WO2022061704A1 - 一种存储稳定的多异氰酸酯组合物及其制备方法 - Google Patents

一种存储稳定的多异氰酸酯组合物及其制备方法 Download PDF

Info

Publication number
WO2022061704A1
WO2022061704A1 PCT/CN2020/117698 CN2020117698W WO2022061704A1 WO 2022061704 A1 WO2022061704 A1 WO 2022061704A1 CN 2020117698 W CN2020117698 W CN 2020117698W WO 2022061704 A1 WO2022061704 A1 WO 2022061704A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyisocyanate
reaction
temperature
separation
heat
Prior art date
Application number
PCT/CN2020/117698
Other languages
English (en)
French (fr)
Inventor
石滨
尚永华
俞涛
张现锋
严成岳
朱智诚
刘伟
路富有
王暖程
王玉启
黎源
张晓鹏
李海军
Original Assignee
万华化学集团股份有限公司
万华化学(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司, 万华化学(宁波)有限公司 filed Critical 万华化学集团股份有限公司
Priority to KR1020227026498A priority Critical patent/KR20220123439A/ko
Priority to US18/005,387 priority patent/US20230272151A1/en
Priority to JP2023501895A priority patent/JP2023534679A/ja
Priority to EP20954556.5A priority patent/EP4159781A4/en
Priority to PCT/CN2020/117698 priority patent/WO2022061704A1/zh
Publication of WO2022061704A1 publication Critical patent/WO2022061704A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1875Catalysts containing secondary or tertiary amines or salts thereof containing ammonium salts or mixtures of secondary of tertiary amines and acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/022Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8012Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with diols
    • C08G18/8016Masked aliphatic or cycloaliphatic polyisocyanates

Definitions

  • the invention belongs to the technical field of preparing isocyanate derivatives, and particularly relates to a storage-stable polyisocyanate composition and a preparation method thereof.
  • polyurethane resin coatings have excellent abrasion resistance, chemical resistance, and pollution resistance, especially the use of aliphatic (cyclic) groups such as hexamethylene diisocyanate, isophorone diisocyanate, and dicyclohexylmethane diisocyanate.
  • Isocyanate-derived polyisocyanate the polyurethane resin coating prepared by it also has excellent weather resistance. Therefore, these polyisocyanates are often used in the coating of buildings, automobiles, aircraft, ships, sea-crossing bridges and their repair coatings in the form of room temperature or heat curing polyurethane coatings.
  • the main disadvantage of the polyisocyanate product prepared by the existing process is that its viscosity increases rapidly during storage, which seriously affects long-distance transportation and downstream use. In view of this, it is particularly important to seek to improve the stability of polyisocyanates during storage (especially the stability of viscosity).
  • the object of the present invention is to provide a storage-stable polyisocyanate composition and a preparation method thereof in view of the problems existing in the storage stability of existing polyisocyanates.
  • the polyisocyanate composition is stored at 50° C. for 30 days.
  • the increase in viscosity is small, which ensures the stability of product viscosity, which is beneficial to long-distance transportation and downstream use, and the stability of free monomer content and chromaticity stability in the product has also been significantly improved.
  • a storage-stable polyisocyanate composition which satisfies the following conditions 1 and 2 when stored at 50° C. for 30 days:
  • the increase of isocyanate monomer content is less than or equal to 0.1wt%; for example, the increase of isocyanate monomer content is 0.02wt%, 0.04wt%, 0.06wt%, 0.08wt%;
  • the polyisocyanate composition includes an isocyanurate structure, a urethane structure, an allophanate structure, a biuret structure, an iminooxane One or more of a diazinedione structure, a uretdione structure, a carbodiimide structure and a uretonimine structure.
  • the polyisocyanate composition is a trimer polyisocyanate, biuret polyisocyanate, or uretdione polyisocyanate.
  • the trimer polyisocyanate may include an isocyanurate structure, a urethane structure, an allophanate structure, an iminooxadiazinedione structure, a uretdione structure, a carbodiimide structure One or more of structure and uretonimine structure.
  • the biuret polyisocyanate may include one or more of a biuret structure, a carbodiimide structure, a uretdione structure and a uretonimine structure.
  • the uretdione polyisocyanate may include a uretdione structure, an isocyanurate structure, a urethane structure, an allophanate structure, an iminooxadiazinedione structure, a carbodiimide structure One or more of structure and uretonimine structure.
  • the isocyanate monomer is selected from one or more of aromatic organic isocyanates, aliphatic organic isocyanates and alicyclic organic isocyanates, preferably selected from hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), cyclohexyl dimethylene diisocyanate (HMDI), xylylene diisocyanate (XDI), dicyclohexylmethane diisocyanate (HXDI), Norbornane dimethylene diisocyanate (NBDI), cyclohexyl diisocyanate (CHDI), lysine diisocyanate (LDI), tetramethylxylylene diisocyanate (TMXDI), 2,4,4- Trimethylhexamethylene diisocyanate (TMHDI), toluene diisocyanate (TDI), methylcyclohexyl
  • HDI hexamethylene diisocyanate
  • a method for preparing a storage-stable polyisocyanate composition comprising: in the presence of a catalyst system, carrying out a polymerization reaction of the isocyanate monomer; after reaching a suitable conversion rate, terminating the reaction to obtain a polyisocyanate reaction Then, the obtained polyisocyanate reaction solution is heat-treated to obtain a polyisocyanate mixture after heat treatment; wherein, the temperature of the heat-treatment is 10-30°C higher than the heat-sensitive temperature of the obtained polyisocyanate product, and the heat-treatment time is 5- 30min; and then separate the heat-treated polyisocyanate mixture to remove unreacted monomers in the system to prepare a polyisocyanate composition.
  • the polyisocyanate composition includes one or more of trimer polyisocyanate, biuret polyisocyanate and uretdione polyisocyanate.
  • the heat-sensitive temperature of the polyisocyanate product is mentioned in this article, which can be understood as: the polyisocyanate product is heated at 100-200°C, and the heated temperature range is divided into multiple isothermal intervals and the heating is tested at this temperature interval.
  • the viscosity of the final product that is, a point can be selected every 5°C, heated for 2 hours, the viscosity of the product corresponding to this point can be tested, and the measured viscosity points and corresponding temperature points can be drawn into a viscosity-temperature curve.
  • the temperature at which the viscosity of the product doubles is defined as the heat-sensitive temperature.
  • thermosensitive temperature of the trimer polyisocyanate is 160-165°C (eg, 162°C, 163°C, 164°C).
  • thermosensitive temperature of the biuret polyisocyanate is 140-145°C (eg, 141°C, 142°C, 143°C, 144°C).
  • thermosensitive temperature of the uretdione polyisocyanate is 130-135°C (eg, its thermosensitive temperature is 131°C, 132°C, 133°C, 134°C).
  • the polyisocyanate composition when stored at 50° C. for 30 days, its viscosity increase does not exceed 15% of its initial viscosity (for example, its viscosity increase 14%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5% of its initial viscosity).
  • the extent of viscosity increase mentioned herein may refer to the percentage of the absolute value of the difference between the change in the viscosity of the polyisocyanate product and its initial viscosity measured after being stored at 50° C. for 30 days to its initial viscosity.
  • the initial viscosity mentioned here may refer to the viscosity of the polyisocyanate product before storage.
  • the content of the unreacted monomer contained in the polyisocyanate composition increases by less than or equal to 0.1 wt %.
  • the "increase in the content of unreacted monomers” or “increase in the content of isocyanate monomers” as mentioned herein refers to the increase in the content of isocyanate monomers in the polyisocyanate composition after and before storage under the above-mentioned storage conditions. absolute difference.
  • the polyisocyanate reaction solution may contain isocyanurate structure, urethane structure, allophanate structure, biuret structure, imino oxadiazinedione structure, uretdione structure, Polyisocyanates of one or more of a carbodiimide structure and a uretonimide structure, including in some examples, an isocyanurate structure, a urethane structure, an allophanate structure, a diacetate Polyisocyanates of urea structure, iminooxadiazinedione structure, uretdione structure, carbodiimide structure and uretonimine structure.
  • the reaction solution may include: polyisocyanate containing isocyanurate structure, polyisocyanate containing urethane structure, polyisocyanate containing biuret structure, polyisocyanate containing uretdione structure and combinations thereof, etc.
  • the polyisocyanate composition obtained by this preparation method is stored at 50° C. for 30 days, its viscosity increase does not exceed 15% of its initial viscosity, and the stability of unreacted monomer content and color number are also stable. be improved.
  • reaction liquid is first separated after the polymerization reaction, and the intermediate product obtained after removing part of the unreacted monomer or the final product obtained is heat treated at a high temperature higher than the heat-sensitive temperature of the product, due to The unreacted monomer content is relatively small, and the product will partially decompose or polymerize during the heating process, resulting in a large change in the molecular weight distribution of the product, which in turn affects the downstream application performance.
  • the reaction solution is subjected to high temperature heat treatment before the step of separation treatment.
  • the molecular weight distribution of the reaction solution does not change significantly due to thermal balance, which can make the molecular weight distribution of the final product change. Small, in turn, the viscosity of the product changes very little and does not adversely affect the performance of downstream applications.
  • the control of process conditions during the heat treatment step is critical. If the heat treatment temperature is too high, the color number and viscosity of the product will change greatly; if the heat treatment temperature is too low, the effect of improving the stability will not be achieved. Therefore, based on the heat-sensitive temperature of the polyisocyanate product, by selecting a suitable heat treatment temperature, the ideal treatment effect can be guaranteed. If the heat treatment time is too long, the color number and viscosity of the product will change greatly; if the heat treatment time is too short, the effect of improving stability will also not be achieved.
  • the preparation method of the isocyanate monomer as the raw material is not important to the implementation of the preparation method of the present invention, including isocyanate monomers that can be produced with or without phosgene or any other method, such as aromatic, aliphatic and/or cycloaliphatic organic isocyanates, which are organic diisocyanates or organic polyisocyanates containing, in addition to the NCO groups, 4 to 20 carbon atoms in the carbon skeleton.
  • the separation and treatment means for removing unreacted isocyanate monomers are conventional operations in the field, which are not particularly limited;
  • the separation device used can be an extraction device, a rotary evaporator, a short-path evaporator or a thin film
  • the evaporator and combinations thereof remove residual unreacted isocyanate monomers from the resulting reaction liquid until the isocyanate monomer content in the product is low, eg, 0.5 wt % or less based on the mass of the composition.
  • the polyisocyanate composition can be a trimer polyisocyanate.
  • the preparation method of storage-stable polyisocyanate comprises the steps:
  • the isocyanate monomer is added to the reaction vessel and heated, after the system is warmed up to the reaction temperature, add (for example, dropwise) catalyst I, carry out a polymerization reaction, track and measure the NCO% of the reaction solution;
  • a suitable value for example, 35-45%
  • adding a terminator I to terminate the reaction to obtain a trimer polyisocyanate reaction solution;
  • thermosensitive temperature of the trimer polyisocyanate is 160-165°C.
  • the trimer polyisocyanate reaction solution contains isocyanurate structure, urethane structure, allophanate structure, imino oxadiazinedione structure, uretdione structure, carbodiimide structure
  • One or more polyisocyanates of amine structure and uretonimine structure preferably including isocyanurate structure, urethane structure, allophanate structure, iminooxadiazinedione structure , uretdione structure, carbodiimide structure and uretonimide structure polyisocyanate.
  • the catalyst I described in step (11) is a quaternary ammonium base and/or a quaternary ammonium salt catalyst, preferably selected from choline hydroxide, trimethyl hydroxyethyl ammonium hydroxide, tetramethyl ammonium hydroxide, Tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, 1-adamantylammonium hydroxide, hexamethylbisammonium hydroxide, tetraalkylammonium hydroxide (eg, Weak organic acid salts of tetramethylammonium, tetraethylammonium, etc.
  • choline hydroxide trimethyl hydroxyethyl ammonium hydroxide, tetramethyl ammonium hydroxide, Tetraethylammonium hydroxide, tetrapropyl
  • organic weak acid salts of tetramethyloctanoate, trimethylhydroxypropylammonium for example, formic acid
  • organic weak acid salts of trimethylhydroxyethylammonium eg, formic acid, acetic acid, capric acid, etc.
  • the organic weak acid salt of tetraalkylammonium described here can be tetramethylammonium formate, tetramethylammonium acetate, tetramethylammonium decanoate, tetraethylammonium formate, tetraethylammonium acetate, tetraethyldecanoic acid ammonium;
  • the organic weak acid salt of the trimethyl hydroxypropyl ammonium can be trimethyl hydroxypropyl ammonium formate, trimethyl hydroxypropyl ammonium acetate, trimethyl hydroxypropyl ammonium decanoate;
  • the organic weak acid salt of hydroxyethyl ammonium can be trimethyl hydroxyethyl ammonium formate, trimethyl hydroxyethyl ammonium acetate, and trimethyl hydroxyethyl ammonium decanoate.
  • the catalyst I is added in an amount of 0.001wt%-0.1wt% (eg, 0.0025wt%, 0.005wt%, 0.01wt%, 0.04wt%, 0.06wt%, 0.08wt%) based on the weight of the isocyanate monomer ).
  • the catalyst I can be used as pure substance or optionally dissolved in alcohol in any concentration.
  • the alcohol can be, but is not limited to, a monohydric alcohol and/or a dihydric alcohol; preferably, the monohydric alcohol is selected from C1-C10 aliphatic alcohols, araliphatic alcohols, aromatic alcohols, aliphatic alcohols One or more of phenols, araliphatic phenols and aromatic phenols, more preferably in the form of linear, branched or cyclic alcohols or phenols.
  • the diol may be, but is not limited to, the following, such as ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol Diol, 1,5-pentanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, neopentyl glycol, 1,6-hexanediol, 1, 7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, diethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol , 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2-e
  • the terminator I in step (11) is selected from organic acids and/or acylating agents, preferably selected from formic acid, benzoic acid, benzoyl chloride, dibutyl phosphate and bis(2-ethylhexyl phosphate) ) one or more of.
  • the addition amount of the terminator I is based on the deactivation of the polymerization catalyst I in the system.
  • reaction temperature of step (11) is 30-100°C (eg, 35°C, 50°C, 60°C, 70°C, 90°C), preferably 40-80°C.
  • step (12) after terminating the reaction, before entering the separation device, the obtained polyisocyanate reaction solution is heated to 10-30° C. higher than the heat-sensitive temperature of the product, and the residence time is 5-30 min to perform heat treatment.
  • the thermosensitive temperature of the trimer polyisocyanate is 160-165°C, that is, it can be understood that the temperature for heat treatment is 170-195°C (for example, 175°C, 180°C, 190°C).
  • the process conditions of the separation treatment in step (13) include: the separation temperature is 90-180°C (for example, 100°C, 135°C, 140°C, 150°C, 175°C), preferably 130-180°C,
  • the separation absolute pressure is 5-200Pa (eg, 150Pa, 100Pa, 50Pa, 20Pa, 10Pa).
  • the residual monomer content is less than or equal to 0.2 wt % based on the mass of the composition.
  • the preparation method of HDI trimer polyisocyanate comprises the steps:
  • HDI hexamethylene diisocyanate
  • the heat-sensitive temperature of the HDI trimer polyisocyanate is 160-165°C.
  • the polyisocyanate composition can be a biuret polyisocyanate.
  • the preparation method of storage-stable polyisocyanate comprises the steps:
  • (21) isocyanate monomer and acid catalyst are added in the reaction vessel, after the system is heated to the reaction temperature, the water vapor as the biuretization reagent is introduced, and the polymerization reaction is carried out, and the NCO% of the reaction solution is tracked and measured; when the NCO% When the value drops to an appropriate value (for example, 33-37%), stop adding water vapor to terminate the reaction to obtain a biuret polyisocyanate reaction solution;
  • thermosensitive temperature of the biuret polyisocyanate is 140-145°C.
  • the biuret polyisocyanate reaction solution may include a polyisocyanate containing one or more of a biuret structure, a uretdione structure, a carbodiimide structure and a uretonimine structure, preferably a polyisocyanate containing a biuret structure Polyisocyanates of diurea structure, uretdione structure, carbodiimide structure and uretonimine structure.
  • the mass ratio of the isocyanate monomer to water vapor in step (21) is 40-60:1 (eg, 45:1, 50:1, 55:1, 58:1).
  • the acidic catalyst in step (21) is selected from one or more of monoalkyl phosphate, dialkyl phosphate, monoaryl phosphate, diaryl phosphate, propionic acid and pivalic acid. kind.
  • the monoalkyl phosphate, dialkyl phosphate, monoaryl phosphate or diaryl phosphate are those whose aliphatic, branched aliphatic or araliphatic groups have 1 to 30 carbon atoms , more preferably having 4-20 carbon atoms; for example, methyl phosphate, ethyl phosphate, dibutyl phosphate, dihexyl phosphate, bis(2-ethylhexyl phosphate), isooctyl phosphate , n-dodecyl phosphate, diethyl phosphate, di-n-propyl phosphate, di-n-butyl phosphate, diisoamyl phosphate, di-n-de
  • the acidic catalyst is used in an amount of 0.1-3.0 wt % (eg, 0.2 wt %, 0.5 wt %, 1.0 wt %, 1.5 wt %, 2.0 wt %, 2.5 wt %) based on the weight of the isocyanate monomer.
  • the acidic catalyst can be added as a solution or dispersion in a suitable solvent, preferably the acidic catalyst is directly added to the system.
  • a suitable solvent preferably the acidic catalyst is directly added to the system.
  • an additional solvent can be added to the isocyanate solution.
  • suitable solvents may be, but are not limited to, butyl acetate, ethyl acetate, tetrahydrofuran, propylene glycol methyl ether acetate, xylene, propylene glycol diacetate, methyl ethyl ketone, methyl isoamyl ketone, cyclohexanone, hexane
  • suitable solvents may be, but are not limited to, butyl acetate, ethyl acetate, tetrahydrofuran, propylene glycol methyl ether acetate, xylene, propylene glycol diacetate, methyl ethyl ketone, methyl isoamyl ketone, cyclohexanone, hexane
  • suitable solvents may be, but are not limited to, butyl acetate, ethyl acetate, tetrahydrofuran, propylene glycol methyl ether acetate, x
  • the acidic catalyst one or more of propylene glycol methyl ether acetate, triethyl phosphate, tri-n-butyl phosphate and trimethyl phosphate can also be used.
  • the reaction of the present invention is preferably carried out without adding a solvent.
  • the reaction temperature of step (21) is 80-280°C (for example, 110°C, 150°C, 200°C, 260°C), preferably 100-250°C; the reaction time is 50-400min (for example, 100min, min, 150min, 200min, 300min), preferably 60-350min.
  • the conversion rate of the reaction in the research and development stage, can be determined by testing the NCO% value. After the conversion rate reaches the set requirement, the addition of water vapor is stopped to end the reaction. In the industrialization stage, the end of the reaction can generally be determined by controlling the amount of influent water after the reaction is stabilized. The addition of a terminator is not required to terminate the reaction.
  • step (22) after the termination of the reaction, the obtained polyisocyanate reaction solution is heated to 10-30° C. higher than the heat-sensitive temperature of the product, and the residence time is 5-30min, and heat treatment is performed.
  • the thermosensitive temperature of the biuret polyisocyanate is 140-145°C, that is, it can be understood that the temperature for heat treatment is 150-175°C (eg, 155°C, 160°C, 170°C).
  • the separation device in step (23) is a secondary wiped-film evaporator;
  • the wiped-film system of the wiped-film evaporator may be a roller type or a wiped-blade type, and the evaporator may be a thin-film evaporator or a short-path evaporation device.
  • the process conditions for the separation treatment include: the separation temperature of the first-stage wiped-film evaporator is 110-180° C.
  • the absolute separation pressure is 5-500 Pa (for example, 5Pa, 10Pa, 50Pa, 100Pa, 200Pa, 400Pa);
  • the separation temperature of the second-stage wiped film evaporator is 120-180°C (for example, 130°C, 140°C, 160°C), and the absolute separation pressure is 5-200Pa (for example, 5Pa, 10Pa, 50Pa, 100Pa, 150Pa).
  • the preparation method of biuret polyisocyanate comprises the steps:
  • hexamethylene diisocyanate (HDI) and acid catalyst are added in the reaction vessel, after the system is heated to the reaction temperature, the water vapor as the biuretizing reagent is passed into, and the polymerization reaction is carried out, and the tracking of the reaction solution is measured.
  • NCO% when the NCO% value drops to a suitable value (for example, 33-37%), stop adding water vapor to terminate the reaction to obtain a biuret polyisocyanate reaction solution;
  • thermosensitive temperature of the biuret polyisocyanate is 140-145°C.
  • reaction solution was heat-treated before the unreacted monomers were separated out. Presumably, because the catalyst remaining in the obtained reaction solution itself contained active hydrogen, it could react with the NCO group of isocyanate, but the reaction was extremely slow at low temperature. , and at high temperature, it can promote its reaction with NCO groups to generate more stable substances, so that the catalyst loses its catalytic activity, and the storage stability of the product is significantly improved.
  • the polyisocyanate composition may also be a uretdione polyisocyanate.
  • the preparation method of storage-stable polyisocyanate comprises the steps:
  • the isocyanate monomer is added in the reaction vessel and heated, and catalyst II and cocatalyst are added successively under stirring conditions after the system is warming up to the reaction temperature, carry out polymerization reaction, and track the NCO% of the reaction solution; when the NCO% value decreases When reaching a suitable value (for example, 38-42%), adding terminator II to terminate the reaction to obtain a uretdione polyisocyanate reaction solution;
  • (33) separation treatment is carried out to uretdione polyisocyanate mixture by separation device (for example, two-stage short-path evaporator) again, and unreacted monomer is removed in the reaction system to obtain uretdione polyisocyanate;
  • separation device for example, two-stage short-path evaporator
  • the heat-sensitive temperature of the uretdione polyisocyanate is 130-135°C.
  • the uretdione polyisocyanate reaction solution may contain isocyanurate structure, carbamate structure, allophanate structure, imino oxadiazinedione structure, uretdione structure, carbodiazide structure
  • One or more polyisocyanates of imine structure and uretonimine structure preferably including isocyanurate structure, urethane structure, allophanate structure, imino oxadiazine dione Structure, uretdione structure, carbodiimide structure and uretonimine structure polyisocyanates.
  • the catalyst II described in step (31) is a tertiary phosphine catalyst, which has the structure shown in the following formula i:
  • R 1 , R 2 and R 3 are independently selected from aliphatic substituents or aromatic substituents.
  • the aliphatic substituent is selected from linear alkyl, branched alkyl or cycloalkyl, preferably C1-C10 linear alkyl, C3-C10 branched alkyl or C3-C10 cycloalkyl; the aromatic substituent is a C7-C10 aromatic substituent, preferably a benzyl group.
  • the catalyst II is selected from the group consisting of trimethylphosphine, triethylphosphine, tripropylphosphine, triisopropylphosphine, tri-n-butylphosphine, tri-tert-butylphosphine, dicyclopentylbutylphosphine One or one of tricyclopentylphosphine, tripentylphosphine, tricyclopentylphosphine, trihexylphosphine, triphenylphosphine, tribenzylphosphine, benzyldimethylphosphine, tricyclohexylphosphine and tri-n-octylphosphine Multiple, preferably one or more selected from tri-tert-butylphosphine, tri-n-butylphosphine and tri-n-octylphosphine.
  • the catalyst II is used in an amount of 0.01-1 wt % based on the weight of the isocyanate monomer (eg, 0.02 wt %, 0.04 wt %, 0.08 wt %, 0.1 wt %, 0.2 wt %, 0.4 wt %, 0.6 wt % , 0.8wt%), preferably 0.05-0.5wt%.
  • the tertiary phosphine catalyst is a nucleophile, which is easily oxidized by oxygen in the air, and must be strictly deoxygenated during use and protected by an inert gas at the same time; for example, if tri-n-octylphosphine is exposed to the air, A violent oxidation reaction occurs to generate trioctyl phosphine oxide.
  • a suitable alcohol can also be optionally selected as a cocatalyst to be used together with the tertiary phosphine catalyst.
  • the cocatalyst in step (31) is selected from low molecular weight monovalent fatty alcohol or polyvalent fatty alcohol, preferably from monovalent fatty alcohol or polyvalent fatty alcohol with molecular weight of 32-250.
  • monovalent fatty alcohols or polyvalent fatty alcohols for example, can be selected from methanol, ethanol, n-propanol, isopropanol, n-butanol, n-hexanol, octanol, 2-ethyl-1-hexanol, ethylene glycol , Propylene Glycol, Isomerized Butylene Glycol, Pentylene Glycol, Neopentyl Glycol, Hexylene Glycol, Octane Glycol, Diethylene Glycol, Dipropylene Glycol, 2-Ethyl-1,3-Hexane Glycol, 2 , One or more of 2,4-dimethylpentanediol, glycerol
  • the amount of the cocatalyst is 0-5wt% (eg, 0.05wt%, 0.2wt%, 0.5wt%, 1wt%, 2wt%, 4wt%), preferably 0.1-5wt%, based on the weight of the isocyanate monomer , more preferably 0.5-3wt%.
  • the substance that actually acts as a cocatalyst is the urethane formed by the reaction of the cocatalyst with the starting isocyanate. Therefore, it is also suitable not to use the above-mentioned alcohols, but to prepare them separately by reacting the above-mentioned alcohols with isocyanates and then to add them to the reaction in the form of cocatalysts.
  • terminator II can be added to terminate the reaction.
  • the terminator II is selected from acid chlorides (eg, formyl chloride, acetyl chloride, benzoyl chloride or phthaloyl chloride, etc.), sulfonic acid esters (eg, methyl tosylate, ethyl tosylate, etc.) ), alkyl phosphates (eg, monobutyl phosphate, dibutyl phosphate, monoethyl phosphate, diethyl phosphate, dioctyl phosphate, bis(2-ethylhexyl phosphate), etc.) and sulfates ( For example, one or more of dimethyl sulfate, diethyl sulfate, etc.).
  • the amount of the terminator II in step (31) is 80-120% (eg, 90%, 100%, 110%) of the molar amount of the catalyst II.
  • the present reaction system may be carried out without a solvent or in the presence of a solvent inert to isocyanate.
  • Suitable solvents may be, but are not limited to, butyl acetate, ethyl acetate, tetrahydrofuran, propylene glycol methyl ether acetate, xylene, propylene glycol diacetate, methyl ethyl ketone, methyl isoamyl ketone, cyclohexanone, hexane , toluene, xylene, benzene, chlorobenzene, o-dichlorobenzene, hydrocarbon mixtures, dichloromethane, etc.
  • the present reaction system is preferably reacted without adding a solvent.
  • the alcohol cocatalyst can be added to the reaction system at any reaction stage.
  • the cocatalyst can be added to the starting isocyanate monomer before the reaction, or it can be added to the system after the catalyst II is added, or it can be added after the reaction reaches a certain conversion rate.
  • the catalyst II in this reaction system can be used directly without dilution or in the form of a solution in a solvent.
  • Suitable solvents may be all compounds which do not react with phosphines, eg aliphatic or aromatic hydrocarbons, alcohols, ketones, esters and ethers, etc., preferably with alcohol or without solvent.
  • reaction temperature of step (31) is 40-70°C (eg, 50°C, 60°C).
  • step (32) after the termination of the reaction, the obtained polyisocyanate reaction solution is heated to 10-30° C. higher than the heat-sensitive temperature of the product, and the residence time is 5-30 min, and heat treatment is performed.
  • the heat-sensitive temperature of the uretdione polyisocyanate is 130-135°C, that is, it can be understood that the temperature for heat treatment is 140-165°C (for example, 145°C, 150°C, 155°C, 160°C).
  • the tertiary phosphine catalyst and the terminator can generate a salt compound, which still has weak catalytic activity, resulting in poor storage stability of the product. It is speculated that by thermal treatment of the reaction solution, the salt generated by the catalyst and the terminator can react with the isocyanate group in the reaction solution at high temperature to form a more stable substance, thereby losing the catalytic activity and significantly improving the storage stability of the product .
  • the separation device for the separation treatment in step (33) may be a two-stage short-path evaporator.
  • the separation treatment process conditions include: separation temperature is 100-160°C (for example, 105°C, 120°C, 130°C, 140°C), preferably 110-150°C; separation absolute pressure is 5-200Pa (for example, , 5Pa, 10Pa, 50Pa, 100Pa, 150Pa).
  • the preparation method of uretdione polyisocyanate comprises the steps:
  • hexamethylene diisocyanate (HDI) is added in reaction vessel and heated to 40-70 °C, then under stirring, add catalyst II and cocatalyst successively, carry out polymerization reaction, track and measure the NCO% of reaction solution; When the NCO% value drops to an appropriate value, adding terminator II to terminate the reaction to obtain a uretdione polyisocyanate reaction solution;
  • (33) separation treatment is carried out to the uretdione polyisocyanate mixture by separation device (for example, two-stage short-path evaporator) again, and the unreacted HDI monomer is removed in the reaction system to obtain uretdione polyisocyanate;
  • separation device for example, two-stage short-path evaporator
  • the heat-sensitive temperature of the uretdione polyisocyanate is 130-135°C.
  • stabilizers and additives can be added at any desired timing, and these stabilizers and additives are conventional additives in the field of polyisocyanates. It includes but is not limited to: antioxidants, sterically hindered phenols (eg, 2,6-di-tert-butyl-4-methylphenol, 3,5-di-tert-butyl-4-hydroxyphenylpropionic acid, ten Octyl alcohol ester, etc.), phosphites (such as, tris(nonylphenyl) phosphite, tris(2,4-di-tert-butylphenyl) phosphite, etc.), ultraviolet absorbers (such as, benzotriazoles, salicylates, benzophenones, etc.) and hindered amine light stabilizers (eg, 2,2,6,6-tetramethylpyridine) and the like.
  • antioxidants eg, 2,6-di-tert-butyl-4-methylphenol, 3,5-di-
  • the present invention also relates to related products such as polyurethane coatings and polyurethane adhesives prepared by using the above polyisocyanate composition or the polyisocyanate prepared by the above preparation method.
  • polyisocyanate composition prepared by the polyisocyanate composition or the preparation method of the present invention can be used to prepare other related products such as polyurethane coatings and polyurethane adhesives after being blocked by a blocking agent.
  • heat treatment is performed on the system after the polymerization reaction and before the separation treatment, so that the molecular weight distribution of the final product changes little; and the heat-sensitive temperature of the obtained polyisocyanate product is 10-
  • the heat treatment at a heat treatment temperature of 30°C can deactivate the catalytic activity of the substances affecting the stability in the system, and the storage stability of the final product (especially the viscosity stability and the stability of the unreacted monomer content) is greatly improved.
  • the stability of the polyisocyanate composition obtained by the present invention is greatly improved, and when it is stored at 50° C. for 30 days, the increase in viscosity does not exceed 15% of its initial viscosity, while the change in unreacted monomer content and color The magnitude of change is also small.
  • Tetraethylammonium hydroxide solution 25wt% concentration, methanol solution), Sigma-Aldrich;
  • Trimethylhydroxyethylammonium hydroxide solution (25wt% concentration, methanol solution), Sigma-Aldrich;
  • Tri-n-octylphosphine purity > 98.5%, Aladdin reagent;
  • Tri-tert-butylphosphine purity > 96%, Aladdin reagent;
  • Di(2-ethylhexyl phosphate) (diisooctyl phosphate): purity > 98.5%, Aladdin reagent;
  • Dibutyl phosphate >98.5% purity, Aladdin's reagent.
  • reaction solution was kept under the protection of dry nitrogen before the reaction to the addition of the catalyst and the entire reaction process. Unless otherwise stated, all percentages herein are by mass.
  • HDI hexamethylene diisocyanate
  • reaction solution is heat-treated at 185-190° C. for 20 minutes to obtain a heat-treated HDI trimer polyisocyanate mixture.
  • the prepared polyisocyanate composition was tested, and its chromaticity was 15 Hazen, the viscosity was 2830 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.07 wt %.
  • the prepared polyisocyanate composition was placed at 50° C. for 30 days, the measured chromaticity was 19 Hazen, the viscosity was 2985 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.09 wt %.
  • the absolute value of the difference in viscosity change of the product before and after storage is 155 mPa ⁇ s, and the range of viscosity change is 5.48% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 4Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.02 wt%. This shows that the stability of the product before and after storage is well improved.
  • HDI hexamethylene diisocyanate
  • 2-ethyl acetate of trimethyl hydroxyethyl ammonium hydroxide solution concentration of 25 wt %, methanol solution
  • 1,3-hexanediol solution concentration is 20wt%
  • reaction solution is heat-treated at 170-175° C. for 30 min to obtain a heat-treated HDI trimer polyisocyanate mixture.
  • the prepared polyisocyanate composition was tested, and its chromaticity was 12 Hazen, the viscosity was 2790 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.06 wt %.
  • the prepared polyisocyanate composition was placed at 50°C for 30 days, the measured chromaticity was 14 Hazen, the viscosity was 3015 mPa ⁇ s (25°C), and the residual HDI monomer content was 0.09wt%.
  • the absolute value of the difference in viscosity change of the product before and after storage is 225 mPa ⁇ s, and the range of viscosity change is 8.06% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 2Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.03 wt%. This shows that the stability of the product before and after storage is well improved.
  • HDI hexamethylene diisocyanate
  • reaction solution is heat-treated at 190-195° C. for 5 min to obtain a heat-treated HDI trimer polyisocyanate mixture.
  • the prepared polyisocyanate composition was tested, and the color was 15 Hazen, the viscosity was 2850 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.12 wt %.
  • the prepared polyisocyanate composition was placed at 50° C. for 30 days, the measured chromaticity was 18 Hazen, the viscosity was 3045 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.14 wt %.
  • the absolute value of the difference in viscosity change of the product before and after storage is 195 mPa ⁇ s, and the range of viscosity change is 6.84% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 3Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.02 wt%. This shows that the stability of the product before and after storage is well improved.
  • HDI hexamethylene diisocyanate
  • the prepared polyisocyanate composition was tested, and the color was 14 Hazen, the viscosity was 2790 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.07 wt %.
  • the prepared polyisocyanate composition was measured to have a chromaticity of 27 Hazen, a viscosity of 3292 mPa ⁇ s (25°C), and a residual HDI monomer content of 0.21 wt%.
  • the absolute value of the difference in viscosity change of the product before and after storage is 502 mPa ⁇ s, and the range of viscosity change is 18% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 13Hazen.
  • the absolute value of the difference in residual HDI monomer content of the product before and after storage was 0.14 wt %. From this, it can be shown that the improvement of the stability of the product before and after storage is not as significant as that of the corresponding embodiment.
  • HDI hexamethylene diisocyanate
  • the prepared polyisocyanate composition was tested, and the color was 14 Hazen, the viscosity was 2820 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.11 wt %.
  • the measured chromaticity was 22 Hazen
  • the viscosity was 3273 mPa ⁇ s (25° C.)
  • the residual HDI monomer content was 0.23 wt %.
  • the absolute value of the difference in viscosity change of the product before and after storage is 453 mPa ⁇ s, and the range of viscosity change is 16% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 8Hazen.
  • the absolute value of the difference in the residual HDI monomer content of the product before and after storage was 0.12 wt%. From this, it can be shown that the improvement of the stability of the product before and after storage is not as significant as that of the corresponding embodiment.
  • HDI hexamethylene diisocyanate
  • 6g of bis(2-ethylhexyl phosphate) were added to the reaction vessel, and the system was heated to 150° C., then 45g of water vapor was slowly passed through Put it into a reaction vessel to carry out the reaction, track and measure the NCO% of the reaction solution; control the adding time of water vapor to 150 min to obtain a biuret polyisocyanate reaction solution.
  • reaction solution is heat-treated at 170-175° C. for 5 min to obtain a biuret polyisocyanate mixture after heat treatment.
  • the prepared polyisocyanate composition was tested, and its chromaticity was 12 Hazen, the viscosity was 8100 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.21 wt %.
  • the prepared polyisocyanate composition was placed at 50°C for 30 days, the measured color was 17 Hazen, the viscosity was 8535 mPa ⁇ s (25°C), and the residual HDI monomer content was 0.25wt%.
  • the absolute value of the difference in viscosity change of the product before and after storage is 435 mPa ⁇ s, and the range of viscosity change is 5.37% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 5Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.04 wt%. This shows that the stability of the product before and after storage is well improved.
  • reaction solution is heat-treated at 160-165° C. for 20 min to obtain a biuret polyisocyanate mixture after heat treatment.
  • the prepared polyisocyanate composition was tested, and the color was 16 Hazen, the viscosity was 8155 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.17 wt %.
  • the prepared polyisocyanate composition was placed at 50°C for 30 days, the measured chromaticity was 19 Hazen, the viscosity was 8911 mPa ⁇ s (25°C), and the residual HDI monomer content was 0.25wt%.
  • the absolute value of the difference in viscosity change of the product before and after storage is 756 mPa ⁇ s, and the range of viscosity change is 9.23% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 3Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.08 wt%. This shows that the stability of the product before and after storage is well improved.
  • HDI hexamethylene diisocyanate
  • 6g of bis(2-ethylhexyl phosphate) were added to the reaction vessel, and the system was heated to 150° C., then 45g of water vapor was slowly passed through Put it into a reaction vessel to carry out the reaction, track and measure the NCO% of the reaction solution; control the adding time of water vapor to 150 min to obtain a biuret polyisocyanate reaction solution.
  • reaction solution is heat-treated at 150-155° C. for 30 minutes to obtain a biuret polyisocyanate mixture after heat treatment.
  • the prepared polyisocyanate composition was tested, and the color was 14 Hazen, the viscosity was 8165 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.17 wt %.
  • the measured color is 18 Hazen
  • the viscosity is 9317 mPa ⁇ s (25°C)
  • the residual HDI monomer content is 0.26wt%.
  • the absolute value of the difference in viscosity change of the product before and after storage is 1152 mPa ⁇ s, and the range of viscosity change is 14.12% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 4Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.09 wt %. This shows that the stability of the product before and after storage is well improved.
  • HDI hexamethylene diisocyanate
  • 6g of bis(2-ethylhexyl phosphate) were added to the reaction vessel, and the system was heated to 150° C., then 45g of water vapor was slowly passed through Put it into a reaction vessel to carry out the reaction, track and measure the NCO% of the reaction solution; control the adding time of water vapor to 150 min to obtain a biuret polyisocyanate reaction solution.
  • the prepared polyisocyanate composition was tested, and the color was 11 Hazen, the viscosity was 8020 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.23 wt %.
  • the prepared polyisocyanate composition was placed at 50° C. for 30 days, the measured chromaticity was 23 Hazen, the viscosity was 9612 mPa ⁇ s (25° C.), and the residual monomer content was 0.45 wt %.
  • the absolute value of the difference in viscosity change of the product before and after storage is 1592 mPa ⁇ s, and the range of viscosity change is 19.85% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 12Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.22 wt%. From this, it can be shown that the improvement of the stability of the product before and after storage is not as good as that of the corresponding embodiment.
  • reaction solution is heat-treated at 140-145° C. for 30 minutes to obtain a biuret polyisocyanate composition.
  • the prepared polyisocyanate composition was tested, and the color was 14 Hazen, the viscosity was 8078 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.21 wt %.
  • the measured color is 21 Hazen
  • the viscosity is 9464 mPa ⁇ s (25°C)
  • the residual HDI monomer content is 0.38wt%.
  • the absolute value of the difference in viscosity change of the product before and after storage is 1386 mPa ⁇ s, and the range of viscosity change is 17.16% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 7Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.17 wt %. Therefore, it can be shown that the stability improvement of the product before and after storage is not as good as the effect of the embodiment.
  • hexamethylene diisocyanate (HDI for short) with a total mass M of 1000g was added to the reaction vessel and heated to 50°C, stirred at this temperature and added successively 2.5g tri-n-octylphosphine and 15g 2- Ethyl-1,3-hexanediol, carry out the polymerization reaction, and track and measure the NCO% of the reaction solution; that is, quantitatively monitor the reaction system by gel chromatography; when the consumption mass M1 of HDI in the system accounts for 40% of the total mass M of HDI added %, add 2.2 g of bis(2-ethylhexyl phosphate) and heat to 90°C for 2 hours to terminate the reaction to obtain a uretdione polyisocyanate reaction solution;
  • HDI hexamethylene diisocyanate
  • the separation temperature of the primary short-path evaporator is 135 ⁇ 2.5 ° C
  • the separation absolute pressure is 50-100Pa
  • the secondary short-path evaporator is 50-100Pa.
  • the separation temperature is 135 ⁇ 2.5°C
  • the absolute separation pressure is 10-50Pa
  • the unreacted HDI monomer in the reaction system is removed to obtain the uretdione polyisocyanate composition.
  • the prepared polyisocyanate composition was tested, and the color was 15 Hazen, the viscosity was 145 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.16 wt %.
  • the prepared polyisocyanate composition was placed at 50° C. for 30 days, the measured color was 21 Hazen, the viscosity was 158 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.21 wt %.
  • the absolute value of the difference in viscosity change of the product before and after storage is 13 mPa ⁇ s, and the range of viscosity change is 8.97% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 6Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.05 wt %. This shows that the stability of the product before and after storage is well improved.
  • hexamethylene diisocyanate (HDI for short) with a total mass M of 1000g was added to the reaction vessel and heated to 50°C, stirred at this temperature and added successively 2.5g tri-n-octylphosphine and 15g 2- Ethyl-1,3-hexanediol, carry out the polymerization reaction, and track and measure the NCO% of the reaction solution; that is, quantitatively monitor the reaction system by gel chromatography; when the consumption mass M1 of HDI in the system accounts for 40% of the total mass M of HDI added %, add 2.2 g of bis(2-ethylhexyl phosphate) and heat to 90°C for 2 hours to terminate the reaction to obtain a uretdione polyisocyanate reaction solution;
  • HDI hexamethylene diisocyanate
  • the separation temperature of the primary short-path evaporator is 135 ⁇ 2.5 ° C
  • the separation absolute pressure is 50-100Pa
  • the secondary short-path evaporator is 50-100Pa.
  • the separation temperature is 135 ⁇ 2.5°C
  • the absolute separation pressure is 10-50Pa
  • the unreacted HDI monomer in the reaction system is removed to obtain the uretdione polyisocyanate composition.
  • the prepared polyisocyanate composition was tested, and the color was 17 Hazen, the viscosity was 149 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.17 wt %.
  • the prepared polyisocyanate composition was placed at 50° C. for 30 days, the measured color was 22 Hazen, the viscosity was 166 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.23 wt %.
  • the absolute value of the difference in viscosity change of the product before and after storage is 17 mPa ⁇ s, and the range of viscosity change is 11.41% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 5Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.06 wt%. This shows that the stability of the product before and after storage is well improved.
  • hexamethylene diisocyanate (HDI for short) with a total mass M of 1000g was added to the reaction vessel and heated to 50°C, stirred at this temperature and added successively 2.2g tri-tert-butylphosphine and 15g 2- Ethyl-1,3-hexanediol, carry out the polymerization reaction, and track the NCO% of the reaction solution; that is, quantitatively monitor the reaction system by gel chromatography; when the consumption mass M1 of HDI in the system accounts for the total mass M of HDI added At 41%, 2.3 g of dibutyl phosphate was added and heated to 90° C. for 2 hours to terminate the reaction to obtain a uretdione polyisocyanate reaction solution;
  • HDI hexamethylene diisocyanate
  • the separation temperature of the primary short-path evaporator is 135 ⁇ 2.5 ° C
  • the separation absolute pressure is 50-100Pa
  • the secondary short-path evaporator is 50-100Pa.
  • the separation temperature is 135 ⁇ 2.5°C
  • the absolute separation pressure is 10-50Pa
  • the unreacted HDI monomer in the reaction system is removed to obtain the uretdione polyisocyanate composition.
  • the prepared polyisocyanate composition was tested to have a chromaticity of 16 Hazen, a viscosity of 156 mPa ⁇ s (25°C), and a residual HDI monomer content of 0.20 wt%.
  • the prepared polyisocyanate composition was placed at 50° C. for 30 days, the measured color was 23 Hazen, the viscosity was 177 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.28 wt %.
  • the absolute value of the difference in viscosity change of the product before and after storage is 21 mPa ⁇ s, and the range of viscosity change is 13.46% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 7Hazen.
  • the absolute value of the change in the residual HDI monomer content of the product before and after storage was 0.08 wt%. This shows that the stability of the product before and after storage is well improved.
  • hexamethylene diisocyanate (HDI for short) with a total mass M of 1000g was added to the reaction vessel and heated to 50°C, stirred at this temperature and added successively 2.5g tri-n-octylphosphine and 15g 2- Ethyl-1,3-hexanediol, carry out the polymerization reaction, and track the NCO% of the reaction solution; that is, quantitatively monitor the reaction system by gel chromatography; when the consumption mass M1 of HDI in the system accounts for the total mass M of HDI added At 40%, 2.2 g of bis(2-ethylhexyl phosphate) was added and heated to 90° C. for 2 hours to terminate the reaction to obtain a uretdione polyisocyanate reaction solution;
  • HDI hexamethylene diisocyanate
  • this polyisocyanate reaction solution is separated and processed by a secondary short-path evaporator, wherein, the separation temperature of the primary short-path evaporator is 135 ⁇ 2.5 °C, the separation absolute pressure is 50-100Pa, and the separation of the secondary short-path evaporator is The temperature is 135 ⁇ 2.5° C., the absolute separation pressure is 10-50 Pa, and the unreacted HDI monomer in the reaction system is removed to obtain a uretdione polyisocyanate composition.
  • the prepared polyisocyanate composition was tested, and the color was 14 Hazen, the viscosity was 147 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.15 wt %.
  • the prepared polyisocyanate composition was placed at 50° C. for 30 days, its chromaticity was 26 Hazen, the viscosity was 184 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.33 wt %.
  • the absolute value of the difference in viscosity change of the product before and after storage is 37 mPa ⁇ s, and the range of viscosity change is 25.17% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 12Hazen.
  • the absolute value of the difference in residual HDI monomer content of the product before and after storage was 0.18 wt %. From this, it can be shown that the improvement of the stability of the product before and after storage is not as good as that of the corresponding embodiment.
  • hexamethylene diisocyanate (HDI for short) with a total mass M of 1000g was added to the reaction vessel and heated to 50°C, stirred at this temperature and added successively 2.5g tri-n-octylphosphine and 15g 2- Ethyl-1,3-hexanediol, carry out the polymerization reaction, and track and measure the NCO% of the reaction solution; that is, quantitatively monitor the reaction system by gel chromatography; when the consumption mass M1 of HDI in the system accounts for 40% of the total mass M of HDI added %, add 2.2 g of bis(2-ethylhexyl phosphate) and heat to 90°C for 2 hours to terminate the reaction to obtain a uretdione polyisocyanate reaction solution;
  • HDI hexamethylene diisocyanate
  • this polyisocyanate reaction solution is passed into the secondary short-path evaporator to carry out separation treatment, wherein, the separation temperature of the primary short-path evaporator is 135 ⁇ 2.5 °C, and the separation absolute pressure is 50-100Pa, and the separation temperature of the secondary short-path evaporator is 50-100Pa.
  • the separation temperature is 135 ⁇ 2.5°C
  • the absolute separation pressure is 10-50Pa
  • the unreacted HDI monomer in the reaction system is removed to obtain the polyisocyanate reaction solution after separation and removal of impurities
  • the prepared polyisocyanate composition was tested, and the color was 15 Hazen, the viscosity was 152 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.21 wt %.
  • the prepared polyisocyanate composition was placed at 50° C. for 30 days, the measured chromaticity was 24 Hazen, the viscosity was 185 mPa ⁇ s (25° C.), and the residual HDI monomer content was 0.36 wt %.
  • the absolute value of the viscosity change difference of the product before and after storage is 33 mPa ⁇ s, and the viscosity change range is 21.71% of the initial viscosity.
  • the absolute value of the difference in color number change before and after storage is 9Hazen.
  • the absolute value of the difference in residual HDI monomer content of the product before and after storage was 0.15 wt%. Therefore, it can be shown that the stability improvement of the product before and after storage is not as good as the effect of the embodiment.
  • the storage stability of the polyisocyanate product prepared by the method of the present invention is greatly improved.
  • the viscosity of the product when placed at 50° C. for 30 days, changes less than 10% of its initial viscosity, and the color number changes less than 5 Hazen.
  • the variation range of the volume content is less than or equal to 0.05wt%.
  • the viscosity of the product when placed at 50°C for 30 days, changes less than 15% of its initial viscosity, the color number changes less than 5 Hazen, and the monomer content does not change.
  • the amplitude is less than or equal to 0.09 wt%.
  • the viscosity of the product when placed at 50°C for 30 days, changes less than 15% of its initial viscosity, the color number changes less than 7 Hazen, and the monomer content does not change.
  • the amplitude is less than or equal to 0.09 wt%.
  • the polyisocyanate product obtained in the comparative example without heat treatment has great changes in viscosity and color number, and the change in the content of unreacted monomers involved is also larger than that in the examples.
  • the storage stability improvement effect of the obtained polyisocyanate products is also not good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于制备异氰酸酯衍生物的技术领域,尤其涉及一种存储稳定的多异氰酸酯组合物及其制备方法,该方法包括:在催化剂体系存在下,将异氰酸酯单体进行聚合反应;达到合适的转化率后终止反应,得到多异氰酸酯反应液;再将所得多异氰酸酯反应液进行热处理,得到热处理后的多异氰酸酯混合物;其中,热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;再将热处理后的多异氰酸酯混合物进行分离处理。本发明的多异氰酸酯组合物在50℃下储藏30天的情况下,其粘度增长幅度很小,保证了粘度的稳定性,同时游离单体含量的稳定性和色号稳定性也得到明显提升。

Description

一种存储稳定的多异氰酸酯组合物及其制备方法 技术领域
本发明属于制备异氰酸酯衍生物的技术领域,尤其涉及一种存储稳定的多异氰酸酯组合物及其制备方法。
背景技术
众所周知,聚氨酯树脂涂料具有优异的耐磨性、耐化学性、耐污染性,尤其是使用由六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二环己基甲烷二异氰酸酯等脂肪(环)族异氰酸酯衍生的多异氰酸酯,其制备的聚氨酯树脂涂料还具有优异的耐候性。因此,这些多异氰酸酯常常以常温或热固化的聚氨基甲酸酯涂料的方式用于建筑、汽车、飞机、舰船、跨海大桥的涂装及其修补用涂料。
目前,芳香族、脂肪族或环脂族二异氰酸酯单体在催化剂存在下,通过聚合反应制备多异氰酸酯的方法是已知的,各种催化剂体系的优点和缺点在现有文献中有详尽的讨论,例如,J.Prakt.Chem.336(1994)185-200,CN201410002995.5,CN95113103.6,CN200310120368.3,CN200310120121.1,CN200910128728.1,CN201280059016.9。
然而,现有工艺制备的多异氰酸酯产品的主要缺点在于,存储过程中其粘度增加较快,严重影响了长距离运输和下游的使用。鉴于此,探索出改善存储过程中多异氰酸酯的稳定性(尤其是粘度的稳定性)就显得尤为重要。
发明内容
本发明的目的在于,针对现有多异氰酸酯存储稳定性存在的问题,提供一种存储稳定的多异氰酸酯组合物及其制备方法,该多异氰酸酯组合物在50℃下储藏30天的情况下,其粘度增长幅度很小,保证了产品粘度的稳定性,利于长距离运输和下游的使用,且产品中游离单体含量的稳定性和色度稳定性也得到明显提升。
为了实现上述目的,本发明提供的技术方案如下:
在一个方面,提供一种存储稳定的多异氰酸酯组合物,其在50℃下储藏30天的情况下,满足如下的①和②所述条件:
①储藏后的多异氰酸酯组合物中,异氰酸酯单体含量的增幅小于等于0.1wt%;例如,异氰酸酯单体含量的增幅为0.02wt%、0.04wt%、0.06wt%、0.08wt%;
②储藏后的多异氰酸酯组合物,其粘度增长幅度不超过其初始粘度的15%(例如,14%、12%、8%、6%、4%、2%、1%、0.5%、0.1%)。
根据本发明提供的多异氰酸酯组合物,一些示例中,所述多异氰酸酯组合物中包括异氰脲酸酯结构、氨基甲酸酯结构、脲基甲酸酯结构、缩二脲结构、亚氨基噁二嗪二酮结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构中的一种或多种。
一些示例中,所述多异氰酸酯组合物为三聚体多异氰酸酯、缩二脲多异氰酸酯或者脲二酮多异氰酸酯。
例如,所述三聚体多异氰酸酯中可包括异氰脲酸酯结构、氨基甲酸酯结构、脲基甲酸酯结构、亚氨基噁二嗪二酮结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构中的一种或多种。
例如,所述缩二脲多异氰酸酯中可包括缩二脲结构、碳化二亚胺结构、脲二酮结构和脲酮亚胺结构中的一种或多种。
例如,所述脲二酮多异氰酸酯中可包括脲二酮结构、异氰脲酸酯结构、氨基甲酸酯结构、脲基甲酸酯结构、亚氨基噁二嗪二酮结构、碳化二亚胺结构和脲酮亚胺结构中的一种或多种。
根据本发明提供的多异氰酸酯组合物,一些示例中,所述异氰酸酯单体选自芳香族有机异氰酸酯、脂肪族有机异氰酸酯和脂环族有机异氰酸酯中的一种或多种,优选选自六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、环己基二亚甲基二异氰酸酯(HMDI)、苯二亚甲基二异氰酸酯(XDI)、二环己基甲烷二异氰酸酯(HXDI)、降冰片烷二亚甲基二异氰酸酯(NBDI)、环己基二异氰酸酯(CHDI)、赖氨酸二异氰酸酯(LDI)、四甲基苯二亚甲基二异氰酸酯(TMXDI)、2,4,4-三甲基己二异氰酸酯(TMHDI)、甲苯二异氰酸酯(TDI)、甲基环己基二异氰酸酯(HTDI)、萘二异氰酸酯(NDI)、对苯二异氰酸酯(PPDI)、二苯基甲烷二异氰酸 酯(MDI)和多亚甲基多苯基多异氰酸酯(PM)中的一种或多种。
在另一个方面,提供一种存储稳定的多异氰酸酯组合物的制备方法,包括:在催化剂体系存在下,将所述异氰酸酯单体进行聚合反应;达到合适的转化率后终止反应,得到多异氰酸酯反应液;再将所得多异氰酸酯反应液进行热处理,得到热处理后的多异氰酸酯混合物;其中,所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;再将热处理后的多异氰酸酯混合物进行分离处理,除去体系中未反应的单体,制得多异氰酸酯组合物。
这里所述“达到合适的转化率”,可以理解为根据需要制得的产品而预先设定的转化率。不同类型的多异氰酸酯产品,其所需达到的转化率不同,其可以通过控制反应体系的NCO%值进行换算和体现;这是本领域技术人员所熟知的,本文不再赘述。
根据本发明提供的制备方法,一些示例中,所述多异氰酸酯组合物包括三聚体多异氰酸酯、缩二脲多异氰酸酯和脲二酮多异氰酸酯中的一种或多种。
本文中提到多异氰酸酯产品的热敏温度,其可以理解为:多异氰酸酯产品在100-200℃下进行加热,且将加热的该温度范围分为多个等温间隔并在此温度间隔下测试加热后产品的粘度;即,可每隔5℃选择一个点,并加热2h,测试该点对应的产品粘度,再把测得的这些粘度点和对应的温度点绘制成粘度-温度曲线。在所得曲线图中,产品粘度增长一倍时所对应的温度则定义为热敏温度。
不同类型的多异氰酸酯产品,其所对应的热敏温度可不同。
一些示例中,所述三聚体多异氰酸酯的热敏温度为160-165℃(例如,162℃、163℃、164℃)。
一些示例中,所述缩二脲多异氰酸酯的热敏温度为140-145℃(例如,141℃、142℃、143℃、144℃)。
一些示例中,所述脲二酮多异氰酸酯的热敏温度为130-135℃(例如,其热敏温度为131℃、132℃、133℃、134℃)。
根据本发明提供的制备方法,在一些实施方式中,所述多异氰酸酯组 合物在50℃下储藏30天的情况下,其粘度增长幅度不超过其初始粘度的15%(例如,其粘度增长幅度为其初始粘度的14%、10%、8%、6%、4%、2%、1%、0.5%)。
本文中所述粘度增长幅度可以指的是,在50℃下储藏30天后测得的多异氰酸酯产品粘度与其初始粘度的变化差值绝对值占其初始粘度的百分比。这里所述的初始粘度,可以指储藏前的多异氰酸酯产品粘度。
在一些实施方式中,所述多异氰酸酯组合物在50℃下储藏30天的情况下,其所含有未反应单体含量的增幅小于等于0.1wt%。本文所述“未反应单体含量的增幅”或者“异氰酸酯单体含量的增幅”均是指在如上所述的储藏条件下进行储藏之后和储藏之前的多异氰酸酯组合物中,异氰酸酯单体含量的绝对差值。
所述多异氰酸酯反应液中,可包括含有异氰脲酸酯结构、氨基甲酸酯结构、脲基甲酸酯结构、缩二脲结构、亚氨基噁二嗪二酮结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构中的一种或多种的多异氰酸酯,一些示例中,包括含有异氰脲酸酯结构、氨基甲酸酯结构、脲基甲酸酯结构、缩二脲结构、亚氨基噁二嗪二酮结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构的多异氰酸酯。例如,反应液中可以包括:含有异氰脲酸酯结构的多异氰酸酯、含有氨基甲酸酯结构的多异氰酸酯、含有缩二脲结构的多异氰酸酯、含有脲二酮结构的多异氰酸酯及其组合,等等。
申请人惊奇的发现,聚合反应结束后所得反应液在进入分离装置进行分离处理之前先将其热处理,然后再对体系中未参加反应的异氰酸酯单体进行分离,最终得到的产品存储稳定性(尤其是粘度稳定性和未反应单体含量的稳定性)获得很大提高。例如,采用该制备方法获得的多异氰酸酯组合物在50℃下储藏30天的情况下,其粘度增长幅度不超过其初始粘度的15%,未反应单体含量的稳定性和色号稳定性也得到提高。
经过探索发现,如果在聚合反应结束后先将反应液进行分离处理,脱除部分未反应单体后得到的中间品或者获得的最终产品在高于产品热敏温度的高温条件下热处理时,由于其中未反应的单体含量较少,在加热过程中产品会部分分解或聚合,导致产品分子量分布变化较大,进而影响下游的应用性能。而在分离处理的步骤之前对反应液进行高温热处理,由于反 应液中存在着一定量的未反应单体,基于热平衡的原因,反应液的分子量分布变化不明显,可使得最终产品分子量分布变化较小,进而使得产品的粘度变化很小,不会对下游应用性能产生不利影响。
热处理步骤中对工艺条件的控制十分关键。如果热处理的温度太高,则会使得产品色号及粘度变化大;如果热处理的温度太低,则起不到提升稳定性的效果。因此,基于多异氰酸酯产品的热敏温度,通过选择适合的热处理温度,从而保证达到理想的处理效果。如果热处理的时间太长,产品色号及粘度变化大;如果热处理时间太短,则同样起不到提升稳定性的效果。
本发明中,作为原料的异氰酸酯单体的制备方法对于本发明制备方法的实施并不重要,包括可以使用、不使用光气或其他任何方法生产得到的异氰酸酯单体,例如,芳香族、脂肪族和/或脂环族有机异氰酸酯,其是在碳骨架中除了NCO基外还含有4-20个碳原子的有机二异氰酸酯或有机多异氰酸酯。
一些示例中,除去未反应异氰酸酯单体的分离处理手段为本领域的常规操作,对此不做特别限制;所使用的分离装置,例如,可为萃取装置、旋转蒸发器、短程蒸发器或薄膜蒸发器及其组合,从所得反应液中除去残留的未反应异氰酸酯单体,直至产品中的异氰酸酯单体含量较低,例如,基于组合物的质量小于等于0.5wt%。
在本发明中,不同类型的多异氰酸酯产品,其制备方法可以不同。
例如,多异氰酸酯组合物可以是三聚体多异氰酸酯。
第一种实施方式中,存储稳定的多异氰酸酯的制备方法包括如下步骤:
(11)在惰性气氛下,将异氰酸酯单体加入反应容器并加热,待体系升温至反应温度后加入(例如,逐滴滴加)催化剂I,进行聚合反应,跟踪测定反应液的NCO%;当NCO%值降到合适值(例如,35-45%)时,加入终止剂I终止反应,得到三聚体多异氰酸酯反应液;
(12)对所得三聚体多异氰酸酯反应液进行热处理,得到热处理后的三聚体多异氰酸酯混合物;其中,所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;
(13)再通过分离装置(例如,两级薄膜蒸发器)对热处理后的三聚体多异氰酸酯混合物进行分离处理,去除未反应的异氰酸酯单体,制得三聚体多异氰酸酯;
其中,所述三聚体多异氰酸酯的热敏温度为160-165℃。
例如,三聚体多异氰酸酯反应液中,包括含有异氰脲酸酯结构、氨基甲酸酯结构、脲基甲酸酯结构、亚氨基噁二嗪二酮结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构中的一种或多种的多异氰酸酯,优选包括含有异氰脲酸酯结构、氨基甲酸酯结构、脲基甲酸酯结构、亚氨基噁二嗪二酮结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构的多异氰酸酯。
一些示例中,步骤(11)所述催化剂I为季铵碱和/或季铵盐类催化剂,优选选自氢氧化胆碱、三甲基羟乙基氢氧化铵、四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵、苄基三甲基氢氧化铵、1-金刚烷基氢氧化铵、氢氧化六甲双铵、四烷基铵(例如,四甲基铵、四乙基铵等)的有机弱酸盐(例如,甲酸、乙酸、癸酸等)、四甲基辛酸铵、三甲基羟丙基铵的有机弱酸盐(例如,甲酸、乙酸、癸酸等)、三甲基羟乙基铵的有机弱酸盐(例如,甲酸、乙酸、癸酸等)。
这里所述四烷基铵的有机弱酸盐可以是四甲基甲酸铵、四甲基乙酸铵、四甲基癸酸铵、四乙基甲酸铵、四乙基乙酸铵、四乙基癸酸铵;所述三甲基羟丙基铵的有机弱酸盐可以是三甲基羟丙基甲酸铵、三甲基羟丙基乙酸铵、三甲基羟丙基癸酸铵;所述三甲基羟乙基铵的有机弱酸盐可以是三甲基羟乙基甲酸铵、三甲基羟乙基乙酸铵、三甲基羟乙基癸酸铵。
一些示例中,所述催化剂I的加入量为异氰酸酯单体重量的0.001wt%-0.1wt%(例如,0.0025wt%、0.005wt%、0.01wt%、0.04wt%、0.06wt%、0.08wt%)。
所述催化剂I可以作为纯物质或者任选地以任意浓度溶解在醇中使用。作为催化剂的稀释剂,所述醇可以是但不仅限于一元醇和/或二元醇;优选地,所述一元醇选自C1-C10的脂肪族醇、芳脂族醇、芳香族醇、脂肪族酚、芳脂族酚和芳香族酚中的一种或多种,更优选以直链、支链或环状醇或酚的形式存在。所述二元醇可以是但不仅限于以下,例如乙二醇、1,3-丙二醇、1,2-丙二醇、1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、1,5-戊二 醇、1,2-戊二醇、1,3-戊二醇、1,4-戊二醇、新戊二醇、1,6-己二醇、1,7-庚二醇、1,8-辛二醇、1,9-壬二醇、1,10-癸二醇、二乙二醇、聚乙二醇、聚丙二醇、聚四亚甲基二醇、2-甲基-1,3-丙二醇、3-甲基-1,5-戊二醇、2-乙基-1,3-己二醇,2-甲基-1,8-辛二醇以及2,2-二乙基-1,3-丙二醇。
一些示例中,步骤(11)所述终止剂I选自有机酸和/或酰化剂,优选选自甲酸、苯甲酸、苯甲酰氯、磷酸二丁酯和磷酸二(2-乙基己基酯)中的一种或多种。
本领域技术人员可以理解,反应体系中所使用的聚合催化剂种类不同,会导致终止剂用量不同。在本发明反应体系中,所述终止剂I的加入量以使体系中聚合催化剂I失去活性为准。
一些示例中,步骤(11)的反应温度为30-100℃(例如,35℃、50℃、60℃、70℃、90℃),优选为40-80℃。
一些示例中,步骤(12)在终止反应后所得多异氰酸酯反应液进入分离装置之前,先将其加热至比产品热敏温度高10-30℃,停留时间5-30min,进行热处理。所述三聚体多异氰酸酯的热敏温度为160-165℃,即,可以理解为进行热处理的温度为170-195℃(例如,175℃、180℃、190℃)。
一些示例中,步骤(13)所述分离处理的工艺条件包括:分离温度为90-180℃(例如,100℃、135℃、140℃、150℃、175℃),优选为130-180℃,分离绝对压力为5-200Pa(例如,150Pa、100Pa、50Pa、20Pa、10Pa)。
例如,分离处理后所得三聚体多异氰酸酯组合物中,残余单体含量基于组合物的质量小于等于0.2wt%。
一些具体实施方式中,HDI三聚体多异氰酸酯的制备方法包括如下步骤:
(11)在惰性气氛下,将六亚甲基二异氰酸酯(HDI)加入反应容器中,待体系升温至60-80℃后逐滴加入催化剂I,进行聚合反应,跟踪测定反应液的NCO%;当NCO%值降到合适值(例如,35-45%)时,加入终止剂I终止反应,得到HDI三聚体多异氰酸酯反应液;
(12)对所得HDI三聚体多异氰酸酯反应液进行热处理,得到热处理后 的HDI三聚体多异氰酸酯混合物;所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;
(13)再通过分离装置(例如,两级薄膜蒸发器)对热处理后的HDI三聚体多异氰酸酯混合物进行分离处理,去除未反应的异氰酸酯单体,制得HDI三聚体多异氰酸酯;
其中,所述HDI三聚体多异氰酸酯的热敏温度为160-165℃。
研究发现,反应终止时,体系中的催化剂I和终止剂I能够生成一种盐类化合物,它们仍然具有弱的催化活性,会导致产品在一定存储条件下的稳定性较差。据推测,通过对反应液进行高温热处理,能够使得催化剂和终止剂生成的盐类化合物在高温下与反应液中的异氰酸酯基团反应生成更稳定的物质,从而失去催化活性,进而明显提升产品的存储稳定性。
例如,多异氰酸酯组合物可以是缩二脲多异氰酸酯。
第二种实施方式中,存储稳定的多异氰酸酯的制备方法包括如下步骤:
(21)将异氰酸酯单体和酸性催化剂加入到反应容器内,待体系加热至反应温度后通入作为缩二脲化试剂的水蒸气,进行聚合反应,跟踪测定反应液的NCO%;当NCO%值降到合适值(例如,33-37%)时,停止加入水蒸气终止反应,得到缩二脲多异氰酸酯反应液;
(22)将所得缩二脲多异氰酸酯反应液进行热处理,得到热处理后的缩二脲多异氰酸酯混合物;其中,所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;
(23)再通过分离装置(例如,二级刮膜式蒸发器)对缩二脲多异氰酸酯混合物进行分离处理,去除未反应的单体,制得缩二脲多异氰酸酯;
其中,所述缩二脲多异氰酸酯的热敏温度为140-145℃。
例如,缩二脲多异氰酸酯反应液中,可包括含有缩二脲结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构中的一种或多种的多异氰酸酯,优选包括含有缩二脲结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构的多异氰酸酯。
一些示例中,步骤(21)所述异氰酸酯单体与水蒸气的质量比为40-60:1(例如,45:1、50:1、55:1、58:1)。
一些示例中,步骤(21)所述酸性催化剂选自磷酸单烷基酯、磷酸二烷基酯、磷酸单芳基酯、磷酸二芳基酯、丙酸和特戊酸中的一种或多种。优选地,所述磷酸单烷基酯、磷酸二烷基酯、磷酸单芳基酯或磷酸二芳基酯是其脂族、支化脂族或芳脂族基团具有1-30个碳原子,更优选具有4-20个碳原子;例如,磷酸甲基酯、磷酸乙基酯、磷酸二丁基酯、磷酸二己基酯、磷酸二(2-乙基己基酯)、磷酸异辛基酯、磷酸正十二烷基酯、磷酸二乙基酯、磷酸二正丙基酯、磷酸二正丁基酯、磷酸二异戊基酯、磷酸二正癸基酯、磷酸二苯基酯及其混合物。
一些示例中,酸性催化剂的用量为异氰酸酯单体重量的0.1-3.0wt%(例如,0.2wt%、0.5wt%、1.0wt%、1.5wt%、2.0wt%、2.5wt%)。
酸性催化剂可以以合适溶剂中形成溶液或分散体加入,优选将酸性催化剂直接加入体系。为了更好地抑制反应液中不溶性聚脲的形成,合适的话,可额外在异氰酸酯溶液中加入溶剂。例如合适的溶剂可以是但不仅限于乙酸丁酯、乙酸乙酯、四氢呋喃、丙二醇甲醚醋酸酯、二甲苯、丙二醇二乙酸酯、丁酮、甲基异戊基酮、环己酮、己烷、甲苯、二甲苯、苯、氯苯、邻二氯苯、烃混合物、二氯甲烷和三烷基磷酸酯中的一种或多种。酸性催化剂也可以使用丙二醇甲醚醋酸酯、磷酸三乙基酯、磷酸三正丁基酯和磷酸三甲基酯中的一种或多种。然而,本发明反应优选在不添加溶剂下进行反应。
一些示例中,步骤(21)的反应温度为80-280℃(例如,110℃、150℃、200℃、260℃),优选为100-250℃;反应时间为50-400min(例如,100min、min、150min、200min、300min),优选为60-350min。
本反应体系中,研发阶段可通过测试NCO%值以确定反应的转化率,待转化率达到设定要求后停止加入水蒸气结束反应。工业化阶段一般可在反应稳定后通过控制进水的量确定反应的结束。不需要加入终止剂终止反应。
一些示例中,步骤(22)在终止反应后所得多异氰酸酯反应液进入分离装置之前,先将其加热至比产品热敏温度高10-30℃,停留时间5-30min,进行热处理。所述缩二脲多异氰酸酯的热敏温度为140-145℃,即,可以理解为进行热处理的温度为150-175℃(例如,155℃、160℃、 170℃)。
一些示例中,步骤(23)所述分离装置为二级刮膜式蒸发器;所述刮膜式蒸发器的刮膜系统可以为滚轮式或刮板式,蒸发器可以为薄膜蒸发器或短程蒸发器。所述分离处理的工艺条件包括:第一级刮膜式蒸发器的分离温度为110-180℃(例如,120℃、140℃、160℃),分离绝对压力为5-500Pa(例如,5Pa、10Pa、50Pa、100Pa、200Pa、400Pa);第二级刮膜式蒸发器的分离温度为120-180℃(例如,130℃、140℃、160℃),分离绝对压力为5-200Pa(例如,5Pa、10Pa、50Pa、100Pa、150Pa)。
一些具体实施方式中,缩二脲多异氰酸酯的制备方法包括如下步骤:
(21)将六亚甲基二异氰酸酯(HDI)和酸性催化剂加入到反应容器内,待体系加热至反应温度后通入作为缩二脲化试剂的水蒸气,进行聚合反应,跟踪测定反应液的NCO%;当NCO%值降到合适值(例如,33-37%)时,停止加入水蒸气终止反应,得到缩二脲多异氰酸酯反应液;
(22)将所得缩二脲多异氰酸酯反应液进行热处理,得到热处理后的缩二脲多异氰酸酯混合物;所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;
(23)再通过分离装置(例如,二级刮膜式蒸发器)对缩二脲多异氰酸酯混合物进行分离处理,去除未反应的HDI单体,制得100%固含的缩二脲多异氰酸酯;
其中,所述缩二脲多异氰酸酯的热敏温度为140-145℃。
经研究发现,若反应结束后直接将反应液中未参与反应的异氰酸酯单体分离除去,则体系中仍然有部分催化剂(一般残留量为100-300ppm,该残留量会诱发含缩二脲结构的多异氰酸酯缓慢的分解)残留在多异氰酸酯产品中,它们仍然具有催化活性,会进一步催化多异氰酸酯缓慢的分解而降低产品在一定储存条件下的稳定性;同时多异氰酸酯产品在采用溶剂稀释时,溶剂中会含有微量的水(工业化溶剂中含水量大约在300ppm.以下),残留催化剂保留的活性会进一步促进残留的微量水分与多异氰酸酯反应,也会导致产品的存储稳定性较差。而在分离出去未反应单体之前先对反应液进行热处理,据推测,因为所得反应液中残留的催化剂本身含有活泼氢,其可与异氰酸酯的NCO基团反应,但在低温下发生反应极慢,而在高温 下则可促进其与NCO基团反应,生成更稳定的物质,从而使得催化剂失去催化活性,产品的存储稳定性明显提升。
例如,多异氰酸酯组合物也可以为脲二酮多异氰酸酯。
第三种实施方式中,存储稳定的多异氰酸酯的制备方法包括如下步骤:
(31)将异氰酸酯单体加入到反应容器中并加热,待体系升温至反应温度后搅拌条件下依次加入催化剂II和助催化剂,进行聚合反应,跟踪测定反应液的NCO%;当NCO%值降到合适值(例如,38-42%)时,加入终止剂II终止反应,得到脲二酮多异氰酸酯反应液;
(32)将所得脲二酮多异氰酸酯反应液进行热处理,得到热处理后的脲二酮多异氰酸酯混合物;其中,所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;
(33)再通过分离装置(例如,两级短程蒸发器)对脲二酮多异氰酸酯混合物进行分离处理,脱除反应体系中未反应的单体,制得脲二酮多异氰酸酯;
其中,所述脲二酮多异氰酸酯的热敏温度为130-135℃。
例如,脲二酮多异氰酸酯反应液中,可包括含有异氰脲酸酯结构、氨基甲酸酯结构、脲基甲酸酯结构、亚氨基噁二嗪二酮结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构中的一种或多种的多异氰酸酯,优选包括含有异氰脲酸酯结构、氨基甲酸酯结构、脲基甲酸酯结构、亚氨基噁二嗪二酮结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构的多异氰酸酯。
一些示例中,步骤(31)所述催化剂II为叔膦催化剂,其具有如下式i所示的结构:
Figure PCTCN2020117698-appb-000001
式中,R 1、R 2、R 3相互独立地选自脂肪族取代基或芳香族取代基。
在一些示例中,所述脂肪族取代基选自直链烷基、支链烷基或环烷基,优选为C1-C10的直链烷基、C3-C10的支链烷基或C3-C10的环烷基;所述芳香族取代基为C7-C10的芳香族取代基,优选为苄基。
在一些实施方式中,所述催化剂II选自三甲基膦、三乙基膦、三丙基膦、三异丙基膦、三正丁基膦、三叔丁基膦、二环戊基丁基膦、三戊基膦、三环戊基膦、三己基膦、三苯基膦、三苄基膦、苄基二甲基膦、三环己基膦和三正辛基膦中的一种或多种,优选选自三叔丁基膦、三正丁基膦和三正辛基膦中的一种或多种。
一些示例中,所述催化剂II的用量为异氰酸酯单体重量的0.01-1wt%(例如,0.02wt%、0.04wt%、0.08wt%、0.1wt%、0.2wt%、0.4wt%、0.6wt%、0.8wt%),优选0.05-0.5wt%。
本发明中,所述叔膦催化剂是一种亲核试剂,容易被空气中的氧气氧化,使用时必须严格除氧,同时用惰性气体保护;比如,三正辛基膦若暴露在空气中会发生剧烈的氧化反应,生成三辛基氧化膦。
在本反应体系中,还可以任选地选择合适的醇作为助催化剂与所述叔膦催化剂一起使用。
一些示例中,步骤(31)所述助催化剂选自低分子量的单价脂肪醇或多价脂肪醇,优选选自分子量为32-250的单价脂肪醇或多价脂肪醇。这些单价脂肪醇或多价脂肪醇,例如,可选自甲醇、乙醇、正丙醇、异丙醇、正丁醇、正己醇、辛醇、2-乙基-1-己醇、乙二醇、丙二醇、异构的丁二醇、戊二醇、新戊二醇、己二醇、辛二醇、二甘醇、双丙甘醇、2-乙基-1,3-己二醇、2,2,4-二甲基戊二醇、甘油和三羟甲基丙烷中的一种或多种。
一些示例中,所述助催化剂的用量为异氰酸酯单体重量的0-5wt%(例如,0.05wt%、0.2wt%、0.5wt%、1wt%、2wt%、4wt%),优选0.1-5wt%,更优选0.5-3wt%。
使用助催化剂时,实际起助催化作用的物质是所述助催化剂与起始异氰酸酯反应形成的氨基甲酸酯。因此,不使用上述醇,而通过上述醇与异氰酸酯反应单独制备,然后再以助催化剂的形式加入到反应中也是合适的。
一些示例中,当体系中异氰酸酯单体的消耗质量占体系中异氰酸酯单体的总质量的比值达到10%-80%、优选30%-70%时,可加入终止剂II终止反应。一些示例中,所述终止剂II选自酰氯(如,甲酰氯、乙酰氯、苯甲酰氯或者苯二甲酰氯等)、磺酸酯(如,甲苯磺酸甲酯、甲苯磺酸乙酯 等)、磷酸烷基酯(如,磷酸单丁酯、磷酸二丁酯、磷酸单乙酯、磷酸二乙酯、磷酸二辛酯、磷酸二(2-乙基己基酯)等)和硫酸酯(如,硫酸二甲酯、硫酸二乙酯等)中的一种或多种。
一些示例中,步骤(31)所述终止剂II的用量为催化剂II摩尔用量的80-120%(例如,90%、100%、110%)。
本反应体系可以在没有溶剂的条件下实施,也可以在对异氰酸酯呈惰性的溶剂存在下实施。适合的溶剂可以是但不仅限于,乙酸丁酯、乙酸乙酯、四氢呋喃、丙二醇甲醚醋酸酯、二甲苯、丙二醇二乙酸酯、丁酮、甲基异戊基酮、环己酮、己烷、甲苯、二甲苯、苯、氯苯、邻二氯苯、烃混合物、二氯甲烷等。然而,本反应体系优选在不添加溶剂下进行反应。
在本反应体系中,醇类助催化剂可以在任何反应阶段加到反应体系中。例如,可以在反应前将助催化剂加入到起始异氰酸酯单体中,也可以在催化剂II加入后再加入体系,也可以在反应达到一定转化率后再加入。
本反应体系中的催化剂II可不经稀释直接使用或在溶剂中以溶液的形式使用。合适的溶剂可以为不与膦反应的所有化合物,例如,脂族的或芳族的烃、醇、酮、酯和醚等,优选使用醇稀释催化剂或者不使用溶剂稀释催化剂。
一些示例中,步骤(31)的反应温度为40-70℃(例如,50℃、60℃)。
一些示例中,步骤(32)在终止反应后所得多异氰酸酯反应液进入分离装置之前,先将其加热至比产品热敏温度高10-30℃,停留时间5-30min,进行热处理。所述脲二酮多异氰酸酯的热敏温度为130-135℃,即,可以理解为进行热处理的温度为140-165℃(例如,145℃、150℃、155℃、160℃)。
研究发现,脲二酮多异氰酸酯体系在反应结束时,叔膦催化剂和终止剂可生成一种盐类化合物,它们仍然具有弱的催化活性,会导致产品的存储稳定性较差。据推测,通过对反应液进行热处理,能够使得催化剂和终止剂生成的盐在高温下与反应液中的异氰酸酯基团反应生成更稳定的物质,从而失去催化活性,可明显提升产品的存储稳定性。
由于脲二酮多异氰酸酯在高温下易于分解,为了减少所得多异氰酸酯产物的分解,需要对分离处理时工艺条件进行控制。一些示例中,步骤 (33)所述分离处理的分离装置可为两级短程蒸发器。一些示例中,所述分离处理工艺条件包括:分离温度为100-160℃(例如,105℃、120℃、130℃、140℃),优选110-150℃;分离绝对压力为5-200Pa(例如,5Pa、10Pa、50Pa、100Pa、150Pa)。
一些具体实施方式中,脲二酮多异氰酸酯的制备方法包括如下步骤:
(31)将六亚甲基二异氰酸酯(HDI)加入到反应容器中并加热到40-70℃,然后在搅拌下依次加入催化剂II和助催化剂,进行聚合反应,跟踪测定反应液的NCO%;当NCO%值降到合适值时,加入终止剂II终止反应,得到脲二酮多异氰酸酯反应液;
(32)将所得脲二酮多异氰酸酯反应液进行热处理,得到热处理后的脲二酮多异氰酸酯混合物;所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;
(33)再通过分离装置(例如,两级短程蒸发器)对脲二酮多异氰酸酯混合物进行分离处理,脱除反应体系中未反应的HDI单体,制得脲二酮多异氰酸酯;
其中,所述脲二酮多异氰酸酯的热敏温度为130-135℃。
此外,本发明的制备方法中,可以在任何需要的时机加入稳定剂和添加剂,这些稳定剂和添加剂在多异氰酸酯领域中是常规添加剂。其包括但不限于:抗氧剂、位阻酚类物质(如,2,6-二叔丁基-4-甲基苯酚、3,5-二叔丁基-4-羟基苯基丙酸十八碳醇酯等)、亚磷酸酯类物质(如,亚磷酸三(壬基苯)酯、亚磷酸三(2,4-二叔丁基苯基)酯等)、紫外吸收剂(如,苯并三唑类、水杨酸酯类、二苯甲酮类等)以及受阻胺光稳定剂(如,2,2,6,6-四甲基派啶)等。
本发明也涉及采用如上所述多异氰酸酯组合物或者如上所述制备方法制得的多异氰酸酯制备的聚氨酯涂料和聚氨酯粘合剂等相关产品。
另外,采用本发明所述多异氰酸酯组合物或者所述制备方法制得的多异氰酸酯组合物可以在通过封闭剂封闭后用于制备聚氨酯涂料和聚氨酯粘合剂等其他相关产品。
与现有技术相比,本发明技术方案的有益效果在于:
本发明在制备多异氰酸酯组合物的过程中,对聚合反应结束后以及分离处理之前的体系进行热处理,可使得最终产品分子量分布变化较小;且采用比所得多异氰酸酯产品的热敏温度高10-30℃的热处理温度进行热处理,可以将体系中影响稳定性的物质失去催化活性,最终得到的产品存储稳定性(尤其是粘度稳定性和未反应单体含量的稳定性)大大提高。
本发明所得多异氰酸酯组合物的稳定性得到很大改善,其在50℃下储藏30天的情况下,粘度增长幅度不超过其初始粘度的15%,同时未反应单体含量的变化幅度和色号变化幅度也均很小。
具体实施方式
为了能够详细地理解本发明的技术特征和内容,下面将更详细地描述本发明的优选实施方式。虽然实施例中描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。
<测试方法>
(1)游离异氰酸酯单体的含量测定:
使用凝胶色谱技术(LC-20AD/RID-10A,色谱柱为MZ-Gel SD plus10E3A,5μm(8.0*300mm),MZ-Gel SDplus 500A 5μm(8.0*300mm),MZ-Gel SDplus 100A5μm(8.0*300mm)串联,岛津;流动相:四氢呋喃;流速:1.0mL/min;分析时间:40min,色谱柱温度:35℃)进行异氰酸酯原料的定量,通过面积归一法测定待测体系内多聚物以及单体的面积,异氰酸酯单体含量(%)=S(异氰酸酯单体峰面积)/S(各组分峰面积之和)*100%。
(2)NCO%含量测试,参照标准GB/T 12009.4;
(3)产品粘度的测定方法:动态力学粘度利用BrookField DV-I Prime粘度计,采用S21转子在25℃下测定;
(4)产品色号的测定方法:基于GB/T 3143-1982的方法,采用HACH Lange公司的LICO 400在50mm一次性矩形比色皿中测量色号。
<化学原料信息>
1,6-六亚甲基二异氰酸酯,
Figure PCTCN2020117698-appb-000002
万华化学;
2-乙基-1,3-己二醇,纯度≥99%,西格玛奥德里奇;
四乙基氢氧化铵溶液(浓度为25wt%,甲醇溶液),西格玛奥德里奇;
三甲基羟乙基氢氧化铵溶液(浓度为25wt%,甲醇溶液),西格玛奥德里奇;
苄基三甲基氢氧化铵溶液(浓度为25wt%,甲醇溶液),西格玛奥德里奇;
三正辛基膦,纯度>98.5%,阿拉丁试剂;
三叔丁基膦:纯度>96%,阿拉丁试剂;
磷酸二(2-乙基己基酯)(磷酸二异辛酯):纯度>98.5%,阿拉丁试剂;
磷酸二丁酯:纯度>98.5%,阿拉丁试剂。
以下各实施例和对比例在未做特殊说明的情况下,反应前至添加催化剂以及整个反应的过程中,保持反应液一直处于干燥的氮气保护下进行。除非另外说明,文中所有的百分数均为质量百分数。
实施例1:
(1)将六亚甲基二异氰酸酯(简称HDI)1000g加入反应装置内并加热到70℃,添加四乙基氢氧化铵溶液(浓度为25wt%,甲醇溶液)的2-乙基-1,3-己二醇溶液2g(浓度为20wt%),进行聚合反应,跟踪测定反应液的NCO%;当反应液中的NCO含有率达到39.2wt%时,加入0.22g磷酸二(2-乙基己基酯)使反应终止,得到HDI三聚体多异氰酸酯反应液。
(2)将该反应液在185-190℃下热处理20min,得到热处理后的HDI三聚体多异氰酸酯混合物。
(3)将热处理后的混合物通入两级串联薄膜蒸发器进行分离处理,其中,一级薄膜蒸发器的分离温度为155±2.5℃、分离绝对压力为50-100Pa,二级薄膜蒸发器的分离温度为156±2.5℃,分离绝对压力为10-50Pa,去除未反应的异氰酸酯单体,得到HDI三聚体多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为15Hazen,粘度为2830mPa·s(25℃),残余的HDI单体含量为0.07wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为19Hazen,粘度为2985mPa·s(25℃),残余的HDI单体含量为0.09wt%。
经比较,存储前后产品的粘度变化差绝对值为155mPa·s,粘度变化幅度为其初始粘度的5.48%。存储前后产品的色号变化差绝对值为4Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.02wt%。由此可说明,存储前后产品的稳定性得到很好的提升。
实施例2:
(1)将六亚甲基二异氰酸酯(简称HDI)1000g加入反应装置内并加热到65℃,添加三甲基羟乙基氢氧化铵溶液(浓度为25wt%,甲醇溶液)的2-乙基-1,3-己二醇溶液1.6g(浓度为20wt%),进行聚合反应,跟踪测定反应液的NCO%;当反应液中的NCO含有率达到40.5wt%时,加入0.15g磷酸二丁酯使反应终止,得到HDI三聚体多异氰酸酯反应液。
(2)将该反应液在170-175℃下热处理30min,得到热处理后的HDI三聚体多异氰酸酯混合物。
(3)将热处理后的混合物通入两级串联薄膜蒸发器进行分离处理,其中,一级薄膜蒸发器的分离温度为155±2.5℃、分离绝对压力为50-100Pa,二级薄膜蒸发器的分离温度为156±2.5℃,分离绝对压力为10-50Pa,去除未反应的异氰酸酯单体,得到HDI三聚体多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为12Hazen,粘度为2790mPa·s(25℃),残余的HDI单体含量为0.06wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为14Hazen,粘度为3015mPa·s(25℃),残余的HDI单体含量为0.09wt%。
经比较,存储前后产品的粘度变化差绝对值为225mPa·s,粘度变化幅度为其初始粘度的8.06%。存储前后产品的色号变化差绝对值为2Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.03wt%。由此可说明,存储前后产品的稳定性得到很好的提升。
实施例3:
(1)将六亚甲基二异氰酸酯(简称HDI)1000g加入反应装置内并加热到65℃,添加苄基三甲基氢氧化铵溶液(浓度为25wt%,甲醇溶液)的2-乙基-1,3-己二醇溶液2.4g(浓度为20wt%),进行聚合反应,跟踪测定反 应液的NCO%;当反应液中的NCO含有率达到40.3wt%时,加入0.25g磷酸二(2-乙基己基酯)使反应终止,得到HDI三聚体多异氰酸酯反应液。
(2)将该反应液在190-195℃下热处理5min,得到热处理后的HDI三聚体多异氰酸酯混合物。
(3)将热处理后的混合物通入两级串联薄膜蒸发器进行分离处理,其中,一级薄膜蒸发器的分离温度为155±2.5℃、分离绝对压力为50-100Pa,二级薄膜蒸发器的分离温度为156±2.5℃,分离绝对压力为10-50Pa,去除未反应的异氰酸酯单体,得到HDI三聚体多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为15Hazen,粘度为2850mPa·s(25℃),残余的HDI单体含量为0.12wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为18Hazen,粘度为3045mPa·s(25℃),残余的HDI单体含量为0.14wt%。
经比较,存储前后产品的粘度变化差绝对值为195mPa·s,粘度变化幅度为其初始粘度的6.84%。存储前后产品的色号变化差绝对值为3Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.02wt%。由此可说明,存储前后产品的稳定性得到很好的提升。
对比例1:
(1)将六亚甲基二异氰酸酯(简称HDI)1000g加入反应装置内并加热到70℃,添加四乙基氢氧化铵溶液(浓度为25wt%,甲醇溶液)的2-乙基-1,3-己二醇溶液2g(浓度为20wt%),进行聚合反应,跟踪测定反应液的NCO%;当反应液中的NCO含有率达到39.2wt%时,加入0.22g磷酸二(2-乙基己基酯)使反应终止,得到HDI三聚体多异氰酸酯反应液。
(2)将该反应液通入两级串联薄膜蒸发器进行分离处理,其中,一级薄膜蒸发器的分离温度为155±2.5℃、分离绝对压力为50-100Pa,二级薄膜蒸发器的分离温度为156±2.5℃,分离绝对压力为10-50Pa,去除未反应的异氰酸酯单体,得到HDI三聚体多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为14Hazen,粘度为2790mPa·s(25℃),残余的HDI单体含量为0.07wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度 为27Hazen,粘度为3292mPa·s(25℃),残余的HDI单体含量为0.21wt%。
经比较,存储前后产品的粘度变化差绝对值为502mPa·s,粘度变化幅度为其初始粘度的18%。存储前后产品的色号变化差绝对值为13Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.14wt%。由此可说明,存储前后产品的稳定性改善不如对应实施例的效果显著。
对比例2:
(1)将六亚甲基二异氰酸酯(简称HDI)1000g加入反应装置内并加热到70℃,添加四乙基氢氧化铵溶液(浓度为25wt%,甲醇溶液)的2-乙基-1,3-己二醇溶液2g(浓度为20wt%),进行聚合反应,跟踪测定反应液的NCO%;当反应液中的NCO含有率达到39.2wt%时,加入0.22g磷酸二(2-乙基己基酯)使反应终止,得到HDI三聚体多异氰酸酯反应液。
(2)将该反应液通入两级串联薄膜蒸发器进行分离处理,其中,一级薄膜蒸发器的分离温度为155±2.5℃、分离绝对压力为50-100Pa,二级薄膜蒸发器的分离温度为156±2.5℃,分离绝对压力为10-50Pa,去除未反应的异氰酸酯单体,得到分离除杂后的HDI三聚体多异氰酸酯反应液。
(3)将该分离除杂后的多异氰酸酯反应液在160-165℃下热处理30min,得到HDI三聚体多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为14Hazen,粘度为2820mPa·s(25℃),残余的HDI单体含量为0.11wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为22Hazen,粘度为3273mPa·s(25℃),残余的HDI单体含量为0.23wt%。
经比较,存储前后产品的粘度变化差绝对值为453mPa·s,粘度变化幅度为其初始粘度的16%。存储前后产品的色号变化差绝对值为8Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.12wt%。由此可说明,存储前后产品的稳定性改善不如对应实施例的效果显著。
实施例4:
(1)将2000g的六亚甲基二异氰酸酯(简称HDI)和6g的磷酸二(2-乙基己基酯)加入到反应容器内,待体系加热至150℃,然后将45g的水蒸气缓慢通入至反应容器中进行反应,跟踪测定反应液的NCO%;水蒸气的 加入时间控制在150min,得到缩二脲多异氰酸酯反应液。
(2)将该反应液在170-175℃下热处理5min,得到热处理后的缩二脲多异氰酸酯混合物。
(3)将热处理后的多异氰酸酯混合物通入两级串联薄膜蒸发器进行分离处理,其中,一级薄膜蒸发器的分离温度为147±2.5℃、分离绝对压力为50-100Pa,二级薄膜蒸发器的分离温度为147±2.5℃、分离绝对压力为10-50Pa,去除未反应的HDI单体,得到缩二脲多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为12Hazen,粘度为8100mPa·s(25℃),残余的HDI单体含量为0.21wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为17Hazen,粘度为8535mPa·s(25℃),残余的HDI单体含量为0.25wt%。
经比较,存储前后产品的粘度变化差绝对值为435mPa·s,粘度变化幅度为其初始粘度的5.37%。存储前后产品的色号变化差绝对值为5Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.04wt%。由此可说明,存储前后产品的稳定性得到很好的提升。
实施例5:
(1)将2000g的六亚甲基二异氰酸酯(简称HDI)和5.5g的磷酸二丁酯加入到反应容器内,待体系加热至150℃,然后将45g的水蒸气缓慢通入至反应容器中进行反应,跟踪测定反应液的NCO%;水蒸气的加入时间控制在150min,得到缩二脲多异氰酸酯反应液。
(2)将该反应液在160-165℃下热处理20min,得到热处理后的缩二脲多异氰酸酯混合物。
(3)将热处理后的多异氰酸酯混合物通入两级串联薄膜蒸发器进行分离处理,其中,一级薄膜蒸发器的分离温度为147±2.5℃、分离绝对压力为50-100Pa,二级薄膜蒸发器的分离温度为147±2.5℃、分离绝对压力为10-50Pa,去除未反应的HDI单体,得到缩二脲多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为16Hazen,粘度为8155mPa·s(25℃),残余的HDI单体含量为0.17wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为19Hazen,粘度为8911mPa·s(25℃),残余的HDI单体含量为0.25wt%。
经比较,存储前后产品的粘度变化差绝对值为756mPa·s,粘度变化幅度为其初始粘度的9.23%。存储前后产品的色号变化差绝对值为3Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.08wt%。由此可说明,存储前后产品的稳定性得到很好的提升。
实施例6:
(1)将2000g的六亚甲基二异氰酸酯(简称HDI)和6g的磷酸二(2-乙基己基酯)加入到反应容器内,待体系加热至150℃,然后将45g的水蒸气缓慢通入至反应容器中进行反应,跟踪测定反应液的NCO%;水蒸气的加入时间控制在150min,得到缩二脲多异氰酸酯反应液。
(2)将该反应液在150-155℃下热处理30min,得到热处理后的缩二脲多异氰酸酯混合物。
(3)将热处理后的多异氰酸酯混合物通入两级串联薄膜蒸发器进行分离处理,其中,一级薄膜蒸发器的分离温度为147±2.5℃、分离绝对压力为50-100Pa,二级薄膜蒸发器的分离温度为147±2.5℃、分离绝对压力为10-50Pa,去除未反应的HDI单体,得到缩二脲多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为14Hazen,粘度为8165mPa·s(25℃),残余的HDI单体含量为0.17wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为18Hazen,粘度为9317mPa·s(25℃),残余的HDI单体含量为0.26wt%。
经比较,存储前后产品的粘度变化差绝对值为1152mPa·s,粘度变化幅度为其初始粘度的14.12%。存储前后产品的色号变化差绝对值为4Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.09wt%。由此可说明,存储前后产品的稳定性得到很好的提升。
对比例3:
(1)将2000g的六亚甲基二异氰酸酯(简称HDI)和6g的磷酸二(2-乙基己基酯)加入到反应容器内,待体系加热至150℃,然后将45g的水蒸气缓慢通入至反应容器中进行反应,跟踪测定反应液的NCO%;水蒸气的加入时间控制在150min,得到缩二脲多异氰酸酯反应液。
(2)将该反应液通入两级串联薄膜蒸发器进行分离处理,其中,一级 薄膜蒸发器的分离温度为147±2.5℃、分离绝对压力为50-100Pa,二级薄膜蒸发器的分离温度为147±2.5℃、分离绝对压力为10-50Pa,去除未反应的HDI单体,得到缩二脲多异氰酸酯。
测试制备得到的多异氰酸酯组合物,其色度为11Hazen,粘度为8020mPa·s(25℃),残余的HDI单体含量为0.23wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为23Hazen,粘度为9612mPa·s(25℃),残余的单体含量为0.45wt%。
经比较,存储前后产品的粘度变化差绝对值为1592mPa·s,粘度变化幅度为其初始粘度的19.85%。存储前后产品的色号变化差绝对值为12Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.22wt%。由此可说明,存储前后产品的稳定性改善不如对应实施例的效果佳。
对比例4:
(1)将2000g的六亚甲基二异氰酸酯(简称HDI)和5.5g的磷酸二丁酯加入到反应容器内,待体系加热至150℃,然后将45g的水蒸气缓慢通入至反应容器中进行反应,跟踪测定反应液的NCO%;水蒸气的加入时间控制在150min,得到缩二脲多异氰酸酯反应液。
(2)将该多异氰酸酯反应液通入两级串联薄膜蒸发器进行分离处理,其中,一级薄膜蒸发器的分离温度为147±2.5℃、分离绝对压力为50-100Pa,二级薄膜蒸发器的分离温度为147±2.5℃、分离绝对压力为10-50Pa,去除未反应的HDI单体,得到分离除杂后的多异氰酸酯反应液。
(3)将该反应液在140-145℃下热处理30min,得到缩二脲多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为14Hazen,粘度为8078mPa·s(25℃),残余的HDI单体含量为0.21wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为21Hazen,粘度为9464mPa·s(25℃),残余的HDI单体含量为0.38wt%。
经比较,存储前后产品的粘度变化差绝对值为1386mPa·s,粘度变化幅度为其初始粘度的17.16%。存储前后产品的色号变化差绝对值为7Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.17wt%。由此可说明,存储前后产品的稳定性提升不如实施例的效果佳。
实施例7:
(1)将总质量M为1000g的六亚甲基二异氰酸酯(简称HDI)加入到反应容器中并加热到50℃,在此温度下搅拌并依次加入2.5g三正辛基膦和15g 2-乙基-1,3-己二醇,进行聚合反应,跟踪测定反应液的NCO%;即,通过凝胶色谱定量监控反应体系;当体系中HDI的消耗质量M1占加入HDI总质量M的40%时,加入2.2g的磷酸二(2-乙基己基酯)并加热至90℃保持2小时反应终止,得到脲二酮多异氰酸酯反应液;
(2)将该多异氰酸酯反应液在140-145℃下热处理30min,得到热处理后的脲二酮多异氰酸酯混合物;
(3)将热处理后的多异氰酸酯混合物通入二级短程蒸发器进行分离处理,其中,一级短程蒸发器的分离温度为135±2.5℃、分离绝对压力为50-100Pa,二级短程蒸发器的分离温度为135±2.5℃、分离绝对压力为10-50Pa,脱除反应体系中未反应的HDI单体,得到脲二酮多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为15Hazen,粘度为145mPa·s(25℃),残余的HDI单体含量为0.16wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为21Hazen,粘度为158mPa·s(25℃),残余的HDI单体含量为0.21wt%。
经比较,存储前后产品的粘度变化差绝对值为13mPa·s,粘度变化幅度为其初始粘度的8.97%。存储前后产品的色号变化差绝对值为6Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.05wt%。由此可说明,存储前后产品的稳定性得到很好的提升。
实施例8:
(1)将总质量M为1000g的六亚甲基二异氰酸酯(简称HDI)加入到反应容器中并加热到50℃,在此温度下搅拌并依次加入2.5g三正辛基膦和15g 2-乙基-1,3-己二醇,进行聚合反应,跟踪测定反应液的NCO%;即,通过凝胶色谱定量监控反应体系;当体系中HDI的消耗质量M1占加入HDI总质量M的40%时,加入2.2g的磷酸二(2-乙基己基酯)并加热至90℃保持2小时反应终止,得到脲二酮多异氰酸酯反应液;
(2)将该多异氰酸酯反应液在160-165℃下热处理5min,得到热处理后的脲二酮多异氰酸酯混合物;
(3)将热处理后的多异氰酸酯混合物通入二级短程蒸发器进行分离处理,其中,一级短程蒸发器的分离温度为135±2.5℃、分离绝对压力为50-100Pa,二级短程蒸发器的分离温度为135±2.5℃、分离绝对压力为10-50Pa,脱除反应体系中未反应的HDI单体,得到脲二酮多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为17Hazen,粘度为149mPa·s(25℃),残余的HDI单体含量为0.17wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为22Hazen,粘度为166mPa·s(25℃),残余的HDI单体含量为0.23wt%。
经比较,存储前后产品的粘度变化差绝对值为17mPa·s,粘度变化幅度为其初始粘度的11.41%。存储前后产品的色号变化差绝对值为5Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.06wt%。由此可说明,存储前后产品的稳定性得到很好的提升。
实施例9:
(1)将总质量M为1000g的六亚甲基二异氰酸酯(简称HDI)加入到反应容器中并加热到50℃,在此温度下搅拌并依次加入2.2g三叔丁基膦和15g 2-乙基-1,3-己二醇,进行聚合反应,跟踪测定反应液的NCO%;即,通过凝胶色谱定量监控反应体系;当体系中HDI的消耗质量M1占加入的HDI总质量M的41%时,加入2.3g的磷酸二丁酯并加热至90℃保持2小时反应终止,得到脲二酮多异氰酸酯反应液;
(2)将该多异氰酸酯反应液在145-150℃下热处理15min,得到热处理后的脲二酮多异氰酸酯混合物;
(3)将热处理后的多异氰酸酯混合物通入二级短程蒸发器进行分离处理,其中,一级短程蒸发器的分离温度为135±2.5℃、分离绝对压力为50-100Pa,二级短程蒸发器的分离温度为135±2.5℃、分离绝对压力为10-50Pa,脱除反应体系中未反应的HDI单体,得到脲二酮多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为16Hazen,粘度为 156mPa·s(25℃),残余的HDI单体含量为0.20wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为23Hazen,粘度为177mPa·s(25℃),残余的HDI单体含量为0.28wt%。
经比较,存储前后产品的粘度变化差绝对值为21mPa·s,粘度变化幅度为其初始粘度的13.46%。存储前后产品的色号变化差绝对值为7Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.08wt%。由此可说明,存储前后产品的稳定性得到很好的提升。
对比例5
(1)将总质量M为1000g的六亚甲基二异氰酸酯(简称HDI)加入到反应容器中并加热到50℃,在此温度下搅拌并依次加入2.5g三正辛基膦和15g 2-乙基-1,3-己二醇,进行聚合反应,跟踪测定反应液的NCO%;即,通过凝胶色谱定量监控反应体系;当体系中HDI的消耗质量M1占加入的HDI总质量M的40%时,加入2.2g的磷酸二(2-乙基己基酯)并加热至90℃保持2小时反应终止,得到脲二酮多异氰酸酯反应液;
(2)将该多异氰酸酯反应液通过二级短程蒸发器进行分离处理,其中,一级短程蒸发器的分离温度为135±2.5℃、分离绝对压力为50-100Pa,二级短程蒸发器的分离温度为135±2.5℃、分离绝对压力为10-50Pa,脱除反应体系中未反应的HDI单体,得到脲二酮多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为14Hazen,粘度为147mPa·s(25℃),残余的HDI单体含量为0.15wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测试其色度为26Hazen,粘度为184mPa·s(25℃),残余的HDI单体含量为0.33wt%。
经比较,存储前后产品的粘度变化差绝对值为37mPa·s,粘度变化幅度为其初始粘度的25.17%。存储前后产品的色号变化差绝对值为12Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.18wt%。由此可说明,存储前后产品的稳定性提升不如对应实施例的效果佳。
对比例6:
(1)将总质量M为1000g的六亚甲基二异氰酸酯(简称HDI)加入到反应容器中并加热到50℃,在此温度下搅拌并依次加入2.5g三正辛基膦 和15g 2-乙基-1,3-己二醇,进行聚合反应,跟踪测定反应液的NCO%;即,通过凝胶色谱定量监控反应体系;当体系中HDI的消耗质量M1占加入HDI总质量M的40%时,加入2.2g的磷酸二(2-乙基己基酯)并加热至90℃保持2小时反应终止,得到脲二酮多异氰酸酯反应液;
(2)将该多异氰酸酯反应液通入二级短程蒸发器进行分离处理,其中,一级短程蒸发器的分离温度为135±2.5℃、分离绝对压力为50-100Pa,二级短程蒸发器的分离温度为135±2.5℃、分离绝对压力为10-50Pa,脱除反应体系中未反应的HDI单体,得到分离除杂后的多异氰酸酯反应液;
(3)将该分离除杂后的多异氰酸酯反应液在130-135℃下热处理30min,得到脲二酮多异氰酸酯组合物。
测试制备得到的多异氰酸酯组合物,其色度为15Hazen,粘度为152mPa·s(25℃),残余的HDI单体含量为0.21wt%。
将制备得到的多异氰酸酯组合物在50℃下放置30天后,测得其色度为24Hazen,粘度为185mPa·s(25℃),残余的HDI单体含量为0.36wt%。
经比较,存储前后产品的粘度变化差绝对值为33mPa·s,粘度变化幅度为其初始粘度的21.71%。存储前后产品的色号变化差绝对值为9Hazen。存储前后产品的残余HDI单体含量变化差绝对值为0.15wt%。由此可说明,存储前后产品的稳定性提升不如实施例的效果佳。
通过本发明的方法制备得到的多异氰酸酯产品,其存储稳定性(例如,粘度的变化、未反应单体含量的变化、色号的变化)得到极大提升。例如,对于含有三聚体结构的多异氰酸酯组合物,一些优选实施方式中,在50℃下放置30天,产品的粘度变化幅度小于其初始粘度的10%,色号变化幅度小于5Hazen,未单体含量变化幅度小于等于0.05wt%。例如,对于缩二脲多异氰酸酯组合物,一些优选实施方式中,在50℃下放置30天,产品的粘度变化幅度小于其初始粘度的15%,色号变化幅度小于5Hazen,未单体含量变化幅度小于等于0.09wt%。例如,对于脲二酮多异氰酸酯组合物,一些优选实施方式中,在50℃下放置30天,产品的粘度变化幅度小于其初始粘度的15%,色号变化幅度小于7Hazen,未单体含量变化幅度小于等于0.09wt%。
而未经热处理的对比例所得多异氰酸酯产品,粘度和色号的变化很大,参与未反应单体含量变化幅度也比实施例要大。热处理工艺条件不适当的情况下,所得多异氰酸酯产品的存储稳定性改善效果也不佳。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (11)

  1. 一种存储稳定的多异氰酸酯组合物,其特征在于,其在50℃下储藏30天的情况下,满足如下的①和②所述条件:
    ①储藏后的多异氰酸酯组合物中,异氰酸酯单体含量的增幅小于等于0.1wt%;
    ②储藏后的多异氰酸酯组合物,其粘度增长幅度不超过其初始粘度的15%。
  2. 根据权利要求1所述的多异氰酸酯组合物,其特征在于,所述多异氰酸酯组合物中包括异氰脲酸酯结构、氨基甲酸酯结构、脲基甲酸酯结构、缩二脲结构、亚氨基噁二嗪二酮结构、脲二酮结构、碳化二亚胺结构和脲酮亚胺结构中的一种或多种。
  3. 根据权利要求1或2所述的多异氰酸酯组合物,其特征在于,所述异氰酸酯单体选自芳香族有机异氰酸酯、脂肪族有机异氰酸酯和脂环族有机异氰酸酯中的一种或多种,优选选自六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、环己基二亚甲基二异氰酸酯、苯二亚甲基二异氰酸酯、二环己基甲烷二异氰酸酯、降冰片烷二亚甲基二异氰酸酯、环己基二异氰酸酯、赖氨酸二异氰酸酯、四甲基苯二亚甲基二异氰酸酯、2,4,4-三甲基己二异氰酸酯、甲苯二异氰酸酯、甲基环己基二异氰酸酯、萘二异氰酸酯、对苯二异氰酸酯、二苯基甲烷二异氰酸酯和多亚甲基多苯基多异氰酸酯中的一种或多种。
  4. 一种如权利要求1-3中任一项所述的多异氰酸酯组合物的制备方法,其特征在于,包括:在催化剂体系存在下,将所述异氰酸酯单体进行聚合反应;达到合适的转化率后终止反应,得到多异氰酸酯反应液;再将所得多异氰酸酯反应液进行热处理,得到热处理后的多异氰酸酯混合物;其中,所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;再将热处理后的多异氰酸酯混合物进行分 离处理,除去体系中未反应的异氰酸酯单体,制得多异氰酸酯组合物。
  5. 根据权利要求4所述的制备方法,其特征在于,所述多异氰酸酯组合物包括三聚体多异氰酸酯、缩二脲多异氰酸酯和脲二酮多异氰酸酯中的一种或多种;
    优选地,所述三聚体多异氰酸酯的热敏温度为160-165℃;
    优选地,所述缩二脲多异氰酸酯的热敏温度为140-145℃;
    优选地,所述脲二酮多异氰酸酯的热敏温度为130-135℃。
  6. 根据权利要求4所述的制备方法,其特征在于,该制备方法包括如下步骤:
    (11)在惰性气氛下,将所述异氰酸酯单体加入反应容器并加热,待体系升温至反应温度后加入催化剂I,进行聚合反应,跟踪测定反应液的NCO%;当NCO%值降到合适值时,加入终止剂I终止反应,得到三聚体多异氰酸酯反应液;
    (12)对所得三聚体多异氰酸酯反应液进行热处理,得到热处理后的三聚体多异氰酸酯混合物;其中,所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;
    (13)再通过分离装置对热处理后的三聚体多异氰酸酯混合物进行分离处理,去除未反应的异氰酸酯单体,制得三聚体多异氰酸酯;
    其中,所述三聚体多异氰酸酯的热敏温度为160-165℃。
  7. 根据权利要求6所述的制备方法,其特征在于,步骤(11)所述催化剂I为季铵碱和/或季铵盐类催化剂,优选选自氢氧化胆碱、三甲基羟乙基氢氧化铵、四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵、苄基三甲基氢氧化铵、1-金刚烷基氢氧化铵、氢氧化六甲双铵、四烷基铵的有机弱酸盐、四甲基辛酸铵、三甲基羟丙基铵的有机弱酸盐、三甲基羟乙基铵的有机弱酸盐;和/或
    所述催化剂I的加入量为异氰酸酯单体重量的0.001wt%-0.1wt%;和/或
    步骤(11)所述终止剂I选自有机酸和/或酰化剂,优选选自甲酸、苯甲酸、苯甲酰氯、磷酸二丁酯和磷酸二(2-乙基己基酯)中的一种或多种;和/或
    步骤(11)的反应温度为30-100℃,优选为40-80℃;和/或
    步骤(13)所述分离处理的工艺条件包括:分离温度为90-180℃,分离绝对压力为5-200Pa。
  8. 根据权利要求4所述的制备方法,其特征在于,该制备方法包括如下步骤:
    (21)将所述异氰酸酯单体和酸性催化剂加入到反应容器内,待体系加热至反应温度后通入作为缩二脲化试剂的水蒸气,进行聚合反应,跟踪测定反应液的NCO%;当NCO%值降到合适值时,停止加入水蒸气终止反应,得到缩二脲多异氰酸酯反应液;
    (22)将所得缩二脲多异氰酸酯反应液进行热处理,得到热处理后的缩二脲多异氰酸酯混合物;其中,所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;
    (23)再通过分离装置对缩二脲多异氰酸酯混合物进行分离处理,去除未反应的单体,制得缩二脲多异氰酸酯;
    其中,所述缩二脲多异氰酸酯的热敏温度为140-145℃。
  9. 根据权利要求8所述的制备方法,其特征在于,步骤(21)所述异氰酸酯单体与水蒸气的质量比为40-60:1;和/或
    步骤(21)所述酸性催化剂选自磷酸单烷基酯、磷酸二烷基酯、磷酸单芳基酯、磷酸二芳基酯、丙酸和特戊酸中的一种或多种;所述酸性催化剂的用量为异氰酸酯单体重量的0.1-3.0wt%;和/或
    步骤(21)的反应温度为80-280℃,优选为100-250℃;反应时间为50-400min,优选为60-350min;和/或
    步骤(23)所述分离装置为二级刮膜式蒸发器,所述分离处理的工艺条件包括:第一级刮膜式蒸发器的分离温度为110-180℃,分离绝对压力为5-500Pa;第二级刮膜式蒸发器的分离温度为120-180℃,分离绝对压力 为5-200Pa。
  10. 根据权利要求4所述的制备方法,其特征在于,该制备方法包括如下步骤:
    (31)将异氰酸酯单体加入到反应容器中并加热,待体系升温至反应温度后搅拌条件下依次加入催化剂II和助催化剂,进行聚合反应,跟踪测定反应液的NCO%;当NCO%值降到合适值时,加入终止剂II终止反应,得到脲二酮多异氰酸酯反应液;
    (32)将所得脲二酮多异氰酸酯反应液进行热处理,得到热处理后的脲二酮多异氰酸酯混合物;其中,所述热处理的温度比所得多异氰酸酯产品的热敏温度高10-30℃,所述热处理的时间为5-30min;
    (33)再通过分离装置对脲二酮多异氰酸酯混合物进行分离处理,脱除反应体系中未反应的单体,制得脲二酮多异氰酸酯;
    其中,所述脲二酮多异氰酸酯的热敏温度为130-135℃。
  11. 根据权利要求10所述的制备方法,其特征在于,步骤(31)所述催化剂II为叔膦催化剂,优选选自三叔丁基膦、三正丁基膦和三正辛基膦中的一种或多种;所述催化剂II的用量为异氰酸酯单体重量的0.01-1wt%,优选0.05-0.5wt%;和/或
    步骤(31)所述助催化剂选自低分子量的单价脂肪醇或多价脂肪醇,优选选自分子量为32-250的单价脂肪醇或多价脂肪醇;所述助催化剂的用量为异氰酸酯单体重量的0-5wt%,优选0.1-5wt%,更优选0.5-3wt%;和/或
    步骤(31)所述终止剂II选自酰氯、磺酸酯、磷酸烷基酯和硫酸酯中的一种或多种;所述终止剂II的用量为催化剂II摩尔用量的80-120%;和/或
    步骤(31)的反应温度为40-70℃;和/或
    步骤(33)所述分离处理的工艺条件包括:分离温度为100-160℃,优选110-150℃;分离绝对压力为5-200Pa。
PCT/CN2020/117698 2020-09-25 2020-09-25 一种存储稳定的多异氰酸酯组合物及其制备方法 WO2022061704A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227026498A KR20220123439A (ko) 2020-09-25 2020-09-25 저장 안정성 폴리이소시아네이트 조성물 및 이의 제조방법
US18/005,387 US20230272151A1 (en) 2020-09-25 2020-09-25 Storage-stable polyisocyanate composition and preparation method therefor
JP2023501895A JP2023534679A (ja) 2020-09-25 2020-09-25 保存が安定するポリイソシアネート組成物及びその調製方法
EP20954556.5A EP4159781A4 (en) 2020-09-25 2020-09-25 STORAGE-STABLE POLYISOCYANATE COMPOSITION AND PREPARATION METHOD THEREFOR
PCT/CN2020/117698 WO2022061704A1 (zh) 2020-09-25 2020-09-25 一种存储稳定的多异氰酸酯组合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117698 WO2022061704A1 (zh) 2020-09-25 2020-09-25 一种存储稳定的多异氰酸酯组合物及其制备方法

Publications (1)

Publication Number Publication Date
WO2022061704A1 true WO2022061704A1 (zh) 2022-03-31

Family

ID=80846028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117698 WO2022061704A1 (zh) 2020-09-25 2020-09-25 一种存储稳定的多异氰酸酯组合物及其制备方法

Country Status (5)

Country Link
US (1) US20230272151A1 (zh)
EP (1) EP4159781A4 (zh)
JP (1) JP2023534679A (zh)
KR (1) KR20220123439A (zh)
WO (1) WO2022061704A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036470A (ja) * 1996-05-23 1998-02-10 Nippon Polyurethane Ind Co Ltd 低温貯蔵安定性に優れたポリイソシアネート組成物及びその製造方法
CN105601565A (zh) * 2014-11-20 2016-05-25 万华化学集团股份有限公司 一种存储稳定的含缩二脲结构的多异氰酸酯的制备方法
KR20170047877A (ko) * 2015-10-26 2017-05-08 애경화학 주식회사 저장성이 향상된 무황변 폴리이소시아누레이트의 제조방법
CN111072917A (zh) * 2020-01-02 2020-04-28 万华化学集团股份有限公司 一种存储稳定的多异氰酸酯组合物及制备方法
CN111201257A (zh) * 2017-10-20 2020-05-26 旭化成株式会社 多异氰酸酯组合物、涂料组合物及涂膜
CN111247185A (zh) * 2017-10-20 2020-06-05 旭化成株式会社 多异氰酸酯组合物、涂料组合物及涂膜
CN111465632A (zh) * 2017-12-21 2020-07-28 科思创德国股份有限公司 制备含异氰脲酸酯基团的异氰酸酯混合物的方法
CN111793182A (zh) * 2020-07-15 2020-10-20 万华化学集团股份有限公司 一种多异氰酸酯组合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103724234B (zh) * 2014-01-03 2015-07-15 万华化学集团股份有限公司 一种制备含有缩二脲的聚异氰酸酯的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036470A (ja) * 1996-05-23 1998-02-10 Nippon Polyurethane Ind Co Ltd 低温貯蔵安定性に優れたポリイソシアネート組成物及びその製造方法
CN105601565A (zh) * 2014-11-20 2016-05-25 万华化学集团股份有限公司 一种存储稳定的含缩二脲结构的多异氰酸酯的制备方法
KR20170047877A (ko) * 2015-10-26 2017-05-08 애경화학 주식회사 저장성이 향상된 무황변 폴리이소시아누레이트의 제조방법
CN111201257A (zh) * 2017-10-20 2020-05-26 旭化成株式会社 多异氰酸酯组合物、涂料组合物及涂膜
CN111247185A (zh) * 2017-10-20 2020-06-05 旭化成株式会社 多异氰酸酯组合物、涂料组合物及涂膜
CN111465632A (zh) * 2017-12-21 2020-07-28 科思创德国股份有限公司 制备含异氰脲酸酯基团的异氰酸酯混合物的方法
CN111072917A (zh) * 2020-01-02 2020-04-28 万华化学集团股份有限公司 一种存储稳定的多异氰酸酯组合物及制备方法
CN111793182A (zh) * 2020-07-15 2020-10-20 万华化学集团股份有限公司 一种多异氰酸酯组合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. PRAKT. CHEM, vol. 336, 1994, pages 185 - 200
See also references of EP4159781A4

Also Published As

Publication number Publication date
JP2023534679A (ja) 2023-08-10
EP4159781A4 (en) 2024-01-31
EP4159781A1 (en) 2023-04-05
KR20220123439A (ko) 2022-09-06
US20230272151A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
CN110305294B (zh) 一种存储稳定的含有脲二酮基团的多异氰酸酯的制备方法
CN110372846B (zh) 一种色值稳定的含有脲二酮基团的多异氰酸酯的制备方法
US9926402B2 (en) Iminooxadiazinedione polyisocyanates
CN111072917B (zh) 一种存储稳定的多异氰酸酯组合物及制备方法
CN112225857B (zh) 一种色度稳定的含异氰脲酸酯的多异氰酸酯组合物及其制备方法
CN109761903B (zh) 一种含有脲二酮基团的多异氰酸酯的制备方法
KR20080045233A (ko) 폴리이소시아네이트 조성물 및 이를 포함한 코팅 조성물
US3394111A (en) Process for the polymerization of uretdiones using aliphatic tertiary phosphine catalysts
CN110183390A (zh) 一种生物基五亚甲基二异氰酸酯三聚体的制备方法
WO2021047308A1 (zh) 一种多异氰酸酯组合物及其制备方法
CN114249868B (zh) 一种存储稳定的多异氰酸酯组合物及其制备方法
JPH09208563A (ja) ウレトジオンジイソシアネート及びその製造方法
CN111040101B (zh) 色值稳定的含有脲二酮基团的多异氰酸酯及其制备方法
WO2022061704A1 (zh) 一种存储稳定的多异氰酸酯组合物及其制备方法
JPH11140157A (ja) 淡色ウレトジオンポリイソシアネートの製造方法
EP1557437A2 (de) Orthoestergruppenhaltige Bindemittel
CN111684031A (zh) 具有高固体含量的芳族多异氰酸酯
CA2542583A1 (en) Compounds containing allophanate, isocyanate and ortho ester groups and their use as binders
CN112851908B (zh) 含有脲二酮基团的多异氰酸酯的制备方法及存储稳定的二异氰酸酯单体
KR20200073252A (ko) 이민형 4급 암모늄염 촉매, 그의 제조방법 및 폴리이소시아네이트 조성물의 제조를 위한 그의 용도
US20240034881A1 (en) Isocyanurate-containing polyisocyanate composition with stable chromaticity, and preparation method thereof
CN117343279A (zh) 一种低色号超低游离单体多异氰酸酯的制备方法
CN112574388B (zh) 一种含有脲二酮基团多异氰酸酯的制备方法
CN117343278A (zh) 一种存储稳定的多异氰酸酯组合物及其制备方法
CN116239740A (zh) 一种基于环己基二亚甲基二异氰酸酯存储稳定的多异氰酸酯组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227026498

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023501895

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020954556

Country of ref document: EP

Effective date: 20221229

NENP Non-entry into the national phase

Ref country code: DE