WO2022057665A1 - 一种固态聚合物电解质及锂离子电池 - Google Patents

一种固态聚合物电解质及锂离子电池 Download PDF

Info

Publication number
WO2022057665A1
WO2022057665A1 PCT/CN2021/116762 CN2021116762W WO2022057665A1 WO 2022057665 A1 WO2022057665 A1 WO 2022057665A1 CN 2021116762 W CN2021116762 W CN 2021116762W WO 2022057665 A1 WO2022057665 A1 WO 2022057665A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
solid polymer
polyether
formula
solid
Prior art date
Application number
PCT/CN2021/116762
Other languages
English (en)
French (fr)
Inventor
唐伟超
李素丽
赵伟
李俊义
徐延铭
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2022057665A1 publication Critical patent/WO2022057665A1/zh
Priority to US18/168,745 priority Critical patent/US20230265223A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of secondary batteries, and in particular, to a solid polymer electrolyte and a lithium ion battery including the solid polymer electrolyte.
  • lithium-ion batteries have the advantages of high energy density, long cycle life, low self-discharge rate, and environmental protection, they have been widely used in consumer electronic products such as energy storage, power vehicles, notebook computers, mobile phones, and cameras.
  • the current constraints on the development of lithium-ion batteries are mainly energy density and safety.
  • solid-state battery has good application potential.
  • Solid-state batteries are mainly composed of solid-state positive electrodes, solid-state electrolytes, and solid-state negative electrodes.
  • Solid-state electrolytes act as a barrier to solid-state positive and negative electrodes and conduct lithium ions, and have always been the core materials of solid-state batteries.
  • Solid-state electrolytes are currently mainly divided into polymer electrolytes, oxide electrolytes, sulfide electrolytes and hydride electrolytes.
  • Oxide electrolytes have problems such as poor solid-solid interface, brittle materials, and difficult processing; sulfide electrolytes have problems such as poor solid-solid interface, high cost, and poor material stability; hydride electrolytes have poor compatibility with high-energy-density cathodes , the material is not mature enough and so on.
  • Polymer electrolytes have the advantages of good flexibility, low processing difficulty and low density, and have good application potential in the field of power batteries.
  • polyethylene oxide PEO
  • polyethylene oxide materials have certain problems such as crystallinity, high voltage resistance, and low electrical conductivity. This severely limits the development of solid-state electrolytes.
  • the present application provides a solid polymer electrolyte and a lithium ion battery including the solid polymer electrolyte;
  • the solid polymer electrolyte includes a polymer and a lithium salt, and the polymer contains acrylic acid Ester and polyether borate, polyether aluminate or polyether phosphate structure, the polymer has a comb-like structure;
  • the solid polymer electrolyte has Higher electrical conductivity, higher lithium ion conductivity, better mechanical properties, higher battery cycle performance, and higher electrochemical window have certain application potential.
  • a solid polymer electrolyte the solid polymer electrolyte includes a polymer and a lithium salt, and the polymer includes a repeating unit shown in the following formula 1:
  • R 1 is selected from H or C 1-6 alkyl
  • R 2 is a linking group
  • R 3 is an end capping group
  • M is selected from a boronate ester chain segment, an aluminate ester chain segment or a phosphate ester chain segment
  • * indicates the connection end.
  • R 1 is selected from H or C 1-3 alkyl; eg, R 1 is selected from H or methyl.
  • R 3 is selected from H, OH or COOH.
  • the polymer has a comb-like structure.
  • the boronate ester segment has a structural unit represented by formula 2 or formula 3:
  • the aluminate segment has a structural unit shown in formula 4:
  • the phosphate ester segment has a structural unit shown in formula 5:
  • the number average molecular weight of M is 200-10,000.
  • the polymer is selected from the group consisting of poly(polyether borate acrylate), poly(polyether aluminate acrylate), poly(polyether phosphate acrylate), poly(polyether borate methyl ester) At least one of poly(polyether aluminate methacrylate), poly(polyether phosphate methacrylate), poly(polyether phosphate methacrylate).
  • the polymer has a number average molecular weight of 4,000-300,000.
  • the monomer for preparing the polymer is selected from the compounds shown in the following formula 6:
  • the compound represented by formula 6 is selected from polyether borate acrylate, polyether aluminate acrylate, polyether phosphate acrylate, polyether borate methacrylate, polyether aluminate At least one of ester methacrylate and polyether phosphate methacrylate.
  • the solid polymer electrolyte further includes an auxiliary agent.
  • the solid polymer electrolyte includes the following components by mass percentage: 60-90 wt % of polymer, 10-30 wt % of lithium salt, and 0-10 wt % of auxiliary agent.
  • the auxiliary agent includes at least one of oxide electrolyte, nanofiller and organic auxiliary agent.
  • the oxide electrolyte is selected from lithium phosphate, lithium titanate, lithium titanium phosphate, lithium aluminum titanium phosphate, lithium lanthanum titanate, lithium lanthanum tantalate, lithium aluminum germanium phosphate, lithium aluminosilicate, lithium silicon phosphate, titanium At least one of lithium lanthanum oxide and diboron trioxide doped lithium phosphate.
  • the nano-filler is selected from at least one of alumina, magnesia, boehmite, barium sulfate, barium titanate, zinc oxide, calcium oxide, silicon dioxide, silicon carbide, and nickel oxide.
  • the organic auxiliary agent is selected from methoxy polyethylene glycol borate (B-PEG), methoxy polyethylene glycol aluminate (Al-PEG), succinonitrile, ethylene ethylene carbonate , at least one of vinylene carbonate, fluoroethylene carbonate and tetraethylene glycol dimethyl ether.
  • the solid polymer electrolyte is preferably a solid polymer electrolyte membrane.
  • the solid polymer electrolyte membrane has a thickness of 10-150 ⁇ m.
  • a lithium ion battery comprising the above solid polymer electrolyte.
  • the solid polymer electrolyte membrane of the lithium ion battery includes the above solid polymer electrolyte.
  • the present application provides a solid polymer electrolyte and a lithium ion battery including the solid polymer electrolyte; the solid polymer electrolyte of the present application has higher lithium ion conductivity.
  • the solid polymer electrolyte of the present application has a lower degree of crystallization due to the branched structure of the solid polymer electrolyte of the present application.
  • the branched chain of the solid polymer of the present application is polyether borate, polyether aluminate or polyether phosphate.
  • the branched chain structure can also effectively promote the dissociation of lithium salts in solid polymer electrolytes and further improve the conductivity of lithium ions;
  • the use of the solid polymer electrolyte of the present application enables the prepared lithium ion battery to have better mechanical properties and cycle performance.
  • the solid polymer of the present application is a polymer with a comb-like polyether structure.
  • the polymer with a comb-like polyether structure can improve the mechanical properties of the solid polymer electrolyte, which is different from that of conventional polymer electrolytes (such as PEO polymer electrolytes).
  • the solid polymer electrolyte of the present application can have better mechanical properties under the same thickness, and can effectively improve the battery cycle performance;
  • the solid polymer electrolyte of the present application has a higher electrochemical window and can be matched with a high voltage system.
  • the main chain of the solid polymer electrolyte of the present application adopts acrylate as the reactive group, and the branched chain is polyether borate, polyether aluminate or polyether phosphate, etc.
  • the polyether borate The addition of polyether aluminate or polyether phosphate can effectively improve the electrochemical window of solid polymer electrolyte, and can be matched with high-voltage system materials to prepare lithium-ion batteries with higher energy density.
  • the present application provides a solid polymer electrolyte
  • the solid polymer electrolyte includes a polymer and a lithium salt
  • the polymer includes a repeating unit shown in the following formula 1:
  • R 1 is selected from H or C 1-6 alkyl
  • R 2 is a linking group
  • R 3 is an end capping group
  • M is selected from a boronate ester chain segment, an aluminate ester chain segment or a phosphate ester chain segment
  • * indicates the connection end.
  • the polymer has a comb-like structure.
  • R 1 is selected from H or C 1-3 alkyl; for example, R 1 is selected from H or methyl.
  • R3 is selected from H, OH or COOH.
  • R 2 is Hydroxyl in The linking group formed after the reaction of R 3 ' in R 2 is substantially the residue of R 3 ', wherein R 3 ' and R 3 are the same or different, and are independently selected from H, OH and COOH.
  • the boronate ester segment has a structural unit represented by formula 2 or formula 3:
  • the aluminate segment has a structural unit represented by formula 4:
  • the phosphate ester segment has a structural unit shown in formula 5:
  • the number average molecular weight of M is 200-10,000.
  • the polymer is selected from the group consisting of poly(polyether borate acrylate), poly(polyether aluminate acrylate), poly(polyether phosphate acrylate), poly(polyether acrylate) At least one of borate methacrylate), poly(polyether aluminate methacrylate), and poly(polyether phosphate methacrylate).
  • the polymer has a number average molecular weight of 4,000-300,000.
  • the monomer for preparing the polymer is selected from the compounds shown in the following formula 6:
  • the compound represented by the formula 6 is selected from polyether borate acrylate, polyether aluminate acrylate, polyether phosphate acrylate, polyether borate methacrylate, At least one of polyether aluminate methacrylate and polyether phosphate methacrylate.
  • the solid polymer electrolyte further includes an auxiliary agent.
  • the solid polymer electrolyte includes the following components by mass percentage: 60-90 wt % of polymer, 10-30 wt % of lithium salt, and 0-10 wt % of auxiliary agent.
  • the mass percentage of the polymer is 60wt%, 61wt%, 62wt%, 63wt%, 64wt%, 65wt%, 66wt%, 67wt%, 68wt%, 69wt%, 70wt%, 71wt%, 72wt%, 73wt%, 74wt%, 75wt%, 76wt%, 77wt%, 78wt%, 79wt%, 80wt%, 81wt%, 82wt%, 83wt%, 84wt%, 85wt%, 86wt%, 87wt%, 88wt% , 89 wt %, 89.9 wt % or 90 wt %.
  • the mass percentage of the lithium salt is 10wt%, 11wt%, 12wt%, 13wt%, 14wt%, 15wt%, 16wt%, 17wt%, 18wt%, 19wt%, 20wt%, 21wt%, 22wt%, 23wt%, 24wt%, 25wt%, 26wt%, 27wt%, 28wt%, 29wt% or 30wt%.
  • the mass percentage content of the auxiliary agent is 0wt%, 0.1wt%, 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%, 9wt% or 10wt% .
  • the lithium salt is selected from lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium tetrafluoroborate (LiBF 4 ), bis-oxalic acid Lithium Borate (LiBOB), Lithium Difluoroborate Oxalate (LiDFOB), Lithium Bisdifluorosulfonimide (LiFSI), Lithium Bistrifluoromethanesulfonimide (LiTFSI), Lithium Trifluoromethanesulfonate (LiCF) 3 SO 3 ), bismalonate boric acid (LiBMB), lithium malonate oxalate borate (LiMOB), lithium hexafluoroantimonate (LiSbF 6 ), lithium difluorophosphate (LiPF 2 O 2 ), 4,5-diflu
  • the auxiliary agent includes at least one of oxide electrolyte, nanofiller and organic auxiliary agent.
  • the oxide electrolyte is selected from lithium phosphate, lithium titanate, lithium titanium phosphate, lithium aluminum titanium phosphate, lithium lanthanum titanate, lithium lanthanum tantalate, lithium aluminum germanium phosphate, lithium aluminosilicate, lithium silicon phosphate, titanium At least one of lithium lanthanum oxide and diboron trioxide doped lithium phosphate.
  • the nano-filler is selected from at least one of alumina, magnesia, boehmite, barium sulfate, barium titanate, zinc oxide, calcium oxide, silicon dioxide, silicon carbide, and nickel oxide.
  • the organic auxiliary agent is selected from methoxy polyethylene glycol borate (B-PEG), methoxy polyethylene glycol aluminate (Al-PEG), succinonitrile, ethylene ethylene carbonate , at least one of vinylene carbonate, fluoroethylene carbonate and tetraethylene glycol dimethyl ether.
  • the solid polymer electrolyte is preferably a solid polymer electrolyte membrane.
  • the solid polymer electrolyte membrane has a thickness of 10-150 ⁇ m.
  • the present application also provides a method for preparing the above-mentioned solid polymer electrolyte, the method comprising the following steps:
  • step (2) Mix the polymer, lithium salt, optional auxiliary agent and second solvent of step (1), coat the surface of the substrate, and dry in an inert atmosphere to prepare the solid polymer electrolyte.
  • step (1) the mixing is, for example, stirring at a rotational speed of 200-2000 r/min for 60-400 min; the mixing is performed under an inert atmosphere.
  • the addition amount of the initiator is 0.01-0.5 wt % of the total mass of the polymer monomer represented by the formula 6.
  • the added amount of the first solvent is 1-10 times the total mass of the polymer monomer represented by the formula 6.
  • the added amount of the first solvent and the polymer monomer represented by Formula 6 is 60-100 g of the polymer monomer represented by Formula 6 and 100-600 g of the first solvent.
  • step (1) the temperature of the polymerization reaction is 50°C to 90°C, and the time of the polymerization reaction is 2 to 60 hours.
  • the initiator in step (1), may be azobisisobutyronitrile, azobisisoheptanenitrile, dimethyl azobisisobutyrate, benzoyl peroxide, One or more of tert-butyl benzoyl peroxide, 4-(N,N-dimethylamino) ethyl benzoate, methyl o-benzoyl benzoate, etc.
  • step (2) the mixing is, for example, stirring at a rotational speed of 200-2000 r/min for 2-15 h; the mixing is performed under an inert atmosphere.
  • step (2) the drying temperature is 60-100° C., and the drying time is 24-80 h.
  • step (2) the excess solvent can be removed during the drying process, so as to realize the preparation of the solid polymer electrolyte.
  • step (2) the mass ratio of polymer, lithium salt, and optional auxiliary agent in step (1) is 60-90:10-30:0-10.
  • step (2) the addition amount of the polymer and the second solvent in the step (1) is 60-90:100-800.
  • the first solvent is selected from N-methylpyrrolidone, acetonitrile, hydrofluoroether, acetone, tetrahydrofuran, dichloromethane, pyridine, etc., xylene, toluene, etc. at least one.
  • the second solvent is selected from N-methylpyrrolidone, acetonitrile, hydrofluoroether, acetone, tetrahydrofuran, dichloromethane, pyridine, etc., xylene, toluene, etc. at least one.
  • the preparation method of the solid polymer electrolyte includes the following steps:
  • the present application also provides a lithium ion battery
  • the lithium ion battery includes the above-mentioned solid polymer electrolyte.
  • the lithium ion battery further includes a positive electrode and a negative electrode.
  • the lithium-ion battery includes a solid polymer electrolyte membrane.
  • the solid polymer electrolyte membrane of the lithium ion battery includes the above-mentioned solid polymer electrolyte.
  • the solid polymer electrolyte membrane is provided between the positive electrode and the negative electrode.
  • the positive electrode piece, the above-mentioned solid polymer electrolyte (preferably a solid polymer electrolyte membrane), and the negative electrode piece are laminated to prepare a solid-state lithium-ion battery cell, and after welding and packaging, the obtained Lithium Ion Battery.
  • the "W” in the molecular weight of the polymers or polymer monomers used in the following examples means 10,000, for example, 4W means 40,000.
  • R 1 is H
  • R 2 is absent
  • R 3 is H
  • R 1 is CH 3
  • R 2 is absent
  • R 3 is H.
  • a solid lithium ion battery cell is prepared by laminating the above-obtained positive pole piece, solid electrolyte membrane, and negative pole piece, and after welding and packaging, a lithium ion battery is obtained.
  • Example 1 The specific process refers to Example 1, the main difference: in Comparative Example 1.1, polyether borate acrylate of equal quality was used to replace the polyether borate acrylate in Example 1, and other conditions were the same as those of Example 1.
  • Example 1 The specific process refers to Example 1, the main difference:
  • Comparative Example 1.2 a mixture of polyether borate and polyacrylate with the same quality as the polyether borate acrylate monomer was used to replace the polyether borate in Example 1 Acrylate, wherein the mass ratio of polyether borate and polyacrylate is the molecular weight ratio of polyether borate and acrylate in the polyether borate acrylate monomer, and other conditions are the same as those in Example 1.
  • Example 1 The specific process refers to Example 1, the main difference: in Comparative Example 1.3, polyether acrylate of the same quality as the polyether borate acrylate monomer was used to replace the polyether borate acrylate in Example 1. Other conditions and implementations Example 1 is the same.
  • the specific process refers to Example 1, and the main differences are: the preparation process conditions of the solid polymer electrolyte, the amount of each component added, and the type of each component material.
  • the specific details are shown in Table 1 and Table 2.
  • the add-on of two kinds of polymers is the ratio of the molecular weight of polymer segment and poly(meth)acrylate in the polymerized monomer added in the corresponding embodiment,
  • the add-on of two kinds of polymers is the ratio of the molecular weight of polymer segment and poly(meth)acrylate in the polymerized monomer added in the corresponding embodiment.
  • Conductivity test method of solid polymer electrolyte Cut the solid polymer electrolyte film, assemble it into stainless steel/solid electrolyte/stainless steel button battery with the treated stainless steel gasket, and test the diameter of the stainless steel gasket and the thickness of the solid polymer electrolyte .
  • the battery is tested and calculated at a frequency of 100KHz ⁇ 0.1mHz.
  • Electrochemical window test method Using Metrohm PGSTAT302N chemical workstation under the condition of 25 °C, the stainless steel/solid electrolyte/lithium metal assembled button battery was tested at 2V ⁇ 5V.
  • Example 1 1.65 4.40 Comparative Example 1.1 2.54 4.30 Comparative Example 1.2 0.83 4.35 Comparative Example 1.3 1.59 4.15
  • Example 2 1.89 4.35 Comparative Example 2.1 2.67 4.25 Comparative Example 2.2 0.92 4.30 Comparative Example 2.3 1.75 4.10
  • Example 3 2.34 4.30 Comparative Example 3.1 4.52 4.20 Comparative Example 3.2 1.43 4.25 Comparative Example 3.3 2.27 4.10
  • Example 4 2.83 4.45 Comparative Example 4.1 3.21 4.30 Comparative Example 4.2 1.03 4.40 Comparative Example 4.3 2.31 4.10 Example 5 2.12 4.35 Comparative Example 5.1 2.83 4.25 Comparative Example 5.2 1.27 4.20 Comparative Example 5.3 2.05 4.05
  • Example 6 2.21 4.35 Comparative Example 6.1 3.32 4.30 Comparative Example 6.2 1.62 4.35 Comparative Example 6.3 2.04 4.15
  • the electrical conductivity and electrochemical window test results of solid polymer electrolytes show that the polymer electrolytes prepared by polymerizing polymer monomers with specific structures in the examples of the present application have higher electrical conductivity; polyether aluminate, polyether borate or polyether phosphate), polyether ester (polyether aluminate, polyether borate or polyether phosphate) + polyacrylate, polyether acrylate, to One set of comparative examples is taken as an example.
  • Comparative Example 1.1 because the polyetherester (polyether aluminate, polyether borate or polyether phosphate) with the same structure is used, its electrochemical window is close to the electrical conductivity in the data test.
  • the rate is high; in Comparative Example 1.2, polyether ester (polyether aluminate, polyether borate or polyether phosphate) and polyacrylate are used to blend, because polyacrylate does not have lithium-conducting properties, its conductivity The rate is relatively low; in Comparative Example 1.3, a polyether acrylate polymer is used, wherein the conductivity is close to that of the example, but its electrochemical window is lower.
  • Battery cycle performance test method Li-ion battery is charged and discharged on the blue battery charge and discharge test cabinet.
  • the test conditions are 60°C, 0.3C/0.3C charge and discharge, and the number of cycles when the battery capacity retention rate is reduced to 80% is investigated. .
  • the test results of the cycle performance of the lithium ion batteries of the examples and the comparative examples show that the lithium ion batteries prepared in the examples of the present application have good cycle performance; taking one of the comparative examples as an example, the battery in the comparative example 1.1 has non-polymerizable In the high-voltage system, small molecules easily lead to short circuit of the battery; in the battery of Comparative Example 1.2, there are small molecules that cannot be polymerized, but the content of polymer small molecules is slightly lower, so the cycle performance is higher than that of Comparative Example 1.1, But it is also easy to short circuit; compared with Example 1, the main difference between Comparative Example 1.3 and Example 1 is that compared with polyether borate acrylate, polyether aluminate acrylate and polyether phosphate acrylate, the electrical The chemical window is low, so the oxidation decomposition is too fast during the cycle process, which affects its cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本申请提供一种固态聚合物电解质及包括该固态聚合物电解质的锂离子电池;所述固态聚合物电解质中包括聚合物和锂盐,所述聚合物中含有丙烯酸酯和聚醚类硼酸酯、聚醚类铝酸酯或聚醚类磷酸酯结构,所述聚合物具有梳状结构;所述固态聚合物电解质与聚氧化乙烯PEO聚合物电解质相比,具有更高的电导率、更高的锂离子导通性、更好的力学性能、更高的电池循环性能、更高的电化学窗口,具有一定的应用潜力。

Description

一种固态聚合物电解质及锂离子电池
本申请要求于2020年09月15日提交中国专利局、申请号为202010969104.9、申请名称为“一种固态聚合物电解质及包含该固态聚合物电解质的锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及二次电池技术领域,尤其涉及一种固态聚合物电解质及包括该固态聚合物电解质的锂离子电池。
背景技术
因为锂离子电池具有能量密度高,循环寿命长,自放电率小,绿色环保等优点,其已广泛用于储能领域、动力汽车、笔记本电脑、手机、摄影机等消费电子产品。但是,目前限制锂离子电池发展的主要是能量密度和安全性。而固态电池作为最接近实际应用的下一代锂离子电池,具有良好的应用潜力。
固态电池主要由固态正极、固态电解质和固态负极组成,固态电解质作为阻隔固态正负极和传导锂离子作用,一直是固态电池的核心材料。固态电解质目前主要分为聚合物电解质、氧化物电解质、硫化物电解质和氢化物电解质。氧化物电解质存在固固界面较差、材料易脆、加工难度大等问题;硫化物电解质存在固固界面差、成本高、材料稳定性差等问题;氢化物电解质存在与高能量密度正极相容性差、材料不够成熟等问题。聚合物电解质具有柔韧性好、加工难度低且密度较低等优点,在动力电池领域具有良好的应用潜力。
但是,常规的聚合物电解质主要以聚氧化乙烯(PEO)为代表,而聚氧化乙烯材料存在一定的结晶性、不耐高电压、电导率低等问题。这严重限制了固态电解质的发展。
发明内容
为了改善现有技术的不足,本申请提供一种固态聚合物电解质及包括该固态聚合物电解质的锂离子电池;所述固态聚合物电解质中包括聚合物和锂盐,所述聚合物中含有丙烯酸酯和聚醚类硼酸酯、聚醚类铝酸酯或聚醚类磷酸酯结构,所述聚合物具有梳状结构;所述固态聚合物电解质与聚氧化乙烯PEO聚合物电解质相比,具有更高的电导率、更高的锂离子导通性、更好的力学性能、更高的电池循环性能、更高的电化学窗口,具有一定的应用潜力。
本申请目的是通过如下技术方案实现的:
一种固态聚合物电解质,所述固态聚合物电解质包括聚合物和锂盐,所述聚合物包括如下式1所示的重复单元:
Figure PCTCN2021116762-appb-000001
式1中,R 1选自H或C 1-6烷基;R 2为连接基团;R 3为封端基团;M选自硼酸酯链段、铝酸酯链段或磷酸酯链段;*表示连接端。
根据本申请,R 1选自H或C 1-3烷基;如R 1选自H或甲基。
根据本申请,R 3选自H、OH或COOH。
根据本申请,所述聚合物具有梳状结构。
根据本申请,所述硼酸酯链段具有式2或式3所示结构单元:
Figure PCTCN2021116762-appb-000002
Figure PCTCN2021116762-appb-000003
式2和式3中,*表示连接端,n为聚合度。
根据本申请,所述铝酸酯链段具有式4所示结构单元:
Figure PCTCN2021116762-appb-000004
式4中,*表示连接端,m为聚合度。
根据本申请,所述磷酸酯链段具有式5所示结构单元:
Figure PCTCN2021116762-appb-000005
式5中,*表示与R 3的连接端,**表示与R 2的连接端,q为聚合度。
根据本申请,所述M的数均分子量为200~10000。
根据本申请,所述聚合物选自聚(聚醚硼酸酯丙烯酸酯)、聚(聚醚铝酸酯丙烯酸酯)、聚(聚醚磷酸酯丙烯酸酯)、聚(聚醚硼酸酯甲基丙烯酸酯)、聚(聚醚铝酸酯甲基丙烯酸酯)、聚(聚醚磷酸酯甲基丙烯酸酯)中的至少一种。
根据本申请,所述聚合物的数均分子量为4000~300000。
根据本申请,制备所述聚合物的单体选自如下式6所示化合物:
Figure PCTCN2021116762-appb-000006
式6中,R 1、R 2、R 3、M的定义如上所述。
根据本申请,所述式6所示化合物选自聚醚硼酸酯丙烯酸酯、聚醚铝酸酯丙烯酸酯、聚醚磷酸酯丙烯酸酯、聚醚硼酸酯甲基丙烯酸酯、聚醚铝酸酯甲基丙烯酸酯、聚醚磷酸酯甲基丙烯酸酯中的至少一种。
根据本申请,所述固态聚合物电解质还包括助剂。
根据本申请,所述固态聚合物电解质包括如下质量百分含量的各组分:60~90wt%的聚合物、10~30wt%的锂盐、0~10wt%的助剂。
根据本申请,所述助剂包括氧化物电解质、纳米填料和有机助剂中的至少一种。
其中,所述氧化物电解质选自磷酸锂、钛酸锂、磷酸钛锂、磷酸钛铝锂、钛酸镧锂、钽酸镧锂、磷酸锗铝锂、硅铝酸锂、磷酸硅锂、钛酸镧锂、三氧化二硼掺杂磷酸锂中至少一种。
其中,所述纳米填料选自氧化铝、氧化镁、勃姆石、硫酸钡、钛酸钡、氧化锌、氧化钙、二氧化硅、碳化硅、氧化镍中的至少一种。
其中,所述有机助剂选自甲氧基聚乙二醇硼酸酯(B-PEG)、甲氧基聚乙二醇铝酸酯(Al-PEG)、丁二腈、碳酸乙烯亚乙酯、碳酸亚乙烯酯、氟代碳酸乙烯酯、四乙二醇二甲醚中的至少一种。
根据本申请,所述固态聚合物电解质优选为固态聚合物电解质膜。
根据本申请,所述固态聚合物电解质膜的厚度为10~150μm。
一种锂离子电池,其包括上述的固态聚合物电解质。
根据本申请,所述锂离子电池的固态聚合物电解质膜包括上述的固态聚合物电解质。
有益效果:
本申请提供一种固态聚合物电解质及包括该固态聚合物电解质的锂离子电池;本申请的固态聚合物电解质具有更高的锂离子电导率。本申请的固态聚合物电解质与常规的聚合物电解质(如PEO聚合物电解质)相比,本申请的固态聚合物由于具有支链结构,故其结晶程度更低,锂离子在该固态聚合物电解质的非晶态区域内具有更高的锂离子电导率;与此同时,本申请的固态聚合物的支链为聚醚类硼酸酯、聚醚类铝酸酯或聚醚类磷酸酯,该支链结构也能够有效促进固态聚合物电解质中锂盐的解离,进一步提高锂离子的导通性;
使用本申请的固态聚合物电解质使得制备得到的锂离子电池还具有更好的力学性能和循环性能。本申请的固态聚合物为梳状聚醚类结构的聚合物,该梳状聚醚类结构的聚合物能够改善固态聚合物电解质的力学性能,与常规的聚合物电解质(如PEO聚合物电解质)相比,本申请的固态聚合物电解质能够在相同厚度下具有更能好的力学性能,能有效改善电池循环性能;
本申请的固态聚合物电解质具有更高的电化学窗口,能够与高电压体系进行搭配。本申请的固态聚合物电解质主链采用丙烯酸酯作为反应活性基团,支链为聚醚类硼酸酯、聚醚类铝酸酯或聚醚类磷酸酯等,所述聚醚类硼酸酯、聚醚类铝酸酯或聚醚类磷酸酯的加入能够有效改善固态聚合物电解质的电化学窗口,能够与高电压体系材料进行匹配,制备出更高能量密度的锂离子电池。
具体实施方式
<固态聚合物电解质>
如前所述,本申请提供一种固态聚合物电解质,所述固态聚合物电解质包括聚合物和锂盐,所述聚合物包括如下式1所示的重复单元:
Figure PCTCN2021116762-appb-000007
式1中,R 1选自H或C 1-6烷基;R 2为连接基团;R 3为封端基团;M选自硼酸酯链段、铝酸酯链段或磷酸酯链段;*表示连接端。
在本申请的一个方案中,所述聚合物具有梳状结构。
在本申请的一个方案中,R 1选自H或C 1-3烷基;如R 1选自H或甲基。
在本申请的一个方案中,R 3选自H、OH或COOH。
在本申请的一个方案中,R 2
Figure PCTCN2021116762-appb-000008
中的羟基与
Figure PCTCN2021116762-appb-000009
中的R 3’反应之后形成的连接基团,实质上,R 2为R 3’的残基,其中,R 3’和R 3相同或不同,彼此独立地选自H、OH、COOH。
在本申请的一个方案中,所述硼酸酯链段具有式2或式3所示结构单元:
Figure PCTCN2021116762-appb-000010
Figure PCTCN2021116762-appb-000011
式2和式3中,*表示连接端,n为聚合度。
在本申请的一个方案中,所述铝酸酯链段具有式4所示结构单元:
Figure PCTCN2021116762-appb-000012
式4中,*表示连接端,m为聚合度。
在本申请的一个方案中,所述磷酸酯链段具有式5所示结构单元:
Figure PCTCN2021116762-appb-000013
式5中,*表示与R 3的连接端,**表示与R 2的连接端,q为聚合度。
在本申请的一个方案中,所述M的数均分子量为200~10000。
在本申请的一个方案中,所述聚合物选自聚(聚醚硼酸酯丙烯酸酯)、聚(聚醚铝酸酯丙烯酸酯)、聚(聚醚磷酸酯丙烯酸酯)、聚(聚醚硼酸酯甲基丙烯酸酯)、聚(聚醚铝酸酯甲基丙烯酸酯)、聚(聚醚磷酸酯甲基丙烯酸酯)中的至少一种。
在本申请的一个方案中,所述聚合物的数均分子量为4000~300000。
在本申请的一个方案中,制备所述聚合物的单体选自如下式6所示化合物:
Figure PCTCN2021116762-appb-000014
式6中,R 1、R 2、R 3、M的定义如上所述。
在本申请的一个方案中,所述式6所示化合物选自聚醚硼酸酯丙烯酸酯、聚醚铝酸酯丙烯酸酯、聚醚磷酸酯丙烯酸酯、聚醚硼酸酯甲基丙烯酸酯、聚醚铝酸酯甲基丙烯酸酯、聚醚磷酸酯甲基丙烯酸酯中的至少一种。
在本申请的一个方案中,所述固态聚合物电解质还包括助剂。
在本申请的一个方案中,所述固态聚合物电解质包括如下质量百分含量的各组分:60~90wt%的聚合物、10~30wt%的锂盐、0~10wt%的助剂。
示例性地,所述聚合物的质量百分含量为60wt%、61wt%、62wt%、63wt%、64wt%、65wt%、66wt%、67wt%、68wt%、69wt%、70wt%、71wt%、72wt%、73wt%、74wt%、75wt%、76wt%、77wt%、78wt%、79wt%、80wt%、81wt%、82wt%、83wt%、84wt%、85wt%、86wt%、87wt%、88wt%、89wt%、89.9wt%或90wt%。
示例性地,所述锂盐的质量百分含量为10wt%、11wt%、12wt%、13wt%、14wt%、15wt%、16wt%、17wt%、18wt%、19wt%、20wt%、21wt%、22wt%、23wt%、24wt%、25wt%、26wt%、27wt%、28wt%、29wt%或30wt%。
示例性地,所述助剂的质量百分含量为0wt%、0.1wt%、1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%或10wt%。
在本申请的一个方案中,所述锂盐选自高氯酸锂(LiClO 4)、六氟磷酸锂(LiPF 6)、六氟砷酸锂(LiAsF 6)、四氟硼酸锂(LiBF 4)、双草酸硼酸锂(LiBOB)、草酸二氟硼酸锂(LiDFOB)、双二氟磺酰亚胺锂(LiFSI)、双三氟甲基磺酰亚胺锂(LiTFSI)、三氟甲基磺酸锂(LiCF 3SO 3)、双丙二酸硼酸(LiBMB)、 丙二酸草酸硼酸锂(LiMOB)、六氟锑酸锂(LiSbF 6)、二氟磷酸锂(LiPF 2O 2)、4,5-二氰基-2-三氟甲基咪唑锂(LiDTI)、二(三氟甲基磺酰)亚胺锂(LiN(SO 2CF 3) 2)、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2的一种或任意组合。
在本申请的一个方案中,所述助剂包括氧化物电解质、纳米填料和有机助剂中的至少一种。
其中,所述氧化物电解质选自磷酸锂、钛酸锂、磷酸钛锂、磷酸钛铝锂、钛酸镧锂、钽酸镧锂、磷酸锗铝锂、硅铝酸锂、磷酸硅锂、钛酸镧锂、三氧化二硼掺杂磷酸锂中至少一种。
其中,所述纳米填料选自氧化铝、氧化镁、勃姆石、硫酸钡、钛酸钡、氧化锌、氧化钙、二氧化硅、碳化硅、氧化镍中的至少一种。
其中,所述有机助剂选自甲氧基聚乙二醇硼酸酯(B-PEG)、甲氧基聚乙二醇铝酸酯(Al-PEG)、丁二腈、碳酸乙烯亚乙酯、碳酸亚乙烯酯、氟代碳酸乙烯酯、四乙二醇二甲醚中的至少一种。
在本申请的一个方案中,所述固态聚合物电解质优选为固态聚合物电解质膜。
在本申请的一个方案中,所述固态聚合物电解质膜的厚度为10~150μm。
<固态聚合物电解质的制备>
本申请还提供上述固态聚合物电解质的制备方法,所述方法包括如下步骤:
(1)将第一溶剂、式6所示的聚合物单体、引发剂均匀混合,加热进行聚合反应,制备得到聚合物;
(2)将步骤(1)的聚合物、锂盐、任选地助剂和第二溶剂混合,涂覆在基底表面,在惰性气氛下干燥,制备得到所述固态聚合物电解质。
在本申请的一个方案中,步骤(1)中,所述混合例如是以200~2000r/min的转速搅拌60min-400min;所述混合是在惰性气氛下进行的。
在本申请的一个方案中,步骤(1)中,所述引发剂的加入量为所述式6所示的聚合物单体的总质量的0.01-0.5wt%。所述第一溶剂的加入量为所述式6所示 的聚合物单体的总质量的1-10倍。示例性地,所述第一溶剂和所述式6所示的聚合物单体的加入量为60~100g的式6所示的聚合物单体和100~600g的第一溶剂。
在本申请的一个方案中,步骤(1)中,所述聚合反应的温度为50℃~90℃,所述聚合反应的时间为2~60h。
在本申请的一个方案中,步骤(1)中,所述引发剂可以为偶氮二异丁腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、过氧化苯甲酰、过氧化苯甲酰叔丁酯、4-(N,N-二甲氨基)苯甲酸乙酯、邻苯甲酰苯甲酸甲酯等中的一种或几种。
在本申请的一个方案中,步骤(2)中,所述混合例如是以200~2000r/min的转速搅拌2~15h;所述混合是在惰性气氛下进行的。
在本申请的一个方案中,步骤(2)中,所述干燥的温度为60~100℃,所述干燥的时间为24~80h。
在本申请的一个方案中,步骤(2)中,所述干燥的过程中可以去除多余的溶剂,实现固态聚合物电解质的制备。
在本申请的一个方案中,步骤(2)中,所述步骤(1)的聚合物、锂盐、任选地助剂的质量比为60~90:10~30:0~10。
在本申请的一个方案中,步骤(2)中,所述步骤(1)的聚合物和第二溶剂的加入量为60~90:100~800。
在本申请的一个方案中,步骤(1)中,所述第一溶剂选自N-甲基吡咯烷酮、乙腈、氢氟醚、丙酮、四氢呋喃、二氯甲烷、吡啶等、二甲苯、甲苯中的至少一种。
在本申请的一个方案中,步骤(2)中,所述第二溶剂选自N-甲基吡咯烷酮、乙腈、氢氟醚、丙酮、四氢呋喃、二氯甲烷、吡啶等、二甲苯、甲苯中的至少一种。
示例性地,所述固态聚合物电解质的制备方法包括如下步骤:
S1:将60~100g功能单体、100~600g溶剂,在惰性气体氛围下,以200~2000r/min的转速搅拌60min-400min,然后加入0.01~0.2g引发剂,然后 50℃~90℃条件下反应2~60h,提纯处理后得到聚合物A体系;
S2:将60~90g聚合物A体系、10~30g锂盐、0~10g助剂、加入100~800g溶剂中,在惰性气体氛围下,以200~2000r/min的转速搅拌,搅拌2~15h,混合液均匀涂布在表面光滑的模具上,在真空干燥箱内通入惰性气体,在惰性气体氛围中,静置10~64h,除去多余的溶剂,在真空干燥箱中60~100℃干燥24~80h,得到固态聚合物电解质。
<锂离子电池>
如前所述,本申请还提供一种锂离子电池,所述锂离子电池包括上述的固态聚合物电解质。
在本申请的一个方案中,所述锂离子电池还包括正极和负极。
在本申请的一个方案中,所述锂离子电池包括固态聚合物电解质膜。
在本申请的一个方案中,所述锂离子电池的固体聚合物电解质膜包括上述的固态聚合物电解质。
在本申请的一个方案中,所述固态聚合物电解质膜设置在正极和负极之间。
在本申请的一个方案中,将正极极片、上述的固态聚合物电解质(优选为固态聚合物电解质膜)、负极极片通过叠片方式制备固态锂离子电池电芯,经过焊接封装后,得到锂离子电池。
下文将结合具体实施例对本申请做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本申请,而不应被解释为对本申请保护范围的限制。凡基于本申请上述内容所实现的技术均涵盖在本申请旨在保护的范围内。下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
下述实施例中所使用的聚合物或聚合物单体的分子量中的“W”代表的含义是万,如4W,即为4万。
下述实施例中所使用的聚醚丙烯酸酯、聚醚甲基丙烯酸酯的结构式如式7所示:
Figure PCTCN2021116762-appb-000015
其中,若为聚醚丙烯酸酯时,R 1为H、R 2为不存在、R 3为H。
其中,若为聚醚甲基丙烯酸酯时,R 1为CH 3、R 2为不存在、R 3为H。
下述实施例中所使用的聚醚硼酸酯的结构式如式8所示:
Figure PCTCN2021116762-appb-000016
下述实施例中所使用的聚醚铝酸酯的结构式如式9所示:
Figure PCTCN2021116762-appb-000017
下述实施例中所使用的聚醚磷酸酯的结构式如式10所示:
Figure PCTCN2021116762-appb-000018
实施例1
1)固态电解质膜的制备:
S1:将75g功能单体聚醚硼酸酯丙烯酸酯、300g第一溶剂,保持惰性气体氛围,以800r/min的转速搅拌200min,然后加入0.05g引发剂偶氮二异丁腈,60℃ 条件下反应4h,提纯处理后得到聚合物;
S2:将30g上述制备得到的聚合物聚(聚醚硼酸酯丙烯酸酯)、5g锂盐、2g助剂、加入300g第二溶剂中,干燥惰性气体氛围下,以1000r/min的转速搅拌,搅拌4h,混合液均匀涂布在表面光滑的模具上,在真空干燥箱内通入惰性气体,在惰性气体氛围中,静置24h除去多余溶剂,在真空干燥箱中80℃干燥30h,得到固态聚合物电解质膜;
2)正极极片的制备:
将80g的正极活性物质、5g的导电剂、12g的聚合物电解质、2g锂盐、1g粘结剂、200g溶剂,均匀混合后,涂布在铝箔集流体表面,经过烘干、辊压、分切后得到正极极片;
3)负极极片制备:
将2g氧化亚硅、3g锂金属粉末、4g导电剂导电炭黑、0.5g粘结剂油系丙烯酸酯,溶解在100g对二甲苯中,均匀混合后,涂覆于负极集流体铜箔的表面,经烘干(温度:100℃,时间:20h、氩气气体氛围)、辊压和模切得到负极极片;
4)锂离子电池的制备
将上述得到的正极极片、固态电解质膜、负极极片通过叠片方式制备固态锂离子电池电芯,经过焊接封装后,得到锂离子电池。
对比例1.1
具体工艺参考实施例1,主要区别:对比例1.1中采用等质量的聚醚硼酸酯替代实施例1中的聚醚硼酸酯丙烯酸酯,其他条件与实施例1一致。
对比例1.2
具体工艺参考实施例1,主要区别:对比例1.2中采用与聚醚硼酸酯丙烯酸酯单体等质量的聚醚硼酸酯和聚丙烯酸酯的混合物替代实施例1中的聚醚硼酸酯丙烯酸酯,其中聚醚硼酸酯和聚丙烯酸酯的质量比为聚醚硼酸酯丙烯酸酯单体中聚醚硼酸酯和丙烯酸酯的分子量比,其他条件与实施例1一致。
对比例1.3
具体工艺参考实施例1,主要区别:对比例1.3中采用与聚醚硼酸酯丙烯酸酯单体等质量的聚醚丙烯酸酯替代实施例1中的聚醚硼酸酯丙烯酸酯,其他条件与实施例1一致。
其他实施例和其他对比例
具体流程参考实施例1,主要区别:固态聚合物电解质的制备工艺条件、各组分加入量、各组分物料种类,具体详情见表1和表2。其中,表2中添加两种聚合物的对比例中,两种聚合物的加入量为对应实施例中加入的聚合单体中聚合物链段和聚(甲基)丙烯酸酯的分子量的比,具体参见上述对比例1-2中的说明。
表1实施例和对比例的固态聚合物电解质的制备组分含量
序号 第一溶剂/g 功能单体/g 引发剂/g 聚合物/g 锂盐/g 助剂/g 第二溶剂/g
实施例1 300 75 0.05 30 5 2 200
对比例1.1 300 75 0.05 30 5 2 200
对比例1.2 300 75 0.05 30 5 2 200
对比例1.3 300 75 0.05 30 5 2 200
实施例2 500 95 0.09 80 20 5 700
对比例2.1 500 95 0.09 80 20 5 700
对比例2.2 500 95 0.09 80 20 5 700
对比例2.3 500 95 0.09 80 20 5 700
实施例3 550 90 0.15 75 25 8 600
对比例3.1 550 90 0.15 75 25 8 600
对比例3.2 550 90 0.15 75 25 8 600
对比例3.3 550 90 0.15 75 25 8 600
实施例4 100 60 0.01 90 32 10 500
对比例4.1 100 60 0.01 90 32 10 500
对比例4.2 100 60 0.01 90 32 10 500
对比例4.3 100 60 0.01 90 32 10 500
实施例5 600 100 0.2 50 18 0 300
对比例5.1 600 100 0.2 50 18 0 300
对比例5.2 600 100 0.2 50 18 0 300
对比例5.3 600 100 0.2 50 18 0 300
实施例6 300 80 0.06 100 40 1 800
对比例6.1 300 80 0.06 100 40 1 800
对比例6.2 300 80 0.06 100 40 1 800
对比例6.3 300 80 0.06 100 40 1 800
表2实施例和对比例的固态聚合物电解质的制备组分组成
Figure PCTCN2021116762-appb-000019
性能测试:
固态聚合物电解质电导率测试方法:将固态聚合物电解质薄膜进行裁切,与处理后不锈钢垫片,组装成不锈钢/固态电解质/不锈钢扣式电池,并测试不锈钢垫片直径和固态聚合物电解质厚度。采用Metrohm瑞士万通PGSTAT302N化学工作站60℃条件下,采用100KHz~0.1mHz频率对电池进行测试,进行计算。
电化学窗口测试方法:采用Metrohm瑞士万通PGSTAT302N化学工作站25℃条件下,对不锈钢/固态电解质/锂金属组装的扣式电池,进行2V~5V进行测试。
表3实施例和对比例的固态聚合物电解质的电导率和电化学窗口测试结果
序号 25℃电导率(mS/cm) 电化学窗口(V)
实施例1 1.65 4.40
对比例1.1 2.54 4.30
对比例1.2 0.83 4.35
对比例1.3 1.59 4.15
实施例2 1.89 4.35
对比例2.1 2.67 4.25
对比例2.2 0.92 4.30
对比例2.3 1.75 4.10
实施例3 2.34 4.30
对比例3.1 4.52 4.20
对比例3.2 1.43 4.25
对比例3.3 2.27 4.10
实施例4 2.83 4.45
对比例4.1 3.21 4.30
对比例4.2 1.03 4.40
对比例4.3 2.31 4.10
实施例5 2.12 4.35
对比例5.1 2.83 4.25
对比例5.2 1.27 4.20
对比例5.3 2.05 4.05
实施例6 2.21 4.35
对比例6.1 3.32 4.30
对比例6.2 1.62 4.35
对比例6.3 2.04 4.15
固态聚合物电解质的电导率和电化学窗口测试结果表明:本申请的实施例中采用特定结构的聚合物单体聚合制备的聚合物电解质具有较高的电导率;对比例中采用聚醚酯(聚醚铝酸酯、聚醚硼酸酯或聚醚磷酸酯),聚醚酯(聚醚 铝酸酯、聚醚硼酸酯或聚醚磷酸酯)+聚丙烯酸酯,聚醚丙烯酸酯,以其中一组对比例为例,对比例1.1中因为采用相同结构的聚醚酯(聚醚铝酸酯、聚醚硼酸酯或聚醚磷酸酯),在数据测试中其电化学窗口接近、电导率偏高;对比例1.2中采用聚醚酯(聚醚铝酸酯、聚醚硼酸酯或聚醚磷酸酯)和聚丙烯酸酯共混,由于聚丙烯酸酯不具备导锂性能,故其电导率偏低;对比例1.3中采用聚醚丙烯酸酯类聚合物,其中电导率与实施例接近,但是其电化学窗口较低。
表4实施例和对比例的电池循环性能
序号 循环性能0.3C/0.3C
实施例1 1020次循环(80%)
对比例1.1 10次循环(电池发生短路)
对比例1.2 3次循环(电池发生短路)
对比例1.3 650次循环(80%)
实施例2 3030次循环(80%)
对比例2.1 5次循环(电池发生短路)
对比例2.2 12次循环(电池发生短路)
对比例2.3 2700次循环(80%)
实施例3 520次循环(80%)
对比例3.1 7次循环(电池发生短路)
对比例3.2 15次循环(电池发生短路)
对比例3.3 312次循环(80%)
实施例4 1810次循环(80%)
对比例4.1 6次循环(电池发生短路)
对比例4.2 14次循环(电池发生短路)
对比例4.4 1205次循环(80%)
实施例5 2579次循环(80%)
对比例5.1 7次循环(电池发生短路)
对比例5.2 19次循环(电池发生短路)
对比例5.3 1610次循环(80%)
实施例6 1536次循环(80%)
对比例6.1 2次循环(电池发生短路)
对比例6.2 17次循环(电池发生短路)
对比例6.3 945次循环(80%)
实施例7 1852次循环(80%)
对比例7.1 5次循环(电池发生短路)
对比例7.2 14次循环(电池发生短路)
对比例7.3 1062次循环(80%)
电池循环性能测试方法:锂离子电池在蓝电电池充放电测试柜上进行充放 电循环测试,测试条件为60℃、0.3C/0.3C充放电,考察电池容量保持率降为80%时的循环次数。
实施例和对比例的锂离子电池的循环性能测试结果表明:本申请实施例制备的锂离子电池具有良好的循环性能;以其中一组对比例为例,对比例1.1中电池中存在不可聚合物的小分子,小分子在高电压体系中容易导致电池短路;对比例1.2中电池中存在不可聚合物的小分子,但是其中聚合物小分子含量稍低,故其循环性能高于对比例1.1,但是也容易短路;对比例1.3与实施例1相比,主要区别是聚醚丙烯酸酯与聚醚硼酸酯丙烯酸酯、聚醚铝酸酯丙烯酸酯、聚醚磷酸酯丙烯酸酯相比,其电化学窗口较低,故在循环过程中导致其氧化分解过快,影响其循环性能。
以上,对本申请的实施方式进行了说明。但是,本申请不限定于上述实施方式。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种固态聚合物电解质,其中,所述固态聚合物电解质包括聚合物和锂盐,所述聚合物包括如下式1所示的重复单元:
    Figure PCTCN2021116762-appb-100001
    式1中,R 1选自H或C 1-6烷基;R 2为连接基团;R 3为封端基团;M选自硼酸酯链段、铝酸酯链段或磷酸酯链段;*表示连接端。
  2. 根据权利要求1所述的固态聚合物电解质,其中,R 1选自H或C 1-3烷基;如R 1选自H或甲基;和/或,
    R 3选自H、OH或COOH。
  3. 根据权利要求1或2所述的固态聚合物电解质,其中,所述硼酸酯链段具有式2或式3所示结构单元:
    Figure PCTCN2021116762-appb-100002
    式2和式3中,*表示连接端,n为聚合度。
  4. 根据权利要求1或2所述的固态聚合物电解质,其中,所述铝酸酯链段具有式4所示结构单元:
    Figure PCTCN2021116762-appb-100003
    式4中,*表示连接端,m为聚合度。
  5. 根据权利要求1或2所述的固态聚合物电解质,其中,所述磷酸酯链段具有式5所示结构单元:
    Figure PCTCN2021116762-appb-100004
    式5中,*表示与R 3的连接端,**表示与R 2的连接端,q为聚合度。
  6. 根据权利要求1-5任一项所述的固态聚合物电解质,其中,所述M的数均分子量为200~10000。
  7. 根据权利要求1-6任一项所述的固态聚合物电解质,其中,所述聚合物选自聚(聚醚硼酸酯丙烯酸酯)、聚(聚醚铝酸酯丙烯酸酯)、聚(聚醚磷酸酯丙烯酸酯)、聚(聚醚硼酸酯甲基丙烯酸酯)、聚(聚醚铝酸酯甲基丙烯酸酯)、聚(聚醚磷酸酯甲基丙烯酸酯)中的至少一种;和/或,
    所述聚合物的数均分子量为4000~300000。
  8. 根据权利要求1-7任一项所述的固态聚合物电解质,其中,所述固态聚合物电解质还包括助剂,所述固态聚合物电解质包括如下质量百分含量的各组分:60~90wt%的聚合物、10~30wt%的锂盐、0~10wt%的助剂。
  9. 根据权利要求1-8任一项所述的固态聚合物电解质,其中,所述固态聚合物电解质优选为固态聚合物电解质膜;和/或,
    所述固态聚合物电解质膜的厚度为10~150μm。
  10. 一种锂离子电池,其特征在于,所述电池包括权利要求1-9任一项所述的固态聚合物电解质。
PCT/CN2021/116762 2020-09-15 2021-09-06 一种固态聚合物电解质及锂离子电池 WO2022057665A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/168,745 US20230265223A1 (en) 2020-09-15 2023-02-14 Polymer, solid-state electrolyte, gel electrolyte, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010969104.9A CN114188595B (zh) 2020-09-15 2020-09-15 一种固态聚合物电解质及包括该固态聚合物电解质的锂离子电池
CN202010969104.9 2020-09-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135454 Continuation-In-Part WO2022117082A1 (zh) 2020-09-15 2021-12-03 一种凝胶型聚合物及含该凝胶型聚合物的锂离子电池

Publications (1)

Publication Number Publication Date
WO2022057665A1 true WO2022057665A1 (zh) 2022-03-24

Family

ID=80539218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116762 WO2022057665A1 (zh) 2020-09-15 2021-09-06 一种固态聚合物电解质及锂离子电池

Country Status (2)

Country Link
CN (1) CN114188595B (zh)
WO (1) WO2022057665A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114834A (ja) * 1999-04-27 2001-04-24 Uni-Chemical Co Ltd リン酸基含有重合体及びそれを含有する高分子固体電解質
JP2002216844A (ja) * 2001-01-19 2002-08-02 Hitachi Ltd リチウム二次電池
CN1502644A (zh) * 2002-11-21 2004-06-09 株式会社日立制作所 电化学装置用含硼化合物、离子导电性高分子和高分子电解质
US20070287070A1 (en) * 2004-07-20 2007-12-13 Takefumi Okumura Electrode for Polymer Electrolyte Secondary Battery and Polymer Electrolyte Secondary Battery
CN108028424A (zh) * 2016-03-30 2018-05-11 株式会社Lg化学 用于凝胶聚合物电解质的组合物、由其制备的凝胶聚合物电解质和包括该凝胶聚合物电解质的电化学装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155434A (zh) * 2016-05-06 2019-01-04 深圳中科瑞能实业有限公司 一种二次电池及其制备方法
CN109037770B (zh) * 2018-07-23 2021-09-07 珠海冠宇电池股份有限公司 全固态聚合物电解质的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114834A (ja) * 1999-04-27 2001-04-24 Uni-Chemical Co Ltd リン酸基含有重合体及びそれを含有する高分子固体電解質
JP2002216844A (ja) * 2001-01-19 2002-08-02 Hitachi Ltd リチウム二次電池
CN1502644A (zh) * 2002-11-21 2004-06-09 株式会社日立制作所 电化学装置用含硼化合物、离子导电性高分子和高分子电解质
US20070287070A1 (en) * 2004-07-20 2007-12-13 Takefumi Okumura Electrode for Polymer Electrolyte Secondary Battery and Polymer Electrolyte Secondary Battery
CN108028424A (zh) * 2016-03-30 2018-05-11 株式会社Lg化学 用于凝胶聚合物电解质的组合物、由其制备的凝胶聚合物电解质和包括该凝胶聚合物电解质的电化学装置

Also Published As

Publication number Publication date
CN114188595A (zh) 2022-03-15
CN114188595B (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
CN110707361B (zh) 一种适用于高倍率充放电的高电压软包锂离子电池用电解液
KR100935986B1 (ko) 비수전해액계 에너지장치 전극용 바인더 수지 조성물, 비수전해액계 에너지장치 전극 및 비수전해액계 에너지장치
CN112467209A (zh) 一种高低温性能兼顾的高电压锂离子电池
KR20160045142A (ko) 비수계 전지 전극용 바인더 조성물, 비수계 전지 전극용 슬러리, 비수계 전지 전극 및 비수계 전지
CN113937287B (zh) 一种负极极片及含该负极极片的二次电池
CN109560285B (zh) 一种正极极片及使用该正极极片的二次电池
JP2010092719A (ja) 非水電解液系エネルギーデバイス電極用接着添加剤、これを用いた非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、これを用いた非水電解液系エネルギーデバイス電極、及び非水電解液系エネルギーデバイス
WO2023093880A1 (zh) 一种锂离子电池
CN108140842B (zh) 二次电池电极用粘合剂、包含其的二次电池电极组合物以及使用其的二次电池
JP2023534067A (ja) 電池および電子装置
WO2019131710A1 (ja) 非水系電池電極用バインダー、非水系電池電極用スラリー、非水系電池電極、及び非水系電池
JP5298767B2 (ja) 二次電池用電極及びその製造方法並びにその電極を採用した二次電池
CN114094175A (zh) 一种二次电池
JP2009231058A (ja) 非水電解質電池用負極及びその製造方法
CN111406331A (zh) 非水系电池电极用浆料的制造方法
CN110289446B (zh) 一种用于锂离子电池的聚合物电解质及聚合物电池
WO2022001429A1 (zh) 一种正极极片及含该正极极片的二次电池
WO2022057665A1 (zh) 一种固态聚合物电解质及锂离子电池
WO2022057664A1 (zh) 一种正极极片及锂离子二次电池
JP6027940B2 (ja) 電極用ポリマー組成物
CN113937250A (zh) 一种正极极片及含该正极极片的固态电池
CN115084422B (zh) 一种负极极片及含该负极极片的锂离子电池
CN115084434B (zh) 一种负极极片及含该负极极片的锂离子电池
US20230265223A1 (en) Polymer, solid-state electrolyte, gel electrolyte, and battery
CN114094181B (zh) 一种锂离子电解液、制备方法以及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21868490

Country of ref document: EP

Kind code of ref document: A1