WO2022059051A1 - 3d点群の座標を変換する装置、方法及びプログラム - Google Patents

3d点群の座標を変換する装置、方法及びプログラム Download PDF

Info

Publication number
WO2022059051A1
WO2022059051A1 PCT/JP2020/034819 JP2020034819W WO2022059051A1 WO 2022059051 A1 WO2022059051 A1 WO 2022059051A1 JP 2020034819 W JP2020034819 W JP 2020034819W WO 2022059051 A1 WO2022059051 A1 WO 2022059051A1
Authority
WO
WIPO (PCT)
Prior art keywords
origin
coordinates
point cloud
measured
absolute coordinates
Prior art date
Application number
PCT/JP2020/034819
Other languages
English (en)
French (fr)
Inventor
雅晶 井上
博之 押田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022550054A priority Critical patent/JP7409517B2/ja
Priority to PCT/JP2020/034819 priority patent/WO2022059051A1/ja
Publication of WO2022059051A1 publication Critical patent/WO2022059051A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • the present disclosure relates to a coordinate conversion device for a 3D point cloud, a coordinate conversion method, and a coordinate conversion program.
  • Optical and telecommunications services are provided by connecting physical equipment from the customer's home to the station building.
  • equipment maintenance work is required, and maintenance workers go to the site and visually inspect individually in order to grasp the state of communication equipment such as utility poles and cables. , I have judged the quality of the equipment.
  • MMS Mobile Mapping System
  • the technology is an inspection equipped with a three-dimensional laser scanner (three-dimensional laser surveying instrument), a camera, a GPS (Global Positioning System) receiver, an IMU (Inertial Measurement unit), and an odometer (mileage meter).
  • a vehicle travel in the city while performing 3D laser scanning and image capture, perform 3D survey of columnar structures including electric columns, and collect 3D point group data including absolute coordinates and reflection intensity. do.
  • a fixed 3D laser scanner fixes a fixed base such as a tripod to the ground, installs the 3D laser surveying instrument on the fixed base, and the 3D laser surveying instrument is between 0 ° and 360 ° with respect to the ground.
  • a 3D point group that emits a laser that rotates horizontally and vertically with respect to the ground, and includes the relative coordinates and reflection intensity of the equipment to be detected from the reflected light of the laser from natural objects including the equipment to be measured. Get the data.
  • Deterioration by creating a 3D model of the electric pole based on the point cloud data acquired by the 3D laser scanner provided on the inspection vehicle or a fixed base such as a tripod, and calculating the deflection vector of the electric pillar from the 3D model. To judge.
  • the conventional technology stores data in a unique format for each means of acquiring a 3D point cloud. From the user's point of view, centralized data management is desired in order to use 3D point cloud data in the same business. If the object of interest is the position information in the three-dimensional space, the XYZ coordinate information may be extracted and centrally managed.
  • the above-mentioned fixed 3D laser scanner is a set of relative coordinates centered on the origin, and the correct position information is displayed on the three-dimensional space by simply superimposing the absolute coordinates acquired by MMS on the 3D point cloud data. It is not possible. That is, the problem to be solved by the present invention is to convert the 3D point cloud data acquired in relative coordinates into absolute coordinates and superimpose each data to realize unified management.
  • the purpose of this disclosure is to convert the point cloud data acquired by the fixed 3D laser scanner into absolute coordinates and to enable centralized management with the point cloud data acquired by using another means such as MMS.
  • the coordinate conversion device for the 3D point cloud of the present disclosure is The object to be measured existing in the three-dimensional space acquires the first point group data represented by a point group having relative coordinates centered on a predetermined origin, and the absolute coordinates of the origin, and obtains the absolute coordinates of the origin.
  • the origin coordinate conversion processing unit that converts the coordinates to the relative coordinates with the absolute coordinates as the origin, Using the point cloud, the measured object reference coordinate calculation unit that specifies the reference point of the measured object at the relative coordinates having the origin of the absolute coordinates, and The absolute coordinates of the reference point of the object to be measured are obtained using the absolute coordinates of the origin, and the object to be measured is obtained from the reference point of the object to be measured in relative coordinates having the origin of the absolute coordinates centered on the origin of the absolute coordinates.
  • a rotation coordinate conversion calculation unit that calculates the rotation angle of the reference point to the absolute coordinates and converts the coordinates of the point group of relative coordinates having the origin of the absolute coordinates to the absolute coordinates using the calculated rotation angle. To prepare for.
  • the coordinate conversion method of the 3D point cloud of the present disclosure is as follows.
  • the object to be measured existing in the three-dimensional space acquires the first point cloud data represented by a point cloud having relative coordinates centered on a predetermined origin, and the absolute coordinates of the origin, and obtains the absolute coordinates of the origin. Convert each coordinate to a relative coordinate with the absolute coordinate as the origin, Using the point cloud, the reference point of the object to be measured at the relative coordinates having the origin of the absolute coordinates is specified.
  • the absolute coordinates of the reference point of the object to be measured are obtained using the absolute coordinates of the origin, and the object to be measured is obtained from the reference point of the object to be measured in relative coordinates having the origin of the absolute coordinates centered on the origin of the absolute coordinates.
  • the rotation angle of the reference point to the absolute coordinates is calculated, and the calculated rotation angle is used to convert the coordinates of the relative coordinate point group having the origin of the absolute coordinates to the absolute coordinates.
  • the coordinate conversion program of the 3D point cloud of the present disclosure is a program for realizing a computer as each functional unit provided in the apparatus according to the present disclosure, and each step provided in the communication method executed by the apparatus according to the present disclosure is provided to the computer. It is a program to be executed.
  • the point cloud acquired by the fixed 3D laser scanner can be correctly superimposed on the 3D point cloud data of absolute coordinates, and the point cloud data acquired by different means such as MMS can be centrally managed. It will be possible.
  • FIG. 1 shows an example of the system configuration of the present disclosure.
  • the system of the present disclosure includes a coordinate conversion device 10, a tripod-fixed 3D scanner 11, a GNSS surveying instrument 16, and an MMS 15.
  • the coordinate conversion device 10 converts the first point cloud data of the relative coordinates obtained by using the tripod fixed 3D scanner 11 into absolute coordinates, and superimposes it on the second point cloud data of the absolute coordinates acquired by using the MMS 15. do.
  • 12 is the relative coordinate origin of the tripod fixed 3D scanner
  • 13 is the object to be measured
  • 14 is the relative center coordinate of the object to be measured.
  • the coordinate conversion device 10 includes a storage unit 18 for storing 3D coordinate information, an arithmetic processing unit 112, and a result display unit 117.
  • the storage unit 18 stores the 3D point cloud data A (relative coordinates) 19 acquired by the tripod fixed 3D scanner, the origin (absolute coordinates) 110 of the GNSS scanner, and the 3D point cloud data B (absolute coordinates) 111 acquired by the MMS 15.
  • the calculation processing unit 112 includes an origin coordinate conversion processing unit 113, a measured object center coordinate calculation unit 114, a rotation coordinate conversion calculation unit 115, and a point group superimposition processing unit 116.
  • the coordinate conversion device 10 can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • the tripod-fixed 3D scanner 11 is a three-dimensional laser scanner, and acquires point cloud data in which the object 13 existing in the three-dimensional space is represented by a point cloud.
  • a point cloud having relative coordinates with the installation position of the tripod-fixed 3D scanner 11 as the origin is acquired.
  • the acquired 3D point cloud is stored in the storage unit 18 as 3D point cloud data A (relative coordinates) 19.
  • the absolute coordinate origin 110 of the GNSS surveying instrument is acquired by the GNSS surveying instrument 16 installed at the same position as the tripod fixed type 3D scanner 11, and is also stored in the storage unit 18 as the origin (absolute coordinate) 110.
  • the relative coordinate origin 12 and the absolute coordinate origin 110 of the GNSS surveying instrument are at the same position.
  • the 3D point cloud data A (relative coordinates) 19 and the origin (absolute coordinates) 110 are passed to the origin coordinate conversion processing unit 113.
  • the origin coordinate conversion processing unit 113 translates the entire point cloud of the 3D point cloud data A (relative coordinates) 19 so that the origin (absolute coordinates) 110 is at the center, and converts the origin coordinates.
  • the relative coordinate origin 12 after the origin coordinate conversion shows the same coordinate information as the origin (absolute coordinate) 110.
  • the coordinate-converted 3D point cloud data A is passed to the object center coordinate calculation unit 114.
  • the measured object center coordinate calculation unit 114 specifies the absolute coordinates of the center of the measured object 13 based on the origin of the plurality of coordinate-converted 3D point cloud data A and the relative center coordinates 14 of the measured object 13.
  • the measured object center coordinate calculation unit 114 functions as a measured object reference coordinate calculation unit.
  • the position of the object to be measured 13 is the relative center coordinate 14, but the position of the object to be measured 13 is not limited to the center of the object to be measured 13 and is one point on the circumference of the object to be measured 13. It can be any reference point that can specify the position of the object to be measured 13.
  • the absolute coordinates and relative center coordinates 14 of the center of the object to be measured 13, and the origin of the coordinate-converted 3D point cloud data A are passed to the rotation coordinate conversion calculation unit 115.
  • the rotation coordinate conversion calculation unit 115 converts the coordinates so that the relative center coordinates 14 are the same as the absolute coordinates of the center of the object to be measured 13, and the relative center coordinates 14 are the same as the absolute coordinates of the center of the object to be measured 13.
  • the 3D point group data A is rotated around the origin 110 at an angle of rotation such that. As a result, the entire point cloud is converted into absolute coordinates.
  • the 3D point cloud data A converted to the absolute coordinates is passed to the point cloud superimposition processing unit 116, and the 3D point cloud data B (absolute coordinates) acquired by the MMS 15 is also passed.
  • the point cloud superimposition processing unit 116 matches the 3D point cloud data A converted to absolute coordinates and the 3D point cloud data B (absolute coordinates) into the same data format and integrates them.
  • the result display unit 117 displays the superposition result of the point cloud superimposition processing unit 116.
  • the origin coordinate conversion processing unit 113 converts the origin coordinates by adding the origin (absolute coordinates) 110 to the 3D point cloud data A (relative coordinates) 19.
  • the 3D point cloud data A (relative coordinates) of the total number N be SN.
  • S 0 (0, 0, 0) is the origin coordinate of SN .
  • origin (absolute coordinates) 110 is set to ( ⁇ , ⁇ , ⁇ ), and the S'N after the origin coordinate conversion process is converted as follows.
  • FIG. 2 is a diagram illustrating a first calculation method of the absolute coordinates 210 at the center of the object to be measured.
  • the relative center coordinates 14 of the measured object are extracted from the point cloud of the measured object 13 included in a plurality of different S'Ns , and the absolute center coordinates 210 of the measured object are derived.
  • three S'Ns with different origin coordinates are used.
  • S 1'N , S 2'N , and S 3'N are the objects to be measured 13-1, 13-2, and 13-3 with the origin coordinates 21, the origin coordinates 24, and the origin coordinates 27 as the origins (absolute coordinates), respectively.
  • It is a point cloud including.
  • the objects to be measured 13-1, 13-2, and 13-3 are the same objects 13 to be measured, and are the objects to be measured that are known in advance to have the same absolute coordinates after being converted into absolute coordinates.
  • the origin coordinates 21, 24, and 27 are arranged so as to surround the object to be measured 13.
  • the relative coordinates 23 at the center of the object to be measured are obtained from the point cloud S1'N acquired with the origin coordinates 21 as the origin.
  • the relative coordinates 23 at the center of the object to be measured are the center coordinates (x cp1 , y cp1 , z cp1 ) of the lowermost surface of the object 13 to be measured.
  • the relative coordinates 23 of the center of the object to be measured are obtained by creating a three - dimensional model from the point cloud S1'N and extracting the central axis.
  • a three-dimensional model of a telephone pole is created by extracting circle information from the three - dimensional coordinates of the point cloud S 1'N and connecting the circle models in the vertical direction.
  • the column length and diameter are specified in advance.
  • the three-dimensional model that fits in the specified range is the telegraph pole to be detected.
  • the central axis is extracted by connecting the center coordinates of the circle model constituting the telephone pole model in the vertical direction with a cubic approximation curve.
  • the lowest point of the central axis is the center coordinates (x cp1 , y cp1 , z cp1 ), that is, the relative coordinates 23 of the object to be measured 13-1.
  • the point cloud S2'N acquired with the origin coordinates 24 as the origin from the point cloud S3'N acquired with the origin coordinates 27 as the origin and the relative coordinates 26 at the center of the object to be measured 13-2.
  • the relative coordinates 29 of the center of the object to be measured of the object to be measured 13-3 are obtained.
  • the origin coordinates 21 are displayed at the locations rotated on the xy plane around 24 and 27. That is, the distance 22 between the origin coordinates 21 and the object to be measured 13-1 is calculated from the origin coordinates 21 and the relative coordinates 23 at the center of the object to be measured, and is covered on a circle centered on the origin coordinates 21 with the distance as the radius. It can be said that there is an absolute coordinate center of the object to be measured 210.
  • the height plane is the same.
  • the distance 25 between the origin coordinates 24 and the object to be measured 13-2 is calculated from the origin coordinates 24 and the relative coordinates 26 at the center of the object to be measured.
  • the distance 28 between the origin coordinates 27 and the object to be measured 13-3 is calculated from the relative coordinates 29 at the center of the object to be measured 27 and the object to be measured 13-3, and a circle centered on the origin coordinates 27 with the distance as the radius. Is calculated, and the absolute coordinates 210 at the center of the object to be measured are uniquely extracted from the intersections of the three circles.
  • FIG. 3 is a diagram illustrating a second calculation method of the absolute coordinates 210 at the center of the object to be measured.
  • the second calculation method is to extract the relative center coordinates of the measured object from the point cloud of the measured object 13 included in the point cloud S'N acquired from two origins having different distances on a straight line, and to extract the relative center coordinates of the measured object.
  • the absolute coordinates 210 are derived.
  • two S'Ns with different origin coordinates are used.
  • S 2'N and S 4'N are point clouds including the objects 13-2 , 13-4, and 13-5 whose origins (absolute coordinates) are the origin coordinates 24 and the origin coordinates 31, respectively.
  • the objects to be measured 13-2 and 13-5 are the same objects 13 to be measured, and are the objects to be measured that are known in advance to have the same absolute coordinates after being converted into absolute coordinates.
  • the origin coordinates 31 are arranged so as to be on a linear extension of the object 13 to be measured and the origin coordinates 24.
  • the distance 25 between the origin coordinates 24 and the object to be measured 13-4 is calculated from the origin coordinates 24 and the absolute coordinates 210 at the center of the object to be measured, and the origin coordinates 24 with the distance 25 as the radius are used as the center.
  • a circle, and a circle centered on the origin coordinate 31 with the distance 32 as the radius by calculating the distance 32 between the origin coordinate 31 and the object to be measured 13-5 from the origin coordinates 31 and the relative coordinates 33 at the center of the object to be measured. Is calculated, and the absolute coordinates 210 at the center of the object to be measured are uniquely extracted from the contact points where the two circles touch. The two circles have different radii, and a unique point is specified by inscribed them.
  • FIG. 4 is a diagram illustrating a third calculation method of the absolute coordinates 210 at the center of the object to be measured.
  • the third calculation method extracts the relative center coordinates of the measured object from two different origins and the angle between them and the structure of the measured object 13, and derives the absolute center coordinates 210 of the measured object.
  • One of the two different origins is the origin coordinates 41 of the point cloud of the object to be measured 13-4.
  • the origin coordinate 42 is not a position where the tripod fixed type 3D scanner is installed, but an arbitrary point whose positional relationship with the origin coordinate 41 is known.
  • the xy coordinates of the origin coordinates 41 be ( ⁇ 5 , ⁇ 5 ) and the xy coordinates of the origin coordinates 42 be ( ⁇ 6 , ⁇ 6 ).
  • the distance 43 between the origin coordinates 41 and the origin coordinates 42 is Calculated from.
  • the angle 44 between the line segment at the distance 43 with the origin coordinates 41 as the origin and the object to be measured 13-4 is measured in advance.
  • the xy coordinates ( ⁇ 'cp , ⁇ 'cp ) of the absolute coordinates 210 of the center of the object to be measured can be calculated by the following equation.
  • the z-coordinate the z-coordinate of the relative coordinate of the center of the object to be measured obtained from the above-mentioned three-dimensional model is used, and (( ⁇ 'cp, ⁇ 'cp, z cp ) is the absolute coordinate of the center of the object to be measured 210.
  • the absolute coordinates 210 of the center of the object to be measured calculated by any of the above methods are passed to the rotation coordinate conversion calculation unit 115, and the point cloud S'N matches the relative coordinates of the center of the object to be measured and the absolute coordinates 210 of the center of the object to be measured.
  • the S'N whose rotational coordinates have been transformed are passed to the point cloud superimposition processing unit 116, and are superimposed on the point cloud of the 3D point cloud data B (absolute coordinates) 111 acquired by the MMS 15.
  • the coordinate conversion device, the coordinate conversion method, and the coordinate conversion program of the 3D point cloud according to the present disclosure are considered to have the following advantages over the prior art.
  • a fixed 3D laser scanner is a set of relative coordinates centered on the origin, and the correct position information can be obtained in a three-dimensional space by simply superimposing the absolute coordinates acquired by MMS on the 3D point cloud data. Cannot be displayed above.
  • the absolute coordinates of the origin of the fixed 3D laser scanner can be acquired, the absolute coordinates can be converted from the calculation of the acquired multiple point clouds, and the 3D points of the absolute coordinates acquired by MMS can be obtained.
  • This disclosure can be applied to the information and communication industry.
  • Tripod fixed 3D scanner 12 Relative coordinates of tripod fixed 3D scanner Origin 13, 13-2, 13-3, 13-4, 13-5: Measured object 14: Relative center coordinates of measured object 15: MMS 16: GNSS scanner 18: Storage unit for storing 3D coordinate information 19: 3D point cloud data A (relative coordinates) acquired by a tripod fixed 3D scanner 110: Origin (absolute coordinates) of GNSS surveying instrument 111: 3D point cloud data B (absolute coordinates) acquired by MMS 112: Arithmetic processing unit 113: Origin coordinate conversion processing unit 114: Measured object center coordinate calculation unit 115: Rotational coordinate conversion calculation unit 116: Point group superimposition processing unit 117: Result display unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本開示では、固定式3次元レーザスキャナで取得した点群データを絶対座標へ変換し、MMSなどの別手段を用いて取得した点群データとの一元管理を可能することを目的とする。 本開示は、3次元空間に存在する被測定物が、予め定められた原点を中心とする相対座標の点群で表された第1の点群データ、及び前記原点の絶対座標を取得し、前記点群の座標を当該絶対座標を原点とする相対座標に変換する原点座標変換処理部と、前記点群を用いて、絶対座標の原点を有する相対座標における被測定物の基準点を特定する被測定物基準座標演算部と、前記原点の絶対座標を用いて前記被測定物の基準点の絶対座標を求め、絶対座標の原点を中心にした、絶対座標の原点を有する相対座標における被測定物の基準点から被測定物の基準点の絶対座標への回転角を算出し、算出した回転角を用いて、絶対座標の原点を有する相対座標の点群の座標を絶対座標へ変換する回転座標変換演算部と、を備える3D点群の座標変換装置である。

Description

3D点群の座標を変換する装置、方法及びプログラム
 本開示は、3D点群の座標変換装置、座標変換方法および座標変換プログラムに関する。
 光や電気通信サービスは、お客様宅から局舎までを物理的な設備をつないでサービス提供を実現している。安定したサービス提供を継続するためには、設備の維持管理業務が発生し、これまで電柱やケーブルなどの通信設備状態を把握するため、保守作業者が現地へ赴き目視にて個々に点検を行い、設備の良否を判断してきた。近年、効率的に電柱設備を診断する手段として、非特許文献1に記載のMMS(Mobile Mapping System)を用いた電柱の劣化判定技術が知られている。当該技術は、3次元レーザスキャナ(3次元レーザ測量機)、カメラ、GPS(Global Positioning System)受信機、IMU(Inertial Measurement unit:慣性計測装置)およびオドメータ(Odometer:走行距離計)を具備した検査車両を用いて、3次元でレーザスキャンと画像撮影しながら市中を走行し、電柱を含む柱状構造物の3次元測量を面的に行い、絶対座標および反射強度を含む3D点群データを収集する。
 また、3D点群を取得する別の手段として、固定式3Dレーザスキャナがある。固定式3Dレーザスキャナは三脚等の固定台を地面に固定し、固定台上に前記3次元レーザ測量機を設置し、当該3次元レーザ測量機は0°から360°の間を地面に対して水平方向に回転すると共に地面に対して垂直方向に回転するレーザを発射し、被測定対象設備を含む自然物からの当該レーザの反射光から当該検出対象設備の相対座標および反射強度を含む3D点群データを取得する。
 前記検査車両もしくは三脚等の固定台に具備した3次元レーザスキャナにて取得した点群データを基に電柱の3次元モデルを作成し、当該3次元モデルから電柱のたわみベクトルを算出することで劣化を判定する。
 従来技術は3D点群を取得する手段ごとに各々独自の形式でデータを保管している。ユーザ観点では同一業務で3D点群データを利用するにはデータの一元管理が望まれる。興味の対象が三次元空間上の位置情報であれば、XYZ座標の情報を抽出し一元管理すればよい。しかしながら、前述の固定式3Dレーザスキャナは原点を中心とした相対座標の集合であり、MMSで取得した絶対座標の3D点群データへの単純な重畳では正しい位置情報を三次元空間上に表示することはできない。すなわち、本発明が解決しようとする課題は相対座標で取得した3D点群データを絶対座標へ変換し各データを重畳させて一元管理を実現することである。
M. Inoue, 3D modeling of communication cables from a laser point cloud using a rule-based approach and machine learning, IWCS 2019.10.
 本開示では、固定式3次元レーザスキャナで取得した点群データを絶対座標へ変換し、MMSなどの別手段を用いて取得した点群データとの一元管理を可能することを目的とする。
 本開示の3D点群の座標変換装置は、
 3次元空間に存在する被測定物が、予め定められた原点を中心とする相対座標の点群で表された第1の点群データ、及び前記原点の絶対座標を取得し、前記点群の座標を当該絶対座標を原点とする相対座標に変換する原点座標変換処理部と、
 前記点群を用いて、絶対座標の原点を有する相対座標における被測定物の基準点を特定する被測定物基準座標演算部と、
 前記原点の絶対座標を用いて前記被測定物の基準点の絶対座標を求め、絶対座標の原点を中心にした、絶対座標の原点を有する相対座標における被測定物の基準点から被測定物の基準点の絶対座標への回転角を算出し、算出した回転角を用いて、絶対座標の原点を有する相対座標の点群の座標を絶対座標へ変換する回転座標変換演算部と、
 を備える。
 本開示の3D点群の座標変換方法は、
 3次元空間に存在する被測定物が、予め定められた原点を中心とする相対座標の点群で表された第1の点群データ、及び前記原点の絶対座標を取得し、前記点群の各座標を当該絶対座標を原点とする相対座標に変換し、
 前記点群を用いて、絶対座標の原点を有する相対座標における被測定物の基準点を特定し、
 前記原点の絶対座標を用いて前記被測定物の基準点の絶対座標を求め、絶対座標の原点を中心にした、絶対座標の原点を有する相対座標における被測定物の基準点から被測定物の基準点の絶対座標への回転角を算出し、算出した回転角を用いて、絶対座標の原点を有する相対座標の点群の座標を絶対座標へ変換する。
 本開示の3D点群の座標変換プログラムは、本開示に係る装置に備わる各機能部としてコンピュータを実現させるためのプログラムであり、本開示に係る装置が実行する通信方法に備わる各ステップをコンピュータに実行させるためのプログラムである。
 本開示によれば、固定式3次元レーザスキャナで取得した点群を絶対座標の3次元点群データへ正しく重畳することができ、MMSなどの異なる手段で取得した点群データとの一元管理が可能となる。
3次元レーザ測量機を用いて得た相対座標の点群を絶対座標へ変換し、別手段を用いて取得した絶対座標の点群に重畳する方法について説明する図である。 異なる複数の点群に含まれる被測定物の点群から被測定物の相対中心座標を抽出し、被測定物中心絶対座標の演算を説明する図である。 直線上で距離の異なる2つの原点から取得した点群に含まれる被測定物の点群から被測定物の相対中心座標を抽出し、被測定物中心絶対座標の演算を説明する図である。 異なる2つの原点及びそれらと被測定物の構造物の間の角度から被測定物の相対中心座標を抽出し、被測定物中心絶対座標の演算を説明する図である。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態例)
 本開示に関わる実施形態例を以下に説明する。第1図は、本開示のシステム構成の一例を示す。本開示のシステムは、座標変換装置10、三脚固定式3Dスキャナ11、GNSS測量器16、MMS15、を備える。座標変換装置10は、三脚固定式3Dスキャナ11を用いて得た相対座標の第1の点群データを絶対座標へ変換し、MMS15を用いて取得した絶対座標の第2の点群データに重畳する。ここで、12は三脚固定式3Dスキャナの相対座標原点であり、13は被測定物であり、14は被測定物の相対中心座標である。
 座標変換装置10は、3D座標情報を保管する記憶部18、演算処理部112、結果表示部117を備える。記憶部18は、三脚固定式3Dスキャナで取得した3D点群データA(相対座標)19、GNSS測量器の原点(絶対座標)110、MMS15で取得した3D点群データB(絶対座標)111を格納する。演算処理部112は、原点座標変換処理部113、被測定物中心座標演算部114、回転座標変換演算部115、点群重畳処理部116を備える。座標変換装置10は、コンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 3D点群データとしてデジタル化をねらう被測定物13(例えば、電柱などの構造物)を計測範囲として含め、三脚固定式3Dスキャナ11にて相対座標原点12を原点とした相対座標の3D点群を取得する。三脚固定式3Dスキャナ11は、3次元レーザ測量機であり、3次元空間に存在する被測定物13が点群で表された点群データを取得する。ここで、三脚固定式3Dスキャナ11が水平方向に回転する場合、三脚固定式3Dスキャナ11の設置位置を原点とした相対座標の点群が取得される。
 当該取得した3D点群は3D点群データA(相対座標)19として記憶部18に格納される。また、三脚固定式3Dスキャナ11と同位置に設置されたGNSS測量器16によってGNSS測量器の絶対座標原点110を取得し、原点(絶対座標)110として同じく記憶部18に格納される。相対座標原点12とGNSS測量器の絶対座標原点110は同じ位置である。前記3D点群データA(相対座標)19と前記原点(絶対座標)110は原点座標変換処理部113に渡される。
 原点座標変換処理部113は原点(絶対座標)110が中心となるように3D点群データA(相対座標)19の点群全体を平行移動し、原点座標を変換する。ここで、原点座標変換後の相対座標原点12は原点(絶対座標)110と同じ座標情報を示す。座標変換した3D点群データAは被測定物中心座標演算部114へ渡される。被測定物中心座標演算部114では複数の座標変換した3D点群データAの原点及び被測定物13の相対中心座標14を基に被測定物13の中心の絶対座標を特定する。
 ここで、被測定物中心座標演算部114は、被測定物基準座標演算部として機能する。本実施形態では、被測定物13の位置が相対中心座標14である例を示すが、被測定物13の位置は被測定物13の中心に限らず、被測定物13の円周上の一点など、被測定物13の位置を特定しうる任意の基準点でありうる。
 当該被測定物13の中心の絶対座標及び相対中心座標14、座標変換した3D点群データAの原点は回転座標変換演算部115に渡される。回転座標変換演算部115は、相対中心座標14が当該被測定物13の中心の絶対座標と同一になるように座標変換し、相対中心座標14が当該被測定物13の中心の絶対座標と同一になるような回転角で原点110を中心に3D点群データAを回転させる。これにより、当該点群全体が絶対座標へ変換される。当該絶対座標へ変換された3D点群データAは点群重畳処理部116へ渡され、また、MMS15で取得された3D点群データB(絶対座標)も同じく渡される。点群重畳処理部116は、絶対座標へ変換された3D点群データAと3D点群データB(絶対座標)を同一データ形式に合わせ、統合する。結果表示部117は、点群重畳処理部116の重畳結果を表示する。
 以後、各演算部について詳細を述べる。原点座標変換処理部113では3D点群データA(相対座標)19に原点(絶対座標)110を加算して原点座標を変換する。総数Nの3D点群データA(相対座標)をSとする。
Figure JPOXMLDOC01-appb-M000001
ここで、S=(0,0,0)がSの原点座標である。
 また、原点(絶対座標)110を(α,β,γ)とし、原点座標変換処理後のS’は下記の通りに変換される。
Figure JPOXMLDOC01-appb-M000002
 第2図は、被測定物中心絶対座標210の第1の演算方法を説明する図である。第1の演算方法では、異なる複数のS’に含まれる被測定物13の点群から被測定物の相対中心座標14を抽出し、被測定物中心絶対座標210を導出する。ここでは原点座標が異なる3つのS’を用いる。SとS、Sは各々原点座標21及び原点座標24、原点座標27を原点(絶対座標)とした被測定物13-1,13-2,13-3を含む点群である。被測定物13-1,13-2,13-3は、同一の被測定物13であり、絶対座標に変換後には同一の絶対座標になることが予め判明している被測定物である。当該原点座標21,24、27は被測定物13を囲むように配置される。
 まず、原点座標21を原点として取得された点群Sから被測定物中心相対座標23を求める。被測定物中心相対座標23は被測定物13の最下面の中心座標(xcp1,ycp1,zcp1)である。被測定物中心相対座標23は点群Sから三次元モデルを作成し、中心軸を抽出することで求める。
 ここでは被測定物13-1~13-4を電信柱とし、説明する。当該点群Sの3次元座標から円情報を抽出し、円モデルを縦方向に連結することにより電信柱の3次元モデルを作成する。電信柱以外の柱状物体の誤検出を避けるために予め柱長及び口径を指定する。当該指定範囲に当てはまる3次元モデルを検出対象の電信柱とする。前記電信柱モデルを構成する円モデルの中心座標を縦方向に3次近似曲線にて連結することにより中心軸を抽出する。当該中心軸の最下点を中心座標(xcp1,ycp1,zcp1)、すなわち被測定物13-1の被測定物中心相対座標23とする。同様に、原点座標24を原点として取得された点群Sから被測定物13-2の被測定物中心相対座標26、原点座標27を原点として取得された点群Sから被測定物13-3の被測定物中心相対座標29を求める。
 当該被測定物中心相対座標23、26、29は各々の原点座標21、24、27に対して方位が明らかでない場合、三脚固定式3Dレーザスキャナ11で点群を取得する度に原点座標21、24、27を中心にxy平面上に回転した箇所に被測定物中心相対座標23、26、29が表示される。つまり、原点座標21及び被測定物中心相対座標23から原点座標21と被測定物13-1の間の距離22を算出し、当該距離を半径とした原点座標21を中心とした円上に被測定物中心絶対座標210があるといえる。ここで、高さ平面は同じとする。原点座標24及び被測定物中心相対座標26から原点座標24と被測定物13-2の間の距離25を算出し、当該距離を半径とした原点座標24を中心とした円、また、原点座標27及び被測定物13-3の被測定物中心相対座標29から原点座標27と被測定物13-3の間の距離28を算出し、当該距離を半径とした原点座標27を中心とした円を演算し、当該3つの円の交点から一意に被測定物中心絶対座標210を抽出する。
 第3図は、被測定物中心絶対座標210の第2の演算方法を説明する図である。第2の演算方法は、直線上で距離の異なる2つの原点から取得した点群S’に含まれる被測定物13の点群から被測定物の相対中心座標を抽出し、被測定物中心絶対座標210を導出する。ここでは原点座標が異なる2つのS’を用いる。SとSは各々原点座標24及び原点座標31を原点(絶対座標)とした被測定物13-2,13-4,13-5を含む点群である。被測定物13-2,13-5は、同一の被測定物13であり、絶対座標に変換後には同一の絶対座標になることが予め判明している被測定物である。当該原点座標31は被測定物13と原点座標24の直線延長上となるように配置される。
 前述と同様に、原点座標24及び被測定物中心絶対座標210から原点座標24と被測定物13-4の間の距離25を算出し、当該距離25を半径とした原点座標24を中心とした円、また、原点座標31及び被測定物中心相対座標33から原点座標31と被測定物13-5の間の距離32を算出し、当該距離32を半径とした原点座標31を中心とした円を演算し、当該2つの円の接する接点から一意に被測定物中心絶対座標210を抽出する。当該2つの円は半径が異なり、内接することで一意の点が特定される。
 第4図は、被測定物中心絶対座標210の第3の演算方法を説明する図である。第3の演算方法は、異なる2つの原点及びそれらと被測定物13の構造物の間の角度から被測定物の相対中心座標を抽出し、被測定物中心絶対座標210を導出する。異なる2つの原点の一つは、被測定物13-4の点群の原点座標41である。
 ここで、xy平面上を回転することとし、z座標(高さ)は被測定物13の最下面と原点座標は同じとする。また、原点座標42は、三脚固定式3Dスキャナを設置する位置ではなく、原点座標41との位置関係が既知である任意の点である。原点座標41のxy座標を(α,β)とし、原点座標42のxy座標を(α,β)とする。また、原点座標41と原点座標42の間の距離43は
Figure JPOXMLDOC01-appb-M000003
から計算される。原点座標41を原点とした距離43の線分と被測定物13-4の間の角度44は予め測定する。原点座標41における原点座標42の方位角φは、
Figure JPOXMLDOC01-appb-M000004
となる。したがって、被測定物13-4の方位角θはθ=φ-角度44となる。
 当該方位角θを用いて、被測定物中心絶対座標210のxy座標(α’cp,β’cp)は次式で演算できる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 z座標は前述した三次元モデルから求めた被測定物中心相対座標のz座標を用い、((α’cp,β’cp,zcp)が被測定物中心絶対座標210となる。
 前記いずれかの方法で演算された被測定物中心絶対座標210は回転座標変換演算部115へ渡され、点群S’は被測定物中心相対座標と被測定物中心絶対座標210が一致するまでxy平面上をz軸まわりに回転する。回転座標変換されたS’は点群重畳処理部116へ渡され、MMS15にて取得された3D点群データB(絶対座標)111の点群に重畳される。
(開示の効果)
 本開示による3D点群の座標変換装置、座標変換方法および座標変換プログラムは、従来技術に対して以下の優位性を持つと考えられる。
 第1に、従来技術では、固定式3Dレーザスキャナは原点を中心とした相対座標の集合であり、MMSで取得した絶対座標の3D点群データへの単純な重畳では正しい位置情報を三次元空間上に表示することはできない。これに対し、本開示は、固定式3Dレーザスキャナの原点の絶対座標を取得することができれば取得した複数の点群の演算から絶対座標化が可能であり、MMSで取得した絶対座標の3D点群データへ正しく重畳し、位置情報を三次元空間上に表示することが可能である。
 第2に、従来技術では、固定式3DレーザスキャナとMMSで取得した点群を各々データとして保管する必要があるが、異なる手段で取得した点群の重畳が可能となることでデータの一元管理が可能となりデータ管理コストを低減できる。
 本開示は情報通信産業に適用することができる。
11:三脚固定式3Dスキャナ
12:三脚固定式3Dスキャナの相対座標原点
13、13-2、13-3、13-4、13-5:被測定物
14:被測定物の相対中心座標
15:MMS
16:GNSS測量器
18:3D座標情報を保管する記憶部
19:三脚固定式3Dスキャナで取得した3D点群データA(相対座標)
110:GNSS測量器の原点(絶対座標)
111:MMSで取得した3D点群データB(絶対座標)
112:演算処理部
113:原点座標変換処理部
114:被測定物中心座標演算部
115:回転座標変換演算部
116:点群重畳処理部
117:結果表示部

Claims (8)

  1.  3次元空間に存在する被測定物が、予め定められた原点を中心とする相対座標の点群で表された第1の点群データ、及び前記原点の絶対座標を取得し、前記点群の座標を当該絶対座標を原点とする相対座標に変換する原点座標変換処理部と、
     前記点群を用いて、絶対座標の原点を有する相対座標における被測定物の基準点を特定する被測定物基準座標演算部と、
     前記原点の絶対座標を用いて前記被測定物の基準点の絶対座標を求め、絶対座標の原点を中心にした、絶対座標の原点を有する相対座標における被測定物の基準点から被測定物の基準点の絶対座標への回転角を算出し、算出した回転角を用いて、絶対座標の原点を有する相対座標の点群の座標を絶対座標へ変換する回転座標変換演算部と、
     を備える3D点群の座標変換装置。
  2.  前記第1の点群データとは異なる方法で取得された絶対座標の第2の点群データをさらに取得し、前記回転座標変換演算部で変換された絶対座標の第1の点群データを、取得した第2の点群データと重畳する点群重畳処理部と、
     前記点群重畳処理部での重畳結果を表示させる結果表示部と、
     をさらに備える請求項1に記載の3D点群の座標変換装置。
  3.  前記第1の点群データは、原点の異なる3つの点群を含み、
     前記3つの点群の原点の絶対座標で囲まれた範囲内に、被測定物が配置され、
     前記被測定物基準座標演算部は、原点の異なる点群ごとに、被測定物の基準点を特定し、
     前記回転座標変換演算部は、
     原点の異なる点群ごとに、原点から被測定物の基準点までの距離を半径とする円を求め、
     求められた3つの円の交点の座標を求め、
     原点の異なる点群ごとに、絶対座標の原点を中心とする相対座標の被測定物の基準点から前記交点の座標への回転角を算出し、
     原点の異なる点群ごとに算出した回転角を用いて、絶対座標の原点を有する相対座標の点群の座標を回転させる、
     請求項1又は2に記載の3D点群の座標変換装置。
  4.  前記第1の点群データは、原点の異なる2つの点群を含み、
     前記2つの点群の原点の絶対座標を結ぶ直線上に、被測定物が配置され、
     前記被測定物基準座標演算部は、原点の異なる点群ごとに、被測定物の基準点を特定し、
     前記回転座標変換演算部は、
     原点の異なる点群ごとに、原点から被測定物の基準点までの距離を半径とする円を求め、
     求められた2つの円の接点の座標を求め、
     原点の異なる点群ごとに、絶対座標の原点を中心とする相対座標の被測定物の基準点から前記接点の座標への回転角を算出し、
     原点の異なる点群ごとに算出した回転角を用いて、絶対座標の原点を有する相対座標の点群の座標を回転させる、
     請求項1又は2に記載の3D点群の座標変換装置。
  5.  前記第1の点群データは、前記点群を取得するスキャナの設置位置を原点とした相対座標の点群であり、
     前記2つ又は3つの点群は、異なる設置位置で取得された点群である、
     請求項3又は4に記載の3D点群の座標変換装置。
  6.  前記被測定物基準座標演算部は、
     前記原点とは異なる絶対座標の点と前記原点とを結ぶ直線に対する前記原点と前記被測定物の基準点とを結ぶ直線との前記原点における角度を取得し、
     前記原点とは異なる絶対座標の点と前記原点との距離を求め、
     求めた距離及び前記角度を用いて、前記被測定物の基準点の絶対座標を求め、
     絶対座標の原点を有する相対座標における被測定物の基準点の相対座標から被測定物の基準点の絶対座標への回転角を算出する、
     請求項1又は2に記載の3D点群の座標変換装置。
  7.  3次元空間に存在する被測定物が、予め定められた原点を中心とする相対座標の点群で表された第1の点群データ、及び前記原点の絶対座標を取得し、前記点群の各座標を当該絶対座標を原点とする相対座標に変換し、
     前記点群を用いて、絶対座標の原点を有する相対座標における被測定物の基準点を特定し、
     前記原点の絶対座標を用いて前記被測定物の基準点の絶対座標を求め、絶対座標の原点を中心にした、絶対座標の原点を有する相対座標における被測定物の基準点から被測定物の基準点の絶対座標への回転角を算出し、算出した回転角を用いて、絶対座標の原点を有する相対座標の点群の座標を絶対座標へ変換する、
     3D点群の座標変換方法。
  8.  請求項1から6のいずれかに記載の3D点群の座標変換装置に備わる各演算部としてコンピュータを実現させるための、3D点群の座標変換プログラム。
PCT/JP2020/034819 2020-09-15 2020-09-15 3d点群の座標を変換する装置、方法及びプログラム WO2022059051A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022550054A JP7409517B2 (ja) 2020-09-15 2020-09-15 3d点群の座標を変換する装置、方法及びプログラム
PCT/JP2020/034819 WO2022059051A1 (ja) 2020-09-15 2020-09-15 3d点群の座標を変換する装置、方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034819 WO2022059051A1 (ja) 2020-09-15 2020-09-15 3d点群の座標を変換する装置、方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2022059051A1 true WO2022059051A1 (ja) 2022-03-24

Family

ID=80776548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034819 WO2022059051A1 (ja) 2020-09-15 2020-09-15 3d点群の座標を変換する装置、方法及びプログラム

Country Status (2)

Country Link
JP (1) JP7409517B2 (ja)
WO (1) WO2022059051A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466722B1 (ja) 2023-02-10 2024-04-12 日鉄パイプライン&エンジニアリング株式会社 座標計測方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007004578A (ja) * 2005-06-24 2007-01-11 Nippon Telegr & Teleph Corp <Ntt> 三次元形状取得方法、三次元形状取得装置、及びプログラムの記録媒体
JP2019101000A (ja) * 2017-12-08 2019-06-24 コニカミノルタ株式会社 測距点群データ測定システム、および制御プログラム
JP2020020747A (ja) * 2018-08-03 2020-02-06 株式会社トプコン レーザスキャナシステム
JP2020035448A (ja) * 2018-08-30 2020-03-05 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド 3次元シーンマップの生成方法、生成装置、機器および記憶媒体
JP2020052046A (ja) * 2018-09-25 2020-04-02 株式会社トプコン 測量データ処理装置、測量データ処理方法、測量データ処理用プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119721A (ja) 1999-10-18 2001-04-27 Asahi Optical Co Ltd 3次元画像検出装置
JP6192938B2 (ja) 2013-01-15 2017-09-06 株式会社東芝 三次元合成処理システムおよび三次元合成処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007004578A (ja) * 2005-06-24 2007-01-11 Nippon Telegr & Teleph Corp <Ntt> 三次元形状取得方法、三次元形状取得装置、及びプログラムの記録媒体
JP2019101000A (ja) * 2017-12-08 2019-06-24 コニカミノルタ株式会社 測距点群データ測定システム、および制御プログラム
JP2020020747A (ja) * 2018-08-03 2020-02-06 株式会社トプコン レーザスキャナシステム
JP2020035448A (ja) * 2018-08-30 2020-03-05 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド 3次元シーンマップの生成方法、生成装置、機器および記憶媒体
JP2020052046A (ja) * 2018-09-25 2020-04-02 株式会社トプコン 測量データ処理装置、測量データ処理方法、測量データ処理用プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466722B1 (ja) 2023-02-10 2024-04-12 日鉄パイプライン&エンジニアリング株式会社 座標計測方法

Also Published As

Publication number Publication date
JP7409517B2 (ja) 2024-01-09
JPWO2022059051A1 (ja) 2022-03-24

Similar Documents

Publication Publication Date Title
JP2018195240A (ja) 設備状態検出方法、検出装置およびプログラム
JP6910511B2 (ja) レーザ計測方法、レーザ計測用標識、及び座標算出プログラム
JP6531051B2 (ja) 設備状態検出方法および装置
US10997785B2 (en) System and method for collecting geospatial object data with mediated reality
JP2019152576A (ja) 柱状物体状態検出装置、柱状物体状態検出方法、柱状物体状態検出処理プログラム
JP6751732B2 (ja) 設備状態診断装置、設備状態診断方法及びそのプログラム、設備状態表示方法
WO2020129614A1 (ja) 設備状態検出装置、設備状態検出方法、及びプログラム
KR20190114696A (ko) 표고차를 고려한 지하관로의 관리를 위한 증강 현실 표현 방법 및 이를 기록한 기록매체
CN108957507A (zh) 基于增强现实技术的燃气管道泄漏处置方法
WO2022059051A1 (ja) 3d点群の座標を変換する装置、方法及びプログラム
CN113269892B (zh) 提供增强视图的方法、移动增强现实查看装置
Nazari et al. Analysis of 3D Laser Scanning Data of Farabi Mosque Using Various Softwaren
CN206321246U (zh) 分布交互通用测绘仪
JP6713560B1 (ja) 地番情報提供システム、地番情報提供方法
Gražulis et al. The horizontal deformation analysis of high-rise buildings
WO2022168260A1 (ja) 3d点群の座標を変換する装置、方法及びプログラム
Hussein et al. Evaluation of the accuracy of direct georeferencing of smartphones for use in some urban planning applications within smart cities
JP7052670B2 (ja) 地際推定方法、地際推定装置及びプログラム
CA3056834C (en) System and method for collecting geospatial object data with mediated reality
TWI780734B (zh) 利用擴增實境顯示埋藏物件的方法
JP7282934B1 (ja) 精度向上方法、離隔距離取得方法、位置情報算出支援装置、位置情報算出支援プログラム
JP2020123381A (ja) 地番情報提供システム、地番情報提供方法
CN114735595A (zh) 一种塔吊负载测算区域辅助驾驶的方法及设备
Lee et al. Utilizing smartphones for geospatial data collection and construction set out surveying
van den Beukel et al. Visualizing of the below-ground water network infrastructure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954037

Country of ref document: EP

Kind code of ref document: A1