmol), 테트라키스(트리페닐 포스핀)팔라듐(0)(17.0 mg, 0.3 mol) 및 소듐 카보네이트(15.0 mg, 0.14 mmol)를 첨가한 후, 100℃에서 4시간 동안 교반하였다. TLC로 반응이 완료되었음을 확인한 후, 물로 세척하고 유기물질을 DCM으로 3회 추출하였다. 추출한 유기물질을 합한 다음, 무수 Na2SO4 상에서 건조시킨 후 농축시켰다. 농축된 유기상을 실리카-겔 플래쉬 컬럼 크로마토그래피(EA : Hexane = 1:4 - EA 25%)로 정제하여 하기 화학식 3-15로 표시되는 황색 고체의 화합물 AFPHH 15(15.4 mg, 98.9% 수율)를 수득 하였다.
[화학식 3-15]
Figure PCTKR2021013127-appb-img-000243
NMR 분석결과는 하기와 같다.
1H NMR (600 MHz, CDCl3) δ 9.98 (dt, J = 7.1, 1.0 Hz, 1H), 7.80 (dd, J = 8.2, 1.3 Hz, 2H), 7.58 (dt, J = 8.9, 1.2 Hz, 1H), 7.54 (m, 1H), 7.48 (m, 3H), 7.28 (ddd, J = 8.9, 6.7, 1.1 Hz, 1H), 7.03 (m, 2H), 6.97 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 184.8, 157.8, 156.2; LRMS (ESI) m/z calcd for C21H14FNO2 [M+H]+: 332.10; found: 332.2123.
[실시예 2]
AFPHA 화합물 및 AFPHH 화합물의 광물리학적 특성 확인
본 발명에서는 상기 실시예 1에서 합성한 AFPHA 화합물 및 AFPHH 화합물들에 대한 광물리학적 특성을 관찰하였다.
최종 화합물의 UV 흡수는 UV-VISIBLE 스펙트로포토미터(JASCO V-670, JASCO, INC. 일본)를 이용하여 측정하였으며, 여기 형광 발광파장은 JASCO 형광 스펙트로포토미터(JASCO FP-8200, JASCO, INC. 일본)를 이용하여 측정하였다. 양자 수득률(absolute quantum yield)은 Absolute PL 양자 수득률 측정 시스템(QE-2000, Otsuka Electronics, 일본)에 의해 측정하였다.
Figure PCTKR2021013127-appb-img-000244
[실시예 3]
pH 변화에 따른 AFPHA 화합물 및 AFPHH 화합물의 형광 변화 관찰
본 발명에서는 AFPHA 화합물 및 AFPHH 화합물들이 pH 변화에 따라 형광 변화가 일어나는지 확인하기 위해, pH 변화에 따른 AFPHA 3 및 AFPHA 8 화합물의 형광강도 변화를 관찰하였다.
1M 수산화 나트륨(sodium hydroxide) 용액과 1N 염산(hydrochloric acid) 용액을 혼합한 용액의 pH를 유리전극(glass electrode)기반 pH 측정 장치를 이용하여 측정함으로써 1부터 12까지 해당하는 pH 용액을 제조하였다. 상기 실시예 1에서 합성한 AFPHA 3 및 AFPHA 8 물질을 20 mg/mL의 농도로 다이메틸 설폭사이드(DMSO)에 녹여서 저장용액(stock solution)을 만든 다음, 96-웰 블랙 플레이트(96-well black plate)에 각 웰당 pH 용액 100 μL와 화합물 100 μL를 각각 첨가한 다음, 1분 동안 반응시킨 후, SpectraMax iD5 model의 플레이트 리더(plate reader)를 이용하여 형광 감도를 측정하였다.
그 결과, 도 4에 나타난 바와 같이, AFPHA 3 및 AFPHA 8 화합물 모두 pH 변화에 따라 형광 강도가 변하는 것을 확인하였으며, 소수점 단위 간격으로 pH를 측정할 수 있음을 확인하였다.
본 발명에서는 다른 인돌리진 골격체 기반 화합물 모두 pH 측정능을 가지고 있는지 확인하기 위해, 비교예로 하기 화학식 4로 표시되는 GxF 33, 화학식 5로 표시되는 GxF 58 및 화학식 6으로 표시되는 GxF 63을 합성하였다.
[화학식 1-33]
Figure PCTKR2021013127-appb-img-000245
[화학식 1-58]
Figure PCTKR2021013127-appb-img-000246
[화학식 1-63]
Figure PCTKR2021013127-appb-img-000247
이들의 pH 측정능을 확인한 결과, 도 5에 나타난 바와 같이, GxF 33 및 GxF 63의 경우 형광 강도 변화가 일부 관찰되지만, 파장 변화는 관찰되지 않은 것으로 확인되었다.
반면, 본 발명의 화합물인 AFPHA 2, AFPHH 2 및 AFPHA 3의 경우, 도 6에 나타난 바와 같이, pH에 따른 형광 강도 변화 뿐만 아니라, 파장 변화가 관찰되는 것을 확인하였다.
즉, 인돌리진 골격구조를 가진 화합물 모두가 pH 측정용으로 적합한 것은 아니나, pH에 감응하는 치환기를 도입함으로써 pH 측정용으로 적합한 화합물을 만들어 낼수 있으며, 치환기의 종류 및 pKa 값에 따라 pH 측정능이 달라지는 것을 확인하였다. 또한, 본 발명의 AFPHA 또는 AFPHH 화합물은 pH 변화에 따라 형광 강도 및 파장 변화 정도가 보이는 것으로 나타났으므로 pH 측정에 적합한 것 확인하였다.
[실시예 4]
pH 측정을 위한 형광 센서 어레이 제작
본 발명에서는 15개의 AFPHA 화합물 및 15개의 AFPHH 화합물이 패턴화 되어 고정되어 있는 센서 어레이를 제작하였다.
형광 물질들의 균일한 도포를 위하여 필터 페이퍼 상에 왁스 프린팅을 활용하여 어레이 틀을 제작하였으며, 한컴오피스 한글 2010 프로그램을 이용하여 어레이 틀을 디자인한 뒤, HYUNDAI MICRO 정성 여과지(No. 22)위에 xerox ColorQube 8870을 이용하여 왁스로 프린트를 수행하였다. 어레이 틀로 왁스 코팅된 정성 여과지를 약 150℃온도에서 5분동안 열을 가해주었다. 열을 가하기 전의 선 굵기는 0.7 mm이며 열을 가한 후의 선 굵기는 열에 의해 wax가 녹아 1.0 mm가 된다. 그 다음, 제작된 어레이 틀을 1시간 동안 충분히 식혀준 뒤, 10 mM의 DMSO(Dimethyl Sulfoxide) 용매로 제작된 15개의 AFPHA 화합물 및 15개의 AFPHH 화합물의 저장액(stock solution)을 왁스로 코팅한 어레이에 스팟팅(spotting) 한 후, 화합물들이 도포된 어레이를 드라이오븐에서 10분 동안 말려주었다.
도 7과 같이, 2.5 cm X 3.0 cm 크기의 형광센서 어레이당 30 가지의 신규 형광체가 들어간 센서 어레이를 제조하였으며, 형광 물질의 발광정도를 UV 상에서 관찰하였다.
[실시예 5]
pH 변화에 따른 형광 패턴 변화 관찰
상기 실시예 4에서 제작한 pH 측정용 형광 센서 어레이를 이용하여 pH 변화에 따른 형광 패턴 변화를 관찰하였다.
형광 센서 어레이의 노출 전 이미지를 핸드폰 카메라로 촬영한 다음, 형광 센서 어레이의 한 칸마다 마이크로피펫(micropipette)을 이용하여 pH 용액을 0.15 μL씩 떨어트렸다. 그 후 드라이오븐에서 10분 동안 건조시킨 다음, 핸드폰 카메라로 노출 후의 이미지를 촬영하였다.
그 결과, 도 8에 나타난 바와 같이, pH에 따라 센서 어레이에 고정된 본 발명의 화합물들의 형광 패턴이 변하는 것을 관찰하였다 (도 8).
또한, 도 9 및 도 10에 나타난 바와 같이, AFPHA 2 화합물의 pH 2 ~ pH 4 조건에 따른 형광 패턴 변화를 관찰한 결과, pH 2와 pH 3 사이에 형광 강도가 현저하게 감소한 것으로 확인되었다. pH 1 ~ 4, pH 4 ~ 8 및 pH 9 ~ 12 범위로 나누었을 때, pH 4 ~ 8 사이에서는 형광 강도의 차이가 관찰되지 않았지만, pH 1 ~ 4 및 pH 9 ~ 12 사이에서는 pH 변화에 따른 형광 강도 변화가 분명하게 관찰되었다.
나아가, 도 11 및 도 12에 나타난 바와 같이, AFPHA 3 화합물의 pH 2 ~ pH 4 조건에 따른 형광 패턴 변화를 관찰한 결과, pH 변화에 따라 형광강도 차이가 분명하게 관찰되는 것을 확인하였다. pH 1 ~ 4, pH 4 ~ 8 및 pH 9 ~ 12 범위로 나누었을 때, pH 9 ~ 12 사이에서는 형광 강도의 차이가 관찰되지 않았지만, pH 1 ~ 4 및 pH 4 ~ 8 사이에서는 pH 변화에 따른 형광 강도 변화가 분명하게 관찰되었다

Claims (12)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2021013127-appb-img-000248
    상기 화학식 1에서,
    R1
    Figure PCTKR2021013127-appb-img-000249
    Figure PCTKR2021013127-appb-img-000250
    Figure PCTKR2021013127-appb-img-000251
    구성된 군에서 선택된 아닐린(anilline group);
    Figure PCTKR2021013127-appb-img-000252
    또는
    Figure PCTKR2021013127-appb-img-000253
    로 표시되는 피리딘(pyridine group);
    Figure PCTKR2021013127-appb-img-000254
    ,
    Figure PCTKR2021013127-appb-img-000255
    Figure PCTKR2021013127-appb-img-000256
    로 구성된 군에서 선택된 페놀(phenol group);
    Figure PCTKR2021013127-appb-img-000257
    로 표시되는 벤조산(Benzoic acid group); 또는
    Figure PCTKR2021013127-appb-img-000258
    로 표시되는 보론산(Boronic acid)이며, R2는 수소 또는 아세틸이다.
  2. 제1항에 있어서, 상기 화합물은 하기 화학식 2 또는 화학식 3으로 표시되는 것을 특징으로 하는 화합물:
    [화학식 2]
    Figure PCTKR2021013127-appb-img-000259
    [화학식 3]
    Figure PCTKR2021013127-appb-img-000260
    상기 화학식 2 또는 화학식 3에서,
    R1
    Figure PCTKR2021013127-appb-img-000261
    Figure PCTKR2021013127-appb-img-000262
    Figure PCTKR2021013127-appb-img-000263
    구성된 군에서 선택된 아닐린(anilline group);
    Figure PCTKR2021013127-appb-img-000264
    또는
    Figure PCTKR2021013127-appb-img-000265
    로 표시되는 피리딘(pyridine group);
    Figure PCTKR2021013127-appb-img-000266
    ,
    Figure PCTKR2021013127-appb-img-000267
    Figure PCTKR2021013127-appb-img-000268
    로 구성된 군에서 선택된 페놀(phenol group);
    Figure PCTKR2021013127-appb-img-000269
    로 표시되는 벤조산(Benzoic acid group); 또는
    Figure PCTKR2021013127-appb-img-000270
    로 표시되는 보론산(Boronic acid)이다.
  3. 제2항에 있어서, 상기 화학식 2는 하기 화학식 2-1 내지 화학식 2-15로 구성된 군에서 선택된 1종 이상으로 표시되는 것을 특징으로 하는 화합물:
    [화학식 2-1]
    Figure PCTKR2021013127-appb-img-000271
    [화학식 2-2]
    Figure PCTKR2021013127-appb-img-000272
    [화학식 2-3]
    Figure PCTKR2021013127-appb-img-000273
    [화학식 2-4]
    Figure PCTKR2021013127-appb-img-000274
    [화학식 2-5]
    Figure PCTKR2021013127-appb-img-000275
    [화학식 2-6]
    Figure PCTKR2021013127-appb-img-000276
    [화학식 2-7]
    Figure PCTKR2021013127-appb-img-000277
    [화학식 2-8]
    Figure PCTKR2021013127-appb-img-000278
    [화학식 2-9]
    Figure PCTKR2021013127-appb-img-000279
    [화학식 2-10]
    Figure PCTKR2021013127-appb-img-000280
    [화학식 2-11]
    Figure PCTKR2021013127-appb-img-000281
    [화학식 2-12]
    Figure PCTKR2021013127-appb-img-000282
    [화학식 2-13]
    Figure PCTKR2021013127-appb-img-000283
    [화학식 2-14]
    Figure PCTKR2021013127-appb-img-000284
    [화학식 2-15]
    Figure PCTKR2021013127-appb-img-000285
  4. 제2항에 있어서, 상기 화학식 3은 하기 화학식 3-1 내지 화학식 3-15로 구성된 군에서 선택된 1종 이상으로 표시되는 것을 특징으로 하는 화합물:
    [화학식 3-1]
    Figure PCTKR2021013127-appb-img-000286
    [화학식 3-2]
    Figure PCTKR2021013127-appb-img-000287
    [화학식 3-3]
    Figure PCTKR2021013127-appb-img-000288
    [화학식 3-4]
    Figure PCTKR2021013127-appb-img-000289
    [화학식 3-5]
    Figure PCTKR2021013127-appb-img-000290
    [화학식 3-6]
    Figure PCTKR2021013127-appb-img-000291
    [화학식 3-7]
    Figure PCTKR2021013127-appb-img-000292
    [화학식 3-8]
    Figure PCTKR2021013127-appb-img-000293
    [화학식 3-9]
    Figure PCTKR2021013127-appb-img-000294
    [화학식 3-10]
    Figure PCTKR2021013127-appb-img-000295
    [화학식 3-11]
    Figure PCTKR2021013127-appb-img-000296
    [화학식 3-12]
    Figure PCTKR2021013127-appb-img-000297
    [화학식 3-13]
    Figure PCTKR2021013127-appb-img-000298
    [화학식 3-14]
    Figure PCTKR2021013127-appb-img-000299
    [화학식 3-15]
    Figure PCTKR2021013127-appb-img-000300
  5. (a) 화학식 A의 화합물 및 화학식 B의 화합물을 반응시켜, 화학식 C의 화합물을 제조하는 단계;
    (b) 상기 화학식 C의 화합물과 에틸아크릴레이트(ethyl acrylate), 아세트산나트륨(sodium acetate) 및 구리아세트산 모노수화물(Copper(II) Acetate monohydrate)을 반응시켜 화학식 D의 화합물을 제조하는 단계;
    (c) 상기 화학식 D의 화합물을 강염기 및 강산과 반응시켜 화학식 E의 화합물을 제조하는 단계;
    (d) 상기 화학식 E의 화합물 및 NBS(N-Bromosuccinimide)를 반응시켜 화학식 F의 화합물을 제조하는 단계; 및
    (e) 상기 화학식 F의 화합물 및 화학식 G의 화합물을 반응시켜 화학식 1의 화합물을 제조하는 단계를 포함하며, 하기 반응식 1로 표시되는 화학식 1의 화합물의 제조방법:
    [반응식 1]
    Figure PCTKR2021013127-appb-img-000301
    상기 화학식 1에서,
    R1
    Figure PCTKR2021013127-appb-img-000302
    Figure PCTKR2021013127-appb-img-000303
    Figure PCTKR2021013127-appb-img-000304
    구성된 군에서 선택된 아닐린(anilline group);
    Figure PCTKR2021013127-appb-img-000305
    또는
    Figure PCTKR2021013127-appb-img-000306
    로 표시되는 피리딘(pyridine group);
    Figure PCTKR2021013127-appb-img-000307
    ,
    Figure PCTKR2021013127-appb-img-000308
    Figure PCTKR2021013127-appb-img-000309
    로 구성된 군에서 선택된 페놀(phenol group);
    Figure PCTKR2021013127-appb-img-000310
    로 표시되는 벤조산(Benzoic acid group); 또는
    Figure PCTKR2021013127-appb-img-000311
    로 표시되는 보론산(Boronic acid)이며, R2는 수소 또는 아세틸이다.
  6. 제1항 내지 제4항 중 어느 한 항의 화합물을 포함하는 pH 측정용 조성물.
  7. 제1항 내지 제4항 중 어느 한 항의 화합물을 포함하는 pH 측정용 센서 어레이.
  8. 제1항 내지 제4항 중 어느 한 항에 따른 화합물의 pH 측정제로서의 용도.
  9. 하기 화학식 1로 표시되는 화합물을 이용한 pH 측정방법:
    [화학식 1]
    Figure PCTKR2021013127-appb-img-000312
    상기 화학식 1에서,
    R1
    Figure PCTKR2021013127-appb-img-000313
    Figure PCTKR2021013127-appb-img-000314
    Figure PCTKR2021013127-appb-img-000315
    구성된 군에서 선택된 아닐린(anilline group);
    Figure PCTKR2021013127-appb-img-000316
    또는
    Figure PCTKR2021013127-appb-img-000317
    로 표시되는 피리딘(pyridine group);
    Figure PCTKR2021013127-appb-img-000318
    ,
    Figure PCTKR2021013127-appb-img-000319
    Figure PCTKR2021013127-appb-img-000320
    로 구성된 군에서 선택된 페놀(phenol group);
    Figure PCTKR2021013127-appb-img-000321
    로 표시되는 벤조산(Benzoic acid group); 또는
    Figure PCTKR2021013127-appb-img-000322
    로 표시되는 보론산(Boronic acid)이며, R2는 수소 또는 아세틸이다.
  10. 제 9항에 있어서, 상기 화합물은 화학식 2 또는 화학식 3으로 표시되는 것을 특징으로 하는 화합물을 이용한 pH 측정방법:
    [화학식 2]
    Figure PCTKR2021013127-appb-img-000323
    [화학식 3]
    Figure PCTKR2021013127-appb-img-000324
    상기 화학식 2 또는 화학식 3에서,
    R1
    Figure PCTKR2021013127-appb-img-000325
    Figure PCTKR2021013127-appb-img-000326
    Figure PCTKR2021013127-appb-img-000327
    구성된 군에서 선택된 아닐린(anilline group);
    Figure PCTKR2021013127-appb-img-000328
    또는
    Figure PCTKR2021013127-appb-img-000329
    로 표시되는 피리딘(pyridine group);
    Figure PCTKR2021013127-appb-img-000330
    ,
    Figure PCTKR2021013127-appb-img-000331
    Figure PCTKR2021013127-appb-img-000332
    로 구성된 군에서 선택된 페놀(phenol group);
    Figure PCTKR2021013127-appb-img-000333
    로 표시되는 벤조산(Benzoic acid group); 또는
    Figure PCTKR2021013127-appb-img-000334
    로 표시되는 보론산(Boronic acid)이다.
  11. 제 10항에 있어서, 상기 화학식 2는 하기 화학식 2-1 내지 화학식 2-15로 구성된 군에서 선택된 1종 이상으로 표시되는 것을 특징으로 하는 화합물을 이용한 pH 측정방법:
    [화학식 2-1]
    Figure PCTKR2021013127-appb-img-000335
    [화학식 2-2]
    Figure PCTKR2021013127-appb-img-000336
    [화학식 2-3]
    Figure PCTKR2021013127-appb-img-000337
    [화학식 2-4]
    Figure PCTKR2021013127-appb-img-000338
    [화학식 2-5]
    Figure PCTKR2021013127-appb-img-000339
    [화학식 2-6]
    Figure PCTKR2021013127-appb-img-000340
    [화학식 2-7]
    Figure PCTKR2021013127-appb-img-000341
    [화학식 2-8]
    Figure PCTKR2021013127-appb-img-000342
    [화학식 2-9]
    Figure PCTKR2021013127-appb-img-000343
    [화학식 2-10]
    Figure PCTKR2021013127-appb-img-000344
    [화학식 2-11]
    Figure PCTKR2021013127-appb-img-000345
    [화학식 2-12]
    Figure PCTKR2021013127-appb-img-000346
    [화학식 2-13]
    Figure PCTKR2021013127-appb-img-000347
    [화학식 2-14]
    Figure PCTKR2021013127-appb-img-000348
    [화학식 2-15]
    Figure PCTKR2021013127-appb-img-000349
  12. 제10항에 있어서,
    상기 화학식 3은 하기 화학식 3-1 내지 화학식 3-15로 구성된 군에서 선택된 1종 이상으로 표시되는 것을 특징으로 하는 화합물을 이용한 pH 측정방법:
    [화학식 3-1]
    Figure PCTKR2021013127-appb-img-000350
    [화학식 3-2]
    Figure PCTKR2021013127-appb-img-000351
    [화학식 3-3]
    Figure PCTKR2021013127-appb-img-000352
    [화학식 3-4]
    Figure PCTKR2021013127-appb-img-000353
    [화학식 3-5]
    Figure PCTKR2021013127-appb-img-000354
    [화학식 3-6]
    Figure PCTKR2021013127-appb-img-000355
    [화학식 3-7]
    Figure PCTKR2021013127-appb-img-000356
    [화학식 3-8]
    Figure PCTKR2021013127-appb-img-000357
    [화학식 3-9]
    Figure PCTKR2021013127-appb-img-000358
    [화학식 3-10]
    Figure PCTKR2021013127-appb-img-000359
    [화학식 3-11]
    Figure PCTKR2021013127-appb-img-000360
    [화학식 3-12]
    Figure PCTKR2021013127-appb-img-000361
    [화학식 3-13]
    Figure PCTKR2021013127-appb-img-000362
    [화학식 3-14]
    Figure PCTKR2021013127-appb-img-000363
    [화학식 3-15]
    Figure PCTKR2021013127-appb-img-000364
PCT/KR2021/013127 2020-09-28 2021-09-27 인돌리진 골격체 기반 ph 측정용 형광 화합물 및 이의 용도 WO2022065949A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200126357A KR20220042926A (ko) 2020-09-28 2020-09-28 인돌리진 골격체 기반 pH 측정용 형광 화합물 및 이의 용도
KR10-2020-0126357 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065949A1 true WO2022065949A1 (ko) 2022-03-31

Family

ID=80846772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013127 WO2022065949A1 (ko) 2020-09-28 2021-09-27 인돌리진 골격체 기반 ph 측정용 형광 화합물 및 이의 용도

Country Status (2)

Country Link
KR (1) KR20220042926A (ko)
WO (1) WO2022065949A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210050300A (ko) * 2019-10-28 2021-05-07 아주대학교산학협력단 인돌리진 골격체 기반 방사성 형광 화합물 및 이의 용도

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210050300A (ko) * 2019-10-28 2021-05-07 아주대학교산학협력단 인돌리진 골격체 기반 방사성 형광 화합물 및 이의 용도

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ALEXANDRU V. ROTARU; IOAN D. DRUTA; THOMAS OESER; THOMAS J. J. MÜLLER: "A Novel Coupling 1,3‐Dipolar Cycloaddition Sequence as a Three‐Component Approach to Highly Fluorescent Indolizines", HELVETICA CHIMICA ACTA, vol. 88, no. 7, 20 July 2005 (2005-07-20), Hoboken, USA, pages 1798 - 1812, XP071269073, ISSN: 0018-019X, DOI: 10.1002/hlca.200590141 *
GE YANQING, LIU AIKUN, DONG JIAN, DUAN GUIYUN, CAO XIAOQUN, LI FUYOU: "A simple pH fluorescent probe based on new fluorophore indolizine for imaging of living cells", SENSORS AND ACTUATORS B: CHEMICAL, vol. 247, 1 August 2017 (2017-08-01), NL , pages 46 - 52, XP055915654, ISSN: 0925-4005, DOI: 10.1016/j.snb.2017.02.157 *
KIM HYUNGI; LEE SUNGMIN; MIN JUN SIK; KIM EUNSU; CHOI JUNWON; KO JEONGGIL; KIM EUNHA: "Fluorescent sensor array for high-precision pH classification with machine learning-supported mobile devices", DYES AND PIGMENTS, vol. 193, 31 May 2021 (2021-05-31), GB , XP086677319, ISSN: 0143-7208, DOI: 10.1016/j.dyepig.2021.109492 *
NISHIWAKI NAGATOSHI, FURUTA KIYONORI, KOMATSU MITSUO, OHSHIRO YOSHIKI: "Oligomer of Indolizine Derivative and Its pH Sensitive Behavior", POLYMER JOURNAL, vol. 23, no. 6, 1 June 1991 (1991-06-01), London , pages 789 - 794, XP055915659, ISSN: 0032-3896, DOI: 10.1295/polymj.23.789 *
P. B. TERENT'EV, S. M. VINOGRADOVA, A. N. KOST: "Mass-spectral investigation of indolizine derivatives", CHEMISTRY OF HETEROCYCLIC COMPOUNDS., vol. 11, pages 447 - 451, XP055915653 *
TERENT'EV P B, S. M. VINOGRADOVA , A. N. KOST: "Reaction of 2- and 4-vinylpyridines with phenacylpyridinium ylids", CHEMISTRY OF HETEROCYCLIC COMPOUNDS, vol. 1506, no. 27, 1 May 1980 (1980-05-01), New York , pages 506 - 508, XP055915650, ISSN: 0009-3122 *

Also Published As

Publication number Publication date
KR20220042926A (ko) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2013105747A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013081315A1 (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2017204445A2 (ko) Alk 단백질의 분해를 유도하는 약학적 조성물 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
WO2017155297A2 (ko) 화합물 및 이를 포함하는 색변환 필름
WO2016032120A1 (ko) 신규한 아미노-페닐-설포닐-아세테이트 유도체 및 이의 용도
WO2018066872A1 (ko) 3-페닐-2,3,4,8,9,10-헥사히드로피라노[2,3-f]크로멘 유도체 및 이의 광학 이성질체 합성 방법
WO2014058232A2 (ko) 스파이로형 유기 재료 및 이를 이용한 유기 전기발광 소자
WO2013048177A2 (ko) 셀레노펜-접합 방향족 화합물, 및 이의 제조 방법
WO2023282617A2 (ko) 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2019013556A1 (ko) 고효율을 갖는 유기 발광 소자
WO2023282511A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019074241A1 (ko) 페닐아세틸렌 유도체를 포함하는 pd-1과 pd-l1의 상호작용 억제제
WO2019107662A1 (ko) 신규한 티에노[3,2-b]피리딘-5(4H)-온 유도체 화합물, 이의 제조방법 및 이의 용도
WO2021137510A1 (en) Organic light emitting diode and organic light emitting device including the same
WO2021137511A1 (en) Organic light emitting diode and organic light emitting device including the same
AU2021226297B2 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
WO2023054759A1 (ko) 2-아미노퀴나졸린 유도체 및 이를 포함하는 항바이러스용 조성물
WO2022065949A1 (ko) 인돌리진 골격체 기반 ph 측정용 형광 화합물 및 이의 용도
WO2020080784A1 (ko) 화합물 및 이를 포함하는 색변환 필름
WO2022203222A1 (ko) 핵생성 억제 형성용 물질 및 이를 포함하는 유기전계발광소자
WO2019212183A1 (ko) 중합성 액정 화합물, 광학 소자용 액정 조성물, 중합체, 광학 이방체 및 디스플레이 장치용 광학 소자
WO2021137512A1 (en) Organic light emitting diode and organic light emitting device including the same
WO2013058613A2 (ko) 2-하이드록시아릴아마이드 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 암 예방 또는 치료용 약학적 조성물
WO2022065938A1 (ko) 응집유도발광용 화합물과 이를 이용한 세포이미징용 조성물 및 세포 영상조영제로서의 용도
WO2012157900A2 (ko) 18f-표지 pet 방사성의약품의 전구체 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872977

Country of ref document: EP

Kind code of ref document: A1