WO2022059468A1 - 細胞分析方法及び細胞分析装置 - Google Patents

細胞分析方法及び細胞分析装置 Download PDF

Info

Publication number
WO2022059468A1
WO2022059468A1 PCT/JP2021/031655 JP2021031655W WO2022059468A1 WO 2022059468 A1 WO2022059468 A1 WO 2022059468A1 JP 2021031655 W JP2021031655 W JP 2021031655W WO 2022059468 A1 WO2022059468 A1 WO 2022059468A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
data
cells
unit
processor
Prior art date
Application number
PCT/JP2021/031655
Other languages
English (en)
French (fr)
Inventor
祥一郎 朝田
考伸 木村
政道 田中
鈴木健一郎
興平 南郷
Original Assignee
シスメックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シスメックス株式会社 filed Critical シスメックス株式会社
Priority to CN202180049739.XA priority Critical patent/CN115803622A/zh
Priority to EP21869155.8A priority patent/EP4215902A1/en
Publication of WO2022059468A1 publication Critical patent/WO2022059468A1/ja
Priority to US18/185,814 priority patent/US20230221238A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1429Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0227Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging using imaging, e.g. a projected image of suspension; using holography
    • G01N15/1433
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • G01N2015/012
    • G01N2015/016
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0294Particle shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1488Methods for deciding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1497Particle shape

Definitions

  • the present invention relates to a cell analysis method and a cell analysis device.
  • Patent Document 1 describes a method of analyzing data obtained by measuring blood cell cells with a flow cytometer in a data processing system equipped with a processor and classifying the cells according to the type.
  • One aspect of the present invention relates to a cell analysis method and a cell analysis apparatus capable of improving the accuracy of cell classification without requiring high information processing ability.
  • the cell analysis method is a cell measuring device (4000, 4000') in a cell analyzer (1) that analyzes cells by an artificial intelligence algorithm (50, 60). Obtain data about cells measured by 4000'', 4000''), analyze the data to generate information about cell type for each cell, and use the information in a cell measuring device (4000, 4000'). Includes sending to'4000'', 4000'').
  • the cell analyzer (1) is a cell analyzer (1) that analyzes cells by an artificial intelligence algorithm (50, 60), and is a cell analyzer.
  • (1) includes a processing unit (10), and the processing unit (10) acquires data on cells measured by a cell measuring device (4000, 4000', 4000'', 4000'') and described above. The data is analyzed to generate information about the cell type for each of the cells, and the information is transmitted to a cell measuring device (4000, 4000', 4000'', 4000''').
  • the cell analysis method measures cells with a cell measuring device (4000, 4000', 4000'', 4000'') and obtains cell data.
  • the data is acquired and transmitted to a cell analyzer (1) that analyzes cells by an artificial intelligence algorithm (50, 60), and the cell analyzer (1) transmits the data according to the artificial intelligence algorithm (50, 60).
  • an artificial intelligence algorithm 50, 60
  • the cell analyzer (1) transmits the data according to the artificial intelligence algorithm (50, 60).
  • the cell analysis method is an analysis method for analyzing cells contained in a sample by a cell analysis device (1), and is a plurality of cell measurement devices (4000). From 4000', 4000'', 4000''), data related to cells are acquired in association with identification information, the data is analyzed by parallel processing by a parallel processing processor (12), and based on the result of parallel processing. , Includes generating information about the cell type for each of the plurality of cells in association with the identification information.
  • the present invention it is possible to improve the accuracy of cell classification without reducing the processing capacity of the cell measuring device.
  • FIG. 1A shows an example of conventional leukocyte classification.
  • FIG. 1 (b) shows an example of leukocyte classification of this method.
  • FIG. 2A shows an example of irradiating cells flowing through a flow cell with light.
  • FIG. 2B shows an example of sampling a forward scattered light signal, a side scattered light signal, and a fluorescent signal.
  • FIG. 2C shows an example of waveform data obtained by sampling.
  • FIG. 3 shows an example of a training data generation method.
  • FIG. 4 shows an example of a label value.
  • FIG. 5 shows an example of an analysis method of analytical data.
  • FIG. 6 shows a configuration example of a system including a cell analyzer.
  • FIG. 7 shows another configuration example of the system including the cell analyzer.
  • FIG. 8 shows another configuration example of the system including the cell analyzer.
  • FIG. 1A shows an example of conventional leukocyte classification.
  • FIG. 1 (b) shows an example of leukocyte classification of this method.
  • FIG. 2A shows an
  • FIG. 9 shows another configuration example of the system including the cell analyzer.
  • FIG. 10 shows an example of a block diagram of the measurement unit.
  • FIG. 11 shows an example of a sample suction unit and a sample preparation unit.
  • FIG. 12 shows a configuration example of the optical system of the FCM detection unit.
  • FIG. 13 shows a configuration example of the processing unit.
  • FIG. 14 shows a block diagram of the cell analyzer.
  • FIG. 15 shows a configuration example of a parallel processing processor.
  • FIG. 16 shows an example of mounting a parallel processing processor on a cell analyzer.
  • FIG. 17 shows another implementation example of a parallel processing processor in a cell analyzer.
  • FIG. 18 shows another implementation example of a parallel processing processor in a cell analyzer.
  • FIG. 10 shows an example of a block diagram of the measurement unit.
  • FIG. 11 shows an example of a sample suction unit and a sample preparation unit.
  • FIG. 12 shows a configuration example of the optical system of the FCM detection unit.
  • FIG. 19 shows a block diagram showing another implementation example of a parallel processing processor in a cell analyzer.
  • FIG. 20 shows an outline of an operation in which a processor executes arithmetic processing of matrix data using a parallel processing processor.
  • FIG. 21 (a) shows a calculation formula of a matrix product.
  • FIG. 21B shows an example of arithmetic processing executed in parallel by a parallel processing processor.
  • FIG. 22 shows how the arithmetic processing is executed by the parallel processing processor.
  • FIG. 23A shows an example of the waveform data of the forward scattered light as the waveform data input to the deep learning algorithm.
  • FIG. 23B shows an outline of the matrix operation between the waveform data and the filter.
  • FIG. 24 shows an example of a sample analysis operation by a cell analyzer.
  • FIG. 25 shows an example of a cell analysis process.
  • FIG. 26 shows an example of parallel processing.
  • FIG. 27 shows an example of a block diagram of the measurement unit.
  • FIG. 28 shows a schematic example of the optical system of the flow cytometer.
  • FIG. 29 shows a schematic example of the sample preparation section of the measurement unit.
  • FIG. 30 shows an example of a functional block of a cell analyzer that performs deep learning.
  • FIG. 31 shows an example of a flowchart of the operation of the processing unit for generating training data.
  • FIG. 32 shows a schematic diagram for explaining a neural network.
  • FIG. 32A shows a schematic diagram showing an outline of the neural network.
  • FIG. 32B shows a schematic diagram showing operations at each node.
  • FIG. 32 (c) shows a schematic diagram showing operations between nodes.
  • FIG. 32 shows a schematic diagram for explaining a neural network.
  • FIG. 32A shows a schematic diagram showing an outline of the neural network.
  • FIG. 32B shows a
  • FIG. 33 shows a mixed matrix of the determination result by the reference method and the determination result using the deep learning algorithm.
  • FIG. 34 (a) shows the ROC curve of neutrophils.
  • FIG. 34 (b) shows the ROC curve of lymphocytes.
  • FIG. 34 (c) shows the ROC curve of a monocyte.
  • FIG. 35 (a) shows the ROC curve of eosinophils.
  • FIG. 35 (b) shows the ROC curve of basophils.
  • FIG. 35 (c) shows the ROC curve of the ROC curve of the control blood (CONT).
  • FIG. 36 shows a configuration example of a cell measuring device as an image analysis device.
  • FIG. 37 shows a configuration example of a cell measuring device as an imaging device.
  • FIG. 38 shows an example of a method of generating training data.
  • FIG. 39 shows an example of a label value.
  • FIG. 40 shows an example of an image analysis method.
  • FIG. 41 shows an embodiment of the analysis result.
  • a cell analyzer that analyzes cells by an artificial intelligence algorithm
  • data on cells measured by the cell measuring device is acquired, the data is analyzed, and information on the cell type is generated for each of the cells.
  • the present invention relates to an analysis method comprising transmitting the information to the cell measuring device.
  • the analysis of the data measured by the cell measuring device is performed by the cell analyzer, not by the cell measuring device.
  • the cell analyzer analyzes the data about the cell by the artificial intelligence algorithm to generate the information about the cell type, and the generated information is returned to the cell measuring device. Therefore, according to this analysis method, the cell measuring device does not need to be equipped with a processor having high information processing capability in order to perform highly accurate cell classification by an artificial intelligence algorithm. Therefore, for example, it can be applied to a wide range of analyzers from high-priced and high-processing capacity analyzers to low-priced and low-processing capacity analyzers.
  • the labor and cost related to the updating / operation can be reduced as compared with the case where the artificial intelligence algorithm is updated / operated in each cell measuring device. ..
  • the labor and cost related to the update can be reduced.
  • FIG. 1A is a diagram schematically showing the leukocyte classification of the conventional method
  • FIG. 1B is a diagram schematically showing the leukocyte classification of the present method.
  • FSC indicates an analog signal indicating the signal intensity of the forward scattered light
  • SSC indicates an analog signal of the side scattered light
  • SFL indicates the signal intensity of the side fluorescence. Shows an analog signal.
  • FIG. 1 (a) in the conventional method, individual cells contained in a sample are measured with a flow cytometer, and the pulses of each analog signal of forward scattered light, side scattered light, and side fluorescence are measured.
  • the peak height of is acquired as the forward scattered light intensity, the lateral scattered light intensity, and the lateral fluorescence intensity.
  • the cells are classified into specific types based on the forward scattered light intensity, the lateral scattered light intensity, and the lateral fluorescence intensity.
  • the result of classifying the cells is displayed as a scattergram as shown in FIG. 1 (a).
  • the horizontal axis indicates the lateral scattered light
  • the vertical axis indicates the intensity of the lateral fluorescence.
  • FIG. 1 (a) the type of blood cell was determined based only on the information of the peak height of the analog waveform.
  • FIG. 1 (b) the entire waveform of the analog signal acquired from one cell by the flow cytometer is analyzed. The cells are classified by analyzing as the data of.
  • FIG. 1B shows a waveform obtained by drawing an analog signal obtained by a flow cytometer, but as will be described later, the data relating to the cells in the sample in the present embodiment A / D-convert the analog signal.
  • This digital data group is matrix data, and in this embodiment, it is, for example, one-row and multiple-column matrix data (that is, one-dimensional array data).
  • the pre-training deep learning algorithm 50 shown in FIG. 1 (b) is used to learn waveform data for each cell type. Then, by inputting the waveform data of the cell whose cell type is unknown contained in the sample into the trained deep learning algorithm 60, the determination result of the cell type is derived from the deep learning algorithm 60 for each cell.
  • the deep learning algorithms 50 and 60 are one of the artificial intelligence algorithms, and are composed of a neural network including a multi-layered intermediate layer.
  • the matrix calculation included in a large amount in the deep learning algorithm 60 is performed by using the parallel processing processor mounted on the cell analyzer.
  • Execute in parallel processing includes a parallel processing processor capable of executing parallel processing and an execution instruction processor (hereinafter, simply referred to as a processor) that causes the parallel processing processor to execute parallel processing.
  • individual cells in a biological sample used for analysis for the purpose of determining the cell type are also referred to as "cells to be analyzed”.
  • the biological sample may contain multiple cells to be analyzed.
  • the plurality of cells may include a plurality of types of cells to be analyzed.
  • the biological sample may contain, for example, peripheral blood such as venous blood, arterial blood, urine, blood and body fluids other than urine.
  • peripheral blood such as venous blood, arterial blood, urine, blood and body fluids other than urine.
  • Body fluids other than blood and urine may include spinal fluid, ascites, pleural effusion, cerebrospinal fluid and the like.
  • body fluids other than blood and urine may be simply referred to as "body fluids”.
  • the blood sample is not limited as long as the number of cells can be counted and the cell type can be determined.
  • the blood is preferably peripheral blood.
  • the blood may be peripheral blood collected using an anticoagulant such as ethylenediamine tetraacetate sodium salt or potassium salt) and heparin sodium.
  • Peripheral blood may be taken from an artery or a vein.
  • the cell type to be determined in this embodiment is based on the cell type based on the morphological classification, and differs depending on the type of the biological sample.
  • the cell types to be determined in the present embodiment include, for example, erythrocytes, nucleated cells such as leukocytes, platelets and the like. Is included. Nucleated cells include, for example, neutrophils, lymphocytes, monocytes, eosinophils, basophils. Neutrophils include, for example, lobulated nucleus neutrophils and rod-shaped nucleus neutrophils.
  • the nucleated cells may include, for example, at least one selected from the group consisting of immature granulocytes and abnormal cells. Such cells are also included in the cell type to be determined in this embodiment. Immature granulocytes can include, for example, cells such as metamyelocytes, myelocytes, promyelocytes, myeloblasts and the like.
  • nucleated cells may contain abnormal cells that are not contained in the peripheral blood of a healthy person.
  • abnormal cells are cells that appear when suffering from a given disease, such as tumor cells.
  • certain diseases include, for example, myelodystrophy syndrome, acute myeloblastic leukemia, acute myeloblastic leukemia, acute premyelocytic leukemia, acute myelomonocytic leukemia, acute monocytic leukemia.
  • Leukemia acute giant nuclear blast leukemia, acute myeloid leukemia, acute lymphocytic leukemia, lymphoblastic leukemia, chronic myeloid leukemia, or chronic lymphocytic leukemia, hodgkin lymphoma, non-hodgkin lymphoma, etc. It can be a disease selected from the group consisting of malignant lymphoma of leukemia and multiple myeloma.
  • abnormal cells include, for example, lymphoblasts, plasma cells, atypical erythroblasts, reactive erythroblasts, pre-erythroblasts, basic erythroblasts, polychromatic erythroblasts, orthochromatic erythroblasts. , Pre-major erythroblasts, basic erythroblasts, polychromatic giant erythroblasts, and erythroblasts that are nucleated erythroblasts such as orthochromatic giant erythroblasts, and giant nuclei containing micromegacariosites. It may contain cells that are not normally found in the peripheral blood of healthy individuals such as erythroblasts.
  • the cell type to be determined in the present embodiment may include, for example, erythrocytes, leukocytes, transitional epithelium, epithelial cells such as squamous epithelium and the like.
  • the abnormal cells may include bacteria, filamentous fungi, fungi such as yeast, tumor cells and the like.
  • the cell type may include, for example, red blood cells, leukocytes, and large cells.
  • large cell refers to a cell detached from the peritoneum of the body cavity or the viscera, which is larger than a leukocyte, and corresponds to, for example, a mesothelial cell, a histiocyte, a tumor cell, or the like.
  • the cell type to be determined in this embodiment may include mature blood cell cells and immature blood cell lineage cells as normal cells.
  • Mature blood cell cells include, for example, erythrocytes, nucleated cells such as leukocytes, platelets and the like.
  • Nucleated cells such as leukocytes include, for example, neutrophils, lymphocytes, plasma cells, monocytes, eosinophils, and basophils.
  • Neutrophils include, for example, lobulated nucleus neutrophils and rod-shaped nucleus neutrophils.
  • Immature hematopoietic cells include, for example, hematopoietic stem cells, immature granulocyte cells, immature lymphocytic cells, immature monocytic cells, immature erythrocyte cells, megakaryocytic cells, mesenchymal. Includes cells and the like.
  • Immature granulocytes can include, for example, cells such as metamyelocytes, myelocytes, promyelocytes, myeloblasts and the like.
  • Immature lymphocytic cells include, for example, lymphoblasts.
  • Immature monoblastic cells include monoblasts and the like.
  • Immature erythroblasts include, for example, pre-erythroblasts, basic erythroblasts, polychromatic erythroblasts, orthochromatic erythroblasts, pre-giant erythroblasts, basic giant erythroblasts, etc. Includes polychromatic giant erythroblasts and nucleated red blood cells such as orthochromatic giant erythroblasts. Megakaryocyte cells include, for example, megakaryoblasts and the like.
  • Examples of the abnormal cells that can be contained in the bone marrow include the above-mentioned myeloid atypical syndrome, acute myeloblastic leukemia, acute myeloblastic leukemia, acute premyelocytic leukemia, acute myelomonocytic leukemia, and acute monosphere.
  • Leukemias such as sexual leukemia, erythrocyte leukemia, acute giant nuclear blast leukemia, acute myeloid leukemia, acute lymphocytic leukemia, lymphoblastic leukemia, chronic myeloid leukemia, or chronic lymphocytic leukemia, hodgkin lymphoma, non-hodgkin
  • malignant lymphoma such as lymphoma, hematopoietic tumor cells selected from the group consisting of multiple myeloma, and metastatic tumor cells of malignant tumors developed in organs other than bone marrow.
  • FIG. 1 illustrates forward scattered light signals, side scattered light signals, and side fluorescent signals, which are optical signals obtained by irradiating cells flowing through a flow cell with light, as signals obtained from cells. , It is not particularly limited as long as it is a signal that represents the characteristics of cells and can classify cells by type.
  • the signal obtained from the cell may be any of a signal representing the morphological characteristics of the cell, a signal representing the chemical characteristics, a signal representing the physical characteristics, and a signal representing the genetic characteristics, but the morphology of the cells is preferable. It is a signal that represents a scientific feature.
  • the signal representing the morphological characteristics of the cell is preferably an optical signal obtained from the cell.
  • the optical signal is preferably an optical signal obtained as an optical response by irradiating a cell with light.
  • the optical signal may include at least one selected from a signal based on light scattering, a signal based on light absorption, a signal based on transmitted light, and a signal based on fluorescence.
  • the signal based on light scattering may include a scattered light signal generated by light irradiation and a light loss signal generated by light irradiation.
  • the scattered light signal becomes a different parameter indicating the characteristics of the cell depending on the light receiving angle of the scattered light with respect to the traveling direction of the irradiation light.
  • the forward scattered light signal is used as a parameter representing the size of the cell.
  • the laterally scattered light signal is used as a parameter to represent the complexity of the cell's nucleus.
  • the "forward” of the forward scattered light is intended to be the traveling direction of the light emitted from the light source.
  • the "forward” may include a front low angle where the light receiving angle is around 0 to 5 degrees and / or a front high angle where the light receiving angle is around 5 to 20 degrees when the angle of the irradiation light is 0 degrees.
  • “Side” is not restricted as long as it does not overlap with “forward”.
  • the “side” may include a light receiving angle of around 25 to 155 degrees, preferably around 45 to 135 degrees, and more preferably around 90 degrees, where the angle of the irradiation light is 0 degrees.
  • a signal based on light scattering may include polarization or depolarization as a component of the signal. For example, by irradiating a cell with light and receiving the scattered light generated through the polarizing plate, it is possible to receive only the scattered light polarized at a specific angle. Further, by irradiating the cells with light through the polarizing plate and receiving the generated scattered light through the polarizing plate that transmits only the polarization at an angle different from that of the polarizing plate for irradiation, only the depolarized scattered light can be received. ..
  • the light loss signal represents the loss amount of the light receiving amount based on the fact that the light receiving amount in the light receiving portion decreases due to the light being irradiated to the cells and scattered.
  • the light loss signal is preferably obtained as a light loss (axial light loss) in the optical axis direction of the irradiation light.
  • the light loss signal can be expressed as a ratio of the light receiving amount when the cell flows through the flow cell when the light receiving amount in the light receiving portion is 100% in a state where the cell does not flow through the flow cell.
  • Axial light loss is used as a parameter indicating the size of a cell like the forward scattered light signal, but the signal obtained differs depending on whether the cell has translucency or not.
  • the fluorescence-based signal may be fluorescence excited by irradiating cells labeled with a fluorescent substance with light, or autofluorescence generated from unstained cells.
  • the fluorescent substance may be a fluorescent dye that binds to a nucleic acid or a membrane protein, or may be a labeled antibody obtained by modifying an antibody that binds to a specific protein of a cell with a fluorescent dye.
  • the optical signal may be acquired in the form of image data obtained by irradiating the cells with light and imaging the irradiated cells.
  • Image data can be obtained by imaging individual cells flowing through a flow path with an image sensor such as a TDI camera or a CCD camera using a so-called imaging flow cytometer.
  • image data of cells may be obtained by applying a sample containing cells or a measurement sample on a slide glass, spraying or instilling the sample, and imaging the slide glass with an image pickup element.
  • the signal obtained from the cell is not limited to the optical signal, but may be an electrical signal obtained from the cell.
  • the electrical signal for example, a direct current may be applied to the flow cell, and the change in impedance caused by the cell flowing through the flow cell may be used as the electrical signal.
  • the electrical signal thus obtained is a parameter that reflects the volume of the cell.
  • the electrical signal may be a change in impedance when a radio frequency is applied to cells flowing through the flow cell as an electrical signal.
  • the electrical signal thus obtained is a parameter that reflects the conductivity of the cell.
  • the signal obtained from the cell may be a combination of at least two or more types of signals among the signals obtained from the above-mentioned cell.
  • the combination may be, for example, a combination of at least two of a plurality of optical signals, such as a forward scattered light signal, a side scattered light signal, and a fluorescent signal, or a scattered light signal having different angles, for example, a low angle scattered light signal.
  • high angle scattered light signals may be combined.
  • an optical signal and an electrical signal may be combined, and the type and number of the combined signals are not particularly limited.
  • FIG. 2 is a schematic diagram for explaining the waveform data used in this analysis method.
  • FIG. 2A when a sample containing cell C is flowed through the flow cell FC and the cells C flowing through the flow cell FC are irradiated with light, forward scattered light FSC is generated forward in the traveling direction of the light.
  • lateral scattered light SSC and lateral fluorescent SFL are generated laterally with respect to the traveling direction of light.
  • the forward scattered light is received by the first light receiving unit D1, and a signal corresponding to the amount of received light is output.
  • the laterally scattered light is received by the second light receiving unit D2, and a signal corresponding to the amount of light received is output.
  • the lateral fluorescence is received by the third light receiving unit D3, and a signal corresponding to the amount of received light is output.
  • analog signals representing changes in the signal over time are output from the light receiving units D1 to D3.
  • the analog signal corresponding to the forward scattered light is called “forward scattered light signal”
  • the analog signal corresponding to the side scattered light is called “side scattered light signal”
  • the analog signal corresponding to side fluorescence is called “fluorescent signal”.
  • One pulse of each analog signal corresponds to one cell.
  • FIG. 2B is a diagram schematically showing conversion to a digital signal by the A / D conversion unit.
  • the level of the analog signal may be converted into a digital signal as it is, but if necessary, processing such as noise reduction, baseline correction, and normalization may be performed.
  • the A / D conversion unit reaches a time when the level of the forward scattered light signal among the analog signals input from the light receiving units D1 to D3 reaches a level set as a predetermined threshold value.
  • the forward scattered light signal, the side scattered light signal, and the fluorescent signal are sampled.
  • the A / D converter has each at a predetermined sampling rate (for example, sampling of 1024 points at intervals of 10 nanoseconds, sampling of 128 points at intervals of 80 nanoseconds, sampling of 64 points at intervals of 160 nanoseconds, etc.). Sampling analog signals.
  • FIG. 2C is a diagram schematically showing waveform data obtained by sampling.
  • matrix data having a value digitally indicating an analog signal level at a plurality of time points as an element can be obtained.
  • the A / D conversion unit generates a digital signal of forward scattered light, a digital signal of laterally scattered light, and a digital signal of lateral fluorescence corresponding to one cell.
  • the A / D conversion is repeated until the number of digitally signalized cells reaches a predetermined number, or until a predetermined time elapses from the start of flowing the sample into the flow cell. As a result, as shown in FIG.
  • a digital signal obtained by combining the waveform data of N cells contained in one sample can be obtained.
  • the set is called a digital signal.
  • Each waveform data generated by the A / D conversion unit may be given an index for identifying each cell.
  • an integer from 1 to N is given in the order of the generated waveform data, and the waveform data of the forward scattered light, the waveform data of the side scattered light, and the waveform data of the side fluorescence obtained from the same cell are given. , Each is given the same index.
  • Waveform data can be analyzed as a set to classify cell types.
  • FIG. 3 is a schematic diagram showing an example of a training data generation method used for training a deep learning algorithm for determining a cell type.
  • the training data 75 measures the sample with a flow cytometer, and the analog signal 70a of the forward scattered light (FSC), the analog signal 70b of the side scattered light (SSC), and the side fluorescence obtained for the cells contained in the sample. It is waveform data generated based on the analog signal 70c of (SFL). The method for acquiring waveform data is as described above.
  • the training data 75 is, for example, a cell in which a sample is measured by a flow cytometer and the cells contained in the sample are analyzed based on a conventional scattergram, and as a result, it is determined that there is a high possibility of a specific cell type.
  • Waveform data can be used.
  • a blood sample is measured with a flow cytometer, and waveform data of forward scattered light, side scattered light, and fluorescence of individual cells contained in the sample are accumulated. Based on lateral scattered light intensity (pulse height of lateral scattered light signal) and fluorescence intensity (pulse height of fluorescent signal), cells are neutrophils, lymphocytes, monocytes, eosinophils, basophils.
  • Training data can be obtained by assigning a label value corresponding to the classified cell type to the waveform data of the cell. For example, determine the mode, mean or median of lateral scattered light intensity and lateral fluorescence intensity of cells contained in a population of neutrophils, identify representative cells based on those values, and identify them. Training data can be obtained by assigning the label value "1" corresponding to the neutrophil to the waveform data of the cells of.
  • the method of generating training data is not limited to this, for example, training is performed by collecting only specific cells with a cell sorter, measuring the cells with a flow cytometer, and assigning a cell label value to the obtained waveform data. Data may be obtained.
  • the analog signals 70a, 70b, and 70c indicate a forward scattered light signal, a side scattered light signal, and a side fluorescence signal when the neutrophil is measured by the flow cytometer, respectively.
  • waveform data 72a of the forward scattered light signal, waveform data 72b of the side scattered light signal, and waveform data 72c of the side fluorescent signal are obtained.
  • Adjacent cells within each of the waveform data 72a, 72b, 72c store signal levels at intervals corresponding to the sampling rate, for example, at intervals of 10 nanoseconds.
  • the waveform data 72a, 72b, 72c are combined with a label value 77 indicating the type of cell from which the data is based, and three waveform data corresponding to each cell, in other words, three signal intensities (forward scattered light signal).
  • the data of intensity, signal intensity of laterally scattered light, and signal intensity of lateral fluorescence) are input to the deep learning algorithm 50 as training data 75 so as to be a set.
  • the waveform data 72a, 72b, and 72c are given "1" as the label value 77 indicating that they are neutrophils, and the training data. 75 is generated.
  • FIG. 4 shows an example of the label value 77. Since the training data 75 is generated for each cell type, the label value 77 is assigned differently depending on the cell type.
  • the neural network 50 is preferably a convolutional neural network having a convolutional layer.
  • the number of nodes of the input layer 50a in the neural network 50 corresponds to the number of elements of the array included in the waveform data of the input training data 75.
  • the number of elements in the sequence is equal to the sum of the number of elements of the forward scattered light, the side scattered light, and the lateral fluorescence waveform data 72a, 72b, and 72c corresponding to one cell.
  • the waveform data 72a, 72b, 72c are input to the input layer 50a of the neural network 50.
  • the label value 77 of each waveform data of the training data 75 is input to the output layer 50b of the neural network to train the neural network 50.
  • Reference numeral 50c in FIG. 3 indicates an intermediate layer.
  • FIG. 5 shows an example of a method for analyzing waveform data of cells to be analyzed.
  • the analog signal 80a of the forward scattered light, the analog signal 80b of the side scattered light, and the analog signal 80c of the side fluorescence obtained from the cells to be analyzed by the flow cytometer are obtained by the above method.
  • the analysis data 85 composed of the waveform data to be generated is generated.
  • the analysis data 85 and the training data 75 have at least the same acquisition conditions.
  • the acquisition conditions are the conditions for measuring the cells contained in the sample with a flow cytometer, for example, the preparation conditions of the measurement sample, the flow velocity when the measurement sample is passed through the flow cell, the intensity of the light applied to the flow cell, the scattered light and the scattered light. Includes the amplification factor of the light receiving part that receives fluorescence.
  • the acquisition condition further includes a sampling rate at the time of A / D conversion of the analog signal.
  • an analog signal 80a for forward scattered light, an analog signal 80b for side scattered light, and an analog signal 80c for side fluorescence are obtained.
  • these analog signals 80a, 80b, and 80c are A / D converted as described above, the time points at which the signal intensities are acquired are synchronized for each cell, and the waveform data 82a of the forward scattered light signal and the side scattered light signal are synchronized.
  • the waveform data 82b and the waveform data 82c of the lateral fluorescence signal are obtained.
  • the waveform data 82a, 82b, 82c are combined so that the data of the three signal intensities of each cell (the signal intensity of the forward scattered light, the signal intensity of the side scattered light, and the signal intensity of the side fluorescence) are set as a set. Then, it is input to the deep learning algorithm 60 as the analysis data 85.
  • the analysis result 83 is output from the output layer 60b as classification information regarding the cell type corresponding to the analysis data 85.
  • Reference numeral 60c in FIG. 5 indicates an intermediate layer.
  • the classification information regarding a cell type is, for example, the probability that a cell belongs to each of a plurality of cell types. Further, it is determined that the cell to be analyzed for which the analysis data 85 has been acquired belongs to the classification having the highest value in this probability, and the label value 82 or the like, which is an identifier indicating the cell type, is included in the analysis result 83. You may.
  • the analysis result 83 may be data in which the label value is replaced with information indicating the cell type (for example, a character string).
  • the deep learning algorithm 60 outputs the label value “1” having the highest probability that the analysis target cell for which the analysis data 85 has been acquired belongs, and further, “1” corresponding to this label value is output.
  • An example is shown in which the character data "neutrophil" is output as the analysis result 83.
  • the label value may be output by the deep learning algorithm 60, but another computer program may output the most preferable label value based on the probability calculated by the deep learning algorithm 60.
  • FIG. 6 shows an example in which a cell measuring device 4000 for measuring blood cells in blood is connected to a cell analyzer 1.
  • FIG. 7 shows an example in which a cell measuring device 4000'for measuring urinary formation is connected to a cell analyzer 1.
  • the waveform data of the present embodiment can be acquired by the first cell measuring device 4000 or the second cell measuring device 4000'.
  • the cell measuring device 4000 shown in FIG. 6 includes a measuring unit 400 and a processing unit 300 for controlling the setting and measurement of measurement conditions of a sample in the measuring unit 400 and analyzing the measurement results.
  • the 7 includes a measuring unit 500 and a processing unit 300 for controlling the setting and measurement of measurement conditions of the sample in the measuring unit 500 and analyzing the measurement results.
  • the measuring units 400 and 500 and the processing unit 300 may be connected by wire or wirelessly so as to be able to communicate with each other.
  • the configuration examples of the measurement units 400 and 500 are not limited to the following examples and are not interpreted.
  • the cell analyzer 1 is an apparatus that analyzes waveform data acquired by at least one of the cell measuring devices 4000 and 4000'by an artificial intelligence algorithm (for example, a deep learning algorithm 60).
  • the cell analyzer 1 is, for example, an on-premises type server.
  • the cell analyzer 1, the cell measuring device 4000, and the cell measuring device 4000' are referred to as, for example, the same facility such as a hospital or an inspection facility (hereinafter referred to as "inspection-related facility 2". ) Is placed inside.
  • the cell analyzer 1 includes, for example, the cell measuring device 4000 and the cell measuring device 4000'via the intra-network 3 which is a communication network in the inspection-related facility 2 in which the cell measuring device 4000 and the cell measuring device 4000' are installed. Be connected.
  • the intranet 3 is, for example, a communication network compliant with the TCP / IP protocol.
  • the intranet 3 is, for example, a communication network having a transfer rate of 10 Gbps or more.
  • the cell analyzer 1, the cell measuring device 4000, and the cell measuring device 4000' can be connected to the intra-network 3 by at least one of wired and wireless means.
  • the cell analyzer 1 may be connected to either one of the measurement unit 400 and the processing unit 300 of the cell measurement device 4000 via the intra-network 3, or the measurement unit 400 and the processing unit 300 of the cell measurement device 4000. It may be connected to both.
  • the cell analyzer 1 may be connected to either the measurement unit 500 or the processing unit 300 of the cell measurement device 4000'via the intra-network 3, or the measurement unit 500 of the cell measurement device 4000'. And may be connected to both the processing unit 300.
  • the cell analyzer 1 may be connected to a plurality of cell measuring devices 4000 and a plurality of cell measuring devices 4000'arranged in the inspection-related facility 2 via the intranet 3.
  • the cell analyzer 1 and the cell measuring device 4000 and the cell measuring device 4000' may be arranged in the same network domain or may be arranged in different network domains.
  • the cell analyzer 1 analyzes the waveform data contained in the digital signal received from the measurement unit 400, the measurement unit 500, or the processing unit 300 via the intra-network 3 according to the deep learning algorithm 60, and the cell corresponding to the waveform data. Judge the type of.
  • the digital signal transmitted from the measurement unit 400, the measurement unit 500, or the processing unit 300 may be associated with the device ID of the measurement unit 400, the measurement unit 500, or the processing unit 300.
  • the cell analyzer 1 may update the deep learning algorithm that analyzes the waveform data by learning based on the training data.
  • the cell analyzer 1 generates training data based on the waveform data acquired from the measurement unit 400, the measurement unit 500, or the processing unit 300.
  • the cell analyzer 1 may acquire the waveform data via the intranet 3 or may be acquired via a recording medium.
  • the recording medium is a computer-readable and non-temporary tangible recording medium such as a DVD-ROM or a USB (Universal Serial Bus) memory.
  • a plurality of cell analyzers 1 may be arranged in the inspection-related facility 2.
  • the plurality of cell analyzers 1 may be divided into roles of the cell analyzer 1 that analyzes waveform data and the cell analyzer 1 that performs learning based on training data.
  • FIG. 8 shows another configuration example of the cell analyzer 1 and the cell measuring device 4000, 4000'.
  • the cell analyzer 1 is installed in a place different from the inspection-related facility 2 in which the cell measuring apparatus 4000, 4000'is installed, for example.
  • the cell analyzer 1 is installed in, for example, a data center 5 that manages and operates the cell analyzer 1.
  • the cell analyzer 1 is composed of, for example, a cloud-type server.
  • one or more servers installed in the data center 5 are configured as the cell analyzer 1.
  • the cell analyzer 1 and the cell measuring apparatus 4000, 4000'installed in the inspection-related facility 2 can communicate with each other via, for example, the Internet 6.
  • the cell analyzer 1 analyzes the waveform data transmitted from the measurement unit 400, the measurement unit 500, or the processing unit 300 via the Internet 6, and determines the type of cell corresponding to the waveform data.
  • the cell analyzer 1 may update the algorithm for analyzing the waveform data by learning based on the training data.
  • the cell analyzer 1 generates training data based on the waveform data acquired from the measurement unit 400, the measurement unit 500, or the processing unit 300.
  • the cell analyzer 1 may acquire the waveform data via the Internet 6 or may be acquired via a recording medium.
  • the recording medium is a computer-readable, non-temporary tangible recording medium such as a DVD-ROM or a USB memory.
  • a plurality of cell analyzers 1 may be arranged in the data center 5.
  • the plurality of cell analyzers 1 may be divided into roles of the cell analyzer 1 that analyzes waveform data and the cell analyzer 1 that performs learning based on training data.
  • FIG. 9 shows another configuration example of the cell analyzer 1 and the cell measuring device 4000, 4000'.
  • the inspection-related facility 2 shown in FIG. 9 has the same configuration as the inspection-related facility 2 shown in FIG. 6 or FIG.
  • the cell analyzer 1 and the cell measuring device 4000, 4000' are connected to each other via an interface such as an intranet 3 or USB.
  • the cell analyzer 1 installed in the inspection-related facility 2 analyzes, for example, the waveform data acquired from the cell measuring apparatus 4000, 4000', and determines the cell type to which the cell corresponding to the waveform data belongs. judge.
  • the cell analyzer 1 installed in the data center 5 updates the algorithm for analyzing the waveform data by learning based on the training data, for example. That is, in the example shown in FIG. 9, the cell analyzer 1 of the inspection-related facility 2 and the cell analyzer 1 of the data center 5 share roles.
  • the cell analyzer 1 can acquire waveform data from a plurality of cell measuring devices 4000 and 4000'in the same test-related facility 2.
  • the cell analyzer 1 can acquire waveform data from a plurality of cell measuring devices 4000 and 4000'arranged in each of the different test-related facilities 2.
  • Waveform data is acquired for each individual cell in the biological sample examined at each of the examination-related facilities 2. Therefore, if the waveform data is not properly managed, data may be mixed up between patients, biological samples, and inspection-related facilities 2. Therefore, the measurement unit 400 or the processing unit 300 associates the waveform data with the identification information and transmits the waveform data to the cell analyzer 1.
  • the cell analyzer 1 associates the identification information with the analysis result.
  • the identification information includes, for example, (1) identification information of a biological sample corresponding to waveform data, (2) identification information of cells corresponding to waveform data, (3) identification information of a patient corresponding to waveform data, and (4) waveform. Examples include the identification information of the test corresponding to the data, (5) the identification information of the cell measuring device from which the waveform data was measured, and (6) the identification information of the test-related facility 2 where the waveform data was measured.
  • (1) the identification information of the biological sample corresponding to the waveform data is information on the time when the measurement order for the biological sample is registered, information on the time when the cell measuring device identifies the biological sample, and the cell measuring device is the biological sample.
  • Prioritize parallel processing such as information about when the measurement started, information to identify whether the biological sample is an emergency sample or a normal sample, and information to identify whether the biological sample is a remeasurement or a new measurement. May contain information for.
  • the cell analyzer 1 receives a measurement order from, for example, the LIS (Laboratory Information System) or the processing unit 300 or the measurement unit 400, the identification information (1) to (1) to (1) to the above identification information (1) to ( At least one of 6) or a combination thereof can be obtained.
  • the illustrated (1) to (6) is transmitted to the cell analyzer 1 in association with the waveform data.
  • the plurality of combinations of (1) to (6) exemplified may be transmitted to the cell analyzer 1 in association with the waveform data.
  • the analysis of the data measured by the plurality of cell measuring devices 4000 and 4000'by the deep learning algorithm 60 may be performed by each of the cell measuring devices 4000 and 4000'. Instead, it is performed collectively by the cell analyzer 1.
  • the cell analyzer 1 is an apparatus (computer) having high-spec information processing capability, which includes, for example, a processor 11 (also referred to as a host processor) composed of a CPU and a parallel processing processor 12 composed of a GPU, for example.
  • a processor 11 also referred to as a host processor
  • a parallel processing processor 12 composed of a GPU
  • the identification information is associated with the analysis result generated by the cell analyzer 1, it is possible to prevent the analysis result from being mixed up. Therefore, according to the present embodiment, system construction and operation are performed while ensuring data manageability, as compared with the case where an analysis computer and an analysis program are constructed and analyzed on each of the cell measuring devices 4000 and 4000'. It is possible to reduce the labor and cost related to the above. For example, since the analysis program can be updated only by the cell analyzer 1, the labor and cost related to the update can be reduced.
  • Measurement unit configuration A configuration example will be described when the measurement unit 400 is a blood analyzer including an FCM detection unit which is a flow cytometer for detecting cells of a blood sample, and more specifically, a blood cell counter.
  • FIG. 10 shows an example of a block diagram of the measurement unit 400.
  • the measurement unit 400 includes an FCM detection unit 410 for detecting blood cells, an analog processing unit 420 for the output of the FCM detection unit 410, a measurement unit control unit 480, a sample preparation unit 440, and a device mechanism unit 430. It is equipped with.
  • FIG. 11 is a schematic diagram for explaining the sample suction unit 450 and the sample preparation unit 440.
  • the sample suction unit 450 includes a nozzle 451 for sucking a blood sample (whole blood) from the blood collection tube T, and a pump 452 for applying negative pressure / positive pressure to the nozzle.
  • the nozzle 451 is inserted into the blood collection tube T by being moved up and down by the device mechanism unit 430.
  • the device mechanism unit 430 may include a hand member that overturns and stirs the blood collection tube T before suctioning blood from the blood collection tube T.
  • the sample preparation unit 440 includes five reaction chambers 440a to 440e.
  • the reaction chambers 440a to 440e are used in the DIFF, RET, WPC, PLT-F, and WNR measurement channels, respectively.
  • a hemolytic agent container containing a hemolytic agent which is a reagent corresponding to each measurement channel
  • a staining liquid container containing a staining liquid are connected via a flow path.
  • a measurement channel is composed of one reaction chamber and reagents (hemolytic agent and stain solution) connected to the reaction chamber.
  • the DIFF measurement channel is composed of a DIFF hemolytic agent and a DIFF stain, which are reagents for DIFF measurement, and a DIFF reaction chamber 440a.
  • measurement channels are similarly configured. Although one measurement channel is illustrated here with one hemolytic agent and one staining solution, one measurement channel does not necessarily have to have both the hemolytic agent and the staining solution, and a plurality of measurement channels may be provided. One reagent may be shared by the measurement channel.
  • the nozzle 451 that sucks the blood sample accesses the reaction chamber corresponding to the measurement channel corresponding to the order from above in the reaction chambers 440a to 440e by moving horizontally and vertically by the device mechanism unit 430, and sucks the blood sample. Discharge.
  • the sample preparation unit 440 supplies the corresponding hemolytic agent and staining solution to the reaction chamber into which the blood sample is discharged, and prepares the measurement sample by mixing the blood sample, the hemolytic agent, and the staining solution in the reaction chamber.
  • the prepared measurement sample is supplied to the FCM detection unit 410 from the reaction chamber via the flow path, and the cells are measured by the flow cytometry method.
  • FIG. 12 shows a configuration example of the optical system of the FCM detection unit 410.
  • the light source 4111 irradiates the flow cell 4113 with light when the cells contained in the measurement sample pass through the flow cell (sheath flow cell) 4113 provided in the flow cytometer. Then, the scattered light and fluorescence emitted from the cells in the flow cell 4113 by this light are detected.
  • the light emitted from the laser diode which is the light source 4111, is applied to the cells passing through the flow cell 4113 via the irradiation lens system 4112.
  • the light source 4111 of the flow cytometer is not particularly limited, and a light source 4111 having a wavelength suitable for exciting the fluorescent dye is selected.
  • a light source 4111 for example, a semiconductor laser light source including a red semiconductor laser light source and / or a blue semiconductor laser light source, an argon laser light source, a gas laser light source such as a helium-neon laser, a mercury arclamp, and the like are used.
  • a semiconductor laser light source is suitable because it is much cheaper than a gas laser light source.
  • the forward scattered light emitted from the particles passing through the flow cell 4113 is received by the forward scattered light receiving element 4116 via the condenser lens 4114 and the pinhole portion 4115.
  • the forward scattered light receiving element 4116 is a photodiode.
  • the side scattered light is received by the side scattered light receiving element 4121 via the condenser lens 4117, the dichroic mirror 4118, the bandpass filter 4119, and the pinhole portion 4120.
  • the side scattered light receiving element 4121 is a photodiode.
  • the lateral fluorescence is received by the lateral fluorescence light receiving element 4122 via the condenser lens 4117 and the dichroic mirror 4118.
  • the side fluorescence light receiving element 4122 is an avalanche photodiode.
  • a photomultiplier tube may be used as the forward scattered light receiving element 4116, the side scattered light receiving element 4121, and the side fluorescent light receiving element 4122.
  • the light receiving signals output from the light receiving elements 4116, 4121 and 4122 are input to the analog processing unit 420 via the amplifiers 4151, 4152 and 4153, respectively.
  • the analog processing unit 420 performs processing including noise reduction on the electric signal as an analog signal input from the FCM detection unit 410, and the processed result is used as an electric signal in the measurement unit control unit 480. Output to.
  • the measurement unit control unit 480 includes an A / D conversion unit 482, a digital value calculation unit 483, and an interface unit 489 connected to the processing unit 300. Further, it is provided with an interface unit 488 interposed between the device mechanism unit 430 and the device mechanism unit 430.
  • the digital value calculation unit 483 is connected to the interface unit 489 via the interface unit 484 and the bus 485. Further, the interface unit 489 is connected to the FCM detection unit 410, the device mechanism unit 430, the sample preparation unit 440, and the sample suction unit 450 via the bus 485 and the interface unit 488.
  • the measurement unit 400 is connected to the processing unit 300 and the cell analyzer 1 via the interface unit 489.
  • the interface unit 489 is, for example, a USB interface.
  • the measuring unit 400 may include an interface unit 490.
  • the interface unit 490 is, for example, an interface having a transfer rate of 10 Gbps or more.
  • the measurement unit 400 can be connected to the intranet 3 and the Internet 6 via the interface unit 490.
  • the measurement unit 400 can be connected to the cell analyzer 1 via the intranet 3 or the Internet 6.
  • the A / D conversion unit 482 converts an electric signal, which is an analog signal output from the analog processing unit 420, into a digital signal, and outputs the converted digital signal to the digital value calculation unit 483.
  • the A / D converter 482 is electrically operated at a predetermined sampling rate (for example, sampling of 1024 points at intervals of 10 nanoseconds, sampling of 128 points at intervals of 80 nanoseconds, sampling of 64 points at intervals of 160 nanoseconds, etc.).
  • the signal is sampled and a digital signal is generated.
  • the digital value calculation unit 483 performs a predetermined calculation process on the digital signal output from the A / D conversion unit 482.
  • the A / D conversion unit 482 may execute the arithmetic processing for acquiring the waveform data from the digital signal obtained by the A / D conversion unit 482.
  • FIG. 13 is a diagram showing the configuration of the processing unit 300.
  • the processing unit 300 includes a processor 3001, a bus 3003, a storage unit 3004, interface units 3006a to 3006d, a display unit 3015, and an operation unit 3016.
  • the processing unit 300 is configured by a personal computer that is general in terms of hardware, and functions as a processing unit of the cell analyzer 4000 by executing a dedicated program stored in the storage unit 3004.
  • the processor 3001 is a CPU and can execute a program stored in the storage unit 3004.
  • the storage unit 3004 includes a hard disk device.
  • the storage unit 3004 stores at least a program 60 for processing cell classification information transmitted from the cell analyzer 1 and generating a test result of a sample.
  • the test result of the sample means the result of counting the blood cells contained in the sample based on the classification information 82 of each cell obtained by the measurement unit 400, as described later.
  • the display unit 3015 includes a computer screen.
  • the display unit 3015 is connected to the processor 3001 via the interface unit 3006a and the bus 3003.
  • the display unit 3015 receives the image signal input from the processor 3001 and displays the measurement result (cell classification information) received from the cell analyzer 1 and the test result obtained by the processor 3001 analyzing the measurement result. be able to.
  • the operation unit 3016 includes a pointing device including a keyboard, a mouse, or a touch panel.
  • the operation unit 3016 is connected to the processor 3001 via the interface unit 3006b and the bus 3003.
  • a user such as a doctor or a laboratory engineer can input a measurement order to the cell analyzer 4000 and input a measurement instruction according to the measurement order.
  • the operation unit 3016 can also receive an instruction to display the inspection result from the user.
  • the user can operate the operation unit 3016 to browse various information regarding the test result, for example, graphs, charts, and flag information given to the sample.
  • the processor 3001 is connected to the measurement unit 400 via the bus 3003 and the interface unit 3006c. Further, the processor 3001 is connected to the intranet 3 or the Internet 6 via the bus 3003 and the interface unit 3006d, and is connected to the cell analyzer 1 via the intranet 3 or the Internet 6.
  • FIG. 14 shows a block diagram of the cell analyzer 1.
  • the cell analyzer 1 includes a processing unit 10.
  • the processing unit 10 includes, for example, a processor 11, a parallel processing processor 12, a storage unit 13, a RAM 14, an interface unit 16, and an interface unit 17.
  • the processor 11, the parallel processing processor 12, the storage unit 13, the RAM 14, the interface unit 16, and the interface unit 17 are electrically connected to each other via the bus 15.
  • the bus 15 is, for example, a transmission line having a data transfer speed of several hundred MB / s or more.
  • the bus 15 may be a transmission line having a data transfer speed of 1 GB / s or more.
  • the bus 15 transfers data based on, for example, PCI-Express or the PCI-X standard.
  • the cell analyzer 1 can be connected to the measurement unit 400 and the processing unit 300 via the interface unit 16.
  • the interface unit 16 may be the interface unit 4 exemplified in FIG. 7.
  • the cell analyzer 1 can be connected to the intranet 3 or the Internet 6 via the interface unit 17.
  • the cell analyzer 1 is connected to the measurement unit 400 or the processing unit 300 via the intra-network 3 or the Internet 6, and acquires waveform data regarding individual cells in a biological sample from the measurement unit 400 or the processing unit 300.
  • the cell analyzer 1 acquires, for example, a plurality of waveform data (for example, FSC, SSC, SFL) for individual cells in a biological sample.
  • a plurality of waveform data for example, FSC, SSC, SFL
  • the cell analyzer 1 records in advance the deep learning algorithm 50 composed of the program according to the present embodiment and the neural network before training in the storage unit 13 in, for example, an execution format.
  • the execution format is, for example, a format generated by being converted by a compiler from a programming language.
  • the cell analyzer 1 uses the program recorded in the storage unit 13 to perform training processing of the neural network 50 before training.
  • the cell analyzer 1 records in advance the deep learning algorithm 60 composed of the program and the trained neural network according to the present embodiment in the storage unit 13 in, for example, an execution format.
  • the execution format is, for example, a format generated by being converted by a compiler from a programming language.
  • the processor 11 and the parallel processing processor 12 perform processing using the program recorded in the storage unit 13 and the deep learning algorithm 60. That is, in other words, the processor 11 of the cell analyzer 1 is programmed to analyze cell data based on the deep learning algorithm 60.
  • the processor 11 uses the parallel processing processor 12 to perform analysis of waveform data according to the deep learning algorithm 60.
  • the processor 11 is, for example, a CPU (Central Processing Unit).
  • the parallel processing processor 12 executes a plurality of arithmetic processes in parallel, which are at least a part of the processes related to the analysis of waveform data.
  • the parallel processing processor 12 is, for example, a GPU (Graphics Processing Unit), an FPGA (Field Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit).
  • the parallel processing processor 12 is an FPGA, the parallel processing processor 12 may be programmed to correspond to the arithmetic processing related to the trained deep learning algorithm 60, for example.
  • the parallel processing processor 12 may, for example, have a circuit built in in advance for executing arithmetic processing related to the trained deep learning algorithm 60, or may be incorporated in such a built-in circuit.
  • a programmable module may be built-in.
  • the parallel processing processor 12 may be implemented by using, for example, Jetson manufactured by NVIDIA.
  • the processor 11 executes, for example, a calculation process related to the control of the cell analyzer 1. For example, the processor 11 executes, for example, reading program data from the storage unit 13, expanding a program to the RAM 14, and transmitting / receiving data to / from the RAM 14.
  • Each of the above-mentioned processes executed by the processor 11 is required to execute the processes in a predetermined order, for example. For example, if the processes required for a predetermined control are A, B, and C, it may be required to execute the processes in the order of B, A, and C. Since the processor 11 often executes continuous processing depending on such an order, even if the number of arithmetic units (sometimes referred to as "processor core", "core”, etc.) is increased, the processing is not necessarily performed. It does not increase the speed.
  • the parallel processing processor 12 executes a large amount of routine calculation processing, such as an operation of matrix data including a large amount of elements.
  • the parallel processing processor 12 executes parallel processing in which at least a part of the processing for analyzing waveform data according to the deep learning algorithm 60 is parallelized.
  • the deep learning algorithm 60 includes, for example, a large number of matrix operations.
  • the deep learning algorithm 60 may include, for example, at least 100 matrix operations and may also include at least 1000 matrix operations.
  • the parallel processing processor 12 has a plurality of arithmetic units, and each of these arithmetic units can execute a matrix operation at the same time. That is, the parallel processing processor 12 can execute matrix operations by each of the plurality of arithmetic units in parallel as parallel processing.
  • the matrix operation included in the deep learning algorithm 60 can be divided into a plurality of arithmetic processes that are not order-dependent from each other.
  • the arithmetic processing divided in this way can be executed in parallel by each of the plurality of arithmetic units.
  • These arithmetic units may be referred to as a "processor core", a “core”, or the like.
  • SIMD Single Instruction Multiple Data
  • the parallel processing processor 12 is suitable for, for example, such a SIMD operation.
  • Such a parallel processing processor 12 is sometimes called a vector processor.
  • the processor 11 is suitable for executing various and complicated processes.
  • the parallel processing processor 12 is suitable for executing a large amount of stylized processing in parallel, and by executing a large amount of stylized processing in parallel, the TAT (Turnaround Time) required for the calculation processing. Is shortened.
  • the target of parallel processing executed by the parallel processing processor 12 is not limited to matrix operations.
  • the parallel processing processor 12 executes the learning process according to the deep learning algorithm 50
  • the differential calculation or the like related to the learning process may be the target of the parallel processing.
  • the number of arithmetic units of the processor 11 is, for example, dual cores (number of cores: 2), quad cores (number of cores: 4), and octacores (number of cores: 8).
  • the number of arithmetic units (the number of cores) of the parallel processing processor 12 is, for example, at least 10 (the number of cores: 10), and 10 matrix operations can be executed in parallel.
  • the parallel processing processor 12 may have, for example, dozens of arithmetic units. Further, the parallel processing processor 12 has, for example, at least 100 arithmetic units (number of cores: 100) and can execute 100 matrix operations in parallel.
  • the parallel processing processor 12 may have, for example, several hundred arithmetic units. Further, the parallel processing processor 12 has, for example, at least 1000 arithmetic units (number of cores: 1000) and can execute 1000 matrix operations in parallel. The parallel processing processor 12 may have, for example, several thousand arithmetic units.
  • FIG. 15 shows a configuration example of the parallel processing processor 12.
  • the parallel processing processor 12 includes a plurality of arithmetic units 121 and a RAM 122. Each of the arithmetic units 121 executes arithmetic processing of matrix data in parallel.
  • the RAM 122 stores data related to arithmetic processing executed by the arithmetic unit 121.
  • the RAM 122 is a memory having a capacity of at least 1 gigabyte.
  • the RAM 122 may be a memory having a capacity of 2 gigabytes, 4 gigabytes, 6 gigabytes, 8 gigabytes, or 10 gigabytes or more.
  • the arithmetic unit 121 acquires data from the RAM 122 and executes arithmetic processing.
  • the arithmetic unit 121 may be referred to as a "processor core", a "core”, or the like.
  • 16 to 18 show an example of mounting the parallel processing processor 12 on the cell analyzer 1.
  • 16 and 17 show an implementation example in which the processor 11 and the parallel processing processor 12 are provided as separate bodies.
  • the parallel processing processor 12 is mounted on the board 190, for example.
  • the parallel processing processor 12 is mounted on the graphic board 19, for example, and the graphic board 19 is connected to the board 190 via the connector 191.
  • the processor 11 is connected to the parallel processing processor 12 via the bus 15.
  • the parallel processing processor 12 may be mounted directly on the substrate 190 and connected to the processor 11 via the bus 15, for example.
  • FIG. 18 shows an implementation example in which the processor 11 and the parallel processing processor 12 are integrally provided.
  • the parallel processing processor 12 may be built in, for example, the processor 11 mounted on the board 190.
  • FIG. 19 is a block diagram showing another implementation example of the parallel processing processor 12 in the cell analyzer 1.
  • FIG. 19 shows an example of mounting the parallel processing processor 12 on an external device connected to the cell analyzer 1.
  • the parallel processing processor 12 is mounted on, for example, a USB (Universal Serial Bus) device, and the USB device is connected to the bus 15 via the interface unit 18.
  • the USB device may be a small device such as a USB dongle.
  • the interface unit 18 is, for example, a USB interface having a transfer rate of several hundred Mbps, and more preferably a USB interface having a transfer rate of several Gbps to several tens of Gbps or more.
  • a plurality of USB devices on which the parallel processing processor 12 is mounted may be connected to the interface unit 18. Since the number of arithmetic units 121 in the parallel processing processor 12 on one USB device may be smaller than that of the GPU or the like, the number of cores can be scaled by adding a plurality of USB devices connected to the cell analyzer 1. Up is possible.
  • the deep layer is replaced by replacing the small device.
  • the learning algorithm 60 may be replaced.
  • the measurement unit control unit 480 may update the program and the deep learning algorithm 60 recorded in the storage unit 13.
  • FIG. 20 shows an outline of the operation in which the processor 11 executes arithmetic processing of matrix data using the parallel processing processor 12.
  • the processor 11 can instruct the parallel processing processor 12 to execute at least a part of the arithmetic processing required when analyzing the waveform data by the deep learning algorithm 60 by using the parallel processing processor 12.
  • the analysis software 111 of the processor 11 instructs the parallel processing processor 12 to execute arithmetic processing related to waveform data analysis based on the deep learning algorithm 60. All or at least a part of the waveform data corresponding to the signal detected by the FCM detection unit 410 is stored in the RAM 14.
  • the data stored in the RAM 14 is transferred to the RAM 122 of the parallel processing processor 12.
  • the data stored in the RAM 14 is transferred to the RAM 122 by, for example, a DMA (Direct Memory Access) method.
  • Each of the plurality of arithmetic units 121 of the parallel processing processor 12 executes arithmetic processing on the data stored in the RAM 122 in parallel.
  • Each of the plurality of arithmetic units 121 acquires necessary data from the RAM 122 and executes arithmetic processing.
  • the data corresponding to the calculation result is stored in the RAM 122 of the parallel processing processor 12.
  • the data corresponding to the calculation result is transferred from the RAM 122 to the RAM 14 by, for example, a DMA method.
  • FIG. 21 shows an outline of the matrix operation executed by the parallel processing processor 12.
  • a matrix product (matrix operation) is executed.
  • the parallel processing processor 12 for example, executes each of the matrix operations in parallel.
  • FIG. 21 (a) shows a calculation formula of a matrix product.
  • the matrix c is obtained by the product of the matrix a of n rows and n columns and the matrix b of n rows and n columns.
  • the formula is described in a multi-layered loop syntax.
  • FIG. 21B shows an example of arithmetic processing executed in parallel by the parallel processing processor 4833. The calculation formula exemplified in FIG.
  • n ⁇ n arithmetic processes which is the number of combinations of the loop variable i in the first layer and the loop variable j in the second layer, for example. Can be done. Since each of the arithmetic processes divided in this way is an arithmetic process that does not depend on each other, they can be executed in parallel.
  • FIG. 22 is a conceptual diagram showing that the plurality of arithmetic processes exemplified in FIG. 21 (b) are executed by the parallel processing processor 12.
  • each of the plurality of arithmetic processes is assigned to any of the plurality of arithmetic units 121 included in the parallel processing processor 12.
  • Each of the arithmetic units 121 executes the assigned arithmetic processing in parallel with each other. That is, each of the arithmetic units 121 simultaneously executes the divided arithmetic processing.
  • the processor 11 that executes the analysis software 111 analyzes the cell type of the cell corresponding to the waveform data.
  • the calculation result is stored in the RAM 122 of the parallel processing processor 12, and is transferred from the RAM 122 to the RAM 14. Then, the processor 11 transmits the measurement result calculated based on the calculation result stored in the RAM 14 to the processing unit 300 or the measurement unit 400 via the bus 15 and the interface unit 16.
  • the calculation of the probability that a cell belongs to each of a plurality of cell types may be performed by a processor other than the parallel processing processor 12.
  • the calculation result is transferred from the RAM 122 to the RAM 14, and the processor 11 calculates information on the probability that the cell corresponding to each waveform data belongs to each of the plurality of cell types based on the calculation result read from the RAM 14. May be good.
  • the calculation result may be transferred from the RAM 122 to the processing unit 300, and the processor mounted on the processing unit 300 may calculate information on the probability that the cell corresponding to each waveform data belongs to each of the plurality of cell types. ..
  • the processes shown in FIGS. 21 and 22 are applied to, for example, arithmetic processing (also referred to as filter processing) related to the convolution layer in the deep learning algorithm 60.
  • arithmetic processing also referred to as filter processing
  • FIG. 23 shows an outline of the arithmetic processing related to the convolution layer.
  • FIG. 23A shows an example of waveform data of forward scattered light (FSC) as waveform data input to the deep learning algorithm 60.
  • the waveform data is, for example, one-dimensional matrix data (that is, one-dimensional array data).
  • the number of elements of the waveform data is n (n is an integer of 1 or more).
  • FIG. 23 (a) shows a plurality of filters.
  • the filter is generated by the learning process of the deep learning algorithm 50.
  • Each of the plurality of filters is one-dimensional matrix data representing the characteristics of the waveform data.
  • the filter shown in FIG. 23 (a) is matrix data of 1 row and 3 columns, but the number of columns is not limited to 3.
  • FIG. 23 (b) shows an outline of the matrix operation between the waveform data and the filter.
  • the matrix operation is executed while shifting each filter by one for each element of the waveform data.
  • the calculation of the matrix operation is executed by the following equation 1.
  • the subscript of x is a variable indicating the row number and column number of the waveform data.
  • the subscript of h is a variable indicating the row number and the column number of the filter.
  • the parallel processing processor 12 executes the matrix operation represented by the equation 1 in parallel by each of the plurality of calculation units 121. Classification information regarding the cell type of each cell is generated based on the arithmetic processing executed by the parallel processing processor 12. The generated information is transmitted to the processing unit 300 or the measurement unit 400.
  • the cell analyzer 1 can process the waveform data and the identification information in association with each other. Specifically, the cell analyzer 1 can generate the analysis result of the waveform data (that is, the classification information regarding the cell type of each cell) and the identification information in association with each other. For example, the cell analyzer 1 associates the classification information and the identification information regarding the cell type of each cell and transmits them to the processing unit 300 or the measurement unit 400. A plurality of combinations of the above-mentioned identification information (1) to (6) may be transmitted to the processing unit 300 or the measurement unit 400 in association with the classification information.
  • the processing unit 300 is connected to the digital value calculation unit 483 via the interface unit 489, the bus 485, and the interface unit 484, and receives the calculation result output from the digital value calculation unit 483. Can be done.
  • the interface unit 489 is, for example, a USB interface.
  • the processing unit 300 can acquire the calculation result by the processor 11 and the parallel processing processor 12 from the cell analyzer 1 and display the measurement result based on the calculation result. Users such as doctors and laboratory technicians can operate the processing unit 300 and analyze the measurement results. The user can also analyze the measurement result by operating the processing unit 300 and generating various information regarding the measurement result (for example, a graph, a chart, additional information to the measurement result).
  • the user can analyze the measurement result for each of the above-mentioned identification information by viewing, for example, a graph or chart for each biological sample, or a graph or chart for each inspection-related facility 2.
  • the processing unit 300 may control a sampler (not shown) that automatically supplies a sample container, a device mechanism unit 430 including a fluid system for preparing and measuring a sample, and other controls.
  • the processor 3001 of the processing unit 300 When the processor 3001 of the processing unit 300 receives a measurement instruction including a measurement order from the user via the operation unit 3016, the processor 3001 transmits a measurement command to the measurement unit 400 (step S1).
  • the measurement order received from the user by the processor 3001 includes the sample ID of the sample to be measured, the patient ID corresponding to the sample, and the information of the measurement item (measurement channel) for which the measurement is requested.
  • the processor 3001 includes the sample ID, the patient ID, and the information of the measurement channel in the measurement command and transmits the information to the measurement unit 400.
  • the processor 4831 of the measurement unit 400 Upon receiving the measurement command, the processor 4831 of the measurement unit 400 starts the measurement of the sample.
  • the processor 4831 causes the sample suction unit 450 to suck the sample from the blood collection tube T (step S10).
  • the processor 4831 causes the sample suction unit 450 to dispense the sucked sample into any of the reaction chambers 440a to 440e of the sample preparation unit 440.
  • the measurement command transmitted from the processing unit 300 in step S1 includes information on the measurement channel for which measurement is requested by the measurement order.
  • the processor 4831 controls the sample suction unit 450 to discharge the sample into the reaction chamber of the corresponding measurement channel based on the information of the measurement channel included in the measurement command.
  • the processor 4831 causes the sample preparation unit 440 to prepare a measurement sample (step S11). Specifically, the sample preparation unit 440 receives a command from the processor 4831, supplies a reagent (hemolytic agent and a staining solution) to the reaction chamber into which the sample is discharged, and mixes the sample and the reagent. This prepares a measurement sample in which the erythrocytes are hemolyzed with a hemolytic agent and the cells targeted by the measurement channel, such as leukocytes and reticulocytes, are stained by staining in the reaction chamber.
  • a reagent hemolytic agent and a staining solution
  • the processor 4831 causes the FCM detection unit 410 to measure the prepared measurement sample (step S12). Specifically, the processor 4831 controls the device mechanism unit 430 to send the measurement sample in the reaction chamber of the sample preparation unit 440 to the FCM detection unit 410.
  • the reaction chamber and the FCM detection unit 410 are connected by a flow path, and the measurement sample sent from the reaction chamber flows through the flow cell 4113 and is irradiated with laser light by the light source 4111 (see FIG. 12).
  • the cells contained in the measurement sample pass through the flow cell 4113, the cells are irradiated with light, and the forward scattered light, the side scattered light, and the side fluorescence generated from the cells are detected by the light receiving elements 4116, 4121, and 4122, respectively.
  • An analog signal corresponding to the light receiving intensity is output.
  • the analog signal is output to the A / D conversion unit 482 via the analog processing unit 420.
  • the A / D conversion unit 482 generates a digital signal including waveform data of individual cells by sampling an analog signal at a predetermined rate (step S13).
  • the method of generating the waveform data and the digital signal is as described above.
  • the processor 4831 stores the digital signal generated by the A / D conversion unit 482 in the storage unit 460.
  • the processor 4831 transmits the digital signal and the identification information stored in the storage unit 460 to the cell analyzer 1 (step S14).
  • the processor 4831 adds identification information corresponding to the digital signal to the digital signal stored in the storage unit 460, and transmits the identification information to the cell analyzer 1 via the interface unit 490, the intra-network 3 or the Internet 9.
  • the identification information includes the patient ID, the sample ID, the information of the measurement channel, and the device ID which is unique information to the cell measuring device 4000.
  • the processor 11 of the cell analyzer 1 receives the digital signal and the identification information from the processor 4831 of the measurement unit 400, the processor 11 performs cell classification based on the deep learning algorithm 60 for the received digital signal (step S21). Details of cell classification will be described later.
  • the processor 11 transmits the analysis result 83 including the classification information 82 of the individual cells obtained as a result of S21 to the processing unit 300 together with the identification information (step S22). More specifically, the processor 11 transmits the analysis result 83 to the processing unit 300 of the cell measuring device 4000 specified by the device ID included in the identification information.
  • the identification information transmitted to the processing unit 300 together with the analysis result 83 may include the patient ID, the sample ID, and the measurement channel information, but may not include the device ID.
  • the analysis result 83 of a plurality of cells contained in one sample is associated with the above-mentioned identification information and sent to the processing unit 300.
  • the processor 3001 of the processing unit 300 receives the analysis result 83 from the cell analyzer 1, it analyzes the analysis result 83 using the program stored in the storage unit 3004 and generates the test result of the sample (step S3).
  • the processor 3001 acquires the counting result regarding the measurement item according to the measurement channel based on the analysis result 83, and stores it in the storage unit 3004 together with the identification information.
  • the measurement item according to the measurement channel is an item for which the counting result is required by the measurement order.
  • the measurement item according to the DIFF channel is the number of leukocyte 5 classifications, that is, monocytes, neutrophils, lymphocytes, eosinophils, and basophils.
  • the measurement item according to the RET channel is the number of reticulocytes.
  • the measurement item according to PLT-F is the number of platelets.
  • the measurement item according to WPC is the number of hematopoietic progenitor cells.
  • the measurement item according to WNR is the number of leukocytes and nucleated red blood cells.
  • the counting result is not limited to the items for which measurement is required (also referred to as a reportable item) as listed above, and may include counting results of other cells that can be measured by the same measurement channel. For example, if the measurement channel is DIFF, as shown in FIG. 4, in addition to the leukocyte 5 classification, immature granulocytes (IG) and abnormal cells are also included in the counting results. Further, the processor 3001 generates a sample test result by analyzing the obtained counting result and stores it in the storage unit 3004. The analysis of the counting result includes, for example, determining whether the counting result is within the normal value range, no abnormal cells are detected, and whether the deviation from the previous test result is within the allowable range.
  • the processor 3001 displays the generated inspection result on the display unit 3015 (step S4).
  • the inspection result is displayed together with the identification information associated with the analysis result 83 which is the source of the inspection result.
  • the test result is displayed together with the patient ID, the sample ID, the measurement channel, and the device ID.
  • the identification information displayed together with the inspection result may be at least one of the above.
  • the cell classification process in step S21 is a process performed by the processor 11 according to the operation of the analysis software 111.
  • the processor 11 transfers the digital signal captured in the RAM 14 in step S13 to the parallel processing processor 12 (S101). As shown in FIG. 20, the processor 11 transfers a digital signal from the RAM 14 to the RAM 122 by DMA transfer.
  • the processor 11 controls, for example, the bus controller 181 to transfer a digital signal from the RAM 14 to the RAM 122 by DMA.
  • the processor 11 instructs the parallel processing processor 12 to execute parallel processing on the waveform data included in the digital signal (S102).
  • the processor 11 instructs the execution of parallel processing, for example, by calling the kernel function of the parallel processing processor 12.
  • the processing executed by the parallel processing processor 12 will be described later in the flowchart illustrated in FIG.
  • the processor 11 instructs the parallel processing processor 12, for example, to execute a matrix operation related to the deep learning algorithm 60.
  • the digital signal is decomposed into a plurality of waveform data and sequentially input to the deep learning algorithm 60.
  • the index corresponding to each cell contained in the digital signal is not input to the deep learning algorithm 60.
  • the waveform data input to the deep learning algorithm 60 is calculated by the parallel processing processor 12.
  • the processor 11 receives the calculation result executed by the parallel processing processor 12 (S103).
  • the calculation result is DMA-transferred from the RAM 122 to the RAM 14, for example, as shown in FIG.
  • the processor 11 generates an analysis result of the cell type of each measured cell based on the calculation result by the parallel processing processor 12 (S104).
  • FIG. 26 shows an operation example of arithmetic processing of the parallel processing processor 12 executed based on the instruction of the analysis software 111.
  • the processor 11 that executes the analysis software 111 causes the parallel processing processor 12 to execute the assignment of arithmetic processing to the arithmetic unit 121 (S110).
  • the processor 11 causes the parallel processing processor 12 to execute the assignment of arithmetic processing to the arithmetic unit 121, for example, by calling the kernel function of the parallel processing processor 12.
  • the matrix operation related to the deep learning algorithm 60 is divided into a plurality of operation processes, and each of the divided operation processes is assigned to the operation unit 121.
  • a plurality of waveform data are sequentially input to the deep learning algorithm 60.
  • the matrix operation corresponding to the waveform data is divided into a plurality of arithmetic processes and assigned to the arithmetic unit 121.
  • Each arithmetic processing is processed in parallel by a plurality of arithmetic units 121 (S111).
  • the arithmetic processing is executed for a plurality of waveform data.
  • the calculation result generated by being processed in parallel by the plurality of calculation units 121 is transferred from the RAM 122 to the RAM 14 (S112).
  • the calculation result is transferred from the RAM 122 to the RAM 14 by DMA.
  • FIG. 27 is an example of a block diagram of the measurement unit 500.
  • the measurement unit 500 includes an amplifier circuit 550 and an amplifier circuit 550 that amplify the output signals (output signals amplified by the preamplifier) of the sample distribution unit 501, the sample preparation unit 502, the optical detection unit 505, and the optical detection unit 505.
  • Filter circuit 506 that performs filter processing on the output signal from,
  • a / D converter 507 that converts the output signal (analog signal) of the filter circuit 506 into a digital value, and a digital value that performs predetermined processing on the digital value.
  • a LAN (Local Area Network) adapter 512 connected to the microcomputer 511 is provided.
  • the processing unit 300 is connected to the measurement unit 500 via a LAN cable, for example, via a LAN adapter 512, and the processing unit 300 analyzes the measurement data acquired by the measurement unit 500.
  • the optical detection unit 505, the amplifier circuit 550, the filter circuit 506, the A / D conversion unit 507, the digital value processing circuit 508, and the memory 509 constitute an optical measurement unit 510 that measures a measurement sample and generates measurement data. There is.
  • the measurement unit 500 can access the intranet 3 or the Internet 6 via the LAN adapter 512 and communicate with the cell analyzer 1.
  • the measurement unit 500 transmits the acquired waveform data to the cell analyzer 1.
  • the measurement unit 500 or the processing unit 300 associates the waveform data with the identification information and transmits the waveform data to the cell analyzer 1.
  • the identification information includes, for example, (1) identification information of a biological sample corresponding to waveform data, (2) identification information of cells corresponding to waveform data, (3) identification information of a patient corresponding to waveform data, and (4) waveform. Examples include the identification information of the test corresponding to the data, (5) the identification information of the cell measuring device from which the waveform data was measured, and (6) the identification information of the test-related facility 2 where the waveform data was measured.
  • the measurement unit 500 can acquire at least one of the above identification information (1) to (6) or a combination thereof from the LIS or the processing unit 300.
  • at least one of the illustrated (1) to (6) is transmitted to the cell analyzer 1 in association with the waveform data.
  • the plurality of combinations of (1) to (6) exemplified may be transmitted to the cell analyzer 1 in association with the waveform data.
  • FIG. 28 is a diagram showing the configuration of the optical detection unit 505 of the measurement unit 500.
  • the condenser lens 552 concentrates the laser light radiated from the semiconductor laser light source 551 as a light source on the flow cell 551, and the condenser lens 554 forward-scatters the forward scattered light emitted from the formed components in the measurement sample. Condenses light on the light receiving unit 555. Further, the other condenser lens 556 concentrates the laterally scattered light and the fluorescence emitted from the formed component on the dichroic mirror 557.
  • the dichroic mirror 557 reflects the side-scattered light to the side-scattered light receiving unit 558, and transmits the fluorescence toward the fluorescence light-receiving unit 559. These optical signals reflect the characteristics of the formed components in the measurement sample. Then, the forward scattered light receiving unit 555, the side scattered light receiving unit 558, and the fluorescent light receiving unit 559 convert the optical signal into an electric signal, and output the forward scattered light signal, the side scattered light signal, and the fluorescence signal, respectively. These outputs are amplified by the preamplifier and then used for the next stage processing.
  • each of the forward scattered light receiving unit 555, the side scattered light receiving unit 558, and the fluorescent light receiving unit 559 can switch between low-sensitivity output and high-sensitivity output by switching the drive voltage. This sensitivity switching is performed by the microcomputer 511.
  • a photodiode is used as the forward scattered light receiving unit 555, and a photomultiplier tube may be used as the side scattered light receiving unit 558 and the fluorescence receiving unit 55, or the side scattered light receiving unit 558 and A photodiode may be used as the fluorescence light receiving unit 559.
  • the fluorescence signal output from the fluorescence light receiving unit 559 is amplified by the preamplifier and then given to the two branching signal channels.
  • the two signal channels are connected to the amplifier circuit 550 described above in FIG. 27, respectively.
  • the fluorescence input to one signal channel is amplified with high sensitivity by the amplifier circuit 550.
  • FIG. 29 is a diagram showing a schematic functional configuration of the sample preparation unit 502 and the optical detection unit 505 shown in FIG. 27.
  • the sample distribution unit 501 shown in FIGS. 27 and 29 includes a suction tube 517 and a syringe pump.
  • the sample distribution unit 501 sucks the sample (urine or body fluid) 00b through the suction tube 517 and dispenses it to the sample preparation unit 502.
  • the sample preparation unit 502 includes a reaction tank 512u and a reaction tank 512b.
  • the sample distribution unit 501 distributes the quantified measurement sample to each of the reaction tank 512u and the reaction tank 512b.
  • the distributed biological sample is mixed with the first reagent 519u as a diluent and the third reagent 518u containing the dye.
  • the dye contained in the third reagent 518u stains the formed components in the biological sample.
  • the biological sample is urine
  • the sample prepared in this reaction tank 512u is used as a first measurement sample for analyzing relatively large urinary formations such as erythrocytes, leukocytes, epithelial cells, and tumor cells. .
  • the sample prepared in the reaction tank 512u is used as a third measurement sample for analyzing red blood cells in the body fluid.
  • the distributed biological sample is mixed with the second reagent 519b as a diluent and the fourth reagent 518b containing the dye.
  • the second reagent 519b has a hemolytic effect.
  • the dye contained in the fourth reagent 518b stains the formed components in the biological sample.
  • the biological sample is urine
  • the sample prepared in this reaction tank 512b becomes a second measurement sample for analyzing bacteria in urine.
  • the sample prepared in the reaction tank 512b becomes a fourth measurement sample for analyzing nucleated cells (white blood cells and large cells) and bacteria in the body fluid.
  • a tube extends from the reaction tank 512u to the flow cell 551 of the optical detection unit 505, and the measurement sample prepared in the reaction tank 512u can be supplied to the flow cell 551.
  • a solenoid valve 521u is provided at the outlet of the reaction tank 512u.
  • a tube is also extended from the reaction tank 512b, and this tube is connected in the middle of the tube extending from the reaction tank 2u. As a result, the measurement sample prepared in the reaction vessel 512b can be supplied to the flow cell 551. Further, a solenoid valve 521b is provided at the outlet of the reaction tank 512u.
  • the tube extending from the reaction tanks 512u and 512b to the flow cell 551 is branched in front of the flow cell 551, and the branch destination is connected to the syringe pump 520a. Further, a solenoid valve 521c is provided between the syringe pump 520a and the branch point.
  • the tube is further branched on the way from the connection point of the tube extending from each of the reaction tanks 512u and 512b to the branch point, and the branch destination is connected to the syringe pump 520b. Further, a solenoid valve 521d is provided between the branch point of the tube extending to the syringe pump 520b and the connection point.
  • a sheath liquid accommodating unit 522 for accommodating the sheath liquid is connected to the sample preparation unit 502, and this sheath liquid accommodating unit 522 is connected to the flow cell 551 by a tube.
  • a compressor 522a is connected to the sheath liquid accommodating portion 522, and when the compressor 522a is driven, compressed air is supplied to the sheath liquid accommodating portion 522, and the sheath liquid is supplied from the sheath liquid accommodating portion 522 to the flow cell 551.
  • the two types of suspensions (measurement samples) prepared in each of the reaction tanks 512u and 512b are the suspensions of the reaction tank 512u (the first measurement sample when the biological sample is urine.
  • the biological sample is the body fluid.
  • the third measurement sample. Is guided to the optical detection unit 505 to form a thin flow wrapped in the sheath liquid in the flow cell 551, and the laser beam is irradiated there.
  • the suspension of the reaction tank 512b (the second measurement sample when the biological sample is urine.
  • the fourth measurement sample when the biological sample is body fluid) is guided to the optical detection unit 505 and is thin in the flow cell 551. It forms a flow and is irradiated with laser light.
  • Such an operation is automatically performed by operating the solenoid valves 521a, 521b, 521c, 521d, the drive unit 503, and the like under the control of the microcomputer 511 (control unit).
  • the first reagent to the fourth reagent will be described in detail.
  • the first reagent 519u is a reagent containing a buffer as a main component, and contains an osmotic pressure compensating agent so that a stable fluorescent signal can be obtained without hemolyzing erythrocytes, so that it is suitable for classification measurement.
  • the osmotic pressure is adjusted to 100 to 600 mOsm / kg.
  • the first reagent 519u preferably does not have a hemolytic effect on red blood cells in urine.
  • the second reagent 519b has a hemolytic action unlike the first reagent 519u. This is to enhance the passage of the fourth reagent 518b, which will be described later, to the cell membrane of the bacterium, and to accelerate the staining. It is also to shrink impurities such as mucous threads and red blood cell debris.
  • the second reagent 519b contains a surfactant to obtain hemolytic action. Various surfactants such as anions, nonions, and cations are used, but cationic surfactants are particularly suitable. Since the surfactant can damage the cell membrane of the bacterium, the dye contained in the fourth reagent 518b can efficiently stain the nucleic acid of the bacterium. As a result, the measurement of bacteria can be performed in a short time staining process.
  • the second reagent 519b may acquire a hemolytic action by being adjusted to an acidity or a low pH instead of a surfactant.
  • the low pH means that the pH is lower than that of the first reagent 19u.
  • the first reagent 519u is in the range of neutral or weakly acidic to weakly alkaline
  • the second reagent 19b is acidic or strongly acidic.
  • the pH of the first reagent 519u is 6.0 to 8.0
  • the pH of the second reagent 519b is lower than that, preferably 2.0 to 6.0.
  • the second reagent 519b may contain a surfactant and may be adjusted to a low pH.
  • the second reagent 519b may acquire a hemolytic action by setting the osmotic pressure to be lower than that of the first reagent 19u.
  • the first reagent 519u does not contain a surfactant.
  • the first reagent 519u may contain a surfactant, but it is necessary to adjust the type and concentration so as not to hemolyze the erythrocytes. Therefore, it is preferable that the first reagent 519u does not contain the same surfactant as the second reagent 519b, or even if it contains the same surfactant, the concentration is lower than that of the second reagent 519b.
  • the third reagent 518u is a staining reagent used for measuring urinary formed components (erythrocytes, leukocytes, epithelial cells, cylinders, etc.).
  • a dye for film staining is selected in order to stain formed components having no nucleic acid.
  • the third reagent 518u preferably contains an osmotic pressure compensating agent for the purpose of preventing erythrocyte hemolysis and for obtaining stable fluorescence intensity, and is adjusted to 100 to 600 mOsm / kg so as to have an osmotic pressure suitable for classification measurement. ing.
  • the cell membrane and nucleus (membrane) of the urinary formation are stained with the third reagent 18u.
  • a condensed benzene derivative is used as a dyeing reagent containing a dye for film dyeing, and for example, a cyanine dye can be used.
  • the third reagent 18u stains not only the cell membrane but also the nuclear membrane.
  • the third reagent 518u in nucleated cells such as leukocytes and epithelium, the staining intensity in the cytoplasm (cell membrane) and the staining intensity in the nucleus (nuclear envelope) are combined, and the staining is higher than that in urinary formation without nucleic acid. The strength increases.
  • the third reagent the reagent described in JP-A-5891733 can be used. US 5891733 is incorporated herein by reference.
  • the third reagent 518u is mixed with urine or body fluid together with the first reagent 519u.
  • the fourth reagent 518b is a staining reagent that can accurately measure bacteria even if it is a sample containing impurities of the same size as bacteria and fungi.
  • the fourth reagent 518b is described in detail in European Application Publication No. 1136563.
  • a dye that stains nucleic acid is preferably used.
  • a staining reagent containing a dye for nuclear staining for example, a cyanine-based dye of US Pat. No. 7,309,581 can be used.
  • the fourth reagent 518b is mixed with urine or a sample together with the second reagent 519b. Publication No. 1136563 and US Pat. No. 7,309,581 are incorporated herein by reference.
  • the third reagent 518u contains a dye that stains the cell membrane
  • the fourth reagent 518b contains a dye that stains nucleic acid. Since the urinary formations include those that do not have nuclei such as red blood cells, the third reagent 518u contains a dye that stains the cell membrane, so that those that do not have such nuclei are also included. It is possible to detect urinary formations. Further, since the second reagent can damage the cell membrane of the bacterium, the dye contained in the fourth reagent 18b can efficiently stain the nucleic acid of the bacterium and the fungus. As a result, the measurement of bacteria can be performed in a short time staining process.
  • the measurement unit 400 or the measurement unit 500 includes flow cells 4113 and 551, respectively.
  • the measuring unit 400 or the measuring unit 500 sends the biological sample to the flow cells 4113 and 551.
  • the biological sample supplied to the flow cells 4113 and 551 is irradiated with light from the light sources 4112 and 553, and the forward scattered light, the lateral scattered light, and the lateral fluorescence emitted from the cells in the biological sample are emitted from the light detection unit (4116). 4121, 4122, 555, 558, 559) are detected.
  • a signal may be transmitted from the photodetector (4116, 4121, 4122, 555, 558, 559) to the cell analyzer 1.
  • the cell analyzer 1 acquires the respective waveform data from the forward scattered light, the side scattered light, and the side fluorescence detected by the light detection unit (4116, 4121, 4122, 555, 558, 559).
  • FIG. 30 shows an example of a functional block of the cell analyzer 1 that performs deep learning.
  • the processing unit 10 of the cell analyzer 1 includes a training data generation unit 101, a training data input unit 102, and an algorithm update unit 103. These functional blocks are realized by installing a program that causes a computer to execute a deep learning process in the storage unit 13 of the processing unit 10, and executing this program by the processor 11 and the parallel processing processor 12.
  • the training data database (DB) 104 and the algorithm database (DB) 105 are recorded in the storage unit 13 or the RAM 14 of the processing unit 10.
  • the training waveform data 70a, 70b, 70c are acquired in advance by, for example, the measurement units 400 and 500, and are stored in advance in the storage unit 13 or the RAM 14 of the processing unit 10.
  • the processing unit 10 performs the processing shown in FIG. 31.
  • the training data generation unit 101 performs the processing of steps S211, S214 and S216 shown in FIG.
  • the training data input unit 102 performs the processing of step S212.
  • the processing of steps S213 and S215 is performed by the algorithm update unit 103.
  • the processing unit 10 acquires training waveform data 70a, 70b, 70c.
  • the training waveform data 70a is waveform data of forward scattered light
  • the waveform data 70b for training is waveform data of lateral scattered light
  • the waveform data 70c for training is waveform data of lateral fluorescence.
  • the acquisition of the training waveform data 70a, 70b, 70c is performed, for example, by the operation of the operator, from the measurement units 400, 500, from the recording medium, or via the interface unit 490 via the communication network.
  • information on which cell type the training waveform data 70a, 70b, 70c indicates is also acquired.
  • the information indicating which cell type is indicated is associated with the training waveform data 70a, 70b, 70c, and may be input by the operator.
  • step S211 the processing unit 10 generates training data 75 from the waveform data 72a, 72b, 72c and the label value 77.
  • step S212 the processing unit 10 trains the neural network 50 using the training data 75.
  • the training result of the neural network 50 is accumulated every time training is performed using a plurality of training data 75.
  • step S213 the processing unit 10 is trained for a predetermined number of trials. Determine if the results are accumulated.
  • the processing unit 10 proceeds to the process of step S214, and when the training result is not accumulated for a predetermined number of trials (NO), the processing unit 10 steps. Proceed to the process of S215.
  • step S214 the processing unit 10 updates the connection weight w of the neural network 50 by using the training results accumulated in step S212. ..
  • the connection weight w of the neural network 50 is updated at the stage where the learning results for a predetermined number of trials are accumulated.
  • the process of updating the bond weight w is specifically a process of performing a calculation by the gradient descent method shown in (Equation 12) and (Equation 13) described later.
  • step S215 the processing unit 10 determines whether or not the neural network 50 has been trained with the specified number of training data 75. When the training is performed with the specified number of training data 75 (YES), the deep learning process is terminated.
  • the processing unit 10 proceeds from step S215 to step S216, and processes the next training waveform data from step S211 to step S215. I do.
  • the neural network 50 is trained to obtain the deep learning algorithm 60.
  • FIG. 32 (a) illustrates the structure of the neural network 50.
  • the neural network 50 includes an input layer 50a, an output layer 50b, and an intermediate layer 50c between the input layer 50a and the output layer 50b, and the intermediate layer 50c is composed of a plurality of layers.
  • the number of layers constituting the intermediate layer 50c can be, for example, 5 layers or more, preferably 50 layers or more, and more preferably 100 layers or more.
  • a plurality of nodes 89 arranged in a layer are connected between layers.
  • the information propagates from the input side layer 50a to the output side layer 50b in only one direction indicated by the arrow D in the figure.
  • FIG. 32 (b) is a schematic diagram showing operations at each node.
  • Each node 89 receives a plurality of inputs and calculates one output (z).
  • node 89 receives four inputs.
  • the total input (u) received by the node 89 is represented by the following (Equation 2) as an example.
  • one-dimensional row number column data is used as the training data 75 and the analysis data 85. Therefore, when the variable of the arithmetic expression corresponds to the two-dimensional matrix data, the variable is a one-dimensional matrix. Performs conversion processing to correspond to the data. Each input is weighted differently.
  • FIG. 32 (c) is a schematic diagram showing operations between nodes.
  • the nodes that output the result (z) represented by (Equation 3) are arranged in layers for the total input (u) of each node 89 represented by (Equation 2). ..
  • the output of the node of the previous layer becomes the input of the node of the next layer.
  • the output of the node 89a in the layer on the left side in the figure is the input of the node 89b in the layer on the right side in the figure.
  • Each node 89b receives an output from the node 89a, respectively.
  • Each connection between each node 89a and each node 89b is weighted differently.
  • the outputs of the plurality of nodes 89a are x1 to x4
  • the inputs to each of the three nodes 89b are represented by the following (Equation 4-1) to (Equation 4-3).
  • the generalization of these (Equation 4-1) to (Equation 4-3) is (Equation 4-4).
  • i 1, ... I
  • j 1, ...
  • the function expressed using the neural network is y (x: w)
  • the function y (x: w) changes when the parameter w of the neural network is changed. Adjusting the function y (x: w) so that the neural network selects a more suitable parameter w with respect to the input x is called neural network learning.
  • a plurality of sets of inputs and outputs of a function expressed using a neural network are given. Assuming that the desired output for a given input x is d, the set of inputs and outputs is given ⁇ (x1, d1), (x2, d2), ..., (Xn, dn) ⁇ .
  • the set of each set represented by (x, d) is called training data.
  • the set of waveform data forward scattered light waveform data, side scattered light waveform data, fluorescence waveform data
  • FIG. 3 is the training data shown in FIG.
  • Neural network learning means that the output y (xn: w) of the neural network when the input xn is given is as close as possible to the output dn for any set of input / output (xn, dn). It means adjusting the weight w.
  • the error function is the closeness of the training data to the function expressed using the neural network. It is a scale to measure. The error function is also called the loss function.
  • the error function E (w) used in the cell type analysis method according to the embodiment is represented by the following (Equation 7). (Equation 7) is called cross entropy. The method of calculating the cross entropy of (Equation 7) will be described.
  • an activation function for classifying the input x into a finite number of classes according to the content is used.
  • the output yK (that is, uk (L) ) of the node k of the output layer L represents the probability that the given input x belongs to the class CK.
  • the input x is classified into the class having the maximum probability expressed by (Equation 9).
  • the function represented by the neural network is regarded as a model of the posterior probability of each class, and the likelihood of the weight w with respect to the training data is calculated under such a probability model. Evaluate and select a weight w that maximizes the likelihood.
  • the target output dn by the softmax function of (Equation 8) is set to 1 only when the output is a correct class, and is set to 0 when the output is not.
  • the posterior distribution is expressed by the following (Equation 10).
  • the error function of (Equation 7) is derived.
  • Learning means minimizing the error function E (w) calculated based on the training data with respect to the neural network parameter w.
  • the error function E (w) is represented by (Equation 7).
  • Minimizing the error function E (w) with respect to the parameter w has the same meaning as finding the local minimum point of the function E (w).
  • the parameter w is the weight of the connection between the nodes.
  • the minimum point of the weight w is obtained by an iterative calculation in which the parameter w is repeatedly updated starting from an arbitrary initial value.
  • An example of such a calculation is the gradient descent method.
  • Equation 12 the vector represented by the following (Equation 12) is used.
  • the process of moving the value of the current parameter w in the negative gradient direction that is, ⁇ E
  • the operation by the gradient descent method is expressed by the following (Equation 13).
  • the value t means the number of times the parameter w is moved.
  • symbol I is a constant that determines the magnitude of the update amount of the parameter w, and is called a learning coefficient.
  • the gradient descent method performed only for some training data is called the stochastic gradient descent method.
  • a stochastic gradient descent method is used.
  • waveform data of cells in blood collected from 8 healthy subjects were pooled as digital data.
  • Neutrophils NEUT
  • lymphocytes LYMPH
  • monocytes MONO
  • EO eosinophils
  • BASO basophils
  • IG immature granulocytes
  • Classification was performed manually, and each waveform data was annotated (labeled) by cell type.
  • the time when the signal intensity of the forward scattered light exceeded the threshold was set as the measurement start time, and the acquisition time of the waveform data of the forward scattered light, the side scattered light, and the side fluorescence was synchronized to generate the training data.
  • the control blood was also annotated with control blood-derived cells (CONT). Training data was input to the deep learning algorithm and trained.
  • waveform data for analysis was acquired by Sysmex XN-1000 in the same manner as the training data. Waveform data derived from control blood was mixed to create analytical data. This analytical data could not be distinguished at all by the conventional method because blood cells derived from healthy subjects and blood cells derived from control blood overlapped on the scattergram. This analysis data was input to the constructed deep learning algorithm, and data for each cell type was acquired.
  • the result is shown in FIG. 33 as a mixed matrix.
  • the horizontal axis shows the judgment result by the deep learning algorithm constructed, and the vertical axis shows the judgment result by human (reference method).
  • the judgment result by the constructed deep learning algorithm showed a concordance rate of 98.8% with the judgment result by the reference method, although there was some confusion between basophils and lymphocytes and between basophils and ghosts. ..
  • FIG. 34 (a) is a neutrophil
  • FIG. 34 (b) is a lymphocyte
  • FIG. 34 (c) is a monocyte
  • FIG. 35 (a) is a neutrophil
  • FIG. 35 (b) is favorable.
  • the base sphere, FIG. 35 (c) shows the ROC curve of control blood (CONT).
  • Sensitivity and specificity were 99.5% and 99.6% for neutrophils, 99.4% and 99.5% for lymphocytes, and 98.5% and 99.9% for monocytes, respectively.
  • Acid spheres were 97.9% and 99.8%
  • basophils were 71.0% and 81.4%, respectively
  • control blood (CONT) was 99.8% and 99.6%, all of which were good. Showed good results.
  • the cell measuring device 4000'' which is an image analyzer, estimates the cell type of the captured cell by analyzing the captured image data.
  • the cell measuring device 4000'' is connected to the cell analyzer 1 in the same manner as in the system configuration examples exemplified in FIGS. 6 to 9.
  • the cell measuring device 4000'' is connected to the cell analyzer 1 via, for example, the intranet 3.
  • the cell measuring device 4000'' is connected to the cell analyzer 1 via, for example, the interface unit 4.
  • the cell measuring device 4000'' installed in each of the test-related facilities 2 may be connected to the cell analyzer 1 via the Internet 6, respectively.
  • FIG. 36 shows a configuration example of the cell measuring device 4000''.
  • the cell measuring device 4000'' shown in FIG. 36 includes a measuring unit 700 and a processing unit 800, and measures and analyzes a sample 901 prepared by pretreatment by the pretreatment device 900.
  • the measuring unit 700 includes a flow cell 710, a light source 720 to 723, a condenser lens 730 to 733, a dichroic mirror 740 to 741, a condenser lens 750, an optical unit 751, a condenser lens 752, and an image pickup unit 760. And have.
  • the sample 701 is flowed through the flow path 711 of the flow cell 710.
  • the light sources 720 to 723 irradiate the sample 701 flowing through the flow cell 710 with light.
  • the light sources 720 to 723 are composed of, for example, a semiconductor laser light source. Light having wavelengths ⁇ 11 to ⁇ 14 is emitted from the light sources 720 to 723, respectively.
  • the condenser lenses 730 to 733 concentrate the light having wavelengths ⁇ 11 to ⁇ 14 emitted from the light sources 720 to 723, respectively.
  • the dichroic mirror 740 transmits light of wavelength ⁇ 11 and refracts light of wavelength ⁇ 12.
  • the dichroic mirror 741 transmits light having wavelengths ⁇ 11 and ⁇ 12 and refracts light having wavelength ⁇ 13.
  • the number of semiconductor laser light sources included in the measurement unit 700 is not limited as long as it is 1 or more.
  • the number of semiconductor laser light sources can be selected from, for example, 1, 2, 3, 4, 5 or 6.
  • the condenser lens 750 collects the fluorescence generated from the sample 701 flowing through the flow path 711 of the flow cell 710 and the transmitted light transmitted through the sample 701 flowing through the flow path 711 of the flow cell 710.
  • the optical unit 751 has, for example, a configuration in which four dichroic mirrors are combined. The four dichroic mirrors of the optical unit 751 reflect fluorescence and transmitted light at slightly different angles and separate them on the light receiving surface of the image pickup unit 760.
  • the condenser lens 752 collects fluorescence and transmitted light.
  • the image pickup unit 760 is composed of a TDI (Time Delay Integration) camera.
  • the imaging unit 760 can image fluorescence and transmitted light, and output a fluorescent image corresponding to fluorescence and a bright field image corresponding to transmitted light to the processing unit 800 as an imaging signal.
  • TDI Time Delay Integration
  • the processing unit 800 includes a processing unit 811, a storage unit 812, an interface unit 816, an interface unit 817, and a bus 815 as hardware configurations.
  • the processing unit 811, the storage unit 812, the interface unit 816, and the interface unit 817 are connected to the bus 815.
  • Image data (for example, a fluorescent image or a bright field image) composed of an image pickup signal captured by the image pickup unit 760 of the measurement unit 700 is stored in the storage unit 812 via the interface unit 816.
  • the processing unit 811 reads the image data from the storage unit 812 and transmits the image data to the cell analyzer 1 via the interface unit 817.
  • the interface unit 817 is, for example, a USB interface, an interface for connecting to the intranet 3 or the Internet 6.
  • the processing unit 811 executes the processing of the analysis result sent from the cell analyzer 1.
  • the cell analyzer 1 can acquire image data from a plurality of cell measuring devices 4000'' in the same test-related facility 2. In addition, the cell analyzer 1 can acquire image data from a plurality of cell measuring devices 4000'' arranged in each of the different test-related facilities 2. Image data is acquired for each individual cell in the biological sample examined at each of the examination-related facilities 2. Therefore, if the image data is not properly managed, data may be mixed up between patients, biological samples, and inspection-related facilities 2. Therefore, the processing unit 200 associates the image data with the identification information and transmits the image data to the cell analyzer 1.
  • the identification information includes, for example, (1) identification information of a biological sample corresponding to an imaging signal, (2) identification information of cells corresponding to an imaging signal, (3) identification information of a patient corresponding to an imaging signal, and (4) imaging. Examples include the identification information of the inspection corresponding to the signal, (5) the identification information of the device that acquired the imaging signal, and (6) the identification information of the inspection-related facility 2 from which the imaging signal was acquired.
  • the cell measuring device 4000'' for example, when receiving a test order from the LIS or the processing unit 200, obtains at least one of the above identification information (1) to (6) or a combination thereof from the LIS or the processing unit 200. You can get it.
  • At least one of the illustrated (1) to (6) is transmitted to the cell analyzer 1 in association with the image data.
  • the plurality of combinations of (1) to (6) exemplified may be associated with the image data and transmitted to the cell analyzer 1.
  • An embodiment using an imaging device as a cell measuring device will be described.
  • the cell measuring device 4000'''' which is an imaging device, estimates the cell type of the captured cell by analyzing the captured image data.
  • the cell measuring device 4000'' is connected to the cell analyzer 1 by the system configuration examples exemplified in FIGS. 6 to 9.
  • the cell measuring device 4000'''' is connected to the cell analyzer 1 via, for example, the intranet 3.
  • the cell measuring device 4000'''' is connected to the cell analyzer 1 via, for example, the interface unit 4.
  • the cell measuring device 4000'' installed in each of the test-related facilities 2 may be connected to the cell analyzer 1 via the Internet 6, respectively.
  • FIG. 37 shows a configuration example of the cell measuring device 4000'''.
  • the cell measuring device 4000'' shown in FIG. 37 includes an image pickup device 301 and a fluorescence microscope 302, and captures a bright field image of a training sample 308 set on the stage 309.
  • the training specimen 308 is stained.
  • the cell analyzer 1 acquires a training image 70 captured by the cell measuring device 4000''.
  • the cell analyzer 1 learns the deep learning algorithm based on the acquired training image 70.
  • the cell analyzer 1 acquires an analysis target image 78 captured by the cell measuring device 4000''.
  • the cell analyzer 1 analyzes the acquired image 78 to be analyzed based on the deep learning algorithm.
  • a known optical microscope, virtual slide scanner, or the like having a function of imaging a sample can be used for the cell measuring device 4000''.
  • the cell analyzer 1 can acquire the analysis target image 78 from a plurality of cell measuring devices 4000'''in the same inspection-related facility 2. In addition, the cell analyzer 1 can acquire the analysis target image 78 from a plurality of cell measuring devices 4000''' located in each of the different test-related facilities 2. The analysis target image 78 is acquired for each individual cell in the biological sample examined at each of the examination-related facilities 2. Therefore, if the analysis target image 78 is not properly managed, data may be mixed up between patients, biological samples, and inspection-related facilities 2, for example. Therefore, the cell measuring device 4000'''' associates the analysis target image 78 with the identification information and transmits the analysis target image 78 to the cell analyzer 1.
  • the identification information includes, for example, (1) identification information of a biological sample corresponding to an imaging signal, (2) identification information of cells corresponding to an imaging signal, (3) identification information of a patient corresponding to an imaging signal, and (4) imaging. Examples include the identification information of the inspection corresponding to the signal, (5) the identification information of the device that acquired the imaging signal, and (6) the identification information of the facility from which the imaging signal was acquired.
  • the cell measuring device 4000'''' may receive at least one of the above identification information (1) to (6) or a combination thereof, for example, from the LIS or the user input when receiving the test order input from the LIS or the user. Can be obtained.
  • at least one of (1) to (6) exemplified is transmitted to the cell analyzer 1 in association with the imaging signal.
  • the plurality of combinations of (1) to (6) exemplified may be transmitted to the cell analyzer 1 in association with the imaging signal.
  • the training image used for training the deep learning algorithm is preferably captured in RGB color, CMY color, or the like.
  • the shade or brightness of each primary color such as red, green and blue or cyan, magenta, and yellow is represented by a 24-bit value (8 bits x 3 colors).
  • the training image may include at least one hue and a shade or brightness of that hue, but more preferably include at least two hues and a shade or brightness of the hue, respectively.
  • Information including a hue and the shade or brightness of the hue is also referred to as a color tone.
  • the color tone information of each pixel in the training image is converted from, for example, RGB color to a format including luminance information and hue information.
  • a format including luminance information and hue information YUV (YCbCr, YPbPr, YIQ, etc.) and the like can be mentioned.
  • conversion to the YCbCr format will be described as an example.
  • the training image captured in RGB color is converted into image data based on brightness, image data based on the first hue (for example, blue system), and image data based on the second hue (for example, red system), respectively. ..
  • the conversion from RGB to YCbCr can be performed by a known method. For example, from RGB to YCbCr, the international standard ITU-R BT.
  • the image data based on the brightness, the image data based on the first hue, and the image data based on the second hue can be represented as gradation value matrix data as shown in FIG. 38 (hereinafter, color tone matrix data 72y, Also referred to as 72kb and 72cr).
  • the image data based on the luminance, the image data based on the first hue, and the image data based on the second hue are represented by, for example, 256 gradations from 0 to 255 gradations, respectively.
  • the training image is converted with the three primary colors of red R, green G, and blue B, and the three primary colors of cyan C, magenta M, and yellow Y. You may.
  • the color tone vector data 74 is generated by combining the three gradation values of the luminance 72y, the first hue 72cc, and the second hue 72cr for each pixel. ..
  • each color tone vector data 74 generated from the training image has a label value indicating that the lobation nucleus neutrophil is a lobation nucleus neutrophil. "1" is given as 77, and the training data becomes 75.
  • the training data 75 is represented by 3 pixels ⁇ 3 pixels for convenience, but in reality, the color tone vector data exists for the number of pixels when the training image is captured.
  • FIG. 39 shows an example of the label value 77.
  • a different label value 77 is given depending on the cell type and the presence or absence of the characteristics of each cell.
  • the neural network 50 is preferably a convolutional neural network.
  • the number of nodes of the input layer 50a in the neural network 50 is the number of pixels of the input training data 75 and the number of brightness and hue contained in the image (for example, in the above example, the brightness 72y, the first hue 72cc, and the second hue). It corresponds to the product with 3) of hue 72cr.
  • the color tone vector data 74 is input to the input layer 50a of the neural network 50 as a set 72 thereof.
  • the neural network 50 is trained by using the label value 77 of each pixel of the training data 75 as the output layer 50b of the neural network.
  • the neural network 50 extracts feature quantities for morphological cell types and cell characteristics based on the training data 75.
  • the output layer 50b of the neural network outputs a result reflecting these features.
  • Reference numeral 50c in FIG. 38 indicates an intermediate layer.
  • the deep learning algorithm 60 having the neural network 60 thus trained is to identify which of the plurality of cell types belonging to a predetermined cell group and morphologically classified corresponds to the cell to be analyzed. Used as a classifier.
  • FIG. 40 shows an example of an image analysis method.
  • analysis data 81 is generated from an analysis image obtained by imaging a cell to be analyzed.
  • the analysis image is an image of the cells to be analyzed.
  • the image pickup in the image pickup apparatus is performed in RGB color, CMY color, or the like.
  • the shade or brightness of each primary color such as red, green and blue or cyan, magenta, and yellow is represented by a 24-bit value (8 bits x 3 colors).
  • the image for analysis may include at least one hue and a shade or brightness of the hue, but more preferably contains at least two hues and a shade or brightness of the hue, respectively.
  • Information including a hue and the shade or brightness of the hue is also referred to as a color tone.
  • RGB color training image is converted into image data based on brightness, image data based on a first hue (for example, blue system), and image data based on a second hue (for example, red system).
  • the conversion from RGB to YCbCr can be performed by a known method. For example, from RGB to YCbCr, the international standard ITU-R BT. It can be converted according to 601.
  • the image data corresponding to each of the brightness, the first hue, and the second hue can be represented as matrix data of gradation values as shown in FIG. 40 (hereinafter, also referred to as color tone matrix data 79y, 79cc, 79cr). say).
  • Luminance, first hue and second hue 72Cr are represented by 256 gradations from 0 to 255, respectively.
  • the training image is converted with the three primary colors of red R, green G, and blue B, and the three primary colors of cyan C, magenta M, and yellow Y. You may.
  • the color tone vector data 80 is generated by combining the three gradation values of the luminance 79y, the first hue 79cc, and the second hue 79cr for each pixel.
  • a set of color tone vector data 80 generated from one analysis image is generated as analysis data 81.
  • the imaging conditions and the generation conditions of the vector data input from each image to the neural network are the same.
  • the analysis data 81 is input to the input layer 60a of the neural network 60 constituting the trained deep learning algorithm 60.
  • the deep learning algorithm extracts a feature amount from the analysis data 81 and outputs the result from the output layer 60b of the neural network 60.
  • the value output from the output layer 60b is the probability that the cells to be analyzed included in the analysis image belong to each of the morphological cell classifications and characteristics input as training data.
  • the value is output.
  • the label value itself or data in which the label value is replaced with information indicating the presence or absence of morphological cell type or cell characteristics (for example, terms, etc.) is output as the analysis result 83 regarding the cell morphology.
  • the label value “1” is output from the analysis data 81 as the most likely label value 82 by the discriminator, and the character data “lobation nucleus neutrophil” corresponding to this label value is the cell data. It is output as the analysis result 83 regarding the morphology.
  • Reference numeral 60c in FIG. 40 indicates an intermediate layer.
  • each functional block of the training data generation unit 101, the training data input unit 102, the algorithm update unit 103, the analysis data generation unit 201, the analysis data input unit 202, and the analysis unit 203 is a single processor 11. And is executed in a single parallel processing processor 12, but each of these functional blocks does not necessarily have to be executed in a single processor and a parallel processing processor, and is distributed among a plurality of processors and a plurality of parallel processing processors. It may be executed.
  • a program for performing the processing of each step described with reference to FIG. 31 is recorded in advance in the storage unit 13.
  • the program may be installed in the storage unit 13 from a computer-readable and non-temporary tangible recording medium 98, such as a DVD-ROM or USB memory.
  • the cell analyzer 1 may be connected to the communication network 99, and a program may be downloaded and installed from, for example, an external server (not shown) via the communication network 99.
  • FIG. 41 shows an embodiment of the analysis result.
  • FIG. 41 shows the cell types with the label values shown in FIG. 4 and the cell numbers of each cell number type contained in the biological sample measured by flow cytometry. Instead of displaying the number of cells, or together with the display of the number of cells, the ratio (for example,%) of each cell type to the total number of counted cells may be output.
  • the cell number count can be obtained by coefficienting the number of label values (the number of the same label values) corresponding to each output cell type.
  • a warning indicating that the biological sample contains abnormal cells may be output in the output result.
  • FIG. 41 shows an example in which an exclamation mark is attached to the section of abnormal cells as a warning, but the present invention is not limited to this.
  • the distribution of each cell tumor may be scattergrammed and output.
  • the highest value when the signal intensity is acquired can be plotted with, for example, the lateral fluorescence intensity on the vertical axis and the lateral scattered light intensity on the horizontal axis.

Abstract

細胞測定装置によって測定した細胞のデータを分析する構成において、細胞測定装置に高い情報処理能力を要求することなく、細胞分類の精度を高める。細胞分析方法は、人工知能アルゴリズムによって細胞を分析する細胞分析装置において、細胞測定装置によって測定された細胞に関するデータを取得し、前記データを分析して、前記細胞の各々について細胞種別に関する情報を生成し、前記情報を前記細胞測定装置に送信する、ことを含む。

Description

細胞分析方法及び細胞分析装置
 本発明は、細胞分析方法及び細胞分析装置に関する。
 特許文献1には、血球細胞をフローサイトメータによって測定して得られたデータを、プロセッサを搭載したデータ処理システムにおいて解析し、細胞を種別に応じて分類する方法が記載されている。
特表2012-519848号公報
 特許文献1の装置では、データ処理システムに設定されたアルゴリズムで細胞を分類している。既存のアルゴリズムでは細胞から得られる限られたパラメータに基づいて細胞を分類するため、システムに高い情報処理能力は求められないものの、分類精度には限界がある。
 本発明の一態様は、高い情報処理能力を要求することなく、細胞分類の精度を高めることが可能な細胞分析方法及び細胞分析装置に関する。
 上記の課題を解決するために、本発明の一態様に係る細胞分析方法は、人工知能アルゴリズム(50、60)によって細胞を分析する細胞分析装置(1)において、細胞測定装置(4000、4000’、4000''、4000''')によって測定された細胞に関するデータを取得し、前記データを分析して、細胞の各々について細胞種別に関する情報を生成し、前記情報を細胞測定装置(4000、4000’、4000''、4000''')に送信する、ことを含む。
 上記の課題を解決するために、本発明の一態様に係る細胞分析装置(1)は、人工知能アルゴリズム(50、60)によって細胞を分析する細胞分析装置(1)であって、細胞分析装置(1)は、処理部(10)を備え、処理部(10)は、細胞測定装置(4000、4000’、4000''、4000''')によって測定された細胞に関するデータを取得し、前記データを分析して、細胞の各々について細胞種別に関する情報を生成し、前記情報を細胞測定装置(4000、4000’、4000''、4000''')に送信する。
 上記の課題を解決するために、本発明の別の態様に係る細胞分析方法は、細胞測定装置(4000、4000’、4000''、4000''')によって細胞を測定して細胞のデータを取得し、前記データを、人工知能アルゴリズム(50、60)によって細胞を分析する細胞分析装置(1)に送信し、細胞分析装置(1)が人工知能アルゴリズム(50、60)にしたがって前記データを分析して得られた、細胞の細胞種別に関する情報を取得する、ことを含む。
 上記の課題を解決するために、本発明の別の態様に係る細胞分析方法は、検体に含まれる細胞を細胞分析装置(1)により分析する分析方法であって、複数の細胞測定装置(4000、4000’、4000''、4000''')から、細胞に関するデータを識別情報と対応付けて取得し、前記データを並列処理プロセッサ(12)による並列処理によって分析し、並列処理の結果に基づき、複数の細胞の各々について細胞種別に関する情報を、前記識別情報と対応付けて生成する、ことを含む。
 本発明によれば、細胞測定装置の処理能力を低下させることなく、細胞分類の精度を高めることが可能となる。
図1(a)は、従来法の白血球分類の例を示す。図1(b)は、本法の白血球分類の例を示す。 図2(a)は、フローセルを流れる細胞に光を照射する例を示す。図2(b)は、前方散乱光信号、側方散乱光信号、蛍光信号のサンプリングを行う例を示す。図2(c)は、サンプリングによって得られる波形データの例を示す。 図3は、訓練データの生成方法の例を示す。 図4は、ラベル値の例を示す。 図5は、分析データの分析方法の例を示す。 図6は、細胞分析装置を含むシステムの構成例を示す。 図7は、細胞分析装置を含むシステムの他の構成例を示す。 図8は、細胞分析装置を含むシステムの他の構成例を示す。 図9は、細胞分析装置を含むシステムの他の構成例を示す。 図10は、測定ユニットのブロック図の例を示す。 図11は、検体吸引部と試料調製部の例を示す。 図12は、FCM検出部の光学系の構成例を示す。 図13は、処理ユニットの構成例を示す。 図14は、細胞分析装置のブロック図を示す。 図15は、並列処理プロセッサの構成例を示す。 図16は、細胞分析装置への並列処理プロセッサの実装例を示す。 図17は、細胞分析装置への並列処理プロセッサの他の実装例を示す。 図18は、細胞分析装置への並列処理プロセッサの他の実装例を示す。 図19は、細胞分析装置への並列処理プロセッサの他の実装例を示すブロック図を示す。 図20は、プロセッサが並列処理プロセッサを用いて行列データの演算処理を実行する動作の概要を示す。 図21(a)は、行列の積の計算式を示す。図21(b)は、並列処理プロセッサで並列に実行される演算処理の例を示す。 図22は、演算処理を、並列処理プロセッサにて実行する様子を示す。 図23(a)は、深層学習アルゴリズムに入力される波形データとして、前方散乱光の波形データの例を示す。図23(b)は、波形データとフィルタとの行列演算の概要を示す。 図24は、細胞分析装置による検体の分析動作の例を示す。 図25は、細胞分析処理の例を示す。 図26は、並列処理の例を示す。 図27は、測定ユニットのブロック図の例を示す。 図28は、フローサイトメータの光学系の概略の例を示す。 図29は、測定ユニットの試料調製部の概略の例を示す。 図30は、深層学習を行う細胞分析装置の機能ブロックの例を示す。 図31は、訓練データを生成するため処理部の動作のフローチャート例を示す。 図32は、ニューラルネットワークを説明するための模式図を示す。図32(a)は、ニューラルネットワークの概要を示す模式図を示す。図32(b)は、各ノードにおける演算を示す模式図を示す。図32(c)は、ノード間の演算を示す模式図を示す。 図33は、参照法による判定結果と深層学習アルゴリズムを用いた判定結果との混合マトリックスを示す。 図34(a)は、好中球のROC曲線を示す。図34(b)は、リンパ球のROC曲線を示す。図34(c)は、単球のROC曲線を示す。 図35(a)は、好酸球のROC曲線を示す。図35(b)は、好塩基球のROC曲線を示す。図35(c)は、コントロール血液(CONT)のROC曲線のROC曲線を示す。 図36は、画像分析装置としての細胞測定装置の構成例を示す。 図37は、撮像装置としての細胞測定装置の構成例を示す。 図38は、訓練データの生成方法の例を示す。 図39は、ラベル値の例を示す。 図40は、画像の分析方法の例を示す。 図41は、分析結果の一実施形態を示す。
 以下、本発明の概要及び実施の形態を、添付の図面を参照して詳細に説明する。なお、以下の説明及び図面において、同じ符号は同じ又は類似の構成要素を示すこととし、よって、同じ又は類似の構成要素に関する説明を省略する。
 [1.細胞の分析方法]
 本実施形態は、人工知能アルゴリズムによって細胞を分析する細胞分析装置において、細胞測定装置によって測定された細胞に関するデータを取得し、前記データを分析して、前記細胞の各々について細胞種別に関する情報を生成し、前記情報を前記細胞測定装置に送信する、ことを含む分析方法に関する。
 本分析方法によれば、細胞測定装置にて測定されたデータの分析は、細胞測定装置ではなく、細胞分析装置にて行われる。細胞分析装置は細胞に関するデータを人工知能アルゴリズムによって分析して細胞種別に関する情報を生成し、生成された情報は細胞測定装置に返される。したがって、本分析方法によれば、細胞測定装置は人工知能アルゴリズムによる高精度な細胞分類を行うために高い情報処理能力をもつプロセッサを備える必要がない。よって、例えば、高価格・高処理能力の分析装置から、低価格・低処理能力の分析装置まで幅広いレンジの分析装置に適用することができる。また、細胞分析装置が複数の細胞測定装置に接続される場合、それぞれの細胞測定装置において人工知能アルゴリズムを更新・運用する場合に比べて、更新・運用に係る手間及びコストを低減することができる。例えば、人工知能アルゴリズムの更新は細胞分析装置で行えば済むため、更新に係る手間及びコストを低減することができる。
 図1を用いて、本実施形態の概要の例を説明する。図1(a)は従来法の白血球分類を模式的に表す図であり、図1(b)は本法の白血球分類を模式的に示す図である。図1(a)、図1(b)において、FSCは前方散乱光の信号強度を示すアナログ信号を示し、SSCは側方散乱光のアナログ信号を示し、SFLは側方蛍光の信号強度を示すアナログ信号を示す。図1(a)に図示されるように、従来法では、検体に含まれる個々の細胞をフローサイトメータで測定し、前方散乱光、側方散乱光、側方蛍光のそれぞれのアナログ信号のパルスのピーク高さを前方散乱光強度、側方散乱光強度、側方蛍光強度として取得する。次に、細胞を前方散乱光強度、側方散乱光強度、側方蛍光強度に基づき、特定の種別に分類する。細胞を分類した結果は図1(a)に示すようなスキャッタグラムとして表示される。図1(a)のスキャッタグラムにおいて、横軸は側方散乱光、縦軸は側方蛍光の強度を示す。
 従来の白血球分類は、図1(a)に示されるように、アナログ波形のピーク高さの情報のみに基づいて血球の種別を判定していた。これに対して、本実施形態の方法では、検体中の細胞に関するデータとして、図1(b)に示されるように、1つの細胞からフローサイトメータによって取得されるアナログ信号の波形全体を解析対象のデータとして分析することで細胞を分類する。図1(b)にはフローサイトメータによって得られるアナログ信号を描画した波形を示しているが、後述するように、本実施形態において検体中の細胞に関するデータは、このアナログ信号をA/D変換することによって得られる複数時点の信号強度を示す値を要素とするデジタルデータ(後述する波形データ)を意図している。このデジタルデータ群は行列データであり、本実施形態では、例えば、一行複数列の行列データ(すなわち、一次元の配列データ)である。
 本実施形態では、図1(b)に示される訓練前の深層学習アルゴリズム50に、細胞種別毎の波形データを学習させる。そして、検体に含まれる細胞種別が未知の細胞の波形データを訓練済みの深層学習アルゴリズム60に入力することで、深層学習アルゴリズム60から、細胞の各々について細胞種別の判定結果を導く。深層学習アルゴリズム50、60は、人工知能アルゴリズムの一つであり、多層の中間層を含むニューラルネットワークで構成される。本実施形態では、訓練済みの深層学習アルゴリズム60に従って波形データの分析に関する処理を実行するにあたり、深層学習アルゴリズム60に多量に含まれる行列演算を、細胞分析装置に搭載された並列処理プロセッサを用いて、並列処理で実行する。細胞分析装置は、並列処理を実行可能な並列処理プロセッサと、並列処理プロセッサに並列処理を実行させる実行命令プロセッサ(以下、単にプロセッサという)とを備える。
 以下、細胞種別を判定する目的で分析に供される生体試料中の個々の細胞を「分析対象の細胞」ともいう。言い換えると、生体試料は、複数個の分析対象の細胞を含みうる。複数個の細胞は、分析対象となる複数種別の細胞を含みうる。
 生体試料として、被検者から採取された生体試料を挙げることができる。例えば、生体試料は、例えば、静脈血、動脈血等の末梢血、尿、血液及び尿以外の体液を含み得る。血液及び尿以外の体液として、骨髄液、腹水、胸水、脳脊髄液等を含みうる。以下、血液及び尿以外の体液を単に「体液」という場合がある。血液試料は、細胞数の計数及び細胞種別の判定ができる状態である限り、制限されない。血液は、好ましくは末梢血である。例えば、血液は、エチレンジアミン四酢酸塩ナトリウム塩又はカリウム塩)、ヘパリンナトリウム等の抗凝固剤を使用して採血された末梢血を挙げることができる。末梢血は、動脈から採取されても静脈から採取されてもよい。
 本実施形態において判定しようとする細胞種別は、形態学的な分類に基づく細胞種別を基準とするものであり、生体試料の種類に応じて異なる。生体試料が血液である場合であって、血液が健常者から採血されたものである場合、本実施形態において判定しようとする細胞種別には、例えば、赤血球、白血球等の有核細胞、血小板等が含まれる。有核細胞には、例えば、好中球、リンパ球、単球、好酸球、好塩基球が含まれる。好中球には、例えば、分葉核好中球及び桿状核好中球が含まれる。一方、血液が非健常者から採血されたものである場合、有核細胞には、例えば、幼若顆粒球及び異常細胞からなる群から選択される少なくとも一種が含まれる場合がある。このような細胞も本実施形態において判定しようとする細胞種別に含まれる。幼若顆粒球には、例えば、後骨髄球、骨髄球、前骨髄球、骨髄芽球等の細胞が含まれ得る。
 また、有核細胞には、正常細胞の他、健常人の末梢血には含まれない異常細胞が含まれていてもよい。異常細胞の例は、所定の疾患に罹患した際に出現する細胞であり、例えば腫瘍細胞である。造血系の場合、所定の疾患は、例えば、骨髄異型性症候群、急性骨髄芽球性白血病、急性骨髄芽球性白血病、急性前骨髄球性白血病、急性骨髄単球性白血病、急性単球性白血病、赤白血病、急性巨核芽球性白血病、急性骨髄性白血病、急性リンパ球性白血病、リンパ芽球性白血病、慢性骨髄性白血病、又は慢性リンパ球性白血病等の白血病、ホジキンリンパ腫、非ホジキンリンパ腫等の悪性リンパ腫、及び多発性骨髄腫よりなる群から選択される疾患であり得る。
 さらに、異常細胞には、例えば、リンパ芽球、形質細胞、異型リンパ球、反応性リンパ球、前赤芽球、好塩基性赤芽球、多染性赤芽球、正染性赤芽球、前巨赤芽球、好塩基性巨赤芽球、多染性巨赤芽球、及び正染性巨赤芽球等の有核赤血球である赤芽球、及びミクロメガカリオサイトを含む巨核球等の健常人の末梢血では通常認められない細胞が含まれ得る。
 また、生体試料が尿である場合、本実施形態において判定しようとする細胞種別には、例えば、赤血球、白血球、移行上皮、扁平上皮等の上皮細胞等が含まれ得る。異常細胞としては、例えば、細菌、糸状菌、酵母等の真菌、腫瘍細胞等が含まれ得る。
 生体試料が腹水、胸水、髄液等の通常血液成分を含まない体液である場合、細胞種別には、例えば、赤血球、白血球、大型細胞を含みうる。ここでいう「大型細胞」とは、体腔内膜又は内臓の腹膜から剥がれた細胞で白血球より大きいものを指し、例えば、中皮細胞、組織球、腫瘍細胞等が該当する。
 生体試料が骨髄液である場合、本実施形態において判定しようとする細胞種別には、正常な細胞として、成熟した血球細胞と幼若な血球系細胞を含みうる。成熟した血球細胞には、例えば、赤血球、白血球等の有核細胞、血小板等が含まれる。白血球等の有核細胞には、例えば、好中球、リンパ球、形質細胞、単球、好酸球、好塩基球が含まれる。好中球には、例えば、分葉核好中球及び桿状核好中球が含まれる。幼若な血球系細胞には、例えば、造血系幹細胞、幼若顆粒球系細胞、幼若リンパ球系細胞、幼若単球系細胞、幼若赤血球系細胞、巨核球系細胞、間葉系細胞等が含まれる。幼若顆粒球には、例えば、後骨髄球、骨髄球、前骨髄球、骨髄芽球等の細胞が含まれ得る。幼若リンパ球系細胞には、例えば、リンパ芽球等が含まれる。幼若単球系細胞には、単芽球等が含まれる。幼若赤血球系細胞には、例えば、前赤芽球、好塩基性赤芽球、多染性赤芽球、正染性赤芽球、前巨赤芽球、好塩基性巨赤芽球、多染性巨赤芽球、及び正染性巨赤芽球等の有核赤血球が含まれる。巨核球系細胞には、例えば、巨核芽球等が含まれる。
 骨髄に含まれ得る異常細胞としては、例えば、上述した骨髄異型性症候群、急性骨髄芽球性白血病、急性骨髄芽球性白血病、急性前骨髄球性白血病、急性骨髄単球性白血病、急性単球性白血病、赤白血病、急性巨核芽球性白血病、急性骨髄性白血病、急性リンパ球性白血病、リンパ芽球性白血病、慢性骨髄性白血病、又は慢性リンパ球性白血病等の白血病、ホジキンリンパ腫、非ホジキンリンパ腫等の悪性リンパ腫、及び多発性骨髄腫よりなる群から選択される造血系腫瘍細胞、骨髄以外の器官に発生した悪性腫瘍の転移腫瘍細胞を挙げることができる。
 図1には、細胞から得られる信号として、フローセルを流れる細胞に光を照射して得られる光学的信号である前方散乱光信号、側方散乱光信号、側方蛍光信号を例示しているが、細胞の特徴を表し、細胞を種別ごとに分類できる信号であれば特に制限されない。
 細胞から得られる信号としては、細胞の形態学的特徴を表す信号、化学的特徴を表す信号、物理的特徴を表す信号、遺伝学的特徴を表す信号のいずれでもよいが、好ましくは細胞の形態学的特徴を表す信号である。細胞の形態学的特徴を表す信号は、好ましくは、細胞から得られる光学的信号である。
 光学的信号は、好ましくは、細胞に光を照射することで光学的な応答として得られる光信号である。光信号は、光散乱に基づく信号、光吸収に基づく信号、透過光に基づく信号、及び蛍光に基づく信号から選択される少なくとも一種を含み得る。
 光散乱に基づく信号は、光照射によって生じる散乱光信号および光照射によって生じる光損失信号を含み得る。散乱光信号は、照射光の進行方向に対する散乱光の受光角度に応じて、細胞の特徴を示す異なるパラメータとなる。前方散乱光信号は、細胞の大きさを表すパラメータとして用いられる。側方散乱光信号は、細胞の核の複雑さを表すパラメータとして用いられる。
 前方散乱光の「前方」は、光源から発せられた光の進行方向を意図する。「前方」には、照射光の角度を0度とした場合に受光角度が0から5度付近である前方低角、及び/又は受光角度5から20度付近である前方高角を含み得る。「側方」は、「前方」と重ならない限り制限されない。「側方」には、照射光の角度を0度とした場合、受光角度が25度から155度付近、好ましくは45度から135度付近、より好ましくは90度付近を含み得る。
 光散乱に基づく信号は、偏光または偏光解消を信号の成分として含んでもよい。例えば、細胞に光を照射して生じる散乱光を偏光板を通して受光することで、特定角度に偏光した散乱光のみを受光することができる。また、偏光板を通して光を細胞に照射し、生じた散乱光を照射用の偏光板と異なる角度の偏光のみを透過する偏光板を通して受光することで、偏光解消散乱光のみを受光することができる。
 光損失信号は、光が細胞に照射されて散乱することで受光部における受光量が減少することに基づく、受光量の損失量を表す。光損失信号は、好ましくは、照射光の光軸方向における光損失(軸方向光損失)として得られる。光損失信号は、細胞がフローセルを流れていない状態で受光部における受光量を100%としたときの、細胞がフローセルを流れた時の受光量の割合として表すことができる。軸方向光損失は、前方散乱光信号と同様に細胞の大きさを表すパラメータとして用いられるが、細胞が透光性を有する場合とそうでない場合とで得られる信号は異なる。
 蛍光に基づく信号は、蛍光物質によって標識した細胞に対して光を照射することで励起される蛍光であってもよいし、非染色の細胞から生じる自家蛍光であってもよい。蛍光物質は、核酸や膜タンパクに結合する蛍光色素であってもよいし、細胞の特定のタンパク質に結合する抗体を蛍光色素で修飾した標識抗体であってもよい。
 光学的信号は、細胞に対して光を照射し、照射された細胞を撮像することによって得られる画像データの形式で取得してもよい。画像データは、いわゆるイメージングフローサイトメータによって、流路を流れる個々の細胞をTDIカメラやCCDカメラ等の撮像素子によって撮像することで得ることができる。または、スライドガラス上に細胞を含む検体または測定試料を塗布し、散布し、または点着し、スライドガラスを撮像素子によって撮像することで細胞の画像データを得てもよい。
 細胞から得られる信号は、光学的信号に限られず、細胞から得られる電気的信号であってもよい。電気的信号は、例えば、フローセルに直流電流を印加し、細胞がフローセルを流れることによって生じるインピーダンスの変化を電気的信号として用いてもよい。このようにして得られる電気的信号は細胞の容積を反映するパラメータとなる。または、電気的信号は、フローセルを流れる細胞に無線周波を印加したときのインピーダンスの変化を電気的信号としてもよい。このようにして得られる電気的信号は細胞の伝導度を反映するパラメータとなる。
 細胞から得られる信号は、上述の細胞から得られる信号のうち少なくとも2種類以上の複数種類の信号を組み合わせてもよい。複数の信号を組み合わせることで、細胞の特徴を多面的に分析することができ、より高精度な細胞の分類が可能になる。組み合わせは、例えば、複数の光学的信号、例えば前方散乱光信号、側方散乱光信号、蛍光信号のうち少なくとも2つを組み合わせてもよいし、角度の異なる散乱光信号、例えば低角度散乱光信号と高角度散乱光信号を組み合わせてもよい。または光学的信号と電気的信号を組み合わせてもよく、組み合わせる信号の種類および数は特に制限されない。
 <細胞の分析方法の概要>
 次に、図2、図3~図5に示す例を用いて訓練データ75の生成方法及び波形データの分析方法を説明する。
 <波形データ>
 図2は、本分析方法において用いられる波形データを説明するための模式図である。図2(a)に示すように、細胞Cを含む検体をフローセルFCに流し、フローセルFCを流れる細胞Cに光を照射すると、光の進行方向に対して前方に前方散乱光FSCが生じる。同様に、光の進行方向に対して側方に側方散乱光SSCと側方蛍光SFLが生じる。前方散乱光は、第1受光部D1によって受光され、受光量に応じた信号が出力される。側方散乱光は、第2受光部D2によって受光され、受光量に応じた信号が出力される。側方蛍光は、第3受光部D3によって受光され、受光量に応じた信号が出力される。これにより、受光部D1~D3から、時間経過に伴う信号の変化を表すアナログ信号が出力される。前方散乱光に対応するアナログ信号を「前方散乱光信号」、側方散乱光に対応するアナログ信号を「側方散乱光信号」、側方蛍光に対応するアナログ信号を「蛍光信号」という。各アナログ信号の1つのパルスが一つの細胞に対応する。
 アナログ信号は、A/D変換部に入力され、デジタル信号に変換される。図2(b)はA/D変換部によるデジタル信号への変換を模式的に示す図である。ここでは説明を簡略化するためアナログ信号をA/D変換部に直接入力するような図としている。アナログ信号のレベルをそのままデジタル信号に変換してもよいが、必要に応じて、ノイズ除去、ベースライン補正、正規化等の処理を行ってもよい。図2(b)に示すように、A/D変換部は、受光部D1~D3から入力されるアナログ信号のうち、前方散乱光信号のレベルが所定の閾値として設定されたレベルに至った時点を始点として、前方散乱光信号、側方散乱光信号、蛍光信号のサンプリングを行う。A/D変換部は、所定のサンプリングレート(例えば、10ナノ秒間隔で1024ポイントのサンプリング、80ナノ秒間隔で128ポイントのサンプリング、又は160ナノ秒間隔で64ポイントのサンプリング等)で、それぞれのアナログ信号をサンプリングする。
 図2(c)は、サンプリングによって得られる波形データを模式的に示す図である。サンプリングによって、一つの細胞に対応する波形データとして、複数の時点におけるアナログ信号レベルをデジタルに示す値を要素とする行列データが得られる。このようにしてA/D変換部は、一つの細胞に対応する前方散乱光のデジタル信号、側方散乱光のデジタル信号、側方蛍光のデジタル信号を生成する。A/D変換は、デジタル信号化された細胞数が所定数に達するまで、または検体をフローセルに流し始めてから所定時間が経過するまで繰り返される。これにより、図2(c)に示すように、一つの検体に含まれるN個の細胞の波形データを合体したデジタル信号が得られる。各細胞に対するサンプリングデータの集合(図1Aの例ではt=0nsからt=10240nsまで10ナノ秒毎に1024個のデジタル値の集合)を波形データと呼び、一つの検体から得られた波形データの集合をデジタル信号と呼ぶ。
 A/D変換部によって生成された各々の波形データには、各々の細胞を識別するためのインデックスが付与されてもよい。インデックスは、例えば、生成された波形データの順に1~Nの整数が付与され、同じ細胞から得られた前方散乱光の波形データ、側方散乱光の波形データ、側方蛍光の波形データには、それぞれ、同一のインデックスが付与される。
 一つの波形データは一つの細胞に対応するので、インデックスは測定された細胞に対応する。同じ細胞に対応する波形データに同一のインデックスが付与されることで、後述する深層学習アルゴリズムは、個々の細胞に対応する前方散乱光の波形データと、側方散乱光の波形データと、蛍光の波形データを1セットとして解析し、細胞の種別を分類できる。
 <訓練データの生成>
 図3は、細胞の種別を判定するための深層学習アルゴリズムを訓練するために使用される訓練データの生成方法の一例を示す模式図である。訓練データ75は、検体をフローサイトメータによって測定し、検体に含まれる細胞について得られた前方散乱光(FSC)のアナログ信号70a、側方散乱光(SSC)のアナログ信号70b、及び側方蛍光(SFL)のアナログ信号70cに基づいて生成される波形データである。波形データの取得方法は、上述のとおりである。
 訓練データ75は、例えば、フローサイトメータによって検体を測定し、その検体に含まれる細胞を従来法のスキャッタグラムに基づいて解析した結果、特定の細胞種別である可能性が高いと判断された細胞の波形データを用いることができる。血球計数装置を用いる例で説明すると、まず、血液検体をフローサイトメータで測定し、検体に含まれる個々の細胞の前方散乱光、側方散乱光、蛍光の波形データを蓄積しておく。側方散乱光強度(側方散乱光信号のパルスの高さ)と蛍光強度(蛍光信号のパルス高さ)に基づいて、細胞を好中球、リンパ球、単球、好酸球、好塩基球、幼若顆粒球、異常細胞の集団に分類する。分類された細胞種別に対応するラベル値をその細胞の波形データに付与することで、訓練データが得られる。例えば、好中球の集団に含まれる細胞の側方散乱光強度および側方蛍光強度の最頻値、平均値または中央値を求め、それらの値に基づいて代表的な細胞を特定し、それらの細胞の波形データに好中球に対応するラベル値「1」を付与することで訓練データを得ることができる。訓練データの生成方法はこれに限らず、例えばセルソータによって特定の細胞だけを回収しておき、その細胞をフローサイトメータによって測定し、得られた波形データに細胞のラベル値を付与することによって訓練データを得てもよい。
 アナログ信号70a、70b、70cは、フローサイトメータによって好中球が測定されたときの前方散乱光信号、側方散乱光信号、側方蛍光信号をそれぞれ示す。これらのアナログ信号が、上述したようにA/D変換されると、前方散乱光信号の波形データ72a、側方散乱光信号の波形データ72b、側方蛍光信号の波形データ72cが得られる。波形データ72a、72b、72cそれぞれの内部で隣り合うセルは、サンプリングレートに対応する間隔、例えば10ナノ秒間隔での信号レベルを格納している。波形データ72a、72b、72cは、データの元となった細胞の種別を表すラベル値77と組み合わされて、各細胞に対応する3つの波形データ、言い換えれば3つの信号強度(前方散乱光の信号強度、側方散乱光の信号強度、及び側方蛍光の信号強度)のデータがセットとなるように訓練データ75として深層学習アルゴリズム50に入力される。図3の例では訓練データの元となった細胞が好中球であるため、波形データ72a、72b、72cに好中球であることを示すラベル値77として「1」が付与され、訓練データ75が生成される。図4にラベル値77の例を示す。訓練データ75は、細胞種別毎に生成されるため、ラベル値は、細胞種別に応じて異なるラベル値77が付与される。
 <深層学習の概要>
 図3を例として、ニューラルネットワークの訓練の概要を説明する。ニューラルネットワーク50は、畳み込み層を有する畳み込みニューラルネットワークであることが好ましい。ニューラルネットワーク50における入力層50aのノード数は、入力される訓練データ75の波形データに含まれる配列の要素数に対応している。配列の要素数は、1つの細胞に対応する前方散乱光、側方散乱光、側方蛍光の波形データ72a、72b、72cの要素数の総和に等しい。図3の例では、波形データ72a、72b、72cのそれぞれが1024個の要素を含んでいるため、入力層50aのノード数は、1024×3=3072個となる。波形データ72a、72b、72cは、ニューラルネットワーク50の入力層50aに入力される。訓練データ75の各波形データのラベル値77は、ニューラルネットワークの出力層50bに入力され、ニューラルネットワーク50を訓練する。図3の符号50cは、中間層を示す。
 <波形データの分析方法>
 図5に分析対象である細胞の波形データを分析する方法の例を示す。波形データの分析方法では、分析対象の細胞からフローサイトメータによって取得した前方散乱光のアナログ信号80a、側方散乱光のアナログ信号80b、及び側方蛍光のアナログ信号80cから、上述の方法によって得られる波形データからなる分析データ85が生成される。
 分析データ85と訓練データ75は、少なくとも取得条件を同じにすることが好ましい。取得条件とは、検体に含まれる細胞をフローサイトメータによって測定するための条件、例えば測定試料の調製条件、測定試料をフローセルに流すときの流速、フローセルに照射される光の強度、散乱光及び蛍光を受光する受光部の増幅率などを含む。取得条件は、さらに、アナログ信号をA/D変換するときのサンプリングレートも含む。
 分析対象の細胞がフローセルを流れると、前方散乱光のアナログ信号80a、側方散乱光のアナログ信号80b、及び側方蛍光のアナログ信号80cが得られる。これらのアナログ信号80a、80b、80cが上述したようにA/D変換されると、細胞毎に、信号強度を取得した時点が同期され、前方散乱光信号の波形データ82a、側方散乱光信号の波形データ82b、側方蛍光信号の波形データ82cとなる。波形データ82a、82b、82cは、各細胞の3つの信号強度(前方散乱光の信号強度、側方散乱光の信号強度、及び側方蛍光の信号強度)のデータがセットとなるように組み合わされて、分析データ85として深層学習アルゴリズム60に入力される。
 分析データ85を訓練済みの深層学習アルゴリズム60を構成するニューラルネットワーク60の入力層60aに入力すると、出力層60bから、分析データ85に対応する細胞の種別に関する分類情報として分析結果83が出力される。図5の符号60cは、中間層を示す。細胞種別に関する分類情報とは、例えば、細胞が複数の細胞種別の各々に属する確率である。さらに、この確率の中で、値が最も高い分類に、分析データ85を取得した分析対象の細胞が属すると判断し、その細胞種別を表す識別子であるラベル値82等が分析結果83に含まれてもよい。分析結果83は、ラベル値そのものの他、ラベル値を細胞種別を示す情報(例えば文字列)に置き換えたデータであってもよい。図5では分析データ85に基づいて、深層学習アルゴリズム60が分析データ85を取得した分析対象の細胞が属する確率が最も高かったラベル値「1」を出力し、さらに、このラベル値に対応する「好中球」という文字データが分析結果83として出力される例を示している。ラベル値の出力は、深層学習アルゴリズム60が行ってもよいが、他のコンピュータプログラムが、深層学習アルゴリズム60が算出した確率に基づいて、最も好ましいラベル値を出力してもよい。
 [2.細胞分析装置および細胞測定装置の構成]
 (構成例1)
 図6および図7を参照して、細胞分析装置および細胞測定装置の構成を説明する。図6は、血液中の血球を測定する細胞測定装置4000を細胞分析装置1に接続した例を示す。図7は、尿中有形成分を測定する細胞測定装置4000’を細胞分析装置1に接続した例を示す。本実施形態の波形データは、第1の細胞測定装置4000又は第2の細胞測定装置4000’において取得され得る。図6に示す細胞測定装置4000は、測定ユニット400と、測定ユニット400における試料の測定条件の設定や測定を制御したり、測定結果を分析するための処理ユニット300を備える。図7に示す細胞測定装置4000’は、測定ユニット500と、測定ユニット500における試料の測定条件の設定や測定を制御したり、測定結果を分析するための処理ユニット300を備える。測定ユニット400、500と処理ユニット300は相互に通信可能に有線、又は無線で接続されうる。測定ユニット400、500の構成例は以下の例示に限定されて解釈されるものではない。
 細胞分析装置1は、細胞測定装置4000及び4000’の少なくともいずれかで取得された波形データを人工知能アルゴリズム(例えば、深層学習アルゴリズム60)により分析する装置である。細胞分析装置1は、例えば、オンプレミス型のサーバである。
 細胞分析装置1、細胞測定装置4000、細胞測定装置4000’は、図6、図7に示すように、例えば、同一の、病院や検査施設などの施設(以下、「検査関連施設2」という。)内に配置される。細胞分析装置1は、例えば、細胞測定装置4000、細胞測定装置4000’が設置される検査関連施設2内の通信ネットワークであるイントラネットワーク3を介して、細胞測定装置4000及び細胞測定装置4000’と接続される。イントラネットワーク3は、例えば、TCP/IPプロトコルに準拠した通信ネットワークである。イントラネットワーク3は、例えば、10Gbps以上の転送速度を有する通信ネットワークである。細胞分析装置1、細胞測定装置4000、及び細胞測定装置4000’は、有線及び無線の少なくともいずれかの手段でイントラネットワーク3に接続可能である。細胞分析装置1は、イントラネットワーク3を介して、細胞測定装置4000の測定ユニット400及び処理ユニット300のいずれか一方と接続されてもよいし、細胞測定装置4000の測定ユニット400及び処理ユニット300の双方と接続されてもよい。同様に、細胞分析装置1は、イントラネットワーク3を介して、細胞測定装置4000’の測定ユニット500及び処理ユニット300のいずれか一方と接続されてもよいし、細胞測定装置4000’の測定ユニット500及び処理ユニット300の双方と接続されてもよい。細胞分析装置1は、検査関連施設2内に配置された複数の細胞測定装置4000、複数の細胞測定装置4000‘と、イントラネットワーク3を介して接続されてもよい。
 細胞分析装置1と、細胞測定装置4000及び細胞測定装置4000’とは、同一のネットワークドメインに配置されてもよいし、異なるネットワークドメインに配置されてもよい。
 細胞分析装置1は、測定ユニット400、測定ユニット500、又は処理ユニット300からイントラネットワーク3を介して受信したデジタル信号に含まれる波形データを深層学習アルゴリズム60にしたがって分析し、波形データに対応する細胞の種別を判定する。測定ユニット400、測定ユニット500、又は処理ユニット300から送信されるデジタル信号は、測定ユニット400、測定ユニット500、又は処理ユニット300の装置IDが対応付けられていてもよい。
 細胞分析装置1は、訓練データに基づく学習により、波形データを分析する深層学習アルゴリズムを更新してもよい。細胞分析装置1は、測定ユニット400、測定ユニット500、又は処理ユニット300から取得した波形データに基づき、訓練データを生成する。細胞分析装置1は、波形データをイントラネットワーク3経由で取得してもよいし、記録媒体を介して取得してもよい。記録媒体は、例えば、DVD-ROMやUSB(Universal Serial Bus)メモリ等の、コンピュータ読み取り可能であって非一時的な有形の記録媒体である。
 細胞分析装置1は、検査関連施設2に複数配置されてもよい。それら複数の細胞分析装置1は、波形データの分析を行う細胞分析装置1と、訓練データに基づく学習を行う細胞分析装置1とに役割分担されていてもよい。
 (構成例2)
 図8は、細胞分析装置1および細胞測定装置4000、4000’の他の構成例を示す。細胞分析装置1は、例えば、細胞測定装置4000、4000’が設置される検査関連施設2とは異なる場所に設置される。細胞分析装置1は、例えば、細胞分析装置1の管理及び運営を行うデータセンタ5に設置される。細胞分析装置1は、例えば、クラウド型のサーバで構成される。例えば、データセンタ5内に設置された1又は複数のサーバが、細胞分析装置1として構成される。細胞分析装置1と、検査関連施設2に設置された細胞測定装置4000、4000’は、例えば、インターネット6を介して通信可能である。細胞分析装置1は、測定ユニット400、測定ユニット500、又は処理ユニット300からインターネット6を介して送信された波形データを分析し、波形データに対応する細胞の種別を判定する。細胞分析装置1は、訓練データに基づく学習により、波形データを分析するアルゴリズムを更新してもよい。細胞分析装置1は、測定ユニット400、測定ユニット500、又は処理ユニット300から取得した波形データに基づき、訓練データを生成する。細胞分析装置1は、波形データをインターネット6を介して取得してもよいし、記録媒体を介して取得してもよい。記録媒体は、例えば、DVD-ROMやUSBメモリ等の、コンピュータ読み取り可能であって非一時的な有形の記録媒体である。
 細胞分析装置1は、データセンタ5に複数配置されてもよい。それら複数の細胞分析装置1は、波形データの分析を行う細胞分析装置1と、訓練データに基づく学習を行う細胞分析装置1とに役割分担されていてもよい。
 (構成例3)
 図9は、細胞分析装置1および細胞測定装置4000、4000’の他の構成例を示す。図9に示す検査関連施設2は、図6又は図7に示す検査関連施設2と同様の構成である。図9に示す検査関連施設2では、細胞分析装置1と細胞測定装置4000、4000’とは、例えば、イントラネットワーク3又はUSB等のインタフェースを介して接続されている。図9に示す例において、検査関連施設2に設置された細胞分析装置1は、例えば、細胞測定装置4000、4000’から取得した波形データを分析し、波形データに対応する細胞が属する細胞種別を判定する。一方、データセンタ5に設置された細胞分析装置1は、例えば、訓練データに基づく学習により、波形データを分析するアルゴリズムを更新する。つまり、図9に示す例では、検査関連施設2の細胞分析装置1と、データセンタ5の細胞分析装置1とは、役割を分担している。
 図6~図9に示した構成例のとおり、細胞分析装置1は、同一の検査関連施設2内の複数の細胞測定装置4000、4000’から波形データを取得し得る。また、細胞分析装置1は、異なる検査関連施設2の各々に配置された複数の細胞測定装置4000、4000’から波形データを取得し得る。波形データは、検査関連施設2の各々で検査された生体試料中の個々の細胞毎に取得される。従って、波形データを適切に管理しないと、例えば患者間・生体試料間・検査関連施設2間でのデータの取り違えが生じ得る。そのため、測定ユニット400又は処理ユニット300は、波形データと識別情報とを対応付けて、細胞分析装置1に送信する。細胞分析装置1は、分析結果に識別情報を対応付ける。
 識別情報は、例えば、(1)波形データに対応する生体試料の識別情報、(2)波形データに対応する細胞の識別情報、(3)波形データに対応する患者の識別情報、(4)波形データに対応する検査の識別情報、(5)波形データが測定された細胞測定装置の識別情報、(6)波形データが測定された検査関連施設2の識別情報、が挙げられる。なお、(1)波形データに対応する生体試料の識別情報は、生体試料に対する測定オーダーが登録された時刻に関する情報、細胞測定装置が生体試料を識別した時刻に関する情報、細胞測定装置が生体試料の測定を開始した時刻に関する情報、生体試料が緊急検体か通常検体かを識別するための情報、生体試料が再計測か新規計測かを識別するための情報などの、並列処理の優先順位を決定するための情報を含み得る。細胞分析装置1は、例えば、LIS(Laboratory Information System)又は処理ユニット300又は測定ユニット400から測定オーダーを受領する際に、LIS又は処理ユニット300又は測定ユニット400から、上記識別情報(1)~(6)の少なくとも一つ又はそれらの組み合わせを取得できる。例えば、例示された(1)~(6)の少なくとも一つが、波形データと対応付けられて細胞分析装置1に送信される。例示された(1)~(6)の複数の組み合わせが、波形データと対応付けられて細胞分析装置1に送信されてもよい。
 以上のように、本実施形態によれば、複数の細胞測定装置4000、4000’にて測定されたデータの深層学習アルゴリズム60による分析は、細胞測定装置4000、4000’の各々で行われるのではなく、細胞分析装置1にてまとめて行われる。細胞分析装置1は、後述するように、例えばCPUからなるプロセッサ11(ホストプロセッサともいう)と、例えばGPUからなる並列処理プロセッサ12を備えたハイスペックの情報処理能力を備えた装置(コンピュータ)であるが、そのような高い情報処理能力を細胞測定装置4000、4000’に要求することなく、深層学習アルゴリズム60による高精度の細胞分類を行うことができる。さらに、細胞分析装置1において生成される分析結果には識別情報が対応付けられるため、分析結果の取り違えが生じることが回避される。したがって、本実施形態によれば、細胞測定装置4000、4000’側の各々において分析用コンピュータ及び分析用プログラムを構築して分析する場合と比べ、データの管理性を担保しつつ、システム構築及び運用に係る手間及びコストを低減することができる。例えば、分析用プログラムの更新は細胞分析装置1で行えば済むため、更新に係る手間及びコストを低減することができる。
 <第1の細胞測定装置と測定試料の調製>
 (測定ユニットの構成)
 測定ユニット400が血液試料の細胞を検出するためのフローサイトメータであるFCM検出部を備える血液分析装置、より具体的には血球計数装置である場合の構成例を説明する。
 図10は、測定ユニット400のブロック図の例を示す。図10に示されるように、測定ユニット400は、血球を検出するFCM検出部410、FCM検出部410の出力に対するアナログ処理部420、測定ユニット制御部480、試料調製部440、及び装置機構部430を備えている。
 図11は、検体吸引部450と試料調製部440を説明するための模式図である。検体吸引部450は、採血管Tから血液検体(全血)を吸引するためのノズル451と、ノズルに陰圧/陽圧を付与するためのポンプ452を備える。ノズル451は、装置機構部430によって上下移動されることで採血管Tに挿入される。ノズル451が採血管Tに挿入された状態でポンプ452が陰圧を付与すると、ノズル451を介して血液検体が吸引される。なお、装置機構部430は、採血管Tからの血液の吸引前に採血管Tを転倒攪拌するハンド部材を備えてもよい。
 試料調製部440は、5つの反応チャンバ440a~440eを備える。反応チャンバ440a~440eは、それぞれ、DIFF、RET、WPC、PLT-F、WNRの測定チャネルにおいて用いられる。各反応チャンバには、各測定チャネルに対応する試薬である溶血剤を収容した溶血剤容器と染色液を収容した染色液容器が流路を介して接続されている。一つの反応チャンバとそれに接続された試薬(溶血剤及び染色液)によって、測定チャネルが構成されている。例えば、DIFF測定チャネルは、DIFF測定用試薬であるDIFF溶血剤およびDIFF染色液と、DIFF反応チャンバ440aによって構成されている。他の測定チャネルも同様に構成されている。なお、ここでは一つの測定チャネルが溶血剤と染色液を一つずつ備えた構成を例示しているが、一つの測定チャネルが必ずしも溶血剤と染色液の両方を備えなくてもよく、複数の測定チャネルによって一つの試薬が共用されてもよい。
 血液検体を吸引したノズル451は、装置機構部430による水平・上下移動によって、反応チャンバ440a~440eのうち、オーダーに対応する測定チャネルに対応する反応チャンバに上方からアクセスし、吸引した血液検体を吐出する。試料調製部440は、血液検体が吐出された反応チャンバに、対応する溶血剤と染色液を供給し、反応チャンバ内で血液検体と溶血剤と染色液を混合することで測定試料を調製する。調製された測定試料は、流路を介して反応チャンバからFCM検出部410に供給され、フローサイトメトリー法による細胞の測定が行われる。
 図12は、FCM検出部410の光学系の構成例を示している。図12に示すように、フローサイトメータによる測定では、測定試料に含まれる細胞がフローサイトメータ内に備えられたフローセル(シースフローセル)4113を通過する際に、光源4111がフローセル4113に光を照射し、この光によってフローセル4113内の細胞から発せられる散乱光及び蛍光を検出する。
 図12において、光源4111であるレーザダイオードから出射された光は、照射レンズ系4112を介してフローセル4113内を通過する細胞に照射される。
 本実施形態において、フローサイトメータの光源4111は特に限定されず、蛍光色素の励起に好適な波長の光源4111が選択される。そのような光源4111としては、例えば赤色半導体レーザ光源及び/又は青色半導体レーザ光源を含む半導体レーザ光源、アルゴンレーザ光源、ヘリウム-ネオンレーザ等の気体レーザ光源、水銀アークランプなどが使用される。特に半導体レーザ光源は、気体レーザ光源に比べて非常に安価であるので好適である。
 図12に示されるように、フローセル4113を通過する粒子から発せられる前方散乱光は、集光レンズ4114とピンホール部4115を介して前方散乱光受光素子4116によって受光される。前方散乱光受光素子4116はフォトダイオードである。側方散乱光は、集光レンズ4117、ダイクロイックミラー4118、バンドパスフィルタ4119、及びピンホール部4120を介して側方散乱光受光素子4121によって受光される。側方散乱光受光素子4121は、フォトダイオードである。側方蛍光は、集光レンズ4117及びダイクロイックミラー4118を介して側方蛍光受光素子4122によって受光される。側方蛍光受光素子4122は、アバランシェフォトダイオードである。なお、前方散乱光受光素子4116、側方散乱光受光素子4121、側方蛍光受光素子4122として光電子増倍管を用いてもよい。
 各受光素子4116、4121及び4122から出力された受光信号は、それぞれ、アンプ4151、4152及び4153を介してアナログ処理部420に入力される。
 図10に戻って、アナログ処理部420は、FCM検出部410から入力されるアナログ信号としての電気信号に対してノイズ除去を含む処理を行い、処理した結果を電気信号として測定ユニット制御部480に対して出力する。
 図10に示されるように、測定ユニット制御部480は、A/D変換部482と、デジタル値演算部483と、処理ユニット300と接続するインタフェース部489とを備えている。さらに、装置機構部430との間に介在するインタフェース部488とを備えている。
 デジタル値演算部483は、インタフェース部484及びバス485を介してインタフェース部489と接続されている。また、インタフェース部489は、バス485及びインタフェース部488を介してFCM検出部410、装置機構部430、試料調製部440及び検体吸引部450と接続されている。測定ユニット400は、インタフェース部489を介して、処理ユニット300、細胞分析装置1と接続される。インタフェース部489は、例えば、USBインタフェースである。測定ユニット400は、インタフェース部490を備えてもよい。インタフェース部490は、例えば、10Gbps以上の転送速度を有するインタフェースである。測定ユニット400は、インタフェース部490を介して、イントラネットワーク3及びインターネット6と接続できる。測定ユニット400は、イントラネットワーク3又はインターネット6を介して、細胞分析装置1と接続できる。
 A/D変換部482は、アナログ処理部420から出力されたアナログ信号である電気信号をデジタル信号に変換し、変換後のデジタル信号をデジタル値演算部483に出力する。A/D変換部482は、所定のサンプリングレート(例えば、10ナノ秒間隔で1024ポイントのサンプリング、80ナノ秒間隔で128ポイントのサンプリング、又は160ナノ秒間隔で64ポイントのサンプリング等)で、電気信号をサンプリングし、デジタル信号を生成する。
 デジタル値演算部483は、A/D変換部482から出力されたデジタル信号に対して所定の演算処理を行う。所定の演算処理として、例えば、前方散乱光が所定の閾値に達してから、前方散乱光の信号強度、側方散乱光の信号強度、側方蛍光の信号強度の取得を開始し、所定時間後に取得を終了するまでの間、1つの訓練対象の細胞について一定の間隔で複数の時点で各波形データを取得する処理、波形データのピーク値を抽出する処理などが含まれるが、これらに限られない。A/D変換部482にて得られるデジタル信号から波形データを取得する演算処理は、A/D変換部482が実行してもよい。
 図13は、処理ユニット300の構成を示す図である。処理ユニット300は、プロセッサ3001と、バス3003と、記憶部3004と、インタフェース部3006a~3006dと、表示部3015と、操作部3016とを備える。処理ユニット300は、ハードウェアとしては一般的なパーソナルコンピュータによって構成されており、記憶部3004に格納された専用のプログラムを実行することで、細胞分析装置4000の処理ユニットとして機能する。
 プロセッサ3001はCPUであり、記憶部3004に記憶されたプログラムを実行することが可能である。
 記憶部3004は、ハードディスク装置を備える。記憶部3004には、少なくとも、細胞分析装置1から送信される細胞の分類情報を処理して、検体の検査結果を生成するためのプログラム60が格納されている。なお、検体の検査結果とは、後述するように、測定ユニット400によって得られた個々の細胞の分類情報82に基づいて、検体に含まれる血球を計数した結果を意味する。
 表示部3015は、コンピュータスクリーンを備える。表示部3015はインタフェース部3006aとバス3003を介してプロセッサ3001に接続されている。表示部3015は、プロセッサ3001から入力される画像信号を受けて、細胞分析装置1から受領した測定結果(細胞の分類情報)と、プロセッサ3001が測定結果を分析して得られる検査結果を表示することができる。
 操作部3016は、キーボード、マウスまたはタッチパネルを含むポインティングデバイスを備える。操作部3016は、インタフェース部3006bとバス3003を介してプロセッサ3001に接続されている。医師や検査技師等のユーザは、操作部3016を操作することで、細胞分析装置4000に測定オーダーを入力し、測定オーダーにしたがって測定指示を入力することができる。操作部3016は、ユーザから検査結果を表示する指示を受け付けることもできる。ユーザは、操作部3016を操作し、検査結果に関する様々な情報、例えば、グラフ、チャート、検体に付与されたフラグ情報を閲覧することができる。
 プロセッサ3001は、バス3003及びインタフェース部3006cを介して測定ユニット400と接続されている。また、プロセッサ3001は、バス3003及びインタフェース部3006dを介してイントラネットワーク3またはインターネット6に接続され、イントラネットワーク3またはインターネット6を介して細胞分析装置1に接続されている。
 (細胞分析装置の構成)
 図14は、細胞分析装置1のブロック図を示す。細胞分析装置1は処理部10を備える。処理部10は、例えば、プロセッサ11、並列処理プロセッサ12、記憶部13、RAM14、インタフェース部16、インタフェース部17を備える。プロセッサ11、並列処理プロセッサ12、記憶部13、RAM14、インタフェース部16、インタフェース部17は、バス15を介して互いに電気的に接続される。バス15は、例えば、数百MB/s以上のデータ転送速度を有する伝送路である。バス15は、1GB/s以上のデータ転送速度を有する伝送路であってもよい。バス15は、例えば、PCI-ExpressやPCI-X規格に基づいてデータ転送を行う。
 細胞分析装置1は、インタフェース部16を介して、測定ユニット400及び処理ユニット300と接続できる。インタフェース部16は、図7に例示されたインタフェース部4であってもよい。細胞分析装置1は、インタフェース部17を介して、イントラネットワーク3又はインターネット6と接続できる。細胞分析装置1は、イントラネットワーク3又はインターネット6を介して、測定ユニット400又は処理ユニット300に接続され、測定ユニット400又は処理ユニット300から生体試料中の個々の細胞に関する波形データを取得する。細胞分析装置1は、例えば、生体試料中の個々の細胞について、複数の波形データ(例えば、FSC、SSC、SFL)を取得する。
 細胞分析装置1は、本実施形態に係るプログラム及び訓練前のニューラルネットワークで構成される深層学習アルゴリズム50を、例えば実行形式で記憶部13に予め記録している。実行形式は、例えばプログラミング言語からコンパイラにより変換されて生成される形式である。細胞分析装置1は、記憶部13に記録したプログラムを使用して、訓練前のニューラルネットワーク50の訓練処理を行う。
 また、細胞分析装置1は、波形データを分析するために、本実施形態に係るプログラム及び訓練済みのニューラルネットワークで構成される深層学習アルゴリズム60を、例えば実行形式で記憶部13に予め記録している。実行形式は、例えばプログラミング言語からコンパイラにより変換されて生成される形式である。プロセッサ11及び並列処理プロセッサ12は、記憶部13に記録したプログラム及び深層学習アルゴリズム60を使用して処理を行う。つまり、言い換えれば、細胞分析装置1のプロセッサ11は、深層学習アルゴリズム60に基づいて細胞のデータを分析するようにプログラムされている。
 プロセッサ11は、並列処理プロセッサ12を用いて、深層学習アルゴリズム60に従って波形データの分析を実行する。プロセッサ11は、例えば、CPU(Central Processing Unit)である。並列処理プロセッサ12は、波形データの分析に関する処理の少なくとも一部である複数の演算処理を並列に実行する。並列処理プロセッサ12は、例えば、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit )である。並列処理プロセッサ12がFPGAである場合、並列処理プロセッサ12は、例えば、訓練済みの深層学習アルゴリズム60に関する演算処理に対応するプログラムされていてもよい。並列処理プロセッサ12がASICである場合、並列処理プロセッサ12は、例えば、訓練済みの深層学習アルゴリズム60に関する演算処理を実行するための回路が予め組み込まれていてもよいし、そのような組み込み回路に加えてプログラマブルなモジュールが内蔵されていてもよい。並列処理プロセッサ12は、例えば、NVIDIA社製Jetsonなどを用いて実装されてもよい。
 また、プロセッサ11は、例えば、細胞分析装置1の制御に関する計算処理を実行する。例えば、プロセッサ11は、例えば、記憶部13からのプログラムデータの読み出し、RAM14へのプログラムの展開、RAM14との間のデータの送受信に関する処理を実行する。プロセッサ11により実行される上述の各処理は、例えば、所定の順番で処理を実行することが求められる。例えば、所定の制御に要する処理がA、B及びCとすると、B、A、Cの順で処理を実行することが求められることがある。プロセッサ11はこのような順序に依存する連続的な処理を実行することが多いため、演算ユニット(「プロセッサコア」、「コア」等と呼ばれることがある)の数を増したとしても、必ずしも処理速度が高まるものではない。
 一方、並列処理プロセッサ12は、例えば、多量の要素を含む行列データの演算のように、定型的で多量な計算処理を実行する。本実施形態では、並列処理プロセッサ12は、深層学習アルゴリズム60に従って波形データを分析する処理の少なくとも一部を並列化した並列処理を実行する。深層学習アルゴリズム60には、例えば、多量の行列演算が含まれる。深層学習アルゴリズム60には、例えば、少なくとも100の行列演算が含まれることがあり、また、少なくとも1000の行列演算が含まれることもある。並列処理プロセッサ12は、複数の演算ユニットを有し、これらの演算ユニットの各々が同時に行列演算を実行可能である。つまり、並列処理プロセッサ12は、並列処理として、複数の演算ユニットの各々による行列演算を並列に実行することができる。例えば、深層学習アルゴリズム60に含まれる行列演算は、互いに順序依存が無い複数の演算処理に分割することができる。このように分割された演算処理は、複数の演算ユニットの各々で並列に実行可能となる。これらの演算ユニットは、「プロセッサコア」、「コア」等と呼ばれることがある。
 このような並列処理を実行することにより、細胞分析装置1全体としての演算処理を高速化することが可能となる。深層学習アルゴリズム60に含まれる行列演算のような処理は、例えば、「単一命令複数データ処理」(SIMD:Single Instruction Multiple Data)と呼ばれることがある。並列処理プロセッサ12は、例えばこのようなSIMD演算に適している。このような並列処理プロセッサ12は、ベクトルプロセッサと呼ばれることがある。
 上述のように、プロセッサ11は、多様かつ複雑な処理を実行することに適している。一方、並列処理プロセッサ12は、定型化された多量の処理を並列に実行することに適しており、定型化された多量の処理を並列に実行することにより、計算処理に要するTAT(Turnaround Time)が短縮される。
 なお、並列処理プロセッサ12が実行する並列処理の対象は、行列演算に限られない。例えば、並列処理プロセッサ12が深層学習アルゴリズム50に従って学習処理を実行するときは、学習処理に関する微分演算等が並列処理の対象となり得る。
 プロセッサ11の演算ユニットの数は、例えば、デュアルコア(コア数:2)、クアッドコア(コア数:4)、オクタコア(コア数:8)である。一方、並列処理プロセッサ12の演算ユニットの数(コア数)は、例えば、少なくとも10個有し(コア数:10)、10の行列演算を並列に実行し得る。並列処理プロセッサ12は、例えば、演算ユニットを数十個有するものもある。また、並列処理プロセッサ12は、演算ユニットを、例えば、少なくとも100個有し(コア数:100)、100の行列演算を並列に実行し得るものもある。並列処理プロセッサ12は、例えば、演算ユニットを数百個有するものもある。また、並列処理プロセッサ12は、演算ユニットを、例えば、少なくとも1000個有し(コア数:1000)、1000の行列演算を並列に実行し得るものもある。並列処理プロセッサ12は、例えば、演算ユニットを数千個有するものもある。
 図15は、並列処理プロセッサ12の構成例を示す。並列処理プロセッサ12は、複数の演算ユニット121、及びRAM122を含む。演算ユニット121の各々は、行列データの演算処理を並列に実行する。RAM122は、演算ユニット121が実行する演算処理に関するデータを記憶する。RAM122は、少なくとも1ギガバイトの容量を有するメモリである。RAM122は、2ギガバイト、4ギガバイト、6ギガバイト、8ギガバイト、又は10ギガバイト以上の容量を有するメモリであってもよい。演算ユニット121は、RAM122からデータを取得し、演算処理を実行する。演算ユニット121は、「プロセッサコア」、「コア」等と呼ばれることがある。
 図16~図18は、細胞分析装置1への並列処理プロセッサ12の実装例を示す。図16及び図17は、プロセッサ11と並列処理プロセッサ12とを別体として設ける実装例を示す。図16に示すように、並列処理プロセッサ12は、例えば、基板190に実装される。並列処理プロセッサ12は、例えば、グラフィックボード19に実装され、グラフィックボード19がコネクタ191を介して基板190に接続される。プロセッサ11は、バス15を介して並列処理プロセッサ12と接続される。図17に示すように、並列処理プロセッサ12は、例えば、基板190に直に実装され、バス15を介してプロセッサ11に接続されてもよい。図18は、プロセッサ11と並列処理プロセッサ12とを一体として設ける実装例を示す。図18に示すように、並列処理プロセッサ12は、例えば、基板190に実装されたプロセッサ11に内蔵されてもよい。
 図19は、細胞分析装置1への並列処理プロセッサ12の他の実装例を示すブロック図である。図19は、細胞分析装置1に接続される外付け装置に並列処理プロセッサ12を実装する例を示す。並列処理プロセッサ12は、例えば、USB(Universal Serial Bus)デバイスに実装され、このUSBデバイスがインタフェース部18を介してバス15に接続される。USBデバイスは、例えば、USBドングルのような小型デバイスでもよい。インタフェース部18は、例えば、数百Mbpsの転送速度を有するUSBインタフェースであり、より好ましくは、数Gbps~数10Gbps以上の転送速度を有するUSBインタフェースである。
 並列処理プロセッサ12が実装された複数のUSBデバイスをインタフェース部18に接続してもよい。一つのUSBデバイス上の並列処理プロセッサ12は、演算ユニット121の数がGPU等に比べて少ないことがあるため、細胞分析装置1に接続するUSBデバイスを複数に増設することにより、コア数のスケールアップが可能となる。
 図19に示すように、例えば、深層学習アルゴリズム60が組み込まれた並列処理プロセッサ12が実装されたUSBドングル等の小型デバイスがインタフェース部18に接続される場合、この小型デバイスを置き換えることにより、深層学習アルゴリズム60を置き換えてもよい。また、この小型デバイスを置き換えることにより、測定ユニット制御部480は、記憶部13に記録したプログラム及び深層学習アルゴリズム60を更新してもよい。
 図20は、プロセッサ11が、並列処理プロセッサ12を用いて行列データの演算処理を実行する動作の概要を示す。プロセッサ11は並列処理プロセッサ12に命令し、波形データを深層学習アルゴリズム60で分析する場合に要する少なくとも一部の演算処理を並列処理プロセッサ12を用いて実行させることができる。プロセッサ11の解析ソフトウェア111は、並列処理プロセッサ12に対して、深層学習アルゴリズム60に基づく波形データ分析に関する演算処理の実行を命令する。FCM検出部410で検出された信号に対応する波形データの全部又は少なくとも一部は、RAM14に記憶される。RAM14に記憶されたデータは、並列処理プロセッサ12のRAM122に転送される。RAM14に記憶されたデータは、例えば、DMA(Direct Memory Access)方式によりRAM122に転送される。並列処理プロセッサ12の複数の演算ユニット121の各々は、RAM122に記憶されたデータに対する演算処理を並列に実行する。複数の演算ユニット121の各々は、必要なデータをRAM122から取得して演算処理を実行する。演算結果に対応するデータは、並列処理プロセッサ12のRAM122に記憶される。演算結果に対応するデータは、RAM122からRAM14に、例えばDMA方式で、転送される。
 図21は、並列処理プロセッサ12が実行する行列演算の概要を示す。波形データを深層学習アルゴリズム60に従って分析するにあたり、行列の積(行列演算)が実行される。並列処理プロセッサ12は、例えば、行列演算の各々を並列に実行する。図21(a)は、行列の積の計算式を示す。図21(a)に示す計算式では、n行n列の行列aとn行n列の行列bとの積により、行列cを求める。図21に例示されるように、計算式は、多階層のループ構文で記述される。図21の(b)は、並列処理プロセッサ4833で並列に実行される演算処理の例を示す。図21(a)に例示された計算式は、例えば、1階層目のループ用変数iと、2階層目のループ用変数jとの組合せ数であるn×n個の演算処理に分割することができる。このように分割された演算処理の各々は、互いに依存しない演算処理であるため、並列に実行し得る。
 図22は、図21(b)に例示された複数の演算処理が、並列処理プロセッサ12で実行されることを示す概念図である。図22に示すように、複数の演算処理の各々は、並列処理プロセッサ12が備える複数の演算ユニット121のいずれかに割り当てられる。演算ユニット121の各々は、割り当てられた演算処理を、互いに並列に実行する。つまり、演算ユニット121の各々は、分割された演算処理を同時に実行する。
 図21及び図22に例示された演算の結果、並列処理プロセッサ12による演算によって、例えば、波形データに対応する細胞が複数の細胞種別の各々に属する確率に関する情報が求められる。演算の結果に基づいて、解析ソフトウェア111を実行するプロセッサ11は、波形データに対応する細胞の細胞種に関する解析を行う。演算結果は、並列処理プロセッサ12のRAM122に記憶され、RAM122からRAM14に転送される。そして、プロセッサ11は、RAM14に記憶された演算結果に基づいて算出した測定結果を、バス15及びインタフェース部16を介して処理ユニット300又は測定ユニット400に送信する。
 細胞が複数の細胞種別の各々に属する確率の計算は、並列処理プロセッサ12とは別のプロセッサが行ってもよい。例えば、演算結果をRAM122からRAM14に転送し、プロセッサ11が、RAM14から読み出した演算結果に基づいて、各々の波形データに対応する細胞が複数の細胞種別の各々に属する確率に関する情報を計算してもよい。また、演算結果をRAM122から処理ユニット300に転送し、処理ユニット300に搭載されたプロセッサが、各々の波形データに対応する細胞が複数の細胞種別の各々に属する確率に関する情報を計算してもよい。
 本実施形態では、図21及び図22に示された処理は、例えば、深層学習アルゴリズム60における畳み込み層に関する演算処理(フィルタ処理とも呼ばれる)に適用される。
 図23に、畳み込み層に関する演算処理の概要を示す。図23の(a)は、深層学習アルゴリズム60に入力される波形データとして、前方散乱光(FSC)の波形データの例を示す。波形データは、例えば、一次元の行列データ(すなわち、一次元の配列データ)である。本実施形態では、波形データの要素数はn(nは1以上の整数)とする。図23の(a)には、複数のフィルタが示されている。フィルタは、深層学習アルゴリズム50の学習処理により生成される。複数のフィルタの各々は、波形データの特徴を表す一次元の行列データである。図23の(a)に示すフィルタは、1行3列の行列データであるが、列数は3に限られない。深層学習アルゴリズム60に入力される波形データと、各々のフィルタとを行列演算することで、波形データに関する細胞種別に対応する特徴が計算される。図23の(b)は、波形データとフィルタとの行列演算の概要を示す。図23の(b)に示されるように、各フィルタを波形データの各要素に対して1つずらしながら行列演算が実行される。行列演算の計算は、下記の式1により実行される。
Figure JPOXMLDOC01-appb-M000001
 式1において、xの添え字は、波形データの行番号及び列番号を示す変数である。hの添え字は、フィルタの行番号及び列番号を示す変数である。図23に示す例の場合、波形データは一次元の行列データであり、フィルタは、1行3列の行列データであるから、L=1、M=3、p=0、q=0,1,2、i=0、j=0,1,…n-1である。
 並列処理プロセッサ12は、式1で表される行列演算を、複数の演算ユニット121の各々によって並列に実行する。並列処理プロセッサ12が実行した演算処理に基づき、各細胞の細胞種別に関する分類情報が生成される。生成された情報は、処理ユニット300又は測定ユニット400に送信される。
 細胞分析装置1は、波形データと識別情報とを対応付けて処理することができる。具体的には、細胞分析装置1は、波形データの分析結果(即ち、各細胞の細胞種別に関する分類情報)と識別情報とを対応付けて生成することができる。細胞分析装置1は、例えば、各細胞の細胞種別に関する分類情報と識別情報とを対応付けて、処理ユニット300又は測定ユニット400に送信する。上述された識別情報(1)~(6)の複数の組み合わせが、分類情報と対応付けられて処理ユニット300又は測定ユニット400に送信されてもよい。
 図10に戻り、処理ユニット300は、インタフェース部489、バス485、及びインタフェース部484を介してデジタル値演算部483と接続されており、デジタル値演算部483から出力された演算結果を受信することができる。インタフェース部489は、例えば、USBインタフェースである。また、処理ユニット300は、プロセッサ11及び並列処理プロセッサ12による演算結果を細胞分析装置1から取得し、当該演算結果に基づく測定結果を表示することができる。医師や検査技師等のユーザは、処理ユニット300を操作し、測定結果を分析することができる。ユーザは、処理ユニット300を操作し、測定結果に関する様々な情報(例えば、グラフ、チャート、測定結果に対する付加情報)を生成することで、測定結果を分析することもできる。ユーザは、例えば、生体試料毎のグラフ、チャート、又は、検査関連施設2毎のグラフ、チャートなどを閲覧することにより、上述の識別情報毎に測定結果を分析することが可能である。また、処理ユニット300は、試料容器を自動供給するサンプラ(図示省略)、試料の調製・測定のための流体系などからなる装置機構部430の制御、及びその他の制御を行ってもよい。
<細胞分析装置の動作>
 図24~図26を参照し、細胞分析装置4000による検体の分析動作を説明する。
 処理ユニット300のプロセッサ3001は、操作部3016を介してユーザから測定オーダーを含む測定指示を受け付けると、測定ユニット400に対して測定コマンドを送信する(ステップS1)。プロセッサ3001がユーザから受け付ける測定オーダーには、測定対象の検体の検体ID、当該検体に対応する患者ID、測定が要求されている測定項目(測定チャネル)の情報が含まれる。プロセッサ3001は、検体ID、患者ID、測定チャネルの情報を測定コマンドに含めて、測定ユニット400に送信する。
 測定ユニット400のプロセッサ4831は、測定コマンドを受信すると、検体の測定を開始する。プロセッサ4831は、検体吸引部450に、採血管Tから検体を吸引させる(ステップS10)。次に、プロセッサ4831は、検体吸引部450に、吸引した検体を試料調製部440のいずれかの反応チャンバ440a~440eに分注させる。上述のとおり、ステップS1において処理ユニット300から送信される測定コマンドには、測定オーダーによって測定が要求されている測定チャネルの情報が含まれている。プロセッサ4831は、測定コマンドに含まれる測定チャネルの情報に基づいて、対応する測定チャネルの反応チャンバに検体を吐出するよう検体吸引部450を制御する。
 プロセッサ4831は、試料調製部440に測定試料を調製させる(ステップS11)。具体的には、試料調製部440は、プロセッサ4831からの命令を受けて、検体が吐出された反応チャンバに試薬(溶血剤および染色液)を供給し、検体と試薬を混合する。これにより反応チャンバ内で、赤血球が溶血剤により溶血され、かつ白血球や網状赤血球などの、測定チャネルがターゲットとする細胞が染色的によって染色された測定試料が調製される。
 プロセッサ4831は、FCM検出部410に、調製した測定試料を測定させる(ステップS12)。具体的に、プロセッサ4831は、装置機構部430を制御して、試料調製部440の反応チャンバ内にある測定試料をFCM検出部410へ送液する。反応チャンバとFCM検出部410は流路で接続されており、反応チャンバから送液された測定試料はフローセル4113内を流れて光源4111によってレーザ光が照射される(図12参照)。測定試料に含まれる細胞がフローセル4113を通過すると、光が細胞に照射され、細胞から生じた前方散乱光、側方散乱光、側方蛍光が、それぞれ受光素子4116、4121、4122によって検出され、受光強度に応じたアナログ信号が出力される。アナログ信号は、アナログ処理部420を介してA/D変換部482に出力される。
 A/D変換部482は、アナログ信号を所定レートでサンプリングすることで、個々の細胞の波形データを含むデジタル信号を生成する(ステップS13)。波形データおよびデジタル信号の生成方法はすでに述べたとおりである。プロセッサ4831は、A/D変換部482によって生成されたデジタル信号を記憶部460に格納する。
 プロセッサ4831は、記憶部460に格納したデジタル信号と識別情報を細胞分析装置1に送信する(ステップS14)。プロセッサ4831は、記憶部460に格納されたデジタル信号に、そのデジタル信号に対応する識別情報を付加して、インタフェース部490、イントラネットワーク3またはインターネット9を介して細胞分析装置1に送信する。識別情報は、患者ID、検体ID、測定チャネルの情報に加えて、細胞測定装置4000にユニークな情報である装置IDを含む。
 細胞分析装置1のプロセッサ11は、測定ユニット400のプロセッサ4831からデジタル信号と識別情報を受信すると、受信したデジタル信号に対して、深層学習アルゴリズム60に基づき細胞分類を行う(ステップS21)。細胞分類の詳細については後述する。プロセッサ11は、S21の結果として得られた個々の細胞の分類情報82を含む分析結果83を、識別情報とともに処理ユニット300に送信する(ステップS22)。より詳しく言えば、プロセッサ11は、識別情報に含まれる装置IDによって特定される細胞測定装置4000の処理ユニット300に分析結果83を送信する。分析結果83とともに処理ユニット300に送信される識別情報は、患者ID、検体ID、測定チャネルの情報を含んでもよいが、装置IDは含まなくてもよい。分析結果83は、一つの検体に含まれる複数の細胞の分析結果83が、前述の識別情報に紐づけられて、処理ユニット300へ送られる。
 処理ユニット300のプロセッサ3001は、細胞分析装置1から分析結果83を受信すると、記憶部3004に格納されたプログラムを用いて分析結果83を分析し、検体の検査結果を生成する(ステップS3)。S3の処理では、例えば、個々の細胞の分析結果83に含まれるラベル値に基づいて、細胞種別ごとに細胞の数が計数される。例えば、1つの検体から好中球を示すラベル値「1」が付与された分類情報がN個あれば、検体の検査結果として好中球の数=Nとする計数結果が取得される。
 プロセッサ3001は、分析結果83に基づいて測定チャネルに応じた測定項目に関する計数結果を取得し、識別情報とともに記憶部3004に格納する。測定チャネルに応じた測定項目とは、測定オーダーによって計数結果が要求されている項目である。例えばDIFFチャネルに応じた測定項目とは白血球5分類、すなわち単球、好中球、リンパ球、好酸球、好塩基球の数である。RETチャネルに応じた測定項目とは網赤血球の数である。PLT-Fに応じた測定項目とは血小板の数である。WPCに応じた測定項目とは造血前駆細胞の数である。WNRに応じた測定項目とは白血球と有核赤血球の数である。計数結果は、上に列挙したような測定が要求されている項目(リポータブル項目ともいう)に限らず、同じ測定チャネルで測定可能な他の細胞の計数結果も含みうる。例えば測定チャネルがDIFFであれば、図4に示すように、白血球5分類に加えて、幼若顆粒球(IG)および異常細胞も計数結果に含まれる。さらにプロセッサ3001は、得られた計数結果を分析することで検体の検査結果を生成し、記憶部3004に格納する。計数結果の分析とは、例えば計数結果が正常値範囲内であるか、異常細胞が検出されていないか、前回の検査結果と比べて乖離が許容範囲内か、などを判断することを含む。
 プロセッサ3001は、生成した検査結果を表示部3015に表示する(ステップS4)。検査結果は、検査結果の元となる分析結果83に紐づけられた識別情報とともに表示される。具体的には、検査結果は、患者ID、検体ID、測定チャネル、装置IDとともに表示される。検査結果とともに表示される識別情報は、上記のうち少なくとも一つであってもよい。
 次に図25を参照して、ステップS21の細胞分類の処理について説明する。ステップS21の細胞分類の処理は、解析ソフトウェア111の動作に応じて、プロセッサ11が行う処理である。プロセッサ11は、ステップS13においてRAM14に取り込まれたデジタル信号を並列処理プロセッサ12に転送する(S101)。プロセッサ11は、図20に示されるように、DMA転送によって、RAM14からRAM122にデジタル信号を転送する。プロセッサ11は、例えば、バスコントローラ181を制御し、RAM14からRAM122にデジタル信号をDMA転送させる。
 プロセッサ11は、並列処理プロセッサ12に、デジタル信号に含まれる波形データに対する並列処理の実行を指示する(S102)。プロセッサ11は、例えば、並列処理プロセッサ12のカーネル関数を呼び出すことで、並列処理の実行を指示する。並列処理プロセッサ12で実行される処理は、図26に例示されたフローチャートで後述される。プロセッサ11は、例えば、深層学習アルゴリズム60に関する行列演算の実行を並列処理プロセッサ12に指示する。デジタル信号は複数の波形データに分解され、順次、深層学習アルゴリズム60に入力される。デジタル信号に含まれる、各細胞に対応するインデックスは深層学習アルゴリズム60には入力されない。深層学習アルゴリズム60に入力された波形データは、並列処理プロセッサ12によって演算される。
 プロセッサ11は、並列処理プロセッサ12によって実行された演算結果を受領する(S103)。演算結果は、例えば、図20に示されるように、RAM122からRAM14にDMA転送される。
 プロセッサ11は、並列処理プロセッサ12による演算結果に基づいて、測定された各々の細胞の細胞種別の解析結果を生成する(S104)。
 図26は、解析ソフトウェア111の指示に基づいて実行される並列処理プロセッサ12の演算処理の動作例を示す。
 解析ソフトウェア111を実行するプロセッサ11は、並列処理プロセッサ12に、演算ユニット121に対する演算処理の割り当てを実行させる(S110)。プロセッサ11は、例えば、並列処理プロセッサ12のカーネル関数を呼び出すことで、並列処理プロセッサ12に、演算ユニット121への演算処理の割り当てを実行させる。図20に示されるように、例えば、深層学習アルゴリズム60に関する行列演算が複数の演算処理に分割され、分割された各演算処理が演算ユニット121に割り当てられる。複数の波形データが、順次、深層学習アルゴリズム60に入力される。波形データに対応する行列演算が複数の演算処理に分割され、演算ユニット121に割り当てられる。
 各演算処理は、複数の演算ユニット121によって並列に処理される(S111)。演算処理は、複数の波形データに対して実行される。
 複数の演算ユニット121によって並列に処理されることで生成された演算結果は、RAM122からRAM14に転送される(S112)。例えば、演算結果は、RAM122からRAM14へ、DMAによって転送される。
 <第2の細胞測定装置と第2の細胞測定装置における生体試料の測定>
 第2の細胞測定装置4000’の構成例として、測定ユニット500が尿試料又は体液試料を測定するためのフローサイトメータである尿中有形成分分析装置または体液分析装置である場合のブロック図の例を示す。
 図27は、測定ユニット500のブロック図の例である。図27において、測定ユニット500は、検体分配部501、試料調製部502、光学検出部505、光学検出部505の出力信号(プリアンプにより増幅された出力信号)を増幅する増幅回路550、増幅回路550からの出力信号に対してフィルタ処理を行うフィルタ回路506、フィルタ回路506の出力信号(アナログ信号)をデジタル値に変換するA/D変換部507、デジタル値に対して所定の処理を行うデジタル値処理回路508と、デジタル値処理回路508に接続されたメモリ509と、検体分配部501、試料調製部502、増幅回路550、デジタル値処理回路508、及び記憶装置511aと接続されたマイクロコンピュータ511と、マイクロコンピュータ511に接続されたLAN(Local Area Network)アダプタ512とを備えている。
 処理ユニット300は、例えば、LANアダプタ512を介して測定ユニット500とLANケーブルにて接続されており、この処理ユニット300により、測定ユニット500で取得された測定データの分析が行われる。光学検出部505、増幅回路550、フィルタ回路506、A/D変換部507、デジタル値処理回路508、及びメモリ509は、測定試料を測定し、測定データを生成する光学測定部510を構成している。
 測定ユニット500は、LANアダプタ512を介してイントラネットワーク3又はインターネット6にアクセスし、細胞分析装置1と通信することができる。測定ユニット500は、取得した波形データを細胞分析装置1に送信する。測定ユニット500又は処理ユニット300は、波形データと識別情報とを対応付けて、細胞分析装置1に送信する。識別情報は、例えば、(1)波形データに対応する生体試料の識別情報、(2)波形データに対応する細胞の識別情報、(3)波形データに対応する患者の識別情報、(4)波形データに対応する検査の識別情報、(5)波形データが測定された細胞測定装置の識別情報、(6)波形データが測定された検査関連施設2の識別情報、が挙げられる。測定ユニット500は、例えば、LIS又は処理ユニット300から検査オーダーを受領する際に、LIS又は処理ユニット300から、上記識別情報(1)~(6)の少なくとも一つ又はそれらの組み合わせを取得できる。例えば、例示された(1)~(6)の少なくとも一つが、波形データと対応付けられて細胞分析装置1に送信される。例示された(1)~(6)の複数の組み合わせが、波形データと対応付けられて細胞分析装置1に送信されてもよい。
 図28は、測定ユニット500の光学検出部505の構成を示す図である。図28において、コンデンサレンズ552は、光源である半導体レーザ光源553から放射されたレーザ光をフローセル551に集光し、集光レンズ554は測定試料中の有形成分から発せられる前方散乱光を前方散乱光受光部555に集光する。また、他の集光レンズ556は有形成分から発せられる側方散乱光と蛍光とをダイクロイックミラー557に集光する。ダイクロイックミラー557は、側方散乱光を側方散乱光受光部558へ反射し、蛍光を蛍光受光部559の方へ透過させる。これらの光信号は、測定試料中の有形成分の特徴を反映する。そして、前方散乱光受光部555、側方散乱光受光部558及び蛍光受光部559は光信号を電気信号に変換し、それぞれ、前方散乱光信号、側方散乱光信号及び蛍光信号を出力する。これらの出力は、プリアンプにより増幅された後、次段の処理に供される。また、前方散乱光受光部555、側方散乱光受光部558及び蛍光受光部559のそれぞれは、駆動電圧を切り替えることにより、低感度出力と高感度出力との切り替えが可能である。この感度の切り替えは、マイクロコンピュータ511により行われる。本実施形態では、前方散乱光受光部555としてフォトダイオードが用いられ、側方散乱光受光部558及び蛍光受部55としてフォトマルチプライヤチューブを用いてもよいし、側方散乱光受光部558及び蛍光受光部559としてフォトダイオードを用いてもよい。なお、蛍光受光部559から出力された蛍光信号は、プリアンプにより増幅された後、分岐する二つの信号チャンネルに与えられる。二つの信号チャンネルは、それぞれ図27にて前述した増幅回路550に接続されている。一方の信号チャンネルに入力された蛍光は、増幅回路550により高感度に増幅される。
 (測定試料の調製)
 図29は、図27にて示した試料調製部502及び光学検出部505の概略機能構成を示す図である。図27及び図29に示した検体分配部501は、吸引管517とシリンジポンプとを備える。検体分配部501は、検体(尿又は体液)00bを、吸引管517を介して吸引し、試料調製部502へ分注する。試料調製部502は、反応槽512uと反応槽512bとを備えている。検体分配部501は、反応槽512u及び反応槽512bのそれぞれに定量された測定試料を分配する。
 反応槽512uにおいて、分配された生体試料は、希釈液としての第1試薬519u及び染料を含む第3試薬518uと混合される。第3試薬518uに含まれる色素により、生体試料中の有形成分が染色される。生体試料が尿の場合、この反応槽512uにおいて調製された試料は、赤血球、白血球、上皮細胞、腫瘍細胞等の比較的大きい尿中有形成分を分析するための第1測定試料として使用される。生体試料が体液の場合、反応槽512uにおいて調製された試料は、体液中の赤血球を分析するための第3測定試料として使用される。
 一方、反応槽512bにおいて、分配された生体試料は、希釈液としての第2試薬519b及び染料を含む第4試薬518bと混合される。後述するように、第2試薬519bは、溶血作用を有する。第4試薬518bに含まれる色素により、生体試料中の有形成分が染色される。生体試料が尿の場合、この反応槽512bにおいて調製された試料は、尿中の細菌を分析するための第2測定試料となる。生体試料が体液である場合において、反応槽512bにおいて調製された試料は、体液中の有核細胞(白血球及び大型細胞)及び細菌を分析するための第4測定試料となる。
 反応槽512uからは、光学検出部505のフローセル551へとチューブが延設されており、反応槽512uにおいて調製された測定試料がフローセル551へと供給可能となっている。また、反応槽512uの出口には、電磁弁521uが設けられている。反応槽512bからもチューブが延設されており、このチューブが反応槽2uから延びたチューブの途中に連結されている。これにより、反応槽512bにおいて調製された測定試料がフローセル551へと供給可能となっている。また、反応槽512uの出口には、電磁弁521bが設けられている。
 反応槽512u、512bからフローセル551まで延設されたチューブは、フローセル551の手前で分岐しており、その分岐先がシリンジポンプ520aに接続されている。また、シリンジポンプ520aと分岐点との間には、電磁弁521cが設けられている。
 反応槽512u、512bのそれぞれから延設されたチューブの接続点から、分岐点までの途中で、チューブはさらに分岐しており、その分岐先がシリンジポンプ520bに接続されている。また、シリンジポンプ520bへ延びるチューブの分岐点と、接続点との間には、電磁弁521dが設けられている。
 また、試料調製部502には、シース液を収容するシース液収容部522が接続されており、このシース液収容部522がチューブによってフローセル551に接続されている。シース液収容部522にはコンプレッサ522aが接続されており、コンプレッサ522aが駆動されると、シース液収容部522に圧縮空気が供給され、シース液収容部522からフローセル551へとシース液が供給される。
 反応槽512u、512bのそれぞれにおいて調製された2種類の懸濁液(測定試料)は、先に反応槽512uの懸濁液(生体試料が尿のときは第1測定試料。生体試料が体液のときは第3測定試料。)が光学検出部505に導かれ、フローセル551においてシース液に包まれた細い流れを形成し、そこに、レーザ光が照射される。その後同様に、反応槽512bの懸濁液(生体試料が尿のときは第2測定試料。生体試料が体液のときは第4測定試料。)が光学検出部505に導かれ、フローセル551において細い流れを形成し、レーザ光が照射される。このような動作は、マイクロコンピュータ511(制御部)の制御により、電磁弁521a、521b、521c、521d及び駆動部503等を動作させることで、自動的に行われる。
 第1試薬から第4試薬について詳細に説明する。第1試薬519uは、緩衝剤を主成分とする試薬であって、赤血球を溶血させずに安定した蛍光信号を得ることができるように浸透圧補償剤を含有しており、分類測定に適するような浸透圧となるよう100~600mOsm/kgに調整されている。第1試薬519uは、尿中の赤血球に対する溶血作用を有していないことが好ましい。
 第2試薬519bは、第1試薬519uと異なり、溶血作用を有している。これは、後述する第4試薬518bの細菌の細胞膜への通過性を高めて染色を早く進行させるためである。さらに、粘液糸、赤血球破片などの夾雑物を収縮させるためでもある。第2試薬519bは溶血作用を獲得するために界面活性剤を含む。界面活性剤は、アニオン、ノニオン、カチオンなど種々用いられるが、カチオン系界面活性剤が特に好適である。界面活性剤により細菌の細胞膜にダメージを与えることができるため、第4試薬518bが含有する色素により効率よく細菌の核酸を染色することができる。その結果、細菌の測定を短時間の染色処理で行うことができる。
 さらに他の実施形態として、第2試薬519bは、界面活性剤ではなく、酸性又は低pHに調整されることで溶血作用を獲得してもよい。低pHとは、第1試薬19uよりもpHが低いことをいう。第1試薬519uが中性若しくは弱酸性~弱アルカリ性の範囲内であるとき、第2試薬19bは酸性又は強酸性である。第1試薬519uのpHが6.0~8.0であるとき、第2試薬519bのpHは、それよりも低いpHであり、好ましくは2.0~6.0である。
 第2試薬519bは、界面活性剤を含み、かつ、低pHに調整されていてもよい。
 さらに他の実施形態として、第2試薬519bは、第1試薬19uよりも低い浸透圧にすることで、溶血作用を獲得してもよい。
 一方、第1試薬519uは界面活性剤を含んでいない。なお、他の実施形態としては、第1試薬519uは界面活性剤を含んでもよいが、赤血球を溶血させないように種類と濃度を調整する必要がある。よって、第1試薬519uは、第2試薬519bと同じ界面活性剤を含まないか、若しくは同じ界面活性剤を含んでいたとしても、第2試薬519bよりも低濃度であることが好ましい。
 第3試薬518uは、尿中有形成分(赤血球、白血球、上皮細胞、円柱等)の測定に用いられる染色試薬である。第3試薬518uが含む染料としては、核酸を有していない有形成分をも染色するために、膜染色をする染料が選ばれる。第3試薬518uは、好ましくは赤血球溶血を防ぐ目的及び安定した蛍光強度を得る目的のために浸透圧補償剤を含み、分類測定に適するような浸透圧となるよう100~600mOsm/kgに調整されている。第3試薬18uによって尿中有形成分の細胞膜、核(膜)が染色される。膜染色する色素を含有する染色試薬としては縮合ベンゼン誘導体が用いられ、例えば、シアニン系色素を用いることができる。なお、第3試薬18uは、細胞膜だけでなく核膜も染色するようになっている。第3試薬518uを用いると、白血球、上皮等の有核細胞では、細胞質(細胞膜)における染色強度と核(核膜)における染色強度とが合わさり、核酸を有しない尿中有形成分よりも染色強度が高くなる。これによって白血球及び上皮等の有核細胞を赤血球等の核酸のない尿中有形成分と弁別することができる。第3試薬として、米国5891733号公報に記載の試薬を用いることができる。米国5891733号公報は、参照により本明細書に組み込まれる。第3試薬518uは、第1試薬519uとともに尿又は体液と混合される。
 第4試薬518bは、細菌及び真菌と同等の大きさの夾雑物が含まれている検体であっても、細菌を精度良く測定しうる染色試薬である。第4試薬518bとしては、欧州出願公開1136563号公報に詳細な説明がある。第4試薬518bに含まれる染料としては核酸を染色する染料が好適に用いられる。核染色する色素を含有する染色試薬としては、例えば、米国特許7309581号のシアニン系色素を用いることができる。第4試薬518bは、第2試薬519bとともに尿又は検体と混合される。欧州出願公開1136563号公報及び米国特許7309581号は、参照により本明細書に組み込まれる。
 したがって、第3試薬518uは細胞膜を染色する色素を含有し、一方、第4試薬518bは核酸を染色する色素を含有していることが好ましい。尿中有形成分には、赤血球のような核を有しないものが含まれているため、第3試薬518uが細胞膜を染色する色素を含有することにより、このような核を有しないものも含めて尿中有形成分を検出することができる。また、第2試薬は細菌の細胞膜にダメージを与えることができるため、第4試薬18bが含有する色素により効率よく細菌及び真菌の核酸を染色することができる。その結果、細菌の測定を短時間の染色処理で行うことができる。
 図12及び図28に示すように、測定ユニット400又は測定ユニット500は、それぞれフローセル4113、551を備える。測定ユニット400又は測定ユニット500は、生体試料をフローセル4113、551に送液する。フローセル4113、551に供給された生体試料に、光源4112、553から光が照射され、生体試料中の細胞から発せられた前方散乱光、側方散乱光、及び側方蛍光を光検出部(4116、4121、4122、555、558、559)が検出する。光検出部(4116、4121、4122、555、558、559)から、細胞分析装置1に信号が送信されてもよい。細胞分析装置1は、光検出部(4116、4121、4122、555、558、559)が検出した前方散乱光、側方散乱光、及び側方蛍光から、それぞれの波形データを取得する。
 <機能ブロック及び処理手順>
 (深層学習処理)
 図30は、深層学習を行う細胞分析装置1の機能ブロックの例を示す。図30を参照すると、本実施形態に係る細胞分析装置1の処理部10は、訓練データ生成部101と、訓練データ入力部102と、アルゴリズム更新部103とを備える。これらの機能ブロックは、コンピュータに深層学習処理を実行させるプログラムを、処理部10の記憶部13にインストールし、このプログラムをプロセッサ11及び並列処理プロセッサ12が実行することにより実現される。訓練データデータベース(DB)104と、アルゴリズムデータベース(DB)105とは、処理部10の記憶部13又はRAM14に記録される。
 訓練用波形データ70a、70b、70cは、例えば、測定ユニット400、500によって予め取得され、処理部10の記憶部13又はRAM14に予め記憶されている。
 処理部10は、図31に示す処理を行う。図30に示す各機能ブロックを用いて説明すると、図31に示すステップS211、S214及びS216の処理は、訓練データ生成部101が行う。ステップS212の処理は、訓練データ入力部102が行う。ステップS213、及びS215の処理は、アルゴリズム更新部103が行う。
 図31を用いて、処理部10が行う深層学習処理の例について説明する。はじめに、処理部10は、訓練用波形データ70a、70b、70cを取得する。訓練用波形データ70aは前方散乱光の波形データであり、訓練用波形データ70bは側方散乱光の波形データであり、訓練用波形データ70cは側方蛍光の波形データである。訓練用波形データ70a、70b、70cの取得は、例えば、オペレータの操作によって、測定ユニット400、500から取り込まれるか、記録媒体から取り込まれるか、通信ネットワーク経由でインタフェース部490を介して行われる。訓練用波形データ70a、70b、70cを取得する際に、その訓練用波形データ70a、70b、70cが、いずれの細胞種別を示すものであるかの情報も取得される。いずれの細胞種別を示すものであるかの情報は、訓練用波形データ70a、70b、70cに紐付けられ、またオペレータが入力してもよい。
 ステップS211において、処理部10は、波形データ72a、72b、72cとラベル値77とから、訓練データ75を生成する。
 ステップS212において、処理部10は、訓練データ75を用いて、ニューラルネットワーク50を訓練する。ニューラルネットワーク50の訓練結果は複数の訓練データ75を用いて訓練する度に蓄積される。
 本実施形態に係る細胞種別の分析方法では、畳み込みニューラルネットワークを使用しており、確率的勾配降下法を用いるため、ステップS213において、処理部10は、予め定められた所定の試行回数分の訓練結果が蓄積されているか否かを判断する。訓練結果が所定の試行回数分蓄積されている場合(YES)、処理部10はステップS214の処理に進み、訓練結果が所定の試行回数分蓄積されていない場合(NO)、処理部10はステップS215の処理に進む。
 次に、訓練結果が所定の試行回数分蓄積されている場合、ステップS214において、処理部10は、ステップS212において蓄積しておいた訓練結果を用いて、ニューラルネットワーク50の結合重みwを更新する。本実施形態に係る細胞種別の分析方法では、確率的勾配降下法を用いるため、所定の試行回数分の学習結果が蓄積した段階で、ニューラルネットワーク50の結合重みwを更新する。結合重みwを更新する処理は、具体的には、後述の(式12)及び(式13)に示される、勾配降下法による計算を実施する処理である。
 ステップS215において、処理部10は、ニューラルネットワーク50を規定数の訓練データ75で訓練したか否かを判断する。規定数の訓練データ75で訓練した場合(YES)には、深層学習処理を終了する。
 ニューラルネットワーク50を規定数の訓練データ75で訓練していない場合(NO)には、処理部10は、ステップS215からステップS216に進み、次の訓練用波形データについてステップS211からステップS215までの処理を行う。
 以上で説明した処理にしたがって、ニューラルネットワーク50を訓練し深層学習アルゴリズム60を得る。
 (ニューラルネットワークの構造)
 上述したように、本実施形態において、畳み込みニューラルネットワークを用いる。図32(a)にニューラルネットワーク50の構造を例示する。ニューラルネットワーク50は、入力層50aと、出力層50bと、入力層50a及び出力層50bの間の中間層50cとを備え、中間層50cが複数の層で構成されている。中間層50cを構成する層の数は、例えば5層以上、好ましくは50層以上、より好ましくは100層以上とすることができる。
 ニューラルネットワーク50では、層状に配置された複数のノード89が、層間において結合されている。これにより、情報が入力側の層50aから出力側の層50bに、図中矢印Dに示す一方向のみに伝播する。
 (各ノードにおける演算)
 図32(b)は、各ノードにおける演算を示す模式図である。各ノード89では、複数の入力を受け取り、1つの出力(z)を計算する。図32(b)に示す例の場合、ノード89は4つの入力を受け取る。ノード89が受け取る総入力(u)は、例として以下の(式2)で表される。ここで、本実施形態においては、訓練データ75及び分析データ85として一次元の行数列データを用いるため、演算式の変数が二次元の行列データに対応する場合には、変数を一次元の行列データに対応するように変換する処理を行う。
Figure JPOXMLDOC01-appb-M000002
 各入力には、それぞれ異なる重みが掛けられる。(式2)中、bはバイアスと呼ばれる値である。ノードの出力(z)は、(式2)で表される総入力(u)に対する所定の関数fの出力となり、以下の(式3)で表される。関数fは活性化関数と呼ばれる。
Figure JPOXMLDOC01-appb-M000003
 図32(c)は、ノード間の演算を示す模式図である。ニューラルネットワーク50では、(式2)で表される、各ノード89の総入力(u)に対して、(式3)で表される結果(z)を出力するノードが層状に並べられている。前の層のノードの出力が、次の層のノードの入力となる。図32(c)に示す例では、図中左側の層のノード89aの出力が、図中右側の層のノード89bの入力となる。各ノード89bは、それぞれ、ノード89aからの出力を受け取る。各ノード89aと各ノード89bとの間の各結合には、異なる重みが掛けられる。複数のノード89aのそれぞれの出力をx1~x4とすると、3つのノード89bのそれぞれに対する入力は、以下の(式4-1)~(式4-3)で表される。
Figure JPOXMLDOC01-appb-M000004
 これら(式4-1)~(式4-3)を一般化すると、(式4-4)となる。ここで、i=1、・・・I、j=1、・・・Jである(Iは入力総数、Jは総出力数)。
Figure JPOXMLDOC01-appb-M000005
 (式4-4)を活性化関数に適用すると出力が得られる。出力は以下の(式5)で表される。
Figure JPOXMLDOC01-appb-M000006
 (活性化関数)
 実施形態に係る細胞種別の分析方法では、活性化関数として、正規化線形関数(rectified linear unit function)を用いる。正規化線形関数は以下の(式6)で表される。
Figure JPOXMLDOC01-appb-M000007
 (式6)は、z=uの線形関数のうち、u<0の部分をu=0とする関数である。図32(c)に示す例では、j=1のノードの出力は、(式6)により、以下の式で表される。
Figure JPOXMLDOC01-appb-M000008
 (ニューラルネットワークの学習)
 ニューラルネットワークを用いて表現される関数をy(x:w)とおくと、関数y(x:w)は、ニューラルネットワークのパラメータwを変化させると変化する。入力xに対してニューラルネットワークがより好適なパラメータwを選択するように、関数y(x:w)を調整することを、ニューラルネットワークの学習と呼ぶ。ニューラルネットワークを用いて表現される関数の入力と出力との組が複数与えられているとする。ある入力xに対する望ましい出力をdとすると、入出力の組は、{(x1、d1)、(x2、d2)、・・・、(xn、dn)}と与えられる。(x、d)で表される各組の集合を、訓練データと呼ぶ。具体的には、図3に示す、波形データ(前方散乱光波形データ、側方散乱光波形データ、蛍光波形データ)の集合が、図3に示す訓練データである。
 ニューラルネットワークの学習とは、どのような入出力の組(xn、dn)に対しても、入力xnを与えたときのニューラルネットワークの出力y(xn:w)が、出力dnになるべく近づくように重みwを調整することを意味する。誤差関数(error function)とは、ニューラルネットワークを用いて表現される関数と訓練データとの近さ
Figure JPOXMLDOC01-appb-M000009
を測る尺度である。誤差関数は損失関数(loss function)とも呼ばれる。実施形態に係る細胞種別の分析方法において用いる誤差関数E(w)は、以下の(式7)で表される。(式7)は交差エントロピー(cross entropy)と呼ばれる。
Figure JPOXMLDOC01-appb-M000010
 (式7)の交差エントロピーの算出方法を説明する。実施形態に係る細胞種別の分析方法において用いるニューラルネットワーク50の出力層50bでは、すなわちニューラルネットワークの最終層では、入力xを内容に応じて有限個のクラスに分類するための活性化関数を用いる。活性化関数はソフトマックス関数(softmax function)と呼ばれ、以下の(式8)で表される。なお、出力層50bには、クラス数kと同数のノードが並べられているとする。出力層Lの各ノードk(k=1、・・・、K)の総入力uは、前層L-1の出力から、uk(L)で与えられるとする。これにより、出力層のk番目のノードの出力は以下の(式8)で表される。
Figure JPOXMLDOC01-appb-M000011
 (式8)がソフトマックス関数である。(式8)で決まる出力y1、・・・、yKの総和は常に1となる。
 各クラスをC1、・・・、CKと表すと、出力層Lのノードkの出力yK(すなわちuk(L))は、与えられた入力xがクラスCKに属する確率を表す。以下の(式9)を参照されたい。入力xは、(式9)で表される確率が最大になるクラスに分類される。
Figure JPOXMLDOC01-appb-M000012
 ニューラルネットワークの学習では、ニューラルネットワークで表される関数を、各クラスの事後確率(posterior probability)のモデルとみなし、そのような確率モデルの下で、訓練データに対する重みwの尤度(likelihood)を評価し、尤度を最大化するような重みwを選択する。
 (式8)のソフトマックス関数による目標出力dnを、出力が正解のクラスである場合のみ1とし、出力がそれ以外の場合は0になるとする。目標出力をdn=[dn1、・・・、dnK]というベクトル形式で表すと、例えば入力xnの正解クラスがC3である場合、目標出力dn3のみが1となり、それ以外の目標出力は0となる。このように符号化すると、事後分布(posterior)は以下の(式10)で表される。
Figure JPOXMLDOC01-appb-M000013
 訓練データ{(xn、dn)}(n=1、・・・、N)に対する重みwの尤度L(w)は、以下の(式11)で表される。尤度L(w)の対数をとり符号を反転すると、(式7)の誤差関数が導出される。
Figure JPOXMLDOC01-appb-M000014
 学習は、訓練データを基に計算される誤差関数E(w)を、ニューラルネットワークのパラメータwについて最小化することを意味する。実施形態に係る細胞種別の分析方法では、誤差関数E(w)は(式7)で表される。
 誤差関数E(w)をパラメータwについて最小化することは、関数E(w)の局所的な極小点を求めることと同じ意味である。パラメータwはノード間の結合の重みである。重みwの極小点は、任意の初期値を出発点として、パラメータwを繰り返し更新する反復計算によって求められる。このような計算の一例には、勾配降下法(gradient descent method)がある。
 勾配降下法では、次の(式12)で表されるベクトルを用いる。
Figure JPOXMLDOC01-appb-M000015
 勾配降下法では、現在のパラメータwの値を負の勾配方向(すなわち-∇E)に移動させる処理を何度も繰り返す。現在の重みをw(t)とし、移動後の重みをw(t+1)とすると、勾配降下法による演算は、以下の(式13)で表される。値tは、パラメータwを移動させた回数を意味する。
Figure JPOXMLDOC01-appb-M000016
 記号
Figure JPOXMLDOC01-appb-M000017
は、パラメータwの更新量の大きさを決める定数であり、学習係数と呼ばれる。(式13)で表される演算を繰り返すことにより、値tの増加に伴って誤差関数E(w(t))が減少し、パラメータwは極小点に到達する。
 なお、(式13)による演算は、全ての訓練データ(n=1、・・・、N)に対して実施してもよく、一部の訓練データのみに対して実施してもよい。一部の訓練データのみに対して行う勾配降下法は、確率的勾配降下法(stochastic gradient descent)と呼ばれる。実施形態に係る細胞種別の分析方法では、確率的勾配降下法を用いる。
 [3.ディープラーニングモデルの構築]
 健常血液試料として健常人から採血した血液を測定し、非健常血液試料としてXN CHECK Lv2(ストレック社のコントロール血液(固定などの処理が行われている))をSysmex XN-1000でそれぞれ測定した。蛍光染色試薬にはシスメックス株式会社製のフルオロセルWDFを用いた。また溶血剤にはシスメックス株式会社製のライザセルWDFを用いた。それぞれの生体試料に含まれる細胞毎に、前方散乱光の測定開始から10ナノ秒間隔で前方散乱光、側方散乱光、及び側方蛍光の波形データを1024ポイントについて取得した。健常血液試料に関しては、8名の健常者から採血した血液中の細胞の波形データをデジタルデータとしてプールした。それぞれの細胞の波形データに対して好中球(NEUT)、リンパ球(LYMPH)、単球(MONO)、好酸球(EO)、好塩基球(BASO)、幼若顆粒球(IG)の分類を手動にて実施し、それぞれの波形データに細胞種別のアノテーション(ラベル付け)を付した。前方散乱光の信号強度が閾値を超えた時点を測定開始時点とし、前方散乱光、側方散乱光、側方蛍光の波形データの取得時点を同期させ、訓練データを生成した。またコントロール血液についてもコントロール血液由来細胞(CONT)とアノテーションを行った。深層学習アルゴリズムに訓練データを入力し、学習させた。
 学習した細胞データとは別の健常人の血液細胞についてSysmex XN-1000により訓練データと同様に分析用波形データを取得した。コントロール血液由来の波形データを混合し分析用データを作成した。この分析用データは、スキャッタグラム上では健常人由来の血球とコントロール血液由来の血球がオーバーラップして従来法では全く鑑別できなかった。この分析用データを構築した深層学習アルゴリズムに入力し、個々の細胞種別のデータを取得した。
 その結果を混合マトリックスとして図33に示す。横軸に構築した深層学習アルゴリズムによる判定結果を示し、縦軸にヒトによる手動(参照法)の判定結果を示す。構築した深層学習アルゴリズムによる判定結果は、好塩基球とリンパ球間、好塩基球とゴースト間で若干の混同を生じたものの、参照法による判手結果と98.8%の一致率を示した。
 次に各細胞種別について、ROC解析を行い、感度特異度を評価した。図34の(a)は好中球、図34の(b)はリンパ球、図34の(c)は単球、図35の(a)は好中球、図35の(b)は好塩基球、図35の(c)はコントロール血液(CONT)のROC曲線を示す。感度と特異度は、好中球はそれぞれ99.5%、99.6%、リンパ球はそれぞれ99.4%、99.5%、単球はそれぞれ98.5%、99.9%、好酸球はそれぞれ97.9%、99.8%、好塩基球はそれぞれ71.0%、81.4%、コントロール血液(CONT)は、99.8%、99.6%となり、いずれも良好な成績を示した。
 以上の結果から、波形データに基づいて生体試料に含まれる細胞から取得される信号に基づいて、深層学習アルゴリズムを用いることにより、高い分類精度で細胞種別を判定することが可能であることが明らかとなった。
 さらに、コントロール血液のような非健常血液細胞が健常血液細胞と混じっている場合、従来のスキャッタグラム法では、判定困難な場合があった。しかし、本実施形態の深層学習アルゴリズムを使用することにより、非健常血液細胞が健常血液細胞と混じっている場合であってもこれらの細胞の判定が可能であることが示された。
 [4.画像分析装置を用いた分析システム]
 細胞測定装置として画像分析装置を用いた実施形態を説明する。画像分析装置である細胞測定装置4000''は、撮像された画像データを分析することにより、撮像された細胞の細胞種別を推定する。
 細胞測定装置4000''は、図6~図9に例示されたシステム構成例と同様に細胞分析装置1に接続される。細胞測定装置4000''は、例えば、イントラネットワーク3を介して、細胞分析装置1に接続される。細胞測定装置4000''は、例えば、インタフェース部4を介して、細胞分析装置1に接続される。検査関連施設2の各々に設置された細胞測定装置4000''は、それぞれ、インターネット6を介して細胞分析装置1に接続されてもよい。
 図36に細胞測定装置4000''の構成例を示す。図36に示す細胞測定装置4000''は、測定ユニット700及び処理ユニット800を備えており、前処理装置900による前処理により調製された試料901を測定し、分析を行う。
 測定ユニット700は、フローセル710と、光源720~723と、集光レンズ730~733と、ダイクロイックミラー740~741と、集光レンズ750と、光学ユニット751と、集光レンズ752と、撮像部760と、を備えている。フローセル710の流路711には、試料701が流される。
 光源720~723は、フローセル710を流れる試料701に光を照射する。光源720~723は、例えば半導体レーザ光源により構成される。光源720~723からは、それぞれ波長λ11~λ14の光が出射される。 
 集光レンズ730~733は、光源720~723から出射された波長λ11~λ14の光をそれぞれ集光する。ダイクロイックミラー740は、波長λ11の光を透過させ、波長λ12の光を屈折させる。ダイクロイックミラー741は、波長λ11及びλ12の光を透過させ、波長λ13の光を屈折させる。こうして、波長λ11~λ14の光が、フローセル710の流路711を流れる試料701に照射される。なお、測定ユニット700が備える半導体レーザ光源の数は1以上であれば制限されない。半導体レーザ光源の数は、例えば、1、2、3、4、5又は6の中から選択することができる。
 フローセル710を流れる試料701が蛍光色素で染色されている場合、試料701に波長λ11~λ13の光が照射されると、細胞を染色している蛍光色素から蛍光が生じる。例えば、波長λ11、λ12、λ13に各々対応する波長λ21、λ22、λ23の蛍光が生じる。フローセル710を流れる試料701に波長λ14の光が照射されると、この光は細胞を透過する。細胞を透過した波長λ14の透過光は、明視野画像の生成に用いられる。
 集光レンズ750は、フローセル710の流路711を流れる試料701から生じた蛍光と、フローセル710の流路711を流れる試料701を透過した透過光とを集光する。光学ユニット751は、例えば、4枚のダイクロイックミラーが組み合わせられた構成を有する。光学ユニット751の4枚のダイクロイックミラーは、蛍光と透過光とを、互いに僅かに異なる角度で反射し、撮像部760の受光面上において分離させる。集光レンズ752は、蛍光と透過光とを集光する。
 撮像部760は、TDI(Time Delay Integration)カメラにより構成される。撮像部760は、蛍光と透過光とを撮像して、蛍光に対応した蛍光画像と、透過光に対応した明視野画像とを、撮像信号として処理ユニット800に出力できる。
 処理ユニット800は、ハードウェア構成として、処理部811、記憶部812、インタフェース部816、インタフェース部817、バス815を備える。処理部811、記憶部812、インタフェース部816、インタフェース部817は、バス815に接続されている。測定ユニット700の撮像部760が撮像した撮像信号で構成される画像データ(例えば、蛍光画像、明視野画像)は、インタフェース部816を介して、記憶部812に記憶される。処理部811は、記憶部812から画像データを読み出し、画像データをインタフェース部817を介して細胞分析装置1に送信する処理を行う。インタフェース部817は、例えば、USBインタフェースや、イントラネットワーク3やインターネット6に接続するためのインタフェースである。処理部811は、細胞分析装置1から送付された分析結果の処理を実行する。
 細胞分析装置1は、同一の検査関連施設2内の複数の細胞測定装置4000''から画像データを取得しうる。また、細胞分析装置1は、異なる検査関連施設2の各々に配置された複数の細胞測定装置4000''から画像データを取得しうる。画像データは、検査関連施設2の各々で検査された生体試料中の個々の細胞毎に取得される。従って、画像データを適切に管理しないと、例えば患者間・生体試料間・検査関連施設2間でのデータの取り違えが生じうる。そのため、処理ユニット200は、画像データと識別情報とを対応付けて、細胞分析装置1に送信する。識別情報は、例えば、(1)撮像信号に対応する生体試料の識別情報、(2)撮像信号に対応する細胞の識別情報、(3)撮像信号に対応する患者の識別情報、(4)撮像信号に対応する検査の識別情報、(5)撮像信号を取得した装置の識別情報、(6)撮像信号が取得された検査関連施設2の識別情報、が挙げられる。細胞測定装置4000''は、例えば、LIS又は処理ユニット200から検査オーダーを受領する際に、LIS又は処理ユニット200から、上記識別情報(1)~(6)の少なくとも一つ又はそれらの組み合わせを取得できる。例えば、例示された(1)~(6)の少なくとも一つが、画像データと対応付けられて細胞分析装置1に送信される。例示された(1)~(6)の複数の組み合わせが、画像データと対応付けられて細胞分析装置1に送信されてもよい。[5.撮像装置を用いた分析システム]
 細胞測定装置として撮像装置を用いた実施形態を説明する。撮像装置である細胞測定装置4000'''は、撮像された画像データを分析することにより、撮像された細胞の細胞種別を推定する。
 細胞測定装置4000'''は、図6~図9に例示されたシステム構成例によって細胞分析装置1に接続される。細胞測定装置4000'''は、例えば、イントラネットワーク3を介して、細胞分析装置1に接続される。細胞測定装置4000'''は、例えば、インタフェース部4を介して、細胞分析装置1に接続される。検査関連施設2の各々に設置された細胞測定装置4000'''は、それぞれ、インターネット6を介して細胞分析装置1に接続されてもよい。
 図37に細胞測定装置4000'''の構成例を示す。図37に示す細胞測定装置4000'''は、撮像素子301と、蛍光顕微鏡302とを備え、ステージ309上にセットされた訓練用の標本308の、明視野画像を撮像する。訓練用の標本308は、染色が施されている。細胞分析装置1は、細胞測定装置4000'''によって撮像された訓練用画像70を取得する。細胞分析装置1は、取得した訓練用画像70に基づいて、深層学習アルゴリズムの学習を行う。細胞分析装置1は、細胞測定装置4000'''によって撮像された分析対象画像78を取得する。細胞分析装置1は、取得した分析対象画像78を、深層学習アルゴリズムに基づいて分析する。
 細胞測定装置4000'''には、標本を撮像する機能を有する、公知の光学顕微鏡又はバーチャルスライドスキャナ等を用いることができる。
 細胞分析装置1は、同一の検査関連施設2内の複数の細胞測定装置4000'''から分析対象画像78を取得しうる。また、細胞分析装置1は、異なる検査関連施設2の各々に配置された複数の細胞測定装置4000'''から分析対象画像78を取得しうる。分析対象画像78は、検査関連施設2の各々で検査された生体試料中の個々の細胞毎に取得される。従って、分析対象画像78を適切に管理しないと、例えば患者間・生体試料間・検査関連施設2間でのデータの取り違えが生じうる。そのため、細胞測定装置4000'''は、分析対象画像78と識別情報とを対応付けて、細胞分析装置1に送信する。識別情報は、例えば、(1)撮像信号に対応する生体試料の識別情報、(2)撮像信号に対応する細胞の識別情報、(3)撮像信号に対応する患者の識別情報、(4)撮像信号に対応する検査の識別情報、(5)撮像信号を取得した装置の識別情報、(6)撮像信号が取得された施設の識別情報、が挙げられる。細胞測定装置4000'''は、例えば、LIS又はユーザから入力された検査オーダーを受領する際に、LIS又はユーザ入力から、上記識別情報(1)~(6)の少なくとも一つ又はそれらの組み合わせを取得できる。例えば、例示された(1)~(6)の少なくとも一つが、撮像信号と対応付けられて細胞分析装置1に送信される。例示された(1)~(6)の複数の組み合わせが、撮像信号と対応付けられて細胞分析装置1に送信されてもよい。
 <訓練データの生成>
 以下、本実施形態における訓練データの生成例を説明する。
 深層学習アルゴリズムを訓練するために使用される訓練用画像は、RGBカラー及びCMYカラー等で撮像されることが好ましい。カラー画像は、赤、緑及び青又はシアン、マゼンタ、イエロー等の各原色の濃淡又は輝度を、24ビットの値(8ビット×3色)で表すことが好ましい。訓練用画像は、少なくとも1つの色相と、その色相の濃淡又は輝度とを含んでいればよいが、少なくとも2つの色相と、それぞれ色相の濃淡又は輝度とを含むことがより好ましい。色相とその色相の濃淡又は輝度とを含む情報を色調ともいう。
 訓練用画像における各画素の色調情報が、例えば、RGBカラーから、輝度の情報と色相の情報を含むフォーマットに変換される。輝度の情報と色相の情報を含むフォーマットとして、YUV(YCbCr、YPbPr、YIQ等)等を挙げることができる。ここでは、YCbCrフォーマットへの変換を例として説明する。RGBカラーで撮像された訓練用画像は、輝度に基づく画像データ、第1の色相(例えば青色系)に基づく画像データ及び第2の色相(例えば、赤色系)に基づく画像データにそれぞれ変換される。RGBからYCbCrへの変換は公知の方法により行うことができる。例えば、RGBからYCbCrへは、国際規格ITU-R BT.601にしたがって変換できる。輝度に基づく画像データ、第1の色相に基づく画像データ及び第2の色相に基づく画像データはそれぞれ図38に示すように階調値の行列データとして表すことができる(以下、色調行列データ72y,72cb,72crともいう)。輝度に基づく画像データ、第1の色相に基づく画像データ、第2の色相に基づく画像データは、例えば、それぞれ0から255階調までの256階調で表される。ここで、輝度、第1の色相及び第2の色相に換えて、赤R、緑G、青Bの3原色や、シアンC、マゼンタM、イエローYの色の3原色で訓練用画像を変換してもよい。
 次に、色調行列データ72y,72cb,72crに基づいて、画素ごとに、輝度72y、第1の色相72cb、及び第2の色相72crの3つの階調値を組み合わせた色調ベクトルデータ74を生成する。
 次に、例えば、訓練用画像で分葉核好中球が撮像されていたとして、訓練用画像から生成される各色調ベクトルデータ74には、分葉核好中球であることを示すラベル値77として「1」が付与され、訓練データ75となる。図38では、便宜上、訓練データ75を3画素×3画素で表しているが、実際は訓練用画像を撮像した際の画素の分だけ色調ベクトルデータが存在する。
 図39にラベル値77の例を示す。ラベル値は、細胞種別及び各細胞の特徴の有無に応じて異なるラベル値77が付与される。
 <深層学習の概要>
 図38を例として、ニューラルネットワークの訓練の概要を説明する。ニューラルネットワーク50は、畳み込みニューラルネットワークであることが好ましい。ニューラルネットワーク50における入力層50aのノード数は、入力される訓練データ75の画素数と画像に含まれる輝度と色相の数(例えば上記例では、輝度72y、第1の色相72cb、及び第2の色相72crの3つ)との積に対応している。色調ベクトルデータ74はその集合72としてニューラルネットワーク50の入力層50aに入力される。訓練データ75の各画素のラベル値77を、ニューラルネットワークの出力層50bとして、ニューラルネットワーク50を訓練する。
 ニューラルネットワーク50は、訓練データ75に基づいて、形態学的な細胞種別や細胞の特徴について、特徴量を抽出する。ニューラルネットワークの出力層50bは、これらの特徴量を反映する結果を出力する。
 図38の符号50cは、中間層を示す。
 斯くして訓練されたニューラルネットワーク60を有する深層学習アルゴリズム60は、分析対象の細胞が、所定の細胞群に属し形態学的に分類される複数の細胞種別のいずれに該当するかを識別するための識別器として使用される。
 <画像の分析方法>
 図40に画像の分析方法の例を示す。画像の分析方法では、分析対象の細胞を撮像した分析用画像から分析データ81を生成する。分析用画像は、分析対象の細胞を撮像した画像である。
 例示的には、本実施形態において撮像装置における撮像は、RGBカラー及びCMYカラー等で行われることが好ましい。カラー画像は、赤、緑及び青又はシアン、マゼンタ、イエロー等の各原色の濃淡又は輝度を、24ビットの値(8ビット×3色)で表すことが好ましい。分析用画像は、少なくとも1つの色相と、その色相の濃淡又は輝度とを含んでいればよいが、少なくとも2つの色相と、それぞれ色相の濃淡又は輝度とを含むことがより好ましい。色相とその色相の濃淡又は輝度とを含む情報を色調ともいう。
 例えば、RGBカラーから、輝度の情報と色相の情報を含むフォーマットに変換する。輝度の情報と色相の情報を含むフォーマットとして、YUV(YCbCr、YPbPr、YIQ等)等を挙げることができる。ここでは、YCbCrフォーマットへの変換を例として説明する。ここでは、RGBカラーの訓練用画像は、輝度に基づく画像データ、第1の色相(例えば青色系)に基づく画像データ及び第2の色相(例えば、赤色系)に基づく画像データに変換される。RGBから、YCbCrへの変換は公知の方法により行うことができる。例えば、RGBから、YCbCrへは、国際規格ITU-R BT.601にしたがって変換できる。輝度、第1の色相及び第2の色相の各々に対応する画像データは、それぞれ図40に示すように階調値の行列データとして表すことができる(以下、色調行列データ79y,79cb,79crともいう)。輝度、第1の色相及び第2の色相72Crは、それぞれ0から255階調までの256階調で表される。ここで、輝度、第1の色相、第2の色相に換えて、赤R、緑G、青Bの3原色や、シアンC、マゼンタM、イエローYの色の3原色で訓練用画像を変換してもよい。
 次に、色調行列79y,79cb,79crに基づいて、画素ごとに、輝度79y、第1の色相79cb、及び第2の色相79crの3つの階調値を組み合わせた色調ベクトルデータ80を生成する。1枚の分析用画像から生成された色調ベクトルデータ80の集合を分析データ81として生成する。
 分析データ81の生成と訓練データ75の生成は、少なくとも撮像条件や、各画像からニューラルネットワークに入力するベクトルデータの生成条件を同じにすることが好ましい。
 分析データ81を訓練済みの深層学習アルゴリズム60を構成するニューラルネットワーク60の入力層60aに入力する。深層学習アルゴリズムは、分析データ81から特徴量を抽出し、その結果をニューラルネットワーク60の出力層60bから出力する。出力層60bから出力される値は、訓練データとして入力された形態学的な細胞の分類や特徴のそれぞれに、分析用画像に含まれる分析対象の細胞が属する確率である。
 この確率の中で、値が最も高い形態学的分類に、分析用画像に含まれる分析対象の細胞が属すると判断し、その形態学的な細胞種別又は細胞の特徴をと紐付けられたラベル値が出力される。ラベル値そのもの、あるいはラベル値を形態学的な細胞種別又は細胞の特徴の有無を示す情報(例えば用語等)に置き換えたデータが細胞の形態に関する分析結果83として出力される。図40では分析データ81から、識別器によってラベル値「1」が最も可能性が高いラベル値82として出力され、このラベル値に対応する「分葉核好中球」という文字データが、細胞の形態に関する分析結果83として出力される。
 図40の符号60cは、中間層を示す。
 [5.その他の形態]
 以上、本発明を概要及び特定の実施形態によって説明したが、本発明は上記した概要及び各実施形態に限定されるものではない。
 上記の実施形態では、訓練データ生成部101、訓練データ入力部102、アルゴリズム更新部103、分析データ生成部201、分析データ入力部202、及び分析部203の各機能ブロックは、単一のプロセッサ11及び単一の並列処理プロセッサ12において実行されているが、これら各機能ブロックは単一のプロセッサ及び並列処理プロセッサにおいて実行される必要は必ずしもなく、複数のプロセッサ及び複数の並列処理プロセッサで分散して実行されてもよい。
 上記の実施形態では、図31で説明する各ステップの処理を行うためのプログラムを記憶部13に予め記録している。これに代えて、プログラムは、例えばDVD-ROMやUSBメモリ等の、コンピュータ読み取り可能であって非一時的な有形の記録媒体98から記憶部13にインストールしてもよい。又は、細胞分析装置1を通信ネットワーク99と接続し、通信ネットワーク99を介して例えば外部のサーバ(図示せず)からプログラムをダウンロードしてインストールしてもよい。
 図41に、分析結果の一実施形態を示す。図41では、フローサイトメトリーで測定された生体試料中に含まれる、図4で示したラベル値を付与した細胞種別とそれぞれの細胞数の種別の細胞数が示されている。細胞数の表示に代えて、あるいは細胞数の表示とともに、カウントした細胞数全体における各細胞種別の割合(例えば%)を出力してもよい。細胞数のカウントは、出力された各細胞種別に対応するラベル値の数(同じラベル値の数)を係数することにより求めることができる。また、出力結果には、生体試料中に異常細胞が含まれることを示す警告が出力されてもよい。図41では異常細胞の項に警告として感嘆符が付されている例を示しているがこれに限られない。さらに、各細胞腫の分布をスキャッタグラムそして出力してもよい。スキャッタグラムとして出力する際には、例えば信号強度を取得した際の最も高い値を、例えば、側方蛍光強度を縦軸とし、側方散乱光強度を横軸としてプロットすることができる。
1 細胞分析装置
10 処理部
11、3001、4831 プロセッサ(ホストプロセッサ)
12 並列処理プロセッサ
50 訓練前の深層学習アルゴリズム(人工知能アルゴリズム)
60 訓練済み深層学習アルゴリズム(人工知能アルゴリズム)
400、500、700 測定ユニット
121 演算ユニット
4000、4000’、4000''、4000''' 細胞測定装置

Claims (25)

  1.  人工知能アルゴリズムによって細胞を分析する細胞分析装置において、
     細胞測定装置によって測定された細胞に関するデータを取得し、
     前記データを分析して、前記細胞の各々について細胞種別に関する情報を生成し、
     前記情報を前記細胞測定装置に送信する、
     ことを含む細胞分析方法。
  2.  前記細胞測定装置は、フローサイトメータによって細胞を測定する、
     請求項1に記載の細胞分析方法。
  3.  前記データは、細胞に光を照射することにより検出される光学的信号に関するデータである、
     請求項1または2に記載の細胞分析方法。
  4.  前記データは、細胞をフローサイトメータによって測定して得られる信号の波形をデジタル変換した波形データである、
     請求項1から3のいずれか1項に記載の細胞分析方法。
  5.  前記データは、細胞の画像データである、
     請求項1から3のいずれか1項に記載の細胞分析方法。
  6.  前記細胞分析装置は、前記細胞測定装置とネットワークを介して接続され、
     前記ネットワーク経由で前記データを受信し、
     前記ネットワーク経由で前記情報を送信する、
     請求項1から5のいずれか1項に記載の細胞分析方法。
  7.  前記細胞分析装置は、複数の前記細胞測定装置とネットワークを介して接続され、
     前記ネットワーク経由で、複数の前記細胞測定装置から前記データを受信し、
     前記ネットワーク経由で、複数の前記細胞測定装置のうちの一の細胞測定装置に前記情報を送信する、
     請求項1から5のいずれか1項に記載の細胞分析方法。
  8.  前記細胞分析装置と同一の施設に配置された前記細胞測定装置から、前記データを取得する、
     請求項1から7のいずれか1項に記載の細胞分析方法。
  9.  前記細胞分析装置と同一のネットワークドメインに配置された前記細胞測定装置から、前記データを取得する、
     請求項1から8のいずれか1項に記載の細胞分析方法。
  10.  前記細胞分析装置と異なるネットワークドメインに配置された前記細胞測定装置から、前記データを取得する、
     請求項1から9のいずれか1項に記載の細胞分析方法。
  11.  前記細胞分析装置と異なるネットワークドメインに配置された前記細胞測定装置から、前記細胞測定装置の装置IDと対応付けて前記データを取得する、
     請求項1から9のいずれか1項に記載の細胞分析方法。
  12.  前記細胞分析装置は、ホストプロセッサと並列処理プロセッサとを備え、前記データを分析するための複数の演算処理を、前記並列処理プロセッサに並列に実行させる、
     請求項1から11のいずれか1項に記載の細胞分析方法。
  13.  前記並列処理プロセッサは、
      前記データの分析に関する演算処理を実行可能な演算ユニットを複数有し、
      並列処理として、前記演算ユニットの各々による前記演算処理を並列に実行する、
     請求項12のいずれか1項に記載の細胞分析方法。
  14.  前記人工知能アルゴリズムは、深層学習アルゴリズムである、
     請求項1から13のいずれか1項に記載の細胞分析方法。
  15.  前記情報は、前記細胞種別を識別するための識別子を含む、
     請求項1から14のいずれか1項に記載の細胞分析方法。
  16.  前記情報は、前記細胞が複数の前記細胞種別の各々に属する確率を含む、
     請求項1から15のいずれか1項に記載の細胞分析方法。
  17.  前記細胞測定装置から取得されたデータには識別情報が付されており、
     前記識別情報は、前記データに対応する検体の識別情報、前記データに対応する患者の識別情報、及び、前記データに対応する細胞測定装置の識別情報の少なくともいずれかを含む、
     請求項1から16のいずれか1項に記載の細胞分析方法。
  18.  前記人工知能アルゴリズムは、深層学習アルゴリズムであり、
     前記細胞分析装置は、ホストプロセッサと並列処理プロセッサとを備え、前記ホストプロセッサは、前記深層学習アルゴリズムにおける畳み込み層における複数の演算処理を前記並列処理プロセッサに並列に実行させる、
     請求項1から17のいずれか1項に記載の細胞分析方法。
  19.  前記並列処理プロセッサは、
      前記データの分析に関する演算処理を実行可能な演算ユニットを少なくとも10個有し、
      並列処理として、前記演算ユニットの各々による前記演算処理を並列に実行する、
     請求項18に記載の細胞分析方法。
  20.  前記並列処理プロセッサは、
      前記データの分析に関する演算処理を実行可能な演算ユニットを少なくとも100個有し、
      並列処理として、前記演算ユニットの各々による前記演算処理を並列に実行する、
     請求項19に記載の細胞分析方法。
  21.  前記並列処理プロセッサは、
      前記データの分析に関する演算処理を実行可能な演算ユニットを少なくとも1000個有し、
      並列処理として、前記演算ユニットの各々による前記演算処理を並列に実行する、
     請求項20に記載の細胞分析方法。
  22.  前記並列処理プロセッサは、少なくとも1ギガバイトの容量を有するメモリから読み出された前記データを入力とし、並列処理を実行する、
     請求項21に記載の細胞分析方法。
  23.  人工知能アルゴリズムによって細胞を分析する細胞分析装置であって、
     前記細胞分析装置は、処理部を備え、
     前記処理部は、細胞測定装置によって測定された細胞に関するデータを取得し、
     前記データを分析して、前記細胞の各々について細胞種別に関する情報を生成し、
     前記情報を前記細胞測定装置に送信する、
     細胞分析装置。
  24.  細胞測定装置によって細胞を測定して細胞のデータを取得し、
     前記データを、人工知能アルゴリズムによって細胞を分析する細胞分析装置に送信し、
     前記細胞分析装置が前記人工知能アルゴリズムにしたがって前記データを分析して得られた、前記細胞の細胞種別に関する情報を取得する、
     ことを含む細胞分析方法。
  25.  検体に含まれる細胞を細胞分析装置により分析する細胞分析方法であって、
     複数の細胞測定装置から、細胞に関するデータを識別情報と対応付けて取得し、
     前記データを並列処理プロセッサによる並列処理によって分析し、
     前記並列処理の結果に基づき、複数の細胞の各々について細胞種別に関する情報を、前記識別情報と対応付けて生成する、
     ことを含む細胞分析方法。
PCT/JP2021/031655 2020-09-18 2021-08-30 細胞分析方法及び細胞分析装置 WO2022059468A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180049739.XA CN115803622A (zh) 2020-09-18 2021-08-30 细胞分析方法以及细胞分析装置
EP21869155.8A EP4215902A1 (en) 2020-09-18 2021-08-30 Cell analysis method and cell analysis device
US18/185,814 US20230221238A1 (en) 2020-09-18 2023-03-17 Cell analysis method and cell analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-157931 2020-09-18
JP2020157931A JP2022051448A (ja) 2020-09-18 2020-09-18 細胞分析方法及び細胞分析装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/185,814 Continuation US20230221238A1 (en) 2020-09-18 2023-03-17 Cell analysis method and cell analyzer

Publications (1)

Publication Number Publication Date
WO2022059468A1 true WO2022059468A1 (ja) 2022-03-24

Family

ID=80776158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031655 WO2022059468A1 (ja) 2020-09-18 2021-08-30 細胞分析方法及び細胞分析装置

Country Status (5)

Country Link
US (1) US20230221238A1 (ja)
EP (1) EP4215902A1 (ja)
JP (1) JP2022051448A (ja)
CN (1) CN115803622A (ja)
WO (1) WO2022059468A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199919A1 (ja) * 2022-04-15 2023-10-19 シンクサイト株式会社 フローサイトメータ、判別方法、及びプログラム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506179A (ja) * 1993-01-21 1996-07-02 サイエンティフィック ジェネリクス リミテッド 分析/分離方法
US5891733A (en) 1994-10-20 1999-04-06 Toa Medical Electronics Co., Ltd. Reagent for analyzing solid components in urine and method for analyzing solid components by employing the same
EP1136563A2 (en) 2000-03-22 2001-09-26 Sysmex Corporation Method of staining, and detecting and counting bacteria
US7309581B2 (en) 2000-11-01 2007-12-18 Sysmex Corporation Method of staining, detection and counting bacteria, and a diluent for bacterial stain
JP2011515655A (ja) * 2008-02-08 2011-05-19 ヘルス ディスカバリー コーポレイション サポートベクタマシンを用いてフローサイトメトリーデータを分析するための方法及びシステム
JP2012519848A (ja) 2009-03-04 2012-08-30 ベックマン コールター, インコーポレイテッド 細胞集団識別のための機器間の方法およびシステム
US20170052106A1 (en) * 2014-04-28 2017-02-23 The Broad Institute, Inc. Method for label-free image cytometry
JP2018505392A (ja) * 2014-12-10 2018-02-22 ネオゲノミクス ラボラトリーズ, インコーポレイテッド 自動化されたフローサイトメトリ分析方法及びシステム
US20180247195A1 (en) * 2017-02-28 2018-08-30 Anixa Diagnostics Corporation Methods for using artificial neural network analysis on flow cytometry data for cancer diagnosis
WO2018203568A1 (ja) * 2017-05-02 2018-11-08 シンクサイト株式会社 細胞評価システム及び方法、細胞評価プログラム
US20200105376A1 (en) * 2018-10-01 2020-04-02 FlowJo, LLC Deep learning particle classification platform

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506179A (ja) * 1993-01-21 1996-07-02 サイエンティフィック ジェネリクス リミテッド 分析/分離方法
US5891733A (en) 1994-10-20 1999-04-06 Toa Medical Electronics Co., Ltd. Reagent for analyzing solid components in urine and method for analyzing solid components by employing the same
EP1136563A2 (en) 2000-03-22 2001-09-26 Sysmex Corporation Method of staining, and detecting and counting bacteria
US7309581B2 (en) 2000-11-01 2007-12-18 Sysmex Corporation Method of staining, detection and counting bacteria, and a diluent for bacterial stain
JP2011515655A (ja) * 2008-02-08 2011-05-19 ヘルス ディスカバリー コーポレイション サポートベクタマシンを用いてフローサイトメトリーデータを分析するための方法及びシステム
JP2012519848A (ja) 2009-03-04 2012-08-30 ベックマン コールター, インコーポレイテッド 細胞集団識別のための機器間の方法およびシステム
US20170052106A1 (en) * 2014-04-28 2017-02-23 The Broad Institute, Inc. Method for label-free image cytometry
JP2018505392A (ja) * 2014-12-10 2018-02-22 ネオゲノミクス ラボラトリーズ, インコーポレイテッド 自動化されたフローサイトメトリ分析方法及びシステム
US20180247195A1 (en) * 2017-02-28 2018-08-30 Anixa Diagnostics Corporation Methods for using artificial neural network analysis on flow cytometry data for cancer diagnosis
WO2018203568A1 (ja) * 2017-05-02 2018-11-08 シンクサイト株式会社 細胞評価システム及び方法、細胞評価プログラム
US20200105376A1 (en) * 2018-10-01 2020-04-02 FlowJo, LLC Deep learning particle classification platform

Also Published As

Publication number Publication date
JP2022051448A (ja) 2022-03-31
US20230221238A1 (en) 2023-07-13
EP4215902A1 (en) 2023-07-26
CN115803622A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
JP6942148B2 (ja) 試料に対する光学測定の実施
CN105143849B (zh) 用于血液样品中粒子分析的动态范围扩展系统和方法
WO2020196074A1 (ja) 細胞の分析方法、深層学習アルゴリズムの訓練方法、細胞分析装置、深層学習アルゴリズムの訓練装置、細胞の分析プログラム及び深層学習アルゴリズムの訓練プログラム
US20090225319A1 (en) Methods of using optofluidic microscope devices
US20180284008A1 (en) Flow cytometer and particle detection method
EP3382393A1 (en) Device and method to select an antibody cocktail reagent
JP2002516982A (ja) 抗凝固全血静止サンプルの分析
WO2024001155A1 (zh) 基于显微放大数字图像的血液细胞分析方法及系统
Schapkaitz et al. Performance evaluation of the new measurement channels on the automated Sysmex XN-9000 hematology analyzer
US20230221238A1 (en) Cell analysis method and cell analyzer
JP5480559B2 (ja) 細菌分析装置、細菌分析方法及びコンピュータプログラム
US20100129855A1 (en) Blood cell analyzer, blood cell analyzing method, and computer program product
WO2021077327A1 (zh) 分析血液样本中红细胞方法及血液分析系统
WO2022059467A1 (ja) 細胞分析方法及び細胞分析装置
JP2022023093A (ja) 試薬選択支援装置、方法、プログラムおよび記録媒体並びに試料測定装置
CN116685852A (zh) 使用参数检测医疗状况、严重性、风险和敏度
US20230338953A1 (en) Specimen analyzer, specimen analysis method, and program
JP2023137001A (ja) 検体分析装置、検体分析方法およびプログラム
JP2023137000A (ja) 検体分析装置、検体分析方法およびプログラム
JPH10104229A (ja) 有形成分分析装置
WO2021200977A1 (ja) 疾患鑑別支援方法、疾患鑑別支援装置、及び疾患鑑別支援コンピュータプログラム
Tárnok et al. Immunophenotyping using a laser scanning cytometer
JPS6370167A (ja) フロ−サイトメトリ−による白血球分類に使用される試薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023106378

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021869155

Country of ref document: EP

Effective date: 20230418