WO2022064898A1 - チタン系多孔質体及び、チタン系多孔質体の製造方法 - Google Patents

チタン系多孔質体及び、チタン系多孔質体の製造方法 Download PDF

Info

Publication number
WO2022064898A1
WO2022064898A1 PCT/JP2021/030062 JP2021030062W WO2022064898A1 WO 2022064898 A1 WO2022064898 A1 WO 2022064898A1 JP 2021030062 W JP2021030062 W JP 2021030062W WO 2022064898 A1 WO2022064898 A1 WO 2022064898A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
porous body
based porous
powder
containing powder
Prior art date
Application number
PCT/JP2021/030062
Other languages
English (en)
French (fr)
Inventor
洋介 井上
昭吾 津曲
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to US18/019,709 priority Critical patent/US11975388B2/en
Priority to JP2021569998A priority patent/JP7061735B1/ja
Priority to KR1020227043755A priority patent/KR20230010720A/ko
Priority to AU2021350813A priority patent/AU2021350813B2/en
Priority to EP21872030.8A priority patent/EP4219778A4/en
Publication of WO2022064898A1 publication Critical patent/WO2022064898A1/ja
Priority to JP2022067808A priority patent/JP2022095916A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1109Inhomogenous pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a sheet-shaped titanium-based porous body containing titanium and a method for producing a titanium-based porous body.
  • Patent Document 1 Japanese Patent Document 1
  • Patent Document 1 states that "the specific surface area is 4.5 x 10 -2 to 1.5 x 10 -1 m 2 / g, the porosity is 50 to 70%, and the thickness is 4.0 x 10 -1 to 1".
  • a sheet-like titanium-based porous body having a surface roughness of 1.6 mm and at least one surface having a surface roughness of 8.0 ⁇ m or less ” is described.
  • Patent Document 1 describes a modified titanium-based powder having an average particle size of 10 to 50 ⁇ m, a D90 of less than 75 ⁇ m, and an average circularity of 0.50 to 0.90. , Dry and non-pressurized, placed on a setter, and then sintered at 800 to 1100 ° C.
  • the titanium-based porous body has air permeability or liquid permeability, and is being studied for use as a gas diffusion layer or an electrode of a next-generation battery.
  • a sheet-shaped titanium-based porous body is pressed against the electrolyte membrane under the action of a relatively high pressure for the purpose of reducing contact resistance, for example. There is. In this case, it is preferable that the electrolyte membrane and the titanium-based porous body are in close contact with each other.
  • a titanium-based porous body is prepared using a relatively fine titanium-containing powder to smooth the sheet surface of the titanium-based porous body. , The porosity becomes smaller as a whole, and its air permeability or liquid permeability decreases.
  • the titanium-based porous body may be compressed and deformed due to the action of pressure to reduce voids, and its air permeability or liquid permeability may decrease.
  • Patent Document 1 does not pay any particular attention to this point.
  • An object of the present invention is that one sheet surface is smooth to some extent, the other sheet surface side exhibits the required air permeability or liquid permeability, and the compression deformation when a predetermined pressure is applied is relatively small. It is an object of the present invention to provide a titanium-based porous body that can be suppressed and a method for producing a titanium-based porous body.
  • the inventor dryly deposits titanium-containing powder having a predetermined particle size as a raw material on the molding surface of the molding die, and deposits the titanium-containing powder on the molding surface at a relatively high temperature for a long time. It was found that the surface of one of the sheet-like titanium-based porous bodies formed on the molding surface side was satisfactorily smoothed by heating with. Further, by appropriately controlling the particle size of the titanium-containing powder used as a raw material, while smoothing the surface of one sheet of the titanium-based porous body as described above, the required air permeability or the required air permeability on the surface side of the other sheet is obtained. Liquid permeability can be ensured. It is considered that this is because when the titanium-containing powder having a predetermined particle size is deposited on the molding surface, the fine particles thereof naturally gather on the molding surface side.
  • the titanium-based porous body of the present invention is in the form of a sheet containing titanium, has a thickness of 0.8 mm or less, a porosity of 30% to 65%, and has a maximum height Rz1 of one of the sheet surfaces.
  • the ratio (Rz2 / Rz1) of the maximum height Rz2 of the other sheet surface to the maximum height Rz1 of the one sheet surface is 1.2 or more, and the compression deformation rate is 19% or less. Is.
  • the titanium-based porous body of the present invention preferably has a compression deformation rate of 12% or less.
  • the titanium-based porous body of the present invention preferably has a titanium content of 75% by mass or more.
  • the titanium-based porous body of the present invention may have a titanium content of 98% by mass or more.
  • 10% particle diameter D10 is 30 ⁇ m or less
  • 90% particle diameter D90 is 15 ⁇ m to 105 ⁇ m
  • a titanium-based porous body having a thickness of 0.8 mm or less can be produced.
  • one sheet surface is smooth to some extent, the required air permeability or liquid permeability is exhibited on the other sheet surface side, and compression deformation when a predetermined pressure is applied is exhibited. Can be kept relatively small. Further, the method for producing a titanium-based porous body of the present invention is suitable for producing such a titanium-based porous body.
  • FIG. 1 (a) is an SEM photograph of the electrolyte membrane pressed against the surface on the molding surface side of the titanium-based porous body of Example 4, and FIG. 1 (b) is an SEM photograph of the electrolyte membrane pressed against the surface on the opposite side thereof.
  • the air permeability measuring device used for the air permeability measurement of the titanium-based porous body of Examples and Comparative Examples is shown together with the titanium-based porous body. It is sectional drawing which follows the thickness direction of a titanium-based porous body.
  • the titanium-based porous body according to the embodiment of the present invention contains titanium, has a sheet-like shape having a thickness of 0.8 mm or less, and has a porosity of 30% to 65%.
  • the maximum height Rz1 of one sheet surface is 30 ⁇ m or less
  • the ratio of the maximum height Rz2 of the other sheet surface to the maximum height Rz1 of one sheet surface (Rz2 / Rz1). Is 1.2 or more.
  • this titanium-based porous body has a compression deformation rate of 19% or less.
  • the titanium-based porous body is made of, for example, pure titanium or a titanium alloy.
  • the titanium content of the titanium-based porous body, whether made of pure titanium or a titanium alloy, may be 75% by mass or more.
  • the titanium content of the titanium-based porous body may be, for example, 98% by mass or more, typically 99.0% by mass to 99.8% by mass.
  • the titanium-based porous body made of pure titanium may contain at least one impurity selected from the group consisting of oxygen, nitrogen and carbon as the balance of titanium.
  • the titanium content of the titanium-based porous body may be, for example, 75% by mass to 97% by mass, typically 85% by mass to 97% by mass.
  • the titanium-based porous body made of titanium alloy contains Fe, Sn, Cr, Al, V, Mn, Zr, Mo, Pd, Pt, Au, Ta, Nb, Ni, Ru and the like as alloying elements. Can be included. Specific examples of this titanium alloy include Ti-6-4 (Ti-6Al-4V), Ti-5Al-1Fe, Ti-5Al-2.5Sn, and Ti-8-1-1 (Ti-8Al-1Mo-).
  • Ti-6-2-4-2 Ti-6Al-2Sn-4Zr-2Mo-0.1Si
  • Ti-6-6-2 Ti-6Al-6V-2Sn-0.7Fe-0. 7Cu
  • Ti-6-2-4-6 Ti-6Al-2Sn-4Zr-6Mo
  • SP700 Ti-4.5Al-3V-2Fe-2Mo
  • Ti-17 Ti-5Al-2Sn-2Zr) -4Mo-4Cr
  • ⁇ -CEZ Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe
  • TIMETAL555 Ti-553 (Ti-5Al-5Mo-5V-3Cr-0.5Fe), TIMETAL21S (Ti- 15Mo-2.7Nb-3Al-0.2Si), TIMETAL LCB (Ti-4.5Fe-6.8Mo-1.5Al), 10-2-3 (Ti-10V-2Fe-3Al), Beta C (Ti) -3Al-8V-6Cr-4Mo-4Cr), Ti-
  • the number added before each metal element represents the content (mass%) of the metal element.
  • Ti-6Al-4V means a titanium alloy containing 6% by mass of Al and 4% by mass of V as alloying elements.
  • the titanium-based porous body has a sheet-like outer shape as a whole, and its thickness is 0.8 mm or less. When the thickness of the titanium-based porous body exceeds 0.8 mm, it tends to be difficult to secure a good porosity.
  • the thickness of the titanium-based porous body may be 0.2 mm or more, for example, 0.2 mm to 0.8 mm. Further, the thickness of the titanium-based porous body may be 0.5 mm to 0.8 mm.
  • the thickness of the titanium-based porous body is measured with a thickness gauge, and can be measured using, for example, an ABS Digimatic Thickness Gauge 547-321 manufactured by Mitutoyo Co., Ltd.
  • the above-mentioned thickness of the titanium-based porous body means the thickness before compression deformation when measuring the compression deformation rate described later.
  • the porosity of the titanium-based porous body is 30% to 65%. As a result, it is possible to realize the required air permeability or liquid permeability while having a certain level of strength.
  • the porosity of the titanium-based porous body is preferably 35% to 60%.
  • the porosity of the titanium-based porous body is preferably 35% to 45%.
  • the sheet-like titanium-based porous body has two sheet surfaces, one sheet surface facing the opposite side and the other sheet surface on the back side thereof. It is assumed that one of the sheet surfaces has a maximum height Rz1 of 30 ⁇ m or less, preferably 25 ⁇ m or less. The maximum height Rz of each sheet surface is measured, the maximum height Rz of the sheet surface having the smaller value is set to the maximum height Rz1, and the maximum height Rz of the sheet surface having the larger value is set to the maximum height. Let it be Rz2.
  • the contact resistance can be effectively reduced by pressing the one smooth surface of the sheet having a maximum height Rz1 of 30 ⁇ m or less against the electrolyte membrane of the battery as described above.
  • the maximum height Rz1 of the one sheet surface pressed against the electrolyte membrane exceeds 30 ⁇ m, the large unevenness of the one sheet surface may affect the reduction of the contact resistance.
  • the maximum height Rz1 of one sheet surface in the titanium-based porous body the higher the adhesion to the electrolyte membrane, which is desirable. Therefore, there is no particular suitable lower limit of the maximum height Rz1 of one sheet surface, but the maximum height Rz1 of one sheet surface may be 3 ⁇ m or more, further 8 ⁇ m or more. Further, the maximum height Rz1 of one sheet surface may be 15 ⁇ m or more.
  • the surface of one sheet in a titanium-based porous body in the form of a sheet The ratio (Rz2 / Rz1) of the maximum height Rz2 of the other sheet surface to the maximum height Rz1 is 1.2 or more, preferably 2.0 or more.
  • the upper limit side of the ratio (Rz2 / Rz1) between the maximum height Rz1 of one sheet surface and the maximum height Rz2 of the other sheet surface is not particularly limited, but to give an example, 5.0 or less, or 3 It is less than 5.5.
  • the ratio (Rz2 / Rz1) of the maximum height Rz1 of one sheet surface to the maximum height Rz2 of the other sheet surface may be 1.2 to 2.5.
  • a titanium-containing powder having an adjusted particle size distribution is prepared as in the manufacturing method described later, and the titanium-containing powder is used as a molding surface of a molding die. It can be realized by depositing it on top in a dry manner.
  • the maximum heights Rz1 and Rz2 of the sheet surface of the titanium-based porous body are measured according to JIS B0601 (1994).
  • the titanium-based porous body is compressed and deformed, which is the rate of change in thickness before and after the operation when the operation of compressing by applying a pressure of 65 MPa in the thickness direction for 3 minutes and then unloading is performed twice.
  • the rate is 19% or less.
  • the inventor speculates as follows about the reason why the compression deformation rate can change even if the porosity before the compression treatment is the same.
  • the sintering temperature is low to some extent or the sintering time is short, the bonding portion between the particles of the titanium-containing powder becomes thin.
  • the sintering temperature is raised and the sintering time is lengthened, the joint portion tends to become thicker.
  • the deformation of the titanium-based porous body includes deformation in which the joint portion between the particles formed by sintering or the like is maintained and the joint portion is broken. It may include deformation in which the particles enter the voids.
  • the bonding portion is often deformed and the particles easily enter the voids to fill the voids.
  • the compression deformation rate increases.
  • a titanium-based porous body in which the joint portion is grown thick such compressive deformation is unlikely to occur.
  • detachment of the titanium-containing powder is often observed after pressurization.
  • the compression deformation rate of the titanium-based porous body is preferably 12% or less. Further, the compression deformation rate of the titanium-based porous body is preferably 8% or less. Although it depends on the production conditions of the titanium-based porous body, the compression deformation rate may be 2% or more.
  • the thickness T1 of the titanium-based porous body is measured in advance. By sandwiching the titanium-based porous body between the flat surfaces of two flat plates or the like in the thickness direction and displacing the flat surfaces in a direction close to each other, the titanium-based porous body is placed on the surface thereof. Evenly, a pressure of 65 MPa is applied in the thickness direction for 3 minutes.
  • the pressure After applying the pressure, the pressure is unloaded. The operation of such pressure action and unloading is performed again, and the operation is performed twice in total. Then, the thickness T2 of the titanium-based porous body taken out from between the flat surfaces is measured.
  • various compression test devices and other devices capable of applying pressure to the titanium-based porous body can be used.
  • it is necessary to measure the thicknesses T1 and T2 of the titanium-based porous body it is necessary to measure the thicknesses T1 and T2 at five locations at different positions in the plan view of the titanium-based porous body (for example, in the case of a titanium-based porous body having a quadrangular plan view, the center). The thickness is measured at four corners around it), and the average value thereof is defined as the thickness T1 and T2.
  • the titanium-based porous body as described above can be produced, for example, as described below.
  • a raw material preparation process is performed to prepare a predetermined titanium-containing powder as a raw material.
  • the predetermined titanium-containing powder has a 10% particle diameter D10 of 30 ⁇ m or less, a 90% particle diameter D90 of 15 ⁇ m to 105 ⁇ m, and a ratio of 90% particle diameter D90 to 10% particle diameter D10 ( D90 / D10) is 2.0 or more.
  • the 10% particle size D10 of the titanium-containing powder is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less. Further, the 10% particle diameter D10 of the titanium-containing powder is preferably 12 ⁇ m or less. The 10% particle diameter D10 may be, for example, 3 ⁇ m or more.
  • the 90% particle size D90 of the titanium-containing powder affects the ratio of the maximum heights Rz1 and Rz2 of the sheet surface of the titanium-based porous body, the porosity, and the like.
  • the 90% particle diameter D90 of the titanium-containing powder is set to 15 ⁇ m or more.
  • the 90% particle size D90 of the titanium-containing powder is 105 ⁇ m or less in order to appropriately suppress the compressive deformation when the pressure acts on the titanium-based porous body.
  • the 90% particle size D90 of the titanium-containing powder is preferably 15 ⁇ m to 75 ⁇ m, further 30 ⁇ m to 60 ⁇ m, and further 40 ⁇ m to 60 ⁇ m.
  • the 90% particle size D90 of the titanium-containing powder is preferably 15 to 30 ⁇ m.
  • the ratio (D90 / D10) of the 90% particle diameter D90 to the 10% particle diameter D10 is 2.0 or more. That is, the 90% particle diameter D90 is 2.0 times or more the 10% particle diameter D10.
  • This ratio (D90 / D10) is preferably 2.0 to 4.0, more preferably 2.0 to 3.0.
  • a powder having a 90% particle diameter D90 of about 70 ⁇ m and a powder having a 90% particle diameter D90 of about 20 ⁇ m can be mixed to adjust the value of the 90% particle diameter D90 of the titanium-containing powder.
  • the 10% particle size D10 and the 90% particle size D90 of the titanium-containing powder mean the particle size in which the volume-based cumulative distribution is 10% or 90% in the particle size distribution obtained by the laser diffraction scattering method, respectively.
  • the titanium-containing powder can be various powders as long as it contains titanium.
  • the titanium content of the titanium-containing powder is preferably 75% by mass or more.
  • the titanium content can also be 95% by mass or more.
  • As the titanium-containing powder for example, pure titanium powder and / or titanium alloy powder can be used. That is, as the titanium-containing powder, only pure titanium powder can be used, one or more kinds of titanium alloy powder can be used, or these pure titanium powder and titanium alloy powder can be combined. May be used.
  • alloy element powders such as aluminum, vanadium and iron can also be used. As a whole, if at least a part of the particles of the titanium-containing powder contains titanium, it can be regarded as a titanium-containing powder.
  • the pure titanium powder means a powder having a titanium content of 95% by mass or more and substantially composed of only titanium.
  • hydrogenated dehydrogenated titanium powder obtained by hydrogenating and crushing sponge titanium or the like and then dehydrogenating, or dehydrogenation was not performed after the above crushing.
  • Examples include titanium hydride powder.
  • the hydrogenated titanium powder which is a pure titanium powder, allows a hydrogen content of up to 5% by mass.
  • Titanium alloy powder is a powder containing titanium and alloying elements.
  • the titanium alloy powder can be used with the elements corresponding to the above-mentioned titanium alloy of the titanium-based porous body to be produced and the ratio thereof.
  • the average circularity of the titanium-containing powder is not particularly limited, but is preferably 0.93 or less. Titanium-containing powder having a low average circularity of 0.93 or less is available at a relatively low price, which is advantageous from the viewpoint of reducing the manufacturing cost.
  • the average circularity of the titanium-containing powder is preferably 0.91 or less, more preferably 0.89 or less. Since the above-mentioned HDH titanium powder and hydrogenated titanium powder are obtained by pulverization, the average circularity tends to be relatively small. On the other hand, the atomized powder produced by gas atomizing or the like often has an average circularity closer to 1.00 than the HDH titanium powder or the like.
  • the average circularity of the titanium-containing powder is calculated as follows. Using an electron microscope, the circumference (A) of the projected area of the particles of the titanium-containing powder is measured, and the ratio to the circumference (B) of the circle having the same area as the projected area is defined as the circularity (B / A). do.
  • the average circularity is the above-mentioned circularity (B / A) for each particle from 1000 to 1500 individual particle images by flowing particles together with the carrier liquid in the cell and taking an image of a large amount of particles with a CCD camera. Is calculated and calculated as the average value of the circularity of each particle.
  • the value of the circularity becomes larger as the shape of the particle is closer to the true sphere, and the circularity of the particle having the shape of a perfect sphere is 1.00. Conversely, the circularity value decreases as the shape of the particle moves away from the true sphere.
  • the powder deposition process is performed.
  • the titanium-containing powder is deposited and spread on the molding surface of the molding die by a dry method.
  • dry type means that a liquid such as a solvent or a binder is not used.
  • the titanium-containing powder is not settled in a slurry in which the titanium-containing powder is dispersed in a liquid, but is deposited by dropping the titanium-containing powder in a gas such as air or in a vacuum, for example.
  • the titanium-containing powder having a predetermined particle size is placed on the lower side (molding surface side) of the deposited layer of the titanium-containing powder deposited on the molding surface of the molding die. While the relatively fine particles of the above are gathered and located, particles having a larger particle size tend to be located on the upper side (opposite to the molding surface side) of the sedimentary layer of the titanium-containing powder. As a result, of the sheet surfaces of the titanium-based porous body obtained after the powder sintering step described later, the surface of one of the sheets on the molding surface side of the molding die becomes smooth and the surface roughness becomes small.
  • the powder deposition step in order to obtain a titanium-based porous body having a predetermined air permeability or liquid permeability, it is preferable to deposit the titanium-containing powder at least in the deposition direction without applying pressure. This is because when the pressure is intentionally applied in the deposition direction, a dense titanium-based porous body is formed after sintering, and the air permeability or liquid permeability is lowered. More specifically, the titanium-containing powder is spread on the inside of the side wall on the molding surface of the container-shaped molding mold having the molding surface and the side wall surrounding the molding surface by shaking off the titanium-containing powder from the upper side thereof.
  • a flat plate-shaped spatula or the like is moved along the upper surface of the side wall, and a part of the titanium-containing powder raised above the upper surface of the side wall is partially removed from the side wall. Remove to the outside of. At this time, the titanium-containing powder is not intentionally pressurized in the deposition direction. As a result, the titanium-containing powder can be deposited inside the side wall of the molding die by the height of the side wall. By adjusting by changing the height of the side wall of the molding die or the like, it is possible to produce a titanium-based porous body having an arbitrary thickness such as 0.8 mm or less. It is also possible to use a flat plate shape as the molding die.
  • a side wall corresponding to the thickness is arranged on the molding surface, and then a flat plate-shaped spatula or the like is placed along the upper surface of the side wall.
  • the desired thickness (0.8 mm or less, etc.) of the titanium-based porous body can also be achieved by moving it. Even in this case, the titanium-containing powder is not intentionally pressurized in the deposition direction.
  • a powder sintering step is performed to heat the titanium-containing powder deposited on the molding surface of the molding die. For example, by putting the titanium-containing powder on the molding surface into the furnace together with the molding die and heating it, a sheet-shaped titanium-based porous body corresponding to the space on the molding surface of the container-shaped molding die can be obtained.
  • the heating temperature When the heating temperature is less than 980 ° C, the compression deformation rate of the titanium-based porous body increases, and there is a concern that the air permeability or liquid permeability will decrease due to the reduction of voids when pressure is applied to the titanium-based porous body. Will be done.
  • the heating temperature may be 1200 ° C. or lower from the viewpoint of ensuring a certain degree of porosity of the titanium-based porous body.
  • the heating temperature is preferably 1000 ° C to 1100 ° C.
  • the compression deformation rate of the titanium-based porous body may increase. This time may be 6 hours or less in consideration of productivity.
  • the time for maintaining the above heating temperature is preferably 2 hours to 3 hours.
  • the particle size of the titanium-containing powder is adjusted as described above, and the titanium-based porous body has a predetermined porosity and the compression deformation rate is satisfactorily reduced. Can be obtained. If sintering is performed at a high temperature for a long time using only fine powder, a titanium-based porous body having a low porosity may be obtained, and the air permeability or liquid permeability required for a battery material may not be ensured.
  • this embodiment by adjusting the particle size of the titanium-containing powder described above, it is possible to suppress such a decrease in porosity even when heated at a relatively high temperature for a long time.
  • the titanium-containing powder can be heat-sintered under a reduced pressure atmosphere such as vacuum or in an inert atmosphere.
  • a reduced pressure atmosphere such as vacuum or in an inert atmosphere.
  • the titanium-containing powder can be sintered, for example, in a vacuum furnace with a degree of vacuum reaching 10 -4 Pa to 10 -2 Pa in a reduced pressure atmosphere.
  • the titanium-containing powder can be sintered in an inert atmosphere with the atmosphere being an argon gas.
  • nitrogen gas is not considered to be an inert gas.
  • the temperature and time of the preheat treatment can be appropriately determined in consideration of the content of the titanium hydride powder.
  • the temperature of the preheat treatment may be 450 ° C. to 700 ° C.
  • the time of the preheat treatment may be 30 minutes to 360 minutes.
  • This preheating treatment can be performed, for example, in a vacuum furnace in a vacuum furnace with a degree of vacuum reaching 10 -4 Pa to 10 -2 Pa in a reduced pressure atmosphere.
  • After the preheat treatment it may be cooled once and then heated for sintering, or after the preheat treatment, the temperature may be further raised and heating for sintering may be performed.
  • a titanium-based porous body can be produced.
  • This titanium-based porous body is suitable for use in applications that require air permeability or liquid permeability, and is particularly suitable for next-generation batteries, for example, as a gas diffusion layer or an electrode pressed against an electrolyte membrane. obtain.
  • titanium-containing powder having an adjusted particle size was prepared as a raw material as shown in Table 1.
  • HDH titanium powder was used as the titanium-containing powder.
  • HDH titanium powder is obtained by dehydrogenation after hydrogenation and pulverization of pure titanium. The average circularity of all HDH titanium powders was 0.93 or less.
  • the titanium-containing powder was dry-deposited and spread on a molding surface of a predetermined size of a setter which is a molding mold.
  • a powder sintering step is performed, the pressure inside the vacuum furnace is reduced to 1.0 ⁇ 10 ⁇ 2 Pa or less, and the titanium-containing powder is heated on the molding surface under the conditions shown in Table 1 under the reduced pressure atmosphere.
  • the thickness, porosity, compression deformation rate, and the maximum of one sheet surface (molded surface side surface) on the molded surface side are obtained according to the above-mentioned measurement method.
  • the maximum height Rz2 of the height Rz1 and the other sheet surface on the opposite side (opposite side surface) was measured.
  • the surf test SJ-210 manufactured by Mitutoyo Co., Ltd. was used for the measurement of the maximum heights Rz1 and Rz2.
  • the measurement mode was JIS2001, the measurement speed was 0.5 mm / s, the measurement distance was 16 mm, the number of measurements was 5, and the maximum measured value was adopted.
  • the results are shown in Table 1.
  • the thickness, porosity, and maximum heights Rz1 and Rz2 shown in Table 1 are measured before the compression deformation treatment is performed.
  • the air permeability measuring device 1 has a pair of flat surfaces 2a and 2b that sandwich the titanium-based porous body 11 cut out into a 40 mm square from both sides in the thickness direction thereof, and by bringing the flat surfaces 2a and 2b close to each other.
  • a press machine 2 capable of exerting a compressive force for reducing the thickness on the titanium-based porous body 11 and an internal flow path 2c formed so as to open to one flat surface 2a inside the press machine 2. It is provided with a gas supply pipe 3 communicating with the gas supply pipe 3 and a flow meter 4a and a pressure gauge 4b provided in the middle of the gas supply pipe 3.
  • An air permeability measuring device 1 having a circular flat surface 2a and 2b having a diameter of 60 mm was used, in which the inner diameter of the gas supply pipe 3 was 6 mm and the inner diameter of the internal flow path 2c was 5 mm.
  • the arithmetic mean roughness Ra (JIS B0601 (1994)) of the flat surfaces 2a and 2b is 1.6 ⁇ m or less, the flatness of the flat surfaces 2a and 2b is 0.01 mm or less, and the flat surface 2a of the press machine 2
  • the parallelism of the flat plate having 2b was set to 0.01 mm or less.
  • the titanium-based porous body 11 is set in the air permeability measuring device 1, a pressure of 65 MPa is applied in the direction in which the flat surfaces 2a and 2b approach, and the gas supply pipe 3 and the gas supply pipe 3 and the gas supply pipe 3 and Air was supplied at 1.0 L / min from the internal flow path 2c to the center of the titanium-based porous body 11 in plan view, and the pressure of the air at the time of supply was measured by a pressure gauge 4b.
  • the air supplied to the titanium-based porous body 11 from the opening of the flat surface 2a passes through the inside of the titanium-based porous body 11 and then surrounds the titanium-based porous body 11 on the flat surfaces 2a and 2b.
  • Ventilation resistance which is the pressure of the air
  • the ventilation resistance was measured twice in total. Ventilation, which is the ratio of the ventilation resistance when the surface on the molded surface side is positioned to the ventilation resistance when the surface on the opposite side is positioned on the flat surface 2a side (ventilation resistance on the surface on the molded surface side / ventilation resistance on the opposite surface).
  • the resistivity ratios are shown in Table 1.
  • this ventilation resistance ratio is large, it means that the difference in ventilation resistance between the surface on the opposite side and the surface on the molding surface side is large, and the air permeability of the surface on the opposite side is excellent.
  • the aeration resistance ratio of 1.20 or more was passed, 1.25 or more was good, and 1.30 or more was excellent.
  • each titanium-based porous body 11 was also measured by using the press machine 2 of the above-mentioned air permeability measuring device 1.
  • a titanium-based porous body produced by heating a titanium-containing powder having a predetermined particle size under predetermined sintering conditions has a good porosity and compression deformation. It had porosity, maximum height Rz and breathability.
  • each titanium-based porous body manufactured under the same conditions as in each of the above examples is pressed against Nafion (Nafion, a registered trademark) as an electrolyte membrane on the surface on the molding surface side or the surface on the opposite side at a pressure of 65 MPa, and then the pressure thereof is increased.
  • Nafion Nafion, a registered trademark
  • the surface of the electrolyte membrane was observed.
  • SEM photographs of the surface of the electrolyte membrane (FIG. 1 (a)) on which the surface on the molding surface side of Example 4 is pressed and the surface of the electrolyte membrane (FIG. 1 (b)) on which the surface on the opposite side is pressed are shown in FIG. show. From FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Products (AREA)

Abstract

この発明のチタン系多孔質体は、チタンを含有するシート状のチタン系多孔質体であって、厚みが0.8mm以下、空隙率が30%~65%であり、一方のシート表面の最大高さRz1が30μm以下であり、前記一方のシート表面の最大高さRz1に対する他方のシート表面の最大高さRz2の比(Rz2/Rz1)が1.2以上であり、圧縮変形率が19%以下であるものである。

Description

チタン系多孔質体及び、チタン系多孔質体の製造方法
 この発明は、チタンを含有するシート状のチタン系多孔質体及び、チタン系多孔質体の製造方法に関するものである。
 純チタン製又はチタン合金製のチタン系多孔質体として従来は、特許文献1に記載されたもの等がある。
 特許文献1には、「比表面積が4.5×10-2~1.5×10-12/g、空隙率が50~70%、厚さが4.0×10-1~1.6mm、少なくとも片面の表面粗さが8.0μm以下であることを特徴とするシート状チタン系多孔体」が記載されている。この「シート状チタン系多孔体」を製造する方法として、特許文献1には、「平均粒径10~50μm、D90が75μm未満、平均円形度0.50~0.90の異形チタン系粉を、乾式かつ、無加圧でセッター上に載置後、800~1100℃で焼結させること」が記載されている。
特開2018-70985号公報
 チタン系多孔質体は、通気性もしくは通液性を有するものであり、次世代電池のガス拡散層もしくは電極等として用いることが検討されている。
 このような電池の用途にチタン系多孔質体を用いるには、たとえば接触抵抗の低減等といった目的で、シート状のチタン系多孔質体を、電解質膜に比較的高い圧力の作用下で押し付けることがある。この場合、電解質膜とチタン系多孔質体とが密着することが好ましい。他方、電解質膜とチタン系多孔質体との密着性を向上させるため、比較的微細なチタン含有粉末を用いてチタン系多孔質体を作製してチタン系多孔質体のシート表面を平滑にすると、全体的に空隙率が小さくなり、その通気性もしくは通液性が低下する。
 また上記の用途では、圧力の作用により、チタン系多孔質体が圧縮変形して空隙が減少し、その通気性もしくは通液性が低下するおそれもある。特許文献1は、特にこの点について何ら着目されていない。
 この発明の目的は、一方のシート表面がある程度平滑で、他方のシート表面側にて所要の通気性もしくは通液性が発揮されるとともに、所定の圧力が作用したときの圧縮変形を比較的小さく抑えることのできるチタン系多孔質体及び、チタン系多孔質体の製造方法を提供することにある。
 発明者は鋭意検討の結果、原料としての所定の粒度のチタン含有粉末を乾式で、成形型の成形面上に堆積させること、及び、成形面上の当該チタン含有粉末を比較的高温かつ長時間で加熱することにより、成形面側に形成されるシート状のチタン系多孔質体の一方のシート表面が良好に平滑になることを見出した。さらに、原料として使用するチタン含有粉末の粒度を適切に制御することで、チタン系多孔質体の一方のシート表面を上述したように平滑にしつつも、他方のシート表面側で所要の通気性もしくは通液性を確保することができる。これは、所定の粒度のチタン含有粉末を成形面上に堆積させた際に、そのうちの微細な粒子が成形面側に自然と集まることによるものと考えられる。
 しかもこの場合、所定の粒度のチタン含有粉末を所定の温度及び時間で加熱したことにより、焼結が適切に進行する結果、チタン系多孔質体で所望の空隙率を実現できるとともに、圧力の作用時にそれほど大きな圧縮変形が起こらないことが新たな知見として得られた。
 この発明のチタン系多孔質体は、チタンを含有するシート状のものであって、厚みが0.8mm以下、空隙率が30%~65%であり、一方のシート表面の最大高さRz1が30μm以下であり、前記一方のシート表面の最大高さRz1に対する他方のシート表面の最大高さRz2の比(Rz2/Rz1)が1.2以上であり、圧縮変形率が19%以下であるものである。
 この発明のチタン系多孔質体は、圧縮変形率が12%以下であることが好ましい。
 この発明のチタン系多孔質体は、チタン含有量が75質量%以上であることが好適である。
 この発明のチタン系多孔質体は、チタン含有量が98質量%以上である場合がある。
 この発明のチタン系多孔質体の製造方法は、原料として、10%粒子径D10が30μm以下であって90%粒子径D90が15μm~105μmであり、かつ、10%粒子径D10に対する90%粒子径D90の比(D90/D10)が2.0以上であるチタン含有粉末を準備する原料準備工程と、前記チタン含有粉末を成形型の成形面上に乾式で堆積させる粉末堆積工程と、前記成形面上で前記チタン含有粉末を、980℃以上の温度に2時間以上にわたって加熱する粉末焼結工程とを含むものである。
 この発明のチタン系多孔質体の製造方法では、厚みが0.8mm以下であるチタン系多孔質体を製造することができる。
 この発明のチタン系多孔質体は、一方のシート表面がある程度平滑で、他方のシート表面側にて所要の通気性もしくは通液性が発揮されるとともに、所定の圧力が作用したときの圧縮変形を比較的小さく抑えることができる。また、この発明のチタン系多孔質体の製造方法は、そのようなチタン系多孔質体を製造することに適している。
図1(a)は実施例4のチタン系多孔質体の成形面側表面を押し付けた電解質膜のSEM写真であり、図1(b)はその反対側表面を押し付けた電解質膜のSEM写真である。 実施例及び比較例のチタン系多孔質体の通気性測定に用いた通気性測定装置をチタン系多孔質体とともに示す。チタン系多孔質体の厚み方向に沿う断面図である。
 以下に、この発明の実施の形態について詳細に説明する。
 この発明の一の実施形態のチタン系多孔質体は、チタンを含有するものであり、厚みが0.8mm以下であるシート状の形状を有し、空隙率が30%~65%である。このチタン系多孔質体は、一方のシート表面の最大高さRz1が30μm以下であり、その一方のシート表面の最大高さRz1に対する他方のシート表面の最大高さRz2の比(Rz2/Rz1)が1.2以上である。また、このチタン系多孔質体は圧縮変形率が19%以下である。
(組成)
 チタン系多孔質体は、たとえば純チタン製又はチタン合金製である。純チタン製又はチタン合金製のいずれであっても、チタン系多孔質体のチタン含有量は、75質量%以上である場合がある。
 純チタン製の場合、チタン系多孔質体のチタン含有量は、たとえば98質量%以上、典型的には99.0質量%~99.8質量%であることがある。純チタン製のチタン系多孔質体は、酸素、窒素及び炭素からなる群から選択される少なくとも一種の不純物が、チタンの残部として含まれ得る。
 チタン合金製の場合、チタン系多孔質体のチタン含有量は、たとえば75質量%~97質量%、典型的には85質量%~97質量%であることがある。チタン合金製のチタン系多孔質体は、チタンの他に合金元素として、Fe、Sn、Cr、Al、V、Mn、Zr、Mo、Pd、Pt、Au、Ta、Nb、Ni、Ru等が含まれ得る。このチタン合金の具体例としては、Ti-6-4(Ti-6Al-4V)、Ti-5Al-1Fe、Ti-5Al-2.5Sn、Ti-8-1-1(Ti-8Al-1Mo-1V)、Ti-6-2-4-2(Ti-6Al-2Sn-4Zr-2Mo-0.1Si)、Ti-6-6-2(Ti-6Al-6V-2Sn-0.7Fe-0.7Cu)、Ti-6-2-4-6(Ti-6Al-2Sn-4Zr-6Mo)、SP700(Ti-4.5Al-3V-2Fe-2Mo)、Ti-17(Ti-5Al-2Sn-2Zr-4Mo-4Cr)、β-CEZ(Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe)、TIMETAL555、Ti-5553(Ti-5Al-5Mo-5V-3Cr-0.5Fe)、TIMETAL21S(Ti-15Mo-2.7Nb-3Al-0.2Si)、TIMETAL LCB(Ti-4.5Fe-6.8Mo-1.5Al)、10-2-3(Ti-10V-2Fe-3Al)、Beta C(Ti-3Al-8V-6Cr-4Mo-4Cr)、Ti-8823(Ti-8Mo-8V-2Fe-3Al)、15-3(Ti-15V-3Cr-3Al-3Sn)、BetaIII(Ti-11.5Mo-6Zr-4.5Sn)、Ti-13V-11Cr-3Al等が挙げられる。なお、上記の合金の具体例において、各金属元素の前に付記した数字は、当該金属元素の含有量(質量%)を表している。例えば、「Ti-6Al-4V」は、合金元素として6質量%のAlと4質量%のVとを含有するチタン合金を意味する。
(厚み)
 チタン系多孔質体は、全体として外形がシート状であり、その厚みが0.8mm以下である。チタン系多孔質体の厚みが0.8mmを超えると、良好な空隙率を確保しにくくなる傾向にある。チタン系多孔質体の厚みは、0.2mm以上である場合があり、たとえば0.2mm~0.8mmである。また、チタン系多孔質体の厚みは、0.5mm~0.8mmである場合がある。チタン系多孔質体の厚みはシックネスゲージにて測定し、例えば、株式会社ミツトヨ製ABSデジマチックシックネスゲージ547-321などを使用して測定することができる。チタン系多孔質体の上記の厚みは、後述する圧縮変形率を測定する場合の圧縮変形前の厚みを意味する。
(空隙率)
 チタン系多孔質体の空隙率は、30%~65%である。これにより、ある程度の強度を有しつつ所要の通気性もしくは通液性を実現することができる。チタン系多孔質体の空隙率は、35%~60%であることが好ましい。また、チタン系多孔質体の空隙率は、35%~45%であることが好ましい。チタン系多孔質体の空隙率εは、チタン系多孔質体の幅、長さ、厚みから求めた体積および質量から算出した見かけ密度ρ´と、チタン系多孔質体を構成する金属の真密度ρ(例えば、純チタンの場合は4.51g/cm3、Ti-6Al-4Vの場合は4.43g/cm3)を用いて、式:ε=(1-ρ´/ρ)×100により算出する。
(表面粗さ)
 シート状であるチタン系多孔質体は、互いに反対側を向く一方のシート表面とその裏側の他方のシート表面の二つのシート表面を有する。それらのシート表面のうち、一方のシート表面は、最大高さRz1が30μm以下、好ましくは25μm以下であるものとする。なお、各シート表面の最大高さRzを測定し、その値が小さいほうのシート表面の最大高さRzを最大高さRz1とし、その値の大きいほうのシート表面の最大高さRzを最大高さRz2とする。
 最大高さRz1が30μm以下の平滑な当該一方のシート表面を、先述したような電池の電解質膜に押し付けるようにすることにより、接触抵抗を有効に低減できると考えられる。電解質膜に押し付けられる当該一方のシート表面の最大高さRz1が30μmを超える場合、その一方のシート表面の大きな凹凸が影響して上記接触抵抗の低減が不十分となるおそれがある。
 チタン系多孔質体における一方のシート表面の最大高さRz1はその値が小さければ小さいほど、電解質膜へ密着性が高くなるので望ましい。その故に、一方のシート表面の最大高さRz1の好適な下限値は特にないが、一方のシート表面の最大高さRz1は3μm以上、さらに8μm以上になることがある。また、一方のシート表面の最大高さRz1は、15μm以上になる場合がある。
 上述したように一方のシート表面で電解質膜との密着性を確保しつつ、他方のシート表面で通気性もしくは通液性を高めるため、シート状であるチタン系多孔質体における一方のシート表面の最大高さRz1に対する他方のシート表面の最大高さRz2の比(Rz2/Rz1)は1.2以上とし、好ましくは2.0以上とする。前記平滑な一方のシート表面の反対側である他方のシート表面はある程度凹凸を許容することで良好な通気性もしくは通液性を確保しやすくなる。なお、一方のシート表面の最大高さRz1と他方のシート表面の最大高さRz2との比(Rz2/Rz1)の上限側は特段限定されないが、あえて一例を挙げると5.0以下、また3.5以下である。一方のシート表面の最大高さRz1と他方のシート表面の最大高さRz2との比(Rz2/Rz1)は、1.2~2.5である場合がある。
 チタン系多孔質体のシート表面の上述した最大高さRz1、Rz2は、後述の製造方法のように、粒径分布を調整したチタン含有粉末を準備し、そのチタン含有粉末を成形型の成形面上に乾式で堆積させることにより実現することができる。
 チタン系多孔質体のシート表面の最大高さRz1、Rz2は、JIS B0601(1994)に準拠して測定する。
(圧縮変形率)
 チタン系多孔質体は、その厚み方向に65MPaの圧力を3分間作用させて圧縮した後に除荷する操作を2回実施した場合における、当該操作の前後での厚みの変化の割合である圧縮変形率が19%以下である。
 それにより、たとえば所定の電池で用いるべくチタン系多孔質体を電解質膜に押し付けた場合でも、チタン系多孔質体の内部の空隙がある程度多く確保されるので、所要の通気性もしくは通液性を発揮することができる。これを言い換えれば、圧縮変形率が19%を超えて大きいと、電解質膜に押し付けられた際に空隙が大きく減少して所要の通気性もしくは通液性が発揮されなくなる。
 仮に圧縮処理前の空隙率が同じであっても圧縮変形率が変化し得る理由について、発明者は次のように推測している。
 ある程度焼結温度が低いか又は焼結時間が短い場合、チタン含有粉末の粒子間の結合部が細くなる。これに対し、焼結温度を高くしかつ焼結時間を長くすると、結合部は太くなる傾向がある。
 そして、チタン系多孔質体に厚み方向に圧力が作用した場合、チタン系多孔質体の変形には、焼結等で形成された粒子間の結合部が維持される変形と、結合部が破壊されて粒子が空隙に入り込む変形とが含まれ得る。ここで、結合部が細いチタン系多孔質体では、比較的小さい圧力であっても結合部が破壊される変形が多くなり、粒子が空隙に入り込むことにより空隙が埋まりやすい。これにより、圧縮変形率は大きくなる。一方、結合部が太く成長したチタン系多孔質体では、そのような圧縮変形が生じにくい。実際に、焼結温度が低いか又は焼結時間が短かったチタン系多孔質体では、加圧後にチタン含有粉末の離脱が見られることが多い。
 このような観点から、チタン系多孔質体の圧縮変形率は、12%以下であることが好ましい。また、チタン系多孔質体の圧縮変形率は、8%以下であることが好ましい。チタン系多孔質体の製造条件等にもよるが、圧縮変形率は、2%以上になる場合がある。
 より詳細には、圧縮変形率Rdは、65MPaの圧力を作用させる前のチタン系多孔質体の厚みT1と、当該圧力を作用させて除荷した後のチタン系多孔質体の厚みT2を測定し、式:Rd=(1-T2/T1)×100より算出される値である。
 なお、圧縮変形率を測定するには、予めチタン系多孔質体の厚みT1を計測しておく。そのチタン系多孔質体を二枚の平板等のそれぞれの平坦面間に厚み方向に挟み込み、それらの平坦面を互いに近づける向きに変位させることにより、当該チタン系多孔質体に対してその表面上に均等に、厚み方向に65MPaの圧力を3分間作用させる。圧力を作用させた後は、その圧力を除荷する。このような圧力の作用及び除荷の操作を再度行い、当該操作を計2回実施する。その後、平坦面間から取り出したチタン系多孔質体の厚みT2を計測する。ここでは、そのようにチタン系多孔質体に圧力を作用させることが可能な種々の圧縮試験装置その他の装置を用いることができる。チタン系多孔質体の厚みT1、T2を計測するには、チタン系多孔質体の平面視の異なる位置の5か所(たとえば平面視が四角形のチタン系多孔質体である場合は、中心とその周囲の四隅の計5か所)について厚みを測り、それらの平均値を厚みT1、T2とする。
(製造方法)
 上述したようなチタン系多孔質体は、たとえば次に述べるようにして製造することができる。
 はじめに、原料として所定のチタン含有粉末を準備する原料準備工程を行う。ここで、所定のチタン含有粉末とは、10%粒子径D10が30μm以下であって90%粒子径D90が15μm~105μmであり、かつ、10%粒子径D10に対する90%粒子径D90の比(D90/D10)が2.0以上であるものである。
 チタン含有粉末の10%粒子径D10を30μm以下とすることにより、この程度の量でチタン含有粉末に含まれる微細な粒子が、後述の粉末堆積工程で成形型の下方側の成形面に集まりやすくなる。それにより、成形面により形成されるチタン系多孔質体の一方のシート表面が、先に述べた最大高さRz1のような平滑になる。チタン含有粉末の10%粒子径D10は、25μm以下、さらに20μm以下であることが好ましい。また、チタン含有粉末の10%粒子径D10は、12μm以下であることが好ましい。この10%粒子径D10は、たとえば3μm以上であることがある。
 チタン含有粉末の90%粒子径D90は、チタン系多孔質体のシート表面の最大高さRz1、Rz2の比や空隙率等に影響を及ぼす。特に他方のシート表面のある程度大きな最大高さRz2や空隙率を得るため、チタン含有粉末の90%粒子径D90は15μm以上とする。他方、チタン系多孔質体への圧力の作用時の圧縮変形を適切に抑制するため、チタン含有粉末の90%粒子径D90は105μm以下とする。このような観点から好ましくは、チタン含有粉末の90%粒子径D90は15μm~75μm、さらに30μm~60μm、さらに40μm~60μmである。また、チタン含有粉末の90%粒子径D90は、15~30μmであることが好ましい。
 チタン系多孔質体のシート表面の所定の最大高さRz1、Rz2と所期する空隙率や圧縮変形量とを両立させるため、チタン含有粉末の10%粒子径D10と90%粒子径D90とは差があることが必要である。具体的には、10%粒子径D10に対する90%粒子径D90の比(D90/D10)は2.0以上とする。つまり、90%粒子径D90は10%粒子径D10の2.0倍以上とする。この比(D90/D10)は、好ましくは2.0~4.0、より好ましくは2.0~3.0である。
 このような粒径のチタン含有粉末を得るため、粉末作製条件等が異なる複数種類の粉末を混ぜ合わせて粒径を調整することも可能である。例えば、90%粒子径D90が約70μmの粉末と、90%粒子径D90が約20μmの粉末を混合し、チタン含有粉末の90%粒子径D90の値を調整可能である。10%粒子径D10についても同様であり、異なる粒度の粉末を混合することでチタン含有粉末の10%粒子径D10の値を調整可能である。
 ここで、チタン含有粉末の10%粒子径D10、90%粒子径D90はそれぞれ、レーザー回折散乱法によって得られる粒度分布で体積基準の累積分布が10%もしくは90%となる粒子径を意味する。
 チタン含有粉末は、チタンを含有するものであれば様々な粉末とすることができる。チタン含有粉末のチタン含有量は、75質量%以上であることが好ましい。チタン含有量は95質量%以上とすることもできる。チタン含有粉末としては、たとえば、純チタン粉末及び/又はチタン合金粉末を用いることができる。すなわち、チタン含有粉末には、純チタン粉末のみを使用することができる他、一種または二種以上のチタン合金粉末を使用することができ、あるいは、これらの純チタン粉末とチタン合金粉末とをあわせて使用してもよい。さらに、アルミニウム、バナジウム、鉄といった合金元素粉末の使用も可能である。チタン含有粉末の全体として、その少なくとも一部の粒子にチタンが含まれていれば、チタン含有粉末とみなすことができる。
 純チタン粉末とは、チタンの含有量が95質量%以上であり、実質的にチタンのみからなる粉末を意味する。純チタン粉末の具体的な例として、スポンジチタン等を水素化して粉砕した後に脱水素して得られる水素化脱水素チタン粉末(いわゆるHDHチタン粉末)や、上記の粉砕後に脱水素を行わなかった水素化チタン粉末等が挙げられる。純チタン粉末である上記水素化チタン粉末では水素含有量が5質量%まで許容される。
 チタン合金粉末は、チタン及び合金元素を含む粉末である。ここで製造しようとするチタン系多孔質体の先述したチタン合金に応じた元素及びその割合で、チタン合金粉末を使用することができる。チタン含有粉末における金属の質量比は、たとえば、チタン:合金元素=100:0~75:25とすることができる。
 チタン含有粉末の平均円形度は特段限定されないが、0.93以下であることが好ましい。平均円形度が0.93以下と低いチタン含有粉末は、比較的低価格で入手可能であるので、製造コストの低減の観点から有利である。チタン含有粉末の平均円形度は、好ましくは0.91以下であり、より好ましくは0.89以下である。なお、上述したHDHチタン粉末や水素化チタン粉末は、粉砕して得られたものであるから、平均円形度が比較的小さくなる傾向がある。一方、ガスアトマイズ等によるアトマイズ粉末は、HDHチタン粉末等に比して平均円形度が1.00に近いことが多い。
 チタン含有粉末の平均円形度は次のようにして求める。電子顕微鏡を使用し、チタン含有粉末の粒子の投影面積の周囲長(A)を測定し、前記投影面積と等しい面積の円の周囲長(B)との比を円形度(B/A)とする。平均円形度は、セル内にキャリア液とともに粒子を流し、CCDカメラで多量の粒子の画像を撮り込み、1000~1500個の個々の粒子画像から、各粒子について上記の円形度(B/A)を算出し、各粒子の円形度の平均値として求める。上記の円形度の値は粒子の形状が真球に近くなるほど大きくなり、完全な真球の形状を有する粒子の円形度は1.00となる。逆に、粒子の形状が真球から離れるにつれて円形度の値は小さくなる。
 次いで、粉末堆積工程を行う。粉末堆積工程では、上記のチタン含有粉末を成形型の成形面上に乾式で堆積させて敷き詰める。ここで「乾式」とは、溶媒やバインダー等の液体を使用しないことを意味する。粉末堆積工程では、液体中にチタン含有粉末を分散させたスラリー中でチタン含有粉末を沈降させるのではなく、たとえば空気などの気体中もしくは真空中でチタン含有粉末を落下させる等して堆積させる。
 このとき、先述したように所定の粒径のチタン含有粉末を用いることにより、成形型の成形面上に堆積させたチタン含有粉末の堆積層の下方側(成形面側)には、チタン含有粉末の比較的微細な粒子が集まって位置する一方で、チタン含有粉末の堆積層の上方側(成形面側とは反対側)には、それよりも大きな粒径の粒子が位置する傾向がある。これにより、後述の粉末焼結工程後に得られるチタン系多孔質体のシート表面のうち、成形型の成形面側の一方のシート表面は、平滑になって表面粗さが小さくなる。
 粉末堆積工程では、所定の通気性もしくは通液性を有するチタン系多孔質体を得るため、チタン含有粉末を、少なくともその堆積方向に加圧せずに堆積させることが好ましい。堆積方向に意図的に加圧すると焼結後に緻密なチタン系多孔質体となって、通気性もしくは通液性が低下するからである。
 より具体的には、成形面及びその周囲を取り囲む側壁を有する容器状の成形型の成形面上で側壁の内側に、その上方側からチタン含有粉末を振り落として敷き詰める。成形面上にチタン含有粉末をある程度堆積させた後は、平板状のヘラ等を側壁の上面に沿わせて移動させ、側壁の上面よりも上方側に盛り上がったチタン含有粉末の一部を、側壁の外部に除去する。この際に、チタン含有粉末はその堆積方向には意図的には加圧されない。これにより、チタン含有粉末を、成形型の側壁の内側に、その側壁の高さ分だけ堆積させることができる。成形型の側壁の高さの変更等により調整することにより、たとえば0.8mm以下等の任意の厚みのチタン系多孔質体を製造することができる。
 なお、成形型は平板形状のものを使用することも可能である。この場合、平板形状の成形型の成形面上にチタン含有粉末を堆積させた後、厚みに対応する側壁を成形面上に配置し、その後、平板状のヘラ等を側壁の上面に沿わせて移動させることによっても、チタン系多孔質体の所期した厚み(0.8mm以下等)を達成できる。この場合でもチタン含有粉末はその堆積方向には意図的には加圧されない。
 その後は、成形型の成形面上に堆積させたチタン含有粉末を加熱する粉末焼結工程を行う。たとえば、成形面上のチタン含有粉末を成形型ごと炉内に入れて加熱することで、容器状の成形型の成形面上のスペースに対応するシート状のチタン系多孔質体が得られる。
 ここでは、チタン含有粉末を980℃以上の温度に2時間以上にわたって加熱することが肝要である。これにより、チタン系多孔質体の所要の空隙率を確保しつつ、圧縮変形率を小さくすることが可能になる。
 加熱温度を980℃未満とした場合は、チタン系多孔質体の圧縮変形率が大きくなり、チタン系多孔質体に圧力が作用した際の空隙の減少による通気性もしくは通液性の低下が懸念される。なお、チタン系多孔質体の空隙率をある程度確保するとの観点等から、加熱温度は1200℃以下とする場合がある。加熱温度は、好ましくは1000℃~1100℃とする。
 上記の加熱温度に維持する時間を2時間未満としたときも、チタン系多孔質体の圧縮変形率が増大するおそれがある。この時間は、生産性を考慮して6時間以下とすることがある。上記の加熱温度に維持する時間は、2時間~3時間とすることが好適である。
 このような加熱温度及び時間とすることにより、チタン含有粉末の粒径を上述したように調整したこととも相まって、所定の空隙率を有するとともに圧縮変形率が良好に低減されたチタン系多孔質体を得ることができる。仮に微細な粉末のみを用いて高温かつ長時間の焼結を行うと、空隙率が低いチタン系多孔質体となり、電池材料として必要な通気性または通液性を確保できない恐れがある。これに対し、この実施形態では、先に述べたチタン含有粉末の粒径の調整により、比較的高温で長時間にわたって加熱しても、そのような空隙率の低下を抑制することができる。
 粉末焼結工程では、チタン含有粉末の加熱焼結を、真空等の減圧雰囲気下もしくは不活性雰囲気で行うことができる。これにより、焼結時にチタン含有粉末が過剰に酸窒化することを防ぐことができる。具体的には、チタン含有粉末の焼結は、たとえば真空炉内で真空度を10-4Pa~10-2Paに到達させて減圧雰囲気下で行うことができる。あるいは、チタン含有粉末の焼結は、雰囲気をアルゴンガスとした状態で不活性雰囲気にて行うことができる。なおここでは、窒素ガスは不活性ガスには該当しないものとする。
 なお、チタン含有粉末が水素化チタンを含む場合は、上記焼結の実施前に脱水素のための予備加熱処理を行うことが好ましい。予備加熱処理の温度と時間は水素化チタン粉の含有量を考慮して適宜決定することができる。一例を挙げると、予備加熱処理の温度は450℃~700℃、予備加熱処理の時間は30分~360分とすることがある。この予備加熱処理は、たとえば真空炉内で真空度を10-4Pa~10-2Paに到達させて減圧雰囲気下で行うことができる。当該予備加熱処理後に一旦冷却してから焼結のための加熱を行ってもよいし、予備加熱処理後にさらに昇温して焼結のための加熱を行ってもよい。
 以上に述べたようにして、チタン系多孔質体を製造することができる。このチタン系多孔質体は、通気性もしくは通液性が要求される用途での使用に適しており、特に次世代電池で、たとえば電解質膜に押し付けられるガス拡散層もしくは電極等として好適に用いられ得る。
 次に、この発明のチタン系多孔質体を試作したので説明する。但し、ここでの説明は単なる例示を目的としたものであり、これに限定されることを意図するものではない。
 原料準備工程では、原料として、表1に示すように粒径を調整したチタン含有粉末を準備した。いずれの実施例及び比較例でも、チタン含有粉末としてHDHチタン粉末を用いた。HDHチタン粉末は、純チタンの水素化および粉砕をした後に脱水素を行って得られたものである。いずれのHDHチタン粉末も平均円形度は0.93以下であった。
 次いで、粉末堆積工程で、そのチタン含有粉末を、成形型であるセッターの所定のサイズの成形面上に乾式で堆積させて敷き詰めた。その後、粉末焼結工程を行い、真空炉内を1.0×10-2Pa以下まで減圧し、その減圧雰囲気の下で、表1に示す条件にて成形面上でチタン含有粉末を加熱して焼結させ、平面視が縦50mm×横50mmの矩形であるシート状のチタン系多孔質体を製造した。
 上記のようにして製造されたチタン系多孔質体のそれぞれについて、先述した測定方法に従い、厚み、空隙率、圧縮変形率、並びに、成形面側の一方のシート表面(成形面側表面)の最大高さRz1及び反対側の他方のシート表面(反対側表面)の最大高さRz2を測定した。ここで、最大高さRz1、Rz2の測定には、株式会社ミツトヨ製サーフテストSJ-210を使用した。なお、測定モードはJIS2001、測定速度0.5mm/s、測定距離は16mm、測定回数は5回とし、測定された最大値を採用した。それらの結果を表1に示す。表1に示す、厚み、空隙率、及び最大高さRz1、Rz2は圧縮変形処理を実施する前に測定したものである。
 また各チタン系多孔質体について、図2に示す通気性測定装置1を用いて、圧力作用時の通気性を測定した。この通気性測定装置1は、40mm角に切り出したチタン系多孔質体11をその厚み方向の両側から挟む一対の平坦面2a、2bを有し、それらの平坦面2a、2bを接近させることにより該チタン系多孔質体11に対して厚みを減少させる圧縮力を作用させることが可能なプレス機2と、プレス機2の内部で一方の平坦面2aに開口するよう形成された内部流路2cに連通する気体供給管3と、気体供給管3の途中に設けられた流量計4a及び圧力計4bとを備えるものである。気体供給管3の内径は6mm、内部流路2cの内径は5mmとし、直径が60mmの円形の平坦面2a、2bを有する通気性測定装置1を用いた。なお、平坦面2a、2bの算術平均粗さRa(JIS B0601(1994))は1.6μm以下とし、平坦面2a、2bの平面度は0.01mm以下とし、プレス機2の平坦面2a、2bをそれぞれ有する平板の平行度は0.01mm以下とした。
 通気性の測定では、チタン系多孔質体11を通気性測定装置1にセットし、平坦面2a、2bが近づく向きに65MPaの圧力を作用させ、当該圧力を維持しながら、気体供給管3及び内部流路2cからチタン系多孔質体11の平面視の中央にエアを1.0L/minで供給し、その供給時のエアの圧力を圧力計4bにより計測した。この際に、平坦面2aの開口からチタン系多孔質体11に供給されたエアは、チタン系多孔質体11の内部を通過した後、チタン系多孔質体11の周囲で平坦面2a、2b間の隙間から排出される。このエアの圧力である通気抵抗が小さいほど、圧力作用時の通気性に優れるといえる。各チタン系多孔質体11で、プレス機2のエアが供給される平坦面2a側に、成形面側表面を位置させた場合と、その反対側表面を位置させた場合のそれぞれについて1回ずつ、計2回の通気抵抗の測定を行った。平坦面2a側に反対側表面を位置させた場合の通気抵抗に対する成形面側表面を位置させた場合の通気抵抗の比(成形面側表面の通気抵抗/反対側表面の通気抵抗)である通気抵抗比を表1に示す。この通気抵抗比が大きければ、反対側表面と成形面側表面との通気抵抗の差が大きく、反対側表面の通気性に優れることを意味する。本実施例では、通気抵抗比1.20以上を合格、1.25以上を良好、1.30以上を優れると評価した。
 なおここでは、上記の通気性測定装置1のプレス機2を用いて、各チタン系多孔質体11の先述の圧縮変形率も測定した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す実施例1~6から解かるように、所定の粒径のチタン含有粉末を所定の焼結条件で加熱して製造されたチタン系多孔質体は、良好な空隙率、圧縮変形率、最大高さRz及び通気性を有するものであった。
 一方、比較例1~6は、チタン含有粉末の粒径及び/又は焼結条件が所定の範囲から外れていたことにより、チタン系多孔質体の圧縮変形率や最大高さRzが大きくなった。
 比較例7は、チタン系多孔質体の厚みが厚かったことにより、空隙率が小さくなった。そのため、比較例7では、圧縮変形率、最大高さRz及び通気性の測定を行わなかった。
 比較例8は、チタン含有粉末の粒径が所定の範囲から外れていたことにより、成形面側表面の最大高さRz1が大きくなるとともに、最大高さの比(Rz2/Rz1)が小さくなり、また通気抵抗比が小さかった。また比較例9では、成形面側表面の最大高さRz1が比較例8に比べて小さくなったものの、通気抵抗比が小さいまま改善されなかった。
 また、上記各実施例と同じ条件で製造した各チタン系多孔質体を成形面側表面もしくは反対側表面で、電解質膜としてのナフィオン(Nafion、登録商標)に65MPaの圧力で押し付けた後、その電解質膜の表面を観察した。参考として、図1に実施例4の成形面側表面を押し付けた電解質膜の表面(図1(a))及び反対側表面を押し付けた電解質膜の表面(図1(b))のSEM写真を示す。図1より、実施例4のチタン系多孔質体の成形面側表面が押し付けられた電解質膜の表面は、反対側表面が押し付けられた電解質膜の表面に比して平滑であることが解かり、その成形面側表面は電解質膜との密着性が良好であると推察される。
 1 通気性測定装置
 2 プレス機
 2a、2b 平坦面
 3 気体供給管
 4a 流量計
 4b 圧力計

Claims (6)

  1.  チタンを含有するシート状のチタン系多孔質体であって、
     厚みが0.8mm以下、空隙率が30%~65%であり、一方のシート表面の最大高さRz1が30μm以下であり、前記一方のシート表面の最大高さRz1に対する他方のシート表面の最大高さRz2の比(Rz2/Rz1)が1.2以上であり、圧縮変形率が19%以下であるチタン系多孔質体。
  2.  圧縮変形率が12%以下である請求項1に記載のチタン系多孔質体。
  3.  チタン含有量が75質量%以上である請求項1又は2に記載のチタン系多孔質体。
  4.  チタン含有量が98質量%以上である請求項3に記載のチタン系多孔質体。
  5.  チタン系多孔質体を製造する方法であって、
     原料として、10%粒子径D10が30μm以下であって90%粒子径D90が15μm~105μmであり、かつ、10%粒子径D10に対する90%粒子径D90の比(D90/D10)が2.0以上であるチタン含有粉末を準備する原料準備工程と、
     前記チタン含有粉末を成形型の成形面上に乾式で堆積させる粉末堆積工程と、
     前記成形面上で前記チタン含有粉末を、980℃以上の温度に2時間以上にわたって加熱する粉末焼結工程と
    を含む、チタン系多孔質体の製造方法。
  6.  厚みが0.8mm以下であるチタン系多孔質体を製造する、請求項5に記載のチタン系多孔質体の製造方法。
PCT/JP2021/030062 2020-09-28 2021-08-17 チタン系多孔質体及び、チタン系多孔質体の製造方法 WO2022064898A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/019,709 US11975388B2 (en) 2020-09-28 2021-08-17 Titanium-based porous body and method for producing titanium-based porous body
JP2021569998A JP7061735B1 (ja) 2020-09-28 2021-08-17 チタン系多孔質体及び、チタン系多孔質体の製造方法
KR1020227043755A KR20230010720A (ko) 2020-09-28 2021-08-17 티탄계 다공질체 및, 티탄계 다공질체의 제조 방법
AU2021350813A AU2021350813B2 (en) 2020-09-28 2021-08-17 Titanium-based porous body and method for producing titanium-based porous body
EP21872030.8A EP4219778A4 (en) 2020-09-28 2021-08-17 TITANIUM-BASED POROUS BODY AND METHOD FOR PRODUCING A TITANIUM-BASED POROUS BODY
JP2022067808A JP2022095916A (ja) 2020-09-28 2022-04-15 チタン系多孔質体及び、チタン系多孔質体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-162508 2020-09-28
JP2020162508 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022064898A1 true WO2022064898A1 (ja) 2022-03-31

Family

ID=80845080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030062 WO2022064898A1 (ja) 2020-09-28 2021-08-17 チタン系多孔質体及び、チタン系多孔質体の製造方法

Country Status (6)

Country Link
US (1) US11975388B2 (ja)
EP (1) EP4219778A4 (ja)
JP (2) JP7061735B1 (ja)
KR (1) KR20230010720A (ja)
AU (1) AU2021350813B2 (ja)
WO (1) WO2022064898A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066229A (ja) * 2000-08-25 2002-03-05 Sumitomo Sitix Of Amagasaki Inc 焼結チタンフィルタ及びその製造方法
JP2002239321A (ja) * 2001-02-16 2002-08-27 Sumitomo Titanium Corp 高耐食性金属焼結フィルタ
JP2002317207A (ja) * 2001-04-19 2002-10-31 Sumitomo Titanium Corp チタン粉末焼結体
JP2004149842A (ja) * 2002-10-30 2004-05-27 Sumitomo Titanium Corp チタン焼結体の製造方法
JP2005015829A (ja) * 2003-06-25 2005-01-20 Sumitomo Titanium Corp チタン多孔質体の製造方法
JP2018070985A (ja) 2016-11-04 2018-05-10 東邦チタニウム株式会社 チタン系多孔体及びその製造方法
WO2019180797A1 (ja) * 2018-03-19 2019-09-26 東邦チタニウム株式会社 チタン系多孔体及びその製造方法
WO2019188480A1 (ja) * 2018-03-29 2019-10-03 東邦チタニウム株式会社 多孔質チタン系焼結体、その製造方法及び電極

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2608033A1 (en) * 2001-02-16 2002-08-22 Sumitomo Titanium Corporation Titanium powder sintered compact
JP7277163B2 (ja) * 2018-02-14 2023-05-18 キヤノン株式会社 材料層の製造方法、立体物の製造方法、材料層、積層体、材料層形成装置、および、積層造形システム
JP7077085B2 (ja) * 2018-03-19 2022-05-30 東邦チタニウム株式会社 多孔質チタン系焼結体、その製造方法、及び電極
JP7383524B2 (ja) * 2020-02-27 2023-11-20 東邦チタニウム株式会社 多孔質金属体の製造方法及び、多孔質金属体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066229A (ja) * 2000-08-25 2002-03-05 Sumitomo Sitix Of Amagasaki Inc 焼結チタンフィルタ及びその製造方法
JP2002239321A (ja) * 2001-02-16 2002-08-27 Sumitomo Titanium Corp 高耐食性金属焼結フィルタ
JP2002317207A (ja) * 2001-04-19 2002-10-31 Sumitomo Titanium Corp チタン粉末焼結体
JP2004149842A (ja) * 2002-10-30 2004-05-27 Sumitomo Titanium Corp チタン焼結体の製造方法
JP2005015829A (ja) * 2003-06-25 2005-01-20 Sumitomo Titanium Corp チタン多孔質体の製造方法
JP2018070985A (ja) 2016-11-04 2018-05-10 東邦チタニウム株式会社 チタン系多孔体及びその製造方法
WO2019180797A1 (ja) * 2018-03-19 2019-09-26 東邦チタニウム株式会社 チタン系多孔体及びその製造方法
WO2019188480A1 (ja) * 2018-03-29 2019-10-03 東邦チタニウム株式会社 多孔質チタン系焼結体、その製造方法及び電極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4219778A4

Also Published As

Publication number Publication date
EP4219778A4 (en) 2024-04-24
JPWO2022064898A1 (ja) 2022-03-31
KR20230010720A (ko) 2023-01-19
JP7061735B1 (ja) 2022-04-28
AU2021350813A1 (en) 2023-03-02
AU2021350813B2 (en) 2024-02-22
US20230311205A1 (en) 2023-10-05
US11975388B2 (en) 2024-05-07
EP4219778A1 (en) 2023-08-02
JP2022095916A (ja) 2022-06-28

Similar Documents

Publication Publication Date Title
CN111886092B (zh) 钛基多孔体及其制造方法
JP6485967B2 (ja) チタン系多孔体及びその製造方法
WO2021171747A1 (ja) 多孔質金属体の製造方法及び、多孔質金属体
KR102640074B1 (ko) 다공질 티탄계 소결체, 그 제조 방법, 및 전극
JP7061735B1 (ja) チタン系多孔質体及び、チタン系多孔質体の製造方法
EP4227428A1 (en) Production method for porous metal body, and porous metal body
JP3566637B2 (ja) 焼結チタンフィルタの製造方法
WO2022163110A1 (ja) 多孔質金属体の製造方法
JP2013072135A (ja) シート状多孔体の製造方法
JP2020534433A (ja) 金属製の開孔成型体の製造方法、および該方法により製造された成型体
KR102640073B1 (ko) 다공질 티탄계 소결체, 그것의 제조 방법 및 전극
JP7442588B2 (ja) チタン多孔質体の製造方法及び、チタン多孔質体
JP6559925B1 (ja) 多孔質チタン系焼結体、その製造方法及び電極
JPH02103861A (ja) 溶融炭酸塩型燃料電池用電極の製造法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021569998

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227043755

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021350813

Country of ref document: AU

Date of ref document: 20210817

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021872030

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872030

Country of ref document: EP

Effective date: 20230428