WO2022051991A1 - 电极活性组合物及其制备方法及电极、电池和装置 - Google Patents

电极活性组合物及其制备方法及电极、电池和装置 Download PDF

Info

Publication number
WO2022051991A1
WO2022051991A1 PCT/CN2020/114539 CN2020114539W WO2022051991A1 WO 2022051991 A1 WO2022051991 A1 WO 2022051991A1 CN 2020114539 W CN2020114539 W CN 2020114539W WO 2022051991 A1 WO2022051991 A1 WO 2022051991A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
optionally
cobalt oxide
containing compound
electrode active
Prior art date
Application number
PCT/CN2020/114539
Other languages
English (en)
French (fr)
Inventor
官英杰
刘勇超
黄起森
柳娜
梁成都
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20952779.5A priority Critical patent/EP4071854A4/en
Priority to CN202080102699.6A priority patent/CN115989598A/zh
Priority to PCT/CN2020/114539 priority patent/WO2022051991A1/zh
Publication of WO2022051991A1 publication Critical patent/WO2022051991A1/zh
Priority to US18/109,812 priority patent/US12002947B2/en
Priority to US18/596,640 priority patent/US20240213451A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of lithium secondary batteries, and in particular relates to an electrode active composition and a preparation method thereof, as well as electrodes, batteries and devices.
  • Lithium-ion battery cathode active materials typically include lithium cobalt oxide (LCO), lithium manganese oxide (LMO), lithium iron phosphate (LFP), lithium nickel cobalt aluminum oxide (NCA), and lithium nickel cobalt manganese oxide (NMC) Wait.
  • Lithium ions can be intercalated and deintercalated reversibly in the above-mentioned positive electrode materials.
  • the present disclosure provides a new electrode active composition for use in batteries that can exhibit improved performance.
  • an electrode active composition comprising:
  • the first component is lithium cobalt oxide particles
  • the second component, the second component is ternary material particles
  • the first component contains lithium cobalt oxide particles with a particle size greater than 11 ⁇ m and lithium cobalt oxide particles with a particle size less than 6 ⁇ m, lithium cobalt oxide particles with a particle size greater than 11 ⁇ m and lithium cobalt oxide particles with a particle size less than 6 ⁇ m.
  • the ratio of the quantity is 0.2 to 4.8, optionally 0.2 to 2.8;
  • the sum of the number of lithium cobalt oxide particles with a particle size larger than 11 ⁇ m and lithium cobalt oxide particles with a particle size smaller than 6 ⁇ m accounts for more than 90%.
  • the particle size of the particles is measured by scanning electron microscopy.
  • the particle size of the particles is defined by observing the particles with a scanning electron microscope and taking the diameter of the circumcircle of the particle image as the particle size.
  • the ratio of the number of lithium cobalt oxide particles with a particle size greater than 11 ⁇ m to lithium cobalt oxide particles with a particle size less than 6 ⁇ m is determined by:
  • the electrode active composition is made into an electrode sheet
  • the ratio of the numbers of lithium cobalt oxide particles having a particle diameter of more than 11 m and lithium cobalt oxide particles having a particle diameter of less than 6 m was calculated from the measurement results.
  • the ratio of the number of lithium cobalt oxide particles with a particle size greater than 11 ⁇ m to lithium cobalt oxide particles with a particle size less than 6 ⁇ m is 0.2 ⁇ 0.3, 0.3 ⁇ 0.4, 0.4 ⁇ 0.5, 0.5 ⁇ 0.6, 0.6 ⁇ 0.7, 0.7 ⁇ 0.8, 0.8 ⁇ 0.9, 0.9 ⁇ 1.0, 1.0 ⁇ 1.1, 1.1 ⁇ 1.2, 1.2 ⁇ 1.3, 1.3 ⁇ 1.4, 1.4 ⁇ 1.5, 1.5 ⁇ 1.6, 1.6 ⁇ 1.7, 1.7 ⁇ 1.8, 1.8 ⁇ 1.9, 1.9 ⁇ 2.0, 2.0 ⁇ 2.1, 2.1 ⁇ 2.2, 2.2 ⁇ 2.3, 2.3 ⁇ 2.4, 2.4 ⁇ 2.5, 2.5 ⁇ 2.6, 2.6 ⁇ 2.7, 2.7 ⁇ 2.8, 2.8 ⁇ 2.9, 2.9 ⁇ 3.0, 3.0 ⁇ 3.1, 3.1 ⁇ 3.2, 3.2 ⁇ 3.3, 3.3 ⁇ 3.4, 3.4 ⁇ 3.5, 3.5 ⁇ 3.6, 3.6 ⁇ 3.7, 3.7 ⁇ 3.8, 3.8 ⁇ 3.0, 3.9 ⁇ 4.0, 4.0 ⁇ 4.1, 4.1 ⁇ 4.2, 4.2
  • the ratio of the number of lithium cobalt oxide particles with a particle size larger than 11 ⁇ m to lithium cobalt oxide particles with a particle size smaller than 6 ⁇ m is 0.2 ⁇ 2.8. Further optionally, it is 0.5 to 2.8 or 0.7 to 1.8.
  • the weight ratio of the first component to the second component is 1 to 9:1, such as 1.5 to 4:1, such as 1.2 to 2:1, such as 2 to 3:1, such as 3 to 4 :1, such as 4 to 5:1, such as 5 to 6:1, such as 6 to 7:1, such as 7 to 8:1, such as 8 to 9:1.
  • the particle size of the ternary material particles ranges from 2 ⁇ m to 6 ⁇ m, eg, 3 ⁇ m to 5 ⁇ m.
  • the lithium cobalt oxide particles have a single crystal structure.
  • the ternary material particles have at least a single crystal structure.
  • the ternary material particles may further include particles having a polycrystalline structure.
  • the lithium cobalt oxide has the formula LixCoyM1 ( 1 - y ) O2 , 0.95 ⁇ x ⁇ 1.05, 0.8 ⁇ y ⁇ 1 , and M1 is selected from Zr, Mg, Ti, Sr, A combination of one or more of W, Nb, Al, P, F, S.
  • the ternary material is selected from lithium nickel cobalt manganese oxide or lithium nickel cobalt aluminum oxide.
  • the lithium nickel cobalt manganese oxide has the formula Li a Ni b Co c Mn d M 2 (1-bcd) O 2 , 0.5 ⁇ a ⁇ 1.2, 0.65 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 0.35 , 0 ⁇ d ⁇ 0.35, M 2 is selected from one or more combinations of Zr, Zn, Ti, Sr, Sb, Y, W, Al, B, P, F, and S.
  • a 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, or 1.1-1.2.
  • b 0.6-0.65, 0.7-0.8, 0.8-0.9, or 0.9-1.
  • c 0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.35.
  • d 0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.35.
  • the chemical formula of lithium nickel cobalt aluminum oxide is Li x Ni e Co f Al g M (1-efg) O 2 , 0.5 ⁇ x ⁇ 1.2, 0.5 ⁇ e ⁇ 1, 0 ⁇ f ⁇ 0.5, 0 ⁇ g ⁇ 0.5, M 3 is selected from a combination of one or more of Zr, Mg, Ba, Ti, Sr, Sb, Y, W, and B.
  • x 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, or 1.1-1.2.
  • e 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, or 0.9-1.
  • f 0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, or 0.4-0.5.
  • g 0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5.
  • the compacted density of the electrode active composition is ⁇ 4.05 g/cm 3 , such as ⁇ 4.1 g/cm 3 , such as 4.05 to 4.25 g/cm 3 ; the compacted density refers to the electrode active composition at 5 tons Density of the compact formed by pressing under pressure for 30 seconds.
  • the ternary material particles have a core-cladding structure, wherein,
  • the nucleus contains ternary material
  • the cladding layer coats at least part of the surface (eg, part of the surface or the entire surface) of the core, and the cladding layer contains a reaction product of a sulfur-containing compound and a lithium-containing compound, and the reaction product contains Li element, S element, and O element.
  • the weight content of element S in the ternary material particles is 400-5000 ppm.
  • the cladding layer further contains one or more elements of B element, F element and P element.
  • the weight content of B element in the ternary material particles is 500-3000 ppm
  • the weight content of F element in the ternary material particles is 200-1500 ppm
  • the weight content of P element in the ternary material particles is 500-3000 ppm.
  • the lithium-containing compound includes a lithium salt
  • the lithium-containing compound includes one or more of the following: Li 2 O, LiOH, and one or more of Li 2 CO 3 , LiNO 3 , LiPF 6 , lithium oxalate, and lithium acetate.
  • sulfur-containing compounds include one or more of the following: thiols, thiophenols, thioethers, thioaldehydes, thioketones, thiocarboxylic acids, sulfoxides, sulfones, sulfur oxyacids, and derivatives thereof ;
  • the sulfur oxyacid is sulfonic acid, sulfinic acid or sulfenic acid
  • derivatives of sulfur oxo acids include one or more of the following: esters of sulfur oxo acids, salts of sulfur oxo acids (eg, lithium salts of sulfur oxo acids), acyl groups of sulfur oxo acids Halogens, amides of sulfur oxoacids, lithium amide salts of sulfur oxoacids.
  • sulfur-containing compounds include one or more of the following:
  • R1 and R2 are each independently selected from hydroxy, amino, C1-6 alkyl, aryl, halo Atoms (eg F, Cl, Br or I) and hydrogen atoms.
  • sulfur-containing compounds include wherein R1 and R2 are each independently a hydrogen atom or a C 1-6 alkyl group.
  • the sulfur-containing compound includes R1-CSC-R2, wherein R1 and R2 are each independently a hydrogen atom or a C1-6 alkyl group.
  • the sulfur-containing compound includes one or more of the following: sulfamide, sulfamic acid, lithium bisfluorosulfonimide, thiopropionamide, thioisobutyramide, propylene sulfide, and methyl Ethyl sulfide.
  • sulfur-containing compounds include one or more of the following:
  • the first component being lithium cobalt oxide particles
  • the second component being particles of ternary material
  • the first component contains lithium cobalt oxide particles with a particle size greater than 11 ⁇ m and lithium cobalt oxide particles with a particle size less than 6 ⁇ m, lithium cobalt oxide particles with a particle size greater than 11 ⁇ m and lithium cobalt oxide particles with a particle size less than 6 ⁇ m.
  • the ratio of the quantity is 0.2 to 4.8, optionally 0.2 to 2.8;
  • the sum of the number of lithium cobalt oxide particles with a particle size larger than 11 ⁇ m and lithium cobalt oxide particles with a particle size smaller than 6 ⁇ m accounts for more than 90%.
  • the ratio of the number of lithium cobalt oxide particles with a particle size greater than 11 ⁇ m to lithium cobalt oxide particles with a particle size less than 6 ⁇ m is 0.2 ⁇ 0.3, 0.3 ⁇ 0.4, 0.4 ⁇ 0.5, 0.5 ⁇ 0.6, 0.6 ⁇ 0.7, 0.7 ⁇ 0.8, 0.8 ⁇ 0.9, 0.9 ⁇ 1.0, 1.0 ⁇ 1.1, 1.1 ⁇ 1.2, 1.2 ⁇ 1.3, 1.3 ⁇ 1.4, 1.4 ⁇ 1.5, 1.5 ⁇ 1.6, 1.6 ⁇ 1.7, 1.7 ⁇ 1.8, 1.8 ⁇ 1.9, 1.9 ⁇ 2.0, 2.0 ⁇ 2.1, 2.1 ⁇ 2.2, 2.2 ⁇ 2.3, 2.3 ⁇ 2.4, 2.4 ⁇ 2.5, 2.5 ⁇ 2.6, 2.6 ⁇ 2.7, 2.7 ⁇ 2.8, 2.8 ⁇ 2.9, 2.9 ⁇ 3.0, 3.0 ⁇ 3.1, 3.1 ⁇ 3.2, 3.2 ⁇ 3.3, 3.3 ⁇ 3.4, 3.4 ⁇ 3.5, 3.5 ⁇ 3.6, 3.6 ⁇ 3.7, 3.7 ⁇ 3.8, 3.8 ⁇ 3.0, 3.9 ⁇ 4.0, 4.0 ⁇ 4.1, 4.1 ⁇ 4.2, 4.2
  • the ratio of the number of lithium cobalt oxide particles with a particle size larger than 11 ⁇ m to lithium cobalt oxide particles with a particle size smaller than 6 ⁇ m is 0.2 ⁇ 2.8. Further optionally, it is 0.5 to 2.8 or 0.7 to 1.8.
  • the method of preparing the electrode active composition further comprises the steps of: mixing the first lithium cobalt oxide particles and the second lithium cobalt oxide particles to obtain the first component;
  • the Dv50 particle size of the first lithium cobalt oxide particles is 17-21 ⁇ m, such as 18-20 ⁇ m, such as 19 ⁇ m;
  • the Dv50 particle size of the second lithium cobalt oxide particles is 4-8 ⁇ m, such as 5-7 ⁇ m, such as 6 ⁇ m;
  • the weight ratio of the first lithium cobalt oxide particles to the second lithium cobalt oxide particles is 3-15:1, such as 3-7:1, such as 3-4:1, 4-5:1 , 5 ⁇ 6:1, 6 ⁇ 7:1, 7 ⁇ 8:1, 8 ⁇ 9:1, 9 ⁇ 10:1, 10 ⁇ 11:1, 11 ⁇ 12:1, 12 ⁇ 13:1, 13 ⁇ 14:1 or 14-15:1.
  • the ternary material particles have a core-cladding structure, wherein,
  • the nucleus contains ternary material
  • the cladding layer coats the core, the cladding layer contains a reaction product of a sulfur-containing compound and a lithium-containing compound, and the reaction product contains Li element, S element and O element.
  • a method for preparing ternary material particles having a core-cladding structure includes:
  • step a) has one or more features in the following a1) ⁇ a2):
  • the surface of the nucleus-forming material has a lithium-containing compound
  • the coating layer forming material also contains a lithium-containing compound
  • the lithium-containing compound is a basic lithium-containing compound.
  • the lithium-containing compound is a neutral or acidic lithium-containing compound.
  • treating the core-forming material with the cladding-forming material comprises: applying a solution in which the cladding-forming material is dissolved on the surface of the core-forming material, followed by heat treatment;
  • the temperature of the heat treatment is 80-300°C;
  • the time of heat treatment is 3-20h.
  • applying the solution in which the coating layer-forming material is dissolved on the surface of the core-forming material comprises: dispersing the core-forming material into the solution in which the coating layer-forming material is dissolved, and then removing the core-forming material from the solution separated in.
  • the solvent of the solution contains one or more of the following: water, ethanol, N-methylpyrrolidone;
  • the solvent of the solution is 90-95 vol% alcohol
  • the content of the coating layer-forming substance in the solution is 0.1-5 mol/L.
  • the lithium-containing compound is as defined in any of the above.
  • the sulfur-containing compound is as defined in any of the above.
  • an electrode active composition prepared by the method of any of the above.
  • an electrode comprising the electrode active composition of any of the above.
  • a battery comprising the electrode active composition of any of the above.
  • a device comprising the battery of any of the above, the battery serving as an energy storage unit of the device;
  • the device is an electric device, and the battery is used to power the electric device.
  • the method of preparing the coated electrode active material is a wet method.
  • the determination of Co element, Mn element and Ni element in the electrode active composition can be performed by using instruments and methods known in the art.
  • the test method for the percentage content of ternary materials (such as lithium nickel cobalt manganese oxide or lithium nickel cobalt aluminum oxide) in the electrode active composition is as follows: According to EPA 6010D-2014 "Inductively Coupled Plasma Atoms" The content of Co element, Mn element (or Al) and Ni element was determined by ICAP-7000 Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) from Thermo Fisher Scientific.
  • ICP-OES Inductively Coupled Plasma Optical Emission Spectrometer
  • the specific test method is as follows: use 10mL aqua regia to digest 0.4g of positive electrode powder, after the digestion is complete, transfer all the digested solution to a 1000mL volumetric flask, and then use ICAP-7000 ICP-OES to determine Co element, Mn (or Al) ) element and the content of Ni element.
  • the content of Co element in the lithium nickel cobalt manganese oxide can be calculated by the ratio of Ni element to Mn (or Al) element, and then the calculated lithium nickel cobalt manganese ternary is subtracted from the content of Co element measured by ICP.
  • the content of Co element in the active material is to obtain the content of Co element in the lithium cobalt oxide.
  • the lithium nickel cobalt manganese oxide in the electrode active composition can be calculated. proportion of things.
  • the electrolyte of the battery can be selected according to requirements.
  • the electrolyte may be selected from at least one of solid electrolyte and liquid electrolyte (ie, electrolyte).
  • electrolyte is an electrolytic solution
  • the electrolytic solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from LiPF6 (lithium hexafluorophosphate), LiBF4 (lithium tetrafluoroborate), LiClO4 (lithium perchlorate), LiAsF6 (lithium hexafluoroarsenate), LiFSI (lithium bisfluorosulfonimide), LiTFSI (Lithium Bistrifluoromethanesulfonimide), LiTFS (Lithium Trifluoromethanesulfonate), LiDFOB (Lithium Difluorooxalate Borate), LiBOB (Lithium Dioxalate Borate), LiPO 2 F 2 (Lithium Difluorophosphate) , one or more of LiDFOP (lithium difluorodioxalate phosphate) and LiTFOP (lithium tetrafluorooxalate phosphate).
  • LiPF6 lithium hexafluorophosphate
  • LiBF4 lithium t
  • the solvent can be ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), carbonic acid Methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), butylene carbonate (BC), fluoroethylene carbonate (FEC), methyl formate (MF), methyl acetate (MA), ethyl acetate ( EA), propyl acetate (PA), methyl propionate (MP), ethyl propionate (EP), propyl propionate (PP), methyl butyrate (MB), ethyl butyrate (EB), One or more of 1,4-butyrolactone (GBL), sulfolane (SF), dimethyl sulfone (MSM), methyl ethyl sulfone (EMS) and diethyl sulfone (ES
  • the cells described above also contain a separator that acts as a separator between the positive and negative electrodes.
  • the separator can be selected from any well-known porous structure separator with good chemical stability and mechanical stability, such as glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride. one or more.
  • the separator can be a single-layer film or a multi-layer composite film. When the separator is a multi-layer composite film, the materials of each layer may be the same or different.
  • a device comprising the above-described battery as an energy storage unit of the device.
  • the device is a powered device and the battery powers the powered device.
  • the powered device may be an electrical appliance, such as a household appliance, a commercial appliance, an industrial appliance, and the like.
  • the electric device may be an electric vehicle, such as an electric vehicle.
  • Electric vehicles can be either purely electric or hybrid.
  • “comprising”, “including” and “containing” may refer to an amount greater than zero, such as 1% or more, such as 10% or more, such as 20% or more, such as 30% or more, such as 40% or more, such as 50% above, such as 60% or more, such as 70% or more, such as 80% or more, such as 90% or more, such as 100%. When the content is 100%, the meanings of "comprising", “including” and “containing” are equivalent to “consisting of”.
  • % refers to % by weight.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with any other lower limit to form an unspecified range, and likewise any upper limit can be combined with any other upper limit to form an unspecified range.
  • every point or single value between the endpoints of a range is included within the range, even if not expressly recited.
  • each point or single value may serve as its own lower or upper limit in combination with any other point or single value or with other lower or upper limits to form a range not expressly recited.
  • Electrode active material refers to a battery material having a specific composition and crystal structure that enables it to intercalate and deintercalate lithium ions.
  • Electrode refers to the component containing the electrode active material that participates in the electrochemical reaction of the battery.
  • Battery refers to a single physical module that includes one or more cells to provide higher voltage and capacity.
  • a cell is a battery cell that can be charged and discharged independently.
  • the cell structure includes a positive electrode, a negative electrode, a separator, an electrolyte, and an outer package for encapsulating the positive electrode sheet, the negative electrode sheet, the separator, and the electrolyte.
  • the application does not specifically limit the type and shape of the battery cells, which can be soft-packed cells, cylindrical cells, or square cells and other types of cells.
  • the battery may include battery modules and battery packs.
  • the battery module is formed by electrically connecting a certain number of cells together and putting them into a frame in order to protect the cells from external shock, heat, vibration, etc.
  • the battery pack is the final state of the battery system installed in electrical devices such as electric vehicles. Most current battery packs are made by assembling various control and protection systems such as battery management systems and thermal management components on one or more battery modules. With the development of technology, the layer of the battery module can be omitted, that is, the battery pack is formed directly from the cells. This improvement makes the weight energy density and volume energy density of the battery system increase while the number of components is significantly reduced.
  • Single crystals also referred to as single particles or primary particles, have a microscopic morphology as substantially unagglomerated, dispersed particles.
  • Single crystals can be irregularly shaped particles.
  • Polycrystalline refers to secondary particles formed by the aggregation of two or more primary particles. Polycrystals can be spherical particles.
  • pellet and “granulate” are used interchangeably herein. These terms also optionally have the following characteristics: hollow, dense, porous, semi-porous, coated, uncoated, multilayer, laminated, simple, complex, dendritic, inorganic, organic, elemental, non-elemental, composite, Doped, undoped, spherical, non-spherical, surface functionalized, surface unfunctionalized, stoichiometric and non-stoichiometric forms or substances.
  • powder in its general sense includes one-dimensional materials (fibers, tubes, etc.), two-dimensional materials (platelets, films, laminates, planes, etc.) and three-dimensional materials (spheres, cones, ovals, cylinders, cubes, monoclinics, dumbbells, hexagons, truncated dodecahedrons, irregular-shaped structures, etc.).
  • spherical refers to a true sphere, ellipsoid or spheroid.
  • DV 10 particle size refers to the 10th percentile volume-based particle size
  • DV 50 particle size refers to the 50th percentile volume-based particle size
  • DV 90 particle size refers to the 90th percentile Volume-based granularity. The particle size was measured by laser diffraction.
  • lithium salt refers to a lithium-containing compound capable of dissociating in a solvent to form lithium ions.
  • thiol means that the alcoholic hydroxyl group in the alcohol molecule is replaced by -SH.
  • thiophenol means that the phenolic hydroxyl group in the phenolic molecule has been replaced by -SH.
  • thioether refers to a compound having the structure R3-S-R4, wherein R3 and R4 are each independently an alkyl group.
  • thioaldehyde refers to the replacement of the aldehyde group C(O)H with C(S)H in the aldehyde molecule.
  • thione refers to the replacement of the carbonyl group -C(O)- with -C(S)- in the ketone molecule.
  • thiocarboxylic acid refers to the replacement of -COOH in the carboxylic acid molecule with CO-SH, CS-OH or CSSH.
  • sulfone refers to a compound having the group -S(O ) 2R, wherein R is an alkyl, aryl, or heteroaryl group.
  • sulfoxide refers to compounds having the group -S(O)R, where R is alkyl, aryl, or heteroaryl.
  • sulfonic acid refers to compounds having -S(O)2OH, -S(O)OH, -SOH , respectively.
  • amino refers to an unsubstituted or substituted amino group, such as an alkyl substituted amino group such as methylamino).
  • C 1-6 alkyl is an alkyl group having 1-6 carbon atoms, which may be branched or straight chain, saturated or unsaturated, unsubstituted or mono- or polysubstituted.
  • the electrode active composition has a higher compaction density
  • the electrode active composition is used in batteries that exhibit increased specific energy, especially volumetric specific energy;
  • the electrode active composition is used in a battery, and the battery exhibits improved cycle performance
  • the electrode active composition is used in a battery, and the battery exhibits better performance at a higher voltage.
  • Fig. 1 is a scanning electron microscope photograph of NCM 2 lithium nickel cobalt manganese oxide in Table 1, (a)-(d) show photographs at different magnifications or positions.
  • FIG. 2 are scanning electron microscope photographs of LCO3(L 3 ) lithium cobalt oxide and LCO3(M 2 ) lithium cobalt oxide in Table 1, respectively.
  • Example 3 is a scanning electron microscope photograph of the surface of a pole piece prepared from the electrode active composition of Example 7 in Table 3.
  • FIG. 4 is a scanning electron microscope photograph of a section of a pole piece prepared with the electrode active composition of Example 8 in Table 3.
  • FIG. 4 is a scanning electron microscope photograph of a section of a pole piece prepared with the electrode active composition of Example 8 in Table 3.
  • FIG. 5 shows a schematic diagram of a battery according to an embodiment of the present application.
  • FIG. 6(A) shows a schematic diagram of the case of the battery
  • FIG. 6(B) shows a schematic diagram of the case and the cover plate of the battery.
  • FIG. 7 respectively show a side view and a bottom view of an automobile according to an embodiment of the present application.
  • an electrode active composition which includes: a first component and a second component, the first component is lithium cobalt oxide particles (hereinafter referred to as LCO); the second component is ternary material particles ( For example from lithium nickel cobalt manganese oxides NCM or lithium nickel cobalt aluminum oxides NCA).
  • LCO lithium cobalt oxide particles
  • NCA lithium nickel cobalt aluminum oxides
  • lithium cobalt oxide powders LCO for short
  • commercially available ternary material powders including lithium nickel cobalt manganese oxide NCM and lithium nickel cobalt aluminum oxide NCA
  • the parameters of these powders are shown in Table 1.
  • Fig. 1 is a scanning electron microscope photograph of NCM 2 lithium nickel cobalt manganese oxide in Table 1, (a)-(d) show photographs at different magnifications or positions.
  • FIG. 2 are scanning electron microscope photographs of LCO3(L 3 ) lithium cobalt oxide and LCO3(M 2 ) lithium cobalt oxide in Table 1, respectively.
  • Raw material preparation example 2 (ternary material particles with coating layer)
  • Step 1 Provide ternary material powder (such as NCM1, NCM2, NCM3 or NCA1, NCA2 in Table 1) as the nuclear material;
  • Step 2 Provide a solution containing the coating layer-forming material; the formulation of the solution containing the coating layer-forming material is shown in Table 2
  • Step 3 Mix the products of Steps 1 and 2, the mixing weight ratio is 1:1, stir for 30min after mixing, separate the solid and liquid, and collect the solid;
  • Step 4 Heat treatment of the solid obtained in the previous step in an inert atmosphere in a closed environment, and the heat treatment conditions are shown in Table 2, to obtain an electrode active material with a coating layer.
  • Table 2 shows the specific preparation parameters of the coated active materials used in the following examples.
  • the following raw materials were selected from the raw material preparation example 1 and the raw material preparation example 2: large particle size lithium cobalt oxide powder (LCO(L)), small particle size lithium cobalt oxide powder (LCO(M)) and ternary materials Powders (coated or uncoated) were mixed to obtain the electrode active composition of each example.
  • LCO(L) large particle size lithium cobalt oxide powder
  • LCO(M) small particle size lithium cobalt oxide powder
  • ternary materials Powders (coated or uncoated) were mixed to obtain the electrode active composition of each example.
  • the specific mixing ratio is shown in Table 3.
  • the prepared electrode active composition is used as a positive electrode active material of a lithium ion secondary battery, and is assembled into a button battery.
  • the specific method of battery assembly is as follows:
  • Positive electrode plate Mix the above electrode active material with carbon black and binder (PVDF) in a mass ratio of 88:6:6, add solvent N-methylpyrrolidone (NMP), and stir to form a uniform positive electrode slurry ; Coat the positive electrode slurry on the surface of the positive electrode current collector aluminum foil, after drying and cold pressing, the positive electrode pole piece is obtained.
  • the active material loading on the positive electrode sheet is 5-14 mg/cm 2 .
  • Negative pole piece Lithium metal is used as the negative pole piece.
  • Polyethylene (PE) film is used.
  • Electrolyte mix ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) in a volume ratio of 1:1:1, and then uniformly dissolve LiPF 6 in the above solution to obtain an electrolyte, wherein The concentration of LiPF 6 was 1 mol/L.
  • the above-mentioned positive pole piece, separator, and negative pole piece are laminated in sequence, and the above-mentioned electrolyte is added to obtain a CR2430 type button battery.
  • the charging and discharging method is as follows:
  • the charging cut-off voltage in the following embodiments is set to 4.45V, and the charging cut-off voltage is based on the Different test batteries can be adjusted accordingly, and then charge at constant voltage (4.45V) until the charging current is less than or equal to 0.05C;
  • Constant current discharge with the current density of the above preset rate to the discharge cut-off voltage (the discharge cut-off voltage in the following embodiments is set to 2.8V, and the discharge cut-off voltage can be adjusted according to the battery to be tested);
  • the specific capacity, mass specific energy and volume specific energy of technical materials are based on the discharge specific capacity, discharge specific energy and discharge volume specific energy in the first week.
  • the charge/discharge current is the preset rate multiplied by the rated capacity of the battery, and the rated capacity is based on the theoretical capacity of the positive electrode under the preset voltage of the button battery.
  • the specific capacity of the preset rate refers to the capacity value of the active material per unit mass at the preset rate, in units of mAh/g or Ah/kg;
  • the mass specific energy of the preset magnification refers to the energy value of the active material per unit mass at the preset magnification, and the unit is wh/kg;
  • test temperature was constant at 25°C.
  • test charging and discharging method is as follows:
  • Discharge with a current density of 0.5C to a discharge cut-off voltage (the following embodiments set the discharge cut-off voltage to 2.8V, and the discharge cut-off voltage can be adjusted according to the battery to be tested);
  • the temperature was constant at 25°C.
  • the charging and discharging method is as follows:
  • the charge cut-off voltage in the following embodiments is set to 4.45V, and the charge cut-off voltage can be adjusted according to the battery to be tested), and then use the above-mentioned charge cut-off voltage to be constant. Voltage charging until the charging current is less than or equal to 0.05C;
  • Discharge at a current density of 0.1C to a discharge cut-off voltage (the following examples are 2.8V, and the discharge cut-off voltage can be adjusted according to the battery to be tested) to obtain a discharge capacity at a rate of 0.1C;
  • the cut-off voltage of each of the following embodiments is set to 4.45V, and the cut-off voltage can be adjusted according to the battery to be tested), and then use the above-mentioned cut-off voltage to be constant. Voltage charging until the charging current is less than or equal to 0.05C;
  • Discharge at a current density of 5C to a discharge cut-off voltage (the following examples are 2.8V, and the discharge cut-off voltage can be adjusted according to the battery to be tested), and the discharge capacity at a rate of 5C is obtained.
  • Dv10 , Dv50, Dv90 particle size analysis was performed using a Mastersizer 3000E laser particle size analyzer from Malvern Instruments, UK.
  • the detection method can refer to GB/T 19077-2016 particle size distribution laser diffraction method.
  • the dispersion medium is water.
  • the refractive index of the sample is 1.62.
  • the content of elements such as S, B, P, F, Al, Zr, Ti, Mg, etc. in the electrode active composition can be determined by using instruments and methods known in the art.
  • the content of S element, B element, P element, Al element, Zr element, Ti element and Mg element is determined.
  • the test instrument can use the ICAP-7000 Inductively Coupled Plasma Emission Spectrometer (ICP-OES) of Thermo Fisher Scientific.
  • ICP-OES Inductively Coupled Plasma Emission Spectrometer
  • the test method is as follows: 0.4 g of the sample to be tested is digested with 10 mL of aqua regia, and after the digestion is complete, all the digested solution is transferred to a 100 mL volumetric flask to constant volume, and then the content of each element is determined by ICAP-7000 ICP-OES.
  • the content of element F is detected according to the general rule of ion chromatography analysis method JY/T202-1996.
  • the test instrument can use ICS-900 ion chromatography tester.
  • the determination method is as follows: 0.4 g of the sample to be tested is digested with 10 mL of aqua regia, the obtained solution is diluted to 250 mL and the volume is constant, and then the sample is injected for testing to obtain the content of F element.
  • R 11 R 6 values were determined by the following method:
  • the electrode active composition is formulated into a slurry, coated on the current collector, and dried to form an electrode pad.
  • Plasma cutting (Plasma Cutting) technology was used to cut the positive electrode piece to obtain a neat section, and the section was observed under a scanning electron microscope equipped with an energy dispersive spectroscopy (EDS) device. Twenty sampling areas were randomly selected for analysis, and the area of each sampling area conformed to the length ⁇ width ⁇ 36.4 ⁇ m ⁇ 25.1 ⁇ m.
  • EDS energy dispersive spectroscopy
  • the composition of each particle in each area was analyzed using energy spectroscopy techniques. Whether it is lithium cobalt oxide particles is determined according to the particle composition.
  • the identification criteria of the lithium cobalt oxides in the following embodiments are as follows: if the content of the Co element in the particle is ⁇ 30 wt%, and the content of the Ni element is less than 5 wt%, it is determined as a lithium cobalt oxide particle.
  • the particle size of each lithium cobalt oxide particle is measured.
  • the measurement method is as follows: For those particles whose entire particle enters the field of view of the sampling area, the diameter of the circumscribed circle of the particle outline is the particle size of the particle, the particle with a particle size ⁇ 11 ⁇ m is counted as a large particle, and the particle size ⁇ 6 ⁇ m is counted as one large particle. Particles are counted as 1 small particle.
  • particles with a particle size ⁇ 11 ⁇ m are counted as 1 large particle, and particles with a particle size ⁇ 6 ⁇ m are counted as 0.5 small particles.
  • the total number of large particles (particle size ⁇ 11 ⁇ m) and the total number of small particles (particle size ⁇ 6 ⁇ m) are summed up respectively, and the ratio of the numbers is R 11 :R 6 .
  • the average value of R 11 : R 6 of 20 sampling areas is the final detection result.
  • the sum of the number of lithium cobalt oxide particles with particle size ⁇ 11 ⁇ m and the number of lithium cobalt oxide particles with particle size ⁇ 6 ⁇ m accounts for more than 90% of the total number of lithium cobalt oxide particles.
  • FIG. 3 is a scanning electron microscope photograph of the surface of a pole piece prepared from the electrode active composition of Example 7 in Table 3.
  • FIG. 3 is a scanning electron microscope photograph of the surface of a pole piece prepared from the electrode active composition of Example 7 in Table 3.
  • FIG. 4 is a scanning electron microscope photograph of a section of a pole piece prepared from the electrode active composition of Example 8 in Table 3.
  • FIG. 4 is a scanning electron microscope photograph of a section of a pole piece prepared from the electrode active composition of Example 8 in Table 3.
  • the ratio of the number of lithium cobalt oxide particles with a particle size larger than 11 ⁇ m to lithium cobalt oxide particles with a particle size smaller than 6 ⁇ m in the battery active composition is 0.2 to 1.8, the obtained battery performance (such as gram capacity, volume capacity, etc.) , at least one of cycle retention, rate performance) has been improved;
  • the ratio of the number of lithium cobalt oxide particles with a particle size greater than 11 ⁇ m to lithium cobalt oxide particles with a particle size less than 6 ⁇ m in the battery active composition is 0.2 to 1.2, the obtained battery performance (such as gram capacity, volume ratio At least one of energy, cycle retention, rate performance) has been improved;
  • the obtained battery performance (such as at least one of gram capacity, volume capacity, cycle retention, and rate performance) is improved;
  • the coating layer on the surface of the ternary material particles contains specific doping elements, the obtained battery performance (such as at least one of gram capacity, volume capacity, cycle retention, and rate performance) is improved.
  • the present application provides a battery.
  • FIG. 5 shows a battery 10 according to one embodiment of the present application.
  • FIG. 6(A) shows a case of the battery
  • FIG. 6(B) shows a schematic diagram of the case and the cover plate of the battery.
  • the battery cell 20 includes a case 21 , an electrode assembly 22 and an electrolyte, wherein the electrode assembly 22 is accommodated in the battery cell
  • the electrode assembly 22 includes a positive pole piece, a negative pole piece and a separator.
  • the separator can be the separator prepared in the examples of the present application.
  • the electrode assembly 22 may be a wound structure or a laminated structure, for example, may be the structure actually adopted in the embodiments of the present application.
  • the box 21 includes a housing 211 and a cover plate 212 .
  • the housing 211 includes a receiving cavity 211a formed by a plurality of walls and an opening 211b.
  • a cover plate 212 is arranged at the opening 211b to close the accommodation cavity 211a.
  • the accommodating cavity 211a also accommodates an electrolyte.
  • the positive pole piece and the negative pole piece in the electrode assembly 22 are generally provided with tabs, and the tabs generally include positive pole tabs and negative pole tabs.
  • the number of positive tabs is plural and stacked together, and the number of negative tabs is plural and stacked together.
  • the tabs are connected to the positive electrode terminal 214 a and the negative electrode terminal 214 b outside the battery cell 20 through the connecting member 23 .
  • the positive electrode terminal 214 a and the negative electrode terminal 214 b are also collectively referred to as the electrode terminal 214 .
  • the electrode terminal 214 can generally be provided in the portion of the cover plate 212 .
  • the present application provides a device, the device may include a mobile phone, a portable device, a notebook computer, a battery car, an electric vehicle, a ship, a spacecraft, an electric toy, a power tool, etc., wherein the spacecraft may Including airplanes, rockets, space shuttles and spaceships, etc.
  • Electric toys include stationary or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric aircraft toys, etc.
  • Power tools include metal cutting power tools, Grinding power tools, assembling power tools and railway power tools such as drills, grinders, wrenches, screwdrivers, hammers, impact drills, concrete vibrators and planers.
  • a device includes a car.
  • (A) and (B) of FIG. 7 respectively show a side view and a bottom view of an automobile according to an embodiment of the present application.
  • the vehicle may be a fuel vehicle, a gas vehicle, or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle.
  • the battery 10 may be installed inside the vehicle 1 , and FIG. 7(A) shows that the battery 10 is installed on the bottom of the vehicle, but it is also possible to install the battery 10 on the vehicle 1 as required. front or rear of the car.
  • the battery 10 can supply power to the car 1 in an intermittent or continuous manner.
  • the battery 10 can also be used to supply driving power for the vehicle 1 .
  • the car 1 may further include a controller 30 and a motor 40 .
  • the controller 30 is used to control the battery 10 to supply power to the motor 40 , for example, for starting, navigating and driving the car 1 for work. electricity demand.
  • the battery 10 can not only be used as the operating power source of the automobile 1, but also can be used as the driving power source of the automobile 1 to provide driving power for the automobile 1 instead of or partially instead of fuel or natural gas.
  • the battery 10 used in an automobile may also be a battery pack including a plurality of battery cells 20 shown in FIGS. 5 to 6 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及电极活性组合物及其制备方法及电极、电池和装置。该电极活性组合物包括:第一组分,第一组分为锂钴氧化物颗粒;第二组分,第二组分为三元材料颗粒;其中,第一组分含有粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~4.8,可选为0.2~2.8;其中,基于第一组分的颗粒总数,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量之和占90%以上。

Description

电极活性组合物及其制备方法及电极、电池和装置 技术领域
本申请属于锂二次电池技术领域,尤其涉及一种电极活性组合物及其制备方法及电极、电池和装置。
背景技术
自第一次商业化以来,可充电锂离子电池已被广泛应用于各种便携式电子产品中以及大型电动汽车和储能电网。
锂离子电池正极活性材料通常包括锂钴氧化物(LCO)、锂锰氧化物(LMO)、磷酸铁锂(LFP)、锂镍钴铝氧化物(NCA)和锂镍钴锰氧化物(NMC)等。锂离子能够在上述正极材料中可逆地嵌入和脱出。
本领域仍需要性能更好的电极活性材料。
发明内容
本公开提供了一种新的电极活性组合物,该电极活性组合物用于电池,电池能够表现出改善的性能。
在一些方面,提供一种电极活性组合物,包括:
第一组分,第一组分为锂钴氧化物颗粒;
第二组分,第二组分为三元材料颗粒;
其中,第一组分含有粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~4.8,可选为0.2~2.8;
其中,基于第一组分的颗粒总数,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量之和占90%以上。
在一些实施方案中,颗粒的粒径是通过扫描电子显微镜观察测量获得。
在一些实施方案中,按如下方法定义颗粒的粒径:用扫描电子显微镜观察颗粒,以颗粒图像的外接圆的直径作为颗粒的粒径。
在一些实施方案中,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量的比值通过如下方法测得:
将电极活性组合物制成电极片;
切割电极片获得整齐的截面(截面垂直于极片的表面);
采用配有能谱装置的扫描电子显微镜分析截面的预设区域;
通过分析预设区域内各颗粒的成分,定位预设区域内的全部锂钴氧化物颗粒,并测量每个锂钴氧化物颗粒的粒径;
根据测量结果计算粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗 粒的数量的比值。
在一些实施方案中,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~0.3、0.3~0.4、0.4~0.5、0.5~0.6、0.6~0.7、0.7~0.8、0.8~0.9、0.9~1.0、1.0~1.1、1.1~1.2、1.2~1.3、1.3~1.4、1.4~1.5、1.5~1.6、1.6~1.7、1.7~1.8、1.8~1.9、1.9~2.0、2.0~2.1、2.1~2.2、2.2~2.3、2.3~2.4、2.4~2.5、2.5~2.6、2.6~2.7、2.7~2.8、2.8~2.9、2.9~3.0、3.0~3.1、3.1~3.2、3.2~3.3、3.3~3.4、3.4~3.5、3.5~3.6、3.6~3.7、3.7~3.8、3.8~3.0、3.9~4.0、4.0~4.1、4.1~4.2、4.2~4.3、4.3~4.4、4.4~4.5、4.5~4.6、4.6~4.7、4.7~4.8。可选地,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~2.8。进一步可选地为0.5~2.8或0.7~1.8。
在一些实施方案中,第一组分与第二组分的重量比为1~9:1,例如1.5~4:1,例如1.2~2:1,例如2~3:1,例如3~4:1,例如4~5:1,例如5~6:1,例如6~7:1,例如7~8:1,例如8~9:1。
在一些实施方案中,三元材料颗粒的粒径为2μm~6μm,例如3μm~5μm。
在一些实施方案中,锂钴氧化物颗粒具有单晶结构。
在一些实施方案中,三元材料颗粒至少具有单晶结构。可选地,三元材料颗粒还可以进一步包括具有多晶结构的颗粒。
在一些实施方案中,锂钴氧化物化学式为Li xCo yM 1 (1-y)O 2,0.95≤x≤1.05,0.8≤y≤1,M 1选自Zr、Mg、Ti、Sr、W、Nb、Al、P、F、S中的一种或多种的组合。
在一些实施方案中,三元材料选自锂镍钴锰氧化物或锂镍钴铝氧化物。
在一些实施方案中,锂镍钴锰氧化物的化学式为Li aNi bCo cMn dM 2 (1-b-c-d)O 2,0.5≤a≤1.2,0.65≤b≤1,0≤c≤0.35,0≤d≤0.35,M 2选自Zr、Zn、Ti、Sr、Sb、Y、W、Al、B、P、F、S中的一种或多种的组合。
在一些实施方案中,a=0.5~0.6、0.6~0.7、0.7~0.8、0.8~0.9、0.9~1、1~1.1或1.1~1.2。
在一些实施方案中,b=0.6~0.65、0.7~0.8、0.8~0.9或0.9~1。
在一些实施方案中,c=0~0.1、0.1~0.2、0.2~0.3、0.3~0.35。
在一些实施方案中,d=0~0.1、0.1~0.2、0.2~0.3、0.3~0.35。
在一些实施方案中,锂镍钴铝氧化物的化学式为Li xNi eCo fAl gM (1-e-f-g)O 2,0.5≤x≤1.2,0.5≤e≤1,0≤f≤0.5,0≤g≤0.5,M 3选自Zr、Mg、Ba、Ti、Sr、Sb、Y、W、B中的一种或多种的组合。
在一些实施方案中,x=0.5~0.6、0.6~0.7、0.7~0.8、0.8~0.9、0.9~1、1~1.1或1.1~1.2。
在一些实施方案中,e=0.5~0.6、0.6~0.7、0.7~0.8、0.8~0.9或0.9~1。
在一些实施方案中,f=0~0.1、0.1~0.2、0.2~0.3、0.3~0.4或0.4~0.5。
在一些实施方案中,g=0~0.1、0.1~0.2、0.2~0.3、0.3~0.4、0.4~0.5。
在一些实施方案中,电极活性组合物的压实密度≥4.05g/cm 3,例如≥4.1g/cm 3,例如4.05~4.25g/cm 3;压实密度是指电极活性组合物在5吨压力下压制30秒所形成的压坯的密度。
在一些实施方案中,三元材料颗粒具有核-包覆层结构,其中,
核含有三元材料;
包覆层包覆核的至少部分表面(例如部分表面或全部表面),包覆层含有含硫化合物和含锂化合物的反应产物,反应产物含有Li元素、S元素和O元素。
在一些实施方案中,S元素在三元材料颗粒中的重量含量为400-5000ppm。
在一些实施方案中,包覆层中还含有B元素、F元素和P元素中的一种或多种元素。
在一些实施方案中,在含有B元素的条件下,B元素在三元材料颗粒中的重量含量为500-3000ppm;
在一些实施方案中,在含有F元素的条件下,F元素在三元材料颗粒中的重量含量为200-1500ppm;
在一些实施方案中,在含有P元素的条件下,P元素在三元材料颗粒中的重量含量为500-3000ppm。
在一些实施方案中,含锂化合物包括锂盐;
可选地,含锂化合物包括以下一种或多种:Li 2O、LiOH和Li 2CO 3、LiNO 3、LiPF 6、草酸锂、醋酸锂中的一种或多种。
在一些实施方案中,含硫化合物包括以下一种或多种:硫醇、硫酚、硫醚、硫醛、硫酮、硫代羧酸、亚砜、砜、硫含氧酸及其衍生物;
可选地,硫含氧酸是磺酸、亚磺酸或次磺酸;
可选地,硫含氧酸的衍生物包括以下的一种或多种:硫含氧酸的酯、硫含氧酸的盐(例如硫含氧酸的锂盐)、硫含氧酸的酰卤、硫含氧酸的酰胺、硫含氧酸的酰胺锂盐。
在一些实施方案中,含硫化合物包括以下的一种或多种:
R1-S(=O) 2-R2、R1-C(=S)-R2、
Figure PCTCN2020114539-appb-000001
R1-C-S-C-R2或R1-S(=O) 2-LiN-S(=O) 2-R2,其中R1和R2各自独立地选自羟基、氨基、C 1-6烷基、芳基、卤原子(例如F、Cl、Br或I)和氢原子。
在一些实施方案中,含硫化合物包括R1-S(=O) 2-R2,其中,R1为羟基,R2选自氨基、C 1-6烷基和卤原子(例如F、Cl、Br或I)。
在一些实施方案中,含硫化合物包括R1-C(=S)-R2,其中,R1为氨基,R2为C 1-6烷基。
在一些实施方案中,含硫化合物包括
Figure PCTCN2020114539-appb-000002
其中,R1和R2各自独立地为氢原子或C 1-6烷基。
在一些实施方案中,含硫化合物包括R1-C-S-C-R2,其中,R1和R2各自独立地为氢原子或C 1-6烷基。
在一些实施方案中,含硫化合物包括R1-S(=O) 2-LiN-S(=O) 2-R2,其中,R1和R2各自独立地为卤原子。
在一些实施方案中,含硫化合物包括以下的一种或多种:硫酰胺、氨基甲磺酸、双氟磺酰亚胺锂、硫代丙酰胺、硫代异丁酰胺、硫化丙烯和甲基乙基硫醚。
在一些实施方案中,含硫化合物包括以下的一种或多种:
Figure PCTCN2020114539-appb-000003
在一些方面,提供一种制备上述任一项的电极活性组合物的方法,包括以下步骤:
-提供第一组分,第一组分为锂钴氧化物颗粒;
-提供第二组分,第二组分为三元材料颗粒;
-混合第一组分和第二组分;
其中,第一组分含有粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~4.8,可选为0.2~2.8;
其中,基于第一组分的颗粒总数,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量之和占90%以上。
在一些实施方案中,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~0.3、0.3~0.4、0.4~0.5、0.5~0.6、0.6~0.7、0.7~0.8、0.8~0.9、0.9~1.0、1.0~1.1、1.1~1.2、1.2~1.3、1.3~1.4、1.4~1.5、1.5~1.6、1.6~1.7、1.7~1.8、1.8~1.9、1.9~2.0、2.0~2.1、2.1~2.2、2.2~2.3、2.3~2.4、2.4~2.5、2.5~2.6、2.6~2.7、2.7~2.8、2.8~2.9、2.9~3.0、3.0~3.1、3.1~3.2、3.2~3.3、3.3~3.4、3.4~3.5、3.5~3.6、3.6~3.7、3.7~3.8、3.8~3.0、3.9~4.0、4.0~4.1、4.1~4.2、4.2~4.3、4.3~4.4、4.4~4.5、4.5~4.6、4.6~4.7、4.7~4.8。可选地,粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~2.8。进一步可选地为0.5~2.8或0.7~1.8。
在一些实施方案中,制备电极活性组合物的方法还包括以下步骤:将第一锂钴氧化物颗粒和第二锂钴氧化物颗粒混合,以获得第一组分;
其中,第一锂钴氧化物颗粒的Dv50粒度为17~21μm,例如18~20μm,例如19μm;
其中,第二锂钴氧化物颗粒的Dv50粒度为4~8μm,例如5~7μm,例如6μm;
在一些实施方案中,第一锂钴氧化物颗粒和第二锂钴氧化物颗粒的重量比为3~15:1,例如3~7:1,例如3~4:1、4~5:1、5~6:1、6~7:1、7~8:1、8~9:1、9~10:1、10~11:1、11~12:1、12~13:1、13~14:1或14~15:1。
在一些实施方案中,三元材料颗粒具有核-包覆层结构,其中,
核含有三元材料;
包覆层包覆核,包覆层含有含硫化合物和含锂化合物的反应产物,反应产物含有Li元素、S元素和O元素。
在一些实施方案中,具有核-包覆层结构的三元材料颗粒的制备方法包括:
a)提供核形成材料和包覆层形成材料,核形成材料含有三元材料,包覆层形成材料含有含硫化合物;
其中,步骤a)具有以下a1)~a2)中的一项或多项特征:
a1)核形成材料的表面有含锂化合物;
a2)包覆层形成材料还含有含锂化合物;
b)用包覆层形成材料处理核形成材料,使核形成材料的表面形成含硫化合物和含锂化合物的反应产物,反应产物中含有Li元素、S元素和O元素。
在一些实施方案中,项a1)中,含锂化合物为碱性含锂化合物。
在一些实施方案中,项a2)中,含锂化合物为中性或酸性含锂化合物。
在一些实施方案中,用包覆层形成材料处理核形成材料的操作包括:在核形成材料的表面施加溶有包覆层形成材料的溶液,然后进行热处理;
可选地,热处理的温度为80~300℃;
可选地,热处理的时间为3~20h。
在一些实施方案中,在核形成材料的表面施加溶有包覆层形成材料的溶液的操作包括:将核形成材料分散到溶有包覆层形成材料的溶液中,再将核形成材料从溶液中分离。
在一些实施方案中,溶液的溶剂含有以下一种或多种:水、乙醇、N-甲基吡咯烷酮;
在一些实施方案中,溶液的溶剂为90~95vol%浓度的酒精;
在一些实施方案中,溶液中包覆层形成物质的含量为0.1~5mol/L。
在一些实施方案中,含锂化合物的定义如上述任一项。
在一些实施方案中,含硫化合物的定义如上述任一项。
在一些方面,提供一种电极活性组合物,其由上述任一项的方法制备获得。
在一些方面,提供一种电极,其含有上述任一项的电极活性组合物。
在一些方面,提供一种电池,其含有上述任一项的电极活性组合物。
在一些方面,提供一种装置,其含有上述任一项的电池,电池作为装置的储能单元;
在一些实施方案中,装置是电动装置,电池用于向电动装置供电。
在一些实施方案中,制备有包覆层的电极活性材料的方法为湿法。
在一些实施方案中,可以用本领域公知的仪器及方法进行测定电极活性组合物中Co元素、Mn元素及Ni元素。
在一些实施方案中,电极活性组合物中三元材料(如锂镍钴锰氧化物或锂镍钴铝氧化物)的百分含量的测试方法如下:依据EPA 6010D-2014《电感耦合等离子体原子发射光谱法》,采用美国赛默飞世尔科技(Thermo Fisher Scientific)公司的ICAP-7000型电感耦合等离子发射光谱仪(ICP-OES)测定Co元素、Mn元素(或Al)及Ni元素的含量。具体测试方法如下:采用10mL王水将0.4g正极粉末进行消解,消解完全后将消解液全部转移到1000mL容量瓶中定容,之后采用ICAP-7000型ICP-OES测定Co元素、Mn(或Al)元素及Ni元素的含量。通过Ni元素与Mn(或Al)元素的比例关系,可以推算出锂镍钴锰氧化物中Co元素的含量,再用通过ICP测定的Co元素的含量减去计算得到的锂镍钴锰三元活性物质中的Co元素含量,即得到锂钴氧化物中Co元素的含量,根据锂钴氧化物的化学式,锂镍钴锰氧化物的化学式,可计算得到电极活性组合物中锂镍钴锰氧化物所占比例。
在一些实施方案中,电池的电解质可根据需求进行选择。电解质可以选自固态电解质、液态电解质(即电解液)中的至少一种。当电解质为电解液时,电解液包括电解质盐和溶剂。电解质盐可以选自LiPF 6(六氟磷酸锂)、LiBF 4(四氟硼酸锂)、LiClO 4(高氯酸锂)、LiAsF 6(六氟砷酸锂)、LiFSI(双氟磺酰亚胺锂)、LiTFSI(双三氟甲磺酰亚胺锂)、LiTFS(三氟甲磺酸锂)、LiDFOB(二氟草酸硼酸锂)、LiBOB(二草酸硼酸锂)、LiPO 2F 2(二氟磷酸锂)、LiDFOP(二氟二草酸磷酸锂)及LiTFOP(四氟草酸磷酸锂)中的一种或几种。溶剂可以是碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、 碳酸乙丙酯(EPC)、碳酸丁烯酯(BC)、氟代碳酸乙烯酯(FEC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的一种或几种。
在一些实施方案中,上述电池还含有隔离膜,隔离膜在正电极和负电极之间起到隔离的作用。
在一些实施方案中,隔离膜可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜,例如玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的一种或几种。隔离膜可以是单层薄膜,也可以是多层复合薄膜。隔离膜为多层复合薄膜时,各层的材料可以相同,也可以不同。
在一些方面,提供一种装置,含有上述的电池,电池作为装置的储能单元。
在一些实施方案中,装置是电动装置,电池向电动装置供电。
在一些实施方案中,电动装置可以是电器,如家用电器、商用电器、工业用电器等。
在一些实施方案中,电动装置可以是电动交通工具,如电动汽车。电动交通工具既可以是纯电动驱动的,也可以是混合动力驱动的。
在一些实施方案中,“包含”“包括”“含有”可以是指含量大于零,例如1%以上,例如10%以上,例如20%以上,例如30%以上,例如40%以上,例如50%以上,例如60%以上,例如70%以上,例如80%以上,例如90%以上,例如100%。当含量为100%时,“包含”“包括”“含有”的含义相当于“由…构成”。
在一些实施方案中,%是指重量%。
为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”为包含本数,“一种或几种”中“几种”的含义是两种或两种以上。
上述发明内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施方案提供了指导,这些实施方案可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
术语解释:
本申请如果使用了如下的术语,它们可以以如下的非限制的方式被理解:
“电极活性材料”是指具有使得其能够嵌入和脱嵌锂离子的特定组成和晶体结构 的电池材料。
“电极”是指参与电池电化学反应的含有电极活性物质的组件。
“电池”指包括一个或多个电芯以提供更高的电压和容量的单一的物理模块。电芯是指能够独立进行充放电的电池单体。电芯结构包括正极、负极、隔膜、电解质以及用于封装正极极片、负极极片、隔膜和电解质的外包装等。本申请对电芯的类型、形状没有特别的限制,其可以是软包电芯,也可以是柱形电芯、或是方形电芯等各类电芯。
电池可包括电池模块和电池包。电池模块是为了从外部冲击、热、振动等中保护电芯,将一定数目的电芯电连接在一起并放入一个框架中而形成的。电池包则是装入电动汽车等用电装置的电池系统的最终状态。目前的大部分电池包是在一个或多个电池模块上装配电池管理系统、热管理部件等各种控制和保护系统而制成的。随着技术的发展,电池模块这个层次可以被省略,也即,直接由电芯形成电池包。这一改进使得电池系统的重量能量密度、体积能量密度得到提升的同时零部件数量显著下降。
“单晶”,也称为单颗粒或一次颗粒,其显微形貌为基本上不聚团的、分散的颗粒。单晶可以是不规则形状的颗粒。
“多晶”是指由两个以上一次颗粒的聚集而成的二次颗粒。多晶可以是球形的颗粒。
术语“粉末”、“颗粒”在本文中可互换使用。这些术语还任意地具有如下特征:空心、致密、多孔性、半多孔、涂覆、未涂覆、多层、层压、简单、复杂、枝状、无机、有机、元素、非元素、复合、掺杂、未掺杂、球形、非球形、表面功能化、表面未功能化、化学计量和非化学计量形式或物质。此外,术语粉末在其一般意义上包括一维材料(纤维、管等)、二维材料(小片、薄膜、层压材料、平面等)和三维材料(球、锥体、卵形、圆柱形、立方体、单斜、哑铃形、六角形、截角十二面体、不规则形状结构等)。
本文中使用的术语“球形”是指正球形、椭球形或类球形。
本文所用的术语“D V10粒度”是指第10百分点的基于体积的粒度;“D V50粒度”是指第50百分点的基于体积的粒度;“D V90粒度”是指第90百分点的基于体积的粒度。粒度采用激光衍射法测得。
术语“锂盐”表示在溶剂中能够解离形成锂离子的含锂化合物。
术语“硫醇”是指醇分子里的醇羟基被置换为-SH。
术语“硫酚”是指酚分子里的酚羟基被置换为-SH。
术语“硫醚”是指具有R3-S-R4结构的化合物,其中R3和R4各自独立地为烷基。
术语“硫醛”是指醛分子里的醛基C(O)H被置换为C(S)H。
术语“硫酮”是指酮分子中的羰基-C(O)-被置换为-C(S)-.
术语“硫代羧酸”是指羧酸分子中的-COOH被置换为CO-SH、CS-OH或CSSH。
术语“砜”是指具有基团-S(O) 2R的化合物,其中R是烷基、芳基、或杂芳基。
术语“亚砜”是指具有基团-S(O)R的化合物,其中R是烷基、芳基、或杂芳基。
术语“磺酸”、“亚磺酸”、“次磺酸”分别是指具有-S(O) 2OH、-S(O)OH、-SOH的化合物。
术语“氨基”表示未被取代或取代的氨基,取代的氨基例如是烷基取代的氨基,例如甲基氨基)。
术语“C 1-6烷基”具有1-6个碳原子的烷基,其可以是支链或直链、饱和或不饱和、未取代或单或多取代的。
有益效果
本公开的一项或多项的技术方案具有如下一项或多项有益效果:
1)电极活性组合物具有较高的压实密度;
2)电极活性组合物用于电池,电池表现出提高的比能量,特别是体积比能量;
3)电极活性组合物用于电池,电池表现出改善的循环性能;
4)电极活性组合物用于电池,电池在较高的电压下表现出较好的性能。
附图说明
图1为表1中NCM②锂镍钴锰氧化物的扫描电子显微镜照片,(a)-(d)示出不同放大倍数或位置的照片。
图2的(a)和(b)分别为表1中LCO③(L 3)锂钴氧化物与LCO③(M 2)锂钴氧化物的扫描电子显微镜照片。
图3为一个极片的表面的扫描电子显微镜照片,该极片由表3实施例7的电极活性组合物制备得到的。
图4为一个极片的断面的扫描电子显微镜照片,该极片以表3中实施例8电极活性组合物制备获得。
图5示出了本申请一个实施方式的电池的示意图。
图6的(A)示出电池的壳体的示意图,图6的(B)示出电池的壳体和盖板的示意图。
图7的(A)和(B)分别显示了根据本申请一个实施方式的汽车的侧视图和底视图。
具体实施例
下述实施例更具体地描述了本申请公开的内容,这些实施例仅仅用于阐述性说明,因为在本申请公开内容的范围内进行各种修改和变化对本领域技术人员来说是明显的。除非另有声明,以下实施例中所报道的所有份、百分比、和比值都是基于重量计,而且实施例中使用的所有试剂都可商购获得或是按照常规方法进行合成获得,并且可直接使用而无需进一步处理,以及实施例中使用的仪器均可商购获得。
以下实施例提供一种电极活性组合物,其包括:第一组分和第二组分,第一组分为锂钴氧化物颗粒(以下简称LCO);第二组分为三元材料颗粒(例如选自锂镍钴锰氧化物 NCM或锂镍钴铝氧化物NCA)。
原料预备例1
以下实施例中,提供市售的锂钴氧化物粉末(简称LCO),以及市售的三元材料粉末(包括锂镍钴锰氧化物NCM和锂镍钴铝氧化物NCA)。这些粉末的参数如表1所示。
Figure PCTCN2020114539-appb-000004
图1为表1中NCM②锂镍钴锰氧化物的扫描电子显微镜照片,(a)-(d)示出不同放大倍数或位置的照片。
图2的(a)和(b)分别为表1中LCO③(L 3)锂钴氧化物与LCO③(M 2)锂钴氧化物的扫描电子显微镜照片。
原料预备例2(有包覆层的三元材料颗粒)
以下实施例对三元材料颗粒进行了包覆处理,获得了有包覆层的三元材料颗粒,具体包覆方法如下:
步骤1:提供三元材料粉末(如表1中的NCM①、NCM②、NCM③或NCA①、NCA②),以其作为核材料;
步骤2:提供含有包覆层形成材料的溶液;含有包覆层形成材料的溶液配方如表2所示
步骤3:混合步骤1、2的产物,混合重量比例为1:1,混合后搅拌30min,固液分离,收集固形物;
步骤4:在密闭环境惰性气氛对上一步所得固形物进行热处理,热处理条件如表2所示,得到具有包覆层的电极活性材料。
下述各实施例使用的有包覆层的活性材料的具体制备参数如表2所示。
Figure PCTCN2020114539-appb-000005
组合物制备例3(电极活性组合物)
从原料预备例1和原料预备例2中选取以下原料:大粒径的锂钴氧化物粉末(LCO(L))、小粒径的锂钴氧化物粉末(LCO(M))和三元材料粉末(经包覆处理的或未经包覆处理的),将它们混合,获得各实施例的电极活性组合物。具体的混合比例如表3所示。
Figure PCTCN2020114539-appb-000006
Figure PCTCN2020114539-appb-000007
分析检测
下面对上述实施例和对比例的材料进行电化学性能、物理和化学性能的检测。
1、电池的组装
通过将电极活性材料组装在电池中测试材料的电化学性能。具体地,将制备的电极活性组合物作为锂离子二次电池的正极活性材料,组装成扣式电池。电池组装具体方法如下:
正极极片:将上述电极活性物质与炭黑、粘结剂(PVDF)按88:6:6的质量比混合,加入溶剂N-甲基吡咯烷酮(NMP),搅拌使其形成均匀的正极浆料;将正极浆料涂覆于正极集流体铝箔表面上,经干燥、冷压后,得到正极极片。正极极片上活性物质载量为5~14mg/cm 2
负极极片:以锂金属作为负极极片。
隔离膜:采用聚乙烯(PE)薄膜。
电解液:将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)体积比1:1:1混合,然后将LiPF 6均匀溶解在上述溶液中得到电解液,其中LiPF 6的浓度为1mol/L。
扣式电池的组装:将上述正极极片、隔离膜、负极极片按顺序叠片,加入上述电解液,得到CR2430型号扣式电池。
2、电池的电化学性能测试
测试上述制备的扣式电池的电性能,包括:
(2.1)克比容量/体积比能量的测试:
使用LAND CT2001A电化学测试仪,恒定测试房温度(25℃)对电池进行充放电。
充放电方法如下:
1、温度恒定为25℃,静置10min;
2、以预设倍率(以下实施例使用了0.1C、0.5C或5C)的电流密度恒流充电至充电截止电压(以下各实施例的充电截止电压设定为4.45V,充电截止电压根据待测电池不同可相应调整),再恒压(4.45V)充电直至充电电流≤0.05C;
3、静置5min;
4、以上述预设倍率的电流密度恒流放电至放电截止电压(以下各实施例的放电截止电压设定为2.8V,放电截止电压根据待测电池不同可相应调整);
5、以第1周的放电比容量、放电比能量、放电体积比能量为基准技术材料的比容量、质量比能量、体积比能量。
其中,充/放电电流为预设倍率乘以电池额定容量,额定容量以扣式电池预设电压下的正极理论容量为准。
其中,预设倍率的比容量是指单位质量活性材料在该预设倍率下的容量值,单位mAh/g或者Ah/kg;
其中,预设倍率的质量比能量是指单位质量活性材料在该预设倍率下的能量值,单位wh/kg;
其中,预设倍率的体积比能量是单位体积活性材料在该预设倍率下的能量值,单位为 wh/L,其中活性材料的体积=活性材料质量/压实密度,预设倍率的体积比能量=预设倍率的质量比能量*活性材料的压实密度。
(2.2)循环性能测试:
测试温度恒定为25℃。测试充放电方法如下:
1、静置2h
2、以预设的电流密度(以下实施例使用0.5C)恒流充电至充电截止电压(以下各实施例的充电截止电压设定为4.45V,充电截止电压根据待测电池不同可相应调整),再以上述充电截止电压恒压(4.45V)充电直至充电电流≤0.05C;
3、静置5min;
4、以0.5C的电流密度恒流放电至放电截止电压(以下各实施例为放电截止电压设定为2.8V,放电截止电压根据待测电池不同可相应调整);
5、静置5min;
6、重复2~5步,直至充放电100周。
Figure PCTCN2020114539-appb-000008
(2.3)5C倍率性能测试:
温度恒定为25℃。
充放电方法如下:
1、静置2h
2、以0.1C的电流密度恒流充电至充电截止电压(以下各实施例的充电截止电压设定为4.45V,充电截止电压根据待测电池不同可相应调整),再以上述充电截止电压恒压充电直至充电电流≤0.05C;
3、静置5min;
4、以0.1C的电流密度恒流放电至放电截止电压(以下各实施例为2.8V,放电截止电压根据待测电池不同可相应调整),得到0.1C倍率下放电容量;
5、静置5min。
6、以0.1C的电流密度恒流充电至充电截止电压(以下各实施例的充电截止电压设定为4.45V,充电截止电压根据待测电池不同可相应调整),再以上述充电截止电压恒压充电直至充电电流≤0.05C;
7、静置5min;
8、以5C的电流密度恒流放电至放电截止电压(以下各实施例为2.8V,放电截止电压根据待测电池不同可相应调整),得到5C倍率下放电容量
9、根据以下公式计算5C/0.1C放电容量比。
Figure PCTCN2020114539-appb-000009
3、电极活性组合物的物理/化学性能的测试
(3.1)压实密度测试:
参照GB/T24533-2009标准,通过电子压力试验机进行,如UTM7305型电子压力试验机。准确称取样品1g左右,加入底面积为1.327cm 2的模具中,采用加压装置向样品施加5吨压力并在这一压力下保持30秒后再卸去压力,随后测量样品的高度即可通过如下公式得到材料的压实密度。ρ=m/(1.327*h),其中ρ表示材料的压实密度,m表示样品的质量,h表示样品在被施加5吨压力并在这一压力下保持30秒后再卸去压力后的高度。
(3.2)粒度分布测试:
使用英国马尔文仪器有限公司的Mastersizer 3000E型激光粒度分析仪进行D V10、Dv50,Dv90粒度分析。检测方法可以参照GB/T 19077-2016粒度分布激光衍射法。分散介质为水。样品折射率为1.62。
(3.3)S、B、P、F、Al、Zr、Ti、Mg等元素含量的测试方法:
可以用本领域公知的仪器及方法进行测定电极活性组合物中S、B、P、F、Al、Zr、Ti、Mg等元素的含量。
例如,依据EPA 6010D-2014《电感耦合等离子体原子发射光谱法》,测定S元素、B元素、P元素、Al元素、Zr元素、Ti元素及Mg元素的含量。测试仪器可以采用采用美国赛默飞世尔科技(Thermo Fisher Scientific)公司的ICAP-7000型电感耦合等离子发射光谱仪(ICP-OES)。测试方法如下:用10mL王水将0.4g待测样品消解,消解完全后将消解液全部转移到100mL容量瓶中定容,之后采用ICAP-7000型ICP-OES测定各个元素的含量。
例如,按照离子色谱分析方法通则JY/T202-1996检测F元素的含量。测试仪器可以采用ICS-900离子色谱测试仪。测定方法如下:用10mL王水将0.4g待测样品消解,将所得溶液稀释至250mL并定容后,进样测试,获得F元素的含量。
(3.4)R 11:R 6值的测试
R 11:R 6值通过如下方法测得:
将电极活性组合物配制成浆料,涂覆在集流体上,干燥后制成电极极片。
采用等离子切割(Plasma Cutting)技术切割上述正极极片,获得整齐的断面,将该断面置于配置有能谱(EDS)装置的扫描电子显微镜下观察。随机取20个采样区域进行分析,每个采样区域的面积符合长×宽≥36.4μm×25.1μm。
对于每个采样区域,采用能谱技术分析各区域内每个颗粒的成分。根据颗粒成分判别其是否为锂钴氧化物颗粒。以下实施例的锂钴氧化物的鉴定标准如下:若颗粒的Co元素的含量≥30wt%,同时Ni元素的含量<5wt%,则判定其为锂钴氧化物颗粒。
找出采样区域内的全部锂钴氧化物颗粒后,测量各锂钴氧化物颗粒的粒径。测量方法如下:对于那些整个颗粒进入采样区域视野的颗粒,以该颗粒轮廓的外接圆直径为该颗粒的粒径,将粒径≥11μm的颗粒计为1个大颗粒,将粒径≤6μm的颗粒计为1个小颗粒。对于那些位于采样区域边缘的仅部分进入采样区域视野的颗粒,将粒径≥11μm的颗粒计为1个大颗粒,将粒径≤6μm的颗粒计为0.5个小颗粒。最后,分别汇总大颗粒(粒径≥11μm) 的总数和小颗粒(粒径≤6μm)的总数,二者数量比值即为R 11:R 6
对20个采样区域的R 11:R 6取平均值,即为最终检测结果。
在本申请的实施例和对比例中,粒径≥11μm的锂钴氧化物颗粒数量与粒径≤6μm的锂钴氧化物颗粒数量之和占锂钴氧化物颗粒总数的90%以上。
图3为一个极片的表面的扫描电子显微镜照片,该极片由表3的实施例7的电极活性组合物制备获得。
图4为一个极片的断面的扫描电子显微镜照片,该极片由表3的实施例8的电极活性组合物制备获得。
以上各指标的检测结果如表4所示。
Figure PCTCN2020114539-appb-000010
Figure PCTCN2020114539-appb-000011
通过比较以上实施例和对比例的实验效果,能够获得以下结论:
1)当电池活性组合物中粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~1.8时,获得的电池性能(如克容量、体积容量、循环保持率、倍率性能的至少一项)有所改善;
2)当电池活性组合物中粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~1.2时,获得的电池性能(如克容量、体积比能量、循环保持率、倍率性能的至少一项)有所改善;
3)当三元材料颗粒在电池活性组合物中的重量含量为20~40wt%时,获得的电池性能有所改善;
4)当三元材料颗粒表面覆有特定成分的包覆层时,获得的电池性能(如克容量、体积容量、循环保持率、倍率性能的至少一项)有所改善;
5)当三元材料颗粒表面的包覆层含有特定掺杂元素时,获得的电池性能(如克容量、体积容量、循环保持率、倍率性能的至少一项)有所改善。
根据本申请的一些实施方式,本申请提供了一种电池。
图5显示了根据本申请一个实施方式的电池10。图6的(A)示出电池的壳体,图6的(B)示出电池的壳体和盖板的示意图。如图5~6所示,在该实施方式中,也可以将其称为电池单体20,该电池单体20包括盒21、电极组件22和电解液,其中电极组件22被容纳在电池单体20的盒21中,电极组件22包括正极极片、负极极片和隔膜。隔膜可以是本申请实施例制备的隔膜。电极组件22可以是卷绕式的结构,也可以是叠片式的结构,例如可以是本申请实施例实际采用的结构。盒21包括壳体211和盖板212。壳体211包括由多个壁形成的容纳腔211a以及开口211b。盖板212布置在开口211b处以封闭容纳腔211a。除了电极组件22之外,容纳腔211a中还容纳有电解液。电极组件22中的正极极片和负极极片一般会设有极耳,极耳一般包括正极极耳和负极极耳。根据本申请的一些实施方式,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。极耳通过连接构件23而与电池单体20外部的正电极端子214a和负电极端子214b相连接。在本申请的描述中,也将正电极端子214a和负电极端子214b合称为电极端子214。对方形电池单体而言,电极端子214一般可设置在盖板212部分。
根据本申请的一些实施方式,本申请提供了一种装置,所述装置可以包括手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等,其中航天器可以包括飞机、火箭、航天飞机和宇宙飞船等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本实施例一装置包括汽车。例如,图7的(A)和(B)分别显示了根据本申请一个实施方式的汽车的侧视图和底视图。该汽车可以为燃油汽车、燃气汽车或新能源汽车,所述新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。如图7的(A)所示, 汽车1的内部可以设置电池10,图7的(A)中显示了将电池10设置在车底,但是根据需要也可以考虑将电池10设置在在车辆1的车头或车尾。在汽车的运行过程中,电池10可以以间歇或连续的方式为汽车1供电,例如,电池10可以用于为汽车1的灯、液晶屏和打火器等装置供应电能,而对于混合动力汽车或电动汽车的情况,电池10还可以用于为汽车1供应驱动动力。如图7的(B)所示,汽车1还可以包括控制器30和马达40,控制器30用来控制电池10为马达40供电,例如用于汽车1的启动、导航和行驶时的工作用电需求。在本申请的另一实施方式中,电池10不仅仅可以作为汽车1的操作电源,还可以作为汽车1的驱动电源,替代或部分地替代燃油或天然气为汽车1提供驱动动力。根据本申请的一个实施方式,汽车中使用的电池10也可以是包括多个图5~6所示电池单体20的电池包。
以上所述,仅为具体实施方式,但保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在保护范围之内。因此,保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种电极活性组合物,其中,包括:
    第一组分,所述第一组分为锂钴氧化物颗粒;
    第二组分,所述第二组分为三元材料颗粒;
    其中,所述第一组分含有粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒,所述粒径大于11μm的锂钴氧化物颗粒和所述粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~4.8,可选为0.2~2.8;
    其中,基于所述第一组分的颗粒总数,所述粒径大于11μm的锂钴氧化物颗粒和所述粒径小于6μm的锂钴氧化物颗粒的数量之和占90%以上。
  2. 根据权利要求1所述的电极活性组合物,其中,所述第一组分与所述第二组分的重量比为1~9:1,可选地为1.5~4:1。
  3. 根据权利要求1~2任一项所述的电极活性组合物,其中,所述三元材料颗粒的粒径为2μm~6μm,可选地为3μm~5μm。
  4. 根据权利要求1~3任一项所述的电极活性组合物,其中,所述电极活性组合物符合以下一项或多项:
    -所述锂钴氧化物颗粒具有单晶结构;
    -所述三元材料颗粒至少具有单晶结构。
  5. 根据权利要求1~4任一项所述的电极活性组合物,其中,所述电极活性组合物符合以下一项或多项:
    -所述锂钴氧化物化学式为Li xCo yM 1 (1-y)O 2,0.95≤x≤1.05,0.8≤y≤1,M 1选自Zr、Mg、Ti、Sr、W、Nb、Al、P、F、S中的一种或多种的组合;
    -所述三元材料选自锂镍钴锰氧化物或锂镍钴铝氧化物;
    可选地,所述锂镍钴锰氧化物的化学式为Li aNi bCo cMn dM 2 (1-b-c-d)O 2,0.5≤a≤1.2,0.65≤b≤1,0≤c≤0.35,0≤d≤0.35,M 2选自Zr、Zn、Ti、Sr、Sb、Y、W、Al、B、P、F、S中的一种或多种的组合;
    可选地,所述锂镍钴铝氧化物的化学式为Li xNi eCo fAl gM 3 (1-e-f-g)O 2,0.5≤x≤1.2,0.5≤e≤1,0≤f≤0.5,0≤g≤0.5,M 3选自Zr、Mg、Ba、Ti、Sr、Sb、Y、W、B中的一种或多种的组合。
  6. 根据权利要求1~5任一项所述的电极活性组合物,其中,所述电极活性组合物的压实密度≥4.05g/cm 3,可选地为≥4.1g/cm 3,所述压实密度是指电极活性组合物在5吨压力 下压制30秒所形成的压坯的密度。
  7. 根据权利要求1~6任一项所述的电极活性组合物,其中,其中,所述三元材料颗粒具有核-包覆层结构,其中,
    所述核含有三元材料;
    所述包覆层包覆所述核的至少部分表面,所述包覆层含有含硫化合物和含锂化合物的反应产物,所述反应产物含有Li元素、S元素和O元素。
  8. 根据权利要求1~7任一项所述的电极活性组合物,其中,所述S元素在所述三元材料颗粒中的重量含量为400-5000ppm。
  9. 根据权利要求1~8任一项所述的电极活性组合物,其中,所述包覆层中还含有B元素、F元素和P元素中的一种或多种元素;
    在含有B元素的条件下,所述B元素在所述三元材料颗粒中的重量含量为500-3000ppm;
    在含有F元素的条件下,所述F元素在所述三元材料颗粒中的重量含量为200-1500ppm;
    在含有P元素的条件下,所述P元素在所述三元材料颗粒中的重量含量为500-3000ppm。
  10. 根据权利要求1~9任一项所述的电极活性组合物,其中,所述含锂化合物包括锂盐;
    可选地,所述含锂化合物包括以下一种或多种:Li 2O、LiOH和Li 2CO 3、LiNO 3、LiPF 6、草酸锂、醋酸锂中的一种或多种。
  11. 根据权利要求1~10任一项所述的电极活性组合物,其中,所述含硫化合物包括以下一种或多种:硫醇、硫酚、硫醚、硫醛、硫酮、硫代羧酸、亚砜、砜、硫含氧酸及其衍生物;
    可选地,所述硫含氧酸是磺酸、亚磺酸或次磺酸;
    可选地,硫含氧酸的衍生物包括以下的一种或多种:硫含氧酸的酯、硫含氧酸的盐(可选地为硫含氧酸的锂盐)、硫含氧酸的酰卤、硫含氧酸的酰胺、硫含氧酸的酰胺锂盐。
  12. 根据权利要求1~11任一项所述的电极活性组合物,其中,所述含硫化合物包括以下的一种或多种:
    R1-S(=O) 2-R2、R1-C(=S)-R2、
    Figure PCTCN2020114539-appb-100001
    R1-C-S-C-R2或R1-S(=O) 2-LiN-S(=O) 2-R2,其中R1和R2各自独立地选自羟基、氨基、C 1-6烷基、芳基、卤原子(可选地为F、Cl、Br或I)和氢原子;
    可选地,所述含硫化合物包括R1-S(=O) 2-R2,其中,R1为羟基,R2选自氨基、C 1-6烷基和卤原子(可选地为F、Cl、Br或I);
    可选地,所述含硫化合物包括R1-C(=S)-R2,其中,R1为氨基,R2为C 1-6烷基;
    可选地,所述含硫化合物包括
    Figure PCTCN2020114539-appb-100002
    其中,R1和R2各自独立地为氢原子或C 1-6烷基;
    可选地,所述含硫化合物包括R1-C-S-C-R2,其中,R1和R2各自独立地为氢原子或C 1-6烷基;
    可选地,所述含硫化合物包括R1-S(=O) 2-LiN-S(=O) 2-R2,其中,R1和R2各自独立地为卤原子;
    可选地,所述含硫化合物包括以下的一种或多种:硫酰胺、氨基甲磺酸、双氟磺酰亚胺锂、硫代丙酰胺、硫代异丁酰胺、硫化丙烯和甲基乙基硫醚。
  13. 一种制备权利要求1~12任一项所述的电极活性组合物的方法,其中,包括以下步骤:
    -提供第一组分,所述第一组分为锂钴氧化物颗粒;
    -提供第二组分,所述第二组分为三元材料颗粒;
    -混合所述第一组分和所述第二组分;
    其中,所述第一组分含有粒径大于11μm的锂钴氧化物颗粒和粒径小于6μm的锂钴氧化物颗粒,所述粒径大于11μm的锂钴氧化物颗粒和所述粒径小于6μm的锂钴氧化物颗粒的数量的比值为0.2~4.8,可选地为0.2~2.8;
    其中,基于所述第一组分的颗粒总数,所述粒径大于11μm的锂钴氧化物颗粒和所述粒径小于6μm的锂钴氧化物颗粒的数量之和占90%以上。
  14. 权利要求13所述的方法,其中,其还包括以下步骤:将第一锂钴氧化物颗粒和 第二锂钴氧化物颗粒混合,以获得所述第一组分;
    其中,所述第一锂钴氧化物颗粒的Dv50粒度为17~21μm,可选地为18~20μm,可选地为19μm;
    其中,所述第二锂钴氧化物颗粒的Dv50粒度为4~8μm,可选地为5~7μm,可选地为6μm;
    可选地,所述第一锂钴氧化物颗粒和所述第二锂钴氧化物颗粒的重量比为3~15:1,可选地为3~7:1。
  15. 根据权利要求13~14任一项所述的方法,其中,所述三元材料颗粒具有核-包覆层结构,其中,
    所述核含有锂镍钴锰氧化物;
    所述包覆层包覆所述核,所述包覆层含有含硫化合物和含锂化合物的反应产物,所述反应产物含有Li元素、S元素和O元素。
  16. 根据权利要求13~15任一项所述的方法,其中,具有核-包覆层结构的三元材料颗粒的制备方法包括:
    a)提供核形成材料和包覆层形成材料,所述核形成材料含有三元材料,所述包覆层形成材料含有含硫化合物;
    其中,步骤a)具有以下a1)~a2)中的一项或多项特征:
    a1)所述核形成材料的表面有含锂化合物;
    a2)所述包覆层形成材料还含有含锂化合物;
    b)用包覆层形成材料处理核形成材料,使所述核形成材料的表面形成含硫化合物和含锂化合物的反应产物,所述反应产物中含有Li元素、S元素和O元素。
  17. 根据权利要求13~16任一项所述的制备方法,其中,其具有以下任一项特征:
    -项a1)中,所述含锂化合物为碱性含锂化合物;
    -项a2)中,所述含锂化合物为中性或酸性含锂化合物。
  18. 根据权利要求13~17任一项所述的方法,其中,所述用包覆层形成材料处理核形成材料的操作包括:在核形成材料的表面施加溶有包覆层形成材料的溶液,然后进行热处理;
    可选地,热处理的温度为80~300℃;
    可选地,热处理的时间为3~20h。
  19. 根据权利要求13~18任一项所述的方法,其中,所述的方法包括以下一项或多项:
    -所述含锂化合物的定义如权利要求10所述;
    -所述含硫化合物的定义如权利要求11~12任一项所述。
  20. 一种电极活性组合物,其中,其由权利要求13~19任一项所述的方法制备获得。
  21. 一种电极,其中,其含有权利要求1~12、20任一项所述的电极活性组合物。
  22. 一种电池,其中,其含有权利要求1~12、20任一项所述的电极活性组合物。
  23. 一种装置,其中,其含有权利要求22所述的电池,所述电池作为所述装置的供电单元或储能单元;
    可选地,所述装置是电动装置,所述电池用于向所述电动装置供电。
PCT/CN2020/114539 2020-09-10 2020-09-10 电极活性组合物及其制备方法及电极、电池和装置 WO2022051991A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20952779.5A EP4071854A4 (en) 2020-09-10 2020-09-10 ACTIVE ELECTRODE COMPOSITION AND METHOD FOR PREPARING IT, ELECTRODE, BATTERY AND APPARATUS
CN202080102699.6A CN115989598A (zh) 2020-09-10 2020-09-10 电极活性组合物及其制备方法及电极、电池和装置
PCT/CN2020/114539 WO2022051991A1 (zh) 2020-09-10 2020-09-10 电极活性组合物及其制备方法及电极、电池和装置
US18/109,812 US12002947B2 (en) 2020-09-10 2023-02-14 Electrode active composition, preparation method thereof, electrode, battery, and apparatus
US18/596,640 US20240213451A1 (en) 2020-09-10 2024-03-06 Electrode active composition, preparation method thereof, electrode, battery, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114539 WO2022051991A1 (zh) 2020-09-10 2020-09-10 电极活性组合物及其制备方法及电极、电池和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/109,812 Continuation US12002947B2 (en) 2020-09-10 2023-02-14 Electrode active composition, preparation method thereof, electrode, battery, and apparatus

Publications (1)

Publication Number Publication Date
WO2022051991A1 true WO2022051991A1 (zh) 2022-03-17

Family

ID=80632457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114539 WO2022051991A1 (zh) 2020-09-10 2020-09-10 电极活性组合物及其制备方法及电极、电池和装置

Country Status (4)

Country Link
US (2) US12002947B2 (zh)
EP (1) EP4071854A4 (zh)
CN (1) CN115989598A (zh)
WO (1) WO2022051991A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265731A (ja) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd リチウムイオン二次電池
CN102447107A (zh) * 2011-10-17 2012-05-09 江苏科捷锂电池有限公司 高密度锂离子电池正极材料钴酸锂及其制备方法
CN104919630A (zh) * 2013-01-17 2015-09-16 索尼公司 用于二次电池的活性物质、用于二次电池的电极、二次电池、电池组、电动车辆、电力存储系统、电动工具、以及电子装置
CN106848183A (zh) * 2017-02-24 2017-06-13 中国科学院新疆理化技术研究所 一种改善锂离子电池三元正极材料倍率性能的方法
CN108431998A (zh) * 2015-12-09 2018-08-21 株式会社村田制作所 正极活性物质、正极、电池、电池组、电子设备、电动车辆、蓄电装置及电力系统
CN110034276A (zh) * 2019-04-30 2019-07-19 袁永华 一种正极材料的混料制浆方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169250C (zh) * 1995-03-06 2004-09-29 宇部兴产株式会社 无水二次电池
CN101894974A (zh) * 2005-10-20 2010-11-24 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
US20120258365A1 (en) * 2011-04-07 2012-10-11 Ngk Insulators, Ltd. Cathode active material precursor particle, cathode active material particle for lithium secondary battery and lithium secondary battery
JP5772197B2 (ja) * 2011-05-09 2015-09-02 ソニー株式会社 リチウムイオン二次電池用活物質、リチウムイオン二次電池用電極、リチウムイオン二次電池、電子機器、電動工具、電動車両および電力貯蔵システム
WO2014068931A1 (ja) 2012-10-30 2014-05-08 三洋電機株式会社 非水電解質二次電池
CN103022499B (zh) 2012-12-03 2016-09-07 东莞新能源科技有限公司 一种锂离子电池混合正极材料
KR101762508B1 (ko) * 2014-10-02 2017-07-27 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101777466B1 (ko) * 2014-10-02 2017-09-11 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2016053056A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
CN107785542A (zh) 2016-08-29 2018-03-09 南京安普瑞斯有限公司 一种高能量密度锂离子电池及制备方法
CN107799763A (zh) 2017-10-23 2018-03-13 金川集团股份有限公司 一种用于高容量锂电正极材料的制备方法
CN109311698B (zh) * 2017-11-28 2020-09-04 厦门厦钨新能源材料股份有限公司 三元前驱体材料及其制备方法
CN110265631B (zh) * 2018-06-27 2021-12-07 宁德时代新能源科技股份有限公司 一种三元正极材料及其制备方法和锂离子电池
US11271202B2 (en) * 2018-08-22 2022-03-08 Samsung Sdi Co., Ltd. Positive active material, method of manufacturing the same, and positive electrode and rechargeable lithium battery including the same
KR102663791B1 (ko) * 2018-08-24 2024-05-03 주식회사 엘지에너지솔루션 리튬 이차 전지용 양극 활물질의 제조 방법 및 그 제조 방법에 따른 양극 활물질을 포함하는 리튬 이차 전지
CN111354938B (zh) * 2020-05-22 2020-09-08 北京小米移动软件有限公司 正极材料及其制备方法、正极极片、电芯和电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265731A (ja) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd リチウムイオン二次電池
CN102447107A (zh) * 2011-10-17 2012-05-09 江苏科捷锂电池有限公司 高密度锂离子电池正极材料钴酸锂及其制备方法
CN104919630A (zh) * 2013-01-17 2015-09-16 索尼公司 用于二次电池的活性物质、用于二次电池的电极、二次电池、电池组、电动车辆、电力存储系统、电动工具、以及电子装置
CN108431998A (zh) * 2015-12-09 2018-08-21 株式会社村田制作所 正极活性物质、正极、电池、电池组、电子设备、电动车辆、蓄电装置及电力系统
CN106848183A (zh) * 2017-02-24 2017-06-13 中国科学院新疆理化技术研究所 一种改善锂离子电池三元正极材料倍率性能的方法
CN110034276A (zh) * 2019-04-30 2019-07-19 袁永华 一种正极材料的混料制浆方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071854A4

Also Published As

Publication number Publication date
US20230207782A1 (en) 2023-06-29
EP4071854A4 (en) 2023-03-22
CN115989598A (zh) 2023-04-18
US12002947B2 (en) 2024-06-04
EP4071854A1 (en) 2022-10-12
US20240213451A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
CN100421287C (zh) 锂二次电池用复合粒子及其制造方法、使用其的锂二次电池
WO2022032624A1 (zh) 二次电池及其制备方法与包含二次电池的电池模块、电池包及装置
JP4859487B2 (ja) 非水電解質二次電池
WO2020135767A1 (zh) 正极活性材料、正极极片、电化学储能装置及装置
WO2021042986A1 (zh) 正极活性材料及其制备方法、正极极片、锂离子二次电池与包含锂离子二次电池的电池模块、电池包和装置
WO2021042987A1 (zh) 正极活性材料、其制备方法、正极极片及锂离子二次电池与包含锂离子二次电池的电池模块、电池包和装置
CN109888381B (zh) 金属锂负极保护液、金属锂负极表面保护方法、负极极片、锂电池和锂空气电池
JP7483044B2 (ja) 高ニッケル正極活物質、その製造方法、それを含むリチウムイオン電池、電池モジュール、電池パック及び電力消費装置
WO2021043149A1 (zh) 正极活性材料、其制备方法、正极极片、锂离子二次电池及包含锂离子二次电池的装置
KR100886545B1 (ko) 비수전해질 이차전지
US20230343938A1 (en) Positive electrode active material and preparation method therefor, positive electrode plate comprising same, secondary battery, and power consuming device
US20240199441A1 (en) Positive active material, method for preparing same, electrode plate, secondary battery, and electrical device
US11605816B2 (en) Lithium secondary battery and battery module, battery pack, and electric apparatus containing same
WO2022051991A1 (zh) 电极活性组合物及其制备方法及电极、电池和装置
CN115148997A (zh) 复合正极活性材料及其制备方法、和包含其的用电装置
WO2022051982A1 (zh) 电极活性材料及其制备方法及电极、电池和装置
CN116072829A (zh) 正极活性材料、其制备方法、包括其的锂离子电池、电池模块、电池包和用电装置
CN117199257B (zh) 复合正极材料及其制备方法、正极片、电池、用电装置
CN116936776B (zh) 正极活性材料、极片、电池、用电设备
CN115818637B (zh) 改性石墨材料及其制备方法、负极片、电池及用电装置
EP3879611B1 (en) Composite material having core-shell structure for battery, secondary battery, battery module, battery pack and apparatus
JP7476030B2 (ja) 電極用集電体、電極、二次電池、電池パック、車両、及び定置用電源
CN116613275B (zh) 负极片及其制备方法、电池及用电装置
WO2023119654A1 (ja) 負極、二次電池及び電池パック
EP3933981B1 (en) Positive electrode active material and preparation method therefor, positive electrode plate, lithium ion secondary battery, and battery module, battery pack, and apparatus containing such lithium-ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020952779

Country of ref document: EP

Effective date: 20220707

NENP Non-entry into the national phase

Ref country code: DE