WO2022056700A1 - 光敏树脂及应用该光敏树脂的光刻胶组合物 - Google Patents

光敏树脂及应用该光敏树脂的光刻胶组合物 Download PDF

Info

Publication number
WO2022056700A1
WO2022056700A1 PCT/CN2020/115465 CN2020115465W WO2022056700A1 WO 2022056700 A1 WO2022056700 A1 WO 2022056700A1 CN 2020115465 W CN2020115465 W CN 2020115465W WO 2022056700 A1 WO2022056700 A1 WO 2022056700A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin
photosensitive
photoresist composition
integer
Prior art date
Application number
PCT/CN2020/115465
Other languages
English (en)
French (fr)
Inventor
顾大公
余绍山
齐国强
毛智彪
许从应
许东升
方涛
陈玲
Original Assignee
宁波南大光电材料有限公司
江苏南大光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波南大光电材料有限公司, 江苏南大光电材料股份有限公司 filed Critical 宁波南大光电材料有限公司
Priority to PCT/CN2020/115465 priority Critical patent/WO2022056700A1/zh
Publication of WO2022056700A1 publication Critical patent/WO2022056700A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/32Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/04Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing only one sulfo group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/28Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/30Sulfides having the sulfur atom of at least one thio group bound to two carbon atoms of six-membered aromatic rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials

Definitions

  • the invention belongs to the technical field of photoresist, and particularly relates to a photosensitive resin and a photoresist composition using the photosensitive resin.
  • the photoresist composition is one of the key materials in the field of integrated circuit manufacturing, and its main components are a light-sensitive mixed liquid composed of a film-forming resin, a photosensitizer, an acid inhibitor and a solvent. Under the irradiation of ultraviolet light, deep ultraviolet light, electron beam, ion beam and other light or radiation, the solubility of the components changes, and the soluble part is dissolved by appropriate developer treatment to obtain the final desired photoresist image. With the continuous development of manufacturing technology, the technical requirements for photoresist are getting higher and higher. In order to meet the increasingly harsh process conditions, it is necessary to develop photoresist products with higher performance.
  • the three important parameters of photoresist include resolution, sensitivity and line width roughness, which determine the process window of photoresist in chip fabrication. With the continuous improvement of the performance of semiconductor chips, the integration degree of integrated circuits increases exponentially, and the graphics in the integrated circuits continue to shrink. In order to produce patterns of smaller size, the above-mentioned three performance indexes of photoresist must be improved. According to the Rayleigh equation, using a short wavelength light source in the photolithography process can improve the resolution of the photoresist.
  • the wavelength of the light source for the lithography process has been developed from 365nm (I-line) to 248nm (KrF), 193nm (ArF), 13nm (EUV). In order to improve the sensitivity of photoresist, the current mainstream KrF, ArF, EUV photoresist adopts chemically amplified photosensitive resin.
  • the photosensitizer is the key component of the photoresist. Its function is to decompose under light to generate free radicals; the free radicals further capture H in the nearby resin structure and form new free radicals, which combine with the anion part of the photosensitizer.
  • the photoacid is formed, which initiates and catalyzes the deprotection reaction of the acid-sensitive group in the film-forming resin, and changes the solubility of the film-forming resin in the developer; and the new free radicals formed before capture the H in the nearby resin structure again to form photoacid, and diffuses outward, thus forming a chain amplification reaction, completely converting the film-forming resin in the exposure area into a polar resin soluble in the developer, and finally washing away the polar resin in the exposure area by developing, Thus, the film-forming resin in the non-exposed area is retained, and a photoresist pattern is formed in the photoresist film.
  • the photosensitivity, acidity and diffusion capacity of the photoacid are one of the key factors affecting the resolution, line width roughness and exposure energy of the photoresist.
  • Patent CN101080673 introduces the grafting of triphenylsulfonium salt into the acrylic resin structure, which solves the problem of photosensitizer precipitation to a certain extent.
  • the film-forming resin not only has to bear the effect of the photosensitizer, but also play the role of the film-forming resin, which greatly increases the difficulty of developing the photoresist formula.
  • the cationic part of the photosensitizer is polymerized, the problem of acid diffusion control in the anion part still exists.
  • the anion part of the photosensitizer and other functional groups are polymerized to form a new photosensitive resin. It contains a polymeric anionic structure with adjustable chain length, which can effectively control the acid diffusion range; the multi-substituted triphenylsulfonium salt can maximize the exposure ability of the photosensitive resin; the functional group can improve the solubility and exposure of the photosensitive resin. water solubility after.
  • the photosensitive resin can be combined with other film-forming resins to form components of the ArF photoresist formulation, which greatly reduces the difficulty of preparing the photoresist formulation.
  • a kind of photosensitive resin it comprises resin type photosensitive anion and sulfonium salt cation, and its general structural formula is
  • R 1 and R 2 are H or methyl; R 3 is a modified structure; R 4 , R 5 , and R 6 are integers with hydrogen atoms ranging from 1 to 40, and carbon atoms ranging from 1 to 20.
  • R 4 , R 5 , and R 6 are integers with hydrogen atoms ranging from 1 to 40, and carbon atoms ranging from 1 to 20.
  • sulfonium salt cation is any one of the following structures:
  • R 8 , R 9 , R 10 are H or a carbon chain structure containing an integer between 1 and 20 carbon atoms; R 11 , R 12 , and R 13 are hetero atoms containing carbon atoms with a number of 1 to 20 Integer between the carbon chain structure.
  • R 7 is an alkyl group
  • the structural formula of the photosensitizer anion is any one of the following structures:
  • n 1 is an integer between 1 and 50;
  • R 7 is a heteroatom-containing group
  • the structural formula of the photosensitizer anion is any one of the following structures:
  • n 2 is an integer between 1 and 50
  • n 3 is an integer between 1 and 50.
  • modified structure R 3 is a rigid structure, an acid-sensitive structure or a polar structure, which comprises any one or more of the following structures:
  • a photoresist composition which includes a film-forming resin, a photosensitive resin, an acid inhibitor and an organic solvent, and the photosensitive resin is the above-mentioned photosensitive resin.
  • the film-forming resin has acid activity, contains acid-sensitive groups and polar groups, and its structural formula is as follows:
  • R a is H or a carbon chain with 1 to 20 carbon atoms
  • R b is a carbon chain with 6 to 30 carbon atoms
  • R c is H or a carbon chain with 1 to 20 carbon atoms
  • R d is a polar group-containing (meth)acrylate with 6 to 30 carbon atoms.
  • the mass percentage of the film-forming resin ranges from 1 to 20%
  • the mass percentage of the photosensitive resin ranges from 0.01 to 10%
  • the The range of the mass percentage of the acid inhibitor is 0.01-10%
  • the range of the mass percentage of the organic solvent is 60-99.98%.
  • the organic solvent is propylene glycol methyl ether acetate, propylene glycol monoacetate, propylene glycol monoethyl ether, propylene glycol methyl ether acetate, ethylene glycol methyl ether, ethylene glycol ethyl ether, butyl acetate, acetic acid Neopentyl ester, ethyl lactate, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylethyl ketone One or more of amide, N,N-diethylformamide.
  • the present invention has the following advantages:
  • the present invention introduces a photosensitive resin structure into the photoresist composition, and the photosensitive resin is a resin-type photosensitizer, which is different from the conventional small-molecule ionic photosensitizer and is added in the form of a polymer.
  • the photosensitive resin of the present invention also has a larger molecular volume, which can better control the photoacid diffusion performance and improve the performance of the photoresist.
  • the photosensitive resin of the present invention adopts the same resin structure system as the film-forming resin in the photoresist composition.
  • it can improve the mutual solubility of photosensitive resin and film-forming resin, so that the photosensitive resin is more uniformly distributed in the photoresist film-forming resin system, which is compatible with the film-forming resin, avoiding the need for Local area aggregation. Can effectively improve the resolution of lines and reduce roughness.
  • the photosensitive resin of the present invention has strong hydrophobicity and low solubility in water. In the immersion photolithography process, the photosensitive resin can reduce the leaching rate of the photoresist and prevent the lens of the photolithography machine from being contaminated .
  • the photoresist composition of the present invention uses the photosensitive resin as a resin-type photosensitizer, so that the components contained in the photoresist composition can be uniformly dispersed, and the acid diffusion effect is good.
  • the properties of the photosensitive resin and the film-forming resin are matched, which can ensure the stable lithography performance of the photoresist, effectively improve the resolution and line width roughness of the photoresist, and the film-forming ability is good, which can effectively avoid the brittleness of the photoresist film. Cracks, peeling and other undesirable phenomena.
  • FIG. 1 is a schematic diagram of a process flow diagram of a preparation method of a photosensitive resin according to an embodiment of the present invention
  • Example 2 is an electron microscope photograph of the photoresist composition provided in Example 2-1 of the present invention after photolithography;
  • Example 3 is an electron microscope photograph of the photoresist composition provided in Example 2-2 of the present invention after photolithography.
  • the photosensitive resin provided by the present invention comprises a sulfonium salt cation unit and a resin-type photosensitizer anion, and the resin-type photosensitizer anion has a modified structure, and the modified structure includes a rigid structure, an acid-sensitive structure or a polar structure and the like.
  • the photosensitive resin of the present invention can effectively improve the acid distribution problem in the photoresist component, and can improve the film-forming ability of the photoresist, thereby improving the photolithography pattern, improving the resolution of the photoresist, and reducing the line width roughness.
  • a preferred embodiment of the present invention provides a photosensitive resin, which includes a resin-type photosensitive anion and a sulfonium salt cation, and its general structural formula is:
  • R 1 and R 2 are H or methyl; R 3 is a modified structure; R 4 , R 5 , and R 6 are integers with 1 to 40 hydrogen atoms and 1 to 20 carbon atoms.
  • R 4 , R 5 , and R 6 are integers with 1 to 40 hydrogen atoms and 1 to 20 carbon atoms.
  • the triphenyl cation can generate free radicals when exposed to light, and can abstract the H atom in the nearby polymer, thereby forming a photoacid.
  • the different substituents contained in the sulfonium salt cation can affect the ultraviolet absorption wavelength and solubility of the photosensitive resin.
  • the sulfonium salt cation can improve the photon generation ability of the photosensitive resin through different substituent structures.
  • the resin-type photosensitive anion includes an anion structure and a modified structure, as shown in the general formula (II):
  • the anion structure is a sulfonic acid anion, which can form a photoacid with the H ion produced by the triphenyl cation during exposure.
  • the reaction in which the R 7 functional group is a long-chain structure, can control the diffusion range of the photoacid and improve the performance of the photoacid.
  • the modified structure can make the photosensitive resin more compatible with the acid-sensitive resin.
  • the sulfonium salt cation is preferably any one of the following structures:
  • R 8 , R 9 , R 10 are H or a carbon chain structure containing an integer between 1 and 20 carbon atoms; R 11 , R 12 , and R 13 are heteroatoms containing carbon atoms ranging from 1 to 20.
  • the structure of the sulfonium salt cation in the general formula (2) can be any one of the following structures:
  • the structure of the sulfonium salt cation in the general formula (3) can be any one of the following structures:
  • the resinous photosensitive anion can be any one of the following structures:
  • n 1 is an integer between 1 and 50;
  • the resin-type photosensitive anion can be any one of the following structures:
  • n 2 is an integer between 1 and 50
  • n 3 is an integer between 1 and 50.
  • modified structure R 3 in the resin-type photosensitive anion is one of a rigid structure, an acid-sensitive structure or a polar structure.
  • the modified structure R 3 can be any one or more of the following structures:
  • the resin-type photosensitive anion contains a sulfonic acid anion, which can form a photoacid with the H ion generated by the exposure of the triphenyl cation.
  • the acidity of photoacid is enhanced by the adjacent F atoms, so that its acidity can react with acid-sensitive acrylic resins.
  • R 7 in the resin-type photosensitive anion is a long-chain structure, which can control the diffusion range of the photoacid and improve the performance of the photoacid.
  • the modified structure in the resinous photosensitive anion can make the resinous photosensitive resin better compatible with the acid-sensitive resin.
  • the modified structure includes a rigid unit, a polar unit and an acid-sensitive unit, and the rigid unit can improve the film-forming ability of the resin-type photosensitive resin; the polar unit can make the resin-type photosensitive resin dissolve in the photoresist composition solution. It is compatible with the resin system and reduces precipitation; the acid-sensitive unit makes the resin-type photosensitive resin easier to dissolve in the developing solution after exposure, thereby improving the LWR of the photoresist lines.
  • the photosensitive resin is a photosensitizer containing resin-type photosensitizer anion and sulfonium salt cation, and can be added to the photoresist composition as a novel resin-type photosensitizer.
  • the photosensitive resin also introduces a modification unit in its structure, so that the photosensitive resin can be uniformly distributed in the photoresist composition, and further improves the photosensitive resin performance in photolithography. Solubility and film-forming ability in the photoresist composition, thereby improving photoresist resolution and line width roughness.
  • the resin-type structure of the photosensitive resin is incompatible with water, which avoids the problem that the small-molecule photosensitizer dissolves in pure water and causes contamination of the lithography machine lens when the small-molecule photosensitizer is used.
  • an embodiment of the present invention further provides a preparation method of the above-mentioned photosensitive resin.
  • the process flow of the preparation method of the photosensitive resin is shown in Figure 1, which comprises the following steps:
  • the monomer containing the modified functional unit and the monomer containing the photosensitive functional unit are dissolved in the first solvent to obtain a mixed solution containing the photosensitive resin monomer;
  • the initiator is dissolved in the second solvent to obtain an initiator solution
  • the above-mentioned initiator solution is mixed with the above-mentioned mixed solution, and the polymerization reaction is carried out at a constant temperature of 40-90° C. for 2-30 hours, then cooled to room temperature, and the precipitate is separated and collected, and the precipitate is dried to obtain the above-mentioned photosensitive resin.
  • the monomer containing a photosensitive functional unit is a salt solution monomer containing the above-mentioned sulfonium salt cation
  • the monomer containing a modified functional unit is a resin-type photosensitive anion containing the above-mentioned (meth)acrylate monomers.
  • the sulfonium salt cation is at least one structure shown in the above general formula (1), (2) or (3); the resin-type photosensitive anion is the above-mentioned 4-1 to 4-12 diagrammatic structures of at least one structure.
  • the monomer with modified structure contained in the resin-type photosensitive anion is the (meth)acrylate monomer described in 5-1 to 5-32 above, preferably a monomer containing at least one structure above .
  • the photosensitive functional unit-containing monomer and the modified functional unit-containing monomer are mixed and dissolved in the first solvent according to a mass percentage of (1-70):(30-99).
  • the mixing ratio of the two monomers By adjusting the mixing ratio of the two monomers, the ratio of the photosensitive functional monomer and the modified functional monomer in the final prepared target product photosensitive resin can be optimized, so as to further improve the photosensitive resin in the photoresist formulation. performance.
  • the amount of the first solvent used is 1-100 times the total mass of the photosensitive functional unit-containing monomer and the modified functional unit-containing monomer.
  • the first solvent is preferably methanol, ethanol, dioxane, acetone, methyl ethyl ketone, tetrahydrofuran, methyl tetrahydrofuran, benzene, toluene, xylene, n-hexane, n-heptane, n-pentane, ethyl acetate. At least one of ester, butyl acetate, propylene glycol monomethyl ether, propylene glycol methyl ether acetate, petroleum ether, diethyl ether, n-butyl ether, chloroform, dichloroethane or trichloroethane.
  • the first solvent can not only improve the solubility of each monomer, but also stabilize the polymerization reaction solvent composed of the first solvent and the second solvent, improve the polymerization reaction efficiency between the monomers, and improve the inhibition of hydroxyl-containing acid diffusion agent yield.
  • the initiator is preferably mixed in a ratio that the amount of the second solvent is 1-100 times the amount of the initiator to prepare an initiator solution.
  • the initiator may be an azo initiator or a peroxide free radical initiator.
  • the azo initiator is preferably one or both of azobisisobutyronitrile or azobisisoheptanenitrile;
  • the free radical initiator of peroxide is preferably tert-butyl peroxypivalate, tertiary At least one of butoxy hydroperoxide, benzoic acid hydrogen peroxide, benzoyl peroxide, and the like.
  • the second solvent is preferably methanol, ethanol, dioxane, acetone, methyl ethyl ketone, tetrahydrofuran, methyl tetrahydrofuran, benzene, toluene, xylene, n-hexane, n-heptane, n-pentane, ethyl acetate.
  • step S03 the initiator solution and the mixed solution are mixed and polymerized according to the proportion that the mass of the initiator is 0.3% to 20% of the total mass of the monomers in the mixed solution.
  • the mixed solution of the monomer containing the photosensitive function and the monomer containing the modified function is heated to the polymerization temperature, and then the initiator solution is added dropwise.
  • the temperature of the polymerization reaction is controlled between 40 and 90°C according to the different solvents and initiators used, and the time of the polymerization reaction is also controlled between 2 and 30 hours according to the different solvents and initiators used.
  • the solvent of the polymerization reaction is also composed of the first solvent and the second solvent.
  • the photosensitive resin can be obtained by separating the mixture after the polymerization reaction.
  • the separation treatment may be: mixing the polymerized mixture into the separation solution, so that the photosensitive resin is precipitated and separated.
  • the separation solution can be pure water, methanol, methanol/water mixture, ethanol, ethanol/water mixture, isopropanol, isopropanol/water mixture, n-heptane, n-hexane, cyclohexane, At least one of n-pentane, petroleum ether, diethyl ether or methyl tert-butyl ether.
  • Drying of the collected precipitate can be, but not limited to, vacuum drying. After testing, the yield of the photosensitive resin after drying is 60% to 90%.
  • the preparation method of the above-mentioned photosensitive resin is to directly mix the mixed solution of the monomer containing the modified functional unit and the monomer containing the photosensitive functional unit and the initiator solution to carry out the polymerization reaction, thereby generating the photosensitive resin, which can ensure the generation of the resin-type photosensitive resin.
  • the reaction conditions are mild and the efficiency is high.
  • the above-mentioned steps S01 and S02 do not necessarily have a sequential relationship.
  • an embodiment of the present invention further provides a photoresist composition, which includes a film-forming resin, the photosensitive resin, an acid inhibitor and an organic solvent.
  • a conventionally used photoinitiator can also be added to the formulation of the photoresist composition to improve the image resolution capability of the photoresist.
  • the acid inhibitor includes but is not limited to n-butylamine, tert-butylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine , di-tert-butylamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-tert-butylamine, ethanolamine, diethanolamine, Triethanolamine, cyclopentylamine, cyclohexylamine, morpholine, N-methylcyclopentylamine, methylaniline, ethylaniline, n-butylaniline, tert-butylaniline, dimethylaniline, diethylaniline, One or more of dibutylaniline and diphenylaniline.
  • the organic solvent includes, but is not limited to, propylene glycol methyl ether acetate, propylene glycol monoacetate, propylene glycol monoethyl ether, propylene glycol methyl ether acetate, ethylene glycol methyl ether, ethylene glycol ethyl ether, butyl acetate, and new acetate.
  • the components of the photoresist composition are measured in mass percentage, wherein the mass percentage of the photosensitive resin is in the range of 0.01-10%, and the mass percentage of the acid-active film-forming resin is 1-20%, The range of the mass percentage content of the acid inhibitor is 0.01-10%, and the range of the mass percentage content of the organic solvent is 60-99.98%.
  • the film-forming resin has acid activity, and contains a plurality of functional groups, specifically acid-active groups and polar groups.
  • the general structural formula of the film-forming resin is as follows:
  • the molecular weight of the film-forming resin ranges from 3,000 to 100,000. Based on the total amount of the monomer of the acid-sensitive group and the monomer of the polar group, the content of the monomer of the acid-sensitive group ranges from 30% to 70%. In one embodiment of the present invention, the ratio of the content of the monomer of the acid-sensitive group to the content of the monomer of the polar group is preferably 50:50.
  • the film-forming resin includes acid-sensitive groups with different substituents.
  • the acid-sensitive groups are acid-active (meth)acrylates.
  • the general structural formula of the acid-sensitive group is as follows:
  • R a is H or a carbon chain with 1-20 carbon atoms
  • R b is a carbon chain with 6-30 carbon atoms.
  • R b is a quaternary ester, and the hydrogen atoms of the carbon atoms connected to the hydroxyl oxygen atom are all substituted by other groups, and the possible structures of R b can be, but are not limited to, tert-butyl ester, substituted tert-butyl ester, Alkyl-substituted adamantane esters, alkyl-substituted adamantane derivative esters, alkyl-substituted norbornane esters, alkyl-substituted norbornanyl-derivative esters, alkyl-substituted cyclic alkyl esters, alkyl-substituted One or more of cyclic alkyl derivative esters, etc.
  • the film-forming resin contains one or more polar groups, and in at least one embodiment, the polar groups are (meth)acrylates containing polar groups.
  • the polar groups are (meth)acrylates containing polar groups.
  • the polar groups The general structural formula is as follows:
  • R c is H or a carbon chain with 1 to 20 carbon atoms
  • R d is a polar group-containing (meth)acrylate with 6 to 30 carbon atoms.
  • R d is a cyclic, cage-like or straight-chain carbon-containing structure and various lactone structures containing hydroxyl groups with carbon atoms between 6 and 30, and its possible structures may be but not limited to containing one or more Adamantyl ester containing one or more independent hydroxyl groups, cyclohexyl ester containing one or more independent hydroxyl groups, cyclopentyl ester containing one or more independent hydroxyl groups, polycyclic ester compounds containing one or more independent hydroxyl groups, containing one or more independent hydroxyl groups Cage-like ester compounds with independent hydroxyl groups, butyrolactone, valerolactone, substituted valerolactone, caprolactone, substituted caprolactone, lactone containing adamantane structure, lactone containing polycyclic structure, containing cage one or more of the lactone-like structures.
  • the film-forming resin can be prepared according to the following preparation method: the comonomer is prepared by polymerizing the comonomer in a solvent in the presence of an initiator.
  • the initiator can be an azo initiator, a free radical initiator of peroxide.
  • the azo initiator is azobisisobutyronitrile or azobisisoheptanenitrile.
  • the free radical initiator of the peroxide is tert-butyl peroxypivalate, tert-butoxy hydroperoxide, benzoic acid hydrogen peroxide, benzoyl peroxide, and the like.
  • the amount of the initiator is 0.3% to 15% of the total mass of the comonomer.
  • the way of adding the initiator is as follows: firstly add the comonomer and part of the solvent, then heat to the polymerization temperature, and then dropwise add the initiator solution.
  • the temperature of the polymerization reaction is controlled between 40 and 90°C according to the different solvents and initiators used, and the polymerization time is also controlled between 4 and 32 hours according to the different solvents and initiators used.
  • Copolymerization of film-forming resins can be carried out in various solvents or mixtures of solvents including methanol, ethanol, dioxane, acetone, methyl ethyl ketone, tetrahydrofuran, methyl tetrahydrofuran, benzene, toluene, dioxane Toluene, chloroform, dichloroethane, trichloroethane, etc.
  • the copolymerization reaction of the film-forming resin After the copolymerization reaction of the film-forming resin, it can be used in pure water, methanol, methanol/water mixture, ethanol, ethanol/water mixture, isopropanol, isopropanol/water mixture, n-heptane, n-hexane, cyclohexane, Organic or inorganic solvents such as n-pentane, petroleum ether, ether, methyl tert-butyl ether, etc. are precipitated and separated, and after vacuum drying, the yield of the copolymer is 50% to 80%.
  • the preparation method of the photoresist composition is as follows: at room temperature, the film-forming resin with acid activity, the photosensitive resin, the acid inhibitor and the organic solvent are added successively according to the formula ratio, and the mixture is shaken in the bottle for 16 to 96 hours in the dark, so that It is fully dissolved to obtain a photoresist solution; then, the photoresist solution is filtered with a 0.5 micron or less nylon material and a UPE material filter successively; the filtrate is collected to obtain a photoresist composition. In at least one embodiment, the filtrate is collected in a clean glass bottle
  • the photoresist composition contains the above-mentioned photosensitive resin. Therefore, the properties of each component of the photoresist composition are matched, the distribution is uniform, and the film-forming ability is good, which can effectively prevent the photoresist film from brittle cracking and peeling. and other adverse phenomena.
  • Resin-type photosensitive resin can not only ensure the stable photoresist performance of the photoresist composition, but also effectively ensure and improve the photoresist resolution and line width roughness; at the same time, it can be used in immersion photolithography support to avoid photoresist
  • the photosensitive components in the composition are dissolved in water to protect the lens of the lithography machine and avoid contamination.
  • the present embodiment provides a preparation method of a photosensitive resin, and the reaction formula is as follows:
  • the steps of the photosensitive resin preparation method are as follows:
  • step (1) add 600g the first methanol in the reactor that is down to room temperature, after producing precipitation 1h, derive the liquid in the reactor, then add 70g the third ethyl acetate in the reactor to the precipitation and dissolve;
  • the present embodiment provides a preparation method of a photosensitive resin, and the reaction formula is as follows:
  • the steps of the preparation method of the photosensitive resin are as follows:
  • step (2) add 600g of the first methanol in the reaction kettle lowered to room temperature in step (1), after 1 h of precipitation, derive the liquid in the reaction kettle, then add 70g of the third ethyl acetate into the reaction kettle until the precipitate dissolves;
  • step (3) add 600g second methanol in the reaction kettle of step (2), repeat the operation of step (2) 3 times, obtain solid precipitate, place described solid precipitate in vacuum drying, obtain 20g photosensitive resin B; GPC;
  • Example 2-1 Example 2-1 and Example 2-2
  • Embodiments 2-1 and 2-2 are application examples in which the photosensitive resin of the present invention is applied to the photoresist composition, and its formula is composed as follows:
  • Example 2-1 uses Resin A in Example 1-1;
  • Example 2-2 uses Resin B in Example 1-2;
  • the acid-active film-forming resin contains two kinds of acid-active groups and two kinds of polar groups, and the ratio of monomers of acid-active groups to monomers of polar groups is 50:50;
  • Acid inhibitor N, N-dibutylaniline
  • Photolithography experiments were carried out on the photoresist compositions prepared in the above-mentioned Examples 2-1 and 2-2.
  • the method of the photolithography experiments was as follows: The photoresist compositions were placed on a 12" silicon wafer at a temperature of 2000-3000. Rotate at the speed of r/min to form a film, bake on a hot plate at 120°C for 90 seconds, and then expose on an exposure machine with an exposure intensity of 10 to 50mJ/cm 2 . After exposure, bake on a hot plate at 110°C for 90 seconds, and finally in 2. Develop in 2.38% TMAH developing solution for 60 seconds, and dry. Detect the photolithography results under an electron microscope, and the electron microscope photo of the photoresist composition of Example 2-1 after photolithography is shown in Figure 2. The electron microscope photograph of the photoresist composition of 2 after photolithography is shown in Figure 3.
  • the photosensitive resin provided in the embodiment of the present invention is a polymer type photosensitive resin, which can effectively improve the distribution in the photoresist composition, improve the film-forming ability of the photoresist composition, improve the lithography pattern, and improve the lithography glue resolution, and reduced line width roughness.
  • the photosensitive resin has strong hydrophobicity, which can reduce the leaching rate of the photoresist, so that the photoresist composition applied with it is not easy to be precipitated in the lens liquid, so as to avoid the contamination of the lithography machine lens. It has a good application prospect in the resist formulation.
  • the photoresist is mainly used in large-scale integrated circuit lithography technology, such as ultraviolet, deep ultraviolet, extreme ultraviolet and electron beam lithography technology, and is especially suitable for 193nm lithography technology.

Abstract

一种光敏树脂及应用该光敏树脂的光刻胶组合物。该光敏树脂包括树脂型光敏阴离子和硫鎓盐阳离子,其中,树脂型光敏阴离子的结构式为其中,R 1、R 2为H或甲基;R 3为改性结构;R 4、R 5、R 6为氢原子数为1~40之间的整数、且碳原子数为1~20之间的整数的烷基、芳基或含硫/氧/氮杂原子的取代基中的一种或多种;n为2~200之间的整数,R 7为烷基、芳基或含硫/氧/氮杂原子的官能结构中的一种或多种。光敏树脂应用到光刻胶组合物中能提高光刻胶组合物的成膜能力,改善光刻图形,提高光刻胶分辨率,并降低线宽粗糙度,从而使光刻胶组合物能够应用于大规模集成电路的光刻技术中。

Description

光敏树脂及应用该光敏树脂的光刻胶组合物 技术领域
本发明属于光刻胶技术领域,尤其涉及一种光敏树脂及应用该光敏树脂的光刻胶组合物。
背景技术
光刻胶组合物是集成电路制造领域的关键材料之一,其主要成分为成膜树脂、光敏剂、酸抑制剂和溶剂等组成的对光敏感的混合液体。它在紫外光、深紫外光、电子束、离子束等光照或辐射照射下,成分的溶解度发生变化,经适当显影液处理,溶去可溶性部分,得到最终所需光刻胶图像。随着制造技术的不断发展,对光刻胶的技术要求越来越高,为了满足日益苛刻的工艺条件,需要开发更高性能的光刻胶产品。
光刻胶的三个重要参数包括分辨率、灵敏度和线宽粗糙度,它们决定了光刻胶在芯片制造时的工艺窗口。随着半导体芯片性能的不断提升,集成电路的集成度呈指数型增加,集成电路中的图形不断缩小。为了制作更小尺寸的图形,必须提高光刻胶的上述三个性能指标。根据瑞利方程式,在光刻工艺中使用短波长的光源可以提高光刻胶的分辨率。光刻工艺的光源波长从365nm(I-线)发展到248nm(KrF)、193nm(ArF)、13nm(EUV)。为提高光刻胶的灵敏度,目前主流的KrF、ArF、EUV光刻胶采用了化学放大型光敏树脂。
光敏剂是光刻胶的关键组成,它的作用是在光照下发生分解,产生自由基;自由基进一步夺取附近树脂结构中的H,并形成新的自由基,H和光敏剂的阴离子部分结合形成光酸,引发和催化成膜树脂中酸敏基团的去保护反应,改变成膜树脂在显影液中的溶解性;而之前形成的新自由基,再次夺取附近树脂结构中的H,形成光酸,并向外扩散,由此形成链式放大反应,将曝光区内的成膜树脂完全转变为可溶于显影液的极性树脂,最后通过显影将曝光区的极性树脂洗去,从而将非曝光区的成膜树脂保留,在光刻胶膜中形成光刻胶图形。其中,在化学放大型光刻胶曝光之后,光酸的感光能力、酸性及其扩散能力是影响光刻胶分辨率、线宽粗糙度和曝光能量的关键因素之一。
随着浸没式光刻技术的发展,光刻胶中小分子化合物在纯水中的微量析出,会污染昂贵的光刻机镜头。为避免这个问题,将光敏剂聚合成高分子化合物是一个可行的方案。由于光敏剂分子极性较大,聚合后较大的极性导致聚合型的光敏剂的溶解性极差,很容易在光刻胶溶液在析出。因此,将光敏剂结构接枝到成膜树脂结构中,是目前普遍的做法。专利CN101080673介绍了将三苯基硫鎓盐接枝到丙烯酸树脂结构中,在一定程度上解决了光敏剂析出的问题。但是,光敏剂分子接枝后成膜树脂既要承担光敏剂的效果,还要发挥成膜树脂的作用,这就大大增加了开发光刻胶配方的难度。同时,光敏剂阳离子部分聚合后,阴离子部分酸扩散控制的问题依然存在。
发明内容
有鉴于此,有必要提供一种光敏树脂及应用该光敏树脂的光刻胶组合物, 以解决上述的技术问题。本发明将光敏剂阴离子部分和其它功能基团聚合,形成新的光敏树脂。其包含链长可调的聚合型阴离子结构,可以有效控制酸扩散范围;多取代的三苯基硫鎓盐能最大化增强光敏树脂的曝光能力;功能基团能提高光敏树脂的溶解性和曝光后的水溶性。同时,该光敏树脂还能和其它成膜树脂一起,形成ArF光刻胶配方组分,大大降低了光刻胶配方的调配难度。
一种光敏树脂,其包括树脂型光敏阴离子和硫鎓盐阳离子,其结构通式为
Figure PCTCN2020115465-appb-000001
其中,
Figure PCTCN2020115465-appb-000002
为所述树脂型光敏阴离子的结构式,
Figure PCTCN2020115465-appb-000003
为所述硫鎓盐阳离子的结构式;
所述R 1、R 2为H或甲基;R 3为改性结构;R 4、R 5、R 6为氢原子数为1~40之间的整数、且碳原子数为1~20之间的整数的烷基、芳基或含硫/氧/氮杂原子的取代基中的一种或多种;n为2~200之间的整数,R 7为烷基、芳基或含硫/氧/氮杂原子的官能结构中的一种或多种。
更进一步地,所述硫鎓盐阳离子为如下结构中的任一种:
Figure PCTCN2020115465-appb-000004
其中,R 8、R 9、R 10为H或含碳原子数为1~20之间的整数的碳链结构;R 11、R 12、R 13为含杂原子的碳原子数为1~20之间的整数的碳链结构。
更进一步地,所述通式(2)为如下结构中的任意一种:
Figure PCTCN2020115465-appb-000005
Figure PCTCN2020115465-appb-000006
更进一步地,所述通式(3)为如下结构中的任意一种:
Figure PCTCN2020115465-appb-000007
Figure PCTCN2020115465-appb-000008
Figure PCTCN2020115465-appb-000009
Figure PCTCN2020115465-appb-000010
更进一步地,R 7为烷基时,所述光敏剂阴离子的结构式为如下结构中的 任意一种:
Figure PCTCN2020115465-appb-000011
其中,n 1为1~50之间的整数;
R 7为含杂原子基团时,所述光敏剂阴离子的结构式为如下结构的任意一种:
Figure PCTCN2020115465-appb-000012
其中,n 2为1~50之间的整数,n 3为1~50之间的整数。
更进一步地,所述改性结构R 3为刚性结构、酸敏结构或极性结构,其包含如下结构中的任意一种或多种:
Figure PCTCN2020115465-appb-000013
Figure PCTCN2020115465-appb-000014
本发明的另一方面,还提供了一种光刻胶组合物,其包括成膜树脂、光敏树脂、酸抑制剂及有机溶剂,该光敏树脂为上述光敏树脂。
更进一步地,所述成膜树脂具有酸活性,包含酸敏基团和极性基团,其结构式如下:
Figure PCTCN2020115465-appb-000015
所述酸敏基团的结构通式如下:
Figure PCTCN2020115465-appb-000016
其中,R a为H或碳原子数为1~20的碳链,R b为碳原子数为6~30之间碳链;
所述极性基团的结构通式如下:
Figure PCTCN2020115465-appb-000017
其中,R c为H或碳原子数为1~20的碳链,R d为碳原子数在6~30之间的含极性基团的(甲基)丙烯酸酯。
更进一步地,所述光刻胶组合物中,所述成膜树脂的质量百分含量的范围为1~20%,所述光敏树脂的质量百分含量的范围为0.01~10%,所述酸抑制剂的质量百分含量的范围为0.01~10%,所述有机溶剂的质量百分含量的范围为60~99.98%。
更进一步地,所述有机溶剂为丙二醇甲醚醋酸酯、丙二醇单醋酸醚、丙二醇单乙醚、丙二醇甲醚醋酸酯、二缩乙二醇甲醚、二缩乙二醇乙醚、醋酸丁酯、醋酸新戊酯、乳酸乙酯、甲基乙基酮、环己酮、甲基异丁基酮中、N-甲基吡咯烷酮、N、N-二甲基甲酰胺、N、N-二甲基乙酰胺、N、N-二乙基甲酰胺中的一种或多种。
与现有技术相比,本发明具有下列优点:
(1)本发明在光刻胶组合物中引入光敏树脂结构,该光敏树脂是一种树脂型光敏剂,该光敏树脂与常规的小分子离子型光敏剂不同,是以聚合物的形式加入到光刻胶组合物体系中,在保留现有的光敏剂优点的前提下,本发明的光敏树脂还具有较大的分子体积,能够更好的控制光酸扩散性能,改善光刻胶的性能。
(2)本发明的光敏树脂采用与光刻胶组合物中的成膜树脂相同的树脂结构体系。当在光敏树脂和成膜树脂组合使用时,可以提高光敏树脂与成膜树脂的互溶性,使光敏树脂更加均匀的分布在光刻胶成膜树脂体系内,与成膜树脂相容,避免了局部区域聚集。能够有效提高线条的分辨率并减少粗糙度。
(3)本发明的光敏树脂具有较强的疏水性,在水中溶解性较低,该光敏树脂在浸没式光刻制程中,可以降低光刻胶浸析率,避免光刻机镜头被沾污。
本发明所涉及的光刻胶组合物应用所述光敏树脂作为树脂型的光敏剂,使得光刻胶组合物所含的组分之间能够均匀分散,使得酸扩散效果好。此外,光敏树脂与成膜树脂性质匹配,能够保证光刻胶的光刻性能稳定,有效提高光刻胶分辨率和线宽粗糙度,而且成膜能力好,可以有效避免光刻胶膜出现脆裂、剥落等不良现象。
附图说明
图1是本发明实施例的光敏树脂的制备方法工艺流程示意图;
图2是本发明实施例2-1提供的光刻胶组合物进行光刻后的电子显微镜照片;
图3是本发明实施例2-2提供的光刻胶组合物进行光刻后的电子显微镜照片。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的光敏树脂包含硫鎓盐阳离子单元和树脂型光敏剂阴离子,该 树脂型光敏剂阴离子具有改性结构,该改性结构包含刚性结构、酸敏结构或极性结构等。本发明的光敏树脂能有效改善光刻胶组份中的酸分布问题,能够提高光刻胶的成膜能力,进而改善光刻图形,提高光刻胶分辨率,并降低线宽粗糙度。
一方面,本发明较佳实施方式提供一种光敏树脂,其包括树脂型光敏阴离子和硫鎓盐阳离子,其结构通式为:
Figure PCTCN2020115465-appb-000018
其中,
Figure PCTCN2020115465-appb-000019
为所述树脂型光敏阴离子的结构式,
Figure PCTCN2020115465-appb-000020
为所述硫鎓盐阳离子的结构式,
其中,R 1、R 2为H或甲基;R 3为改性结构;R 4、R 5、R 6为氢原子数为1~40之间的整数、且碳原子数为1~20之间的整数的烷基、芳基或含硫/氧/氮杂原子的取代基中的一种或多种;n为2~200之间的整数,R 7为烷基、芳基或含硫/氧/氮杂原子的官能结构中的一种或多种。
所述硫鎓盐阳离子的结构中由于含有三苯基阳离子,该三苯基阳离子在曝光时可以产生自由基,可以夺取附近聚合物中的H原子,进而形成光酸。其中硫鎓盐阳离子所含不同的取代基能够影响光敏树脂的紫外吸收波长及其溶解性。硫鎓盐阳离子通过不同的取代基结构,可以提高光敏树脂的光量子产生能力。
所述树脂型光敏阴离子包括阴离子结构和改性结构,如通式(II)所示:
Figure PCTCN2020115465-appb-000021
该阴离子结构为磺酸阴离子,其能够与三苯基阳离子在曝光时产生的H离子形成光酸,光酸的酸性通过相邻的F原子得到加强,使其酸性能够和酸敏的丙烯酸类树脂反应,其中的R 7官能团是长链结构,能控制光酸的扩散范围,提升光酸的性能。所述改性结构能够使光敏树脂与酸敏树脂更好的相容。
其中,硫鎓盐阳离子优选为如下的任一种结构:
Figure PCTCN2020115465-appb-000022
其中,R 8、R 9、R 10为H或含碳原子数为1~20之间的整数的碳链结构;R 11、R 12、R 13为含杂原子的含碳原子数为1~20之间的整数的碳链结构。
具体地,所述通式(2)中的硫鎓盐阳离子的结构可以为如下结构中的任意一种:
Figure PCTCN2020115465-appb-000023
Figure PCTCN2020115465-appb-000024
所述通式(3)中的硫鎓盐阳离子的结构可以为如下结构中的任意一种:
Figure PCTCN2020115465-appb-000025
Figure PCTCN2020115465-appb-000026
Figure PCTCN2020115465-appb-000027
Figure PCTCN2020115465-appb-000028
当R 7为烷基时,所述树脂型光敏阴离子可以为如下结构中的任意一种:
Figure PCTCN2020115465-appb-000029
其中,n 1为1~50之间的整数;
当R 7为含杂原子基团时,所述树脂型光敏阴离子可以为如下结构中的任意一种:
Figure PCTCN2020115465-appb-000030
其中,n 2为1~50之间的整数,n 3为1~50之间的整数。
进一步地,所述树脂型光敏阴离子中的改性结构R 3为刚性结构、酸敏结构或极性结构中的一种。该改性结构R 3可以为如下结构中的任意一种或多种:
Figure PCTCN2020115465-appb-000031
Figure PCTCN2020115465-appb-000032
所述树脂型光敏阴离子包含磺酸阴离子,它可以和三苯基阳离子曝光产生的H离子形成光酸。光酸的酸性通过相邻的F原子得到加强,使其酸性能够和酸敏的丙烯酸类树脂反应。所述树脂型光敏阴离子中的R 7是长链结构,能控制光酸的扩散范围,提升光酸的性能。所述树脂型光敏阴离子中的改性结构能够使树脂型的光敏树脂与酸敏树脂更好的相容。所述改性结构包含刚性单元、极性单元和酸敏单元,该刚性单元能提升树脂型的光敏树脂的成膜能力;该极性单元能使树脂型的光敏树脂在光刻胶组合物溶液中与树脂体系相容,减小析出;该酸敏单元使树脂型的光敏树脂在曝光后更容易溶解在显影液内,进而提高光刻胶线条的LWR。
所述光敏树脂为包含树脂型光敏阴离子和硫鎓盐阳离子的光敏剂,能够作为一种新型的树脂型光敏剂添加到光刻胶组合物中。所述光敏树脂在保留现有的光敏剂的光催化功能的前提下,其结构中还引入改性单元,使得光敏树脂能均匀的分布在光刻胶组合物中,进一步提高光敏树脂在光刻胶组合物中的溶解性和成膜能力,从而提高光刻胶分辨率和线宽粗糙度。同时,所述光敏树脂的树脂型的结构与水不相容,避免了使用小分子型光敏剂时小分子型光敏剂在纯水中溶解而导致光刻机镜头沾污的问题。
另一方面,基于上文所述光敏树脂,本发明实施例还提供了一种上述光敏树脂的制备方法。该光敏树脂的制备方法工艺流程如图1所示,其包括如下步骤:
S01:配制含光敏功能单体和含改性功能单体的混合液,
具体的,将含改性功能单元的单体和含光敏功能单元的单体溶解于第一溶剂中,得到含光敏树脂单体的混合液;
S02:配制引发剂溶液,
具体的,将引发剂溶解于第二溶剂,得到引发剂溶液;
S03:将混合液与引发剂溶液混合,进行聚合反应,
具体的,将上述引发剂溶液与上述混合液混合并于40~90℃恒温回流聚合反应2~30小时后冷却至室温,分离并收集沉淀,对沉淀进行烘干,得到上述光敏树脂。
其中,在步骤S01中,含光敏功能单元的单体为包含上文所述的硫鎓盐阳离子的盐溶液单体,含改性功能单元的单体为包含上文所述的树脂型光敏阴离子的(甲基)丙烯酸酯类单体。
其中,硫鎓盐阳离子为上述通式(1)、(2)或(3)中所示的至少一种结构;树脂型光敏阴离子为上文所述的4-1至4-12图示结构的至少一种结构。
具体地,树脂型光敏阴离子所含的改性结构的单体为上文5-1至5-32所述的(甲基)丙烯酸酯类单体,优选为至少含有一个上文结构的单体。
在实施例中,含光敏功能单元的单体和含改性功能单元的单体按照质量百分比为(1-70):(30-99)的比例进行混合溶解于所述第一溶剂。通过调节两种单体的混合比例,从而优化最终制备的目标产物光敏树脂中所述含光敏功能单体和含改性功能单体的比例,以进一步提高所述光敏树脂在光刻胶配方中的性能。
在至少一实施例中,所述第一溶剂的用量为含光敏功能单元的单体和含改性功能单元的单体的总质量的1-100倍。通过控制第一溶剂的用量,可以提高单体的溶解速率,同时间接控制步骤S03中反应溶液的浓度,有利于目标产物的生成。
所述第一溶剂优选为甲醇、乙醇、二氧六环、丙酮、甲基乙基酮、四氢呋喃、甲基四氢呋喃、苯、甲苯、二甲苯、正己烷、正庚烷、正戊烷、乙酸乙酯、乙酸丁酯、丙二醇单甲醚、丙二醇甲醚醋酸酯、石油醚、乙醚、正丁醚、氯仿、二氯乙烷或三氯乙烷中的至少一种。该第一溶剂不仅能够提高各单体的溶解性,还能够稳定第一溶剂和第二溶剂所构成的聚合反应溶剂,提高各单体之间的聚合反应效率,并提高含羟基的酸扩散抑制剂的得率。
在步骤S02中,引发剂优选按照第二溶剂用量是引发剂用量1-100倍的比例进行混合,配制成引发剂溶液。所述引发剂可以为偶氮引发剂或过氧化物的自由基引发剂。其中,偶氮引发剂优选为偶氮二异丁腈或偶氮二异庚腈中的一种或两种;过氧化物的自由基引发剂优选为叔丁基过氧化特戊酸酯、叔丁氧过氧化氢、苯甲酸过氧化氢或者过氧苯甲酰等中的至少一种。所述第二溶剂优选为甲醇、乙醇、二氧六环、丙酮、甲基乙基酮、四氢呋喃、甲基四氢呋喃、苯、甲苯、二甲苯、正己烷、正庚烷、正戊烷、乙酸乙酯、乙酸丁酯、丙二醇单甲醚、丙二醇甲醚醋酸酯、石油醚、乙醚、正丁醚、氯仿、二氯乙烷或三氯乙烷中的至少一种。
在步骤S03中,按照引发剂的质量为混合液中单体总的质量的0.3%~20%的比例将引发剂溶液与混合液进行混合和聚合反应。优选地,先将含光敏功能的单体和含改性功能的单体的混合液加热至聚合温度,再滴加引发剂溶液。聚合反应的温度根据使用的溶剂和引发剂不同,控制在40~90℃之间,聚合反应的时间同样根据使用的溶剂和引发剂不同,控制在2~30小时之间。聚合反应的 溶剂也即是第一溶剂和第二溶剂所构成。
将聚合反应结束后的混合物进行分离处理,即可获得光敏树脂。在至少一实施例中,该分离处理可以为:将聚合反应后的混合物混合于分离溶液中,使得光敏树脂发生沉淀并分离。在具体实施例中,该分离溶液可以为纯水、甲醇、甲醇/水混合物、乙醇、乙醇/水混合物、异丙醇、异丙醇/水混合物、正庚烷、正己烷、环己烷、正戊烷、石油醚、乙醚或甲基叔丁基醚中的至少一种。
对收集的沉淀进行烘干可以但不仅仅为真空干燥处理。经检测,烘干后的光敏树脂的收率为60%~90%。
上述光敏树脂的制备方法是将含改性功能单元的单体和含光敏功能单元的单体的混合溶液与引发剂溶液直接混合进行聚合反应,从而生成光敏树脂,能够保证树脂型光敏树脂的生成速率,且反应条件温和,效率高。另外,根据光敏树脂的制备方法可知,上述步骤S01和步骤S02没有必然的先后关系。
再一方面,基于上文光敏树脂及其制备方法的基础上,本发明实施例还提供一种光刻胶组合物,其包括成膜树脂、所述光敏树脂、酸抑制剂及有机溶剂。
可以理解的,所述光刻胶组合物配方中还可以添加常规使用的光敏引发剂,以提高光刻胶的图像解析能力。
所述酸抑制剂包括但不限于正丁基胺、叔丁基胺、二甲基胺、二乙基胺、二正丙胺、二异丙基胺、二正丁基胺、二异丁基胺、二叔丁基胺、三甲基胺、三乙基胺、三正丙胺、三异丙基胺、三正丁基胺、三异丁基胺、三叔丁基胺、乙醇胺、二乙醇胺、三乙醇胺、环戊胺、环己胺、吗啡啉、N-甲基环戊胺、甲基苯胺、乙基苯胺、正丁基苯胺、叔丁基苯胺、二甲基苯胺、二乙基苯胺、二丁基苯胺、二苯基苯胺中的一种或几种。
所述有机溶剂包括但不限于丙二醇甲醚醋酸酯、丙二醇单醋酸醚、丙二醇单乙醚、丙二醇甲醚醋酸酯、二缩乙二醇甲醚、二缩乙二醇乙醚、醋酸丁酯、醋酸新戊酯、乳酸乙酯、甲基乙基酮、环己酮、甲基异丁基酮中、N-甲基吡咯烷酮、N、N-二甲基甲酰胺、N、N-二甲基乙酰胺、N、N-二乙基甲酰胺中的一种或多种。
所述光刻胶组合物的各成分以质量百分数计,其中,光敏树脂的质量百分含量的范围为0.01~10%,具有酸活性的成膜树脂的质量百分含量为1~20%,酸抑制剂的质量百分含量的范围为0.01~10%,有机溶剂的质量百分含量的范围为60~99.98%。
所述成膜树脂具有酸活性,其包含多个功能基团,具体为包含酸活性基团和极性基团。所述成膜树脂的结构通式如下:
Figure PCTCN2020115465-appb-000033
所述成膜树脂的分子量的范围为3000~100000之间。以酸敏基团的单体与极性基团的单体的总量计,所述酸敏基团的单体的含量范围为30%~70%。在本发明的一个实施例中,酸敏基团的单体的含量与极性基团的单体含量比优选为50:50。
所述成膜树脂中包含不同取代基的酸敏基团,在至少一实施例中,该酸敏基团为酸活性(甲基)丙烯酸酯。具体地,所述酸敏基团的结构通式如下:
Figure PCTCN2020115465-appb-000034
其中,R a为H或碳原子数为1~20的碳链;R b为碳原子数为6~30之间碳链。
具体地,R b为四级酯,其与羟基氧原子相连的碳原子的氢原子全部被其它基团取代,R b可能的结构可以为但不限于叔丁基酯、取代叔丁基酯、烷基取代的金刚烷酯、烷基取代的金刚烷衍生物酯、烷基取代的降冰片酯、烷基取代的降冰片衍生物酯、烷基取代的环状烷基酯、烷基取代的环状烷基衍生物酯等其中的一种或多种。
所述成膜树脂中包含一个或多个极性基团,在至少一实施例中,该极性基团为含极性基团的(甲基)丙烯酸酯具体地,所述极性基团的结构通式如下:
Figure PCTCN2020115465-appb-000035
其中,R c为H或碳原子数为1~20的碳链;R d为碳原子数在6~30之间的含极性基团的(甲基)丙烯酸酯。
具体地,R d为碳原子数在6~30之间含羟基的环状、笼状或直链型含碳结构和各类内酯结构,其可能的结构可以为但不限于含一个或多个独立羟基的金刚烷酯、含一个或多个独立羟基的环己酯、含一个或多个独立羟基的环戊酯、含一个或多个独立羟基的多环酯类化合物、含一个或多个独立羟基的笼状酯类化合物、丁内酯、戊内酯、取代戊内酯、己内酯、取代己 内酯、含金刚烷结构的内酯、含多环结构的内酯、含笼状结构的内酯中的一种或多种。
所述成膜树脂可以按照如下制备方法制备:共聚单体在引发剂存在的条件下,在溶剂中进行聚合反应制备而成。所述引发剂可以为偶氮引发剂、过氧化物的自由基引发剂。优选的,偶氮引发剂为偶氮二异丁腈或偶氮二异庚腈。优选的,过氧化物的自由基引发剂为叔丁基过氧化特戊酸酯、叔丁氧过氧化氢、苯甲酸过氧化氢或者过氧苯甲酰等。
所述引发剂用量为共聚单体总质量的0.3%~15%。引发剂的加入方式为:先加入共聚单体和部分溶剂,然后加热至聚合温度,再滴加引发剂溶液。聚合反应的温度根据使用的溶剂和引发剂不同,控制在40~90℃之间,聚合时间同样根据使用的溶剂和引发剂不同控制在4~32小时之间。
成膜树脂的共聚反应可在各种溶剂或多种溶剂混合物种进行,这些溶剂包括甲醇、乙醇、二氧六环、丙酮、甲基乙基酮、四氢呋喃、甲基四氢呋喃、苯、甲苯、二甲苯、氯仿、二氯乙烷、三氯乙烷等。
成膜树脂的共聚反应结束后,可在纯水、甲醇、甲醇/水混合物、乙醇、乙醇/水混合物、异丙醇、异丙醇/水混合物、正庚烷、正己烷、环己烷、正戊烷、石油醚、乙醚、甲基叔丁基醚等有机或无机溶剂种沉淀分离,真空干燥后,共聚物的收率为50%~80%。
光刻胶组合物的配置方法是:在室温下,按照配方比例先后加入具有酸活性的成膜树脂、光敏树脂、酸抑制剂和有机溶剂,混合物在瓶中避光震荡16~96小时,使其充分溶解,得到光刻胶溶液;然后,先后用0.5微米或以下的尼龙材质和UPE材质的过滤器过滤光刻胶溶液;收集滤液,获得光刻胶组合物。在至少一实施方式中,所述滤液被收集在一个干净的玻璃瓶内
所述光刻胶组合物含有上文所述的光敏树脂,因此,光刻胶组合物各组分性质相匹配、分布均匀、成膜能力好,可以有效避免光刻胶膜出现脆裂、剥落等不良现象。树脂型的光敏树脂不仅能够保证光刻胶组合物的光刻性能稳定,还可以有效保证并提高光刻胶分辨率和线宽粗糙度;同时应用在浸没式光刻支撑中能够避免光刻胶组合物中的光敏成分在水中溶出,保护光刻机镜头,避免沾污。
现结合具体实例,对光敏树脂进行进一步详细说明。
一.所述光敏树脂的制备实施例
实施例1-1
本实施例提供了一种光敏树脂的制备方法,反应式如下:
Figure PCTCN2020115465-appb-000036
光敏树脂制备方法的步骤如下:
(1)将20g单体A、20g单体B,加入充满氮气的反应釜内,往反应釜内加入60g第一乙酸乙酯,搅拌均匀后将反应釜升温至77℃,接着向反应釜内滴加第二乙酸乙酯10g和4g过氧苯甲酰的混合液,滴加时间为10min,于77℃反应7小时,停止反应,将反应釜温度冷却至室温;
(2)向步骤(1)中降至室温的反应釜内加入600g第一甲醇,产生沉淀1h后,导出反应釜内的液体,接着往反应釜内加入70g第三乙酸乙酯至沉淀溶解;
(3)往步骤(2)的反应釜内加入600g第二甲醇,重复步骤(2)的操作3次,得到固体沉淀物,将固体沉淀物置于真空干燥,得到23g光敏树脂A;GPC设备测量光敏树脂的分子量Mw=3421,PDI=2.1。
实施例1-2
本实施例提供了一种光敏树脂的制备方法,反应式如下:
Figure PCTCN2020115465-appb-000037
所述光敏树脂的制备方法的步骤如下:
(1)将10g单体A、20g单体B、10g单体C,加入充满氮气的反应釜内,往所述反应釜内加入60g第一乙酸乙酯,搅拌均匀后将反应釜升温至77℃,接着向所述反应釜内滴加第二乙酸乙酯10g和4g过氧苯甲酰的混合液,滴加时间为10min,于77℃反应7小时,停止反应,将所述反应釜温度冷却至室温;
(2)向步骤(1)中降至室温的反应釜内加入600g第一甲醇,产生沉淀1h后,导出所述反应釜内的液体,接着往所述反应釜内加入70g第三乙酸乙酯至沉淀溶解;
(3)往步骤(2)的反应釜内加入600g第二甲醇,重复步骤(2)的操作3次,得到固体沉淀物,将所述固体沉淀物置于真空干燥,得到20g光敏树脂B;GPC设备测量光敏树脂的分子量Mw=4105,PDI=2.3。
二.光敏树脂应用到光刻胶的具体实施例
实施例2-1和实施例2-2
实施例2-1和2-2为本发明的光敏树脂应用到光刻胶组合物的应用实施例,其配方组成如下:
光敏树脂:实施例2-1使用实施例1-1中的树脂A;实施例2-2使用实施例1-2中的树脂B;
酸活性的成膜树脂包含2种酸活性基团和2种极性基团,且酸活性基团的单体与极性基团的单体的比例为50:50;
酸抑制剂:N、N-二丁基苯胺;
有机溶剂:PGMEA:环己酮=7:3的混合有机溶剂。
具体配方调制方法:
在一个新的干净的100mL玻璃瓶中,加入8.5g酸活性的成膜树脂、0.52g光敏树脂、0.06g酸扩散抑制剂、63gPGMEA、27g环己酮。室温下,混合物在瓶中震荡24小时,使其充分溶解,得到光刻胶溶液。然后先后用0.22微米和0.02微米的过滤器过滤光刻胶溶液,获得光刻胶组合物。
对上述实施例2-1和实施例2-2所制得的光刻胶组合物进行光刻实验,光刻实验的方法如下:将光刻胶组合物在12”硅片上以2000~3000转/分钟的速度旋转成膜,120℃热板上烘烤90秒,然后在曝光机上曝光,曝光强度为10~50mJ/cm 2。曝光后在110℃热板上烘烤90秒,最后在2.38%TMAH显影液中显影60秒,烘干。在电子显微镜下检测光刻结果,实施例2-1的光刻胶组合物光刻后的电子显微镜照片如图2所示,实施例2-2的光刻胶组合物光刻后的电子显微镜照片图3所示。
由图2和图3可知,实施例2-1和实施例2-2所制备的光刻胶组合物成膜性好,没有出现光刻胶膜脆裂、剥落等不良现象,且显影后线条边缘粗糙度较小,分辨率高。本发明实施例提供的光敏树脂是一种高分子型的光敏树脂,能有效改善在光刻胶组合物内的分布,提高光刻胶组合物的成膜能力,改善光刻图形,提高光刻胶分辨率,并降低线宽粗糙度。同时,光敏树脂具有较强的疏水性,可以降低光刻胶浸析率,使得应用其的光刻胶组合物,不容易在镜头液体内析出,避免光刻机镜头被沾污,在ArF光刻胶配方中具有良好的应用前景。该光刻胶主要应用于大规模集成电路光刻技术中,如紫外、深紫外、极紫外及电子束等光刻技术中,尤其适用于193nm光刻技术。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种光敏树脂,其特征在于:该光敏树脂包括树脂型光敏阴离子和硫鎓盐阳离子,该光敏树脂的结构通式为:
    Figure PCTCN2020115465-appb-100001
    其中,
    Figure PCTCN2020115465-appb-100002
    为所述树脂型光敏阴离子的结构式,
    Figure PCTCN2020115465-appb-100003
    为所述硫鎓盐阳离子的结构式,
    所述R 1、R 2为H或甲基;R 3为改性结构;R 4、R 5、R 6为氢原子数为1~40之间的整数、且碳原子数为1~20之间的整数的烷基、芳基或含硫/氧/氮杂原子的取代基中的一种或多种;n为2~200之间的整数,R 7为烷基、芳基或含硫/氧/氮杂原子的官能结构中的一种或多种。
  2. 如权利要求1所述的光敏树脂,其特征在于:所述硫鎓盐阳离子为如下结构中的任意一种:
    Figure PCTCN2020115465-appb-100004
    其中,R 8、R 9、R 10为H或含碳原子数为1~20之间的整数的碳链结构;R 11、R 12、R 13为含杂原子的碳原子数为1~20之间的整数的碳链结构。
  3. 如权利要求2所述的光敏树脂,其特征在于:所述通式(2)为如下结构中的任意一种:
    Figure PCTCN2020115465-appb-100005
    Figure PCTCN2020115465-appb-100006
  4. 如权利要求2所述的光敏树脂,其特征在于:所述通式(3)为如下结构中的任意一种:
    Figure PCTCN2020115465-appb-100007
    Figure PCTCN2020115465-appb-100008
    Figure PCTCN2020115465-appb-100009
    Figure PCTCN2020115465-appb-100010
  5. 如权利要求1所述的光敏树脂,其特征在于:R 7为烷基时,所述树脂 型光敏阴离子的结构式为如下结构中的任意一种:
    Figure PCTCN2020115465-appb-100011
    其中,n 1为1~50之间的整数;
    R 7为含杂原子基团时,所述树脂型光敏阴离子的结构式为如下结构的任意一种:
    Figure PCTCN2020115465-appb-100012
    其中,n 2为1~50之间的整数,n 3为1~50之间的整数。
  6. 如权利要求1所述的光敏树脂,其特征在于:所述改性结构R 3为刚性结构、酸敏结构或极性结构,其包含如下结构中的任意一种或多种或多种:
    Figure PCTCN2020115465-appb-100013
    Figure PCTCN2020115465-appb-100014
  7. 一种光刻胶组合物,其包括成膜树脂、光敏树脂、酸抑制剂及有机溶剂,其特征在于,该光敏树脂为权利要求1至6任意一项所述的光敏树脂。
  8. 如权利要求7所述的光刻胶组合物,其特征在于:所述成膜树脂具有酸活性,其包含酸敏基团和极性基团,其结构式如下:
    Figure PCTCN2020115465-appb-100015
    所述酸敏基团的结构通式如下:
    Figure PCTCN2020115465-appb-100016
    其中,R a为H或碳原子数为1~20的碳链R b为碳原子数为6~30之间碳链;
    所述极性基团的结构通式如下:
    Figure PCTCN2020115465-appb-100017
    其中,R c为H或碳原子数为1~20的碳链,R d为碳原子数在6~30间的含极性基团的(甲基)丙烯酸酯。
  9. 如权利要求7所述的光刻胶组合物,其特征在于:所述光刻胶组合物中,所述成膜树脂的质量百分含量的范围为1~20%,所述光敏树脂的质量百分含量的范围为0.01~10%,所述酸抑制剂的质量百分含量的范围为0.01~10%,所述有机溶剂的质量百分含量的范围为60~99.98%。
  10. 如权利要求7所述的光刻胶组合物,其特征在于:所述有机溶剂为丙二醇甲醚醋酸酯、丙二醇单醋酸醚、丙二醇单乙醚、丙二醇甲醚醋酸酯、二缩乙二醇甲醚、二缩乙二醇乙醚、醋酸丁酯、醋酸新戊酯、乳酸乙酯、甲基乙基酮、环己酮、甲基异丁基酮中、N-甲基吡咯烷酮、N、N-二甲基甲酰胺、N、N-二甲基乙酰胺、N、N-二乙基甲酰胺中的一种或多种。
PCT/CN2020/115465 2020-09-16 2020-09-16 光敏树脂及应用该光敏树脂的光刻胶组合物 WO2022056700A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115465 WO2022056700A1 (zh) 2020-09-16 2020-09-16 光敏树脂及应用该光敏树脂的光刻胶组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115465 WO2022056700A1 (zh) 2020-09-16 2020-09-16 光敏树脂及应用该光敏树脂的光刻胶组合物

Publications (1)

Publication Number Publication Date
WO2022056700A1 true WO2022056700A1 (zh) 2022-03-24

Family

ID=80777468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115465 WO2022056700A1 (zh) 2020-09-16 2020-09-16 光敏树脂及应用该光敏树脂的光刻胶组合物

Country Status (1)

Country Link
WO (1) WO2022056700A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141304A (zh) * 2022-06-09 2022-10-04 江苏集萃光敏电子材料研究所有限公司 一种含三苯基甲醇酯类结构的高折射成膜树脂及光刻胶组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183263A1 (en) * 2010-01-27 2011-07-28 Fujifilm Corporation Actinic-ray- or radiation-sensitive resin composition and method of forming pattern using the composition
JP2012073398A (ja) * 2010-09-28 2012-04-12 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、及びパターン形成方法
CN102603579A (zh) * 2010-12-31 2012-07-25 罗门哈斯电子材料有限公司 可聚合光产酸剂
WO2013024756A1 (ja) * 2011-08-16 2013-02-21 Jsr株式会社 フォトレジスト組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183263A1 (en) * 2010-01-27 2011-07-28 Fujifilm Corporation Actinic-ray- or radiation-sensitive resin composition and method of forming pattern using the composition
JP2012073398A (ja) * 2010-09-28 2012-04-12 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、及びパターン形成方法
CN102603579A (zh) * 2010-12-31 2012-07-25 罗门哈斯电子材料有限公司 可聚合光产酸剂
WO2013024756A1 (ja) * 2011-08-16 2013-02-21 Jsr株式会社 フォトレジスト組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141304A (zh) * 2022-06-09 2022-10-04 江苏集萃光敏电子材料研究所有限公司 一种含三苯基甲醇酯类结构的高折射成膜树脂及光刻胶组合物
CN115141304B (zh) * 2022-06-09 2023-09-22 江苏集萃光敏电子材料研究所有限公司 一种含三苯基甲醇酯类结构的高折射成膜树脂及光刻胶组合物

Similar Documents

Publication Publication Date Title
WO2021169344A1 (zh) 含酸抑制剂的改性成膜树脂及其制备方法与光刻胶组合物
CN102844710B (zh) 负型图案形成方法、负型抗蚀剂组成物及抗蚀剂图案
KR101805617B1 (ko) 폴리머, 포토레지스트 조성물 및 포토리소그래피 패턴의 형성 방법
KR100271420B1 (ko) 화학증폭형 양성 포토레지스트 조성물
JP5537859B2 (ja) 化学増幅型レジスト組成物によるパターン形成用の処理液及びそれを用いたレジストパターン形成方法
CN103186044B (zh) 抗蚀剂添加剂及包含该抗蚀剂添加剂的抗蚀剂组合物
CN113214427B (zh) 一种生物基ArF光刻胶成膜树脂、光刻胶组合物及其制备方法
JP6739468B2 (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、及び、電子デバイスの製造方法
KR101988896B1 (ko) 패턴 형성 방법, 전자 디바이스의 제조 방법, 전자 디바이스, 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 및 마스크 블랭크
KR100830868B1 (ko) 극자외선 및 심자외선용 감광성 고분자 및 이를 포함하는포토레지스트 조성물
CN102822746A (zh) 图案形成方法及光阻组成物
WO2014175270A1 (ja) 感活性光線性又は感放射線性樹脂組成物、及び、パターン形成方法
JP2015129939A (ja) フォトレジストオーバーコート組成物
JP2015135492A (ja) フォトレジストオーバーコート組成物
CN111302959A (zh) 一种带酯键的酸扩散抑制剂及其制备方法与光刻胶组合物
CN112592304B (zh) 可聚合型含双鎓盐结构的光致产酸剂、制备方法及光刻胶
WO2022056700A1 (zh) 光敏树脂及应用该光敏树脂的光刻胶组合物
KR20150028336A (ko) 패턴 형성 방법, 감활성광선성 또는 감방사선성 수지 조성물, 레지스트 필름, 전자 디바이스의 제조 방법, 및 전자 디바이스
JP6659481B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
CN111285963A (zh) 含羟基的酸扩散抑制剂及其制备方法与光刻胶组合物
CN114262404B (zh) 光敏树脂及应用该光敏树脂的光刻胶组合物
CN107621751A (zh) 含碱性香豆素结构的聚合物树脂及其光刻胶组合物
CN111221218A (zh) 一种酸扩散抑制剂及其制备方法与光刻胶组合物
WO2014141858A1 (ja) 感活性光線性又は感放射線性樹脂組成物、該組成物を用いたレジスト膜、パターン形成方法、電子デバイスの製造方法及び電子デバイス
JP3970562B2 (ja) 粒子状フォトレジスト用高分子化合物とその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953560

Country of ref document: EP

Kind code of ref document: A1