WO2022061997A1 - 导电油墨、超声波指纹模组和电子设备 - Google Patents

导电油墨、超声波指纹模组和电子设备 Download PDF

Info

Publication number
WO2022061997A1
WO2022061997A1 PCT/CN2020/121586 CN2020121586W WO2022061997A1 WO 2022061997 A1 WO2022061997 A1 WO 2022061997A1 CN 2020121586 W CN2020121586 W CN 2020121586W WO 2022061997 A1 WO2022061997 A1 WO 2022061997A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive ink
conductive
graphene
ink
total mass
Prior art date
Application number
PCT/CN2020/121586
Other languages
English (en)
French (fr)
Inventor
刘宣宣
Original Assignee
欧菲光集团股份有限公司
江西欧迈斯微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西欧迈斯微电子有限公司 filed Critical 欧菲光集团股份有限公司
Publication of WO2022061997A1 publication Critical patent/WO2022061997A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing

Definitions

  • the present application relates to the technical field of conductive materials, and in particular, to a conductive ink, an ultrasonic fingerprint module and an electronic device.
  • the principle of ultrasonic fingerprint collection is to use the ability of ultrasonic waves to penetrate materials, and to generate reflected waves of different sizes with different materials; The location of the fingerprint ridge and the valley can be distinguished.
  • the ultrasonic fingerprint collection method in the related art uses silver paste as the conductive electrode material.
  • silver paste As the conductive electrode material.
  • There are large silver particles inside the silver paste which is easy to cause poor test images of the fingerprint module.
  • the surface roughness of the silver paste is large, which is easy to generate noise and cause fingerprints.
  • the signal-to-noise ratio of the module is low.
  • the present application aims to solve at least one of the technical problems existing in the prior art. To this end, the present application proposes a conductive ink, which has the advantages of good conductivity, smooth surface, low impedance, strong adhesion, and low cost.
  • the present application also proposes an ultrasonic fingerprint module with the conductive ink.
  • the present application also proposes an electronic device having the ultrasonic fingerprint module.
  • a conductive ink is proposed according to the embodiment of the first aspect of the present application, and the conductive ink includes graphene, conductive carbon black, resin filler, solvent, coupling agent, defoaming agent, thixotropic agent, fluid Leveling agent, the quality of the graphene is 6-3 times the mass of the conductive carbon black and the sum of the mass of the graphene and the conductive carbon black accounts for 45%-55% of the total mass of the conductive ink %.
  • the conductive ink according to the embodiments of the present application has the advantages of good conductivity, smooth surface, low impedance, strong adhesion, and low cost.
  • the conductive ink according to the above embodiments of the present application may also have the following additional technical features:
  • the mass of the graphene accounts for 35%-45% of the total mass of the conductive ink
  • the mass of the conductive carbon black accounts for 9%-12% of the total mass of the conductive ink. This further facilitates improved conductivity and lower impedance.
  • the mass of the graphene is 3.8-4.2 times the mass of the conductive carbon black. This further improves conductivity and reduces impedance.
  • the particle size of the graphene is less than or equal to 5 microns, and the particle size of the conductive carbon black is less than or equal to 1 micron. In this way, it is convenient to control the particle size of the conductive filler, avoid aggregation, reduce the influence on the signal of the ultrasonic fingerprint sensor, make the surface of the conductive ink smooth and flat, and reduce the surface roughness.
  • the resin filler comprises polyurethane-modified epoxy resin accounting for 10%-15% of the total mass of the conductive ink and water-based thermosetting epoxy resin accounting for 10%-15% of the total mass of the conductive ink Acrylic. This can avoid impedance increase, facilitate subsequent process processing, ensure ink viscosity, poor screen printing performance, and avoid reducing adhesion.
  • the solvent is N-methylpyrrolidone accounting for 20%-25% of the total mass of the conductive ink.
  • N-methylpyrrolidone accounting for 20%-25% of the total mass of the conductive ink.
  • the coupling agent is a silane coupling agent accounting for 6%-8% of the total mass of the conductive ink.
  • the coating and connection of the conductive filler by the coupling agent can be prevented from being incomplete, so that the dispersion of the conductive filler in the resin is uneven, and the failure to form an effective conductive path leads to an increase in the ink resistance; and the increase in the thickness of the insulating layer can be avoided, resulting in The ink resistance value increases.
  • the defoaming agent comprises polyether-modified silicone in an amount of 1%-2% of the total mass of the conductive ink and polyether-modified silicone in an amount of 1%-2% of the total mass of the conductive ink.
  • Dimethylsiloxane the thixotropic agent is polyamide wax accounting for 1%-1.5% of the total mass of the conductive ink
  • the leveling agent is 0.5%-1% of the total mass of the conductive ink of silicone acrylates.
  • an ultrasonic fingerprint module is provided, and the ultrasonic fingerprint module includes the conductive ink according to the embodiment of the first aspect of the present application.
  • the ultrasonic fingerprint module of the embodiment of the present application by using the conductive ink according to the embodiment of the first aspect of the present application, it has the advantages of accurate identification and strong reliability.
  • an electronic device is provided, and the electronic device includes the ultrasonic fingerprint module according to the embodiment of the second aspect of the present application.
  • the electronic device has the advantages of accurate and reliable fingerprint identification by using the ultrasonic fingerprint module according to the embodiment of the second aspect of the present application.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the conductive ink according to the embodiment of the present application includes graphene, conductive carbon black, resin filler, solvent, coupling agent, defoaming agent, thixotropic agent, and leveling agent, and the quality of the graphene is the same as that of the conductive carbon black. 6-3 times the mass and the sum of the mass of the graphene and the conductive carbon black accounts for 45%-55% of the total mass of the conductive ink.
  • the conductive ink of the embodiment of the present application by using graphene as the conductive filler, since the graphene is a two-dimensional crystal with only one or more layers of atomic thickness, which is peeled off from the graphite material and is composed of carbon atoms, each of the graphene The connections between carbon atoms are very flexible. When an external mechanical force is applied, the carbon atomic face is bent and deformed, so that the carbon atoms do not have to be rearranged to adapt to the external force, and the structure is maintained.
  • This stable lattice structure enables carbon atoms to have excellent conductivity, so that the conductive ink prepared with graphene as a conductive filler has good conductivity and printability, which is different from the metal-based conductive inks in related technologies, such as gold-based, Compared with conductive inks such as silver-based and copper-based conductive inks, graphene conductive inks have huge cost advantages. Compared with carbon-based conductive inks, graphene conductive inks have significant advantages in terms of electrical conductivity, and can also facilitate particle size control. It is convenient to reduce the surface roughness to reduce the noise and improve the signal-to-noise ratio.
  • the conductive ink has excellent conductivity, low impedance, and excellent adhesion to fluoride (PVDF), so that the performance requirements of ultrasonic fingerprint collection can be met.
  • the conductive ink according to the embodiments of the present application has the advantages of good conductivity, smooth surface, low impedance, strong adhesion, and low cost.
  • the mass of the graphene accounts for 35%-45% of the total mass of the conductive ink
  • the mass of the conductive carbon black accounts for 9%-12% of the total mass of the conductive ink.
  • the mass of the graphene is 3.8-4.2 times the mass of the conductive carbon black. Specifically, the mass of the graphene is 4 times that of the conductive carbon black. In this way, the mass ratio of graphene and conductive carbon black can be further limited, so as to further improve the conductivity and reduce the impedance.
  • the particle size of the graphene is less than or equal to 5 microns, and the particle size of the conductive carbon black is less than or equal to 1 micron.
  • it is convenient to control the particle size of the conductive filler avoid aggregation, reduce the influence on the signal of the ultrasonic fingerprint sensor, make the surface of the conductive ink smooth and flat, and reduce the surface roughness.
  • the resin filler comprises polyurethane-modified epoxy resin accounting for 10%-15% of the total mass of the conductive ink and water-based thermosetting acrylic resin accounting for 10%-15% of the total mass of the conductive ink.
  • Polyurethane-modified epoxy resin and thermosetting acrylic resin are used as ink film-forming carriers, which play the role of bonding conductive fillers, and polyurethane-modified epoxy resin can undergo cross-linking reaction by itself or with other resins under heating. It can be cured at a lower temperature, which can meet the temperature requirements of ultrasonic fingerprint processing; the Young's modulus is high, and the attenuation of the ultrasonic signal is small when it penetrates.
  • thermosetting acrylic resin has good film gloss, smooth surface, strong adhesion and good chemical stability.
  • thermosetting acrylic resin has certain functional groups, which can cross-link with epoxy resin; at the same time, this resin has low molecular weight ( ⁇ 3000), The viscosity is low, even if a certain proportion of filler material is added, the ink can still ensure good fluidity, which is beneficial to the screen printing process.
  • the increase in impedance can be avoided, which is convenient for subsequent process processing, ensures ink viscosity, poor screen printing performance, and avoids reducing adhesion.
  • the solvent is N-methylpyrrolidone accounting for 20%-25% of the total mass of the conductive ink.
  • N-methylpyrrolidone is used as the solvent of the ink, and the hydrophobicity of graphene makes graphene nanosheets easily agglomerated by strong van der Waals force, effectively preventing the agglomeration of graphene, thus making it a stable graphene dispersion.
  • it has good compatibility with various resins such as epoxy resin, acrylic resin, polyester resin, etc., which can ensure the ink has good stability and fluidity.
  • the viscosity of the ink can be ensured, the conductive filler can be well wetted, and the uneven distribution of the filler in the ink can be avoided, and the conductive network formed is not continuous and dense, so the resistivity is increased, and the dispersion effect is poor.
  • the screen printing effect is not good, and the sedimentation and stratification during storage are avoided, resulting in poor ink uniformity and consistency; avoid ink penetration and leakage, and avoid ink pores and other defects.
  • the coupling agent is a silane coupling agent accounting for 6%-8% of the total mass of the conductive ink.
  • the inorganic filler and the organic binder resin can be better connected, one end is combined with the surface of the inorganic substance, and the other end is chemically or physically entangled with the organic substance, so as to form an organically bonded whole, so the coupling agent and N-methyl are used.
  • the combined action of pyrrolidones promotes the uniform dispersion of conductive fillers, improves the leveling and wettability of the slurry, and further improves adhesion.
  • the defoaming agent comprises polyether-modified organosilicon accounting for 1%-2% of the total mass of the conductive ink and polydimethylsilicon accounting for 1%-2% of the total mass of the conductive ink oxane. This ensures that the ink is free of air bubbles and pinholes after curing.
  • the thixotropic agent is a polyamide wax that accounts for 1%-1.5% of the total mass of the conductive ink.
  • the ink can have a higher consistency when it is stationary, which can prevent the conductive filler from sinking during the stationary process; at the same time, it can ensure that the viscosity of the ink decreases rapidly under the action of external forces such as stirring and scraper screen printing to ensure that the ink has excellent fluidity.
  • the leveling agent is organosilicon acrylate in an amount of 0.5%-1% of the total mass of the conductive ink. This ensures that the ink surface is smooth and flat.
  • the conductive ink according to the present application is a conductive ink for ultrasonic fingerprint collection.
  • D50 refers to the particle size corresponding to the cumulative particle size distribution percentage of 50%
  • D90 refers to the particle size corresponding to the cumulative particle size distribution of 90%.
  • the conductive conditions of filled conductive inks are divided into three types: conductive fillers contact each other to form conductive paths; conductive fillers are in discontinuous contact, and current paths are formed between fillers with small spacing but not in direct contact due to the tunnel effect; conductive fillers There is no contact at all, the insulating layer between the fillers is thick, and the conductive path cannot be formed.
  • Graphene is a sheet-like structure. When making conductive ink, the sheet-like graphene is evenly distributed inside the resin, forming a network structure similar to graphene sheets. However, most of the sheet-like graphenes are in point contact, and the contact density is small.
  • conductive fillers such as silver powder, copper powder, and conductive carbon black can be doped.
  • conductive carbon black is the cheapest.
  • the graphene conductive ink is developed below. Ultrafine conductive carbon black is doped to reduce ink resistance.
  • both graphene and ultrafine conductive carbon black can meet the impedance and roughness requirements between 40:6-40:12.
  • the conductive ink of the above-mentioned embodiments of the present application has excellent screen printing performance, the surface of the ink is smooth and flat after curing, the roughness is small, and the background is clean during the ultrasonic fingerprint performance test, which does not affect the transmission of ultrasonic signals; it has excellent High conductivity, surface impedance ⁇ 10 ⁇ /sq, which can meet the performance requirements of ultrasonic fingerprints.
  • this ink uses inexpensive conductive fillers, which reduces the cost by about 70% compared with traditional silver pastes; the conductive fillers have small particle size and no aggregation, It has no obvious effect on the ultrasonic fingerprint sensor signal; it has excellent leveling performance and screen printing performance, the surface of the silver paste is smooth after curing, without grid lines, and will not cause uneven background of the ultrasonic fingerprint sensor; it can be used in fluoride (PVDF) Upper Adhesion 5B.
  • PVDF fluoride
  • the ultrasonic fingerprint module according to the embodiment of the present application is described below.
  • the ultrasonic fingerprint module according to the embodiment of the present application includes the conductive ink according to the above-mentioned embodiment of the present application.
  • the ultrasonic fingerprint module according to the embodiment of the present application has the advantages of accurate identification and strong reliability by using the conductive ink according to the above-mentioned embodiment of the present application.
  • the electronic device according to the embodiment of the present application is described below.
  • the electronic device according to the embodiment of the present application includes the ultrasonic fingerprint module according to the above-mentioned embodiment of the present application.
  • the electronic device has the advantages of accurate and reliable fingerprint identification by using the ultrasonic fingerprint module according to the above-mentioned embodiment of the present application.
  • compositions and operations of the conductive ink according to the embodiments of the present application are known to those of ordinary skill in the art, and will not be described in detail here.

Abstract

一种导电油墨、超声波指纹模组和电子设备,所述导电油墨包括石墨烯、导电炭黑、树脂填料、溶剂、偶联剂、消泡剂、触变剂、流平剂,所述石墨烯的质量为所述导电炭黑的质量的6-3倍且所述石墨烯和所述导电炭黑的质量之和占所述导电油墨的总质量的45%-55%。

Description

导电油墨、超声波指纹模组和电子设备
相关申请的交叉引用
本申请基于申请号为202011021143.2,申请日为2020年09月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及导电材料技术领域,具体而言,涉及一种导电油墨、超声波指纹模组和电子设备。
背景技术
超声波指纹采集的原理是利用超声波穿透材料的能力,且随材料的不同产生大小不同的反射波;因此,利用超声波在指纹嵴(皮肤)与指纹峪(空气)传播时的声阻抗的差异,就可以区分指纹嵴与峪所在的位置。
相关技术中的超声波指纹采集方式使用银浆作为导电电极材料,银浆内部有大颗粒银粒子,容易造成指纹模组测试影像不良,而且银浆表面粗糙度较大,容易产生杂讯,造成指纹模组信噪比偏低。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种导电油墨,该导电油墨具有导电性能好、表面光滑、阻抗低、附着力强、成本低等优点。
本申请还提出一种具有所述导电油墨的超声波指纹模组。
本申请还提出一种具有所述超声波指纹模组的电子设备。
为实现上述目的,根据本申请第一方面的实施例提出一种导电油墨,所述导电油墨包括石墨烯、导电炭黑、树脂填料、溶剂、偶联剂、消泡剂、触变剂、流平剂,所述石墨烯的质量为所述导电炭黑的质量的6-3倍且所述石墨烯和所述导电炭黑的质量之和占所述导电油墨的总质量的45%-55%。
根据本申请实施例的导电油墨,具有导电性能好、表面光滑、阻抗低、附着力强、成本低等优点。
另外,根据本申请上述实施例的导电油墨还可以具有如下附加的技术特征:
根据本申请的一个实施例,所述石墨烯的质量占所述导电油墨总质量的35%-45%,所述导电炭黑的质量占所述导电油墨总质量的9%-12%。这样可以进一步便于提高导电性能并降低阻抗。
根据本申请的一个实施例,所述石墨烯的质量为所述导电炭黑的质量的3.8-4.2倍。这样可以进一步提高导电性能并降低阻抗。
根据本申请的一个实施例,所述石墨烯的粒径小于等于5微米,所述导电炭黑的粒径小于等于1微米。这样可以便于控制导电填料的粒径,避免聚集,降低对超声波指纹传感器信号的影响,使导电油墨表面光滑平整,降低表面粗糙度。
根据本申请的一个实施例,所述树脂填料包括占所述导电油墨总质量的10%-15%的聚氨酯改性环氧树脂以及占所述导电油墨总质量的10%-15%的水性热固性丙烯酸树脂。这样可以避免阻抗增大,便于后续制程加工,保证油墨粘度,网印性能差,避免降低附着力。
根据本申请的一个实施例,所述溶剂为占所述导电油墨总质量的20%-25%的N-甲基吡咯烷酮。这样可以保证油墨粘度,保证良好地润湿导电填料,避免填料在油墨中分布不均,形成的导电网络不够连续、致密,因而电阻率增大,保证分散效果差,保证丝网印刷效果不佳,而且避免放置存储过程中沉降分层,导致油墨均匀一致性差;避免油墨渗透漏网,避免油墨气孔等不良
根据本申请的一个实施例,所述偶联剂为占所述导电油墨总质量的6%-8%的硅烷偶联剂。这样可以避免偶联剂对导电填料的包覆和连接不完全,使导电填料在树脂中的分散不均匀,未能形成有效的导电通路导致油墨阻抗增大;而且可以避免绝缘层厚度增加,导致油墨阻值增大。
根据本申请的一个实施例,所述消泡剂包括占所述导电油墨总质量的1%-2%的聚醚改性有机硅以及占所述导电油墨总质量的1%-2%的聚二甲基硅氧烷,所述触变剂为占所述导电油墨总质量的1%-1.5%的聚酰胺蜡,所述流平剂为占所述导电油墨总质量的0.5%-1%的有机硅丙烯酸酯。这样可以确保油墨固化后无气泡和针孔,确保油墨表面光滑平整,能使油墨在静止时有较高的稠度,可防止导电填料静置过程中下沉;同时有能确保油墨在搅拌、刮刀网印等外力作用下粘度迅速降低确保油墨具有优异的流动性。
根据本申请的第二方面的实施例提出一种超声波指纹模组,所述超声波指纹模组包括根据本申请的第一方面的实施例所述的导电油墨。
根据本申请实施例的超声波指纹模组,通过利用根据本申请的第一方面的实施例所述的导电油墨,具有识别准确、可靠性强等优点。
根据本申请的第三方面的实施例提出一种电子设备,所述电子设备包括根据本申请的第二方面的实施例所述的超声波指纹模组。
根据本申请实施例的电子设备,通过利用根据本申请的第二方面的实施例所述的超声波指纹模组,具有指纹识别准确可靠等优点。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
具体实施方式
下面详细描述本申请的实施例,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可 以具体情况理解上述术语在本申请中的具体含义。
下面描述根据本申请实施例的导电油墨。
根据本申请实施例的导电油墨包括石墨烯、导电炭黑、树脂填料、溶剂、偶联剂、消泡剂、触变剂、流平剂,所述石墨烯的质量为所述导电炭黑的质量的6-3倍且所述石墨烯和所述导电炭黑的质量之和占所述导电油墨的总质量的45%-55%。
根据本申请实施例的导电油墨,通过采用石墨烯作为导电填料,由于石墨烯是从石墨材料中剥离出来、由碳原子组成的只有一层或多层原子厚度的二维晶体,石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的晶格结构使碳原子具有优秀的导电性,这样以石墨烯作为导电填料制备得到的导电油墨具有良好的导电性和印刷性,与相关技术中金属系导电油墨,如金系、银系、铜系等导电油墨相比,石墨烯导电油墨具有巨大的成本优势,与碳系导电油墨相比,石墨烯导电油墨在导电性能方面又具有显著的优势,此外还可以便于控制粒径大小,便于降低表面粗糙度以降低杂讯,提高信噪比。
并且,通过使石墨烯的质量为导电炭黑的质量的6-3倍且所述石墨烯和所述导电炭黑的质量之和占所述导电油墨的总质量的45%-55%,可以使所述导电油墨具有优异的导电性能,而且阻抗低、在氟化物(PVDF)具有优越的附着力,从而能够满足超声波指纹采集的性能需求。
因此,根据本申请实施例的导电油墨具有导电性能好、表面光滑、阻抗低、附着力强、成本低等优点。
下面描述根据本申请具体实施例的导电油墨。
具体地,所述石墨烯的质量占所述导电油墨总质量的35%-45%,所述导电炭黑的质量占所述导电油墨总质量的9%-12%。这样可以限定石墨烯和导电油墨的具体占比,进一步便于提高导电性能并降低阻抗。
更为具体地,所述石墨烯的质量为所述导电炭黑的质量的3.8-4.2倍。具体而言,所述石墨烯的质量为所述导电炭黑的质量的4倍。这样可以进一步限定石墨烯和导电炭黑的质量配比,进一步提高导电性能并降低阻抗。
有利地,所述石墨烯的粒径小于等于5微米,所述导电炭黑的粒径小于等于1微米。这样可以便于控制导电填料的粒径,避免聚集,降低对超声波指纹传感器信号的影响,使导电油墨表面光滑平整,降低表面粗糙度。
更为具体地,所述树脂填料包括占所述导电油墨总质量的10%-15%的聚氨酯改性环氧树脂以及占所述导电油墨总质量的10%-15%的水性热固性丙烯酸树脂。聚氨酯改性环氧树脂和热固性丙烯酸树脂作为油墨成膜载体,起到粘结导电填料的作用,而且聚氨酯改性环氧树脂在加热的情况下可以自身或和别的树脂发生交联反应,能在较低的温度下固化,可以满足超声波指纹加工温度要求;杨氏模量高,超声波信号穿透时衰减较小。热固性丙烯酸树脂成膜光泽度佳,表面光滑、附着力强、化学稳定性好,同时热固性丙烯酸树脂自带一定官能团,可以与环氧树脂发生交联反应;同时此树脂分子量低(<3000),粘度较低,即使添加一定比列的填充料料仍能确保油墨具有较好的流动性,有利于网印工艺加工。
通过限定树脂填料的比例,可以避免阻抗增大,便于后续制程加工,保证油墨粘度,网印性能差,避免降低附着力。
更为有利地,所述溶剂为占所述导电油墨总质量的20%-25%的N-甲基吡咯烷酮。N-甲基吡咯烷酮作为油墨的溶剂,石墨烯具有疏水性会使石墨烯纳米片极易通过强烈的范德华力产生团聚,有效阻止石墨烯的团聚,从而使之成为稳定的石墨烯分散液。同时与环氧树脂、丙烯酸树脂、聚酯树脂等多种树脂有良好的相容性,可确保油墨具有较好的稳定性、流动性。
通过限定溶剂的比例,可以保证油墨粘度,保证良好地润湿导电填料,避免填料在油墨中分布不均,形成的导电网络不够连续、致密,因而电阻率增大,保证分散效果差,保证丝网印刷效果不佳,而且避免放置存储过程中沉降分层,导致油墨均匀一致性差;避免油墨渗透漏网,避免油墨气孔等不良。
进一步地,所述偶联剂为占所述导电油墨总质量的6%-8%的硅烷偶联剂。这样可以较好地连接无机填料和有机基料树脂,一端与无机物表面发生结合,一端与有机物发生化学作用或物理缠结,从而构成有机结合的整体,所以使用偶联剂和N-甲基吡咯烷酮共同作用促进导电填料分散均匀,改善浆料的流平性和润湿性;同时也可以进一步提升附着力。
通过限定偶联剂的比例,可以避免偶联剂对导电填料的包覆和连接不完全,使导电填料在树脂中的分散不均匀,未能形成有效的导电通路导致油墨阻抗增大;而且可以避免绝缘层厚度增加,导致油墨阻值增大。
具体而言,所述消泡剂包括占所述导电油墨总质量的1%-2%的聚醚改性有机硅以及占所述导电油墨总质量的1%-2%的聚二甲基硅氧烷。这样可以确保油墨固化后无气泡和针孔。
所述触变剂为占所述导电油墨总质量的1%-1.5%的聚酰胺蜡。这样能使油墨在静止时有较高的稠度,可防止导电填料静置过程中下沉;同时有能确保油墨在搅拌、刮刀网印等外力作用下粘度迅速降低确保油墨具有优异的流动性。
所述流平剂为占所述导电油墨总质量的0.5%-1%的有机硅丙烯酸酯。这样可以确保油墨表面光滑平整。
具体而言,根据本申请的导电油墨为用于超声波指纹采集的导电油墨。
下面描述根据本申请实施例的导电油墨的性能验证过程。
首先测试石墨烯尺寸大小对粗糙度的影响,确认导电油墨中石墨烯尺寸大小。
1)按照下面DOE(试验设计)条件石墨烯、高分子成膜树脂、溶剂及其他助剂等按一定比例通过高速搅拌混合均匀,研磨分散后得到石墨烯导电油墨;
2)清洗并网印TFT(薄膜晶体管),然后在一定温度下固化,得到均匀而致密的导电油墨,控制油墨厚度在7微米左右;
3)固化后测量油墨的面电阻、表面粗糙度;
测试结果对比分析:从DOE#2-DOE#4的结果可知,石墨烯尺寸越小,粗糙度越小,表面越平整,网格纹越轻微。
Figure PCTCN2020121586-appb-000001
D50指粒子累计粒度分布百分数达到50%时所对应的粒径;D90就是粒子累计粒度分布为90%时对应的粒径尺寸。
之后确认导电油墨中使用不同类型导电填料以及最佳搭配比例:
在实际情况中,填充型导电油墨的导电情况分为3种:导电填料相互接触形成导电通路;导电填料不连续接触,间距很小但未直接接触的填料间由于隧道效应形成电流通路;导电填料完全不接触,填料间绝缘层较厚,无法形成导电通路。石墨烯为片状结构,制作成导电油墨时片状石墨烯均匀分布在树脂内部,形成类似石墨烯片状组成的网状结构,但是片状石墨烯之间大部分为点接触,接触密度小;如果在石墨烯中添加超细的导电填料,导电填料将填充在石墨烯与石墨烯片状材料之间,大幅度提升石墨烯之间的接触密度,从而有效降低石墨烯导电油墨的阻抗,为进一步降低石墨烯导电油墨阻抗可掺杂银粉、铜粉、导电炭黑等导电填料,上述几种导电填料中其中以导电炭黑价格最低廉,为降低材料成本,下面开发石墨烯导电油墨中掺杂超细导电炭黑来降低油墨阻抗。
1)按照下面DOE条件导电填料、高分子成膜树脂、溶剂及其他助剂等按一定比例通过高速搅拌混合均匀,研磨分散后得到石墨烯导电油墨;
2)清洗并网印TFT(薄膜晶体管),然后在一定温度下固化,得到均匀而致密的导电油墨,控制油墨厚度在7微米左右;
3)固化后测量油墨的面电阻、表面粗糙度;
测试结果对比分析:从下述DOE#5-DOE#9验证结果可知,1)石墨烯导电油墨中添加超细导电炭黑后油墨阻抗迅速降低,初期随导电炭黑添加比例越高,阻抗越小,但导电油墨添加到一定比例时,阻抗降低速度减缓甚至无明显变化;2)DOE#5-DOE#8随导电炭黑增加,粗糙度缓慢增加,当导电炭黑填料比例为15%时,油墨网印时出现堵网,表面不平整等异常,因导电炭黑本身对聚合物粘结剂、液态和聚合物电解质的吸附能力比较强,分散性较差,如果炭黑比例过高容易出现团聚等现象,出现大颗粒物质导致堵网、粗糙度变大等异常。3)综上所述:石墨烯和超细导电炭黑两者按照40:6-40:12之间均可满足阻抗和粗糙度要求。
Figure PCTCN2020121586-appb-000002
下面进行油墨配比DOE验证:
1)下面DOE验证中固定石墨烯与超细导电炭黑按照4:1最佳配比添加导电填料,按照下面表格添加导电填料、树脂、溶剂及其他助剂等通过高速搅拌混合均匀,研磨分散后得到导电油墨;
2)清洗并网印TFT(薄膜晶体管),然后在一定温度下固化,得到均匀而致密的导电油墨,控制油墨厚度在7微米左右
3)评估对比油墨网印性能、时效性,以及固化后测量油墨的面电阻、表面粗糙度、附着力等;
测试结果对比分析:如下述表格分析,DOE#11、DOE#12油墨配比最佳
Figure PCTCN2020121586-appb-000003
Figure PCTCN2020121586-appb-000004
Figure PCTCN2020121586-appb-000005
Figure PCTCN2020121586-appb-000006
通过上述验证能够证实,本申请上述实施例的导电油墨,具有优异的网印性能,油墨固化后表面光滑平整,粗糙度小,且超声波指纹性能测试时背景干净,不影响超声波信号传输;具有优异的导电性能,面阻抗<10Ω/sq,可满足超声波指纹性能需求,同时此款油墨采用价格低廉的导电填料,较传统的银浆成本降低70%左右;导电填料粒径小,且不聚集,对超声波指纹传感器信号无明显影响;具有优异流平性能和网印性能,银浆固化后表面光滑,无网格纹,不会造成超声波指纹传感器背景不均匀等现象;能够在氟化物(PVDF)上附着力5B。
下面描述根据本申请实施例的超声波指纹模组。根据本申请实施例的超声波指纹模组包括根据本申请上述实施例的导电油墨。
根据本申请实施例的超声波指纹模组,通过利用根据本申请上述实施例的导电油墨,具有识别准确、可靠性强等优点。
下面描述根据本申请实施例的电子设备。根据本申请实施例的电子设备包括根据本申请上述实施例的超声波指纹模组。
根据本申请实施例的电子设备,通过利用根据本申请上述实施例的超声波指纹模组,具有指纹识别准确可靠等优点。
根据本申请实施例的导电油墨的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种导电油墨,其中,包括石墨烯、导电炭黑、树脂填料、溶剂、偶联剂、消泡剂、触变剂、流平剂,所述石墨烯的质量为所述导电炭黑的质量的6-3倍且所述石墨烯和所述导电炭黑的质量之和占所述导电油墨的总质量的45%-55%。
  2. 根据权利要求1所述的导电油墨,其中,所述石墨烯的质量占所述导电油墨总质量的35%-45%,所述导电炭黑的质量占所述导电油墨总质量的9%-12%。
  3. 根据权利要求1所述的导电油墨,其中,所述石墨烯的质量为所述导电炭黑的质量的3.8-4.2倍。
  4. 根据权利要求1所述的导电油墨,其中,所述石墨烯的粒径小于等于5微米,所述导电炭黑的粒径小于等于1微米。
  5. 根据权利要求1所述的导电油墨,其中,所述树脂填料包括占所述导电油墨总质量的10%-15%的聚氨酯改性环氧树脂以及占所述导电油墨总质量的10%-15%的水性热固性丙烯酸树脂。
  6. 根据权利要求1所述的导电油墨,其中,所述溶剂为占所述导电油墨总质量的20%-25%的N-甲基吡咯烷酮。
  7. 根据权利要求1所述的导电油墨,其中,所述偶联剂为占所述导电油墨总质量的6%-8%的硅烷偶联剂。
  8. 根据权利要求1所述的导电油墨,其中,所述消泡剂包括占所述导电油墨总质量的1%-2%的聚醚改性有机硅以及占所述导电油墨总质量的1%-2%的聚二甲基硅氧烷,所述触变剂为占所述导电油墨总质量的1%-1.5%的聚酰胺蜡,所述流平剂为占所述导电油墨总质量的0.5%-1%的有机硅丙烯酸酯。
  9. 一种超声波指纹模组,其中,包括根据权利要求1-8中任一项所述的导电油墨。
  10. 一种电子设备,其中,包括根据权利要求9所述的超声波指纹模组。
PCT/CN2020/121586 2020-09-25 2020-10-16 导电油墨、超声波指纹模组和电子设备 WO2022061997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011021143.2 2020-09-25
CN202011021143.2A CN112029342A (zh) 2020-09-25 2020-09-25 导电油墨、超声波指纹模组和电子设备

Publications (1)

Publication Number Publication Date
WO2022061997A1 true WO2022061997A1 (zh) 2022-03-31

Family

ID=73575308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121586 WO2022061997A1 (zh) 2020-09-25 2020-10-16 导电油墨、超声波指纹模组和电子设备

Country Status (2)

Country Link
CN (1) CN112029342A (zh)
WO (1) WO2022061997A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113786A (zh) * 2013-03-07 2013-05-22 苏州牛剑新材料有限公司 一种石墨烯导电油墨及其制备方法
CN105001716A (zh) * 2015-06-30 2015-10-28 中国科学院山西煤炭化学研究所 一种石墨烯基低电阻导电油墨及其制备方法
CN107903713A (zh) * 2017-11-29 2018-04-13 北京旭碳新材料科技有限公司 高导电水性石墨烯导电油墨及其制备方法、组合物
CN107964283A (zh) * 2017-12-14 2018-04-27 深圳市国创珈伟石墨烯科技有限公司 水性石墨烯导电油墨、制备方法及其应用
CN108305704A (zh) * 2018-03-05 2018-07-20 北京鑫碳科技有限责任公司 一种石墨烯基高导电碳浆及其制备方法
US20180327611A1 (en) * 2014-07-30 2018-11-15 Vorbeck Materials Corp. Conductive compositions
CN109817385A (zh) * 2018-12-28 2019-05-28 常州碳森石墨烯科技有限公司 一种环保型石墨烯导电碳浆的制备方法及其在柔性发热膜上的应用
US20200002560A1 (en) * 2018-06-29 2020-01-02 Chung-Ping Lai Conductive ink for use in manufacturing radio frequency identification (rfid) tag antenna and method for manufacturing rfid tag antenna
CN210119787U (zh) * 2019-07-17 2020-02-28 南昌欧菲生物识别技术有限公司 柔性电路板、超声波指纹模组及电子设备
CN111154339A (zh) * 2020-03-05 2020-05-15 苏州中亚油墨有限公司 一种碳系导电油墨填料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000441A1 (en) * 2008-07-01 2010-01-07 Jang Bor Z Nano graphene platelet-based conductive inks
CN106752385A (zh) * 2017-01-11 2017-05-31 青岛瑞利特新材料科技有限公司 一种石墨烯改性水性导电油墨及其制备方法
CN108129913A (zh) * 2017-12-27 2018-06-08 深圳市国创珈伟石墨烯科技有限公司 水性石墨烯导电油墨及其制备方法
CN108250844A (zh) * 2017-12-27 2018-07-06 常州二维碳素科技股份有限公司 一种水性石墨烯高导电油墨的制备方法
CN109251591B (zh) * 2018-11-19 2021-10-15 宁波石墨烯创新中心有限公司 导电油墨、电子标签、其制备方法及射频识别系统
US20220056296A1 (en) * 2018-12-20 2022-02-24 Eckart Gmbh Conductive ink jet printing ink composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113786A (zh) * 2013-03-07 2013-05-22 苏州牛剑新材料有限公司 一种石墨烯导电油墨及其制备方法
US20180327611A1 (en) * 2014-07-30 2018-11-15 Vorbeck Materials Corp. Conductive compositions
CN105001716A (zh) * 2015-06-30 2015-10-28 中国科学院山西煤炭化学研究所 一种石墨烯基低电阻导电油墨及其制备方法
CN107903713A (zh) * 2017-11-29 2018-04-13 北京旭碳新材料科技有限公司 高导电水性石墨烯导电油墨及其制备方法、组合物
CN107964283A (zh) * 2017-12-14 2018-04-27 深圳市国创珈伟石墨烯科技有限公司 水性石墨烯导电油墨、制备方法及其应用
CN108305704A (zh) * 2018-03-05 2018-07-20 北京鑫碳科技有限责任公司 一种石墨烯基高导电碳浆及其制备方法
US20200002560A1 (en) * 2018-06-29 2020-01-02 Chung-Ping Lai Conductive ink for use in manufacturing radio frequency identification (rfid) tag antenna and method for manufacturing rfid tag antenna
CN109817385A (zh) * 2018-12-28 2019-05-28 常州碳森石墨烯科技有限公司 一种环保型石墨烯导电碳浆的制备方法及其在柔性发热膜上的应用
CN210119787U (zh) * 2019-07-17 2020-02-28 南昌欧菲生物识别技术有限公司 柔性电路板、超声波指纹模组及电子设备
CN111154339A (zh) * 2020-03-05 2020-05-15 苏州中亚油墨有限公司 一种碳系导电油墨填料及其制备方法

Also Published As

Publication number Publication date
CN112029342A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN1950912B (zh) 电路连接粘合剂
KR101099237B1 (ko) 전도성 페이스트와 이를 이용한 전도성 기판
CN106243836A (zh) 一种石墨烯导电碳浆及其制备方法
CN105323949B (zh) 石墨烯印刷线路结构
KR101133466B1 (ko) 태양전지용 저온 건조형 전극 페이스트 조성물 및 이를 이용한 인쇄방법
JP2010109334A (ja) 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール
CN104099050A (zh) 导电胶的制备方法及导电胶
CN103113786A (zh) 一种石墨烯导电油墨及其制备方法
CN104464883A (zh) 表面吸附分散剂的石墨烯导电浆料、其制备方法及应用
TWI325739B (en) Electroconductive paste, its manufacturing method, circuit board using the same electroconductive paste, and its manufacturing method
JP5630596B2 (ja) 導電性粒子粉末
CN104272400A (zh) 导电性组合物
CN103400637A (zh) 一种导电浆料及其制备方法以及印刷线路材料
JP2010087131A (ja) 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール
KR101294593B1 (ko) 전도성 접착제 및 그 제조방법
CN101836515A (zh) 各向异性导电粘接剂
US8911821B2 (en) Method for forming nanometer scale dot-shaped materials
CN104858437A (zh) 一种印刷导电线路用纳米银浆及其制备方法
JP5572913B2 (ja) 導電性粒子粉末
WO2022061997A1 (zh) 导电油墨、超声波指纹模组和电子设备
CN101508855A (zh) 一种水性石墨导电涂料及其制备方法
KR101454454B1 (ko) 다중수소결합에 의해 고차구조를 지니는 탄소나노소재를 이용한 인쇄용 전도성 페이스트 조성물 및 그 제조방법
WO2022021228A1 (zh) 导电材料、超声波指纹模组及电子设备
CN108323023B (zh) 一种基于热固化石墨烯导电油墨印刷方法
WO2017062697A2 (en) 2-dimensional thermal conductive materials and their use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20954843

Country of ref document: EP

Kind code of ref document: A1