WO2022050296A1 - ブラシレスモータの制御装置及び制御方法 - Google Patents
ブラシレスモータの制御装置及び制御方法 Download PDFInfo
- Publication number
- WO2022050296A1 WO2022050296A1 PCT/JP2021/032075 JP2021032075W WO2022050296A1 WO 2022050296 A1 WO2022050296 A1 WO 2022050296A1 JP 2021032075 W JP2021032075 W JP 2021032075W WO 2022050296 A1 WO2022050296 A1 WO 2022050296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- duty
- brushless motor
- motor
- upper limit
- control device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
- H02P6/182—Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/08—Arrangements for controlling the speed or torque of a single motor
- H02P6/085—Arrangements for controlling the speed or torque of a single motor in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/18—Circuit arrangements for detecting position without separate position detecting elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/20—Arrangements for starting
- H02P6/22—Arrangements for starting in a selected direction of rotation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/30—Arrangements for controlling the direction of rotation
Definitions
- the present invention relates to a control device and a control method for an electric water pump used in, for example, a cooling system for an internal combustion engine for a vehicle, or a brushless motor used in a next-generation brushless electric VTC (Valve Timing Control) system.
- VTC Value Timing Control
- Patent Document 1 describes low-speed sensorless control using a magnetic saturation voltage.
- the low-speed sensorless control detects the electromotive voltage generated in the open phase of 120 deg energization due to the non-linearity of the motor magnetic saturation characteristic, and estimates the rotor angle (N pole center position).
- step-out occurs only by the control that detects the rotation in one direction.
- Dmin is the minimum duty
- Dmax is the maximum duty.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device and a control method for a brushless motor capable of suppressing the occurrence of step-out due to reverse rotation in low-speed sensorless control. It is in.
- a positive pulse in which torque is generated in the rotation direction of the brushless motor and a negative pulse in which torque is generated in the reverse rotation direction are applied to the brushless motor.
- the motor application duty is expressed as the value obtained by subtracting the negative pulse application duty from the positive pulse application duty. It is characterized by setting an upper limit.
- a duty for switching between reverse detection and non-detection in a brushless motor is set, and when a torque equal to or exceeding the set duty is required, the motor applied duty is determined according to the rotation speed. Therefore, step-out can be suppressed even if reverse rotation occurs in low-speed sensorless control.
- FIG. 1 shows a schematic configuration of a cooling system for an internal combustion engine for a vehicle, and the present invention is applied to a brushless motor of an electric water pump.
- This cooling system is a water-cooled cooling device that circulates cooling water in a circulation passage, includes an electric water pump 40 driven by a brushless motor 100, and the brushless motor 100 is sensorless controlled by a control device 200 such as an ECU. Driven.
- the electric water pump 40 is driven by the brushless motor 100 according to the operating state of the internal combustion engine, such as when the start / stop system cools down, warms up, and stops the engine after warming up, and the cooling water is internalized. It is circulated by a different circulation route according to the heat generation state of the engine 10.
- the brushless motor 100 is driven by extremely low speed rotation (for example, 100 r / min or less) by low speed sensorless control when the engine is stopped after warming up, the switch timing of each phase is arbitrarily shifted for phase voltage detection. So-called pulse shift control is carried out.
- a transmission 20 such as a CVT (Continuously Variable Transmission) as an example of a power transmission device is connected to the output shaft of the internal combustion engine 10, and the output of the transmission 20 is transmitted to the drive wheels (not shown) of the vehicle.
- the cooling system of the internal combustion engine 10 includes a flow control valve 30, an electric water pump 40 driven by a brushless motor 100, a radiator 50, a cylinder head side cooling water passage 61, a cylinder block side cooling water passage 62, and a heater core (Heater). It includes 91, an oil warmer (O / W) 21 of the transmission 20, a pipe group 70 connecting them, and the like.
- the cylinder head side cooling water passage 61 of the internal combustion engine 10 has a cooling water inlet 13 provided at one end of the cylinder head 11 in the cylinder arrangement direction and a cooling water outlet 14 provided at the other end of the cylinder head 11 in the cylinder arrangement direction. It is connected and extended in the cylinder head 11. Further, the cylinder block side cooling water passage 62 of the internal combustion engine 10 branches from the cylinder head side cooling water passage 61 to reach the cylinder block 12, and extends into the cylinder block 12 to provide a cooling water outlet in the cylinder block 12. Connected to 15.
- One end of the first cooling water pipe 71 is connected to the cooling water outlet 14 of the cylinder head 11, and the other end of the first cooling water pipe 71 is connected to the cooling water inlet 51 of the radiator 50.
- one end of the second cooling water pipe 72 is connected to the cooling water outlet 15 of the cooling water passage 62 on the cylinder block side, and the other end of the second cooling water pipe 72 is the four inlet ports 31 of the flow control valve 30. It is connected to the first inlet port 31 of 34 to 34.
- one end of the third cooling water pipe 73 is connected in the middle of the first cooling water pipe 71, and the other end is connected to the second inlet port 32 of the flow control valve 30, and the other end is connected in the middle of the third cooling water pipe 73.
- one end of the fourth cooling water pipe 74 is connected to the first cooling water pipe 71 between the cooling water outlet 14 and the connection point of the third cooling water pipe 73, and the other end is the third of the flow control valve 30. It is connected to the inlet port 33.
- the fourth cooling water pipe 74 is provided with various heat exchange devices such as a heater core 91 for warming the conditioned air in the vehicle air conditioner.
- the flow control valve 30 has one outlet port 35, one end of the sixth cooling water pipe 76 is connected to the outlet port 35, and the other end of the sixth cooling water pipe 76 is a suction of the electric water pump 40. It is connected to the port 41.
- one end of the seventh cooling water pipe 77 is connected to the discharge port 42 of the electric water pump 40, and the other end of the seventh cooling water pipe 77 is connected to the cooling water inlet 13 of the cylinder head 11.
- one end of the eighth cooling water pipe 78 is connected to the first cooling water pipe 71 on the downstream side of the portion to which the third cooling water pipe 73 and the fourth cooling water pipe 74 are connected, and the other end is connected to the sixth cooling water pipe 71. It is connected to the cooling water pipe 76.
- the flow control valve 30 has four inlet ports 31 to 34 and one outlet port 35, and cooling water pipes 72, 73, 74, 75 are connected to the inlet ports 31 to 34, respectively.
- the opening area of each cooling water pipe 72, 73, 74, 75 (outlet area of each cooling water circulation line)
- the amount of cooling water circulating in the cooling water pipe 72, 73, 74, 75 (each cooling water circulation line).
- the cooling water passing through the cylinder head side cooling water passage 61 can be circulated by bypassing the radiator 50 by the eighth cooling water pipe 78. It is configured as.
- the electric water pump 40 (brushless motor 100) and the flow rate control valve 30 are controlled by the control device 200.
- the control device 200 is based on the cooling water temperature information of the internal combustion engine 10 detected by the water temperature sensors 81 and 82, the discharge flow rate of the electric water pump 40 (rotational speed of the brushless motor 100), and the inlet port of the flow rate control valve 30.
- the opening area of 31 to 34 is controlled.
- the water temperature sensor 82 among the water temperature sensors 81 and 82 can be omitted, and the configuration is not limited to the configuration including two water temperature sensors.
- the control device 200 controls the flow control valve 30 so that all the inlet ports 31 to 34 are closed when the cooling water temperature of the internal combustion engine 10 is lower than the cooling determination threshold, for example, and the electric water pump 40 (brushless).
- the rotation speed of the motor 100) is controlled to an extremely low rotation speed (for example, about 100 r / min to 200 r / min). That is, at the time of starting the cooling of the internal combustion engine 10, the cooling water flowing into the cylinder head 11 (cylinder head side cooling water passage 61) is circulated without passing through other heat exchange devices including the radiator 50, and the cooling water is cooled. The amount of circulation is minimized. As a result, the temperature rise of the cylinder head 11 is promoted, and the temperature variation in the cooling water circulation path is suppressed.
- the control device 200 opens the inlet ports 31 to 34 as the cooling water temperature of the internal combustion engine 10 rises, and increases the rotation speed of the electric water pump 40 (brushless motor 100), so that the cooling water temperature becomes an appropriate temperature. Make sure it stays within range.
- the pulse shift control is performed.
- the rotation speed of the electric water pump 40 (brushless motor 100) is driven at an extremely low rotation speed (for example, 100 r / min or less), the flow rate is reduced, and cooling water is circulated to the cylinder head 11 even when the internal combustion engine 10 is stopped. The temperature rise is suppressed.
- the cooling water flowing into the cylinder head side cooling water passage 61 is circulated via another heat exchange device including the radiator 50, and the cylinder head 11 is slowly cooled.
- the internal combustion engine 10 is stopped after warming up, the generation of hot spots in which only the cooling water temperature rises in the engine and its vicinity, particularly in the cylinder head 11, is suppressed, and the cooling water temperature is made uniform and restarted. Abnormal combustion can be suppressed.
- the electric water pump 40 is driven at an extremely low rotation speed, it is possible to prevent the cylinder head 11 from becoming too cold or increasing power consumption.
- the flow path resistance may change suddenly.
- the brushless motor 100 rotates at an extremely low speed, the torque is small and there is a possibility of step-out when the load suddenly increases. Therefore, it is preferable to increase the position measurement frequency when switching the flow path of the cooling water.
- FIG. 2 is a circuit diagram showing a configuration example of a brushless motor 100, which is a drive source of the electric water pump 40, and a drive device 200A of the brushless motor 100 in the control device 200.
- the drive device 200A for driving and controlling the brushless motor 100 includes a motor drive circuit (BLM drive circuit) 210, a control unit 220, and a power supply circuit (battery) 230.
- the control unit 220 includes a microcomputer including an A / D converter, a microprocessor (CPU, MPU), and the like.
- the brushless motor 100 is a three-phase DC brushless motor, and is provided with star-connected U-phase, V-phase, and W-phase three-phase windings 110u, 110v, 110w in a cylindrical stator (not shown), and the stator.
- a permanent magnet rotor 120 is rotatably provided in the space formed in the central portion of the above.
- the motor drive circuit 210 has an inverter circuit in which switching elements 211a to 211f are connected by a three-phase bridge. Although the switching elements 211a to 211f are composed of IGBTs (Insulated Gate Bipolar Transistors) in this example, other semiconductor elements for power control such as FETs (Field Effect Transistors) may be used.
- the cathodes and anodes of the diodes 212a to 212f are connected between the collector and the emitter of the IGBT, respectively, in the opposite directions of energization.
- the control terminals (gate terminals) of the switching elements 211a to 211f are connected to the control unit 220, and the control unit 220 controls the on / off of the switching elements 211a to 211f by the PWM of the triangular wave comparison method and applies it to the brushless motor 100. Controls the voltage (motor input voltage).
- the control unit 220 compares the triangular wave (carrier) with the PWM timer (PWM duty) set according to the command duty ratio (command pulse width), so that each switching element 211a Detects the timing to turn on / off ⁇ 211f.
- the value of the PWM timer is set to a larger value as the duty ratio is larger, and is set to a maximum value when the duty ratio is 100% and a minimum value (zero) when the duty ratio is 0%.
- the brushless motor 100 does not include a sensor that detects the position information of the rotor 120.
- the control unit 220 controls the drive of the brushless motor 100 by a sensorless drive method that does not use a sensor that detects the position information of the rotor 120. Further, the control unit 220 switches the sensorless drive method between a sine wave drive method and a rectangular wave drive method according to the motor rotation speed.
- the sine wave drive method is a method of driving the brushless motor 100 by applying a sine wave voltage to each phase of the three-phase windings 110u, 110v, 110w.
- the control unit 220 obtains the position information of the rotor 120 from the induced voltage (speed electromotive voltage) generated by the rotation of the rotor 120, while the detection cycle of the rotor position by the speed electromotive voltage.
- the rotor position is estimated based on the motor rotation speed
- the 3-phase output set value is calculated from the estimated rotor position and the PWM duty, and the direction and strength of the current are controlled by the difference in the interphase voltage.
- a three-phase alternating current is passed through each phase.
- the control unit 220 calculates the motor rotation speed based on the detection cycle of the rotor position.
- the rectangular wave drive method is a method of driving the brushless motor 100 by sequentially switching the selection pattern (energization mode) of two phases to which a pulse voltage is applied among the three phases for each predetermined rotor position.
- the control unit 220 compares the voltage (transformer electromotive voltage) induced in the non-energized phase (open phase) by applying a pulsed voltage to the energized phase with the threshold value to make the rotor 120.
- the position information of is obtained, and the switching timing of the energization mode, which is the selection pattern of the energization phase, is detected based on the position information.
- the output level of the speed electromotive voltage detected for position detection in the sinusoidal drive method decreases as the motor rotation speed decreases, and the accuracy of position detection decreases in the low rotation range.
- the induced voltage detected for position detection in the rectangular wave drive method can be detected even in the low rotation range including the motor stopped state, and the accuracy of position detection can be maintained even in the low rotation range. Therefore, the control unit 220 controls the brushless motor 100 by the sine wave drive method in the high rotation region where the position information can be detected with sufficient accuracy by the sine wave drive method, that is, in the region where the motor rotation speed is higher than the set value. In the low rotation region where position information cannot be detected with sufficient accuracy by the sine wave drive method, the brushless motor 100 is controlled by the rectangular wave drive method.
- the low rotation speed region in which the position information cannot be detected with sufficient accuracy by the sine and cosine drive method includes a region where the motor rotation speed is lower than the set value and a region when the brushless motor 100 is started. Further, in the PWM control of the brushless motor 100, the control unit 220 determines the duty ratio of the PWM control according to the deviation between the detected value of the motor rotation speed and the target motor rotation speed (rotation speed command value), for example. Bring the actual motor rotation speed closer to the target motor rotation speed.
- FIG. 3 is a functional block diagram illustrating an extraction of a portion of the control unit 220 related to low-speed sensorless control.
- the control unit 220 includes an applied voltage calculation unit 302, a PWM generation unit 304, a gate signal switching unit 306, an energization mode determination unit 308, a comparison unit 310, a voltage threshold switching unit 312, a voltage threshold learning unit 314, and a non-energized phase voltage selection unit. It includes 316, a main cycle duty setting unit 318, a correction cycle duty setting unit 320, a duty correction unit 322, and the like.
- the cooling water temperature information of the internal combustion engine 10 detected by the water temperature sensors 81 and 82 is input to the applied voltage calculation unit 302.
- the applied voltage calculation unit 302 calculates the target rotation speed and the motor rotation speed of the brushless motor 100 based on the cooling water temperature information and the mode switching trigger signal output from the comparison unit 310, and the calculated target rotation speed. And the command value of the applied voltage are calculated based on the motor rotation speed.
- the PWM generation unit 304 generates a pulse width modulated PWM signal based on the command value of the applied voltage calculated by the applied voltage calculation unit 302.
- the energization mode determination unit 308 is a device that outputs a mode command signal that determines the energization mode of the motor drive circuit 210, and switches the energization mode in six ways by using the mode switching trigger signal output by the comparison unit 310 as a trigger.
- the energization mode indicates a selection pattern of two phases to which a pulse voltage is applied from the three phases of the U phase, V phase, and W phase of the brushless motor 100, and the first energization in which a current flows from the U phase to the V phase.
- Mode M1 second energization mode M2 in which current flows from U phase to W phase, third energization mode M3 in which current flows from V phase to W phase, fourth energization mode in which current flows from V phase to U phase It is composed of six types of energization modes: an energization mode M4, a fifth energization mode M5 in which a current flows from the W phase to the U phase, and a sixth energization mode M6 in which a current flows from the W phase to the V phase.
- the energization mode determination unit 308 outputs a mode command signal for commanding any one of the first energization mode M1 to the sixth energization mode M6 in response to the mode switching trigger signal output by the comparison unit 310.
- the gate signal switching unit 306 is generated by the mode command signal which is the output of the energization mode determination unit 308 and the PWM generation unit 304 to determine how each switching element 211a to 211f of the motor drive circuit 210 switches. It is determined based on the PWM signal, and six gate pulse signals are output to the motor drive circuit 210 according to the determination.
- the voltage threshold switching unit 312 sequentially switches and outputs the voltage threshold used for detecting the switching timing of the energization mode according to the energization mode, and the threshold switching timing is the mode command signal output of the energization mode determination unit 308. Determined based on.
- the non-energized phase voltage selection unit 316 selects the detected value of the non-energized phase voltage from the three-phase terminal voltages Vu, Vv, Vw of the brushless motor 100 according to the mode command signal, and the comparison unit 310 and the voltage threshold value learning unit. Output to 314.
- the terminal voltage of the non-energized phase is the voltage between the ground (GND) and the terminal, but in the present embodiment, the voltage at the neutral point is detected, or the voltage at the neutral point is used as the power supply voltage VB.
- the difference between the voltage at the neutral point and the voltage between the ground (GND) and the terminal that is, the phase voltage is obtained and used as the terminal voltage of the non-energized phase.
- the comparison unit 310 compares the threshold value output by the voltage threshold switching unit 312 with the voltage detection value (pulse-induced voltage detection value) of the non-energized phase output by the non-energized phase voltage selection unit 316, thereby performing the energization mode.
- the switching timing in other words, whether or not the rotor position (magnetic pole position) for switching the energization mode has been reached is detected, and when the switching timing is detected, a mode switching trigger is output to the energization mode determination unit 308.
- the voltage threshold value learning unit 314 is a device that updates and stores the threshold value used for determining the switching timing of the energization mode.
- the pulse-induced voltage of the non-energized phase fluctuates due to manufacturing variations of the brushless motor 100, detection variations of the voltage detection circuit, etc.
- the switching timing of the energization mode can be erroneously determined. There is sex.
- the voltage threshold value learning unit 314 detects the pulse-induced voltage at the predetermined magnetic pole position for switching the energization mode, and based on the detection result, performs a threshold value learning process for correcting the threshold value stored in the voltage threshold value switching unit 312. implement.
- the energization mode comprises six energization modes M1 to M6, and the control unit 220 sequentially switches these energization modes M1 to M6 at switching angle positions set at intervals of 60 deg electric angles, and the brushless motor 100.
- the brushless motor 100 is rotationally driven by sequentially switching between the two phases to which the pulse voltage (pulse-like voltage) is applied among the three phases.
- the angular position (magnetic pole position ⁇ ) of the rotor 120 is as shown in FIG.
- the third energization mode M3 is switched to the fourth energization mode M4.
- the fourth energization mode M4 is switched to the fifth energization mode M5.
- the fifth energization mode M5 is switched to the sixth energization mode M6.
- the sixth energization mode M6 is switched to the first energization mode M1.
- the first energization mode M1 is switched to the second energization mode M2.
- the second energization mode M2 is switched to the third energization mode M3.
- the voltage threshold value switching unit 312 of the control unit 220 stores the induced voltage (transformer electromotive voltage) of the non-energized phase at the angular position of the rotor 120 for switching the energization mode as a threshold value and can be updated. , Outputs the threshold value according to the energization mode at that time.
- the comparison unit 310 outputs a signal indicating that an angle for switching to the next energization mode is detected when the induced voltage of the non-energized phase reaches the threshold value, and the energization mode determination unit 308 is based on the signal. Switch the energization mode.
- the control unit 220 turns on the switching element 211a (upper arm of the U phase) in the upper stage of the U phase in the first energization mode M1 in which a current flows from the U phase to the V phase, for example. While controlling, the current is controlled by complementary PWM control of the on / off ratio of the switching element 211c (V phase upper arm) in the upper stage of the V phase and the switching element 211d (lower arm of the V phase) in the lower stage of the V phase.
- the average applied voltage of the flowing U phase and V phase is variably controlled by the PWM duty.
- control unit 220 (gate signal switching unit 306) is, for example, in the first energization mode M1, switching other than the switching element 211a in the upper stage of the U phase, the switching element 211c in the upper stage of the V phase, and the switching element 211d in the lower stage of the V phase.
- the elements 211b, 211e, and 211f are controlled to be off.
- the control unit 220 PWM-controls the on / off of the switching element of the upper arm and the switching element of the lower arm of the downstream phase by the complementary control method even in the mode other than the first energization mode M1.
- FIG. 5 shows the current path when the V-phase winding to the W-phase winding is energized.
- the switching elements 211c and 211f are turned on and the switching elements 211a, 211b, 211d and 211e are turned off, the collector, emitter, V-phase winding 110v, neutral point, and W-phase winding of the switching element 211c are turned on from the battery power supply (voltage VB).
- a current flows to the ground (GND) through the wire 110w and the collector and emitter of the switching element 211f.
- the open phase (U phase) voltage at this time is detected by the open phase voltage measuring instrument 221 and the detected voltage value is A / D converted to estimate the position information of the rotor 120.
- the control unit 220 energizes by PWM control to drive the brushless motor 100 at an extremely low rotation speed.
- FIG. 6 shows a motor application duty (Duty) in the drive device of the brushless motor according to the embodiment of the present invention.
- the V-phase winding 110v is energized to the W-phase winding 110w (forward rotation duty), and then the W-phase winding 110w to the V-phase winding 110v.
- the case of energizing to (reverse duty) will be described as an example.
- the brushless motor for the electric water pump used in the cooling system of the internal combustion engine for vehicles described above may cause reverse rotation due to contamination or the like.
- a duty (switching duty) for switching between detection / non-detection of reverse rotation of the brushless motor is set, and when a torque exceeding "motor applied duty ⁇ switching duty" is required.
- the motor application duty is determined according to the motor rotation speed.
- the upper FET 211c of the V phase is turned on, the lower FET 211d of the V phase is turned off, the upper FET 211e of the W phase is turned off, and the lower FET 211f of the W phase is turned on, and the V phase to the W phase are turned on.
- Energize In other words, a positive pulse that generates torque in the rotational direction of the brushless motor is applied to the brushless motor.
- the upper FET 211c of the V phase is turned off, the lower FET 211d of the V phase is turned on, the upper FET 211e of the W phase is turned on, and the lower FET 211f of the W phase is turned off to energize the V phase from the W phase.
- a negative pulse that generates torque in the reverse rotation direction of the brushless motor is applied to the brushless motor. Assuming that the forward rotation duty in the direction of energizing from the V phase to the W phase is 20% and the reverse rotation duty in the direction of energizing from the W phase to the V phase is 20%, the motor application duty is 0%.
- the motor application duty is It will be 40%.
- the forward rotation duty in the direction of energizing from the V phase to the W phase is 60% and the reverse rotation duty in the direction of energizing from the W phase to the V phase is 0% in one cycle of PWM control
- the maximum motor application duty is 60. %.
- FIG. 7 and 8 show the simulation results of the motor torque, the motor angular velocity, the motor angle, and the motor application duty in the conventional (before countermeasures) and the present invention (after countermeasures) low-speed sensorless control, respectively.
- a target motor rotation speed of, for example, 300 r / min reverse rotation cannot be detected when the duty is 40% or more, so that step-out occurs.
- the motor rotation angle can be recognized by limiting the duty upper limit value to, for example, 40% in extremely low speed rotation (for example, 100 r / min), so that even if the motor rotates in the reverse direction, step-out is performed. do not do. In this way, it was confirmed that accurate angle information can be recognized using the motor angle information by suppressing step-out.
- a duty for switching between detection / non-detection of reversal is set, and when a torque equal to or exceeding the set duty is required, the motor application duty is adjusted according to the rotation speed. Therefore, in low-speed sensorless control, step-out can be suppressed even if reverse rotation occurs.
- a positive pulse in which torque is generated in the rotation direction of the brushless motor and a negative pulse in which torque is generated in the reverse rotation direction are applied to the brushless motor, and positive and negative pulses are applied.
- the upper limit is set for the motor application duty represented by the value obtained by subtracting the negative pulse application duty from the positive pulse application duty. It is characterized by that.
- the upper limit value is a duty for switching between detection / non-detection of reversal, and the upper limit value is a duty equal to or less than the duty represented by the difference between the upper limit duty and the lower limit duty that can detect the magnetic saturation voltage.
- the upper limit value processing is performed. During the processing of this upper limit value, the calculated value of the integral, which is a component of the rotation speed feedback control, is retained, and the calculated value is not updated.
- the upper limit value processing can also be determined from the slope of the magnetic saturation voltage instead of comparing the motor rotation speed with the predetermined value.
- the predetermined value to be compared with the motor rotation speed can be updated by the rotation speed calculation before the rotation speed polarity is switched even if the rotation speed decreases when the load torque assumed in the system is generated. Set the number of revolutions.
- the predetermined value is a rotation speed assuming that reverse rotation does not occur at a rotation speed higher than that of the brushless motor.
- the motor applied duty represented by the value obtained by subtracting the minimum duty from the maximum duty is set as the upper limit value of the switching duty of the reverse rotation detection / non-detection of the brushless motor, and the upper limit value is the upper limit value of the brushless motor. If the rotation speed is high, the motor application duty is increased and reverse rotation is not detected, and if the rotation speed of the brushless motor is low, the motor application duty is maintained at the upper limit value.
- a positive pulse in which torque is generated in the rotation direction of the brushless motor and a negative pulse in which torque is generated in the reverse rotation direction are applied to the brushless motor, and positive and negative pulses are applied.
- an upper limit is set for the motor application duty represented by the value obtained by subtracting the negative pulse application duty from the positive pulse application duty. It is characterized by that.
- the upper limit value is a duty for switching detection / non-detection of reverse rotation of the brushless motor, and the upper limit value is equal to or less than a duty represented by a difference between an upper limit duty and a lower limit duty capable of detecting a magnetic saturation voltage. It is a duty.
- a brushless motor for an electric water pump used in a cooling system of an internal combustion engine for a vehicle has been described as an example, but another brushless motor that requires extremely low rotation drive, for example, a next-generation brushless electric motor, has been described. It is also applicable to brushless motors used in VTC systems.
- the VTC angle is calculated using the motor rotation angle during operation during low engine rotation. Therefore, when the motor is stepped out, the motor rotation angle becomes unknown and the VTC angle cannot be known. Contributes to improving the reliability of the electric VTC.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
ブラシレスモータの低速センサレス制御において、逆回転による脱調の発生を抑制できるブラシレスモータの制御装置及び制御方法を提供する。 ブラシレスモータの制御装置は、ブラシレスモータの回転方向にトルクが発生する正パルスと、逆回転方向にトルクが発生する負パルスをブラシレスモータに印加し、正及び負パルスを印加した際に発生する磁気飽和電圧を利用して回転方向を検知する。この制御装置における、正パルスの印加デューティから負パルスの印加デューティを引いた値で表されるモータ印加デューティに上限値を設定する、ことを特徴とする。
Description
本発明は、例えば車両用内燃機関の冷却システムで用いられる電動ウォータポンプ、あるいは次世代ブラシレス電動VTC(Valve Timing Control)システムに用いられるブラシレスモータの制御装置及び制御方法に関する。
近年、車載用のブラシレスモータにおいては、低コスト化や搭載性の向上を図るため、センサ付きからセンサレス化への要求が高まっている。また、この種のブラシレスモータには、停止を含む極低回転駆動の要求がある。
従来、例えば特許文献1には、磁気飽和電圧を利用した低速センサレス制御が記載されている。低速センサレス制御は、モータ磁気飽和特性の非線形性により120deg通電の開放相に生じる起電圧を検出し、ロータ角度(N極中心位置)を推定するものである。
ところで、極低回転では、負荷トルクなどにより本来回転させたい方向とは逆に回転(逆回転)させられることが想定され、一方向の回転検知を行う制御のみでは脱調が発生する。極低回転時に脱調させないためには、磁気飽和電圧の取得に必要なデューティ幅Dwを、「Dmin≦Dw≦Dmax」となるように制限する必要がある。ここで、Dminは最小デューティ、Dmaxは最大デューティである。
しかしながら、モータ印加デューティを大きくすると、逆回転検知デューティ幅を確保できなくなるため、逆回転が発生した場合には逆回転を検知できずに脱調する可能性がある。
本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、低速センサレス制御において、逆回転による脱調の発生を抑制できるブラシレスモータの制御装置及び制御方法を提供することにある。
本発明のブラシレスモータの制御装置及び制御方法は、その一つの態様において、ブラシレスモータの回転方向にトルクが発生する正パルスと、逆回転方向にトルクが発生する負パルスをブラシレスモータに印加し、正及び負パルスを印加した際に発生する磁気飽和電圧を利用して回転方向を検知する制御装置において、正パルスの印加デューティから負パルスの印加デューティを引いた値で表されるモータ印加デューティに上限値を設定する、ことを特徴としている。
本発明によれば、ブラシレスモータにおける逆転の検知/非検知を切り替えるデューティを設定し、モータ印加デューティが設定したデューティと等しいか超えるトルクが必要な場合は、回転数に応じてモータ印加デューティを決定するので、低速センサレス制御において逆回転が発生しても脱調を抑制できる。
以下、本発明の実施形態について図面を参照して説明する。
図1は、車両用内燃機関の冷却システムの概略構成を示しており、本発明を電動ウォータポンプのブラシレスモータに適用したものである。この冷却システムは、冷却水を循環通路内に循環させる水冷式冷却装置であり、ブラシレスモータ100で駆動される電動ウォータポンプ40を備え、該ブラシレスモータ100がECUなどの制御装置200によりセンサレス制御で駆動される。
図1は、車両用内燃機関の冷却システムの概略構成を示しており、本発明を電動ウォータポンプのブラシレスモータに適用したものである。この冷却システムは、冷却水を循環通路内に循環させる水冷式冷却装置であり、ブラシレスモータ100で駆動される電動ウォータポンプ40を備え、該ブラシレスモータ100がECUなどの制御装置200によりセンサレス制御で駆動される。
そして、スタート/ストップシステムにおける冷機始動時、暖機時、及び暖機後のエンジン停止時など、内燃機関の動作状態に応じて、ブラシレスモータ100で電動ウォータポンプ40が駆動され、冷却水が内燃機関10の発熱状態に応じて異なる循環経路で循環される。暖機後のエンジン停止時には、低速センサレス制御により、ブラシレスモータ100が極低速回転(例えば100r/min以下)駆動される際には、相電圧検出のために各相のスイッチタイミングを任意にずらす、いわゆるパルスシフト制御が実施される。
すなわち、内燃機関10の出力軸には、動力伝達装置の一例としてのCVT(Continuously Variable Transmission)などの変速機20が接続され、変速機20の出力が車両の駆動輪(図示せず)に伝達される。
この内燃機関10の冷却システムは、流量制御弁30、ブラシレスモータ100を駆動源とする電動ウォータポンプ40、ラジエータ50、シリンダヘッド側冷却水通路61、シリンダブロック側冷却水通路62、ヒータコア(Heater)91、変速機20のオイルウォーマー(O/W)21、及びこれらを接続する配管群70などを含んで構成されている。
この内燃機関10の冷却システムは、流量制御弁30、ブラシレスモータ100を駆動源とする電動ウォータポンプ40、ラジエータ50、シリンダヘッド側冷却水通路61、シリンダブロック側冷却水通路62、ヒータコア(Heater)91、変速機20のオイルウォーマー(O/W)21、及びこれらを接続する配管群70などを含んで構成されている。
内燃機関10のシリンダヘッド側冷却水通路61は、シリンダヘッド11の気筒配列方向の一方端に設けた冷却水入口13とシリンダヘッド11の気筒配列方向の他方端に設けた冷却水出口14とを接続してシリンダヘッド11内に延設される。
また、内燃機関10のシリンダブロック側冷却水通路62は、シリンダヘッド側冷却水通路61から分岐してシリンダブロック12に至り、シリンダブロック12内に延設されてシリンダブロック12に設けた冷却水出口15に接続される。
また、内燃機関10のシリンダブロック側冷却水通路62は、シリンダヘッド側冷却水通路61から分岐してシリンダブロック12に至り、シリンダブロック12内に延設されてシリンダブロック12に設けた冷却水出口15に接続される。
シリンダヘッド11の冷却水出口14には、第1冷却水配管71の一端が接続され、第1冷却水配管71の他端は、ラジエータ50の冷却水入口51に接続される。
一方、シリンダブロック側冷却水通路62の冷却水出口15には、第2冷却水配管72の一端が接続され、第2冷却水配管72の他端は、流量制御弁30の4つの入口ポート31~34のうちの第1入口ポート31に接続される。
一方、シリンダブロック側冷却水通路62の冷却水出口15には、第2冷却水配管72の一端が接続され、第2冷却水配管72の他端は、流量制御弁30の4つの入口ポート31~34のうちの第1入口ポート31に接続される。
また、第3冷却水配管73は、一端が第1冷却水配管71の途中に接続され、他端が流量制御弁30の第2入口ポート32に接続され、この第3冷却水配管73の途中には、変速機20の作動油の温度を調整するオイルウォーマー21が設けられる。
更に、第4冷却水配管74は、一端が冷却水出口14と第3冷却水配管73の接続点との間の第1冷却水配管71に接続され、他端が流量制御弁30の第3入口ポート33に接続される。この第4冷却水配管74には、車両空調装置において空調空気を暖めるヒータコア91などの各種の熱交換デバイスが設けられる。
更に、第4冷却水配管74は、一端が冷却水出口14と第3冷却水配管73の接続点との間の第1冷却水配管71に接続され、他端が流量制御弁30の第3入口ポート33に接続される。この第4冷却水配管74には、車両空調装置において空調空気を暖めるヒータコア91などの各種の熱交換デバイスが設けられる。
第5冷却水配管75は、一端がラジエータ50の冷却水出口52に接続され、他端が流量制御弁30の第4入口ポート34に接続される。
流量制御弁30は、1つの出口ポート35を有し、この出口ポート35には第6冷却水配管76の一端が接続され、第6冷却水配管76の他端は、電動ウォータポンプ40の吸込口41に接続される。
流量制御弁30は、1つの出口ポート35を有し、この出口ポート35には第6冷却水配管76の一端が接続され、第6冷却水配管76の他端は、電動ウォータポンプ40の吸込口41に接続される。
そして、電動ウォータポンプ40の吐出口42には第7冷却水配管77の一端が接続され、第7冷却水配管77の他端はシリンダヘッド11の冷却水入口13に接続される。
また、第8冷却水配管78の一端は、第3冷却水配管73、第4冷却水配管74が接続される部分よりも下流側の第1冷却水配管71に接続され、他端は第6冷却水配管76に接続される。
また、第8冷却水配管78の一端は、第3冷却水配管73、第4冷却水配管74が接続される部分よりも下流側の第1冷却水配管71に接続され、他端は第6冷却水配管76に接続される。
流量制御弁30は、前述したように4つの入口ポート31~34と1つの出口ポート35とを有し、入口ポート31~34には冷却水配管72,73,74,75がそれぞれ接続され、各冷却水配管72,73,74,75の開口面積(各冷却水循環ラインの出口面積)を制御することで、冷却水配管72,73,74,75(各冷却水循環ライン)を循環する冷却水量を調整する。
なお、流量制御弁30の入口ポート31~34が全て閉じられても、シリンダヘッド側冷却水通路61を経由した冷却水を第8冷却水配管78によってラジエータ50をバイパスさせて循環させることができるよう構成されている。
なお、流量制御弁30の入口ポート31~34が全て閉じられても、シリンダヘッド側冷却水通路61を経由した冷却水を第8冷却水配管78によってラジエータ50をバイパスさせて循環させることができるよう構成されている。
上記電動ウォータポンプ40(ブラシレスモータ100)及び流量制御弁30は、制御装置200によって制御される。
制御装置200は、水温センサ81,82で検出される内燃機関10の冷却水温度情報などに基づき、電動ウォータポンプ40の吐出流量(ブラシレスモータ100の回転速度)、及び流量制御弁30の入口ポート31~34の開口面積を制御する。なお、例えば水温センサ81,82のうちの水温センサ82を省略することができ、水温センサを2つ備える構成に限定されるものではない。
制御装置200は、水温センサ81,82で検出される内燃機関10の冷却水温度情報などに基づき、電動ウォータポンプ40の吐出流量(ブラシレスモータ100の回転速度)、及び流量制御弁30の入口ポート31~34の開口面積を制御する。なお、例えば水温センサ81,82のうちの水温センサ82を省略することができ、水温センサを2つ備える構成に限定されるものではない。
制御装置200は、例えば内燃機関10の冷却水温度が冷機判定閾値よりも低い冷機始動時に、入口ポート31~34が全て閉じるように流量制御弁30を制御し、また、電動ウォータポンプ40(ブラシレスモータ100)の回転速度を極低回転速度(例えば100r/min~200r/min程度)に制御する。
つまり、内燃機関10の冷機始動時には、シリンダヘッド11(シリンダヘッド側冷却水通路61)に流入した冷却水は、ラジエータ50を含む他の熱交換デバイスを経由することなく循環され、且つ冷却水の循環量が最小限に抑制される。これにより、シリンダヘッド11の温度上昇が促進され、且つ冷却水循環経路内で温度のばらつきが生じることが抑制される。
つまり、内燃機関10の冷機始動時には、シリンダヘッド11(シリンダヘッド側冷却水通路61)に流入した冷却水は、ラジエータ50を含む他の熱交換デバイスを経由することなく循環され、且つ冷却水の循環量が最小限に抑制される。これにより、シリンダヘッド11の温度上昇が促進され、且つ冷却水循環経路内で温度のばらつきが生じることが抑制される。
その後、制御装置200は、内燃機関10の冷却水温度の上昇に伴って入口ポート31~34を開口させるとともに電動ウォータポンプ40(ブラシレスモータ100)の回転速度を増加させ、冷却水温度が適正温度範囲内に保持されるようにする。
暖機された状態でスタート/ストップシステムなどにより内燃機関10が停止した場合には、パルスシフト制御が実施される。電動ウォータポンプ40(ブラシレスモータ100)の回転速度は極低回転速度(例えば100r/min以下)で駆動され、低流量化されて内燃機関10の停止中にも冷却水がシリンダヘッド11に循環されて温度上昇が抑制される。
暖機された状態でスタート/ストップシステムなどにより内燃機関10が停止した場合には、パルスシフト制御が実施される。電動ウォータポンプ40(ブラシレスモータ100)の回転速度は極低回転速度(例えば100r/min以下)で駆動され、低流量化されて内燃機関10の停止中にも冷却水がシリンダヘッド11に循環されて温度上昇が抑制される。
この場合には、シリンダヘッド側冷却水通路61に流入した冷却水が、ラジエータ50を含む他の熱交換デバイスを経由して循環され、シリンダヘッド11がゆっくりと冷却される。これによって、暖機後に内燃機関10が停止した場合に、エンジン及びその近傍、特にシリンダヘッド11における冷却水温度だけが上昇するホットスポットの発生が抑制され、冷却水温度を均一化して再起動時の異常燃焼を抑制できる。しかも、電動ウォータポンプ40が極低回転速度で駆動されることにより、シリンダヘッド11が冷えすぎたり消費電力が増大したりするのも抑制できる。
なお、流量制御弁30で冷却水の流路を切り替える際に、電動ウォータポンプ40を極低回転速度で駆動していると、流路抵抗が急変する場合がある。この際、ブラシレスモータ100は極低速で回転しているためトルクが小さく、負荷が急増すると脱調する可能性があるので、冷却水の流路切替のときには位置計測頻度を増加させると良い。
図2は、電動ウォータポンプ40の駆動源であるブラシレスモータ100、及び制御装置200におけるブラシレスモータ100の駆動装置200Aの構成例を抽出して示す回路図である。
ブラシレスモータ100を駆動制御する駆動装置200Aは、モータ駆動回路(BLM駆動回路)210、制御ユニット220及び電源回路(バッテリ)230を備える。制御ユニット220は、A/D変換器やマイクロプロセッサ(CPU,MPU)などを含んで構成されるマイクロコンピュータを有する。
ブラシレスモータ100を駆動制御する駆動装置200Aは、モータ駆動回路(BLM駆動回路)210、制御ユニット220及び電源回路(バッテリ)230を備える。制御ユニット220は、A/D変換器やマイクロプロセッサ(CPU,MPU)などを含んで構成されるマイクロコンピュータを有する。
ブラシレスモータ100は、3相DCブラシレスモータであり、スター結線されたU相、V相及びW相の3相巻線110u,110v,110wを、図示しない円筒状の固定子に備え、該固定子の中央部に形成した空間に永久磁石回転子(ロータ)120が回転可能に設けられている。
モータ駆動回路210は、スイッチング素子211a~211fを3相ブリッジ接続したインバータ回路を有する。各スイッチング素子211a~211fは、本例ではIGBT(Insulated Gate Bipolar Transistor)で構成されているが、FET(Field Effect Transistor)など他の電力制御用の半導体素子でも良い。これらIGBTのコレクタ,エミッタ間にはそれぞれ、ダイオード212a~212fのカソード,アノードが通電方向を逆にして接続されている。
モータ駆動回路210は、スイッチング素子211a~211fを3相ブリッジ接続したインバータ回路を有する。各スイッチング素子211a~211fは、本例ではIGBT(Insulated Gate Bipolar Transistor)で構成されているが、FET(Field Effect Transistor)など他の電力制御用の半導体素子でも良い。これらIGBTのコレクタ,エミッタ間にはそれぞれ、ダイオード212a~212fのカソード,アノードが通電方向を逆にして接続されている。
スイッチング素子211a~211fの制御端子(ゲート端子)は、制御ユニット220に接続され、制御ユニット220は、スイッチング素子211a~211fのオン/オフを三角波比較方式のPWMによって制御してブラシレスモータ100に印加する電圧(モータ入力電圧)を制御する。
三角波比較方式のPWM制御において、制御ユニット220は、三角波(キャリア)と、指令デューティ比(指令パルス幅)に応じて設定されるPWMタイマ(PWMデューティ)とを比較することで、各スイッチング素子211a~211fをオン/オフさせるタイミングを検出する。
三角波比較方式のPWM制御において、制御ユニット220は、三角波(キャリア)と、指令デューティ比(指令パルス幅)に応じて設定されるPWMタイマ(PWMデューティ)とを比較することで、各スイッチング素子211a~211fをオン/オフさせるタイミングを検出する。
なお、PWMタイマの値は、デューティ比が大きいほど大きな値に設定され、デューティ比100%では最大値、デューティ比0%では最小値(零)に設定される。
ブラシレスモータ100は、回転子120の位置情報を検出するセンサを備えない。制御ユニット220は、ブラシレスモータ100の駆動制御を、回転子120の位置情報を検出するセンサを用いないセンサレス駆動方式によって行う。更に、制御ユニット220は、センサレスでの駆動方式をモータ回転速度に応じて正弦波駆動方式と矩形波駆動方式とに切り替える。
ブラシレスモータ100は、回転子120の位置情報を検出するセンサを備えない。制御ユニット220は、ブラシレスモータ100の駆動制御を、回転子120の位置情報を検出するセンサを用いないセンサレス駆動方式によって行う。更に、制御ユニット220は、センサレスでの駆動方式をモータ回転速度に応じて正弦波駆動方式と矩形波駆動方式とに切り替える。
正弦波駆動方式は、3相巻線110u,110v,110wの各相に正弦波電圧を加えてブラシレスモータ100を駆動する方式である。
この正弦波駆動方式では、制御ユニット220は、回転子120が回転することによって発生する誘起電圧(速度起電圧)から回転子120の位置情報を得る一方、速度起電圧による回転子位置の検出周期の間で、モータ回転速度に基づき回転子位置を推定し、推定した回転子位置とPWMデューティとから3相出力設定値を算出し、相間電圧の差で電流の向きと強さとを制御して3相交流電流を各相に流す。
なお、制御ユニット220は、モータ回転速度を回転子位置の検出周期に基づき算出する。
この正弦波駆動方式では、制御ユニット220は、回転子120が回転することによって発生する誘起電圧(速度起電圧)から回転子120の位置情報を得る一方、速度起電圧による回転子位置の検出周期の間で、モータ回転速度に基づき回転子位置を推定し、推定した回転子位置とPWMデューティとから3相出力設定値を算出し、相間電圧の差で電流の向きと強さとを制御して3相交流電流を各相に流す。
なお、制御ユニット220は、モータ回転速度を回転子位置の検出周期に基づき算出する。
また、矩形波駆動方式は、3相のうちでパルス電圧を印加する2相の選択パターン(通電モード)を所定の回転子位置毎に順次切り替えることでブラシレスモータ100を駆動する方式である。
この矩形波駆動方式では、制御ユニット220は、通電相に対するパルス状の電圧印加によって非通電相(開放相)に誘起される電圧(変圧器起電圧)と閾値とを比較することで回転子120の位置情報を得て、係る位置情報に基づき通電相の選択パターンである通電モードの切り替えタイミングを検出する。
この矩形波駆動方式では、制御ユニット220は、通電相に対するパルス状の電圧印加によって非通電相(開放相)に誘起される電圧(変圧器起電圧)と閾値とを比較することで回転子120の位置情報を得て、係る位置情報に基づき通電相の選択パターンである通電モードの切り替えタイミングを検出する。
ここで、正弦波駆動方式において位置検出のために検出する速度起電圧は、モータ回転速度の低下に伴って出力レベルが低下し、低回転域では位置検出の精度が低下する。一方、矩形波駆動方式において位置検出のために検出する誘起電圧は、モータ停止状態を含む低回転域においても検出可能であり、低回転域でも位置検出の精度を維持できる。
そこで、制御ユニット220は、正弦波駆動方式で位置情報を十分な精度で検出できる高回転領域、つまり、設定値よりもモータ回転速度が高い領域では、正弦波駆動方式でブラシレスモータ100を制御し、正弦波駆動方式では十分な精度で位置情報を検出できない低回転領域では、矩形波駆動方式でブラシレスモータ100を制御する。
そこで、制御ユニット220は、正弦波駆動方式で位置情報を十分な精度で検出できる高回転領域、つまり、設定値よりもモータ回転速度が高い領域では、正弦波駆動方式でブラシレスモータ100を制御し、正弦波駆動方式では十分な精度で位置情報を検出できない低回転領域では、矩形波駆動方式でブラシレスモータ100を制御する。
なお、正弦波駆動方式では十分な精度で位置情報を検出できない低回転領域には、設定値よりもモータ回転速度が低い領域、及びブラシレスモータ100の起動時が含まれる。
更に、制御ユニット220は、ブラシレスモータ100のPWM制御において、例えば、モータ回転速度の検出値と目標モータ回転速度(回転速度指令値)との偏差に応じてPWM制御のデューティ比を決定して、実際のモータ回転速度を目標モータ回転速度に近づける。
更に、制御ユニット220は、ブラシレスモータ100のPWM制御において、例えば、モータ回転速度の検出値と目標モータ回転速度(回転速度指令値)との偏差に応じてPWM制御のデューティ比を決定して、実際のモータ回転速度を目標モータ回転速度に近づける。
図3は、制御ユニット220のうち、低速センサレス制御に関係する部分を抽出して例示する機能ブロック図である。
制御ユニット220は、印加電圧演算部302、PWM発生部304、ゲート信号切替部306、通電モード決定部308、比較部310、電圧閾値切替部312、電圧閾値学習部314、非通電相電圧選択部316、主周期デューティ設定部318、補正周期デューティ設定部320、デューティ補正部322などを備えている。
制御ユニット220は、印加電圧演算部302、PWM発生部304、ゲート信号切替部306、通電モード決定部308、比較部310、電圧閾値切替部312、電圧閾値学習部314、非通電相電圧選択部316、主周期デューティ設定部318、補正周期デューティ設定部320、デューティ補正部322などを備えている。
水温センサ81,82で検出された内燃機関10の冷却水温度情報は、印加電圧演算部302に入力される。この印加電圧演算部302は、冷却水温度情報と比較部310から出力されるモード切替トリガ信号とに基づき、ブラシレスモータ100の目標回転速度とモータ回転速度とを演算し、演算された目標回転速度とモータ回転速度とに基づいて、印加電圧の指令値を演算する。
PWM発生部304は、印加電圧演算部302で演算された印加電圧の指令値に基づき、パルス幅変調されたPWM信号を生成する。
通電モード決定部308は、モータ駆動回路210の通電モードを決定するモード指令信号を出力するデバイスであり、比較部310が出力するモード切替トリガ信号をトリガとして通電モードを6通りに切り替える。
通電モードとは、ブラシレスモータ100のU相、V相、W相の3相のうちでパルス電圧を印加する2相の選択パターンを示し、U相からV相に向けて電流を流す第1通電モードM1、U相からW相に向けて電流を流す第2通電モードM2、V相からW相に向けて電流を流す第3通電モードM3、V相からU相に向けて電流を流す第4通電モードM4、W相からU相に向けて電流を流す第5通電モードM5、W相からV相に向けて電流を流す第6通電モードM6の6種類の通電モードからなる。
そして、通電モード決定部308は、比較部310が出力するモード切替トリガ信号に応じて、第1通電モードM1から第6通電モードM6のいずれか1つを指令するモード指令信号を出力する。
ゲート信号切替部306は、モータ駆動回路210の各スイッチング素子211a~211fがどのような動作でスイッチングするかを、通電モード決定部308の出力であるモード指令信号、及びPWM発生部304で生成されたPWM信号に基づいて決定し、該決定に従い6つのゲートパルス信号をモータ駆動回路210に出力する。
電圧閾値切替部312は、通電モードの切り替えタイミングの検出に用いる電圧閾値を、通電モードに応じて順次切り替えて出力し、閾値の切り替えタイミングは、通電モード決定部308の出力であるモード指令信号に基づき決定される。
非通電相電圧選択部316は、モード指令信号に従い、ブラシレスモータ100の3相端子電圧Vu,Vv,Vwの中から非通電相の電圧の検出値を選択し、比較部310及び電圧閾値学習部314に出力する。
なお、非通電相の端子電圧は、厳密にはグランド(GND)-端子間の電圧であるが、本実施形態では、中性点の電圧を検出し、あるいは中性点の電圧を電源電圧VBの1/2とみなして、この中性点の電圧とグランド(GND)-端子間の電圧との差(すなわち、相電圧)を求めて、非通電相の端子電圧とする。
比較部310は、電圧閾値切替部312が出力する閾値と、非通電相電圧選択部316が出力する非通電相の電圧検出値(パルス誘起電圧の検出値)とを比較することで、通電モードの切り替えタイミング、換言すれば、通電モードを切り替える回転子位置(磁極位置)になったか否かを検出し、切り替えタイミングを検出したときに通電モード決定部308に向けてモード切替トリガを出力する。
また、電圧閾値学習部314は、通電モードの切り替えタイミングの判定に用いる閾値を更新して記憶するデバイスである。
非通電相(開放相)のパルス誘起電圧は、ブラシレスモータ100の製造ばらつき、電圧検出回路の検出ばらつきなどによって変動するため、閾値として固定値を用いると通電モードの切り替えタイミングを誤って判定する可能性がある。
そこで、電圧閾値学習部314は、通電モードの切り替えを行う所定磁極位置でのパルス誘起電圧を検出し、当該検出結果に基づいて電圧閾値切替部312が記憶する閾値を修正する閾値の学習処理を実施する。
通電モードは、前述のように6通りの通電モードM1~M6からなり、制御ユニット220は、これらの通電モードM1~M6を電気角60deg間隔で設定される切り替え角度位置で順次切り替え、ブラシレスモータ100の3相のうちパルス電圧(パルス状の電圧)を印加する2相を順次切り替えることでブラシレスモータ100を回転駆動する。
制御ユニット220は、U相巻線110uの角度位置を回転子(磁極)120の基準位置(角度=0deg)とすると、図4に示すように、回転子120の角度位置(磁極位置θ)が30degであるときに第3通電モードM3から第4通電モードM4への切り替えを行う。回転子角度位置が90degであるときには、第4通電モードM4から第5通電モードM5への切り替えを行う。回転子角度位置が150degであるときには、第5通電モードM5から第6通電モードM6への切り替えを行う。回転子角度位置が210degであるときには、第6通電モードM6から第1通電モードM1への切り替えを行う。回転子角度位置が270degであるときには、第1通電モードM1から第2通電モードM2への切り替えを行う。回転子角度位置が330degであるときには、第2通電モードM2から第3通電モードM3への切り替えを行う。
ここで、制御ユニット220の電圧閾値切替部312は、通電モードの切り替えを行う回転子120の角度位置での非通電相の誘起電圧(変圧器起電圧)を閾値として更新可能に記憶しており、そのときの通電モードに応じた閾値を出力する。
比較部310は、非通電相の誘起電圧が閾値に達したときに次の通電モードへの切り替えを実施する角度を検出したことを示す信号を出力し、係る信号に基づき通電モード決定部308は通電モードの切り替えを実行する。
比較部310は、非通電相の誘起電圧が閾値に達したときに次の通電モードへの切り替えを実施する角度を検出したことを示す信号を出力し、係る信号に基づき通電モード決定部308は通電モードの切り替えを実行する。
そして、制御ユニット220(ゲート信号切替部306)は、例えばU相からV相に向けて電流を流す第1通電モードM1では、U相上段のスイッチング素子211a(U相の上アーム)をオンに制御する一方で、V相上段のスイッチング素子211c(V相の上アーム)、及びV相下段のスイッチング素子211d(V相の下アーム)のオン/オフ比率を相補PWM制御することで、電流を流すU相及びV相の平均印加電圧をPWMデューティによって可変に制御する。
ここで、制御ユニット220(ゲート信号切替部306)は、例えば、第1通電モードM1で、U相上段のスイッチング素子211a、V相上段のスイッチング素子211c及びV相下段のスイッチング素子211d以外のスイッチング素子211b,211e,211fについてはオフに制御する。
ここで、制御ユニット220(ゲート信号切替部306)は、例えば、第1通電モードM1で、U相上段のスイッチング素子211a、V相上段のスイッチング素子211c及びV相下段のスイッチング素子211d以外のスイッチング素子211b,211e,211fについてはオフに制御する。
なお、制御ユニット220(ゲート信号切替部306)は、第1通電モードM1以外でも相補制御方式により、下流側相の上アームのスイッチング素子及び下アームのスイッチング素子のオン/オフをPWM制御する。
図5は、V相巻線からW相巻線への通電時の電流経路を示している。スイッチング素子211c,211fをオンし、スイッチング素子211a,211b,211d,211eをオフすると、バッテリ電源(電圧VB)からスイッチング素子211cのコレクタ,エミッタ、V相巻線110v、中性点、W相巻線110w、及びスイッチング素子211fのコレクタ,エミッタを介してグランド(GND)に電流が流れる。このときの開放相(U相)電圧を開放相電圧計測器221で検出し、検出した電圧値をA/D変換して回転子120の位置情報を推定する。そして、制御ユニット220によりPWM制御で通電してブラシレスモータ100を極低回転速度で駆動する。
一方、W相巻線からV相巻線への通電する場合には、スイッチング素子211e,211dをオンし、スイッチング素子211a,211b,211c,211fをオフすると、バッテリ電源(電圧VB)からスイッチング素子211eのコレクタ,エミッタ、W相巻線110w、中性点、V相巻線110v、及びスイッチング素子211dのコレクタ,エミッタを介してグランド(GND)に電流が流れる。
図6は、本発明の実施形態に係るブラシレスモータの駆動装置におけるモータ印加デューティ(Duty)を示している。ここでは、PWM制御の1周期に、図5に示したようにV相巻線110vからW相巻線110wへ通電し(正転デューティ)、その後、W相巻線110wからV相巻線110vへの通電する(逆転デューティ)場合を例に取って説明する。
極低回転(100r/min)による定常駆動時には、上述した車両用内燃機関の冷却システムで用いられる電動ウォータポンプ用のブラシレスモータは、コンタミネーションなどにより逆回転が発生する可能性がある。
極低回転(100r/min)による定常駆動時には、上述した車両用内燃機関の冷却システムで用いられる電動ウォータポンプ用のブラシレスモータは、コンタミネーションなどにより逆回転が発生する可能性がある。
そして、モータ印加デューティを大きくすると、逆回転検知デューティ幅を確保できなくなるため、逆回転が発生した場合には逆回転を検知できずに脱調する恐れがある。極低回転時に脱調させないためには、前述したように、磁気飽和電圧の取得に必要なデューティ幅Dwを、「Dmin≦Dw≦Dmax」となるように制限する必要がある。
このような前提条件の下で、本実施形態では、ブラシレスモータの逆転の検知/非検知を切り替えるデューティ(切替デューティ)を設定し、「モータ印加デューティ≧切替デューティ」を超えるトルクが必要な場合は、モータ回転数に応じてモータ印加デューティを決定するようにしている。
図6に示した例では、モータ印加デューティが最大で60%、最小で40%に制限されている。このように、最大のデューティが60%の制限があるため、逆転検知デューティはモータへの入力デューティとして40%までしか印加できない(モータに印加されるデューティは60-20=40%)。
PWM制御の1周期に、まず、V相の上段FET211cをオンさせ、V相の下段FET211dをオフさせ、W相の上段FET211eをオフさせ、W相の下段FET211fをオンさせてV相からW相に通電を行う。換言すれば、ブラシレスモータの回転方向にトルクが発生する正パルスをブラシレスモータに印加する。続いて、V相の上段FET211cをオフさせ、V相の下段FET211dをオンさせ、W相の上段FET211eをオンさせ、W相の下段FET211fをオフさせてW相からV相に通電を行う。換言すれば、ブラシレスモータの逆回転方向にトルクが発生する負パルスをブラシレスモータに印加する。
上記V相からW相に通電する向きの正転デューティを20%とし、W相からV相に通電する向きの逆転デューティを20%とすると、モータ印加デューティは0%となる。
上記V相からW相に通電する向きの正転デューティを20%とし、W相からV相に通電する向きの逆転デューティを20%とすると、モータ印加デューティは0%となる。
同様にして、PWM制御の1周期に、V相からW相に通電する向きの正転デューティを60%、W相からV相に通電する向きの逆転デューティを20%とすると、モータ印加デューティは40%となる。
更に、PWM制御の1周期に、V相からW相に通電する向きの正転デューティを60%、W相からV相に通電する向きの逆転デューティを0%とすると、モータ印加デューティは最大60%となる。
更に、PWM制御の1周期に、V相からW相に通電する向きの正転デューティを60%、W相からV相に通電する向きの逆転デューティを0%とすると、モータ印加デューティは最大60%となる。
このように、「最大デューティ-最小デューティ」で計算されるモータ印加デューティを、逆転の検知/非検知の切替デューティの上限値とし、本上限値において逆回転が発生する可能性が無ければ(モータ回転数が高ければ)、モータ印加デューティを大きくして逆回転は検知せず、負荷トルクにより逆回転が発生する可能性がある場合には(モータ回転数が低ければ)、「モータ印加デューティ=上限値」に保持することで、たとえ逆回転しても脱調は起こらない。
なお、本上限値の処理中は、回転数フィードバック(F/B)制御の構成要素である積分(I)の演算値を保持し、演算更新を実施しないようにすると良い。
図7及び図8はそれぞれ、従来(対策前)と本発明(対策後)の低速センサレス制御におけるモータのトルク、モータの角速度、モータの角度及びモータ印加デューティのシミュレーション結果をそれぞれ示している。従来は、例えば300r/minの目標モータ回転数に対して、デューティ40%以上では逆回転を検知できないため脱調が発生した。
これに対し、本発明では、極低速回転(例えば100r/min)においてはデューティ上限値を例えば40%に制限することで、モータ回転角度が認識できるので、たとえモータが逆回転しても脱調しない。
このように、脱調を抑制できることで、モータ角度情報を使って正確な角度情報を認識できることを確認できた。
このように、脱調を抑制できることで、モータ角度情報を使って正確な角度情報を認識できることを確認できた。
上述したように、本発明によれば、逆転の検知/非検知を切り替えるデューティを設定し、モータ印加デューティが設定したデューティと等しいか超えるトルクが必要な場合は、回転数に応じてモータ印加デューティを決定するので、低速センサレス制御において、たとえ逆回転が発生しても脱調を抑制できる。
ここで、上記実施形態から把握し得る技術的思想について以下に記載する。
ブラシレスモータの制御装置は、その一つの態様において、ブラシレスモータの回転方向にトルクが発生する正パルスと、逆回転方向にトルクが発生する負パルスをブラシレスモータに印加し、正及び負パルスを印加した際に発生する磁気飽和電圧を利用して回転方向を検知する制御装置において、正パルスの印加デューティから負パルスの印加デューティを引いた値で表されるモータ印加デューティに上限値を設定する、ことを特徴とする。
好ましい態様では、この上限値は、逆転の検知/非検知を切り替えるデューティであり、上限値は磁気飽和電圧を検知可能な上限デューティと下限デューティの差で表されるデューティ以下のデューティとする。
ブラシレスモータの制御装置は、その一つの態様において、ブラシレスモータの回転方向にトルクが発生する正パルスと、逆回転方向にトルクが発生する負パルスをブラシレスモータに印加し、正及び負パルスを印加した際に発生する磁気飽和電圧を利用して回転方向を検知する制御装置において、正パルスの印加デューティから負パルスの印加デューティを引いた値で表されるモータ印加デューティに上限値を設定する、ことを特徴とする。
好ましい態様では、この上限値は、逆転の検知/非検知を切り替えるデューティであり、上限値は磁気飽和電圧を検知可能な上限デューティと下限デューティの差で表されるデューティ以下のデューティとする。
また、好ましい態様では、モータ回転数が所定値より小さい場合に、上限値処理を実施する。この上限値の処理中は、回転数フィードバック制御の構成要素である積分の演算値を保持し、演算更新を実施しないようにする。
上限値処理は、モータ回転数と所定値の比較の代わりに、磁気飽和電圧の傾きから判断することもできる。
上限値処理は、モータ回転数と所定値の比較の代わりに、磁気飽和電圧の傾きから判断することもできる。
更に、好ましい態様では、モータ回転数と比較する所定値は、システムにおいて想定される負荷トルクが発生した際に、回転数が減少しても回転数極性が切り替る前に回転数演算更新可能な回転数を設定する。
更にまた、好ましい態様では、上記所定値は、それ以上のブラシレスモータの回転数では逆回転が発生しないものと想定した回転数である。
更にまた、好ましい態様では、上記所定値は、それ以上のブラシレスモータの回転数では逆回転が発生しないものと想定した回転数である。
好ましい態様では、最大デューティから最小デューティを引いた値で表されるモータ印加デューティを、前記ブラシレスモータの逆転の検知/非検知の切替デューティの上限値に設定し、前記上限値において前記ブラシレスモータの回転数が高ければモータ印加デューティを大きくして逆回転は検知せず、前記ブラシレスモータの回転数が低ければ、モータ印加デューティを前記上限値に保持する。
ブラシレスモータの制御方法は、その一つの態様において、ブラシレスモータの回転方向にトルクが発生する正パルスと、逆回転方向にトルクが発生する負パルスをブラシレスモータに印加し、正及び負パルスを印加した際に発生する磁気飽和電圧を利用して回転方向を検知する制御方法において、正パルスの印加デューティから負パルスの印加デューティを引いた値で表されるモータ印加デューティに上限値を設定する、ことを特徴とする。
好ましい態様では、前記上限値は、前記ブラシレスモータの逆転の検知/非検知を切り替えるデューティであり、前記上限値は磁気飽和電圧を検知可能な上限デューティと下限デューティの差で表されるデューティ以下のデューティとする。
以上の実施形態で説明された構成は、本発明が理解・実施できる程度に概略的に示したものに過ぎない。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。
例えば、上述した実施形態では、車両用内燃機関の冷却システムで用いられる電動ウォータポンプ用のブラシレスモータを例にとって説明したが、極低回転駆動が要求される他のブラシレスモータ、例えば次世代ブラシレス電動VTCシステムに用いられるブラシレスモータにも同様に適用可能である。
次世代電動VTCでは、エンジン低回転中の作動においてモータ回転角度を利用してVTC角度を算出するため、モータが脱調するとモータ回転角度が不明となり、VTC角度がわからなくなるので、モータの脱調の抑制は電動VTCの信頼性向上に寄与する。
次世代電動VTCでは、エンジン低回転中の作動においてモータ回転角度を利用してVTC角度を算出するため、モータが脱調するとモータ回転角度が不明となり、VTC角度がわからなくなるので、モータの脱調の抑制は電動VTCの信頼性向上に寄与する。
10…内燃機関、20…変速機、30…流量制御弁、40…電動ウォータポンプ、100…ブラシレスモータ(3相DCブラシレスモータ)、110u,110v,110w…3相巻線、120…永久磁石回転子(ロータ)、211a~211f…スイッチング素子、200…制御装置、200A…モータ駆動装置、210…モータ駆動回路、220…制御ユニット
Claims (9)
- ブラシレスモータの回転方向にトルクが発生する正パルスと、逆回転方向にトルクが発生する負パルスをブラシレスモータに印加し、正及び負パルスを印加した際に発生する磁気飽和電圧を利用して回転方向を検知する制御装置において、
前記制御装置は、前記ブラシレスモータに印加する正パルスの印加デューティから負パルスの印加デューティを引いた値で表されるモータ印加デューティに上限値を設定する、ことを特徴とするブラシレスモータの制御装置。 - 前記上限値は、前記ブラシレスモータの逆転の検知/非検知を切り替えるデューティであり、前記上限値は磁気飽和電圧を検知可能な上限デューティと下限デューティの差で表されるデューティ以下のデューティとする、ことを特徴とする請求項1に記載のブラシレスモータの制御装置。
- 前記ブラシレスモータの回転数が所定値より小さい場合に、上限値処理を実施する、ことを特徴とする請求項2に記載のブラシレスモータの制御装置。
- 前記上限値処理は、前記磁気飽和電圧の傾きから判断する、ことを特徴とする請求項3に記載のブラシレスモータの制御装置。
- 前記ブラシレスモータの回転数と比較する所定値は、システムにおいて想定される負荷トルクが発生した際に、回転数が減少しても回転数極性が切り替る前に回転数演算更新可能な回転数を設定する、ことを特徴とする請求項3に記載のブラシレスモータの制御装置。
- 前記所定値は、それ以上の前記ブラシレスモータの回転数では逆回転が発生しないものと想定した回転数である、ことを特徴とする請求項3に記載のブラシレスモータの制御装置。
- 最大デューティから最小デューティを引いた値で表されるモータ印加デューティを、前記ブラシレスモータの逆転の検知/非検知の切替デューティの上限値に設定し、
前記上限値において前記ブラシレスモータの回転数が高ければモータ印加デューティを大きくして逆回転は検知せず、前記ブラシレスモータの回転数が低ければ、モータ印加デューティを前記上限値に保持する、ことを特徴とする請求項1に記載のブラシレスモータの制御装置。 - ブラシレスモータの回転方向にトルクが発生する正パルスと、逆回転方向にトルクが発生する負パルスをブラシレスモータに印加し、正及び負パルスを印加した際に発生する磁気飽和電圧を利用して回転方向を検知する制御方法において、
正パルスの印加デューティから負パルスの印加デューティを引いた値で表されるモータ印加デューティに上限値を設定する、ことを特徴とするブラシレスモータの制御方法。 - 前記上限値は、前記ブラシレスモータの逆転の検知/非検知を切り替えるデューティであり、前記上限値は磁気飽和電圧を検知可能な上限デューティと下限デューティの差で表されるデューティ以下のデューティとする、ことを特徴とする請求項8に記載のブラシレスモータの制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112021004590.3T DE112021004590T5 (de) | 2020-09-03 | 2021-09-01 | Steuerungsvorrichtung für einen bürstenlosen Motor und Steuerungsverfahren für einen bürstenlosen Motor |
US18/023,786 US20230327586A1 (en) | 2020-09-03 | 2021-09-01 | Brushless Motor Control Device and Brushless Motor Control Method |
CN202180057193.2A CN116057826A (zh) | 2020-09-03 | 2021-09-01 | 无刷电机的控制装置以及控制方法 |
JP2022546939A JP7356599B2 (ja) | 2020-09-03 | 2021-09-01 | ブラシレスモータの制御装置及び制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020148257 | 2020-09-03 | ||
JP2020-148257 | 2020-09-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022050296A1 true WO2022050296A1 (ja) | 2022-03-10 |
Family
ID=80490921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/032075 WO2022050296A1 (ja) | 2020-09-03 | 2021-09-01 | ブラシレスモータの制御装置及び制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230327586A1 (ja) |
JP (1) | JP7356599B2 (ja) |
CN (1) | CN116057826A (ja) |
DE (1) | DE112021004590T5 (ja) |
WO (1) | WO2022050296A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013055744A (ja) * | 2011-09-01 | 2013-03-21 | Hitachi Automotive Systems Ltd | 同期電動機の駆動システム及び同期電動機 |
JP2018164360A (ja) * | 2017-03-27 | 2018-10-18 | 株式会社日立産機システム | 同期電動機の制御装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5175569B2 (ja) | 2008-02-07 | 2013-04-03 | ルネサスエレクトロニクス株式会社 | 同期電動機の駆動システム |
KR101739911B1 (ko) * | 2011-04-19 | 2017-05-26 | 한국전자통신연구원 | 전동기 제어 장치 및 그것의 제어 방법 |
JP5952502B2 (ja) * | 2013-09-20 | 2016-07-13 | 日立オートモティブシステムズ株式会社 | 3相ブラシレスモータの駆動装置 |
JP6457410B2 (ja) * | 2016-01-12 | 2019-01-23 | 日立オートモティブシステムズ株式会社 | 3相ブラシレスモータの駆動装置及びその駆動方法 |
JP2020115731A (ja) * | 2019-01-18 | 2020-07-30 | コニカミノルタ株式会社 | モーター制御装置および画像形成装置 |
-
2021
- 2021-09-01 DE DE112021004590.3T patent/DE112021004590T5/de active Pending
- 2021-09-01 JP JP2022546939A patent/JP7356599B2/ja active Active
- 2021-09-01 CN CN202180057193.2A patent/CN116057826A/zh active Pending
- 2021-09-01 US US18/023,786 patent/US20230327586A1/en active Pending
- 2021-09-01 WO PCT/JP2021/032075 patent/WO2022050296A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013055744A (ja) * | 2011-09-01 | 2013-03-21 | Hitachi Automotive Systems Ltd | 同期電動機の駆動システム及び同期電動機 |
JP2018164360A (ja) * | 2017-03-27 | 2018-10-18 | 株式会社日立産機システム | 同期電動機の制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7356599B2 (ja) | 2023-10-04 |
CN116057826A (zh) | 2023-05-02 |
JPWO2022050296A1 (ja) | 2022-03-10 |
US20230327586A1 (en) | 2023-10-12 |
DE112021004590T5 (de) | 2023-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6170455B2 (ja) | ブラシレスモータの制御装置及び制御方法 | |
US10447182B2 (en) | Control device and method for brushless motor | |
CN110326209B (zh) | 无刷电机的驱动装置及驱动方法 | |
US8040096B2 (en) | Rotary electric system with star-connected multiphase stator windings | |
US10224843B2 (en) | Motor drive device and phase current detecting method for three-phase brushless motor | |
JP5952502B2 (ja) | 3相ブラシレスモータの駆動装置 | |
US10381965B2 (en) | Drive device and method for three-phase brushless motor | |
US20120306416A1 (en) | Brushless motor drive device and drive method | |
US9013128B2 (en) | Brushless motor drive device | |
US20130069575A1 (en) | Brushless motor driving apparatus and brushless motor driving method | |
US20170163199A1 (en) | Device for controlling a motor | |
JP2013070468A (ja) | ブラシレスモータの駆動装置 | |
JP2011200058A (ja) | ブラシレスモータの駆動装置 | |
WO2022050296A1 (ja) | ブラシレスモータの制御装置及び制御方法 | |
JP2014171293A (ja) | 冷却ファンの制御装置、及び制御方法 | |
JP6297868B2 (ja) | ブラシレスモータの制御装置及び制御方法 | |
JP6408403B2 (ja) | 車両用モータの駆動装置 | |
US20150249410A1 (en) | Control Device and Control Method for Brushless Motor | |
JP2023122183A (ja) | 電子制御装置 | |
JP6214983B2 (ja) | ブラシレスモータの制御装置 | |
JP2016223364A (ja) | 冷却ファンの制御装置、及び制御装置の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21864353 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022546939 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21864353 Country of ref document: EP Kind code of ref document: A1 |