WO2022064674A1 - 蒸気タービン - Google Patents

蒸気タービン Download PDF

Info

Publication number
WO2022064674A1
WO2022064674A1 PCT/JP2020/036543 JP2020036543W WO2022064674A1 WO 2022064674 A1 WO2022064674 A1 WO 2022064674A1 JP 2020036543 W JP2020036543 W JP 2020036543W WO 2022064674 A1 WO2022064674 A1 WO 2022064674A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial direction
blade
radial direction
radial
stationary blade
Prior art date
Application number
PCT/JP2020/036543
Other languages
English (en)
French (fr)
Inventor
亮 ▲高▼田
創一朗 田畑
泰洋 笹尾
Original Assignee
三菱パワー株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社, 三菱重工業株式会社 filed Critical 三菱パワー株式会社
Priority to DE112020007359.9T priority Critical patent/DE112020007359T5/de
Priority to JP2022551078A priority patent/JP7371273B2/ja
Priority to US18/025,011 priority patent/US20230323780A1/en
Priority to PCT/JP2020/036543 priority patent/WO2022064674A1/ja
Priority to CN202080103425.9A priority patent/CN115917119A/zh
Priority to KR1020237005704A priority patent/KR20230039725A/ko
Publication of WO2022064674A1 publication Critical patent/WO2022064674A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/38Arrangement of components angled, e.g. sweep angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/608Aeration, ventilation, dehumidification or moisture removal of closed spaces

Definitions

  • This disclosure relates to steam turbines.
  • the steam turbine has multiple rows of compression stages in the casing.
  • the steam flowing from the upstream side to the downstream side through a plurality of rows of compression stages in the casing expands toward the downstream side, and the pressure and temperature decrease.
  • the humidity of the steam increases, and the moisture in the steam may become droplets.
  • An increase in steam humidity leads to a decrease in the efficiency of the steam turbine.
  • the droplets scattered from the stationary blades may corrode the moving blades in the final row, which may lead to so-called erosion.
  • Patent Document 1 discloses a steam turbine having a configuration in which the axial distance between the stationary blade and the moving blade is larger on the outer side than on the inner side in the radial direction. According to such a configuration, by expanding the axial distance between the stationary blade and the moving blade in the radial direction, the effect of the centrifugal force due to the swirling flow flowing out from the stationary blade causes the outer peripheral wall on the downstream side of the stationary blade. Increases the amount of droplets adhering to the surface. As a result, the droplets are prevented from reaching the tip of the rotor blade on the wake side, and erosion is reduced.
  • the steam turbine according to the present disclosure is fixed to a rotor shaft that rotates about an axis and the outside of the rotor shaft in the radial direction, and is spaced apart in the axial direction along the axis.
  • a plurality of rows of turbines arranged, a casing arranged so as to cover the rotor shaft and the plurality of rows of turbines, and a casing fixed inside the casing in the radial direction and spaced apart in the axial direction.
  • Each row of the moving blade rows is provided with a stationary blade row arranged on the first side in the axial direction, and the stationary blade rows are spaced apart from each other in the circumferential direction.
  • the second of the axially second sides of the stationary blade in the final row of the stationary blade rows provided with the inner ring and located most on the axially second side of the plurality of rows of stationary blade rows.
  • the side edge portion is formed in the radial direction with respect to the intermediate position between the radial outer outer end and the radial inner inner end of the stationary blade, and is curved and protrudes to the second side in the axial direction.
  • It has an S-shaped shape having a second-side convex portion to be formed and a second-side concave portion formed on the outer side in the radial direction with respect to the intermediate position and curved and recessed on the first side in the axial direction.
  • FIG. 1 It is a schematic diagram which shows the schematic structure of the steam turbine in embodiment of this disclosure. It is sectional drawing which shows the stationary blade row and the moving blade row of the last row of the steam turbine in the 1st Embodiment of this disclosure. It is a perspective view which shows a part of the stationary blade row of the last row in 1st Embodiment of this disclosure. It is a figure which shows the cross-sectional shape of the static blade which constitutes the static blade row of the final row in the 1st Embodiment of this disclosure. It is sectional drawing which shows the stationary blade row and the moving blade row of the final row of the steam turbine in the 2nd and 3rd embodiments of this disclosure. It is a figure which shows the cross-sectional shape of the stationary blade in the 2nd Embodiment of this disclosure. It is a figure which shows the cross-sectional shape of the stationary blade in the 3rd Embodiment of this disclosure.
  • the steam turbine 1A of the present embodiment has a rotor 20 that rotates about an axis O and a casing 10.
  • the direction in which the axis O extends is the axial Da
  • the radial direction in the axial core portion 22 described later with respect to the axial O is simply the radial Dr
  • the axial core centered on the axial O is simply referred to as the circumferential direction Dc.
  • the rotor 20 has a rotor shaft 21 and a rotor blade row 31.
  • the rotor shaft 21 is rotatably arranged about the axis O.
  • the rotor shaft 21 has a shaft core portion 22 and a plurality of disc portions 23.
  • the shaft core portion 22 has a columnar shape centered on the axis O and extends in the axial direction Da.
  • the plurality of disk portions 23 are arranged at intervals in the axial direction Da. Each disk portion 23 is arranged so as to extend from the shaft core portion 22 to the outer Dr in the radial direction.
  • the rotor blade row 31 is fixed to the outer Dr of the radial Dr of the rotor shaft 21.
  • the rotor blade row 31 is attached to the outer periphery of the disk portion 23, which is the outer peripheral portion of the rotor shaft 21.
  • a plurality of rows of rotor blade rows 31 are arranged at intervals along the axial direction Da of the rotor shaft 21.
  • the rotor blade rows 31 are arranged in four rows, for example. Therefore, in the case of the present embodiment, the first to fourth stage rotor blade rows 31 are arranged as the rotor blade rows 31.
  • the rotor blade row 31 of each row has a plurality of rotor blades 32 arranged in the circumferential direction Dc, a shroud 34, and a platform 35.
  • Each blade 32 extends in the radial direction Dr.
  • the shroud 34 is arranged on the outer Dro of the radial Dr of the rotor blade 32.
  • the platform 35 is arranged on the inner Dri of the radial Dr of the blade 32.
  • the steam S flows in the annular space between the shroud 34 and the platform 35 on the blade 32.
  • the casing 10 is formed so as to cover the rotor 20.
  • a stationary blade row 41 is fixed to the inner Dri of the radial Dr of the casing 10.
  • a plurality of stationary blade rows 41 are arranged at intervals along the axial direction Da. In the present embodiment, the number of rows of the stationary blade row 41 is the same as that of the moving blade row 31.
  • Each of the stationary blade rows 41 is arranged adjacent to the first side Dau in the axial direction Da with respect to each row of the plurality of rows of blade rows 31.
  • the first side Dau in the axial direction Da is the upstream side in the flow direction of the steam S in the casing 10. That is, the steam S flows in the casing 10 from the first side Dau in the axial direction Da to the second side Dad side.
  • the stationary blade row 41 has a stationary blade 42, an outer ring 43, and an inner ring 44.
  • a plurality of stationary blades 42 are arranged at intervals in the circumferential direction Dc.
  • the outer ring 43 is annular and is arranged on the outer Dr of the radial Dr of the plurality of stationary blades 42.
  • the inner ring 44 is annular and is arranged on the inner Dri of the radial Dr of the plurality of stationary blades 42.
  • the steam S flows in an annular space between the outer ring 43 and the inner ring 44.
  • the inner end 42s of the inner Dri of the radial Dr of each stationary blade 42 is fixed to the inner ring 44.
  • the outer end 42t of the outer Dr of the radial Dr of each stationary blade 42 is fixed to the outer ring 43.
  • the stationary blade 42 is radially extended from the first side edge portion 48 of the first side Dau in the axial direction Da to the second side edge portion 49 on the second side Dad side in the axial direction Da. It has a wing cross-sectional shape when viewed in cross section from Dr (direction orthogonal to the paper surface of FIG. 4).
  • the stationary wing 42 is formed of a ventral member 45 and a dorsal member 46.
  • the surface of the ventral member 45 is curved in a concave shape so as to form the ventral surface 42a of the stationary blade 42.
  • the dorsal member 46 is formed to be convexly curved so that its surface forms the back surface 42b of the stationary blade 42.
  • the ventral member 45 and the dorsal member 46 are metal plate-shaped members curved into a predetermined shape, respectively.
  • the stationary wing 42 is formed by welding the ventral member 45 and the dorsal member 46 in combination with each other. As a result, a cavity 47 is formed inside the stationary wing 42, that is, between the ventral member 45 and the dorsal member 46.
  • the second side edge portion 49 of the stationary blade 42 has a second side convex portion 49a, a second side concave portion 49b, and a wing tip extending portion 49c.
  • the second side convex portion 49a is formed on the inner Dri in the radial direction with respect to the intermediate position 42m between the outer end 42t and the inner end 42s of the stationary blade 42.
  • the second side convex portion 49a is formed to be convexly curved so as to project to the second side Dad in the axial direction Da. More specifically, the second side convex portion 49a is formed to be curved so as to project from the inner end 42s and the intermediate position 42m to the second side Dad in the axial direction Da.
  • the intermediate position 42m may be the center of both ends of the radial Dr of the stationary blade 42 at the second side edge portion 49.
  • the second side recess 49b is continuously formed on the outer side Dr in the radial direction with respect to the intermediate position 42m.
  • the second side recess 49b is formed by being curved and recessed in the first side Du in the axial direction Da.
  • the second side recess 49b is formed to be concavely curved so as to be recessed in the first side Dau in the axial direction Da from the intermediate position 42m and the outer end 42t.
  • the wing tip extending portion 49c is continuously formed on the outer side Dr of the radial direction Dr with respect to the second side concave portion 49b.
  • the wing tip extending portion 49c projects from the second side recess 49b to the second side Dad in the axial direction Da and is connected to the outer ring 43.
  • the second side edge portion 49 has an S-shape when viewed from the circumferential direction Dc.
  • the second side edge portion 49 may have an S-shape extending from the outer end 42t of the stationary blade 42 to the inner end 42s.
  • the first side edge portion 48 of the stationary blade 42 may have a first side concave portion 48a and a first side convex portion 48b and may be formed in an S shape.
  • the first side edge portion 48 may have an S-shape extending from the outer end 42t of the stationary blade 42 to the inner end 42s.
  • the first side recess 48a is formed on the inner Dri of the radial Dr of the stationary blade 42.
  • the first-side recess 48a is curved so as to be recessed in the second-side Dad in the axial direction Da.
  • the first side convex portion 48b is continuously formed on the outer side Dr in the radial direction with respect to the first side concave portion 48a.
  • the first-side convex portion 48b is curved so as to project convexly on the first-side Dau in the axial direction Da.
  • the second side recess 49b of the second side edge portion 49 of the stationary blade 42 is recessed in the first side Dau in the axial direction Da. Therefore, the distance S1 between the second side recess 49b and the rotor blade 32 of the rotor blade row 31F in the final row in the axial direction Da becomes large.
  • the droplets ride on the steam flow as shown by the virtual line L1 in FIG. 2 from the stationary blade 42 to the second side of the axial Da. While flowing, it flows to the outer Dr of the radial direction Dr.
  • the amount of droplets reaching the end 32a of the first side Dau in the axial direction Da of the rotor blade 32 can be suppressed.
  • erosion can be reduced.
  • the second side convex portion 49a protrudes to the second side Dad in the axial direction Da. Therefore, the distance S2 between the second side convex portion 49a and the rotor blade row 31F in the final row can be made smaller than the distance S1 of the portion of the second side concave portion 49b. As a result, deterioration of turbine performance can be suppressed.
  • the second side convex portion 49a is formed on the inner Dri of the radial direction Dr, the peripheral speed of the flow of the steam S is also smaller than that of the outer Dro of the radial direction Dr, and erosion is less likely to occur. As a result, it is possible to effectively suppress the occurrence of erosion while suppressing the deterioration of turbine performance and the reliability of shaft vibration.
  • the steam turbine 1A as described above further includes a blade tip extending portion 49c formed continuously on the outer Dro of the radial direction Dr with respect to the second side recess 49b and extending to the second side Dad in the axial direction Da. ing.
  • a blade tip extending portion 49c formed continuously on the outer Dro of the radial direction Dr with respect to the second side recess 49b and extending to the second side Dad in the axial direction Da. ing.
  • the first side edge portion 48 has a first side concave portion 48a and a first side convex portion 48b, and has an S-shape.
  • the first side edge portion 48 and the second side edge portion along the axial direction Da are compared. It is possible to prevent the blade surface length of the stationary blade 42 when connected to 49 from being partially lengthened.
  • the flow path length from the first side concave portion 48a to the second side convex portion 49a and the flow path length from the first side convex portion 48b to the second side concave portion 49b along the axial direction Da are large. It can suppress the difference. As a result, it is possible to prevent the friction loss generated between the droplet and the surface of the stationary blade 42 from being partially significantly different in the radial direction Dr.
  • the stationary blade 42B constituting the stationary blade row 41 of the steam turbine 1B of the present embodiment has a communication hole 50.
  • the communication hole 50 is formed in the radial direction Dr on the outer side Dr in the radial direction from the intermediate position 42 m.
  • the communication hole 50 is formed so as to communicate the outer surface of the ventral member 45 of the stationary blade 42B with the cavity 47.
  • the communication hole 50 may be a slit that extends continuously in the radial direction Dr.
  • the communication hole 50 may be one or more holes that communicate the outer surface of the ventral member 45 of the stationary blade 42B and the cavity 47 instead of the slit.
  • the communication hole 50 may be formed only on the outer surface of the ventral member 45 of the stationary blade 42B, with respect to the radial Dr, only on the outer Dr of the radial Dr from the intermediate position 42 m.
  • the communication hole 50 may be formed only at a position closer to the second side edge portion 49 than the first side edge portion 48 on the outer surface of the ventral member 45 of the stationary blade 42B.
  • a part of the droplets generated in the steam flowing through the vane row 41 is collected in the cavity 47 in the vane 42B through the communication hole 50.
  • the collected droplets in the cavity 47 are discharged to the outside of the casing 10 through the outer ring 43, the droplet collection groove (not shown) formed in the inner ring 44, or the like.
  • the communication hole 50 is formed on the outer side Dr in the radial direction from the intermediate position 42 m, the processing area of the communication hole 50 can be reduced. Further, in this steam turbine 1B, since the communication hole 50 is formed in the outer Dr in the radial direction from the intermediate position 42 m, the cavity 47 of the stationary blade 42B is made smaller in relation to the position of the communication hole 50. can. Therefore, the droplets in the cavity 47 are likely to be discharged. Further, in the steam turbine 1B, the communication hole 50 is formed only at a position closer to the second side edge portion 49 than the first side edge portion 48 on the outer surface of the ventral member 45 of the stationary blade 42B. Therefore, the second side edge portion 49 of the stationary blade 42B can have a heat shield structure.
  • the steam turbine of the third embodiment is different from the steam turbine shown in the second embodiment only in that a partition wall is provided in the vane. Therefore, in the description of the third embodiment, the same parts are designated by the same reference numerals and duplicate explanations are omitted. That is, the description will be focused on the differences from the second embodiment, and the description of the configurations common to the configurations described in the first and second embodiments will be omitted.
  • the stationary blade 42C constituting the stationary blade row 41 of the steam turbine 1C of the present embodiment has a communication hole 50 and a partition wall 55 (see FIG. 7).
  • the communication hole 50 is formed in the radial direction Dr on the outer side of the radial direction Dr from the intermediate position 42 m. As shown in FIG. 7, the communication hole 50 is formed so as to communicate the outer surface of the ventral member 45 of the stationary blade 42C and the cavity portion 47.
  • the partition wall 55 is formed inside the stationary blade 42C.
  • the partition wall 55 is joined to the ventral member 45 and the dorsal member 46 between the first side edge portion 48 and the second side edge portion 49.
  • the partition wall 55 is arranged on the first side Dau in the axial direction Da from the communication hole 50.
  • the partition wall 55 extends continuously in the radial direction Dr.
  • the partition wall 55 divides the cavity 47 in the stationary blade 42C into a first cavity 47u on the first Dau in the axial direction Da and a second cavity 47d on the second Dad.
  • the stationary blade 42 may be an assembly having a divided structure of a part having a communication hole 50 and a part having no communication hole 50 with the partition wall 55 as a boundary.
  • a part of the droplets generated in the steam flowing through the vane row 41 passes through the communication hole 50 in the vane 42C and is the second cavity of the second side Dad in the axial direction Da from the partition wall 55. Collected in part 47d.
  • the collected droplets in the second cavity 47d are discharged to the outside of the casing 10 through the outer ring 43, the droplet collection groove (not shown) formed in the inner ring 44, or the like.
  • the droplets in the second cavity 47d are prevented from entering the first cavity 47u of the first Dau in the axial direction Da from the partition 55 in the cavity 47 by the partition 55.
  • the partition 55 collects droplets at the cavity 47 in the rotor blade 32 at the second Dad in the axial direction Da with respect to the partition 55 (second cavity 47d).
  • the cross-sectional area of the flow path can be reduced, and the droplets collected in the second cavity 47d in the rotor blade 32 can be suppressed from moving to the first cavity 47u in the stationary blade 42C. Therefore, in the stationary blade 42C, it is possible to form a sealed heat shield structure on the first side edge portion 48 side of the first side Dau in the axial direction Da.
  • the present disclosure is not limited to the above-described embodiment, and the design can be changed without departing from the spirit of the present disclosure.
  • the second side convex portion 49a and the second side concave portion 49b of the second side edge portion 49 are formed by being curved, respectively, but the specific shape thereof is not questioned at all.
  • the second side convex portion 49a and the second side concave portion 49b may be curved with a constant curvature, and the second side convex portion 49a and the second side concave portion 49b may have a partially different curvature. May be.
  • first side edge portion 48 has an S-shape like the second side edge portion 49, but the present invention is not limited to this.
  • the first side edge portion 48 may be linear, for example.
  • the configuration of each part of the steam turbines 1A, 1B, 1C, including the number of stages of the rotor blade row 31 and the stationary blade row 41, can be appropriately changed.
  • the steam turbines 1A, 1B, and 1C according to the first aspect are fixed to a rotor shaft 21 that rotates about an axis O and an outer Dr of the radial Dr of the rotor shaft 21, and are fixed along the axis O.
  • a plurality of rows 41 are provided, and a plurality of the stationary blade rows 41 are arranged at intervals in the circumferential direction Dc, and the stationary blades 42, 42B, 42C extending in the radial direction Dr, respectively, and a plurality of the stationary blades 42 in an annular shape.
  • the axial Da of the stationary blades 42, 42B, 42C is the first.
  • the second side edge portion 49 of the two-sided Dad is at an intermediate position 42m between the outer end 42t of the outer Dro of the radial Dr and the inner end 42s of the inner Dri of the radial Dr of the stationary blades 42, 42B, 42C.
  • the second side recess 49b of the second side edge portion 49 of the stationary blades 42, 42B, 42C is recessed in the first side Dau in the axial direction Da. Therefore, the distance S1 between the second side recess 49b and the rotor blade 32 of the rotor blade row 31F in the final row in the axial direction Da becomes large. As a result, due to the effect of the centrifugal force due to the swirling flow flowing out from the stationary blades 42, 42B, 42C, the droplets ride on the steam flow and flow from the stationary blades 42, 42B, 42C to the second side of the axial Da. , Flows to the outer Dr of the radial Dr.
  • the amount of droplets reaching the end 32a of the first side Dau in the axial direction Da of the rotor blade 32 can be suppressed.
  • erosion can be reduced.
  • the second side edge portion 49 of the stationary blades 42, 42B, 42C the second side convex portion 49a protrudes to the second side Dad in the axial direction Da. Therefore, the distance S2 between the second side convex portion 49a and the moving blade 32 in the final row can be made smaller than the distance S1 of the portion of the second side concave portion 49b.
  • deterioration of turbine performance can be suppressed.
  • the steam turbines 1A, 1B, and 1C according to the second aspect are the steam turbines 1A, 1B, and 1C of (1), and are located outside the radial Dr with respect to the second side recess 49b. It further comprises a wing tip extension 49c, which is continuously formed and extends to the second Dad in the axial direction Da.
  • the steam turbines 1B and 1C according to the third aspect are the steam turbines 1B and 1C of (1) or (2), and the stationary blades 42B and 42C have a hollow portion 47 formed therein. It has a hollow structure, and a communication hole 50 for communicating the outer surfaces of the stationary blades 42B and 42C and the hollow portion 47 is formed on the outer Dr in the radial direction from the intermediate position 42 m.
  • the droplet can be collected in the cavity 47 in the stationary blades 42B and 42C through the communication hole 50.
  • the amount of droplets reaching the end 32a of the blade 32 on the first side Dau in the axial direction Da can be suppressed more effectively.
  • the processing area of the communication hole 50 can be reduced.
  • the cavity portion 47 of the stationary blade 42B is related to the position of the communication hole 50. Can be made smaller. Therefore, the droplets in the cavity 47 are likely to be discharged.
  • the steam turbine 1C according to the fourth aspect is the steam turbine 1C of (3), which is formed inside the stationary blade 42C and is the first side Dau in the axial direction Da from the communication hole 50.
  • a partition wall 55 for partitioning the cavity 47 into the first side Dau and the second side Dad in the axial direction Da is formed.
  • the flow path cross-sectional area of the second cavity 47d which is the portion where the droplets are collected, is reduced on the second Dad in the axial direction Da with respect to the partition wall 55 in the cavity 47 in the rotor blade 32. Can be done. Further, it is possible to suppress the droplets collected in the cavity 47 in the rotor blade 32 from moving in the stationary blade 42C to the first cavity 47u of the first Dau in the axial direction Da from the partition wall 55. can. Therefore, in the stationary blade 42C, it is possible to form a sealed heat shield structure on the first side edge portion 48 side of the first side Dau in the axial direction Da.
  • the steam turbines 1A, 1B, and 1C according to the fifth aspect are the steam turbines 1A, 1B, and 1C according to any one of (1) to (4), and the stationary blades 42, 42B, and 42C.
  • the first side edge portion 48 of the first side Dau in the axial direction Da is formed on the inner Dri of the radial direction Dr of the stationary blades 42, 42B, 42C, and is curved to the second side Dad in the axial direction Da.
  • the first side recessed 48a which is formed on the outer side Dr of the radial direction Dr with respect to the first side recessed 48a, and is curved and protrudes toward the first side Dau of the axial direction Da. It has a convex portion 48b and.
  • the second side recess 48a along the axial direction Da is compared with the case where the first side edge portion 48 is formed. It is possible to suppress a large difference between the flow path length toward the side convex portion 49a and the flow path length from the first side convex portion 48b toward the second side concave portion 49b along the axial direction Da. As a result, it is possible to prevent the friction loss generated between the droplet and the surfaces of the stationary blades 42, 42B, and 42C from being significantly different in the radial direction Dr.
  • First side concave 48b First side convex 49 ... First Second side edge portion 49a ... Second side convex portion 49b ... Second side concave portion 49c ... Blade tip extension portion 50 ... Communication hole 55 ... Partition wall Da ... Axial direction Dad ... Second side Dau ... First side Dc ... Circumferential direction Dr ... Radial Dri ... Inner Dro ... Outer L1 ... Virtual line O ... Axial line S ... Steam

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

この蒸気タービンは、ロータ軸と、複数列の動翼列と、ケーシングと、複数列の動翼列の各列に対して軸方向の第一側に配置された静翼列と、を備える。複数列の動翼列のうち最も軸方向の第二側に配置された最終列の静翼列は、周方向に間隔をあけて複数配置され、それぞれ径方向に延びる静翼と、環状で、複数の静翼の径方向の外側に配置された外側リングと、環状で、複数の静翼の径方向の内側に配置された内側リングと、を備える。静翼の軸方向の第二側の第二側縁部は、静翼の径方向の外側の外側端と径方向内側の内側端との中間位置に対して径方向内側に形成され、軸方向の第二側に湾曲して突出する第二側凸部と、中間位置に対して径方向の外側に形成され、軸方向の第一側に湾曲して窪む第二側凹部と、を有するS字形状とされている。

Description

蒸気タービン
 本開示は、蒸気タービンに関する。
 蒸気タービンは、ケーシング内に複数列の圧縮段を有している。ケーシング内で複数列の圧縮段を経て上流側から下流側に向けて流れる蒸気は、下流側にいくにしたがって膨張するのにともなって、圧力及び温度が低下する。特に最終列の圧縮段付近では、蒸気の湿度が高まり、蒸気中の水分が液滴化することがある。蒸気の湿度上昇は、蒸気タービンの効率低下に繋がる。また、蒸気中の水分が液滴化すると、静翼から飛散した液滴によって最終列の動翼が腐食する、いわゆるエロージョンに繋がることがある。
 これに対し、例えば特許文献1には、静翼と動翼との軸方向間隔を径方向内側より外側の方が大きくなるように形成した構成の蒸気タービンが開示されている。このような構成によれば、静翼と動翼との軸方向間隔を径方向の外側で拡大することによって、静翼から流出する旋回流れによる遠心力の効果によって、静翼下流側の外周壁に付着する液滴量を増加させる。これにより、液滴が後流側の動翼先端に到達するのを抑え、エロージョンの低減を図ろうとしている。
特許第3815143号公報
 しかしながら、特許文献1に開示されたような構成では、静翼と動翼との軸方向間隔を拡大すると、タービン性能の低下に繋がる。また、静翼と動翼との軸方向間隔を拡大すると、軸方向における圧縮段同士の間隔が増える。このため、回転軸の軸方向長さとともに軸受スパンが増大し、軸振動信頼性の低下にも繋がる。
 本開示は、上記課題を解決するためになされたものであって、タービン性能の低下、軸振動信頼性の低下を抑えつつ、エロージョンの発生を有効に抑えることができる蒸気タービンを提供することを目的とする。
 上記課題を解決するために、本開示に係る蒸気タービンは、軸線を中心として回転するロータ軸と、前記ロータ軸の径方向の外側に固定され、前記軸線に沿った軸方向に間隔をあけて配置された複数列の動翼列と、前記ロータ軸及び複数の前記動翼列を覆うように配置されたケーシングと、前記ケーシングの前記径方向の内側に固定され、前記軸方向に間隔をあけて配置され、複数列の前記動翼列の各列に対して前記軸方向の第一側に配置された静翼列と、を備え、前記静翼列は、周方向に間隔をあけて複数配置され、それぞれ径方向に延びる静翼と、環状で、複数の前記静翼の径方向の外側に配置された外側リングと、環状で、複数の前記静翼の径方向の内側に配置された内側リングと、を備え、前記複数列の静翼列のうち最も前記軸方向の第二側に配置された最終列の静翼列において、前記静翼の前記軸方向の第二側の第二側縁部が、前記静翼の径方向の外側の外側端と径方向内側の内側端との中間位置に対して前記径方向内側に形成され、前記軸方向の第二側に湾曲して突出する第二側凸部と、前記中間位置に対して前記径方向の外側に形成され、前記軸方向の第一側に湾曲して窪む第二側凹部と、を有するS字形状とされている。
 本開示の蒸気タービンによれば、タービン性能の低下、軸振動信頼性の低下を抑えつつ、エロージョンの発生を有効に抑えることが可能となる。
本開示の実施形態における蒸気タービンの概略構成を示す模式図である。 本開示の第1実施形態における蒸気タービンの最終列の静翼列及び動翼列を示す断面図である。 本開示の第1実施形態における最終列の静翼列の一部を示す斜視図である。 本開示の第1実施形態における最終列の静翼列を構成する静翼の断面形状を示す図である。 本開示の第2、第3実施形態における蒸気タービンの最終列の静翼列及び動翼列を示す断面図である。 本開示の第2実施形態における静翼の断面形状を示す図である。 本開示の第3実施形態における静翼の断面形状を示す図である。
<第一実施形態>
(蒸気タービンの構成)
 図1に示すように、本実施形態の蒸気タービン1Aは、軸線Oを中心として回転するロータ20と、ケーシング10と、を有している。
 なお、以下の説明の都合上、軸線Oが延びている方向を軸方向Da、軸線Oを基準とした後述する軸芯部22における径方向を単に径方向Dr、軸線Oを中心とした軸芯部22の周方向を単に周方向Dcとする。
(ロータの構成)
 ロータ20は、ロータ軸21と、動翼列31と、を有している。
 ロータ軸21は、軸線Oを中心として回転可能に配置されている。ロータ軸21は、軸芯部22と、複数のディスク部23と、を有している。軸芯部22は、軸線Oを中心として円柱状を成し、軸方向Daに延びている。複数のディスク部23は、軸方向Daに互いに間隔をあけて配置されている。各ディスク部23は、軸芯部22から径方向Drの外側Droに広がるように配置されている。
(動翼列の構成)
 動翼列31は、ロータ軸21の径方向Drの外側Droに固定されている。動翼列31は、ロータ軸21の外周部分であるディスク部23の外周に取り付けられている。動翼列31は、ロータ軸21の軸方向Daに沿って間隔をあけて複数列が配置されている。本実施形態の場合、動翼列31は、例えば四列配置されている。よって、本実施形態の場合、動翼列31として、第一段から第四段の動翼列31が配置されている。
 図2に示すように、各列の動翼列31は、周方向Dcに並ぶ複数の動翼32と、シュラウド34と、プラットフォーム35と、を有している。各動翼32は、径方向Drに延びている。シュラウド34は、動翼32の径方向Drの外側Droに配置されている。プラットフォーム35は、動翼32の径方向Drの内側Driに配置されている。蒸気Sは、動翼32においてシュラウド34とプラットフォーム35との間の環状の空間を流れる。
(ケーシングの構成)
 図1に示すように、ケーシング10は、ロータ20を覆うように形成されている。ケーシング10の径方向Drの内側Driには、静翼列41が固定されている。静翼列41は、軸方向Daに沿って間隔を空けて複数配置されている。本実施形態では、静翼列41の列数は、動翼列31と同じ四列が配置されている。各静翼列41は、複数列の動翼列31の各列に対して軸方向Daの第一側Dauに隣接して配置されている。軸方向Daの第一側Dauは、ケーシング10内における蒸気Sの流れ方向上流側である。すなわち、蒸気Sは、ケーシング10内を軸方向Daの第一側Dauから第二側Dad側に流れていく。
(静翼列の構成)
 図2、図3に示すように、静翼列41は、静翼42と、外側リング43と、内側リング44と、を有している。静翼42は、周方向Dcに間隔をあけて複数配置されている。外側リング43は、環状で、複数の静翼42の径方向Drの外側Droに配置されている。内側リング44は、環状で、複数の静翼42の径方向Drの内側Driに配置されている。蒸気Sは、外側リング43と内側リング44との間の環状の空間を流れる。
 各静翼42の径方向Drの内側Driの内側端42sは、内側リング44に固定されている。各静翼42の径方向Drの外側Droの外側端42tは、外側リング43に固定されている。
 図4に示すように、静翼42は、軸方向Daの第一側Dauの第一側縁部48から軸方向Daの第二側Dad側の第二側縁部49に亘って、径方向Dr(図4の紙面に直交する方向)からの断面視で翼断面形状を有している。静翼42は、腹側部材45と、背側部材46と、から形成されている。腹側部材45は、その表面が静翼42の腹面42aを形成するよう、凹状に湾曲形成されている。背側部材46は、その表面が静翼42の背面42bを形成するよう、凸状に湾曲形成されている。腹側部材45と背側部材46は、それぞれ金属製の板状部材を、所定の形状に湾曲させたものである。静翼42は、腹側部材45と背側部材46とを互いに組み合わせて溶接することで形成されている。これにより、静翼42の内部、すなわち腹側部材45と背側部材46との間には、空洞部47が形成されている。
 図2に示すように、静翼42の第二側縁部49は、第二側凸部49aと、第二側凹部49bと、翼端延出部49cと、を有している。
 第二側凸部49aは、静翼42の外側端42tと内側端42sとの中間位置42mに対し、径方向Drの内側Driに形成されている。第二側凸部49aは、軸方向Daの第二側Dadに突出するように凸状に湾曲形成されている。より具体的には、第二側凸部49aは、内側端42s及び中間位置42mよりも、軸方向Daの第二側Dadに突出するように、湾曲して形成されている。
 例えば、中間位置42mとは、第二側縁部49における静翼42の径方向Dr両端の中心であってもよい。
 第二側凹部49bは、中間位置42mに対して径方向Drの外側Droに連続して形成されている。第二側凹部49bは、軸方向Daの第一側Dauに湾曲して窪んで形成されている。第二側凹部49bは、中間位置42m及び外側端42tよりも、軸方向Daの第一側Dauに窪むように凹状に湾曲形成されている。
 翼端延出部49cは、第二側凹部49bに対して径方向Drの外側Droに連続して形成されている。翼端延出部49cは、第二側凹部49bから軸方向Daの第二側Dadに突出して延び、外側リング43に接続されている。
 これにより、第二側縁部49は、周方向Dcから見てS字形状とされている。
 例えば、第二側縁部49は、静翼42の外側端42tから内側端42sに亘るS字形状を有してもよい。
 例えば、静翼42の第一側縁部48は、第一側凹部48aと、第一側凸部48bと、を有してS字形状に形成されていてもよい。
 例えば、第一側縁部48は、静翼42の外側端42tから内側端42sに亘るS字形状を有してもよい。
 第一側凹部48aは、静翼42の径方向Drの内側Driに形成されている。第一側凹部48aは、軸方向Daの第二側Dadに凹状に窪むように湾曲形成されている。
 第一側凸部48bは、第一側凹部48aに対して径方向Drの外側Droに連続して形成されている。第一側凸部48bは、軸方向Daの第一側Dauに凸状に突出するように湾曲形成されている。
(作用効果)
 上記したような蒸気タービン1Aによれば、静翼42の第二側縁部49の第二側凹部49bが、軸方向Daの第一側Dauに窪んでいる。このため、第二側凹部49bと、最終列の動翼列31Fの動翼32との軸方向Daにおける間隔S1が大きくなる。これにより、静翼42から流出する旋回流れによる遠心力の効果によって、液滴は、図2中、仮想線L1で示すような蒸気の流れに乗って静翼42から軸方向Da第二側へと流れつつ、径方向Drの外側Droへと流れていく。このため、動翼32の軸方向Daの第一側Dauの端部32aに到達する液滴の量を抑えることができる。その結果、エロージョンの低減を図ることができる。
 また、静翼42の第二側縁部49において、第二側凸部49aが軸方向Daの第二側Dadに突出している。このため、第二側凸部49aと最終列の動翼列31Fとの間隔S2を、第二側凹部49bの部分の間隔S1に比較して小さくすることができる。これにより、タービン性能の低下を抑えることができる。また、第二側凸部49aと最終列の動翼列31Fの動翼32との間隔S2を小さくすることで、軸受スパンが増大するのを抑え、軸振動信頼性の低下を抑えることができる。また、第二側凸部49aは、径方向Drの内側Driに形成されているので、蒸気Sの流れの周速も径方向Drの外側Droに比較すれば小さく、エロージョンが生じにくい。その結果、タービン性能の低下、軸振動信頼性の低下を抑えつつ、エロージョンの発生を有効に抑えることが可能となる。
 上記したような蒸気タービン1Aは、第二側凹部49bに対して径方向Drの外側Droに連続して形成され、軸方向Daの第二側Dadに延びる翼端延出部49c、をさらに備えている。
 これにより、静翼42から流出する旋回流れによる遠心力の効果によって、径方向Drの外側Droへと流れていく液滴が、第二側凹部49bに溜まるのを抑えることができる。したがって、液滴が、翼端延出部49cから外側リング43へと円滑に案内される。このように、液滴を外側リング43へと導くことによって、軸方向Daの第一側Dauの動翼32の端部32aに到達する液滴の量を、より有効に抑えることができる。
 上記したような蒸気タービン1Aによれば、第一側縁部48が、第一側凹部48aと、第一側凸部48bと、を有してS字形状とされている。
 これにより、静翼42の第一側縁部48を、径方向Drに沿って延びる直線状に形成した場合に比較し、軸方向Daに沿って第一側縁部48と第二側縁部49とを結んだときの静翼42の翼面長が、部分的に長くなるのを抑えることができる。具体的には、第一側凹部48aから第二側凸部49aに向かう流路長と、軸方向Daに沿って第一側凸部48bから第二側凹部49bに向かう流路長とが大きく異なるのを抑えることができる。これにより、液滴と静翼42の表面との間に生じる摩擦損失が、径方向Drで部分的に大きく異なるのを抑えることができる。
(第2実施形態)
 次に、本開示にかかる蒸気タービンの第2実施形態について説明する。この第2実施形態で示す蒸気タービンは、第1実施形態の蒸気タービンに対して、スリットを備える点が異なるのみである。したがって、第2実施形態の説明においては、第1実施形態と同一部分に同一符号を付して説明するとともに重複説明を省略する。つまり、第1実施形態で説明した構成と共通する蒸気タービンの各部の構成については、その説明を省略する。
 図5、図6に示すように、本実施形態の蒸気タービン1Bの静翼列41を構成する静翼42Bは、連通孔50を有している。
 連通孔50は、径方向Drにおいて、中間位置42mよりも径方向Drの外側Droに形成されている。
 連通孔50は、静翼42Bの腹側部材45の外表面と空洞部47とを連通するように形成されている。
 例えば、連通孔50は、径方向Drに連続して延びるスリットであってもよい。
 例えば、連通孔50は、スリットに代えて、静翼42Bの腹側部材45の外表面と空洞部47とを連通する一以上の孔であってもよい。
 例えば、連通孔50は、静翼42Bの腹側部材45の外表面のうち、径方向Drについて、中間位置42mよりも径方向Drの外側Droにのみ形成されてもよい。
 例えば、連通孔50は、静翼42Bの腹側部材45の外表面のうち、第一側縁部48より第二側縁部49に近い位置にのみ形成されてもよい。
 このような構成では、静翼列41を流れる蒸気中に生じた液滴の一部が、連通孔50を通して静翼42B内の空洞部47に回収される。回収された空洞部47内の液滴は、外側リング43、あるいは内側リング44に形成された液滴回収溝(図示無し)等を介してケーシング10の外部に排出される。
(作用効果)
 上記したような蒸気タービン1Bによれば、上記第一実施形態と同様、タービン性能の低下、軸振動信頼性の低下を抑えつつ、エロージョンの発生を有効に抑えることが可能となる。
 また、この蒸気タービン1Bでは、連通孔50を通して、液滴の少なくとも一部を静翼42B内の空洞部47で回収することができる。これによって、軸方向Daの第一側Dauの動翼32の端部32aに到達する液滴の量を、より有効に抑えることができる。したがって、タービン性能の低下、軸振動信頼性の低下を抑えつつ、エロージョンの発生を有効に抑えることが可能となるという効果を、より顕著に奏することができる。
 また、この蒸気タービン1Bでは、連通孔50が、中間位置42mよりも径方向Drの外側Droに形成されているため、連通孔50の加工面積を縮小することができる。
 また、この蒸気タービン1Bでは、連通孔50が、中間位置42mよりも径方向Drの外側Droに形成されているため、連通孔50の位置に関連して、静翼42Bの空洞部47を小さくできる。したがって、空洞部47内の液滴が排出されやすい。
 また、この蒸気タービン1Bでは、連通孔50は、静翼42Bの腹側部材45の外表面のうち、第一側縁部48より第二側縁部49に近い位置にのみ形成されている。したがって、静翼42Bの第二側縁部49を遮熱構造とすることができる。
(第3実施形態)
 次に、本開示にかかる蒸気タービンの第3実施形態について説明する。この第3実施形態の蒸気タービンは、第2実施形態で示した蒸気タービンに対して、静翼内に隔壁を備える点が異なるのみである。したがって、第3実施形態の説明においては、同一部分に同一符号を付して重複説明を省略する。つまり、第2実施形態に対する相違点を中心に説明を行い、第1、第2実施形態で説明した構成と共通する構成については、その説明を省略する。
 図5、図7に示すように、本実施形態の蒸気タービン1Cの静翼列41を構成する静翼42Cは、連通孔50と、隔壁55(図7参照)と、を有している。
 連通孔50は、径方向Drにおいて、中間位置42mよりも径方向Drの外側Droに形成されている。図7に示すように、連通孔50は、静翼42Cの腹側部材45の外表面と空洞部47とを連通するように形成されている。
 隔壁55は、静翼42Cの内部に形成されている。隔壁55は、第一側縁部48と第二側縁部49との間で、腹側部材45と背側部材46とに接合されている。隔壁55は、連通孔50よりも軸方向Daの第一側Dauに配置されている。隔壁55は、径方向Drに連続して延びている。隔壁55は、静翼42C内の空洞部47を、前記軸方向Daの第一側Dauの第一空洞部47uと第二側Dadの第二空洞部47dとに区画している。
 例えば、隔壁55を境界として、静翼42は、連通孔50を有する部品と、連通孔50を有さない部品と、の分割構造を有する組立体であってもよい。
 このような構成では、静翼列41を流れる蒸気中に生じた液滴の一部が、連通孔50を通して静翼42C内で、隔壁55よりも軸方向Daの第二側Dadの第二空洞部47dに回収される。回収された第二空洞部47d内の液滴は、外側リング43、あるいは内側リング44に形成された液滴回収溝(図示無し)等を介してケーシング10の外部に排出される。第二空洞部47d内の液滴は、隔壁55により、空洞部47内で隔壁55よりも軸方向Daの第一側Dauの第一空洞部47u内に侵入することが抑えられる。
(作用効果)
 上記したような蒸気タービン1Cによれば、上記第一、第二実施形態と同様、タービン性能の低下、軸振動信頼性の低下を抑えつつ、エロージョンの発生を有効に抑えることが可能となる。
 加えて、この蒸気タービン1Cでは、隔壁55により、動翼32内の空洞部47で隔壁55に対して軸方向Daの第二側Dadで、液滴が回収される部分(第二空洞部47dの流路断面積を小さくすることができる。また、動翼32内の第二空洞部47d内に回収された液滴が、静翼42C内で第一空洞部47uに移動するのを抑えることができる。したがって、静翼42Cにおいて軸方向Daの第一側Dauの第一側縁部48側を密封遮熱構造とすることが可能となる。
 さらに、この蒸気タービン1Cによれば、隔壁55を境界として、分割構造を有する組立体であることにより、製造しやすい静翼42を提供できる。
(その他の実施形態)
 なお、本開示は、上述した実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲において、設計変更可能である。
 例えば、上記実施形態では、第二側縁部49の第二側凸部49a、第二側凹部49bを、それぞれ湾曲して形成するようにしたが、その具体的形状については何ら問うものでない。例えば、第二側凸部49a、第二側凹部49bは、一定の曲率で湾曲させるようにしてもよいし、第二側凸部49a、第二側凹部49bは、曲率を部分的に異ならせてもよい。
 また、第一側縁部48を、第二側縁部49と同様にS字形状としたが、これに限られない。第一側縁部48は、例えば直線状であってもよい。
 また、例えば、動翼列31、及び静翼列41の段数等をはじめとして、蒸気タービン1A、1B、1Cの各部の構成については、適宜変更することが可能である。
<付記>
 各実施形態に記載の蒸気タービン1A、1B、1Cは、例えば以下のように把握される。
(1)第1の態様に係る蒸気タービン1A、1B、1Cは、軸線Oを中心として回転するロータ軸21と、前記ロータ軸21の径方向Drの外側Droに固定され、前記軸線Oに沿った軸方向Daに間隔をあけて配置された複数列の動翼列31と、前記ロータ軸21及び複数の前記動翼列31を覆うように配置されたケーシング10と、前記ケーシング10の前記径方向Drの内側Driに固定され、前記軸方向Daに間隔をあけて配置され、複数列の前記動翼列31の各列に対して前記軸方向Daの第一側Dauに配置された静翼列41と、を備え、前記静翼列41は、周方向Dcに間隔をあけて複数配置され、それぞれ径方向Drに延びる静翼42、42B、42Cと、環状で、複数の前記静翼42、42B、42Cの径方向Drの外側Droに配置された外側リング43と、環状で、複数の前記静翼42、42B、42Cの径方向Drの内側Driに配置された内側リング44と、を備え、前記複数列の静翼列41のうち最も前記軸方向Daの第二側Dadに配置された最終列の静翼列41Fにおいて、前記静翼42、42B、42Cの前記軸方向Daの第二側Dadの第二側縁部49が、前記静翼42、42B、42Cの径方向Drの外側Droの外側端42tと径方向Drの内側Driの内側端42sとの中間位置42mに対して前記径方向Drの内側Driに形成され、前記軸方向Daの第二側Dadに湾曲して突出する第二側凸部49aと、前記中間位置42mに対して前記径方向Drの外側Droに形成され、前記軸方向Daの第一側Dauに湾曲して窪む第二側凹部49bと、を有するS字形状とされている。
 このような蒸気タービン1A、1B、1Cによれば、静翼42、42B、42Cの第二側縁部49の第二側凹部49bが、軸方向Daの第一側Dauに窪んでいる。このため、第二側凹部49bと、最終列の動翼列31Fの動翼32との軸方向Daにおける間隔S1が大きくなる。これにより、静翼42、42B、42Cから流出する旋回流れによる遠心力の効果によって、液滴は、蒸気の流れに乗って静翼42、42B、42Cから軸方向Da第二側へと流れつつ、径方向Drの外側Droへと流れていく。このため、動翼32の軸方向Daの第一側Dauの端部32aに到達する液滴の量を抑えることができる。その結果、エロージョンの低減を図ることができる。
 また、静翼42、42B、42Cの第二側縁部49において、第二側凸部49aが軸方向Daの第二側Dadに突出している。このため、第二側凸部49aと最終列の動翼32との間隔S2を、第二側凹部49bの部分の間隔S1に比較して小さくすることができる。これにより、タービン性能の低下を抑えることができる。また、軸受スパンが増大するのを抑え、軸振動信頼性の低下を抑えることができる。その結果、タービン性能の低下、軸振動信頼性の低下を抑えつつ、エロージョンの発生を有効に抑えることが可能となる。
(2)第2の態様に係る蒸気タービン1A、1B、1Cは、(1)の蒸気タービン1A、1B、1Cであって、前記第二側凹部49bに対して前記径方向Drの外側Droに連続して形成され、前記軸方向Daの第二側Dadに延びる翼端延出部49c、をさらに備える。
 これにより、静翼42、42B、42Cから流出する旋回流れによる遠心力の効果によって、径方向Drの外側Droへと流れていく液滴が、第二側凹部49bに溜まるのを抑えることができる。したがって、液滴を翼端延出部49cから外側リング43へと円滑に案内することができる。このように、液滴を外側リング43へと導くことによって、軸方向Daの第一側Dauの動翼32の端部32aに到達する液滴の量を、より有効に抑えることができる。
(3)第3の態様に係る蒸気タービン1B、1Cは、(1)又は(2)の蒸気タービン1B、1Cであって、前記静翼42B、42Cは、内部に空洞部47が形成された中空構造とされ、前記中間位置42mよりも径方向Drの外側Droに、前記静翼42B、42Cの外表面と前記空洞部47とを連通する連通孔50が形成されている。
 これにより、連通孔50を通して、液滴の少なくとも一部を静翼42B、42C内の空洞部47で回収することができる。これによって、軸方向Daの第一側Dauの動翼32の端部32aに到達する液滴の量を、より有効に抑えることができる。
 また、この蒸気タービン1B、1Cでは、連通孔50が、中間位置42mよりも径方向Drの外側Droに形成されているため、連通孔50の加工面積を縮小することができる。
 また、この蒸気タービン1B、1Cでは、連通孔50が、中間位置42mよりも径方向Drの外側Droに形成されているため、連通孔50の位置に関連して、静翼42Bの空洞部47を小さくできる。したがって、空洞部47内の液滴が排出されやすい。
(4)第4の態様に係る蒸気タービン1Cは、(3)の蒸気タービン1Cであって、前記静翼42Cの内部に形成され、前記連通孔50よりも前記軸方向Daの第一側Dauに、前記空洞部47を前記軸方向Daの第一側Dauと第二側Dadとに区画する隔壁55が形成されている。
 これにより、動翼32内の空洞部47で隔壁55に対して軸方向Daの第二側Dadの、液滴が回収される部分である第二空洞部47dの流路断面積を小さくすることができる。また、動翼32内の空洞部47内に回収された液滴が、静翼42C内で隔壁55よりも軸方向Daの第一側Dauの第一空洞部47uに移動するのを抑えることができる。したがって、静翼42Cにおいて軸方向Daの第一側Dauの第一側縁部48側を密封遮熱構造とすることが可能となる。
(5)第5の態様に係る蒸気タービン1A、1B、1Cは、(1)から(4)の何れか一つの蒸気タービン1A、1B、1Cであって、前記静翼42、42B、42Cの前記軸方向Daの第一側Dauの第一側縁部48が、前記静翼42、42B、42Cの前記径方向Drの内側Driに形成され、前記軸方向Daの第二側Dadに湾曲して窪む第一側凹部48aと、前記第一側凹部48aに対して前記径方向Drの外側Droに形成され、前記軸方向Daの第一側Dauに湾曲して突出する窪む第一側凸部48bと、を有する。
 これにより、静翼42、42B、42Cの第一側縁部48を、径方向Drに沿って延びる直線状に形成した場合に比較し、軸方向Daに沿って第一側凹部48aから第二側凸部49aに向かう流路長と、軸方向Daに沿って第一側凸部48bから第二側凹部49bに向かう流路長とが大きく異なるのを抑えることができる。これにより、液滴と静翼42、42B、42Cの表面との間に生じる摩擦損失が、径方向Drで大きく異なるのを抑えることができる。
 上記した蒸気タービンによれば、タービン性能の低下、軸振動信頼性の低下を抑えつつ、エロージョンの発生を有効に抑えることができる。
1A、1B、1C…蒸気タービン
10…ケーシング
20…ロータ
21…ロータ軸
22…軸芯部
23…ディスク部
31…動翼列
31F…最終列の動翼列
32…動翼
32a…端部
34…シュラウド
35…プラットフォーム
41…静翼列
41F…最終列の静翼列
42、42B、42C…静翼
42a…腹面
42b…背面
42m…中間位置
42s…内側端
42t…外側端
43…外側リング
44…内側リング
45…腹側部材
46…背側部材
47…空洞部
47d…第二空洞部
47u…第一空洞部
48…第一側縁部
48a…第一側凹部
48b…第一側凸部
49…第二側縁部
49a…第二側凸部
49b…第二側凹部
49c…翼端延出部
50…連通孔
55…隔壁
Da…軸方向
Dad…第二側
Dau…第一側
Dc…周方向
Dr…径方向
Dri…内側
Dro…外側
L1…仮想線
O…軸線
S…蒸気

Claims (5)

  1.  軸線を中心として回転するロータ軸と、
     前記ロータ軸の径方向の外側に固定され、前記軸線に沿った軸方向に間隔をあけて配置された複数列の動翼列と、
     前記ロータ軸及び複数の前記動翼列を覆うように配置されたケーシングと、
     前記ケーシングの前記径方向の内側に固定され、前記軸方向に間隔をあけて配置され、複数列の前記動翼列の各列に対して前記軸方向の第一側に配置された静翼列と、を備え、
     前記静翼列は、
      周方向に間隔をあけて複数配置され、それぞれ径方向に延びる静翼と、
      環状で、複数の前記静翼の径方向の外側に配置された外側リングと、
      環状で、複数の前記静翼の径方向の内側に配置された内側リングと、を備え、
     前記複数列の静翼列のうち最も前記軸方向の第二側に配置された最終列の静翼列において、前記静翼の前記軸方向の第二側の第二側縁部が、
      前記静翼の径方向の外側の外側端と径方向内側の内側端との中間位置に対して前記径方向内側に形成され、前記軸方向の第二側に湾曲して突出する第二側凸部と、
      前記中間位置に対して前記径方向の外側に形成され、前記軸方向の第一側に湾曲して窪む第二側凹部と、を有するS字形状とされている
    蒸気タービン。
  2.  前記第二側凹部に対して前記径方向の外側に連続して形成され、前記軸方向の第二側に延びる翼端延出部、をさらに備える
    請求項1に記載の蒸気タービン。
  3.  前記静翼は、内部に空洞部が形成された中空構造とされ、
     前記中間位置よりも径方向の外側に、前記静翼の外表面と前記空洞部とを連通する連通孔が形成されている
    請求項1又は2に記載の蒸気タービン。
  4.  前記静翼の内部に形成され、前記連通孔よりも前記軸方向の第一側に、
    前記空洞部を前記軸方向の第一側と第二側とに区画する隔壁が形成されている
    請求項3に記載の蒸気タービン。
  5.  前記静翼の前記軸方向の第一側の第一側縁部が、
      前記静翼の前記径方向内側に形成され、前記軸方向の第二側に湾曲して窪む第一側凹部と、
      前記第一側凹部に対して前記径方向の外側に形成され、前記軸方向の第一側に湾曲して突出する窪む第一側凸部と、を有する
    請求項1から4の何れか一項に記載の蒸気タービン。
PCT/JP2020/036543 2020-09-28 2020-09-28 蒸気タービン WO2022064674A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112020007359.9T DE112020007359T5 (de) 2020-09-28 2020-09-28 Dampfturbine
JP2022551078A JP7371273B2 (ja) 2020-09-28 2020-09-28 蒸気タービン
US18/025,011 US20230323780A1 (en) 2020-09-28 2020-09-28 Steam turbine
PCT/JP2020/036543 WO2022064674A1 (ja) 2020-09-28 2020-09-28 蒸気タービン
CN202080103425.9A CN115917119A (zh) 2020-09-28 2020-09-28 蒸汽涡轮
KR1020237005704A KR20230039725A (ko) 2020-09-28 2020-09-28 증기 터빈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/036543 WO2022064674A1 (ja) 2020-09-28 2020-09-28 蒸気タービン

Publications (1)

Publication Number Publication Date
WO2022064674A1 true WO2022064674A1 (ja) 2022-03-31

Family

ID=80846323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036543 WO2022064674A1 (ja) 2020-09-28 2020-09-28 蒸気タービン

Country Status (6)

Country Link
US (1) US20230323780A1 (ja)
JP (1) JP7371273B2 (ja)
KR (1) KR20230039725A (ja)
CN (1) CN115917119A (ja)
DE (1) DE112020007359T5 (ja)
WO (1) WO2022064674A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263204A (ja) * 1987-04-21 1988-10-31 Toshiba Corp タ−ビンの羽根侵食防止装置
US20070071606A1 (en) * 2003-07-09 2007-03-29 Donald Borthwick Turbine blade
JP2009121468A (ja) * 2007-11-09 2009-06-04 Alstom Technology Ltd 蒸気タービン

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815143B2 (ja) 1999-09-22 2006-08-30 株式会社日立製作所 蒸気タービン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263204A (ja) * 1987-04-21 1988-10-31 Toshiba Corp タ−ビンの羽根侵食防止装置
US20070071606A1 (en) * 2003-07-09 2007-03-29 Donald Borthwick Turbine blade
JP2009121468A (ja) * 2007-11-09 2009-06-04 Alstom Technology Ltd 蒸気タービン

Also Published As

Publication number Publication date
CN115917119A (zh) 2023-04-04
JP7371273B2 (ja) 2023-10-30
US20230323780A1 (en) 2023-10-12
KR20230039725A (ko) 2023-03-21
JPWO2022064674A1 (ja) 2022-03-31
DE112020007359T5 (de) 2023-05-04

Similar Documents

Publication Publication Date Title
US20130149118A1 (en) Labyrinth seals
EP2878771B1 (en) Axial flow fluid machine
KR0161107B1 (ko) 도입유로부착 축류송풍기
US8596980B2 (en) Vibration damper assembly
US3038698A (en) Mechanism for controlling gaseous flow in turbo-machinery
JP2001055902A (ja) タービン動翼
JP6033154B2 (ja) 軸流回転機械、及びディフューザ
EP2141363A2 (en) Seal for turbomachine
CA2953599A1 (en) Variable stator vane undercut button
WO2022064674A1 (ja) 蒸気タービン
JP6944307B2 (ja) 蒸気タービン
US3063673A (en) Centripetal turbine
JP7439285B2 (ja) 蒸気タービン
US20180156050A1 (en) Steam turbine
JP7458947B2 (ja) 蒸気タービン
US7946821B2 (en) Steam turbine rotating blade
JP6745235B2 (ja) ロータ及びこのロータを備える回転機械
JP7061557B2 (ja) 蒸気タービン
JP6521273B2 (ja) 蒸気タービン
JPWO2022064674A5 (ja)
JP6776154B2 (ja) ラジアルタービン、ラジアルタービンの排気部材
JP6541249B2 (ja) 静翼、回転機械
JP6906986B2 (ja) 蒸気タービン
US11613997B2 (en) Steam turbine
JP2948383B2 (ja) 高速回転用ロータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551078

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005704

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20955268

Country of ref document: EP

Kind code of ref document: A1