WO2022054816A1 - 内燃機関の潤滑装置 - Google Patents

内燃機関の潤滑装置 Download PDF

Info

Publication number
WO2022054816A1
WO2022054816A1 PCT/JP2021/032934 JP2021032934W WO2022054816A1 WO 2022054816 A1 WO2022054816 A1 WO 2022054816A1 JP 2021032934 W JP2021032934 W JP 2021032934W WO 2022054816 A1 WO2022054816 A1 WO 2022054816A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
rotation speed
valve
opening degree
lubricated
Prior art date
Application number
PCT/JP2021/032934
Other languages
English (en)
French (fr)
Inventor
弘道 山田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2022054816A1 publication Critical patent/WO2022054816A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/06Lubricating systems characterised by the provision therein of crankshafts or connecting rods with lubricant passageways, e.g. bores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity

Definitions

  • This disclosure relates to a lubrication device for an internal combustion engine.
  • the lubricator of an internal combustion engine supplies oil from a lubricated device (for example, a vacuum pump) whose inside is lubricated by oil, an oil pump driven by a crankshaft, and an oil pump to the lubricated device.
  • a lubricated device for example, a vacuum pump
  • the lubrication device also includes an oil return passage for returning the lubricated oil from the lubricated device to the oil pan.
  • the cross-sectional area of the flow path of the oil supply passage is set larger than before to sufficiently secure the amount of oil supplied to the lubricated device when the rotation speed of the crankshaft is low.
  • a method such as doing is conceivable.
  • An object of the present disclosure is to provide a lubrication device for an internal combustion engine capable of suppressing an excessive supply of oil to a lubricated device.
  • the lubrication device for an internal combustion engine is for supplying oil from a lubricated device whose inside is lubricated by oil, an oil pump driven by a crankshaft, and the oil pump to the lubricated device.
  • the oil supply passage an on-off valve for opening and closing the oil supply passage, and a control device configured to control the opening and closing of the on-off valve according to the rotational speed of the crankshaft.
  • the internal combustion engine comprises an oil pan connected to the lower end of the crankcase and a blow-by gas passage for opening the blow-by gas in the crankcase to the atmosphere, wherein the lubricator is the lubricated device.
  • the oil pan is provided with an oil return passage for returning the lubricated oil.
  • control device reduces the opening degree of the on-off valve when the rotation speed is high and as compared with when the rotation speed is low.
  • control device sets the opening degree of the on-off valve to a predetermined minimum opening when the rotation speed is equal to or higher than a predetermined first threshold value, and when the rotation speed is less than a predetermined second threshold value, the on-off valve is opened.
  • the opening of is set to a predetermined maximum opening.
  • control device continuously reduces the opening degree of the on-off valve as the rotation speed increases.
  • the lubricated device is a vacuum pump.
  • the lubrication device of the internal combustion engine of the present disclosure it is possible to suppress the excessive supply of oil to the lubricated device.
  • FIG. 1 is a schematic side view of an internal combustion engine including the lubrication device of the first embodiment.
  • FIG. 2 is a graph defining the relationship between the oil supply amount, the opening degree of the on-off valve, and the engine rotation speed in the first embodiment.
  • FIG. 3 is a flowchart showing the control contents in the first embodiment.
  • FIG. 4 is a graph defining the relationship between the oil supply amount, the opening degree of the on-off valve, and the engine rotation speed in the second embodiment.
  • FIG. 5 is a flowchart showing the control contents in the second embodiment.
  • FIG. 6 is a graph defining the relationship between the oil supply amount, the opening degree of the on-off valve, and the engine rotation speed in the first modification.
  • the internal combustion engine 1 is a multi-cylinder compression ignition type internal combustion engine mounted on a vehicle, for example, a diesel engine.
  • the vehicle is a large vehicle such as a truck.
  • the type, type, application, etc. of the vehicle and the internal combustion engine 1 are not particularly limited.
  • the vehicle may be a small vehicle such as a passenger car, and the internal combustion engine 1 is a spark ignition type internal combustion engine such as a gasoline engine. It may be.
  • the internal combustion engine 1 may be mounted on a moving body other than a vehicle, for example, a ship, a construction machine, or an industrial machine. Further, the internal combustion engine 1 does not have to be mounted on a moving body, and may be a stationary type.
  • the internal combustion engine 1 includes a cylinder block 2, a crank case 3 integrally formed at the bottom of the cylinder block 2, a cylinder head 4 connected to the upper end of the cylinder block 2, and a head cover 5 connected to the upper end of the cylinder head 4. And.
  • the internal combustion engine 1 includes an oil pan 6 connected to the lower end of the crankcase 3 and a blow-by gas passage 7 for opening the blow-by gas B in the crankcase 3 to the atmosphere.
  • the internal combustion engine 1 includes a plurality of cylinders (not shown) provided in the cylinder block 2, a piston (not shown) housed in each cylinder, a crankshaft 3a housed in a crankcase 3, and a cylinder head.
  • a valve operating mechanism (not shown) such as a camshaft attached to 4 is provided.
  • crankshaft 3a protrudes rearward from the crankcase 3, and the crank gear 3b is fixed to this protruding portion.
  • the drive gear 20a of the oil pump 20, which will be described later, and the idle gear 3c are meshed with the crank gear 3b.
  • the blow-by gas passage 7 includes an in-engine passage 7a and a blow-by gas pipe 7b arranged in order from the upstream side in the blow-by gas flow direction.
  • the blow-by gas B is gas leaking into the crankcase 3 from the gap between the cylinder and the piston.
  • the engine passage 7a passes from the inside of the crankcase 3 to the inside of the cylinder block 2 and the cylinder head 4 and extends into the head cover 5.
  • the outlet 7out of the passage 7a in the engine is formed on the upper surface of the head cover 5.
  • the blow-by gas pipe 7b is made of a resin material such as rubber and is exposed to the outside of the internal combustion engine 1.
  • the upstream end of the blow-by gas pipe 7b is connected to the outlet 7out of the passage 7a in the engine, and the downstream end of the blow-by gas pipe 7b is open to the atmosphere.
  • An oil separator 8 for removing the oil in the blow-by gas B is provided in the middle of the blow-by gas pipe 7b.
  • oil is separated from the blow-by gas B introduced therein.
  • the oil separated from the blow-by gas B is returned to the crankcase 3 through a return passage (not shown).
  • the black-painted arrow O indicates the flow of engine oil
  • the white-painted arrow A indicates the flow of air.
  • the lubrication device 100 includes a vacuum pump 10 as a lubricated device whose inside is lubricated by oil O, and an oil pump 20 driven by a crankshaft 3a. Further, the lubrication device 100 includes an oil supply passage 30 for supplying oil O from the oil pump 20 to the vacuum pump 10, and an on-off valve 40 for opening and closing the oil supply passage 30. Further, the lubrication device 100 includes an electronic control unit (ECU) 50 as a control device configured to control the opening and closing of the on-off valve 40.
  • ECU electronice control unit
  • the lubrication device 100 includes an oil return pipe 60 as an oil return passage for returning the oil O after lubrication from the vacuum pump 10 to the oil pan 6.
  • the lubrication device 100 includes an engine rotation sensor 51 for detecting the engine rotation speed N.
  • the vacuum pump 10 is a rotary pump and is attached to the rear wall portion of the cylinder block 2. Although not shown, the vacuum pump 10 is adapted to suck air A from the vacuum tank 11 and discharge it into the atmosphere by rotating the rotor and the vane while sliding with the inner wall portion. Further, inside the vacuum pump 10, sliding portions such as a rotor are lubricated with oil O.
  • the vacuum pump 10 has a drive gear 10a for rotating a rotor and a vane, a suction port 10b for sucking air A, an exhaust port 10c for discharging air A, and oil supply for introducing oil O. It has a port 10d and an oil drain port 10e for discharging the oil O after lubrication.
  • the idle gear 3c meshed with the crank gear 3b is meshed with the drive gear 10a of the vacuum pump 10, and the driving force of the crankshaft 3a is transmitted via the crank gear 3b and the idle gear 3c.
  • the gear ratios of the drive gear 10a and the crank gear 3b have a 1: 1 relationship, and the rotation speed of the vacuum pump 10 is set to be the same as the rotation speed of the crankshaft 3a.
  • the vacuum tank 11 is connected to the suction port 10b via the suction pipe 12. Negative pressure utilization devices such as a brake booster 13 and a horn 14 are connected to the vacuum tank 11.
  • the exhaust port 10c is open to the atmosphere. Further, the exhaust port 10c is provided with a filter (not shown) for suppressing the oil O after lubrication from being discharged into the atmosphere.
  • a downstream pipe 33 of the oil supply passage 30, which will be described later, is connected to the fuel filler port 10d.
  • An oil return pipe 60 is connected to the oil drain port 10e.
  • the oil pump 20 is a gear pump and is attached to the rear wall of the crankcase 3.
  • the oil pump 20 has a drive gear 20a for rotating an internal pump gear (not shown), a suction port 20b for sucking oil O, and a discharge port 20c for discharging oil O.
  • the crank gear 3b is meshed with the drive gear 20a of the oil pump 20, and the driving force of the crankshaft 3a is transmitted via the crank gear 3b.
  • the gear ratios of the drive gear 20a and the crank gear 3b have a 1: 1 relationship, and the rotation speed of the oil pump 20 is set to be the same as the rotation speed of the crankshaft 3a.
  • An oil strainer 21 is connected to the suction port 20b.
  • the oil strainer 21 passes through the inside of the crankcase 3 from the suction port 20b and extends downward toward the bottom of the oil pan 6.
  • the oil supply passage 30 is connected to the oil gallery 31 formed inside the cylinder block 2 and the cylinder head 4, the upstream pipe 32 connected to the inlet 31a of the oil gallery 31, and the outlet 31b of the oil gallery 31. It is mainly defined by the downstream pipe 33.
  • the inlet 31a of the oil gallery 31 is formed at the lower end of the cylinder block 2.
  • the outlet 31b of the oil gallery 31 is formed on the rear wall portion of the cylinder block 2.
  • the upstream side pipe 32 is connected to the discharge port 20b of the oil pump 20 from the inlet 10a of the oil gallery 31b through the inside of the crankcase 3.
  • the downstream pipe 33 extends downward from the outlet 31b of the oil gallery 31b along the rear wall portion of the cylinder block 2 and is connected to the fuel filler port 10d of the vacuum pump 10.
  • the on-off valve 40 is a flow rate control valve (butterfly valve) capable of adjusting the amount of oil supplied to the vacuum pump 10, and is provided in the downstream pipe 33.
  • the on-off valve 40 is an electronically controlled valve and is electrically connected to the ECU 50.
  • the ECU 50 comprises a controller mounted on the vehicle, and includes a CPU, ROM, RAM, a storage device, an input / output port, and the like.
  • the engine rotation sensor 51 is electrically connected to the ECU 50.
  • the oil return pipe 60 extends downward from the oil drain port 10e of the vacuum pump 10 along the rear wall portion of the crankcase 3 and is connected to the oil inlet 3d formed on the rear wall portion of the crankcase 3.
  • the vacuum pump 10 and the oil pump 20 are driven by the crankshaft 3a while the internal combustion engine 1 is in operation.
  • the vacuum pump 10 sucks air A from the vacuum tank 12 through the suction pipe 12 and the suction port 10b, and discharges the sucked air A into the atmosphere from the exhaust port 10c.
  • the vacuum tank 11 is evacuated and used for operating the brake booster 13 and the like.
  • the oil pump 20 sucks oil O from the oil pan 6 through the oil strainer 21 and the suction port 20b, and discharges the sucked oil O from the discharge port 20c to the upstream pipe 32.
  • the oil O discharged to the upstream side pipe 32 flows through the oil gallery 31 and the downstream side pipe 33 in order, is introduced into the vacuum pump 10 from the oil supply port 10d, and lubricates the sliding portion in the vacuum pump 10.
  • the lubricated oil O is discharged from the vacuum pump 10 into the oil return pipe 60 through the oil drain port 10e, introduced into the crankcase 3 from the oil inlet 3d, and then drops into the crankcase 3 to fall into the oil pan 6. Returned to.
  • FIG. 2 the vertical axis on the left side shows the oil supply amount Q to the vacuum pump 10
  • the vertical axis on the right side shows the opening degree S of the on-off valve 40
  • the horizontal axis is the rotation speed of the crankshaft 3a, that is.
  • the engine rotation speed N is shown.
  • the ECU 50 is configured to control the opening and closing of the on-off valve 40 according to the engine rotation speed N.
  • the ECU 50 reduces the opening degree S1 of the on-off valve 40 when the engine rotation speed N is high and as compared with when the engine rotation speed N is low.
  • the ECU 50 of the first embodiment switches the opening degree S1 of the on-off valve 40 stepwise in two steps, and when the engine rotation speed N is equal to or higher than a predetermined upper limit rotation speed NH (for example, 2000 rpm), the upper limit rotation speed is less than NH.
  • a predetermined upper limit rotation speed NH for example, 2000 rpm
  • the opening degree S1 of the on-off valve 40 is made smaller than that of the case.
  • the ECU 50 sets the opening degree S1 of the on-off valve 40 to a predetermined minimum opening degree SL. Further, when the engine rotation speed N detected by the engine rotation sensor 51 is less than the upper limit rotation speed NH, the ECU 50 sets the opening degree S1 of the on-off valve 40 to a predetermined maximum opening degree SH.
  • the first threshold value and the second threshold value described in the claims have the same value, and the upper limit rotation speed NH corresponds to both the first threshold value and the second threshold value.
  • the minimum opening SL is an opening slightly larger than the opening that fully closes the downstream side pipe 33 (see FIG. 1), and the maximum opening SH is an opening that fully opens the downstream side pipe 33.
  • the oil supply amount Q1 is reduced as compared with the case where the maximum opening degree SH. Further, when the opening degree S1 is constant, the oil supply amount Q1 continuously increases as the engine rotation speed N increases.
  • the minimum opening SL is set to a size such that the oil supply amount Q1 does not exceed the predetermined upper limit supply amount QH even when the engine rotation speed N is equal to or higher than the upper limit rotation speed NH.
  • the upper limit supply amount QH means the minimum value of the oil supply amount Q when the oil O is excessively supplied to the vacuum pump 10 and the stirring resistance of the oil O increases unacceptably at the sliding portion in the vacuum pump 10. do.
  • the flow path cross-sectional area or inner diameter of the downstream side pipe 33 is such that when the engine rotation speed N is less than a predetermined lower limit rotation speed NL (for example, 1000 rpm) and the opening degree S1 of the on-off valve 40 is the maximum opening degree SH.
  • the oil supply amount Q1 is set to a size that does not fall below a predetermined lower limit supply amount QL.
  • the lower limit supply amount QL means the maximum value of the oil supply amount Q when the oil O supplied to the vacuum pump 10 is insufficient and the oil O becomes mist in the sliding portion in the vacuum pump 10.
  • the on-off valve 40 is not provided in the oil supply passage 30, and the oil supply passage 30 is compared with the first embodiment. (In particular, the cross-sectional area of the flow path of the downstream pipe 33) is set small.
  • the mistized oil O flows into the crankcase 3 through the oil return pipe 60, passes through the blow-by gas passage 7, and is released to the atmosphere together with the blow-by gas B without being sufficiently removed by the oil separator 8. There is. In that case, the oil mist released to the atmosphere may look like white smoke W and may be mistaken for an abnormality of the internal combustion engine 1.
  • the oil supply amount Q3 is increased as compared with the first conventional structure.
  • the oil supply amount Q3 becomes larger than the lower limit supply amount QL, and it is possible to prevent the oil O from becoming mist at the sliding portion in the vacuum pump 10.
  • the oil supply amount Q3 may become equal to or higher than the upper limit supply amount QH, and the vacuum pump 10 may be excessively supplied with oil O. There is. As a result, the stirring resistance of the oil O may increase in the sliding portion in the vacuum pump 10, and the operating efficiency of the vacuum pump 10 may decrease.
  • the on-off valve 40 for opening and closing the oil supply passage 30 is provided after setting the flow path cross-sectional area of the oil supply passage 30 to the same size as the above-mentioned second conventional structure.
  • the minimum opening SL of the on-off valve 40 is set so that the flow path cross-sectional area of the oil supply passage 30 is the same as that of the first conventional structure. To.
  • the opening degree S1 of the on-off valve 40 is set to the minimum opening degree SL by the ECU 50. Therefore, the oil supply amount Q1 can be made smaller than the upper limit supply amount QH. This makes it possible to suppress the excessive supply of oil O to the vacuum pump 10. As a result, the stirring resistance of the oil O in the sliding portion in the vacuum pump 10 can be suppressed, and the decrease in the operating efficiency of the vacuum pump 10 can be suppressed.
  • the maximum opening SH of the on-off valve 40 is such that the flow path cross-sectional area of the oil supply passage 30 has the same size as the second conventional structure.
  • the opening degree S1 of the on-off valve 40 is set to the maximum opening degree SH by the ECU 50. Therefore, the oil supply amount Q1 can be made larger than the lower limit supply amount QL. As a result, it is possible to suppress the shortage of the oil O supplied to the vacuum pump 10, and it is possible to suppress the mist formation of the oil O in the sliding portion in the vacuum pump 10.
  • control routine in the ECU 50 will be described with reference to FIG.
  • the illustrated routine is repeatedly executed every predetermined calculation cycle (for example, 10 msec).
  • the ECU 50 acquires the engine rotation speed N detected by the engine rotation sensor 51 in step S101.
  • step S102 the ECU 50 determines whether or not the engine rotation speed N acquired in step S101 is equal to or higher than the upper limit rotation speed NH (N ⁇ NH).
  • step S102 If it is determined in step S102 that the engine rotation speed N is equal to or higher than the upper limit rotation speed NH (YES), the ECU 50 proceeds to step S103 and executes control to set the opening degree S1 of the on-off valve 40 to the minimum opening degree SL. And then return.
  • step S102 if it is determined in step S102 that the engine rotation speed N is not equal to or higher than the upper limit rotation speed NH (NO), the ECU 50 executes a control to set the opening degree S1 of the on-off valve 40 to the maximum opening degree SH and returns. do.
  • the control content of the ECU 50 is different from that of the first embodiment. Since the other configurations are the same as those in the first embodiment, the same reference numerals are used for the same components, and detailed description thereof will be omitted.
  • the ECU 50 of the second embodiment reduces the opening degree S2 of the on-off valve 40 when the engine rotation speed N is high and as compared with when the engine rotation speed N is low.
  • the ECU 50 of the second embodiment continuously reduces the opening degree S2 of the on-off valve 40 as the engine rotation speed N detected by the engine rotation sensor 51 increases.
  • the ECU 50 of the second embodiment controls the opening degree S2 of the on-off valve 40 based on the engine rotation speed N detected by the engine rotation sensor 51 with reference to a map as shown in FIG.
  • the relationship between the engine rotation speed N and the opening degree S2 of the on-off valve 40 corresponding to the engine rotation speed N is defined. Further, in this map, the opening degree S2 of the on-off valve 40 is set to be continuously reduced as the engine rotation speed N increases in the entire range of the engine rotation speed N detected by the engine rotation sensor 51. ..
  • the opening degree S2 of the on-off valve 40 is such that the oil supply amount Q is less than the upper limit supply amount QH and larger than the lower limit supply amount QL in the entire range of the engine rotation speed N. Is set.
  • the opening degree S2 of the on-off valve 40 is set so that the oil supply amount Q becomes a constant oil supply amount Q4 between the upper limit supply amount QH and the lower limit supply amount QL.
  • the control routine in the ECU 50 of the second embodiment will be described with reference to FIG.
  • the illustrated routine is repeatedly executed every predetermined calculation cycle (for example, 10 msec).
  • the ECU 50 acquires the engine rotation speed N detected by the engine rotation sensor 51 in step S201.
  • step S202 the ECU 50 refers to the map and acquires the opening degree S corresponding to the engine rotation speed N acquired in step S201.
  • step S203 the ECU 50 controls the actual opening degree and returns so that the actual opening degree of the on-off valve 40 becomes the opening degree S acquired in step S202.
  • the oil supply amount Q4 can be made smaller than the upper limit supply amount QH. .. Thereby, as in the first embodiment, the excessive supply of the oil O to the vacuum pump 10 can be suppressed.
  • the oil supply amount Q4 can be made larger than the lower limit supply amount QL.
  • the oil supply amount Q can be set to a constant amount of oil supply amount Q4 regardless of the magnitude of the engine rotation speed N. As a result, fluctuations in the oil supply amount Q can be suppressed.
  • each of the above-described embodiments can be a modification or a combination thereof as follows.
  • the ECU 50 may control the opening degree S of the on-off valve 40 to an arbitrary size as long as the opening degree of the on-off valve 40 is smaller than when the engine rotation speed N is high and the engine rotation speed N is low. ..
  • the opening degree S3 of the on-off valve 40 is set to the minimum opening degree SL. do.
  • the opening degree S3 of the on-off valve 40 is set to the maximum opening degree SH.
  • the second threshold value described in the claims is a value smaller than the first threshold value
  • the upper limit rotation speed NH corresponds to the first threshold value
  • the lower limit rotation speed NL corresponds to the second threshold value. do.
  • the ECU 50 of the first modification opens and closes as the engine rotation speed N increases when the engine rotation speed N detected by the engine rotation sensor 51 is equal to or higher than the lower limit rotation speed NL and less than the upper limit rotation speed NH.
  • the opening degree S3 of the valve 40 is continuously reduced from the maximum opening degree SH to the minimum opening degree SL.
  • the ECU 50 of the first modification controls the opening degree S of the on-off valve 40 by referring to the map as shown in FIG. 6 instead of the map described in the second embodiment.
  • the opening degree S3 of the on-off valve 40 is set to the maximum opening degree SH, and when the engine rotation speed N is equal to or more than the upper limit rotation speed NH, the on-off valve 40 The opening degree S3 is set to the minimum opening degree SL. Further, in this map, when the engine rotation speed N is equal to or higher than the lower limit rotation speed NL and less than the upper limit rotation speed NH, the on-off valve 40 increases from the maximum opening SH to the minimum opening SL as the engine rotation speed N increases. The opening degree S3 of is continuously reduced.
  • the opening degree of the on-off valve 40 is such that the oil supply amount Q5 to the vacuum pump 10 is less than the upper limit supply amount QH and larger than the lower limit supply amount QL in the entire range of the engine rotation speed N. S3 is set.
  • the oil supply amount Q5 cannot be made constant, but when the engine rotation speed N is equal to or higher than the upper limit rotation speed NH, the oil supply amount Q5 can be made less than the upper limit supply amount QH, and the engine rotation When the speed N is less than the lower limit rotation speed NL, the oil supply amount Q5 can be made larger than the lower limit supply amount QL.
  • the lubricated device may be a device other than the vacuum pump.
  • the lubricated device may be a fuel pump such as a supply pump, or may be a supercharger such as a turbocharger.
  • the vacuum pump may be driven by the crankshaft via the camshaft.
  • the rotor of the vacuum pump is directly connected to the end of the camshaft.
  • the lubrication device for an internal combustion engine according to the present disclosure can be widely applied to a lubrication device that suppresses an excessive supply of oil to a lubricated device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

内燃機関1の潤滑装置100は、オイルOによって内部が潤滑される被潤滑装置10と、クランクシャフト3aによって駆動されるオイルポンプ20と、オイルポンプ20から被潤滑装置10にオイルOを供給するためのオイル供給通路30と、オイル供給通路30を開閉する開閉弁40と、クランクシャフト3aの回転速度に応じて開閉弁40の開閉を制御するように構成された制御装置50と、を備える。

Description

内燃機関の潤滑装置
 本開示は、内燃機関の潤滑装置に関する。
 一般的に、内燃機関の潤滑装置は、オイルによって内部が潤滑される被潤滑装置(例えば、バキュームポンプ)と、クランクシャフトによって駆動されるオイルポンプと、オイルポンプから被潤滑装置にオイルを供給するためのオイル供給通路と、を備える。また、潤滑装置は、被潤滑装置からオイルパンに潤滑後のオイルを戻すためのオイル戻り通路を備える。
 また、内燃機関としては、クランクケース内のブローバイガスを大気開放するためのブローバイガス通路を備えたものが知られている。
日本国特開2007-170354号公報
 ところで、上記のような従来の潤滑装置では、クランクシャフトの回転速度が低いときに、オイルポンプから被潤滑装置に供給されるオイルが不足し、被潤滑装置の内部でオイルがミスト化する可能性がある。
 かかるオイルのミスト化を抑制するため、例えば、オイル供給通路の流路断面積を従来よりも大きく設定して、クランクシャフトの回転速度が低いときの被潤滑装置へのオイル供給量を十分に確保するといった手法が考えられる。
 しかしながら、この手法では、クランクシャフトの回転速度が高いときに、オイルポンプから被潤滑装置にオイルが過剰に供給される可能性がある。その結果、被潤滑装置の内部において、オイルの攪拌抵抗が増加し、被潤滑装置の作動効率が低下する虞がある。
 本開示の目的は、被潤滑装置へのオイルの過剰供給を抑制できる内燃機関の潤滑装置を提供することである。
 本開示の一の態様の内燃機関の潤滑装置は、オイルによって内部が潤滑される被潤滑装置と、クランクシャフトによって駆動されるオイルポンプと、前記オイルポンプから前記被潤滑装置にオイルを供給するためのオイル供給通路と、前記オイル供給通路を開閉する開閉弁と、前記クランクシャフトの回転速度に応じて前記開閉弁の開閉を制御するように構成された制御装置と、を備える。
 好ましくは、前記内燃機関は、クランクケースの下端に接続されたオイルパンと、前記クランケース内のブローバイガスを大気開放するためのブローバイガス通路と、を備え、前記潤滑装置は、前記被潤滑装置から前記オイルパンに潤滑後のオイルを戻すためのオイル戻り通路を備える。
 また、前記制御装置は、前記回転速度が高いとき、前記回転速度が低いときに比べて、前記開閉弁の開度を小さくする。
 また、前記制御装置は、前記回転速度が所定の第1閾値以上のとき、前記開閉弁の開度を所定の最小開度にし、前記回転速度が所定の第2閾値未満のとき、前記開閉弁の開度を所定の最大開度にする。
 また、前記制御装置は、前記回転速度が大きくなるにつれ、前記開閉弁の開度を連続的に小さくする。
 また、前記被潤滑装置は、バキュームポンプである。
 本開示の内燃機関の潤滑装置によれば、被潤滑装置へのオイルの過剰供給を抑制できる。
図1は、第1実施形態の潤滑装置を含む内燃機関の概略側面図である。 図2は、第1実施形態でのオイル供給量、開閉弁の開度、及びエンジン回転速度の関係を規定したグラフである。 図3は、第1実施形態での制御内容を示すフローチャートである。 図4は、第2実施形態でのオイル供給量、開閉弁の開度、及びエンジン回転速度の関係を規定したグラフである。 図5は、第2実施形態での制御内容を示すフローチャートである。 図6は、第1変形例でのオイル供給量、開閉弁の開度、及びエンジン回転速度の関係を規定したグラフである。
 以下、添付図面を参照して本開示の実施形態を説明する。なお、本開示は以下の実施形態に限定されない点に留意されたい。また、図中に示す上下前後左右の各方向は、説明の便宜上定められたものに過ぎないが、内燃機関1を搭載した車両(不図示)の各方向と一致する。
 (1)第1実施形態
 先ず、図1を参照して、第1実施形態の内燃機関1の全体構成を説明する。なお、図中において、点線矢印Bは、ブローバイガスの流れを示す。
 図1に示すように、内燃機関1は、車両に搭載された多気筒の圧縮着火式内燃機関、例えばディーゼルエンジンである。車両は、トラック等の大型車両である。しかしながら、車両及び内燃機関1の種類、形式、用途等に特に限定はなく、例えば車両は、乗用車等の小型車両であっても良いし、内燃機関1は、ガソリンエンジン等の火花点火式内燃機関であっても良い。なお、内燃機関1は、車両以外の移動体、例えば船舶、建設機械、または産業機械に搭載されたものであっても良い。また、内燃機関1は、移動体に搭載されたものでなくても良く、定置式のものであっても良い。
 内燃機関1は、シリンダブロック2と、シリンダブロック2の下部に一体形成されたクランクケース3と、シリンダブロック2の上端に接続されたシリンダヘッド4と、シリンダヘッド4の上端に接続されたヘッドカバー5と、を備える。
 また、内燃機関1は、クランクケース3の下端に接続されたオイルパン6と、クランケース3内のブローバイガスBを大気開放するためのブローバイガス通路7と、を備える。
 また、内燃機関1は、シリンダブロック2に設けられた複数のシリンダ(不図示)と、各シリンダに収容されたピストン(不図示)と、クランクケース3に収容されたクランクシャフト3aと、シリンダヘッド4に取り付けられたカムシャフト等の動弁機構(不図示)と、を備える。
 クランクシャフト3aは、クランクケース3から後方に突出しており、この突出した部分には、クランクギア3bが固定される。クランクギア3bには、後述するオイルポンプ20の駆動ギア20a、及びアイドルギア3cが噛合される。
 ブローバイガス通路7は、ブローバイガス流れ方向の上流側から順に配置された、エンジン内通路7a及びブローバイガス管7bを備える。周知のように、ブローバイガスBは、シリンダとピストンとの隙間からクランクケース3内に漏れ出たガスである。
 エンジン内通路7aは、クランクケース3内からシリンダブロック2及びシリンダヘッド4の内部を通過してヘッドカバー5内に延びる。エンジン内通路7aの出口7outは、ヘッドカバー5の上面部に形成される。
 ブローバイガス管7bは、ゴム等の樹脂材料で形成され、内燃機関1の外部に露出される。ブローバイガス管7bの上流端は、エンジン内通路7aの出口7outに接続され、ブローバイガス管7bの下流端は、大気開放される。ブローバイガス管7bの途中には、ブローバイガスB中のオイルを除去するためのオイルセパレータ8が設けられる。
 オイルセパレータ8では、これに導入されたブローバイガスBからオイルが分離される。ブローバイガスBから分離されたオイルは、戻り通路(不図示)を通じてクランクケース3内に戻される。
 次に、内燃機関1の潤滑装置100の構造について、詳しく説明する。図1中、黒塗り矢印Oは、エンジンオイルの流れを示し、白塗り矢印Aは、空気の流れを示す。
 図1に示すように、潤滑装置100は、オイルOによって内部が潤滑される被潤滑装置としてのバキュームポンプ10と、クランクシャフト3aによって駆動されるオイルポンプ20と、を備える。また、潤滑装置100は、オイルポンプ20からバキュームポンプ10にオイルOを供給するためのオイル供給通路30と、オイル供給通路30を開閉する開閉弁40と、を備える。また、潤滑装置100は、開閉弁40の開閉を制御するように構成された制御装置としての電子制御装置(ECU)50を備える。
 また、潤滑装置100は、バキュームポンプ10からオイルパン6に潤滑後のオイルOを戻すためのオイル戻り通路としてのオイル戻り管60を備える。
 また、センサ類として、潤滑装置100は、エンジン回転速度Nを検出するためのエンジン回転センサ51を備える。
 バキュームポンプ10は、ロータリーポンプであり、シリンダブロック2の後壁部に取り付けられる。図示しないが、バキュームポンプ10は、ローター及びベーンが内壁部と摺動しつつ回転することで、バキュームタンク11から空気Aを吸引して大気中に排出するようになっている。また、バキュームポンプ10の内部では、ローター等の摺動部がオイルOで潤滑されるようになっている。
 バキュームポンプ10は、ローター及びベーンを回転させるための駆動ギア10aと、空気Aを吸引するための吸引口10bと、空気Aを排出するための排気口10cと、オイルOを導入するための給油口10dと、潤滑後のオイルOを排出するための排油口10eと、を有する。
 バキュームポンプ10の駆動ギア10aには、クランクギア3bに噛合されたアイドルギア3cが噛合されており、クランクギア3b及びアイドルギア3cを介してクランクシャフト3aの駆動力が伝達される。これら駆動ギア10a及びクランクギア3bのギア比は、1:1の関係であり、バキュームポンプ10の回転速度は、クランクシャフト3aの回転速度と同じに設定される。
 吸引口10bには、吸引管12を介してバキュームタンク11が接続される。バキュームタンク11には、ブレーキブースター13及びホーン14等の負圧利用機器が接続される。
 排気口10cは、大気開放される。また、排気口10cには、潤滑後のオイルOが大気中に排出されるのを抑制するためのフィルタ(不図示)が設けられる。
 給油口10dには、後述するオイル供給通路30の下流側管33が接続される。排油口10eには、オイル戻り管60が接続される。
 オイルポンプ20は、ギアポンプであり、クランクケース3の後壁部に取り付けられる。オイルポンプ20は、内部のポンプギア(不図示)を回転させるための駆動ギア20aと、オイルOを吸い込むための吸込口20bと、オイルOを吐出するための吐出口20cと、を有する。
 オイルポンプ20の駆動ギア20aには、クランクギア3bが噛合されており、クランクギア3bを介してクランクシャフト3aの駆動力が伝達される。これら駆動ギア20a及びクランクギア3bのギア比は、1:1の関係であり、オイルポンプ20の回転速度は、クランクシャフト3aの回転速度と同じに設定される。
 吸込口20bには、オイルストレーナ21が接続される。オイルストレーナ21は、吸込口20bからクランクケース3内を通過して、オイルパン6の底部に向かって下方に延びる。
 オイル供給通路30は、シリンダブロック2及びシリンダヘッド4の内部に形成されたオイルギャラリ31と、オイルギャラリ31の入口31aに接続された上流側管32と、オイルギャラリ31の出口31bに接続された下流側管33と、によって主に画成される。
 オイルギャラリ31の入口31aは、シリンダブロック2の下端部に形成される。オイルギャラリ31の出口31bは、シリンダブロック2の後壁部に形成される。
 上流側管32は、オイルギャラリ31bの入口10aからクランクケース3内を通って、オイルポンプ20の吐出口20bに接続される。
 下流側管33は、オイルギャラリ31bの出口31bからシリンダブロック2の後壁部に沿って下方に延び、バキュームポンプ10の給油口10dに接続される。
 開閉弁40は、バキュームポンプ10へのオイル供給量を調節可能な流量制御弁(バタフライ弁)であり、下流側管33に設けられる。開閉弁40は、電子制御式の弁であり、ECU50に電気的に接続される。
 ECU50は、車両に搭載されたコントローラからなり、CPU、ROM、RAM、記憶装置及び入出力ポート等を備える。エンジン回転センサ51は、ECU50に電気的に接続される。
 オイル戻り管60は、バキュームポンプ10の排油口10eからクランクケース3の後壁部に沿って下方に延び、クランクケース3の後壁部に形成されたオイル入口3dに接続される。
 第1実施形態では、内燃機関1の稼働中、クランクシャフト3aによってバキュームポンプ10及びオイルポンプ20が駆動される。
 バキュームポンプ10は、吸引管12及び吸引口10bを通じてバキュームタンク12から空気Aを吸引すると共に、吸引された空気Aを排気口10cから大気中に排出する。これにより、バキュームタンク11が真空にされ、ブレーキブースター13等の稼働に利用される。
 オイルポンプ20は、オイルストレーナ21及び吸込口20bを通じてオイルパン6からオイルOを吸い込み、吸い込んだオイルOを吐出口20cから上流側管32に吐出する。上流側管32に吐出されたオイルOは、オイルギャラリ31及び下流側管33を順に流れ、給油口10dからバキュームポンプ10内に導入され、バキュームポンプ10内の摺動部を潤滑する。潤滑後のオイルOは、排油口10eを通じてバキュームポンプ10内からオイル戻り管60に排出され、オイル入口3dからクランクケース3内に導入された後、クランクケース3内を落下してオイルパン6に戻される。
 次に、図1及び図2を参照して、ECU50による開閉弁40の制御を詳しく説明する。図2中、左側の縦軸は、バキュームポンプ10へのオイル供給量Qを示し、右側の縦軸は、開閉弁40の開度Sを示し、横軸は、クランクシャフト3aの回転速度、すなわちエンジン回転速度Nを示す。
 図2に示すように、ECU50は、エンジン回転速度Nに応じて開閉弁40の開閉を制御するように構成される。
 また、ECU50は、エンジン回転速度Nが高いとき、エンジン回転速度Nが低いときに比べて、開閉弁40の開度S1を小さくする。第1実施形態のECU50は、2段階で段階的に開閉弁40の開度S1を切り替え、エンジン回転速度Nが所定の上限回転速度NH(例えば、2000rpm)以上のとき、上限回転速度NH未満のときに比べて、開閉弁40の開度S1を小さくする。
 具体的には、ECU50は、エンジン回転センサ51で検出されたエンジン回転速度Nが、上限回転速度NH以上のとき、開閉弁40の開度S1を所定の最小開度SLにする。また、ECU50は、エンジン回転センサ51で検出されたエンジン回転速度Nが上限回転速度NH未満のとき、開閉弁40の開度S1を所定の最大開度SHにする。第1実施形態では、特許請求の範囲に記載された第1閾値及び第2閾値が同じ値であり、上限回転速度NHは、第1閾値及び第2閾値の両方に該当する。
 最小開度SLは、下流側管33(図1を参照)を全閉する開度よりも僅かに大きい開度であり、最大開度SHは、下流側管33を全開する開度である。
 第1実施形態では、図2に実線Q1で示すように、開閉弁40の開度S1が最小開度SLのとき、最大開度SHのときに比べてオイル供給量Q1が減少する。また、開度S1が一定であるときは、エンジン回転速度Nが増加するにつれ、オイル供給量Q1が連続的に増加する。
 最小開度SLは、エンジン回転速度Nが上限回転速度NH以上のときでも、オイル供給量Q1が所定の上限供給量QH以上にならない大きさに設定される。上限供給量QHは、バキュームポンプ10に過剰にオイルOが供給され、バキュームポンプ10内の摺動部でオイルOの攪拌抵抗が許容できない程に増加するときのオイル供給量Qの最小値を意味する。
 一方、下流側管33の流路断面積ないし内径は、エンジン回転速度Nが所定の下限回転速度NL(例えば、1000rpm)未満で、開閉弁40の開度S1が最大開度SHのときに、オイル供給量Q1が所定の下限供給量QL未満にならない大きさに設定される。下限供給量QLは、バキュームポンプ10に供給されるオイルOが不足して、バキュームポンプ10内の摺動部でオイルOがミスト化するときのオイル供給量Qの最大値を意味する。
 ところで、一般的な潤滑装置の従来構造(以下、第1の従来構造)では、オイル供給通路30に開閉弁40が設けられておらず、また、第1実施形態に比べて、オイル供給通路30(特に、下流側管33)の流路断面積が小さく設定されている。
 しかしながら、第1の従来構造では、図2に点線Q2で示すように、エンジン回転速度Nが下限回転速度NL未満のとき、オイル供給量Q2が下限供給量QL以下になり、バキュームポンプ10に供給されるオイルOが不足して、バキュームポンプ10内の摺動部でオイルOがミスト化する可能性がある。
 ミスト化したオイルOは、オイル戻り管60を通じてクランクケース3内に流入し、ブローバイガス通路7を通過して、オイルセパレータ8で十分に除去されることなく、ブローバイガスBと共に大気開放されることがある。その場合、大気開放されたオイルミストが白煙Wのように見えて、内燃機関1の異常であると誤認される虞がある。
 一方、オイルOのミスト化を抑制するためには、例えば、第1の従来構造に比べてオイル供給通路30の流路断面積を大きく設定し、エンジン回転速度Nが下限回転速度NL未満のときのオイル供給量Qを十分に確保するといった手法(以下、第2の従来構造)が考えられる。
 第2の従来構造では、図2に点線Q3で示すように、第1の従来構造に比べてオイル供給量Q3が増加する。これにより、エンジン回転速度Nが下限回転速度NL未満のとき、オイル供給量Q3が下限供給量QLよりも多くなり、バキュームポンプ10内の摺動部でオイルOがミスト化するのを抑制できる。
 しかしながら、第2の従来構造では、エンジン回転速度Nが上限回転速度NH以上のときに、オイル供給量Q3が上限供給量QH以上になり、バキュームポンプ10に過剰にオイルOが供給される可能性がある。その結果、バキュームポンプ10内の摺動部において、オイルOの攪拌抵抗が増加し、バキュームポンプ10の作動効率が低下する虞がある。
 そこで、第1実施形態の潤滑装置100では、オイル供給通路30の流路断面積を上記の第2の従来構造と同じ大きさに設定した上で、オイル供給通路30を開閉する開閉弁40を設ける。
 図2にオイル供給量Q1,Q2で示すように、開閉弁40の最小開度SLは、オイル供給通路30の流路断面積が、第1の従来構造と同じ大きさになるように設定される。
 第1実施形態の潤滑装置100であれば、エンジン回転センサ51で検出されたエンジン回転速度Nが上限回転速度NH以上のとき、ECU50によって開閉弁40の開度S1が最小開度SLにされるので、オイル供給量Q1を上限供給量QHよりも少なくできる。これにより、バキュームポンプ10へのオイルOの過剰供給を抑制できる。その結果、バキュームポンプ10内の摺動部におけるオイルOの攪拌抵抗を抑制でき、バキュームポンプ10における作動効率の低下を抑制できる。
 他方、図2にオイル供給量Q1,Q3で示すように、開閉弁40の最大開度SHは、オイル供給通路30の流路断面積が、第2の従来構造と同じ大きさになるように設定される。
 第1実施形態の潤滑装置100であれば、エンジン回転センサ51で検出されたエンジン回転速度Nが下限回転速度NL未満のとき、ECU50によって開閉弁40の開度S1が最大開度SHにされるので、オイル供給量Q1を下限供給量QLよりも多くできる。これにより、バキュームポンプ10に供給されるオイルOが不足するのを抑制でき、バキュームポンプ10内の摺動部におけるオイルOのミスト化を抑制できる。
 その結果、ミスト化したオイルOがオイル戻り管60を通じてクランクケース3内に流入し、ブローバイガス通路7を通過して大気開放されるのを抑制できる。これにより、大気開放されたオイルミストが白煙Wのように見えて、内燃機関1の異常であると誤認されるのを抑制できる。
 最後に、図3を参照して、ECU50における制御ルーチンを説明する。図示するルーチンは、所定の演算周期(例えば、10msec)毎に繰り返し実行される。
 ECU50は、ステップS101において、エンジン回転センサ51で検出されたエンジン回転速度Nを取得する。
 ECU50は、ステップS102において、ステップS101で取得されたエンジン回転速度Nが上限回転速度NH以上である(N≧NH)か否かを判定する。
 ステップS102において、エンジン回転速度Nが上限回転速度NH以上であると判定されると(YES)、ECU50は、ステップS103に進み、開閉弁40の開度S1を最小開度SLにする制御を実行して、リターンする。
 一方、ステップS102において、エンジン回転速度Nが上限回転速度NH以上でないと判定されると(NO)、ECU50は、開閉弁40の開度S1を最大開度SHにする制御を実行して、リターンする。
 (第2実施形態)
 図4及び図5に示すように、第2実施形態では、第1実施形態に対して、ECU50の制御内容が異なる。なお、その他の構成は、第1実施形態と同じなので、同一の構成要素については同一の符号を用い、それらの詳細な説明は省略する。
 図4に示すように、第2実施形態のECU50は、エンジン回転速度Nが高いとき、エンジン回転速度Nが低いときに比べて 、開閉弁40の開度S2を小さくする。
 具体的には、第2実施形態のECU50は、エンジン回転センサ51で検出されたエンジン回転速度Nが大きくなるにつれ、開閉弁40の開度S2を連続的に小さくする。
 また、第2実施形態のECU50は、エンジン回転センサ51で検出されたエンジン回転速度Nに基づき、図4に示すようなマップを参照して、開閉弁40の開度S2を制御する。
 第2実施形態のマップでは、エンジン回転速度Nと、そのエンジン回転速度Nに対応する開閉弁40の開度S2との関係が規定されている。また、このマップでは、エンジン回転センサ51で検出されるエンジン回転速度Nの全範囲で、エンジン回転速度Nが大きくなるにつれ、開閉弁40の開度S2が連続的に小さくなるように設定される。
 また、このマップでは、エンジン回転速度Nの全範囲で、オイル供給量Qが上限供給量QH未満で且つ下限供給量QLよりも大きいオイル供給量Q4になるように、開閉弁40の開度S2が設定される。
 特に、このマップでは、上限供給量QH及び下限供給量QLの中間で、オイル供給量Qが一定のオイル供給量Q4になるように、開閉弁40の開度S2が設定される。
 図5を参照して、第2実施形態のECU50における制御ルーチンを説明する。図示するルーチンは、所定の演算周期(例えば、10msec)毎に繰り返し実行される。
 ECU50は、ステップS201にて、エンジン回転センサ51で検出されたエンジン回転速度Nを取得する。
 ECU50は、ステップS202にて、マップを参照して、ステップS201で取得されたエンジン回転速度Nに応じた開度Sを取得する。
 ECU50は、ステップS203にて、開閉弁40の実際の開度がステップS202で取得された開度Sとなるように、実際の開度を制御し、リターンする。
 図4に示したように、第2実施形態によれば、エンジン回転センサ51で検出されたエンジン回転速度Nが上限回転速度NH以上のとき、オイル供給量Q4を上限供給量QHよりも少なくできる。これにより、第1実施形態と同様、バキュームポンプ10へのオイルOの過剰供給を抑制できる。
 また、第2実施形態によれば、エンジン回転センサ51で検出されたエンジン回転速度Nが下限回転速度NL未満のとき、オイル供給量Q4を下限供給量QLよりも多くできる。これにより、第1実施形態と同様、バキュームポンプ10に供給されるオイルOが不足するのを抑制でき、バキュームポンプ10内の摺動部におけるオイルOのミスト化を抑制できる。
 また、第2実施形態であれば、エンジン回転速度Nの大きさにかかわらず、オイル供給量Qを一定量のオイル供給量Q4にすることができる。これにより、オイル供給量Qの変動を抑制できる。
 他方、上述した各実施形態は、以下のような変形例またはその組み合わせとすることができる。
 (第1変形例)
 ECU50は、エンジン回転速度Nが高いとき、エンジン回転速度Nが低いときに比べて開閉弁40の開度を小さくすれば、開閉弁40の開度Sを任意の大きさに制御しても良い。
 図6に示すように、第1変形例のECU50は、エンジン回転センサ51で検出されたエンジン回転速度Nが、上限回転速度NH以上のとき、開閉弁40の開度S3を最小開度SLにする。また、第1変形例のECU50は、エンジン回転センサ51で検出されたエンジン回転速度Nが、下限回転速度NL未満のとき、開閉弁40の開度S3を最大開度SHにする。第1変形例では、特許請求の範囲に記載された第2閾値が第1閾値よりも小さい値であり、上限回転速度NHが第1閾値に該当し、下限回転速度NLが第2閾値に該当する。
 また、第1変形例のECU50は、エンジン回転センサ51で検出されたエンジン回転速度Nが、下限回転速度NL以上で、かつ上限回転速度NH未満のとき、エンジン回転速度Nが大きくなるにつれ、開閉弁40の開度S3を最大開度SHから最小開度SLまで連続的に小さくする。
 また、第1変形例のECU50は、第2実施形態で述べたマップの代わりに、図6に示すようなマップを参照して、開閉弁40の開度Sを制御する。
 このマップでは、エンジン回転速度Nが下限回転速度NL未満のとき、開閉弁40の開度S3が最大開度SHに設定され、エンジン回転速度Nが上限回転速度NH以上のとき、開閉弁40の開度S3が最小開度SLに設定される。また、このマップでは、エンジン回転速度Nが下限回転速度NL以上で、かつ上限回転速度NH未満のとき、エンジン回転速度Nが大きくなるにつれ、最大開度SHから最小開度SLにかけて、開閉弁40の開度S3が連続的に小さくなるように設定される。
 また、このマップでは、エンジン回転速度Nの全範囲で、バキュームポンプ10へのオイル供給量Q5が、上限供給量QH未満で且つ下限供給量QLよりも多くなるように、開閉弁40の開度S3が設定される。
 第1変形例では、オイル供給量Q5を一定にすることができないが、エンジン回転速度Nが上限回転速度NH以上のとき、オイル供給量Q5を上限供給量QH未満にすることができ、エンジン回転速度Nが下限回転速度NL未満のとき、オイル供給量Q5を下限供給量QLよりも多くすることができる。
 (第2変形例)
 図示しないが、被潤滑装置は、バキュームポンプ以外の装置であって良い。例えば、被潤滑装置は、サプライポンプ等の燃料ポンプであっても良く、また、ターボチャージャ等の過給機であっても良い。
 (第3変形例)
 バキュームポンプは、カムシャフトを介してクランクシャフトにより駆動されても良い。例えば、第3変形例では、バキュームポンプのローターが、カムシャフトの端部に直結される。
 以上、本開示の実施形態を詳細に述べたが、本開示の実施形態は上述の実施形態のみに限らず、特許請求の範囲によって規定される本開示の思想に包含されるあらゆる変形例や応用例、均等物が本開示に含まれる。従って、本開示は、限定的に解釈されるべきではなく、本開示の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。
 本出願は、2020年9月11日付で出願された日本国特許出願(特願2020-153083)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示に係る内燃機関の潤滑装置は、被潤滑装置へのオイルの過剰供給を抑制する潤滑装置に広く適用することができる。
1 内燃機関
3a クランクシャフト
10 バキュームポンプ(被潤滑装置)
20 オイルポンプ
30 オイル供給通路
40 開閉弁
50 電子制御装置(制御装置)
60 オイル戻り管(オイル戻り通路)
100 潤滑装置
A 空気
B ブローバイガス
O オイル

Claims (6)

  1.  オイルによって内部が潤滑される被潤滑装置と、
     クランクシャフトによって駆動されるオイルポンプと、
     前記オイルポンプから前記被潤滑装置にオイルを供給するためのオイル供給通路と、
     前記オイル供給通路を開閉する開閉弁と、
     前記クランクシャフトの回転速度に応じて前記開閉弁の開閉を制御するように構成された制御装置と、を備えた
     内燃機関の潤滑装置。
  2.  前記内燃機関は、クランクケースの下端に接続されたオイルパンと、前記クランケース内のブローバイガスを大気開放するためのブローバイガス通路と、を備え、
     前記潤滑装置は、前記被潤滑装置から前記オイルパンに潤滑後のオイルを戻すためのオイル戻り通路を備える
     請求項1に記載の潤滑装置。
  3.  前記制御装置は、前記回転速度が高いとき、前記回転速度が低いときに比べて、前記開閉弁の開度を小さくする
     請求項1または2に記載の潤滑装置。
  4.  前記制御装置は、前記回転速度が所定の第1閾値以上のとき、前記開閉弁の開度を所定の最小開度にし、前記回転速度が所定の第2閾値未満のとき、前記開閉弁の開度を所定の最大開度にする
     請求項3に記載の潤滑装置。
  5.  前記制御装置は、前記回転速度が大きくなるにつれ、前記開閉弁の開度を連続的に小さくする
     請求項3に記載の潤滑装置。
  6.  前記被潤滑装置は、バキュームポンプである
     請求項1~5の何れか一項に記載の潤滑装置。
PCT/JP2021/032934 2020-09-11 2021-09-08 内燃機関の潤滑装置 WO2022054816A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020153083A JP2022047269A (ja) 2020-09-11 2020-09-11 内燃機関の潤滑装置
JP2020-153083 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022054816A1 true WO2022054816A1 (ja) 2022-03-17

Family

ID=80631558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032934 WO2022054816A1 (ja) 2020-09-11 2021-09-08 内燃機関の潤滑装置

Country Status (2)

Country Link
JP (1) JP2022047269A (ja)
WO (1) WO2022054816A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742401U (ja) * 1993-12-27 1995-08-04 いすゞ自動車株式会社 動弁機構の潤滑装置
JPH08303223A (ja) * 1995-04-28 1996-11-19 Suzuki Motor Corp 2サイクルエンジンの潤滑装置
JP2006097491A (ja) * 2004-09-28 2006-04-13 Aisin Seiki Co Ltd エンジンのオイル供給装置
JP2013007306A (ja) * 2011-06-23 2013-01-10 Nippon Soken Inc エンジンオイルの冷却装置
JP2016089632A (ja) * 2014-10-29 2016-05-23 大豊工業株式会社 ターボチャージャの潤滑油供給機構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742401U (ja) * 1993-12-27 1995-08-04 いすゞ自動車株式会社 動弁機構の潤滑装置
JPH08303223A (ja) * 1995-04-28 1996-11-19 Suzuki Motor Corp 2サイクルエンジンの潤滑装置
JP2006097491A (ja) * 2004-09-28 2006-04-13 Aisin Seiki Co Ltd エンジンのオイル供給装置
JP2013007306A (ja) * 2011-06-23 2013-01-10 Nippon Soken Inc エンジンオイルの冷却装置
JP2016089632A (ja) * 2014-10-29 2016-05-23 大豊工業株式会社 ターボチャージャの潤滑油供給機構

Also Published As

Publication number Publication date
JP2022047269A (ja) 2022-03-24

Similar Documents

Publication Publication Date Title
JP4254847B2 (ja) ブローバイガス処理装置
US7275527B2 (en) Method and apparatus for venting a crankcase of an internal combustion engine
US7367328B2 (en) Four-cycle engine and motorcycle comprising four-cycle engine
AU606000B2 (en) A fuel supply device of an engine
JP6518282B2 (ja) オイル供給装置
JP2006037965A (ja) 内燃機関及び自動車
CN112282895B (zh) 油气分离器、控制方法、电子控制单元及油气分离系统
JP3470665B2 (ja) ガソリン機関のブローバイガス処理装置
JP6330744B2 (ja) 内燃機関のブローバイガス還流装置
JPH0754626A (ja) エンジンの潤滑装置
JP2013124544A (ja) 内燃機関
JP2003172114A (ja) 内燃機関
WO2022054816A1 (ja) 内燃機関の潤滑装置
JP3982469B2 (ja) ドライサンプ式エンジン
JP2018071465A (ja) 車両の制御装置
JP2019143529A (ja) 制御装置及び、制御方法
JP2010038146A (ja) エンジンの潤滑装置
JP4284952B2 (ja) ドライサンプ式エンジンのブローバイガス還元装置
JPS62279220A (ja) 内燃機関のブロ−バイガス還流装置
JP7559787B2 (ja) 内燃機関
JP2013050060A (ja) ブローバイガス処理装置
CN102782265A (zh) 内燃机
JP4475082B2 (ja) エンジン
JP2021038671A (ja) ブローバイガス処理装置
CN117248982A (zh) 一种氢发动机曲通通风系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866775

Country of ref document: EP

Kind code of ref document: A1