WO2022064600A1 - 半導体装置の製造方法、基板処理装置、およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置、およびプログラム Download PDF

Info

Publication number
WO2022064600A1
WO2022064600A1 PCT/JP2020/036041 JP2020036041W WO2022064600A1 WO 2022064600 A1 WO2022064600 A1 WO 2022064600A1 JP 2020036041 W JP2020036041 W JP 2020036041W WO 2022064600 A1 WO2022064600 A1 WO 2022064600A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
material gas
gas
substrate
supplied
Prior art date
Application number
PCT/JP2020/036041
Other languages
English (en)
French (fr)
Inventor
建夫 花島
清久 石橋
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to EP20955194.4A priority Critical patent/EP4220690A4/en
Priority to JP2022551494A priority patent/JP7496884B2/ja
Priority to PCT/JP2020/036041 priority patent/WO2022064600A1/ja
Priority to KR1020237007999A priority patent/KR20230044316A/ko
Priority to CN202080104258.XA priority patent/CN116057677A/zh
Priority to TW110132177A priority patent/TWI797732B/zh
Publication of WO2022064600A1 publication Critical patent/WO2022064600A1/ja
Priority to US18/179,293 priority patent/US11784044B2/en
Priority to US18/458,486 priority patent/US20230411149A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • H01L21/67306Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements characterized by a material, a roughness, a coating or the like

Definitions

  • This disclosure relates to a semiconductor device manufacturing method, a substrate processing device, and a program.
  • a substrate processing step of supplying a raw material gas or a reaction gas to a substrate and forming a film on the substrate may be performed (see, for example, Patent Document 1).
  • the object of the present disclosure is to improve the step coverage (step coverage) without lowering the film formation rate of the film formed on the substrate.
  • a step of supplying a raw material gas to a substrate having a recess on the surface and (B) A step of supplying the reaction gas to the substrate and It has a step of forming a film on the substrate by performing a cycle of performing the above non-simultaneously a predetermined number of times.
  • the processing conditions for supplying the raw material gas to the substrate in a plurality of times and supplying the raw material gas for the first time are set, and the processing for supplying the raw material gas for the second and subsequent times is performed.
  • a technique is provided in which the processing conditions are such that the self-decomposition of the raw material gas can be suppressed.
  • FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in one aspect of the present disclosure, and is a diagram showing a portion 202 of the processing furnace in a vertical cross-sectional view.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in one aspect of the present disclosure, and is a diagram showing a portion 202 of the processing furnace in a cross-sectional view taken along the line AA of FIG.
  • FIG. 3 is a schematic configuration diagram of a controller 121 of a substrate processing apparatus preferably used in one aspect of the present disclosure, and is a diagram showing a control system of the controller 121 as a block diagram.
  • FIG. 1 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus preferably used in one aspect of the present disclosure, and is a diagram showing a portion 202 of the processing furnace in a vertical cross-sectional view.
  • FIG. 2 is a schematic configuration diagram of a vertical processing furnace
  • FIG. 4 is a flow chart showing a film forming sequence according to one aspect of the present disclosure, and is a diagram showing changes in supply timing and partial pressure of the raw material gas of the raw material gas, the reaction gas, and the inert gas.
  • FIG. 5A is an enlarged cross-sectional view of the surface of the wafer 200 after the initial layer is formed in the recesses in the initial stage of step A of the film forming sequence in one aspect of the present disclosure.
  • FIG. 5B is an enlarged cross-sectional view of the surface of the wafer 200 after the first layer is formed in the recess in step A of the film forming sequence in one aspect of the present disclosure.
  • FIGS. 1 to 4 One aspect of the present disclosure will be described mainly with reference to FIGS. 1 to 4. It should be noted that the drawings used in the following description are all schematic, and the relationship between the dimensions of each element on the drawing, the ratio of each element, and the like do not always match the actual ones. Further, even between the plurality of drawings, the relationship of the dimensions of each element, the ratio of each element, and the like do not always match.
  • the processing furnace 202 has a heater 207 as a temperature controller (heating unit).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation portion) for activating (exciting) the gas with heat.
  • a reaction tube 203 is arranged concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape in which the upper end is closed and the lower end is open.
  • a manifold 209 is arranged concentrically with the reaction tube 203.
  • the manifold 209 is made of a metal material such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends. The upper end of the manifold 209 is engaged with the lower end of the reaction tube 203 and is configured to support the reaction tube 203.
  • An O-ring 220a as a sealing member is provided between the manifold 209 and the reaction tube 203.
  • the reaction tube 203 is installed vertically like the heater 207.
  • a processing container (reaction container) is mainly composed of the reaction tube 203 and the manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the cylinder of the processing container.
  • the processing chamber 201 is configured to accommodate the wafer 200 as a substrate.
  • the wafer 200 is processed in the processing chamber 201.
  • Nozzles 249a to 249c as first to third supply units are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209.
  • the nozzles 249a to 249c are also referred to as first to third nozzles, respectively.
  • the nozzles 249a to 249c are made of a heat-resistant material such as quartz or SiC.
  • Gas supply pipes 232a to 232c are connected to the nozzles 249a to 249c, respectively.
  • the nozzles 249a to 249c are different nozzles, and each of the nozzles 249b and 249c is provided adjacent to the nozzle 249a.
  • the gas supply pipes 232a to 232c are provided with mass flow controllers (MFCs) 241a to 241c which are flow rate controllers (flow control units) and valves 243a to 243c which are on-off valves, respectively, in order from the upstream side of the gas flow. ..
  • MFCs mass flow controllers
  • a gas supply pipe 232d is connected to the downstream side of the gas supply pipe 232a with respect to the valve 243a.
  • a gas supply pipe 232e is connected to the downstream side of the gas supply pipe 232b on the downstream side of the valve 243b.
  • the gas supply pipes 232d and 232e are provided with MFC 241d and 241e and valves 243d and 243e, respectively, in order from the upstream side of the gas flow.
  • the gas supply pipes 232a to 232e are made of a metal material such as SUS.
  • the nozzles 249a to 249c are arranged in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper part of the inner wall of the reaction tube 203 from the lower part of the wafer 200.
  • Each is provided so as to stand upward in the arrangement direction. That is, the nozzles 249a to 249c are provided in the region horizontally surrounding the wafer array region on the side of the wafer array region in which the wafer 200 is arranged, so as to be along the wafer array region.
  • the nozzle 249a is arranged so as to face the exhaust port 231a, which will be described later, with the center of the wafer 200 carried into the processing chamber 201 interposed therebetween.
  • the nozzles 249b and 249c are arranged so as to sandwich a straight line L passing through the nozzle 249a and the center of the exhaust port 231a along the inner wall of the reaction tube 203 (the outer peripheral portion of the wafer 200) from both sides.
  • the straight line L is also a straight line passing through the nozzle 249a and the center of the wafer 200. That is, it can be said that the nozzle 249c is provided on the side opposite to the nozzle 249b with the straight line L interposed therebetween.
  • the nozzles 249b and 249c are arranged line-symmetrically with the straight line L as the axis of symmetry.
  • Gas supply holes 250a to 250c for supplying gas are provided on the side surfaces of the nozzles 249a to 249c, respectively. Each of the gas supply holes 250a to 250c is opened so as to face (face) the exhaust port 231a in a plan view, and gas can be supplied toward the wafer 200. A plurality of gas supply holes 250a to 250c are provided from the lower part to the upper part of the reaction tube 203.
  • the raw material gas is supplied into the processing chamber 201 via the MFC 241a, the valve 243a, and the nozzle 249a.
  • the reaction gas is supplied into the processing chamber 201 via the MFC 241b, the valve 243b, and the nozzle 249b.
  • the reaction gas is a substance having a molecular structure (chemical structure) different from that of the raw material gas.
  • the inert gas is supplied into the processing chamber 201 via the MFC 241d, 241e, the valves 243d, 243e, the gas supply pipes 232a, 232b, and the nozzles 249a, 249b, respectively. Further, from the gas supply pipe 232c, the inert gas is supplied into the processing chamber 201 via the MFC 241c, the valve 243c, and the nozzle 249c.
  • the inert gas acts as a purge gas, a carrier gas, a diluting gas and the like.
  • the raw material gas supply system is mainly composed of the gas supply pipe 232a, the MFC241a, and the valve 243a.
  • the reaction gas supply system is mainly composed of the gas supply pipe 232b, the MFC241b, and the valve 243b.
  • the gas supply pipes 232c to 232e, MFC241c to 241e, and valves 243c to 243e constitute an inert gas supply system.
  • each or both of the raw material gas and the reaction gas is also referred to as a film-forming gas
  • each or both of the raw material gas supply system and the reaction gas supply system is also referred to as a film-forming gas supply system.
  • any or all of the gas supply systems may be configured as an integrated gas supply system 248 in which valves 243a to 243e, MFC241a to 241e, and the like are integrated.
  • the integrated gas supply system 248 is connected to each of the gas supply pipes 232a to 232e, and supplies various gases into the gas supply pipes 232a to 232e, that is, the opening / closing operation of the valves 243a to 243e and the MFC 241a to 241e.
  • the flow rate adjusting operation and the like are controlled by the controller 121, which will be described later.
  • the integrated gas supply system 248 is configured as an integrated or divided integrated unit, and can be attached to and detached from the gas supply pipes 232a to 232e in units of the integrated unit, and is an integrated gas supply system. It is configured so that maintenance, replacement, expansion, etc. of 248 can be performed in units of integrated units.
  • an exhaust port 231a for exhausting the atmosphere in the processing chamber 201 is provided below the side wall of the reaction tube 203. As shown in FIG. 2, the exhaust port 231a is provided at a position facing (facing) the nozzles 249a to 249c (gas supply holes 250a to 250c) with the wafer 200 interposed therebetween in a plan view.
  • the exhaust port 231a may be provided along the upper part of the side wall of the reaction tube 203 from the lower part, that is, along the wafer arrangement region.
  • An exhaust pipe 231 is connected to the exhaust port 231a.
  • the exhaust pipe 231 is made of a metal material such as SUS.
  • the exhaust pipe 231 is provided via a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure regulator).
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, with the vacuum pump 246 operating, the APC valve 244 can perform vacuum exhaust and vacuum exhaust stop. By adjusting the valve opening degree based on the pressure information detected by the pressure sensor 245, the pressure in the processing chamber 201 can be adjusted.
  • the exhaust system is mainly composed of an exhaust pipe 231, an APC valve 244, and a pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is made of a metal material such as SUS and is formed in a disk shape.
  • An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 which will be described later, is installed.
  • the rotation shaft 255 of the rotation mechanism 267 is made of a metal material such as SUS, and is connected to the boat 217 through the seal cap 219.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lifting mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured as a transport device (transport mechanism) for loading and unloading (transporting) the wafer 200 into and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • a shutter 219s is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209 in a state where the seal cap 219 is lowered and the boat 217 is carried out from the processing chamber 201.
  • the shutter 219s is made of a metal material such as SUS and is formed in a disk shape.
  • An O-ring 220c as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the shutter 219s.
  • the opening / closing operation of the shutter 219s (elevating / lowering operation, rotating operation, etc.) is controlled by the shutter opening / closing mechanism 115s.
  • the boat 217 as a substrate support supports a plurality of wafers, for example, 25 to 200 wafers 200 in a horizontal position and vertically aligned with each other, that is, to support them in multiple stages. It is configured to be arranged at intervals.
  • the boat 217 is made of a heat resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in multiple stages.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203. By adjusting the energization condition to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like.
  • a control program for controlling the operation of the board processing device, a process recipe in which the procedure and conditions for board processing described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each procedure in the substrate processing described later and obtain a predetermined result, and functions as a program.
  • process recipes, control programs, etc. are collectively referred to simply as programs.
  • a process recipe is also simply referred to as a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d includes the above-mentioned MFC 241a to 241e, valves 243a to 243e, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115, shutter opening / closing mechanism 115s, etc. It is connected to the.
  • the CPU 121a is configured to be able to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241e, opens and closes the valves 243a to 243e, opens and closes the APC valve 244, and adjusts the pressure by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe.
  • the controller 121 can be configured by installing the above-mentioned program stored in the external storage device 123 in the computer.
  • the external storage device 123 includes, for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as MO, a semiconductor memory such as a USB memory or an SSD, and the like.
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium may include only the storage device 121c alone, it may include only the external storage device 123 alone, or it may include both of them.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • Substrate processing step An example of a sequence in which a wafer 200 as a substrate is processed by using the above-mentioned substrate processing apparatus as one step of a semiconductor device manufacturing process, that is, a film forming sequence for forming a film on the wafer 200.
  • a silicon substrate silicon wafer
  • recesses such as trenches and holes are provided on the surface of the wafer 200.
  • the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
  • Step A in which the raw material gas is supplied to the wafer 200 having a recess on the surface
  • Step B which supplies the reaction gas to the wafer 200
  • a film is formed on the wafer 200 by performing a cycle of performing the above non-simultaneously a predetermined number of times (n times, where n is an integer of 1 or more).
  • step A the raw material gas is divided and supplied to the wafer 200 a plurality of times (m times, m is an integer of 2 or more), and the processing conditions for supplying the raw material gas for the first time are set to the raw materials for the second and subsequent times.
  • the treatment conditions should be such that the self-decomposition of the raw material gas can be suppressed rather than the treatment conditions when supplying the gas.
  • step A and step B are alternately performed n times (n is an integer of 1 or more), a step for purging the inside of the processing chamber 201 is sandwiched between them. Is preferable. Further, as shown in FIG. 4, even when the raw material gas is divided into m times (m is an integer of 1 or more) and intermittently supplied, a step of purging the inside of the processing chamber 201 is sandwiched between them. Is preferable.
  • the film formation sequence in this case can be shown as follows.
  • FIG. 4 shows an example of the supply timing of each of the raw material gas, the reaction gas, and the inert gas as an example of the film formation sequence in this embodiment, and an example of the transition of the partial pressure of the raw material gas accompanying the supply timing. There is.
  • wafer When the word “wafer” is used in the present specification, it may mean the wafer itself or a laminate of a wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface When the term “wafer surface” is used in the present specification, it may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • a predetermined layer when it is described that "a predetermined layer is formed on a wafer”, it means that a predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer or the like. It may mean forming a predetermined layer on top.
  • the use of the term “wafer” in the present specification is also synonymous with the use of the term “wafer”.
  • the inside of the processing chamber 201 is evacuated (vacuum exhaust) by the vacuum pump 246 so as to have a desired pressure (vacuum degree).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information (pressure adjustment).
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired processing temperature.
  • the state of energization to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution (temperature adjustment).
  • the rotation of the wafer 200 by the rotation mechanism 267 is started. Exhaust in the processing chamber 201, heating and rotation of the wafer 200 are all continuously performed at least until the processing of the wafer 200 is completed.
  • Step A the raw material gas is supplied to the wafer 200 in the processing chamber 201 in a plurality of times. Specifically, step a1 for supplying the raw material gas to the wafer 200 and step a2 for purging the inside of the processing chamber 201 in which the wafer 200 exists are alternately performed a plurality of times (m times, m is 2). The above integer) Repeat.
  • step a1 the valve 243a is opened and the raw material gas flows into the gas supply pipe 232a.
  • the flow rate of the raw material gas is adjusted by the MFC 241a, is supplied into the processing chamber 201 via the nozzle 249a, and is exhausted from the exhaust port 231a.
  • the raw material gas is supplied to the wafer 200 (raw material gas supply).
  • the valves 243c to 243e are opened, and the inert gas is supplied into the processing chamber 201 via each of the nozzles 249a to 249c. In some of the methods shown below, the supply of the inert gas into the treatment chamber 201 may not be carried out.
  • step a2 the valve 243a is closed and the supply of the raw material gas into the processing chamber 201 is stopped. Then, the inside of the processing chamber 201 is evacuated, and the gas or the like remaining in the processing chamber 201 is removed from the inside of the processing chamber 201. At this time, the valves 243c to 243e are opened, the inert gas is supplied as a purge gas into the processing chamber 201, exhausted from the exhaust port 231a, and the inside of the processing chamber 201 is purged with the inert gas (purge).
  • steps a1 and a2 are alternately repeated a predetermined number of times under the treatment conditions described later, and the chlorosilane gas is divided into a plurality of times and supplied to the wafer 200.
  • a silicon (Si) -containing layer containing chlorine (Cl) having a predetermined thickness is formed as a first layer on the outermost surface of the wafer 200 as a base.
  • the Si-containing layer containing Cl has physical adsorption and chemisorption of chlorosilane gas molecules on the outermost surface of the wafer 200, physical adsorption and chemisorption of molecules of a substance partially decomposed by chlorosilane gas, and thermal decomposition of chlorosilane gas. It is formed by the deposition of Si due to.
  • the Si-containing layer containing Cl may be an adsorption layer (physisorption layer or chemisorption layer) of a molecule of chlorosilane gas or a molecule of a substance in which a part of chlorosilane gas is decomposed, and is a deposited layer of Si containing Cl. There may be.
  • Si contained in chlorosilane gas is adsorbed on the outermost surface of the wafer 200.
  • the Si-containing layer containing Cl is also simply referred to as a Si-containing layer.
  • a silane-based gas containing Si as a main element constituting the film formed on the wafer 200 can be used.
  • a silane-based gas for example, a gas containing Si and halogen, that is, a halosilane gas can be used.
  • Halogen includes chlorine (Cl), fluorine (F), bromine (Br), iodine (I) and the like.
  • halosilane gas for example, chlorosilane gas containing Si and Cl can be used.
  • the raw material gas examples include monochlorosilane (SiH 3 Cl, abbreviated as MCS) gas, dichlorosilane (SiH 2 Cl 2 , abbreviated as DCS) gas, trichlorosilane (SiHCl 3 , abbreviated as TCS) gas, and tetrachlorosilane (SiCl).
  • MCS monochlorosilane
  • DCS dichlorosilane
  • TCS trichlorosilane
  • SiCl tetrachlorosilane
  • Chlorosilane gas such as hexachlorodisilane gas (Si 2 Cl 6 , abbreviation: HCDS) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas can be used.
  • HCDS hexachlorodisilane
  • OCTS octachlorotrisilane
  • the raw material gas examples include fluorosilane gas such as tetrafluorosilane (SiF 4 ) gas and difluorosilane (SiH 2 F 2 ) gas, tetrabromosilane (SiBr 4 ) gas, and dibromosilane (SiH 2 ), in addition to chlorosilane gas.
  • fluorosilane gas such as tetrafluorosilane (SiF 4 ) gas and difluorosilane (SiH 2 F 2 ) gas, tetrabromosilane (SiBr 4 ) gas, and dibromosilane (SiH 2 ), in addition to chlorosilane gas.
  • Chlorosilane gas such as Br 2 ) gas
  • iodosilane gas such as tetraiodosilane (SiI 4 ) gas and diiodosilane (SiH 2 I 2 ) gas
  • the raw material gas one or more of these
  • a gas containing Si and an amino group that is, an aminosilane gas
  • the amino group is a monovalent functional group obtained by removing hydrogen (H) from ammonia, a primary amine or a secondary amine, and can be expressed as -NH 2 , -NHR, -NR 2 .
  • R represents an alkyl group, and two Rs of ⁇ NR2 may be the same or different.
  • raw material gas examples include tetrax (dimethylamino) silane (Si [N (CH 3 ) 2 ] 4 , abbreviation: 4DMAS) gas, tris (dimethylamino) silane (Si [N (CH 3 ) 2 ] 3 H, and so on.
  • 3DMAS bis (diethylamino) silane (Si [N (C 2 H 5 ) 2 ] 2 H 2 , abbreviation: BDEAS) gas, bis (territory butyl amino) silane (SiH 2 [NH (C 4 H) 9 )] 2
  • Aminosilane gas such as (abbreviated as BTBAS) gas, (diisopropylamino) silane (SiH 3 [N (C 3H 7 ) 2 ], abbreviation: DIPAS) gas can also be used.
  • BTBAS bis (diethylamino) silane
  • DIPAS bis (territory butyl amino) silane
  • Aminosilane gas such as (abbreviated as BTBAS) gas
  • DIPAS diisopropylamino) silane
  • the raw material gas one or more of these can be used.
  • the inert gas for example, a rare gas such as nitrogen (N 2 ) gas, argon (Ar) gas, helium (He) gas, neon (Ne) gas, xenone (Xe) gas can be used.
  • a rare gas such as nitrogen (N 2 ) gas, argon (Ar) gas, helium (He) gas, neon (Ne) gas, xenone (Xe) gas
  • N 2 nitrogen
  • Ar argon
  • He helium
  • Ne neon
  • Xe xenone
  • Step B After the step A is completed, the reaction gas is supplied to the wafer 200 in the processing chamber 201, that is, the Si-containing layer as the first layer formed on the wafer 200.
  • valve 243b is opened and the reaction gas flows into the gas supply pipe 232b.
  • the flow rate of the reaction gas is adjusted by the MFC 241b, is supplied into the processing chamber 201 via the nozzle 249b, and is exhausted from the exhaust port 231a.
  • the reaction gas is supplied to the wafer 200 (reaction gas supply).
  • the valves 243c to 243e are opened, and the inert gas is supplied into the processing chamber 201 via each of the nozzles 249a to 249c. In some of the methods shown below, the supply of the inert gas into the treatment chamber 201 may not be carried out.
  • Si-containing layer formed on the wafer 200 is nitrided by supplying the nitride gas to the wafer 200 under the treatment conditions described later. (Modified).
  • SiN layer silicon nitrided layer
  • SiN layer is formed on the outermost surface of the wafer 200 as a base as a second layer in which a Si-containing layer is nitrided, that is, a layer containing Si and N. ..
  • the SiN layer When forming the SiN layer, impurities such as Cl contained in the Si-containing layer form a gaseous substance containing at least Cl in the process of reforming the Si-containing layer with the nitride gas, and the inside of the treatment chamber 201 Is discharged from. As a result, the SiN layer becomes a layer having less impurities such as Cl as compared with the Si-containing layer formed in step A.
  • the valve 243b is closed and the supply of the nitride gas into the processing chamber 201 is stopped. Then, by the same treatment procedure as the purge in step A, the gas or the like remaining in the treatment chamber 201 is removed from the treatment chamber 201 (purge).
  • reaction gas for example, nitrogen (N) and hydrogen (H) -containing gas which are nitride gas (nitriding agent) can be used.
  • N and H-containing gas is both an N-containing gas and an H-containing gas.
  • the N and H-containing gas preferably has an N—H bond.
  • reaction gas for example, a hydrogen nitride gas such as ammonia (NH 3 ) gas, diimide (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, and N 3 H 8 gas can be used.
  • a hydrogen nitride gas such as ammonia (NH 3 ) gas, diimide (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, and N 3 H 8 gas can be used.
  • a hydrogen nitride gas such as ammonia (NH 3 ) gas, diimide (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, and N 3 H 8 gas.
  • N nitrogen
  • C carbon
  • H hydrogen
  • N, C and H-containing gas for example, an amine-based gas or an organic hydrazine-based gas can be used.
  • the N, C and H-containing gas are an N-containing gas, a C-containing gas, an H-containing gas, and an N and C-containing gas.
  • reaction gas examples include monoethylamine (C 2 H 5 NH 2 , abbreviated as MEA) gas, diethylamine ((C 2 H 5 ) 2 NH, abbreviated as DEA) gas, and triethylamine ((C 2 H 5 ) 3 N).
  • MEA monoethylamine
  • DEA diethylamine
  • triethylamine ((C 2 H 5 ) 3 N).
  • TEA ethylamine
  • MMA monomethylamine
  • DMA dimethylamine
  • trimethylamine ((CH 3 ) 3 ).
  • TMA methylamine-based gas and other methylamine-based gases
  • organic hydrazine-based gas such as gas, trimethylhydrazine ((CH 3 ) 2 N 2 (CH 3 ) H, abbreviated as TMH) gas can be used.
  • TMH trimethylhydrazine
  • the reaction gas one or more of these can be used.
  • the surface of the wafer 200 is subjected to, for example, silicon nitriding as a film.
  • a film SiN film
  • the above cycle is preferably repeated a plurality of times. That is, the thickness of the SiN layer formed per cycle is made thinner than the desired film thickness, and the thickness of the SiN film formed by laminating the SiN layers becomes the desired thickness. It is preferable to repeat the cycle multiple times.
  • a silicon carbonitriding layer SiCN layer
  • the wafer is subjected to the above cycle a predetermined number of times.
  • a silicon carbonitriding film SiCN film
  • SiCN film can be formed as a film on the surface of the 200.
  • the processing conditions for supplying the raw material gas for the first time are set, and the processing for supplying the raw material gas for the second and subsequent times is performed. It is preferable to set the treatment conditions so that the self-decomposition (gas phase decomposition) of the raw material gas can be suppressed rather than the conditions.
  • step A the raw material gas is divided into a plurality of times and supplied, and at that time, the processing conditions when the raw material gas is first supplied are set to be higher than the processing conditions when the raw material gas is supplied from the second time onward. It is preferable to set the treatment conditions so that the formation of intermediates of the raw material gas can be suppressed.
  • step A the raw material gas is divided into a plurality of times and supplied, and at that time, the processing conditions when the raw material gas is first supplied are set as the processing conditions capable of suppressing autolysis of the raw material gas, and the second time.
  • the processing conditions for supplying the raw material gas are the processing conditions for the raw material gas to self-decompose.
  • step A the raw material gas is divided into a plurality of times and supplied, and at that time, the processing conditions when the raw material gas is first supplied are set as the processing conditions capable of suppressing the formation of the intermediate of the raw material gas. It is preferable that the treatment conditions for supplying the raw material gas from the second time onward are the treatment conditions for producing the intermediate of the raw material gas.
  • step A the raw material gas is supplied in a plurality of times, and at that time, the supply duration of the raw material gas when the raw material gas is first supplied is set, and when the raw material gas is supplied after the second time. It is preferable that the supply duration is shorter than the supply duration of the raw material gas.
  • the raw material gas is supplied in a plurality of times, and at that time, the supply flow rate of the raw material gas when the raw material gas is first supplied is the raw material when the raw material gas is supplied from the second time onward. It is preferably smaller than the gas supply flow rate.
  • step A the raw material gas is supplied in a plurality of times, and at that time, when the raw material gas is supplied to the wafer 200, the inert gas is supplied as the carrier gas, and the raw material gas is supplied first. It is preferable that the supply flow rate of the carrier gas at the time of the operation is larger than the supply flow rate of the carrier gas at the time of supplying the raw material gas from the second time onward.
  • step A the raw material gas is supplied in a plurality of times, and at that time, the partial pressure of the raw material gas when the raw material gas is first supplied is divided into the raw materials when the raw material gas is supplied from the second time onward. It is preferable that the pressure is lower than the partial pressure of the gas.
  • step A the raw material gas is supplied in a plurality of times, and at that time, the pressure in the space where the wafer 200 exists when the raw material gas is first supplied, that is, the pressure in the processing chamber 201 is applied. It is preferable that the pressure is lower than the pressure in the processing chamber 201 when the raw material gas is supplied from the second time onward.
  • step A the raw material gas is supplied in a plurality of times, and at that time, the pressure in the processing chamber 201 when the raw material gas is first supplied is applied to the treatment when the raw material gas is supplied from the second time onward.
  • the pressure may be higher than the pressure in the chamber 201.
  • the supply flow rate of the inert gas supplied into the processing chamber 201 when the raw material gas is first supplied is the inert gas supplied into the processing chamber 201 when the raw material gas is supplied from the second time onward.
  • the partial pressure of the raw material gas when the raw material gas is first supplied is lower than the partial pressure of the raw material gas when the raw material gas is supplied from the second time onward by making the supply flow rate larger than that of.
  • step A the raw material gas is divided and supplied a plurality of times (m times, m is an integer of 2 or more), and at that time, the processing conditions when the raw material gas is first supplied are set to the second and subsequent times.
  • the processing conditions that can suppress the autolysis of the raw material gas rather than the processing conditions when supplying the raw material gas to the vehicle, the self-decomposition of the raw material gas is suppressed in the initial stage of step A, that is, in the initial stage of supplying the raw material gas.
  • the atoms or molecules contained in the raw material gas can be uniformly adsorbed over the entire area in the recesses provided on the surface of the wafer 200.
  • the atoms or molecules contained in the raw material gas can be uniformly adsorbed over the entire area of the initial adsorption site on the outermost surface of the recess.
  • a Si-containing layer having a uniform thickness over the entire area of the recess that is, a Si-containing layer having high step coverage
  • This layer may be a continuous layer or a discontinuous layer. In either case, the layer has high step coverage.
  • Si-containing layer having excellent uniformity and high step coverage as the initial layer in the region in contact with the outermost surface in the recess, even when the treatment conditions are subsequently changed.
  • the Si-containing layer formed thereafter tends to inherit the high uniformity and high step coverage in the initial layer, and continues to be a layer having high uniformity and high step coverage.
  • step A the raw material gas is divided into a plurality of times (m times, m is an integer of 2 or more) and supplied, and at that time, the processing conditions for supplying the raw material gas from the second time onward are first set as the raw material gas.
  • the processing conditions for supplying the raw material gas from the second time onward are first set as the raw material gas.
  • the Si-containing layer formed at this time is after forming the Si-containing layer having high step coverage as the initial layer, it tends to inherit the characteristics and state of the initial layer, and continues to have high step coverage. Become.
  • the first layer (Si-containing layer) that is uniform and conformal over the entire area in the recess provided on the surface of the wafer 200 without lowering the formation rate of the Si-containing layer. ) Can be formed.
  • step A when the raw material gas is divided and supplied a plurality of times (m times, m is an integer of 2 or more) in step A, when m ⁇ 2, first (first time).
  • the time of step a2 for purging the inside of the processing chamber 201 performed after step a1 for supplying the raw material gas is the time of step a2 for purging the inside of the processing chamber 201 performed after step a1 for supplying the raw material gas at the end (mth time). It is preferable to make it shorter than the time.
  • step A when the raw material gas is divided and supplied a plurality of times (m times, m is an integer of 2 or more) and m ⁇ 3, the process performed after the second step a1 in which the raw material gas is supplied.
  • the time of step a2 for purging the inside of the chamber 201 is shorter than the time of step a2 for purging the inside of the processing chamber 201 performed after the step a1 for supplying the raw material gas at the end (mth time).
  • the raw material gas is finally (mth) supplied during the time of step a2 for purging the inside of the processing chamber 201, which is performed after step a1 for supplying the raw material gas in each of the first to m-1 times.
  • the time is shorter than the time of step a2 for purging the inside of the processing chamber 201 performed after step a1.
  • step A when the raw material gas is divided into a plurality of times (m times, m is an integer of 2 or more) and supplied, the inside of the processing chamber 201 performed after step a1 in which the raw material gas is finally supplied (mth time). It is preferable that the time of step a2 for purging is the longest among the times of step a2 to be performed a plurality of times.
  • the treatment conditions in each of the above steps when, for example, chlorosilane gas is used as the raw material gas and, for example, N and H-containing gas is used as the reaction gas are exemplified.
  • the notation of a numerical range such as "1 to 100 Pa" in the present specification means that the lower limit value and the upper limit value are included in the range. Therefore, for example, "1 to 100 Pa” means “1 Pa or more and 100 Pa or less”.
  • the processing temperature in the present specification means the temperature of the wafer 200
  • the processing pressure means the pressure in the processing chamber 201.
  • the gas supply flow rate: 0 sccm means a case where the gas is not supplied.
  • Chlorosilane gas supply flow rate 1 to 500 sccm, preferably 1 to 200 sccm
  • Chlorosilane gas supply duration 1 to 20 seconds, preferably 1 to 10 seconds
  • Inert gas supply flow rate 500 to 30000 sccm, preferably 1000 to 20000 sccm
  • Treatment temperature 250-800 ° C, preferably 600-700 ° C
  • Processing pressure 1 to 2666 Pa, preferably 1 to 1333 Pa, more preferably 1 to 100 Pa
  • Chlorosilane gas partial pressure 0.00003 to 1333Pa, preferably 0.00005 to 222Pa, more preferably 0.00005 to 17Pa.
  • Chlorosilane gas supply flow rate 1 to 2000 sccm, preferably 10 to 1000 sccm
  • Chlorosilane gas supply duration 5 to 40 seconds, preferably 10 to 30 seconds
  • Inert gas supply flow rate 0 to 20000 sccm, preferably 500 to 10000 sccm
  • Processing pressure 1 to 2666 Pa, preferably 67 to 1333 Pa
  • Chlorosilane gas partial pressure 0.00005 to 2666 Pa, preferably 0.06 to 889 Pa Is exemplified.
  • Other processing conditions can be the same processing conditions as when performing the first step a1 in step A.
  • Inert gas supply flow rate 1000 to 20000 sccm
  • the duration of supply of the inert gas is exemplified by 1 to 20 seconds, preferably 1 to 10 seconds.
  • Other processing conditions can be the same processing conditions as when performing the first step a1 in step A.
  • Inert gas supply flow rate 1000 to 30000 sccm
  • the duration of supply of the inert gas 5 to 60 seconds, preferably 10 to 30 seconds is exemplified.
  • Other processing conditions can be the same processing conditions as when performing the first step a1 in step A.
  • step A When the last (mth) step a2 is performed in step A, the treatment chamber is in a state where the supply of the inert gas into the treatment chamber 201 and the supply of the inert gas into the treatment chamber 201 are stopped.
  • the exhaust in 201 may be repeated a plurality of times. That is, when performing step a2 at the end (mth time) in step A, cycle purging may be performed.
  • the processing conditions in step B include N and H-containing gas supply flow rate: 1 to 20000 sccm, preferably 1000 to 10000 sccm Gas supply duration containing N and H: 1 to 120 seconds, preferably 1 to 60 seconds Inert gas supply flow rate: 0 to 20000 sccm, preferably 500 to 10000 sccm Processing pressure: 1 to 4000 Pa, preferably 1 to 3000 Pa Is exemplified.
  • Other processing conditions can be the same as the processing conditions when the first step a1 is performed in step A.
  • the inert gas as a purge gas is supplied into the processing chamber 201 from each of the nozzles 249a to 249c and exhausted from the exhaust port 231a.
  • the inside of the treatment chamber 201 is purged, and the gas, reaction by-products, and the like remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (after-purge).
  • the atmosphere in the processing chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to the normal pressure (return to atmospheric pressure).
  • the seal cap 219 is lowered by the boat elevator 115, and the lower end of the manifold 209 is opened. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the manifold 209 to the outside of the reaction tube 203 while being supported by the boat 217. After the boat is unloaded, the shutter 219s is moved and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter close). The processed wafer 200 is carried out of the reaction tube 203 and then taken out from the boat 217 (wafer discharge).
  • step A the raw material gas is divided into a plurality of times and supplied, and at that time, the processing conditions when the raw material gas is first supplied are set to be higher than the processing conditions when the raw material gas is supplied from the second time onward.
  • the atoms or molecules contained in the raw material gas are efficiently adsorbed over the entire area in the recess. It is possible to make it. As a result, it is possible to improve the step coverage without lowering the film formation rate of the film formed on the wafer 200. Further, the uniformity of the film thickness in the wafer surface of the film formed on the wafer 200 is improved, and for example, the variation in the film thickness is reduced among the upper side surface, the middle side surface, the lower side surface, and the bottom portion in the recess. Is possible.
  • step A the raw material gas is divided into a plurality of times and supplied, and at that time, the processing conditions when the raw material gas is first supplied are set to be higher than the processing conditions when the raw material gas is supplied from the second time onward.
  • the processing conditions so that the formation of intermediates of the raw material gas can be suppressed, the atoms or molecules contained in the raw material gas can be contained in the entire area of the recess while suppressing the formation of the intermediates of the raw material gas at the initial stage of supply of the raw material gas. It becomes possible to uniformly adsorb over the entire area.
  • step A the raw material gas is divided into a plurality of times and supplied, and at that time, the treatment conditions when the raw material gas is first supplied are set as the treatment conditions capable of suppressing autolysis of the raw material gas, and the second time.
  • the processing conditions for supplying the raw material gas thereafter to the processing conditions for the raw material gas to self-decompose the atoms contained in the raw material gas are suppressed while suppressing the formation of intermediates of the raw material gas at the initial stage of supplying the raw material gas.
  • the molecules can be uniformly adsorbed over the entire area of the recess.
  • step A the raw material gas is divided into a plurality of times and supplied, and at that time, the processing conditions when the raw material gas is first supplied are set as the processing conditions capable of suppressing the formation of the intermediate of the raw material gas.
  • the processing conditions for supplying the raw material gas from the second time onward to the processing conditions for producing the intermediate of the raw material gas the raw material is suppressed while suppressing the generation of the intermediate of the raw material gas at the initial stage of supplying the raw material gas.
  • Atoms or molecules contained in the gas can be uniformly adsorbed over the entire area of the recess. After that, it becomes possible to efficiently adsorb atoms or molecules contained in the raw material gas over the entire area of the recess while generating an intermediate of the raw material gas.
  • step A the raw material gas is supplied in a plurality of times, and at that time, the supply duration of the raw material gas when the raw material gas is first supplied is set, and when the raw material gas is supplied after the second time.
  • the supply duration shorter than the supply duration of the raw material gas, it is possible to suppress the autolysis of the raw material gas at the initial stage of the supply of the raw material gas. After that, it is possible to relatively lengthen the time for adsorbing the atoms or molecules contained in the raw material gas into the recesses while relaxing the degree of suppression of autolysis of the raw material gas.
  • step A the raw material gas is supplied in a plurality of times, and at that time, the supply flow rate of the raw material gas when the raw material gas is first supplied is the raw material when the raw material gas is supplied from the second time onward.
  • the flow rate smaller than the gas supply flow rate, it is possible to suppress the autolysis of the raw material gas at the initial stage of the raw material gas supply. After that, it becomes possible to relatively increase the supply flow rate of the raw material gas when adsorbing the atoms or molecules contained in the raw material gas into the recesses, while relaxing the degree of suppression of autolysis of the raw material gas.
  • step A the raw material gas is supplied in a plurality of times, and at that time, the inert gas is supplied as the carrier gas when the raw material gas is supplied to the wafer 200, and the raw material gas is supplied first.
  • the supply flow rate of the carrier gas larger than the supply flow rate of the carrier gas when supplying the raw material gas from the second time onward, it is possible to suppress the self-decomposition of the raw material gas at the initial stage of the raw material gas supply. It will be possible. After that, it is contained in the raw material gas by relaxing the degree of suppression of self-decomposition of the raw material gas and relatively reducing the supply flow rate of the carrier gas when adsorbing the atoms or molecules contained in the raw material gas into the recesses.
  • Atoms or molecules can be efficiently adsorbed over the entire area of the recess. As a result, it is possible to improve the step coverage without lowering the film formation rate of the film formed on the wafer 200. Further, it is possible to improve the uniformity of the film thickness in the wafer surface of the film formed on the wafer 200.
  • step A the raw material gas is supplied in a plurality of times, and at that time, the partial pressure of the raw material gas when the raw material gas is first supplied is divided into the raw materials when the raw material gas is supplied from the second time onward.
  • the partial pressure of the raw material gas when the raw material gas is first supplied is divided into the raw materials when the raw material gas is supplied from the second time onward.
  • step A the raw material gas is supplied in a plurality of times, and at that time, the pressure in the space where the wafer 200 exists (the pressure in the processing chamber 201) at the time of first supplying the raw material gas is set to 2.
  • the pressure in the processing chamber 201 when supplying the raw material gas from the second time onward it is possible to suppress the self-decomposition of the raw material gas at the initial stage of supplying the raw material gas.
  • the pressure in the processing chamber 201 when adsorbing the atoms or molecules contained in the raw material gas into the recesses is relatively increased to obtain the raw material gas.
  • step A the raw material gas is supplied in a plurality of times, and at that time, the pressure in the processing chamber 201 when the raw material gas is first supplied is applied to the treatment when the raw material gas is supplied from the second time onward.
  • the pressure may be higher than the pressure in the chamber 201.
  • the supply flow rate of the inert gas supplied into the processing chamber 201 when the raw material gas is first supplied is the supply flow rate of the inert gas supplied into the processing chamber 201 when the raw material gas is supplied from the second time onward.
  • the partial pressure of the raw material gas when the raw material gas is first supplied can be made lower than the partial pressure of the raw material gas when the raw material gas is supplied from the second time onward. It is possible to obtain the same effect as the effect.
  • step A by alternately repeating steps a1 and a2 a plurality of times, even if an intermediate is generated during the supply of the raw material gas, the intermediate is efficiently removed and the raw material gas is used. It becomes possible to adsorb the contained atoms or molecules in the recesses. That is, it is possible to suppress film formation inhibition due to the formation of an excessive intermediate. As a result, it is possible to improve the step coverage without lowering the film formation rate of the film formed on the wafer 200. Further, it is possible to improve the uniformity of the film thickness in the wafer surface of the film formed on the wafer 200.
  • step coverage of the film formed on the wafer 200 it is possible to improve the step coverage of the film formed on the wafer 200.
  • at least 70% step coverage can be obtained.
  • 80% or more step coverage can be obtained.
  • 85% or more step coverage can be obtained.
  • 90% or more step coverage can be obtained.
  • step A the raw material gas is divided into a plurality of times (m times, m is an integer of 2 or more) and supplied, and at that time, the time of the first (first time) step a2 is set to the last (mth time). ) Is shorter than the time of step a2, so that the total purging time can be shortened and the decrease in the film forming rate can be suppressed.
  • step A the raw material gas is divided and supplied a plurality of times (m times, m is an integer of 2 or more), and when m ⁇ 3, the time of the second step a2 is set.
  • m times m is an integer of 2 or more
  • m ⁇ 3 the time of the second step a2 is set.
  • step A the raw material gas is divided and supplied a plurality of times (m times, m is an integer of 2 or more), and at that time, of the multiple times step a2, the last (mth) step a2 is performed.
  • m times, m is an integer of 2 or more
  • step A it is possible to sufficiently suppress the residual of the raw material gas in the processing chamber 201 after the completion of the last (mth) step a1 among the steps a1 performed a plurality of times.
  • step B it is possible to avoid mixing the raw material gas and the reaction gas in the processing chamber 201 and suppress the generation of particles. This makes it possible to improve the film quality of the film formed on the wafer 200.
  • step A when the raw material gas is divided into a plurality of times (m times, m is an integer of 2 or more) and supplied, immediately after the end of the last (mth) step a2, the raw material gas is introduced into the processing chamber 201. Reaction gas is supplied. Therefore, in order to avoid the generation of particles due to the mixing of the raw material gas remaining in the processing chamber 201 and the reaction gas supplied into the processing chamber 201, it is necessary to sufficiently perform the last (mth) step a2. There is. On the other hand, immediately after the completion of step a2 performed in each of the first to m-1 times, the raw material gas is supplied into the processing chamber 201.
  • step a2 performed in each of the first to m-1 times, it is possible to shorten the purging time as compared with step a2 performed at the last (mth time).
  • C and H-containing gas for example, ethylene (C 2 H 4 ) gas, acetylene (C 2 H 2 ) gas, propylene (C 3 ).
  • Carbon (C) -containing gas such as H 6 ) gas, boron (B) -containing gas such as diborane (B 2 H 6 ) gas and trichloroborane (BCl 3 ) gas, oxygen (O 2 ) gas, ozone (O) 3 ) Gas, plasma-excited O 2 gas (O 2 * ), O 2 gas + hydrogen (H 2 ) gas, water vapor (H 2 O gas), hydrogen peroxide (H 2 O 2 ) gas, nitrogen phosphite
  • oxygen (O) -containing gas such as (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, carbon monoxide (CO) gas, carbon dioxide (CO 2 ) gas, etc. Can be done.
  • the description of two gases such as "O 2 gas + H 2 gas” together means a mixed gas of H 2 gas and O 2 gas.
  • the two gases may be mixed (premixed) in the supply pipe and then supplied into the processing chamber 201, or the two gases may be supplied separately from different supply pipes in the processing chamber. It may be supplied into 201 and mixed (post-mixed) in the processing chamber 201.
  • the reaction gas one or more of these can be used. These are gases having different molecular structures (chemical structures), and can be used as the first reaction gas, the second reaction gas, and the third reaction gas, which will be described later.
  • a silicon acid nitride film SiON film
  • a silicon acid carbonized film SiOC film
  • a silicon acid carbonic acid nitride film SiOCN film
  • the present disclosure can also be applied to the case of forming a Si-containing film such as a silicon boron nitride film (SiBCN film), a silicon boron nitride film (SiBN film), and a silicon oxide film (SiO film).
  • the treatment procedure and treatment conditions for supplying the raw material gas and the reaction gas can be, for example, the same as those in each step of the above-described embodiment. In these cases as well, the same effects as those described above can be obtained.
  • a raw material gas containing a metal element such as aluminum (Al), titanium (Ti), hafnium (Hf), zirconium (Zr), tantalum (Ta), molybdenum (Mo), and tungsten (W) can be used.
  • a metal element such as aluminum (Al), titanium (Ti), hafnium (Hf), zirconium (Zr), tantalum (Ta), molybdenum (Mo), and tungsten (W)
  • AlN film aluminum nitride film
  • TiN film titanium nitride film
  • HfN film hafnium nitride film
  • ZrN film zirconium nitride film
  • TaN tantalum nitride film
  • MoN molybdenum nitride film
  • WN tungsten nitride film
  • AlO film aluminum oxide film
  • TiO film titanium oxide film
  • HfO film hafnium oxide film
  • ZrO film zirconium oxide film
  • tantalum Oxide film TaO film
  • MoO molybdenum oxide film
  • WO titanium acid nitride film
  • TiAlCN film titanium-aluminum carbonitride film
  • TiAlC film titanium-aluminum carbide film
  • TiAlC film titanium
  • the present disclosure can also be applied when forming a film containing a metal element such as a charcoal nitride film (TiCN film).
  • raw material gases are gases having different molecular structures (chemical structures), and in addition to acting as the above-mentioned raw material gas, they also act as the above-mentioned first reaction gas, second reaction gas, and third reaction gas.
  • the treatment procedure and treatment conditions for supplying the raw material gas and the reaction gas can be, for example, the same as those in each step of the above-described embodiment. In these cases as well, the same effects as those described above can be obtained.
  • the recipes used for each process are individually prepared according to the processing content and stored in the storage device 121c via a telecommunication line or an external storage device 123. Then, when starting each process, it is preferable that the CPU 121a appropriately selects an appropriate recipe from the plurality of recipes stored in the storage device 121c according to the processing content. This makes it possible to form films having various film types, composition ratios, film qualities, and film thicknesses with good reproducibility with one substrate processing device. In addition, the burden on the operator can be reduced, and each process can be started quickly while avoiding operation mistakes.
  • the above recipe is not limited to the case of newly creating, for example, it may be prepared by changing an existing recipe already installed in the board processing device.
  • the changed recipe may be installed on the substrate processing apparatus via a telecommunication line or a recording medium on which the recipe is recorded.
  • the input / output device 122 included in the existing board processing device may be operated to directly change the existing recipe already installed in the board processing device.
  • an example of forming a film using a batch type substrate processing apparatus that processes a plurality of substrates at one time has been described.
  • the present disclosure is not limited to the above-described embodiment, and can be suitably applied to, for example, a case where a film is formed by using a single-wafer type substrate processing apparatus that processes one or several substrates at a time.
  • an example of forming a film by using a substrate processing apparatus having a hot wall type processing furnace has been described.
  • the present disclosure is not limited to the above-mentioned embodiment, and can be suitably applied to the case where a film is formed by using a substrate processing apparatus having a cold wall type processing furnace.
  • each processing can be performed under the same processing procedure and processing conditions as the processing procedure and processing conditions in the above-mentioned aspects and modified examples, and the same as the above-mentioned aspects and modified examples. The effect is obtained.
  • the above-mentioned embodiments and modifications can be used in combination as appropriate.
  • the processing procedure and processing conditions at this time can be, for example, the same as the processing procedures and processing conditions in the above-described aspects and modifications.
  • a SiN film was formed as a film on a wafer having recesses on the surface by the film forming sequence shown in FIG. 4, and a first evaluation sample was prepared.
  • HCDS gas was used as the raw material gas
  • NH3 gas was used as the reaction gas.
  • the treatment conditions were set to predetermined conditions within the range of the treatment conditions described in the above-described embodiment.
  • a step of supplying HCDS gas and a step of supplying NH3 gas are performed a plurality of non-simultaneously, on a wafer having a recess on the surface.
  • a SiN film was formed as a film, and a second evaluation sample was prepared.
  • the HCDS gas supply duration per cycle was set to be the same as the total time of the HCDS gas supply duration per cycle in the examples.
  • treatment conditions were the same as the treatment conditions in the step of supplying the HCDS gas a second time in the step of supplying the HCDS gas a plurality of times in the above-mentioned example.
  • Other treatment conditions including the treatment conditions in the step of supplying NH 3 gas, were the same as the treatment conditions in the examples.
  • the step coverage of the SiN film in the recess of the first evaluation sample of the example and the step coverage of the SiN film in the recess of the second evaluation sample of the comparative example were measured.
  • the step coverage of the SiN film in the second evaluation sample of the comparative example was less than 90%, whereas the step coverage of the SiN film in the first evaluation sample of the example was 90% or more. It was confirmed that the step coverage of the SiN film in the second evaluation sample was exceeded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

(a)表面に凹部が設けられた基板に対して原料ガスを供給する工程と、(b)基板に対して反応ガスを供給する工程と、を非同時に行うサイクルを所定回数行うことで、基板上に膜を形成する工程を有し、(a)では、基板に対して原料ガスを複数回に分割して供給し、最初に原料ガスを供給する際における処理条件を、2回目以降に原料ガスを供給する際における処理条件よりも、原料ガスの自己分解を抑制可能な処理条件とする。

Description

半導体装置の製造方法、基板処理装置、およびプログラム
 本開示は、半導体装置の製造方法、基板処理装置、およびプログラムに関する。
 半導体装置の製造工程の一工程として、基板に対して原料ガスや反応ガスを供給し、基板上に膜を形成する基板処理工程が行われる場合がある(例えば特許文献1参照)。
特開2014-208883号公報
 本開示は、基板上に形成される膜の成膜レートを低下させることなく、段差被覆性(ステップカバレッジ)を向上させることを目的とする。
 本開示の一態様によれば、
 (a)表面に凹部が設けられた基板に対して原料ガスを供給する工程と、
 (b)前記基板に対して反応ガスを供給する工程と、
 を非同時に行うサイクルを所定回数行うことで、前記基板上に膜を形成する工程を有し、
 (a)では、前記基板に対して前記原料ガスを複数回に分割して供給し、最初に前記原料ガスを供給する際における処理条件を、2回目以降に前記原料ガスを供給する際における処理条件よりも、前記原料ガスの自己分解を抑制可能な処理条件とする技術が提供される。
 本開示によれば、基板上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能な技術を提供することが可能となる。
図1は、本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉202部分を縦断面図で示す図である。 図2は、本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉202部分を図1のA-A線断面図で示す図である。 図3は、本開示の一態様で好適に用いられる基板処理装置のコントローラ121の概略構成図であり、コントローラ121の制御系をブロック図で示す図である。 図4は、本開示の一態様における成膜シーケンスを示すフロー図であり、原料ガス、反応ガス、および不活性ガスの供給タイミングと原料ガス分圧の推移を示す図である。 図5(a)は、本開示の一態様における成膜シーケンスのステップAの初期段階において、凹部内に初期層が形成された後のウエハ200の表面における断面部分拡大図である。図5(b)は、本開示の一態様における成膜シーケンスのステップAにおいて、凹部内に第1層が形成された後のウエハ200の表面における断面部分拡大図である。
<本開示の一態様>
 以下、本開示の一態様について、主に、図1~図4を参照しながら説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面上の各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
(1)基板処理装置の構成
 図1に示すように、処理炉202は温度調整器(加熱部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス鋼(SUS)等の金属材料により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203はヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。この処理室201内でウエハ200に対する処理が行われる。
 処理室201内には、第1~第3供給部としてのノズル249a~249cが、マニホールド209の側壁を貫通するようにそれぞれ設けられている。ノズル249a~249cを、それぞれ第1~第3ノズルとも称する。ノズル249a~249cは、例えば石英またはSiC等の耐熱性材料により構成されている。ノズル249a~249cには、ガス供給管232a~232cがそれぞれ接続されている。ノズル249a~249cはそれぞれ異なるノズルであり、ノズル249b,249cのそれぞれは、ノズル249aに隣接して設けられている。
 ガス供給管232a~232cには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a~241cおよび開閉弁であるバルブ243a~243cがそれぞれ設けられている。ガス供給管232aのバルブ243aよりも下流側には、ガス供給管232dが接続されている。ガス供給管232bのバルブ243bよりも下流側には、ガス供給管232eが接続されている。ガス供給管232d,232eには、ガス流の上流側から順に、MFC241d,241eおよびバルブ243d,243eがそれぞれ設けられている。ガス供給管232a~232eは、例えばSUS等の金属材料により構成されている。
 図2に示すように、ノズル249a~249cは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a~249cは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。平面視において、ノズル249aは、処理室201内に搬入されるウエハ200の中心を挟んで後述する排気口231aと一直線上に対向するように配置されている。ノズル249b,249cは、ノズル249aと排気口231aの中心とを通る直線Lを、反応管203の内壁(ウエハ200の外周部)に沿って両側から挟み込むように配置されている。直線Lは、ノズル249aとウエハ200の中心とを通る直線でもある。すなわち、ノズル249cは、直線Lを挟んでノズル249bと反対側に設けられているということもできる。ノズル249b,249cは、直線Lを対称軸として線対称に配置されている。ノズル249a~249cの側面には、ガスを供給するガス供給孔250a~250cがそれぞれ設けられている。ガス供給孔250a~250cは、それぞれが、平面視において排気口231aと対向(対面)するように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a~250cは、反応管203の下部から上部にわたって複数設けられている。
 ガス供給管232aからは、原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。
 ガス供給管232bからは、反応ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。なお、反応ガスは、原料ガスとは分子構造(化学構造)が異なる物質である。
 ガス供給管232d,232eからは、不活性ガスが、それぞれMFC241d,241e、バルブ243d,243e、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。また、ガス供給管232cからは、不活性ガスが、MFC241c、バルブ243c、ノズル249cを介して処理室201内へ供給される。不活性ガスは、パージガス、キャリアガス、希釈ガス等として作用する。
 主に、ガス供給管232a、MFC241a、バルブ243aにより、原料ガス供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、反応ガス供給系が構成される。主に、ガス供給管232c~232e、MFC241c~241e、バルブ243c~243eにより、不活性ガス供給系が構成される。
 なお、原料ガスおよび反応ガスのそれぞれ或いは両方を、成膜ガスとも称し、原料ガス供給系および反応ガス供給系のそれぞれ或いは両方を、成膜ガス供給系とも称する。
 上述の各種ガス供給系のうち、いずれか、或いは、全てのガス供給系は、バルブ243a~243eやMFC241a~241e等が集積されてなる集積型ガス供給システム248として構成されていてもよい。集積型ガス供給システム248は、ガス供給管232a~232eのそれぞれに対して接続され、ガス供給管232a~232e内への各種ガスの供給動作、すなわち、バルブ243a~243eの開閉動作やMFC241a~241eによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型ガス供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a~232e等に対して集積ユニット単位で着脱を行うことができ、集積型ガス供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。
 反応管203の側壁下方には、処理室201内の雰囲気を排気する排気口231aが設けられている。図2に示すように、排気口231aは、平面視において、ウエハ200を挟んでノズル249a~249c(ガス供給孔250a~250c)と対向(対面)する位置に設けられている。排気口231aは、反応管203の側壁の下部より上部に沿って、すなわち、ウエハ配列領域に沿って設けられていてもよい。排気口231aには排気管231が接続されている。排気管231は、例えばSUS等の金属材料により構成されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、例えばSUS等の金属材料により構成され、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送装置(搬送機構)として構成されている。
 マニホールド209の下方には、シールキャップ219を降下させボート217を処理室201内から搬出した状態で、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属材料により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241a~241e、バルブ243a~243e、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すことが可能なように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241eによる各種ガスの流量調整動作、バルブ243a~243eの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御することが可能なように構成されている。
 コントローラ121は、外部記憶装置123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。外部記憶装置123は、例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリやSSD等の半導体メモリ等を含む。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200に対し処理を行うシーケンス例、すなわち、ウエハ200上に膜を形成する成膜シーケンス例について、主に、図4を用いて説明する。なお、本態様では、ウエハ200として、その表面にトレンチやホール等の凹部が設けられたシリコン基板(シリコンウエハ)を用いる例について説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
 本態様における成膜シーケンスでは、
 表面に凹部が設けられたウエハ200に対して原料ガスを供給するステップAと、
 ウエハ200に対して反応ガスを供給するステップBと、
 を非同時に行うサイクルを所定回数(n回、nは1以上の整数)行うことで、ウエハ200上に膜を形成する。
 なお、本態様における成膜シーケンスでは、
 ステップAにおいて、ウエハ200に対して原料ガスを複数回(m回、mは2以上の整数)に分割して供給し、最初に原料ガスを供給する際における処理条件を、2回目以降に原料ガスを供給する際における処理条件よりも、原料ガスの自己分解を抑制可能な処理条件とする。なお、図4は、一例として、ステップAにおいて、ウエハ200に対して原料ガスを3回に分割して断続的に供給する場合(m=3とする場合)を示している。
 本明細書では、上述の成膜シーケンスを、便宜上、以下のように示すこともある。以下の変形例や他の態様の説明においても、同様の表記を用いる。
(原料ガス×m→反応ガス)×n
 なお、図4に示すように、ステップAと、ステップBと、を交互にn回(nは1以上の整数)行う際、それらの間に処理室201内をパージするステップを挟むようにすることが好ましい。また、図4に示すように、原料ガスをm回(mは1以上の整数)に分割して間欠供給する際も、それらの間に処理室201内をパージするステップを挟むようにすることが好ましい。この場合の成膜シーケンスは、以下のように示すことができる。
[(原料ガス→パージ)×m→反応ガス→パージ]×n
 なお、図4では、本態様における成膜シーケンスの一例として、原料ガス、反応ガス、および不活性ガスのそれぞれのガスの供給タイミングの一例と、それに伴う原料ガス分圧の推移の一例を示している。
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)された後、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(圧力調整および温度調整)
 ボートロードが終了した後、処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される(圧力調整)。また、処理室201内のウエハ200が所望の処理温度となるように、ヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される(温度調整)。また、回転機構267によるウエハ200の回転を開始する。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
(成膜処理)
 その後、以下のステップA,Bを順次実行する。
[ステップA]
 本ステップでは、処理室201内のウエハ200に対して原料ガスを複数回に分割して供給する。具体的には、ウエハ200に対して原料ガスを供給するステップa1と、ウエハ200が存在する空間である処理室201内をパージするステップa2と、を交互に複数回(m回、mは2以上の整数)繰り返す。
 ステップa1においては、バルブ243aを開き、ガス供給管232a内へ原料ガスを流す。原料ガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対して原料ガスが供給される(原料ガス供給)。このとき、バルブ243c~243eを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給する。なお、以下に示すいくつかの方法においては、処理室201内への不活性ガスの供給を不実施とするようにしてもよい。
 ステップa2においては、バルブ243aを閉じ、処理室201内への原料ガスの供給を停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス等を処理室201内から排除する。このとき、バルブ243c~243eを開き、処理室201内へパージガスとして不活性ガスを供給し、排気口231aより排気して、処理室201内を不活性ガスでパージする(パージ)。
 原料ガスとして、例えば、後述するクロロシランガスを用いる場合、後述する処理条件下でステップa1,a2を交互に所定回数繰り返し、ウエハ200に対してクロロシランガスを複数回に分割して供給することにより、下地としてのウエハ200の最表面上に、第1層として、所定の厚さの塩素(Cl)を含むシリコン(Si)含有層が形成される。Clを含むSi含有層は、ウエハ200の最表面への、クロロシランガスの分子の物理吸着や化学吸着、クロロシランガスの一部が分解した物質の分子の物理吸着や化学吸着、クロロシランガスの熱分解によるSiの堆積等により形成される。Clを含むSi含有層は、クロロシランガスの分子やクロロシランガスの一部が分解した物質の分子の吸着層(物理吸着層や化学吸着層)であってもよく、Clを含むSiの堆積層であってもよい。ウエハ200の最表面に上述の化学吸着層や上述の堆積層が形成される場合、ウエハ200の最表面には、クロロシランガスに含まれるSiが吸着することとなる。本明細書では、Clを含むSi含有層を、単に、Si含有層とも称する。
 原料ガスとしては、例えば、ウエハ200上に形成される膜を構成する主元素としてのSiを含むシラン系ガスを用いることができる。シラン系ガスとしては、例えば、Siおよびハロゲンを含むガス、すなわち、ハロシランガスを用いることができる。ハロゲンには、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等が含まれる。ハロシランガスとしては、例えば、SiおよびClを含むクロロシランガスを用いることができる。
 原料ガスとしては、例えば、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、ヘキサクロロジシランガス(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等のクロロシランガスを用いることができる。原料ガスとしては、これらのうち1以上を用いることができる。
 原料ガスとしては、クロロシランガスの他、例えば、テトラフルオロシラン(SiF)ガス、ジフルオロシラン(SiH)ガス等のフルオロシランガスや、テトラブロモシラン(SiBr)ガス、ジブロモシラン(SiHBr)ガス等のブロモシランガスや、テトラヨードシラン(SiI)ガス、ジヨードシラン(SiH)ガス等のヨードシランガスを用いることもできる。原料ガスとしては、これらのうち1以上を用いることができる。
 原料ガスとしては、これらの他、例えば、Siおよびアミノ基を含むガス、すなわち、アミノシランガスを用いることもできる。アミノ基とは、アンモニア、第一級アミン又は第二級アミンから水素(H)を除去した1価の官能基のことであり、-NH,-NHR,-NRのように表すことができる。なお、Rはアルキル基を示し、-NRの2つのRは、同一であってもよいし、異なっていてもよい。
 原料ガスとしては、例えば、テトラキス(ジメチルアミノ)シラン(Si[N(CH、略称:4DMAS)ガス、トリス(ジメチルアミノ)シラン(Si[N(CHH、略称:3DMAS)ガス、ビス(ジエチルアミノ)シラン(Si[N(C、略称:BDEAS)ガス、ビス(ターシャリーブチルアミノ)シラン(SiH[NH(C)]、略称:BTBAS)ガス、(ジイソプロピルアミノ)シラン(SiH[N(C]、略称:DIPAS)ガス等のアミノシランガスを用いることもできる。原料ガスとしては、これらのうち1以上を用いることができる。
 不活性ガスとしては、例えば、窒素(N)ガスや、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いることができる。不活性ガスとしては、これらのうち1以上を用いることができる。この点は、後述する各ステップにおいても同様である。
[ステップB]
 ステップAが終了した後、処理室201内のウエハ200、すなわち、ウエハ200上に形成された第1層としてのSi含有層に対して反応ガスを供給する。
 具体的には、バルブ243bを開き、ガス供給管232b内へ反応ガスを流す。反応ガスは、MFC241bにより流量調整され、ノズル249bを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対して反応ガスが供給される(反応ガス供給)。このとき、バルブ243c~243eを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給する。なお、以下に示すいくつかの方法においては、処理室201内への不活性ガスの供給を不実施とするようにしてもよい。
 反応ガスとして、例えば、後述する窒化ガスを用いる場合、後述する処理条件下でウエハ200に対して窒化ガスを供給することにより、ウエハ200上に形成されたSi含有層の少なくとも一部が窒化(改質)される。結果として、下地としてのウエハ200の最表面上に、第2層として、Si含有層が窒化されてなる層、すなわち、SiおよびNを含む層として、シリコン窒化層(SiN層)が形成される。SiN層を形成する際、Si含有層に含まれていたCl等の不純物は、窒化ガスによるSi含有層の改質反応の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。これにより、SiN層は、ステップAで形成されたSi含有層に比べて、Cl等の不純物が少ない層となる。
 第2層としてのSiN層が形成された後、バルブ243bを閉じ、処理室201内への窒化ガスの供給を停止する。そして、ステップAにおけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 反応ガスとしては、例えば、窒化ガス(窒化剤)である窒素(N)及び水素(H)含有ガスを用いることができる。N及びH含有ガスは、N含有ガスでもあり、H含有ガスでもある。N及びH含有ガスは、N-H結合を有することが好ましい。
 反応ガスとしては、例えば、アンモニア(NH)ガス、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等の窒化水素系ガスを用いることができる。反応ガスとしては、これらのうち1以上を用いることができる。
 反応ガスとしては、これらの他、例えば、窒素(N)、炭素(C)及び水素(H)含有ガスを用いることもできる。N,C及びH含有ガスとしては、例えば、アミン系ガスや有機ヒドラジン系ガスを用いることができる。N,C及びH含有ガスは、N含有ガスでもあり、C含有ガスでもあり、H含有ガスでもあり、N及びC含有ガスでもある。
 反応ガスとしては、例えば、モノエチルアミン(CNH、略称:MEA)ガス、ジエチルアミン((CNH、略称:DEA)ガス、トリエチルアミン((CN、略称:TEA)ガス等のエチルアミン系ガスや、モノメチルアミン(CHNH、略称:MMA)ガス、ジメチルアミン((CHNH、略称:DMA)ガス、トリメチルアミン((CHN、略称:TMA)ガス等のメチルアミン系ガスや、モノメチルヒドラジン((CH)HN、略称:MMH)ガス、ジメチルヒドラジン((CH、略称:DMH)ガス、トリメチルヒドラジン((CH(CH)H、略称:TMH)ガス等の有機ヒドラジン系ガス等を用いることができる。反応ガスとしては、これらのうち1以上を用いることができる。
[所定回数実施]
 上述のステップA,Bを非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハ200の表面上に、膜として、例えば、シリコン窒化膜(SiN膜)を形成することができる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成されるSiN層の厚さを所望の膜厚よりも薄くし、SiN層を積層することで形成されるSiN膜の厚さが所望の厚さになるまで、上述のサイクルを複数回繰り返すことが好ましい。なお、反応ガスとして、N,C及びH含有ガスを用いる場合、第2層として、例えば、シリコン炭窒化層(SiCN層)を形成することもでき、上述のサイクルを所定回数行うことで、ウエハ200の表面上に、膜として、例えば、シリコン炭窒化膜(SiCN膜)を形成することもできる。
 なお、上述のように、本態様では、ステップAにおいて原料ガスを複数回(m回、mは2以上の整数)に分割して供給することが好ましい。この際、すなわち、ステップAにおいて原料ガスを複数回に分割して間欠的にパルス供給する際、最初に原料ガスを供給する際における処理条件を、2回目以降に原料ガスを供給する際における処理条件よりも、原料ガスの自己分解(気相分解)を抑制可能な処理条件とすることが好ましい。
 例えば、ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における処理条件を、2回目以降に原料ガスを供給する際における処理条件よりも、原料ガスの中間体の生成を抑制可能な処理条件とすることが好ましい。
 また例えば、ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における処理条件を、原料ガスの自己分解を抑制可能な処理条件とし、2回目以降に原料ガスを供給する際における処理条件を、原料ガスが自己分解する処理条件とすることが好ましい。
 また例えば、ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における処理条件を、原料ガスの中間体の生成を抑制可能な処理条件とし、2回目以降に原料ガスを供給する際における処理条件を、原料ガスの中間体が生成される処理条件とすることが好ましい。
 また例えば、ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における原料ガスの供給継続時間を、2回目以降に原料ガスを供給する際における原料ガスの供給継続時間よりも、短くすることが好ましい。
 また例えば、ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における原料ガスの供給流量を、2回目以降に原料ガスを供給する際における原料ガスの供給流量よりも、小さくすることが好ましい。
 また例えば、ステップAでは、原料ガスを複数回に分割して供給し、その際、ウエハ200に対して原料ガスを供給する際にキャリアガスとして不活性ガスを供給し、最初に原料ガスを供給する際におけるキャリアガスの供給流量を、2回目以降に原料ガスを供給する際におけるキャリアガスの供給流量よりも、大きくすることが好ましい。
 また例えば、ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における原料ガスの分圧を、2回目以降に原料ガスを供給する際における原料ガスの分圧よりも、低くすることが好ましい。
 また例えば、ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際におけるウエハ200が存在する空間の圧力、すなわち、処理室201内の圧力を、2回目以降に原料ガスを供給する際における処理室201内の圧力よりも、低くすることが好ましい。
 なお、ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における処理室201内の圧力を、2回目以降に原料ガスを供給する際における処理室201内の圧力以上の圧力とすることもできる。ただし、この場合、最初に原料ガスを供給する際に処理室201内へ供給する不活性ガスの供給流量を、2回目以降に原料ガスを供給する際に処理室201内へ供給する不活性ガスの供給流量よりも大きくすることで、最初に原料ガスを供給する際における原料ガスの分圧を、2回目以降に原料ガスを供給する際における原料ガスの分圧よりも低くすることが好ましい。
 これらのように、ステップAにおいて原料ガスを複数回(m回、mは2以上の整数)に分割して供給し、その際、最初に原料ガスを供給する際における処理条件を、2回目以降に原料ガスを供給する際における処理条件よりも、原料ガスの自己分解を抑制可能な処理条件とすることにより、ステップAの初期段階、すなわち、原料ガス供給初期において、原料ガスの自己分解を抑制しつつ、原料ガスに含まれる原子または分子を、ウエハ200の表面に設けられた凹部内の全域にわたり均一に吸着させることが可能となる。すなわち、原料ガス供給初期に、凹部内の最表面における初期吸着サイトの全域にわたり、均一に、原料ガスに含まれる原子または分子を吸着させることが可能となる。これにより、図5(a)に示すように、凹部内の最表面に、初期層として、凹部内の全域にわたり均一な厚さを有するSi含有層、すなわち、高いステップカバレッジを有するSi含有層を形成することが可能となる。この層は、連続層となることもあり、不連続層となることもある。いずれの場合においても、高いステップカバレッジを有する層となる。
 このように、凹部内の最表面と接する領域に、初期層として、均一性に優れ、高いステップカバレッジを有するSi含有層を形成することにより、その後に処理条件を変更した場合であっても、その後に形成されるSi含有層は、初期層における高い均一性と、高いステップカバレッジを引き継ぐ傾向があり、引き続き、高い均一性と高いステップカバレッジを有する層となる。
 また、ステップAにおいて原料ガスを複数回(m回、mは2以上の整数)に分割して供給し、その際、2回目以降に原料ガスを供給する際における処理条件を、最初に原料ガスを供給する際における処理条件よりも、原料ガスの自己分解を許容する処理条件とすることにより、2回目以降に原料ガスを供給する際に、原料ガスの自己分解の抑制度合を緩和させつつ、例えば、原料ガスの自己分解を許容しつつ、原料ガスに含まれる原子または分子を、凹部内の全域にわたり効率的に吸着させることが可能となる。すなわち、初期層が形成された凹部内の表面上に、比較的高い形成レートでSi含有層を形成することが可能となる。このとき形成されるSi含有層は、初期層として高いステップカバレッジを有するSi含有層を形成した後であるため、初期層の特性や状態を引き継ぐ傾向があり、引き続き、高いステップカバレッジを有することとなる。
 これらにより、Si含有層の形成レートを低下させることなく、図5(b)に示すように、ウエハ200の表面に設けられた凹部内の全域にわたり均一でコンフォーマルな第1層(Si含有層)を形成することが可能となる。結果として、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となり、ウエハ200の表面に設けられた凹部内の全域にわたり均一でコンフォーマルな膜を形成することが可能となる。
 なお、理由については後述するが、ステップAにおいて原料ガスを複数回(m回、mは2以上の整数)に分割して供給する際、m≧2の場合に、最初に(1回目に)原料ガスを供給するステップa1の後に行う処理室201内をパージするステップa2の時間を、最後に(m回目に)原料ガスを供給するステップa1の後に行う処理室201内をパージするステップa2の時間よりも短くすることが好ましい。
 また、ステップAにおいて原料ガスを複数回(m回、mは2以上の整数)に分割して供給する際、m≧3の場合に、2回目に原料ガスを供給するステップa1の後に行う処理室201内をパージするステップa2の時間を、最後に(m回目に)原料ガスを供給するステップa1の後に行う処理室201内をパージするステップa2の時間よりも短くすることが好ましい。なお、この場合、1回目~m-1回目のそれぞれにおける、原料ガスを供給するステップa1の後に行う処理室201内をパージするステップa2の時間を、最後に(m回目に)原料ガスを供給するステップa1の後に行う処理室201内をパージするステップa2の時間よりも短くすることが好ましい。
 また、ステップAにおいて原料ガスを複数回(m回、mは2以上の整数)に分割して供給する際、最後に(m回目に)原料ガスを供給するステップa1の後に行う処理室201内をパージするステップa2の時間を、複数回行うステップa2の各時間のうち、最も長くすることが好ましい。
 以下に、原料ガスとして、例えば、クロロシランガスを用い、反応ガスとして、例えば、N及びH含有ガスを用いる場合の上述の各ステップにおける処理条件を例示する。なお、本明細書における「1~100Pa」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「1~100Pa」とは「1Pa以上100Pa以下」を意味する。他の数値範囲についても同様である。また、本明細書における処理温度とはウエハ200の温度のことを意味し、処理圧力とは処理室201内の圧力のことを意味する。また、ガス供給流量:0sccmとは、そのガスを供給しないケースを意味する。これらは、以下の説明においても同様である。
 ステップAにおいて1回目にステップa1を行う際の処理条件としては、
 クロロシランガス供給流量:1~500sccm、好ましくは1~200sccm
 クロロシランガス供給継続時間:1~20秒、好ましくは1~10秒
 不活性ガス供給流量:500~30000sccm、好ましくは1000~20000sccm
 処理温度:250~800℃、好ましくは600~700℃
 処理圧力:1~2666Pa、好ましくは1~1333Pa、より好ましくは1~100Pa
 クロロシランガス分圧:0.00003~1333Pa、好ましくは0.00005~222Pa、より好ましくは0.00005~17Pa
 が例示される。
 ステップAにおいて2回目以降にステップa1を行う際の処理条件としては、
 クロロシランガス供給流量:1~2000sccm、好ましくは10~1000sccm
 クロロシランガス供給継続時間:5~40秒、好ましくは10~30秒
 不活性ガス供給流量:0~20000sccm、好ましくは500~10000sccm
 処理圧力:1~2666Pa、好ましくは67~1333Pa
 クロロシランガス分圧:0.00005~2666Pa、好ましくは0.06~889Pa
 が例示される。他の処理条件は、ステップAにおいて1回目のステップa1を行う際の処理条件と同様な処理条件とすることができる。
 ステップAにおいて1回目~m-1回目にステップa2を行う際の処理条件としては、
 不活性ガス供給流量:1000~20000sccm
 不活性ガス供給継続時間:1~20秒、好ましくは1~10秒
 が例示される。他の処理条件は、ステップAにおいて1回目のステップa1を行う際の処理条件と同様な処理条件とすることができる。
 ステップAにおいて最後(m回目)にステップa2を行う際の処理条件としては、
 不活性ガス供給流量:1000~30000sccm
 不活性ガス供給継続時間:5~60秒、好ましくは10~30秒
 が例示される。他の処理条件は、ステップAにおいて1回目のステップa1を行う際の処理条件と同様な処理条件とすることができる。
 なお、ステップAにおいて最後(m回目)にステップa2を行う際は、処理室201内への不活性ガスの供給と、処理室201内への不活性ガスの供給を停止した状態での処理室201内の排気と、を複数回繰り返すようにしてもよい。すなわち、ステップAにおいて最後(m回目)にステップa2を行う際は、サイクルパージを行うようにしてもよい。
 ステップBにおける処理条件としては、
 N及びH含有ガス供給流量:1~20000sccm、好ましくは1000~10000sccm
 N及びH含有ガス供給継続時間:1~120秒、好ましくは1~60秒
 不活性ガス供給流量:0~20000sccm、好ましくは500~10000sccm
 処理圧力:1~4000Pa、好ましくは1~3000Pa
 が例示される。他の処理条件は、ステップAにおいて1回目のステップa1を行う際の処理条件と同様とすることができる。
(アフターパージおよび大気圧復帰)
 ウエハ200上への所望の厚さの膜の形成が完了した後、ノズル249a~249cのそれぞれから、パージガスとしての不活性ガスを処理室201内へ供給し、排気口231aより排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物等が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロードおよびウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
(3)本態様による効果
 本態様によれば、以下に示す1つ又は複数の効果が得られる。
(a)ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における処理条件を、2回目以降に原料ガスを供給する際における処理条件よりも、原料ガスの自己分解を抑制可能な処理条件とすることにより、原料ガス供給初期において、原料ガスの自己分解を抑制しつつ、原料ガスに含まれる原子または分子を、凹部内の全域にわたり均一に吸着させることが可能となる。その後は、それまでよりも原料ガスの自己分解の抑制度合を緩和させつつ、例えば、原料ガスの自己分解を許容しつつ、原料ガスに含まれる原子または分子を凹部内の全域にわたり効率的に吸着させることが可能となる。これらの結果、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となる。また、ウエハ200上に形成される膜のウエハ面内膜厚均一性を向上させ、例えば、凹部内の上部側面、中部側面、下部側面、底部間において、膜の厚さのばらつきを小さくすることが可能となる。
(b)ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における処理条件を、2回目以降に原料ガスを供給する際における処理条件よりも、原料ガスの中間体の生成を抑制可能な処理条件とすることにより、原料ガス供給初期において、原料ガスの中間体の生成を抑制しつつ、原料ガスに含まれる原子または分子を凹部内の全域にわたり均一に吸着させることが可能となる。その後は、それまでよりも原料ガスの中間体生成の抑制度合を緩和させつつ、例えば、原料ガスの中間体の生成を許容しつつ、原料ガスに含まれる原子または分子を凹部内の全域にわたり効率的に吸着させることが可能となる。これらの結果、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となる。また、ウエハ200上に形成される膜のウエハ面内膜厚均一性を向上させることが可能となる。
(c)ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における処理条件を、原料ガスの自己分解を抑制可能な処理条件とし、2回目以降に原料ガスを供給する際における処理条件を、原料ガスが自己分解する処理条件とすることにより、原料ガス供給初期において、原料ガスの中間体の生成を抑制しつつ、原料ガスに含まれる原子または分子を凹部内の全域にわたり均一に吸着させることが可能となる。その後は、原料ガスを自己分解させつつ、原料ガスに含まれる原子または分子を凹部内の全域にわたり効率的に吸着させることが可能となる。これらの結果、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となる。また、ウエハ200上に形成される膜のウエハ面内膜厚均一性を向上させることが可能となる。なお、この方法によれば、2回目以降に原料ガスを供給する際における原料ガスに含まれる原子または分子の凹部内への吸着効率を高めることができ、成膜レートをより高めることが可能となる。
(d)ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における処理条件を、原料ガスの中間体の生成を抑制可能な処理条件とし、2回目以降に原料ガスを供給する際における処理条件を、原料ガスの中間体が生成される処理条件とすることにより、原料ガス供給初期において、原料ガスの中間体の生成を抑制しつつ、原料ガスに含まれる原子または分子を凹部内の全域にわたり均一に吸着させることが可能となる。その後は、原料ガスの中間体を生成させつつ、原料ガスに含まれる原子または分子を凹部内の全域にわたり効率的に吸着させることが可能となる。これらの結果、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となる。また、ウエハ200上に形成される膜のウエハ面内膜厚均一性を向上させることが可能となる。なお、この方法によれば、2回目以降に原料ガスを供給する際における原料ガスに含まれる原子または分子の凹部内への吸着効率を高めることができ、成膜レートをより高めることが可能となる。
(e)ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における原料ガスの供給継続時間を、2回目以降に原料ガスを供給する際における原料ガスの供給継続時間よりも、短くすることにより、原料ガス供給初期において、原料ガスの自己分解を抑制することが可能となる。その後は、原料ガスの自己分解の抑制度合を緩和させつつ、原料ガスに含まれる原子または分子を凹部内に吸着させる時間を相対的に長くすることが可能となる。これらの結果、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となる。また、ウエハ200上に形成される膜のウエハ面内膜厚均一性を向上させることが可能となる。
(f)ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における原料ガスの供給流量を、2回目以降に原料ガスを供給する際における原料ガスの供給流量よりも、小さくすることにより、原料ガス供給初期において、原料ガスの自己分解を抑制することが可能となる。その後は、原料ガスの自己分解の抑制度合を緩和させつつ、原料ガスに含まれる原子または分子を凹部内に吸着させる際の原料ガスの供給流量を相対的に大きくすることが可能となる。これらの結果、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となる。また、また、ウエハ200上に形成される膜のウエハ面内膜厚均一性を向上させることが可能となる。
(g)ステップAでは、原料ガスを複数回に分割して供給し、その際、ウエハ200に対して原料ガスを供給する際にキャリアガスとして不活性ガスを供給し、最初に原料ガスを供給する際におけるキャリアガスの供給流量を、2回目以降に原料ガスを供給する際におけるキャリアガスの供給流量よりも、大きくすることにより、原料ガス供給初期において、原料ガスの自己分解を抑制することが可能となる。その後は、原料ガスの自己分解の抑制度合を緩和させつつ、原料ガスに含まれる原子または分子を凹部内に吸着させる際のキャリアガスの供給流量を相対的に小さくすることにより、原料ガスに含まれる原子または分子を凹部内の全域にわたり効率的に吸着させることが可能となる。これらの結果、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となる。また、ウエハ200上に形成される膜のウエハ面内膜厚均一性を向上させることが可能となる。
(h)ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における原料ガスの分圧を、2回目以降に原料ガスを供給する際における原料ガスの分圧よりも、低くすることにより、原料ガス供給初期において、原料ガスの自己分解を抑制することが可能となる。その後は、原料ガスの自己分解の抑制度合を緩和させつつ、原料ガスに含まれる原子または分子を凹部内に吸着させる際の原料ガスの分圧を相対的に大きくすることにより、原料ガスに含まれる原子または分子を凹部内の全域にわたり効率的に吸着させることが可能となる。これらの結果、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となる。また、また、ウエハ200上に形成される膜のウエハ面内膜厚均一性を向上させることが可能となる。
(i)ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際におけるウエハ200が存在する空間の圧力(処理室201内の圧力)を、2回目以降に原料ガスを供給する際における処理室201内の圧力よりも、低くすることにより、原料ガス供給初期において、原料ガスの自己分解を抑制することが可能となる。その後は、原料ガスの自己分解の抑制度合を緩和させつつ、原料ガスに含まれる原子または分子を凹部内に吸着させる際の処理室201内の圧力を相対的に大きくすることにより、原料ガスに含まれる原子または分子を凹部内の全域にわたり効率的に吸着させることが可能となる。これらの結果、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となる。また、ウエハ200上に形成される膜のウエハ面内膜厚均一性を向上させることが可能となる。
 なお、ステップAでは、原料ガスを複数回に分割して供給し、その際、最初に原料ガスを供給する際における処理室201内の圧力を、2回目以降に原料ガスを供給する際における処理室201内の圧力以上の圧力とすることもできる。この場合、最初に原料ガスを供給する際に処理室201内へ供給する不活性ガスの供給流量を、2回目以降に原料ガスを供給する際に処理室201内へ供給する不活性ガスの供給流量よりも大きくすることで、最初に原料ガスを供給する際における原料ガスの分圧を、2回目以降に原料ガスを供給する際における原料ガスの分圧よりも低くすることができ、上述の効果と同様の効果を得ることが可能となる。
(j)ステップAでは、ステップa1とステップa2とを交互に複数回繰り返すことにより、原料ガス供給途中に中間体が生じた場合であっても、中間体を効率よく除去しつつ、原料ガスに含まれる原子または分子を凹部内に吸着させることが可能となる。すなわち、過剰な中間体の生成に起因する成膜阻害を抑制することが可能となる。この結果、ウエハ200上に形成される膜の成膜レートを低下させることなく、ステップカバレッジを向上させることが可能となる。また、ウエハ200上に形成される膜のウエハ面内膜厚均一性を向上させることが可能となる。
(k)以上述べた通り、本態様によれば、ウエハ200上に形成される膜のステップカバレッジを向上させることが可能となる。例えば、本態様によれば、少なくとも70%のステップカバレッジを得ることができる。また、例えば、本態様における上述のいずれかの方法によれば、80%以上のステップカバレッジを得ることもできる。また、例えば、本態様における上述のいずれかの方法によれば、85%以上のステップカバレッジを得ることもできる。更に、例えば、本態様における上述のいずれかの方法によれば、90%以上のステップカバレッジを得ることもできる。
(l)ステップAでは、原料ガスを複数回(m回、mは2以上の整数)に分割して供給し、その際、最初(1回目)に行うステップa2の時間を、最後(m回目)に行うステップa2の時間よりも短くすることにより、トータルでのパージ時間を短縮させ、成膜レートの低下を抑制することが可能となる。
(m)ステップAでは、原料ガスを複数回(m回、mは2以上の整数)に分割して供給し、その際、m≧3の場合に、2回目に行うステップa2の時間を、最後(m回目)に行うステップa2の時間よりも短くすることにより、トータルでのパージ時間を短縮させ、成膜レートの低下を抑制することが可能となる。この場合、1回目~m-1回目のそれぞれにおいて行うステップa2の時間を、最後(m回目)に行うステップa2の時間よりも短くすることもでき、これにより、トータルでのパージ時間を短縮させ、成膜レートの低下を抑制することが可能となる。
(n)ステップAでは、原料ガスを複数回(m回、mは2以上の整数)に分割して供給し、その際、複数回行うステップa2のうち、最後(m回目)に行うステップa2の時間を、最も長くすることにより、トータルでのパージ時間を短縮させ、成膜レートの低下を抑制することが可能となる。また、ステップAにおいて、複数回行うステップa1のうち、最後(m回目)に行うステップa1が終了した後の、処理室201内における原料ガスの残留を充分に抑制することが可能となる。その結果、その後にステップBを行う際において、処理室201内での原料ガスと反応ガスとの混合を回避し、パーティクルの発生を抑制することが可能となる。これにより、ウエハ200上に形成される膜の膜質を向上させることが可能となる。
 なお、ステップAにおいて、原料ガスを複数回(m回、mは2以上の整数)に分割して供給する際に、最後(m回目)に行うステップa2の終了直後に、処理室201内へ反応ガスが供給される。そのため、処理室201内に残留した原料ガスと、処理室201内へ供給された反応ガスと、の混合によるパーティクルの発生を避けるために、最後(m回目)に行うステップa2は充分に行う必要がある。これに対して、1回目~m-1回目のそれぞれにおいて行うステップa2の終了直後には、処理室201内へ原料ガスが供給される。そのため、処理室201内に残留した原料ガスと、処理室201内へ供給された原料ガスと、が混合する可能性はあるが、たとえ、それらが混合した場合であっても、それらは同じ物質同士であることから、パーティクルが発生することはない。それゆえ、1回目~m-1回目のそれぞれにおいて行うステップa2では、最後(m回目)に行うステップa2よりも、パージ時間を短縮させることが可能となる。
(o)上述の効果は、上述の各種原料ガス、上述の反応ガス、上述の各種不活性ガスを用いる場合にも、同様に得ることができる。ただし、上述の効果は、原料ガスとしてハロシランガスを用いる場合に、顕著に得られることになる。また、上述の効果は、原料ガスとしてクロロシランガスを用いる場合に、特に顕著に得られることになる。
<本開示の他の態様>
 以上、本開示の態様を具体的に説明した。しかしながら、本開示は上述の態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、反応ガスとしては、上述のN及びH含有ガスや、N,C及びH含有ガスの他、例えば、エチレン(C)ガス、アセチレン(C)ガス、プロピレン(C)ガス等の炭素(C)含有ガスや、ジボラン(B)ガス、トリクロロボラン(BCl)ガス等の硼素(B)含有ガスや、酸素(O)ガス、オゾン(O)ガス、プラズマ励起されたOガス(O )、Oガス+水素(H)ガス、水蒸気(HOガス)、過酸化水素(H)ガス、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等の酸素(O)含有ガス等を用いることができる。なお、本明細書において「Oガス+Hガス」というような2つのガスの併記記載は、HガスとOガスとの混合ガスを意味している。混合ガスを供給する場合は、2つのガスを供給管内で混合(プリミックス)させた後、処理室201内へ供給するようにしてもよいし、2つのガスを異なる供給管より別々に処理室201内へ供給し、処理室201内で混合(ポストミックス)させるようにしてもよい。反応ガスとしては、これらのうち1以上を用いることができる。なお、これらは、それぞれ、分子構造(化学構造)が異なるガスであり、後述する第1反応ガスや第2反応ガスや第3反応ガスとして用いることができる。
 そして、以下に示す成膜シーケンスにより、基板上に、SiN膜やSiCN膜の他、シリコン酸窒化膜(SiON膜)、シリコン酸炭化膜(SiOC膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン硼炭窒化膜(SiBCN膜)、シリコン硼窒化膜(SiBN膜)、シリコン酸化膜(SiO膜)等のSiを含む膜を形成する場合にも、本開示を適用することができる。原料ガス、反応ガスを供給する際の処理手順、処理条件は、例えば、上述の態様の各ステップにおけるそれらと同様とすることができる。これらの場合においても、上述の態様と同様の効果が得られる。
[(原料ガス→パージ)×m→反応ガス→パージ]×n
[(原料ガス→パージ)×m→第1反応ガス→パージ→第2反応ガス→パージ]×n
[(原料ガス→パージ)×m→第1反応ガス→パージ→第2反応ガス→パージ→第3反応ガス→パージ]×n
 また例えば、原料ガスとして、アルミニウム(Al)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、タンタル(Ta)、モリブデン(Mo)、タングステン(W)等の金属元素を含む原料ガスを用い、上述の成膜シーケンスにより、基板上に、アルミニウム窒化膜(AlN膜)、チタン窒化膜(TiN膜)、ハフニウム窒化膜(HfN膜)、ジルコニウム窒化膜(ZrN膜)、タンタル窒化膜(TaN膜)、モリブデン窒化膜(MoN)、タングステン窒化膜(WN)、アルミニウム酸化膜(AlO膜)、チタン酸化膜(TiO膜)、ハフニウム酸化膜(HfO膜)、ジルコニウム酸化膜(ZrO膜)、タンタル酸化膜(TaO膜)、モリブデン酸化膜(MoO)、タングステン酸化膜(WO)、チタン酸窒化膜(TiON膜)、チタンアルミニウム炭窒化膜(TiAlCN膜)、チタンアルミニウム炭化膜(TiAlC膜)、チタン炭窒化膜(TiCN膜)等の金属元素を含む膜を形成する場合にも、本開示を適用することができる。なお、これらの原料ガスは、それぞれ、分子構造(化学構造)が異なるガスであり、上述の原料ガスとして作用するほか、上述の第1反応ガスや第2反応ガスや第3反応ガスとして作用する場合もある。原料ガス、反応ガスを供給する際の処理手順、処理条件は、例えば、上述の態様の各ステップにおけるそれらと同様とすることができる。これらの場合においても、上述の態様と同様の効果が得られる。
 各処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各処理を迅速に開始できるようになる。
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更してもよい。
 上述の態様では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の態様では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。
 これらの基板処理装置を用いる場合においても、上述の態様や変形例における処理手順、処理条件と同様な処理手順、処理条件にて各処理を行うことができ、上述の態様や変形例と同様の効果が得られる。
 上述の態様や変形例は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の態様や変形例における処理手順、処理条件と同様とすることができる。
 実施例として、上述の基板処理装置を用い、図4に示す成膜シーケンスにより、表面に凹部が設けられたウエハ上に、膜として、SiN膜を形成し、第1評価サンプルを作製した。第1評価サンプル作製の際は、原料ガスとしてHCDSガスを用い、反応ガスとしてNHガスを用いた。処理条件は、上述の態様に記載の処理条件範囲内の所定の条件とした。
 比較例として、上述の基板処理装置を用い、HCDSガスを供給するステップと、NHガスを供給するステップと、を非同時に行うサイクルを複数回行うことにより、表面に凹部が設けられたウエハ上に、膜として、SiN膜を形成し、第2評価サンプルを作製した。第2評価サンプル作製の際は、HCDSガスを供給するステップにおいては、1サイクルあたりのHCDSガス供給継続時間を、実施例における1サイクルあたりのHCDSガス供給継続時間の合計時間と同じ時間とした。他の処理条件は、上述の実施例のHCDSガスを複数回供給するステップにおいて、2回目にHCDSガスを供給するステップにおける処理条件と同様とした。NHガスを供給するステップにおける処理条件を含め、他の処理条件は、実施例における処理条件と同様とした。
 そして、実施例の第1評価サンプルの凹部内におけるSiN膜のステップカバレッジ、および、比較例の第2評価サンプルの凹部内におけるSiN膜のステップカバレッジをそれぞれ測定した。その結果、比較例の第2評価サンプルにおけるSiN膜のステップカバレッジは90%未満であったのに対し、実施例の第1評価サンプルにおけるSiN膜のステップカバレッジは90%以上であり、比較例の第2評価サンプルにおけるSiN膜のステップカバレッジを上回ることを確認することができた。
200  ウエハ(基板)

Claims (20)

  1.  (a)表面に凹部が設けられた基板に対して原料ガスを供給する工程と、
     (b)前記基板に対して反応ガスを供給する工程と、
     を非同時に行うサイクルを所定回数行うことで、前記基板上に膜を形成する工程を有し、
     (a)では、前記基板に対して前記原料ガスを複数回に分割して供給し、最初に前記原料ガスを供給する際における処理条件を、2回目以降に前記原料ガスを供給する際における処理条件よりも、前記原料ガスの自己分解を抑制可能な処理条件とする半導体装置の製造方法。
  2.  (a)では、最初に前記原料ガスを供給する際における処理条件を、2回目以降に前記原料ガスを供給する際における処理条件よりも、前記原料ガスの中間体の生成を抑制可能な処理条件とする請求項1に記載の半導体装置の製造方法。
  3.  (a)では、最初に前記原料ガスを供給する際における処理条件を、前記原料ガスの自己分解を抑制可能な処理条件とし、2回目以降に前記原料ガスを供給する際における処理条件を、前記原料ガスが自己分解する処理条件とする請求項1に記載の半導体装置の製造方法。
  4.  (a)では、最初に前記原料ガスを供給する際における処理条件を、前記原料ガスの中間体の生成を抑制可能な処理条件とし、2回目以降に前記原料ガスを供給する際における処理条件を、前記原料ガスの中間体が生成される処理条件とする請求項1に記載の半導体装置の製造方法。
  5.  (a)では、最初に前記原料ガスを供給する際における前記原料ガスの供給継続時間を、2回目以降に前記原料ガスを供給する際における前記原料ガスの供給継続時間よりも、短くする請求項1に記載の半導体装置の製造方法。
  6.  (a)では、最初に前記原料ガスを供給する際における前記原料ガスの供給流量を、2回目以降に前記原料ガスを供給する際における前記原料ガスの供給流量よりも、小さくする請求項1に記載の半導体装置の製造方法。
  7.  (a)では、更に、キャリアガスを供給し、最初に前記原料ガスを供給する際における前記キャリアガスの供給流量を、2回目以降に前記原料ガスを供給する際における前記キャリアガスの供給流量よりも、大きくする請求項1に記載の半導体装置の製造方法。
  8.  (a)では、最初に前記原料ガスを供給する際における前記原料ガスの分圧を、2回目以降に前記原料ガスを供給する際における前記原料ガスの分圧よりも、低くする請求項1に記載の半導体装置の製造方法。
  9.  (a)では、最初に前記原料ガスを供給する際における前記基板が存在する空間の圧力を、2回目以降に前記原料ガスを供給する際における前記基板が存在する空間の圧力よりも、低くする請求項1に記載の半導体装置の製造方法。
  10.  (a)では、前記基板に対して前記原料ガスを供給する工程と、前記基板が存在する空間をパージする工程と、を交互に複数回繰り返す請求項1に記載の半導体装置の製造方法。
  11.  (a)では、最初に前記原料ガスを供給する工程の後に行う前記基板が存在する空間をパージする工程の時間を、最後に前記原料ガスを供給する工程の後に行う前記基板が存在する空間をパージする工程の時間よりも短くする請求項10に記載の半導体装置の製造方法。
  12.  (a)では、2回目に前記原料ガスを供給する工程の後に行う前記基板が存在する空間をパージする工程の時間を、最後に前記原料ガスを供給する工程の後に行う前記基板が存在する空間をパージする工程の時間よりも短くする請求項11に記載の半導体装置の製造方法。
  13.  (a)では、前記基板が存在する空間をパージする工程のうち、最後に前記原料ガスを供給する工程の後に行う前記基板が存在する空間をパージする工程の時間を、最も長くする請求項10に記載の半導体装置の製造方法。
  14.  前記原料ガスは、ハロシランガスを含む請求項1に記載の半導体装置の製造方法。
  15.  前記原料ガスは、クロロシランガスを含む請求項1に記載の半導体装置の製造方法。
  16.  前記基板上に膜を形成する工程では、80%以上のステップカバレッジが得られるように(a)と(b)とを非同時に行うサイクルを所定回数行う請求項1に記載の半導体装置の製造方法。
  17.  前記基板上に膜を形成する工程では、85%以上のステップカバレッジが得られるように(a)と(b)とを非同時に行うサイクルを所定回数行う請求項1に記載の半導体装置の製造方法。
  18.  前記基板上に膜を形成する工程では、90%以上のステップカバレッジが得られるように(a)と(b)とを非同時に行うサイクルを所定回数行う請求項1に記載の半導体装置の製造方法。
  19.  基板が処理される処理室と、
     前記処理室内の基板に対して原料ガスを供給する原料ガス供給系と、
     前記処理室内の基板に対して反応ガスを供給する反応ガス供給系と、
     前記処理室内の基板を加熱するヒータと、
     前記処理室内において、(a)表面に凹部が設けられた基板に対して前記原料ガスを供給する処理と、(b)前記基板に対して反応ガスを供給する処理と、を非同時に行うサイクルを所定回数行うことで、前記基板上に膜を形成する処理を行わせ、(a)では、前記基板に対して前記原料ガスを複数回に分割して供給し、最初に前記原料ガスを供給する際における処理条件を、2回目以降に前記原料ガスを供給する際における処理条件よりも、前記原料ガスの自己分解を抑制可能な処理条件とするように、前記原料ガス供給系、前記反応ガス供給系、および前記ヒータを制御することが可能なよう構成される制御部と、
     を有する基板処理装置。
  20.  基板処理装置の処理室内において、
     (a)表面に凹部が設けられた基板に対して原料ガスを供給する手順と、
     (b)前記基板に対して反応ガスを供給する手順と、
     を非同時に行うサイクルを所定回数行うことで、前記基板上に膜を形成する手順と、
     (a)において、前記基板に対して前記原料ガスを複数回に分割して供給し、最初に前記原料ガスを供給する際における処理条件を、2回目以降に前記原料ガスを供給する際における処理条件よりも、前記原料ガスの自己分解を抑制可能な処理条件とする手順と、
     をコンピュータによって前記基板処理装置に実行させるプログラム。
PCT/JP2020/036041 2020-09-24 2020-09-24 半導体装置の製造方法、基板処理装置、およびプログラム WO2022064600A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP20955194.4A EP4220690A4 (en) 2020-09-24 2020-09-24 SEMICONDUCTOR COMPONENT MANUFACTURING METHOD, SUBSTRATE TREATMENT APPARATUS AND PROGRAM
JP2022551494A JP7496884B2 (ja) 2020-09-24 2020-09-24 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
PCT/JP2020/036041 WO2022064600A1 (ja) 2020-09-24 2020-09-24 半導体装置の製造方法、基板処理装置、およびプログラム
KR1020237007999A KR20230044316A (ko) 2020-09-24 2020-09-24 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
CN202080104258.XA CN116057677A (zh) 2020-09-24 2020-09-24 半导体器件的制造方法、衬底处理装置及程序
TW110132177A TWI797732B (zh) 2020-09-24 2021-08-31 半導體裝置之製造方法、基板處理方法、基板處理裝置及程式
US18/179,293 US11784044B2 (en) 2020-09-24 2023-03-06 Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US18/458,486 US20230411149A1 (en) 2020-09-24 2023-08-30 Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/036041 WO2022064600A1 (ja) 2020-09-24 2020-09-24 半導体装置の製造方法、基板処理装置、およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/179,293 Continuation US11784044B2 (en) 2020-09-24 2023-03-06 Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Publications (1)

Publication Number Publication Date
WO2022064600A1 true WO2022064600A1 (ja) 2022-03-31

Family

ID=80844625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036041 WO2022064600A1 (ja) 2020-09-24 2020-09-24 半導体装置の製造方法、基板処理装置、およびプログラム

Country Status (7)

Country Link
US (2) US11784044B2 (ja)
EP (1) EP4220690A4 (ja)
JP (1) JP7496884B2 (ja)
KR (1) KR20230044316A (ja)
CN (1) CN116057677A (ja)
TW (1) TWI797732B (ja)
WO (1) WO2022064600A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090413A (ja) * 2008-10-04 2010-04-22 Tokyo Electron Ltd 成膜方法及び成膜装置
JP2011066263A (ja) 2009-09-18 2011-03-31 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
JP2014168070A (ja) * 2011-03-23 2014-09-11 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP2014208883A (ja) * 2013-03-28 2014-11-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100275738B1 (ko) 1998-08-07 2000-12-15 윤종용 원자층 증착법을 이용한 박막 제조방법
JP4423914B2 (ja) * 2003-05-13 2010-03-03 東京エレクトロン株式会社 処理装置及びその使用方法
JP4305427B2 (ja) * 2005-08-02 2009-07-29 東京エレクトロン株式会社 成膜方法、成膜装置及び記憶媒体
JP5722595B2 (ja) 2010-11-11 2015-05-20 株式会社日立国際電気 基板処理装置および半導体装置の製造方法
JP5977364B2 (ja) * 2012-11-26 2016-08-24 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び記録媒体
JP6484478B2 (ja) * 2015-03-25 2019-03-13 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP6778144B2 (ja) * 2017-04-25 2020-10-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP6756689B2 (ja) * 2017-10-13 2020-09-16 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP7284139B2 (ja) * 2020-11-27 2023-05-30 株式会社Kokusai Electric 半導体装置の製造方法、プログラム、基板処理装置および基板処理方法
JP7194216B2 (ja) * 2021-03-17 2022-12-21 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、プログラム及び基板処理装置
JP7328293B2 (ja) * 2021-09-27 2023-08-16 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理システム、およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090413A (ja) * 2008-10-04 2010-04-22 Tokyo Electron Ltd 成膜方法及び成膜装置
JP2011066263A (ja) 2009-09-18 2011-03-31 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
JP2014168070A (ja) * 2011-03-23 2014-09-11 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP2014208883A (ja) * 2013-03-28 2014-11-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4220690A4

Also Published As

Publication number Publication date
JPWO2022064600A1 (ja) 2022-03-31
EP4220690A4 (en) 2024-06-19
CN116057677A (zh) 2023-05-02
TWI797732B (zh) 2023-04-01
US20230411149A1 (en) 2023-12-21
US11784044B2 (en) 2023-10-10
EP4220690A1 (en) 2023-08-02
KR20230044316A (ko) 2023-04-03
US20230207310A1 (en) 2023-06-29
TW202217965A (zh) 2022-05-01
JP7496884B2 (ja) 2024-06-07

Similar Documents

Publication Publication Date Title
JP7050985B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP2020155607A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP6756689B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2021027067A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP6853116B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6760833B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP7076490B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
US20230093981A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing system, and recording medium
JP6913240B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
TWI817260B (zh) 半導體裝置之製造方法、基板處理方法、程式及基板處理裝置
JP6990756B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
WO2021053987A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
WO2022064600A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP7524406B2 (ja) 半導体装置の製造方法、プログラム、基板処理装置および基板処理方法
JP7349033B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7135190B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP6857759B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP6857760B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
WO2022180793A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
WO2023176020A1 (ja) 基板処理方法、半導体装置の製造方法、プログラム、および基板処理装置
WO2022180825A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
WO2022054855A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2021181450A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP2021061428A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
TW202338985A (zh) 基板處理方法,半導體裝置的製造方法,基板處理裝置及程式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551494

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007999

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020955194

Country of ref document: EP

Effective date: 20230424