WO2022049983A1 - 半導体装置、半導体モジュール、及び無線通信装置 - Google Patents

半導体装置、半導体モジュール、及び無線通信装置 Download PDF

Info

Publication number
WO2022049983A1
WO2022049983A1 PCT/JP2021/029047 JP2021029047W WO2022049983A1 WO 2022049983 A1 WO2022049983 A1 WO 2022049983A1 JP 2021029047 W JP2021029047 W JP 2021029047W WO 2022049983 A1 WO2022049983 A1 WO 2022049983A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
semiconductor
nitride semiconductor
spacer
Prior art date
Application number
PCT/JP2021/029047
Other languages
English (en)
French (fr)
Inventor
邦彦 田才
享宏 小山
統之 風田川
聖 福島
裕也 蟹谷
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US18/041,870 priority Critical patent/US20240030332A1/en
Priority to CN202180051723.2A priority patent/CN116097409A/zh
Priority to JP2022546184A priority patent/JPWO2022049983A1/ja
Publication of WO2022049983A1 publication Critical patent/WO2022049983A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Definitions

  • This disclosure relates to semiconductor devices, semiconductor modules, and wireless communication devices.
  • HEMTs high electron mobility transistors
  • Nitride semiconductors have a larger bandgap and have a hexagonal-specific polarization as compared to Si, GaAs, and the like. Therefore, HEMTs using nitride semiconductors are expected as transistors capable of low resistance, high withstand voltage, and high-speed operation.
  • HEMT is expected to be applied to power devices, RF (Radio Frequency) devices, and the like.
  • RF Radio Frequency
  • HEMT using AlGaN for the barrier layer has been put into practical use.
  • a HEMT using AlInN for the barrier layer has been proposed (for example, Patent Document 1). Since a HEMT using AlInN for the barrier layer can obtain a higher two-dimensional electron gas concentration than a HEMT using AlGaN for the barrier layer, it is expected that the output can be further increased.
  • AlInN has a lower crystal growth temperature than other nitride semiconductors such as AlGaN and GaN. Therefore, for example, when the n-type semiconductor layer is re-grown or ion-implanted in order to reduce the resistance between the source or drain electrode and the channel, AlInN is determined by the thermal history during these process steps. The crystal structure of the above may deteriorate. As a result, the sheet resistance of the HEMT channel may increase and the device characteristics may deteriorate. Therefore, in HEMT, it is desired to improve the heat resistance of the barrier layer containing AlInN.
  • the semiconductor device includes a channel layer including a first nitride semiconductor and a second nitride semiconductor having a bandgap larger than that of the first nitride semiconductor, and is provided on the channel layer.
  • the semiconductor module includes a channel layer including a first nitride semiconductor and a second nitride semiconductor having a bandgap larger than that of the first nitride semiconductor, and is provided on the channel layer.
  • the semiconductor device includes a layer and a barrier layer including Al x2 In (1-x2) N (0 ⁇ x2 ⁇ 1) and provided on the intermediate layer.
  • the wireless communication device includes a channel layer including a first nitride semiconductor and a second nitride semiconductor having a bandgap larger than that of the first nitride semiconductor, and is provided on the channel layer. It contains the spacer layer and Al x1 In y1 Ga (1-x1-y1) N (0 ⁇ x1 ⁇ 1,0 ⁇ y1 ⁇ 1,0 ⁇ x1 + y1 ⁇ 1), and is provided on the spacer layer.
  • a semiconductor device including an intermediate layer and a barrier layer including Al x2 In (1-x2) N (0 ⁇ x2 ⁇ 1) and provided on the intermediate layer is provided.
  • the channel layer containing the first nitride semiconductor and the spacer containing the second nitride semiconductor having a bandgap larger than that of the first nitride semiconductor.
  • Layers, intermediate layers containing AlInGaN, and barriers containing AlInN are sequentially laminated.
  • the semiconductor device can suppress the diffusion of the alloy between the channel layer and the barrier layer by the heat treatment.
  • FIG. 1 is a vertical sectional view showing the configuration of the semiconductor device 100 according to the present embodiment.
  • the semiconductor device 100 includes a substrate 110, a first buffer layer 111, a second buffer layer 113, a channel layer 115, a spacer layer 121, an intermediate layer 123, and a barrier layer 131. It includes a regrowth layer 141, a source electrode 143S, a drain electrode 143D, a gate insulating film 151, and a gate electrode 153.
  • the semiconductor device 100 is a high electron mobility transistor (HEMT) having a two-dimensional electron gas layer (2DEG) as a channel generated by the difference between the magnitude of polarization of the channel layer 115 and the magnitude of polarization of the barrier layer 131. ).
  • the two-dimensional electron gas layer (2DEG) is generated, for example, at the interface of the channel layer 115 on the barrier layer 131 side.
  • the substrate 110 is a support for the semiconductor device 100.
  • the substrate 110 may be a SiC substrate, a sapphire substrate, a Si substrate, or the like. Since the semiconductor device 100 is provided with the first buffer layer 111 and the second buffer layer 113 that alleviate the mismatch of the lattice constants between the substrate 110 and the channel layer 115, the substrate 110 is made of a material having a lattice constant different from that of the channel layer 115. It may be a substrate composed of.
  • the substrate 110 may be a substrate made of a semiconductor material having a lattice constant close to that of the nitride semiconductor constituting the channel layer 115.
  • the substrate 110 may be a substrate made of a III-V compound semiconductor such as GaN or AlN.
  • the semiconductor device 100 can more easily form the channel layer 115 obtained by epitaxially growing the nitride semiconductor.
  • the first buffer layer 111 and the second buffer layer 113 are made of an epitaxially grown nitride semiconductor and are provided on the substrate 110.
  • the first buffer layer 111 and the second buffer layer 113 can alleviate the lattice mismatch between the substrate 110 and the channel layer 115 by controlling the lattice constant of the surface on which the channel layer 115 is provided. According to this, the first buffer layer 111 and the second buffer layer 113 can improve the crystal state of the channel layer 115 and suppress the warp of the substrate 110.
  • the first buffer layer 111 is made of AlN and the second buffer layer 113 is AlGaN. It may be composed of. However, depending on the configuration of the substrate 110 and the channel layer 115, the first buffer layer 111 and the second buffer layer 113 may not be provided, or only the first buffer layer 111 may be provided.
  • the channel layer 115 is made of a nitride semiconductor having a bandgap smaller than that of the spacer layer 121 and the barrier layer 131, and is provided on the second buffer layer 113.
  • the channel layer 115 can accumulate carriers at the interface on the barrier layer 131 side due to the difference in the magnitude of polarization from the barrier layer 131.
  • the channel layer 115 is composed of epitaxially grown Al x4 In y4 Ga (1-x4-y4) N (0 ⁇ x4 ⁇ 1,0 ⁇ y4 ⁇ 1,0 ⁇ x4 + y4 ⁇ 1). good.
  • the channel layer 115 may be composed of epitaxially grown GaN, InGaN, InN, AlGaN, or AlInGaN. More specifically, the channel layer 115 may be composed of undoped u-GaN to which impurities are not added. In such a case, the channel layer 115 can suppress the scattering of impurities of the carriers, so that the mobility of the carriers can be further increased.
  • the spacer layer 121 is made of a nitride semiconductor having a bandgap larger than that of the channel layer 115, and is provided on the channel layer 115.
  • the spacer layer 121 can reduce alloy scattering between the barrier layer 131 and the channel layer 115, and can suppress the decrease in carrier mobility of the two-dimensional electron gas layer (2DEG) due to alloy scattering.
  • the spacer layer 121 is composed of epitaxially grown Al x3 In y3 Ga (1-x3-y3) N (0 ⁇ x3 ⁇ 1,0 ⁇ y3 ⁇ 1,0 ⁇ x3 + y3 ⁇ 1). good.
  • the spacer layer 121 may be made of AlN, or may be made of AlGaN or AlInGaN.
  • the thickness of the spacer layer 121 is preferably 0.5 nm or more and 3 nm or less, for example.
  • the spacer layer 121 can form a layer more easily.
  • the spacer layer 121 can more appropriately control the bandgap profile of the semiconductor device 100, which will be described later, so that the two-dimensional electron gas generated in the channel layer 115 can be controlled more appropriately.
  • the carrier density of the layer (2DEG) can be further increased.
  • the intermediate layer 123 is composed of epitaxially grown Al x1 In y1 Ga (1-x1-y1) N (0 ⁇ x1 ⁇ 1,0 ⁇ y1 ⁇ 1,0 ⁇ x1 + y1 ⁇ 1) on the spacer layer 121. It will be provided. Since Al x1 In y1 Ga (1-x1-y1) N constituting the intermediate layer 123 is a quaternary nitride semiconductor, it is simpler than Al x2 In (1-x2) N constituting the barrier layer 131. It is easy to obtain mixed crystals with excellent crystallinity.
  • the intermediate layer 123 can further clarify the interface between the barrier layer 131 and the spacer layer 121 and suppress the disturbance of the interface due to heat, so that the layer structure of the channel layer 115 and the barrier layer 131 due to heat can be suppressed. Deterioration can be suppressed.
  • the Ga composition (1-x1-y1) of Al x1 In y1 Ga (1-x1-y1) N constituting the intermediate layer 123 is preferably 0.01 or more and 0.3 or less.
  • the Ga composition (1-x1-y1) of the intermediate layer 123 is 0.01 or more and 0.3 or less, the crystallinity of the intermediate layer 123 is further improved and the disturbance of the interface due to heat can be suppressed. It is possible to suppress deterioration of the layer structure of the channel layer 115 and the barrier layer 131 due to heat.
  • the thickness of the intermediate layer 123 is preferably 0.5 nm or more and 10 nm or less.
  • the intermediate layer 123 can form a layer more easily.
  • the intermediate layer 123 can more appropriately control the bandgap profile of the semiconductor device 100, which will be described later, so that the two-dimensional electron gas generated in the channel layer 115 can be controlled more appropriately.
  • the carrier density of the layer (2DEG) can be further increased.
  • the thickness of the intermediate layer 123 is more preferably 1.0 nm or more and 5.0 nm or less.
  • the barrier layer 131 is made of a nitride semiconductor having a bandgap larger than that of the channel layer 115, and is provided on the intermediate layer 123.
  • the barrier layer 131 can accumulate carriers in the channel layer 115 on the barrier layer 131 side by spontaneous polarization or piezo polarization.
  • a two-dimensional electron gas layer (2DEG) having high mobility and high carrier concentration can be formed in the channel layer 115 on the barrier layer 131 side.
  • the barrier layer 131 is composed of epitaxially grown Al x2 In (1-x2) N (where 0 ⁇ x2 ⁇ 1).
  • the barrier layer 131 may be composed of undoped u-Al x2 In (1-x2) N to which impurities are not added. In such a case, the barrier layer 131 can suppress the scattering of impurities of carriers in the channel layer 115, so that the mobility of carriers can be further increased.
  • the carrier density of the two-dimensional electron gas layer (2DEG) can be controlled by, for example, the bandgap profile of each layer from the barrier layer 131 to the channel layer 115.
  • the control of the carrier density of the two-dimensional electron gas layer (2DEG) will be described with reference to FIGS. 2 and 3.
  • FIG. 2 is a graph showing a band lineup of a conduction band minimum of a laminated body in which a channel layer 115, a spacer layer 121, and a barrier layer 131 are laminated.
  • FIG. 3 is a graph showing the band lineup of the conduction band minimum of the laminated body in which the channel layer 115, the spacer layer 121, the intermediate layer 123, and the barrier layer 131 are laminated.
  • the height of the conduction band minimum of the barrier layer 131 is one factor that determines the carrier density of the two-dimensional electron gas layer (2DEG).
  • the higher the Al composition of each layer the greater the polarization of each layer, and therefore the greater the inclination of the conduction band minimum.
  • the thicker the thickness of each layer the higher the height of the conduction band minimum. Therefore, by appropriately controlling the thickness and composition of each layer from the barrier layer 131 to the channel layer 115 and controlling the height of the conduction band minimum of the barrier layer 131, the carrier density of the two-dimensional electron gas layer (2DEG) is controlled. Can be enhanced.
  • the barrier layer 131 is preferably composed of Al x2 In (1-x2) N, which has a higher proportion of Al composition than Al x1 In y1 Ga (1-x1-y1) N constituting the intermediate layer 123. .. That is, since the barrier layer 131 is composed of a nitride semiconductor such that x1 ⁇ x2 with respect to the intermediate layer 123, a larger polarization can be obtained, so that the carrier of the two-dimensional electron gas layer (2DEG) can be obtained. The concentration can be increased.
  • the barrier layer 131 is composed of a nitride semiconductor having x2 of more than 0.7, a larger polarization can be obtained, so that the carrier concentration of the two-dimensional electron gas layer (2DEG) is further increased. be able to.
  • the barrier layer 131 and the intermediate layer 123 are composed of a nitride semiconductor having x1 ⁇ x2 and y1 ⁇ (1-x2). In such a case, since the barrier layer 131 and the intermediate layer 123 can further increase the polarization of the barrier layer 131, the carrier concentration of the two-dimensional electron gas layer (2DEG) can be further increased.
  • the thickness of the barrier layer is preferably 4 nm or more and 20 nm or less.
  • the barrier layer 131 can more appropriately control the bandgap profile of the semiconductor device 100, so that the carrier density of the two-dimensional electron gas layer (2DEG) generated in the channel layer 115 can be further increased. ..
  • the thickness of the barrier layer is more preferably 8 nm or more and 15 nm or less.
  • the regrowth layer 141 is composed of a nitride semiconductor containing an n-type impurity, and is provided on the barrier layer 131, the intermediate layer 123, the spacer layer 121, and the channel layer 115 on both sides of the gate electrode 153. Specifically, the regrowth layer 141 is provided by embedding a pair of recesses dug from the barrier layer 131 to the channel layer 115 with an n-type nitride semiconductor. For example, the regrowth layer 141 is provided by selectively epitaxially growing a nitride semiconductor containing an n-type impurity in the recesses provided in the regions corresponding to the source electrode 143S and the drain electrode 143D using a selection mask. May be good.
  • the regrowth layer 141 has higher conductivity than the barrier layer 131, the source electrode 143S and the drain electrode 143D provided on the regrowth layer 141 and the two-dimensional electron gas layer (2DEG) are electrically connected with low resistance. Can be connected.
  • the regrowth layer may be composed of GaN containing n-type impurities such as Si or Ge at 1.0 ⁇ 10 19 pieces / cm 3 or more.
  • the regrowth layer 141 may be composed of AlInGaN containing an n-type impurity, which easily grows at a lower temperature than GaN.
  • the source electrode 143S and the drain electrode 143D are made of a conductive material and are provided on the regrowth layer 141 provided on both sides of the gate electrode 153.
  • the source electrode 143S and the drain electrode 143D can be electrically connected to the two-dimensional electron gas layer (2DEG) generated in the channel layer 115 via the regrowth layer 141.
  • the source electrode 143S and the drain electrode 143D may be provided in a structure in which Ti (titanium), Al (aluminum), Ni (nickel), and Au (gold) are sequentially laminated from the regrowth layer 141 side.
  • the gate insulating film 151 is made of an insulating material and is provided on the barrier layer 131. Specifically, the gate insulating film 151 is provided with a material having an insulating property with respect to the barrier layer 131 and the gate electrode 153. According to this, the gate insulating film 151 protects the surface of the barrier layer 131 from impurities such as ions and improves the surface of the barrier layer 131, thereby suppressing deterioration of the characteristics of the semiconductor device 100. ..
  • the gate insulating film 151 may be provided as a single-layer film or a laminated film with Al 2 O 3 or HfO 2 having a film thickness of about 10 nm.
  • the gate electrode 153 is made of a conductive material and is provided on the gate insulating film 151.
  • the gate electrode 153 is provided between the source electrode 143S and the drain electrode 143D, and together with the gate insulating film 151, constitutes a MIS (Metal-Insulator-Semiconductor) gate.
  • the gate electrode 153 may be provided by laminating Ni (nickel) and Au (gold) from the gate insulating film 151 side.
  • the gate electrode 153 can control the carrier concentration of the two-dimensional electron gas layer (2DEG) formed on the channel layer 115 by the applied voltage. Specifically, the gate electrode 153 controls the thickness of the depletion layer formed in the lower barrier layer 131 by the applied voltage, so that the carrier concentration of the two-dimensional electron gas layer (2DEG) generated in the channel layer 115 is changed into an electric field. It can be controlled by the effect.
  • the semiconductor device 100 according to the present embodiment can suppress the disturbance of the interface between the channel layer 115 and the barrier layer 131 due to heat, the layers of the channel layer 115 and the barrier layer 131 due to heat can be suppressed. Deterioration of the structure can be suppressed. Therefore, according to the technique according to the present disclosure, the heat resistance of the semiconductor device 100 can be improved.
  • the semiconductor device 100 since the semiconductor device 100 according to the present embodiment can perform crystal growth at a higher temperature when the regrowth layer 141 is formed, the crystallinity of the regrowth layer 141 can be improved. Therefore, the semiconductor device 100 can reduce the contact resistance between the source electrode 143S and the drain electrode 143D and the two-dimensional electron gas layer (2DEG), and can improve the output efficiency.
  • the semiconductor device 100 can reduce the contact resistance between the source electrode 143S and the drain electrode 143D and the two-dimensional electron gas layer (2DEG), and can improve the output efficiency.
  • the semiconductor device 100 can suppress the deterioration of the sheet resistance of the two-dimensional electron gas layer (2DEG) at the time of forming the regrowth layer 141, so that the output efficiency can be improved.
  • 2DEG two-dimensional electron gas layer
  • MOCVD MetalOrganic Chemical Vapor Deposition
  • H2, N2 , or NH3 the semiconductor device 100 can clean the regrowth surface by controlling the gas atmosphere of the regrowth layer 141 before regrowth with H2, N2 , or NH3 . Therefore, the semiconductor device 100 can reduce the contact resistance and carrier trap at the interface of the regrowth layer 141.
  • FIGS. 4 to 9. 4 to 9 are vertical cross-sectional views showing each process of the manufacturing method of the semiconductor device 100 according to the present embodiment.
  • the first buffer layer 111, the second buffer layer 113, the channel layer 115, the spacer layer 121, the intermediate layer 123, and the barrier layer 131 are sequentially epitaxially grown on the substrate 110.
  • the substrate 110 a Si substrate, a sapphire substrate, a SiC substrate, a GaN substrate, an AlN substrate, a GaAs substrate, a ZnO substrate, a ScAlMgO substrate, or the like can be used. Give an explanation.
  • a Si substrate having a (111) plane as a main surface is introduced into a MOCVD apparatus, thermal cleaning is performed at 1000 ° C. for about 10 minutes, and then AlN is epitaxially grown at about 700 ° C. to 1100 ° C. at 100 nm to 300 nm.
  • the second buffer layer 113 is formed by epitaxially growing AlGaN having an Al composition of about 0.20 on the first buffer layer 111 at 100 nm to 500 nm at about 900 ° C to 1100 ° C.
  • the channel layer 115 is formed by epitaxially growing GaN on the second buffer layer 113 at about 900 ° C. to 1100 ° C. at 500 nm to 2000 nm.
  • the spacer layer 121 is formed by epitaxially growing AlN on the channel layer 115 at 900 ° C to 1100 ° C at about 0.5 nm to 5 nm.
  • the intermediate layer 123 is formed by epitaxially growing AlInGaN on the spacer layer 121 at 700 ° C. to 900 ° C. at about 0.5 nm to 5 nm.
  • the barrier layer 131 is formed by epitaxially growing AlInN on the intermediate layer 123 at 700 ° C. to 900 ° C. at about 5 nm to 20 nm.
  • the gate insulating film 151 is formed by forming a film of SiN, SiO 2 , or Al2O 3 on the barrier layer 131. Subsequently, the gate insulating film 151 is wet-etched using a resist patterned so as to open the region corresponding to the source electrode 143S and the drain electrode 143D, and the gate insulation of the region corresponding to the source electrode 143S and the drain electrode 143D is performed. The film 151 is removed.
  • the barrier layer 131, the intermediate layer 123, the spacer layer 121, and the channel layer 115 in the region corresponding to the source electrode 143S and the drain electrode 143D are removed by dry etching to obtain about 100 nm. It forms a depth opening 141H.
  • the re-growth layer 141 is formed by selectively growing n-type GaN in the opening 141H by using MOCVD, MBE (Molecular Beam Epitaxy), or sputtering. At this time, for example, Si or Ge can be used as the n-type impurity.
  • the source electrode 143S and the drain electrode 143D are formed by sequentially laminating Ti, Al, Ni, and Au on the regrowth layer 141.
  • the gate electrode 153 is formed by sequentially laminating Ni and Au on the gate insulating film 151 between the source electrode 143S and the drain electrode 143D.
  • the semiconductor device 100 according to the present embodiment can be formed.
  • FIGS. 10 to 13 show only the configuration above the second buffer layer 113.
  • the configuration of the second buffer layer 113 and below is substantially the same as that of the semiconductor device 100 shown in FIG.
  • FIG. 10 is a vertical sectional view showing the configuration of the semiconductor device 100A according to the first modification.
  • the semiconductor device 100A according to the first modification is different from the semiconductor device 100 shown in FIG. 1 in that the composition of AlInGaN constituting the intermediate layer 123A fluctuates in the stacking direction of the semiconductor device 100A.
  • the intermediate layer 123A in the direction from the spacer layer 121 side to the barrier layer 131 side, Al x1 In y1 Ga (1-x1-y1) N (0 ⁇ x1 ⁇ 1,0 ⁇ y1 ⁇ 1, It may be provided so that the ratio (1-x1-y1) of the Ga composition of 0 ⁇ x1 + y1 ⁇ 1) decreases stepwise or continuously. That is, the intermediate layer 123A may be provided so that the ratio of Ga composition decreases toward the crystal growth direction. According to this, since the intermediate layer 123A can alleviate the composition difference of the nitride semiconductors constituting the spacer layer 121 and the barrier layer 131, each layer can be more easily epitaxially grown.
  • FIG. 11 is a vertical sectional view showing the configuration of the semiconductor device 100B according to the second modification.
  • the semiconductor device 100B according to the second modification is different from the semiconductor device 100 shown in FIG. 1 in that a graded layer 125 is further provided between the intermediate layer 123 and the barrier layer 131.
  • the graded layer 125 is provided between the intermediate layer 123 and the barrier layer 131, and the proportion of Ga composition gradually or continuously decreases in the direction from the intermediate layer 123 side to the barrier layer 131 side. It may be composed of AlInGaN.
  • the thickness of the graded layer 125 may be, for example, 0.5 nm or more and 5 nm or less. According to this, since the graded layer 125 can alleviate the composition difference of the nitride semiconductors constituting the intermediate layer 123 and the barrier layer 131, each layer can be more easily epitaxially grown.
  • FIG. 11 shows an example in which the graded layer 125 is provided between the intermediate layer 123 and the barrier layer 131, but this modification is not limited to such an example.
  • the graded layer 125 may be provided between the spacer layer 121 and the intermediate layer 123. Even in such a case, the graded layer 125 can alleviate the composition difference of the nitride semiconductors constituting the spacer layer 121 and the intermediate layer 123, so that each layer can be more easily epitaxially grown.
  • FIG. 12 is a vertical sectional view showing the configuration of the semiconductor device 100C according to the third modification.
  • the semiconductor device 100C according to the third modification is different from the semiconductor device 100 shown in FIG. 1 in that the protective layer 133 is provided on the barrier layer 131.
  • the protective layer 133 is composed of AlInGaN and is provided on the barrier layer 131.
  • the thickness of the protective layer 133 may be, for example, 0.5 nm or more and 5 nm or less. According to this, since the protective layer 133 can protect the barrier layer 131 from the film forming process of the gate insulating film 151 and the like, it suppresses the deterioration of the crystallinity of the barrier layer 131 after the formation of the barrier layer 131. be able to.
  • FIG. 13 is a vertical sectional view showing the configuration of the semiconductor device 100D according to the fourth modification.
  • the semiconductor device 100D according to the fourth modification is different from the semiconductor device 100 shown in FIG. 1 in that the channel layer 115 is composed of the upper channel layer 115B and the lower channel layer 115A.
  • the lower channel layer 115A may be made of, for example, GaN.
  • the upper channel layer 115B may be composed of, for example, AlGaN, InGaN, or AlInGaN.
  • the upper channel layer 115B a two-dimensional electron gas layer (2DEG) is generated by the difference in the magnitude of polarization from the spacer layer 121, the intermediate layer 123, and the barrier layer 131 provided on the upper channel layer 115B. Therefore, the upper channel layer 115B is composed of a nitride semiconductor having a bandgap smaller than that of the spacer layer 121, the intermediate layer 123, and the barrier layer 131.
  • the lower channel layer 115A since the lower channel layer 115A does not contribute to the formation of the two-dimensional electron gas layer (2DEG), it is made of a nitride semiconductor in consideration of the ease of epitaxial growth without considering the size of the band gap.
  • the semiconductor device 100D can obtain the same effect as the semiconductor device 100 shown in FIG.
  • FIG. 14 is a schematic perspective view showing the configuration of the semiconductor module 1.
  • the semiconductor module 1 includes, for example, a plurality of edge antennas 20 formed in an array and front-end components such as a switch 10, a low noise amplifier 41, a bandpass filter 42, and a power amplifier 43. Is an antenna-integrated module mounted as a module on one chip 50.
  • the semiconductor module 1 can be used, for example, as a transceiver for wireless communication.
  • the semiconductor module 1 includes, for example, the semiconductor device 100 according to the present embodiment as a transistor constituting a switch 10, a low noise amplifier 41, a power amplifier 43, or the like.
  • the semiconductor module 1 using radio waves in a higher frequency band, the propagation loss of radio waves becomes larger. Therefore, it is desired that the semiconductor module 1 compatible with 5G transmit radio waves with higher power. Since the semiconductor module 1 including the semiconductor device 100 according to the present embodiment can improve the device characteristics, it is possible to perform high output, low power consumption, and high reliability wireless communication. That is, the semiconductor module 1 can be more preferably used for the 5th generation mobile communication (5G).
  • FIG. 15 is a block diagram showing the configuration of the wireless communication device 2.
  • the wireless communication device 2 includes an antenna ANT, an antenna switch circuit 3, a high power amplifier HPA, a high frequency integrated circuit RFIC (Radio Frequency Integrated Circuit), a base band unit BB, and an audio output unit. It includes a MIC, a data output unit DT, and an interface unit I / F (for example, wireless LAN (Wireless Local Area Network: W-LAN), Bluetooth (registered trademark), etc.).
  • the wireless communication device 2 is a mobile phone system having multiple functions such as voice, data communication, and LAN connection.
  • a transmission signal is output from the baseband portion BB to the antenna ANT via the high frequency integrated circuit RFIC, the high power amplifier HPA, and the antenna switch circuit 3 at the time of transmission. Further, in the wireless communication device 2, the received signal is input from the antenna ANT to the baseband portion BB via the antenna switch circuit 3 and the high frequency integrated circuit RFIC at the time of reception.
  • the received signal processed by the baseband unit BB is output to the outside of the wireless communication device 2 from, for example, the voice output unit MIC, the data output unit DT, or the interface unit I / F.
  • the wireless communication device 2 includes the semiconductor device 100 according to the present embodiment as a transistor constituting the antenna switch circuit 3, the high power amplifier HPA, the high frequency integrated circuit RFIC, the baseband portion BB, and the like. According to this, since the wireless communication device 2 can further improve the device characteristics, it is possible to perform high output, low power consumption, and highly reliable wireless communication.
  • Barrier layers made of Al 0.81 In 0.19 N having a film thickness of 9 nm were sequentially laminated to prepare a laminated body according to an example.
  • the sheet resistance of the two-dimensional electron gas layer generated in the channel layer of the laminated body according to the examples and the comparative examples was measured by the eddy current method.
  • the sheet resistance of the two-dimensional electron gas layer was measured at four points immediately after the formation of the laminate, after the heat treatment at 800 ° C. for 3 minutes, after the heat treatment at 850 ° C. for 3 minutes, or after the heat treatment at 900 ° C. for 3 minutes. The measurement results are shown in the scatter plot of FIG.
  • the measurement result immediately after the formation of the laminate is “as green”
  • the measurement result after the heat treatment at 800 ° C. for 3 minutes is “800 ° C.”
  • the measurement result after the heat treatment at 850 ° C. for 3 minutes is “850 ° C.”.
  • the measurement result after the heat treatment at 900 ° C. for 3 minutes is shown at "900 ° C.”.
  • the laminate according to the example can suppress an increase in the sheet resistance of the two-dimensional electron gas layer due to the heat treatment at 850 ° C. or higher with respect to the laminate according to the comparative example. can.
  • the sheet resistance is increased by about 1.5 times by the heat treatment at 850 ° C. for 3 minutes, and the sheet resistance is increased by about 4 times by the heat treatment at 900 ° C. for 3 minutes. It will increase.
  • the sheet resistance is only increased by about 1.2 times even after the heat treatment at 900 ° C. for 3 minutes.
  • the laminated body according to the example has improved heat resistance as compared with the laminated body according to the comparative example.
  • the laminate according to the embodiment can suppress the sheet resistance of the two-dimensional electron gas layer to 280 ⁇ / ⁇ or less even after the heat treatment at 850 ° C. for 3 minutes.
  • the crystallinity of the regrowth layer can be improved because the heat treatment at 850 ° C. for 3 minutes can be performed by using the laminate according to the embodiment. .. Therefore, the semiconductor device according to the present embodiment can suppress the sheet resistance of the two-dimensional electron gas layer to 280 ⁇ / ⁇ or less, and reduce the contact resistance between the source electrode and the drain electrode and the two-dimensional electron gas layer. Therefore, the output efficiency can be improved.
  • the technology according to the present disclosure may have the following configuration.
  • the semiconductor device according to the present embodiment can suppress the alloy diffusion between the channel layer and the barrier layer due to the heat treatment, so that the heat treatment is performed at a higher temperature. Even in this case, it is possible to suppress an increase in the sheet resistance of the two-dimensional electron gas layer. Therefore, the semiconductor device according to the present embodiment can improve the heat resistance.
  • the effects exerted by the techniques according to the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described in the present disclosure.
  • the Al x1 In y1 Ga (1-x1-y1) N contained in the intermediate layer is any one of the above (1) to (5), wherein the ratio of Ga decreases from the spacer layer toward the barrier layer.
  • the second nitride semiconductor is Al x3 In y3 Ga (1-x3-y3) N (0 ⁇ x3 ⁇ 1,0 ⁇ y3 ⁇ 1,0 ⁇ x3 + y3 ⁇ 1), and the above (1) to (6). ).
  • the first nitride semiconductor is Al x4 In y4 Ga (1-x4-y4) N (0 ⁇ x4 ⁇ 1,0 ⁇ y4 ⁇ 1,0 ⁇ x4 + y4 ⁇ 1). ).
  • the semiconductor device according to any one of the items.
  • a source electrode provided on one of the regrowth layers and The semiconductor device according to any one of (1) to (9) above, further comprising a drain electrode provided on the other side of the regrowth layer.
  • the semiconductor device according to any one of (1) to (10) above, further comprising a gate electrode provided on the barrier layer via a gate insulating film.
  • a two-dimensional electron gas layer is generated in the channel layer, and a two-dimensional electron gas layer is generated.
  • the semiconductor device according to any one of (1) to (11) above, wherein the sheet resistance of the two-dimensional electron gas layer is 280 ⁇ / ⁇ or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

第1窒化物半導体を含むチャネル層と、前記第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含み、前記チャネル層の上に設けられたスペーサ層と、Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)を含み、前記スペーサ層の上に設けられた中間層と、Alx2In(1-x2)N(0<x2<1)を含み、前記中間層の上に設けられたバリア層とを備える、半導体装置。

Description

半導体装置、半導体モジュール、及び無線通信装置
 本開示は、半導体装置、半導体モジュール、及び無線通信装置に関する。
 近年、窒化物半導体を用いた高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)の研究開発が盛んに行われている。窒化物半導体は、Si及びGaAsなどと比較して、より大きなバンドギャップを有し、かつ六方晶に特有な分極を有する。したがって、窒化物半導体を用いたHEMTは、低抵抗、高耐圧、かつ高速動作が可能なトランジスタとして期待されている。
 具体的には、HEMTは、パワーデバイス又はRF(Radio Frequency)デバイスなどへの適用が期待されている。例えば、衛星通信又は無線通信の基地局などでは、バリア層にAlGaNを用いたHEMTが実用化されている。
 さらに、近年、バリア層にAlInNを用いたHEMTが提案されている(例えば、特許文献1)。バリア層にAlInNを用いたHEMTは、バリア層にAlGaNを用いたHEMTよりもさらに高い二次元電子ガス濃度を得ることができるため、さらなる高出力化が可能であると期待されている。
特開2018-56299号公報
 ここで、AlInNは、AlGaN及びGaNなどの他の窒化物半導体と比較して結晶成長温度が低い。そのため、例えば、ソース又はドレイン電極とチャネルとの間の抵抗を低減するためにn型半導体層を再成長させたり、イオンインプランテーションを行ったりした場合、これらのプロセス工程時の熱履歴によって、AlInNの結晶構造が劣化することがあり得る。その結果、HEMTのチャネルのシート抵抗が上昇し、デバイス特性が低下することがあり得る。したがって、HEMTでは、AlInNを含むバリア層の耐熱性を向上させることが望まれている。
 よって、耐熱性を向上させた半導体装置、該半導体装置を含む半導体モジュール、及び該半導体装置を含む無線通信装置を提供することが望ましい。
 本開示の一実施形態に係る半導体装置は、第1窒化物半導体を含むチャネル層と、前記第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含み、前記チャネル層の上に設けられたスペーサ層と、Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)を含み、前記スペーサ層の上に設けられた中間層と、Alx2In(1-x2)N(0<x2<1)を含み、前記中間層の上に設けられたバリア層とを備える。
 本開示の一実施形態に係る半導体モジュールは、第1窒化物半導体を含むチャネル層と、前記第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含み、前記チャネル層の上に設けられたスペーサ層と、Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)を含み、前記スペーサ層の上に設けられた中間層と、Alx2In(1-x2)N(0<x2<1)を含み、前記中間層の上に設けられたバリア層とを含む半導体装置を備える。
 本開示の一実施形態に係る無線通信装置は、第1窒化物半導体を含むチャネル層と、前記第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含み、前記チャネル層の上に設けられたスペーサ層と、Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)を含み、前記スペーサ層の上に設けられた中間層と、Alx2In(1-x2)N(0<x2<1)を含み、前記中間層の上に設けられたバリア層とを含む半導体装置を備える。
 本開示の一実施形態に係る半導体装置、半導体モジュール、及び無線通信装置によれば、第1窒化物半導体を含むチャネル層、第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含むスペーサ層、AlInGaNを含む中間層、及びAlInNを含むバリアが順次積層される。これにより、例えば、半導体装置は、熱処理によってチャネル層及びバリア層の間で合金が拡散されることを抑制することができる。
本開示の一実施形態に係る半導体装置の構成を示す縦断面図である。 チャネル層、スペーサ層、及びバリア層を積層した積層体のコンダクションバンドミニマムのバンドラインアップを示すグラフ図である。 チャネル層、スペーサ層、中間層、及びバリア層を積層した積層体のコンダクションバンドミニマムのバンドラインアップを示すグラフ図である。 同実施形態に係る半導体装置の製造方法の一工程を示す縦断面図である。 同実施形態に係る半導体装置の製造方法の一工程を示す縦断面図である。 同実施形態に係る半導体装置の製造方法の一工程を示す縦断面図である。 同実施形態に係る半導体装置の製造方法の一工程を示す縦断面図である。 同実施形態に係る半導体装置の製造方法の一工程を示す縦断面図である。 同実施形態に係る半導体装置の製造方法の一工程を示す縦断面図である。 第1の変形例に係る半導体装置の構成を示す縦断面図である。 第2の変形例に係る半導体装置の構成を示す縦断面図である。 第3の変形例に係る半導体装置の構成を示す縦断面図である。 第4の変形例に係る半導体装置の構成を示す縦断面図である。 半導体モジュールの構成を示す模式的な斜視図である。 無線通信装置の構成を示すブロック図である。 実施例及び比較例に係る積層体に生成される二次元電子ガス層のシート抵抗の測定結果を示す散布図である。
 以下、本開示における実施形態について、図面を参照して詳細に説明する。以下で説明する実施形態は本開示の一具体例であって、本開示にかかる技術が以下の態様に限定されるわけではない。また、本開示の各構成要素の配置、寸法、及び寸法比等についても、各図に示す様態に限定されるわけではない。
 なお、説明は以下の順序で行う。
 1.半導体装置の構成
 2.半導体装置の製造方法
 3.変形例
 4.適用例
  4.1.半導体モジュール
  4.2.無線通信装置
 <1.半導体装置の構成>
 まず、図1を参照して、本開示の一実施形態に係る半導体装置の構成について説明する。図1は、本実施形態に係る半導体装置100の構成を示す縦断面図である。
 図1に示すように、半導体装置100は、基板110と、第1バッファ層111と、第2バッファ層113と、チャネル層115と、スペーサ層121と、中間層123と、バリア層131と、再成長層141と、ソース電極143Sと、ドレイン電極143Dと、ゲート絶縁膜151と、ゲート電極153とを備える。
 本実施形態に係る半導体装置100は、チャネル層115の分極の大きさと、バリア層131の分極の大きさとの差によって生じる二次元電子ガス層(2DEG)をチャネルとする高電子移動度トランジスタ(HEMT)である。二次元電子ガス層(2DEG)は、例えば、チャネル層115のバリア層131側の界面に生じる。
 基板110は、半導体装置100の支持体である。例えば、基板110は、SiC基板、サファイア基板、又はSi基板などであってもよい。半導体装置100では、基板110とチャネル層115との格子定数の不整合を緩和する第1バッファ層111及び第2バッファ層113が設けられるため、基板110は、チャネル層115と格子定数が異なる材料で構成された基板であってもよい。
 ただし、基板110は、チャネル層115を構成する窒化物半導体と格子定数が近い半導体材料で構成された基板であってもよい。例えば、基板110は、GaN又はAlNなどのIII-V族化合物半導体で構成された基板であってもよい。このような場合、半導体装置100は、窒化物半導体をエピタキシャル成長させたチャネル層115をより容易に形成することが可能となる。
 第1バッファ層111及び第2バッファ層113は、エピタキシャル成長された窒化物半導体で構成され、基板110の上に設けられる。第1バッファ層111及び第2バッファ層113は、チャネル層115が設けられる面の格子定数を制御することで、基板110とチャネル層115との間の格子不整合を緩和することができる。これによれば、第1バッファ層111及び第2バッファ層113は、チャネル層115の結晶状態をより良好にするとともに、基板110の反りを抑制することができる。
 例えば、基板110が主面を(111)面とする単結晶Si基板であり、チャネル層115がGaN層である場合、第1バッファ層111はAlNで構成され、かつ第2バッファ層113はAlGaNで構成されてもよい。ただし、基板110及びチャネル層115の構成によっては、第1バッファ層111及び第2バッファ層113は、設けられなくともよく、又は第1バッファ層111のみ設けられてもよい。
 チャネル層115は、スペーサ層121及びバリア層131よりもバンドギャップが小さい窒化物半導体で構成され、第2バッファ層113の上に設けられる。チャネル層115は、バリア層131との分極の大きさの差によって、バリア層131側の界面にキャリアを蓄積することができる。
 具体的には、チャネル層115は、エピタキシャル成長されたAlx4Iny4Ga(1-x4-y4)N(0≦x4≦1,0≦y4≦1,0≦x4+y4≦1)で構成されてもよい。例えば、チャネル層115は、エピタキシャル成長されたGaN、InGaN、InN、AlGaN、又はAlInGaNで構成されてもよい。より具体的には、チャネル層115は、不純物が添加されていないアンドープのu-GaNで構成されてもよい。このような場合、チャネル層115は、キャリアの不純物散乱を抑制することができるため、キャリアの移動度をより高めることができる。
 スペーサ層121は、チャネル層115よりもバンドギャップが大きい窒化物半導体で構成され、チャネル層115の上に設けられる。スペーサ層121は、バリア層131とチャネル層115との間の合金散乱を低減し、合金散乱によって二次元電子ガス層(2DEG)のキャリア移動度が低下することを抑制することができる。
 具体的には、スペーサ層121は、エピタキシャル成長されたAlx3Iny3Ga(1-x3-y3)N(0<x3<1,0≦y3<1,0<x3+y3<1)で構成されてもよい。例えば、スペーサ層121は、AlNで構成されてもよく、AlGaN又はAlInGaNで構成されてもよい。
 また、スペーサ層121の厚みは、例えば、0.5nm以上3nm以下であることが好ましい。スペーサ層121の厚みが0.5nm以上である場合、スペーサ層121は、層形成をより容易に行うことが可能となる。一方、スペーサ層121の厚みが3nm以下である場合、スペーサ層121は、後述するが、半導体装置100のバンドギャッププロファイルをより適切に制御することができるため、チャネル層115に生じる二次元電子ガス層(2DEG)のキャリア密度をより高めることができる。
 中間層123は、エピタキシャル成長されたAlx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)で構成され、スペーサ層121の上に設けられる。中間層123を構成するAlx1Iny1Ga(1-x1-y1)Nは、四元系の窒化物半導体であるため、バリア層131を構成するAlx2In(1-x2)Nよりも単結晶性に優れた混晶を得やすい。そのため、中間層123は、バリア層131とスペーサ層121との界面をより明確化すると共に、熱による界面の乱れを抑制することができるため、熱によるチャネル層115及びバリア層131の層構造の劣化を抑制することができる。
 中間層123を構成するAlx1Iny1Ga(1-x1-y1)NのGa組成(1-x1-y1)は、0.01以上0.3以下であることが好ましい。中間層123のGa組成(1-x1-y1)が0.01以上0.3以下である場合、中間層123は、結晶性がさらに向上し、熱による界面の乱れを抑制することができるため、熱によるチャネル層115及びバリア層131の層構造の劣化を抑制することができる。
 また、中間層123の厚みは、0.5nm以上10nm以下であることが好ましい。中間層123の厚みが0.5nm以上である場合、中間層123は、層形成をより容易に行うことが可能となる。一方、中間層123の厚みが10nm以下である場合、中間層123は、後述するが、半導体装置100のバンドギャッププロファイルをより適切に制御することができるため、チャネル層115に生じる二次元電子ガス層(2DEG)のキャリア密度をより高めることができる。なお、中間層123の厚みは、1.0nm以上5.0nm以下であることがより好ましい。
 バリア層131は、チャネル層115よりもバンドギャップが大きい窒化物半導体で構成され、中間層123の上に設けられる。バリア層131は、自発分極又はピエゾ分極によってバリア層131側のチャネル層115にキャリアを蓄積させることができる。これにより、半導体装置100では、バリア層131側のチャネル層115に高移動度かつ高キャリア濃度の二次元電子ガス層(2DEG)を形成することができる。
 具体的には、バリア層131は、エピタキシャル成長されたAlx2In(1-x2)N(ただし、0<x2<1)で構成される。例えば、バリア層131は、不純物が添加されていないアンドープのu-Alx2In(1-x2)Nで構成されてもよい。このような場合、バリア層131は、チャネル層115におけるキャリアの不純物散乱を抑制することができるため、キャリアの移動度をより高めることができる。
 二次元電子ガス層(2DEG)のキャリア密度は、例えば、バリア層131からチャネル層115までの各層のバンドギャッププロファイルによって制御することができる。図2及び図3を参照して、二次元電子ガス層(2DEG)のキャリア密度の制御について説明する。図2は、チャネル層115、スペーサ層121、及びバリア層131を積層した積層体のコンダクションバンドミニマムのバンドラインアップを示すグラフ図である。図3は、チャネル層115、スペーサ層121、中間層123、及びバリア層131を積層した積層体のコンダクションバンドミニマムのバンドラインアップを示すグラフ図である。
 図2及び図3に示すように、二次元電子ガス層(2DEG)のキャリア密度を決める1つの因子としてバリア層131のコンダクションバンドミニマムの高さがある。
 例えば、各層のAl組成が高くなるほど各層の分極が大きくなるため、コンダクションバンドミニマムの傾きが大きくなる。また、各層の厚みが厚くなるほど、コンダクションバンドミニマムの高さが高くなる。したがって、バリア層131からチャネル層115までの各層の厚み及び組成を適切に制御し、バリア層131のコンダクションバンドミニマムの高さを制御することで、二次元電子ガス層(2DEG)のキャリア密度を高めることができる。
 例えば、バリア層131は、中間層123を構成するAlx1Iny1Ga(1-x1-y1)NよりもAl組成の割合が高いAlx2In(1-x2)Nで構成されることが好ましい。すなわち、バリア層131は、中間層123に対してx1<x2となるような窒化物半導体で構成されることで、より大きな分極を得ることができるため、二次元電子ガス層(2DEG)のキャリア濃度をより高めることができる。例えば、バリア層131は、x2が0.7超となる窒化物半導体で構成されることで、より大きな分極を得ることができるため、二次元電子ガス層(2DEG)のキャリア濃度をより高くすることができる。
 また、バリア層131及び中間層123は、x1<x2、かつy1<(1-x2)となる窒化物半導体で構成されることが好ましい。このような場合、バリア層131及び中間層123は、バリア層131の分極をさらに大きくすることができるため、二次元電子ガス層(2DEG)のキャリア濃度をさらに高くすることができる。
 さらに、バリア層の厚みは、4nm以上20nm以下であることが好ましい。このような場合、バリア層131は、半導体装置100のバンドギャッププロファイルをより適切に制御することができるため、チャネル層115に生じる二次元電子ガス層(2DEG)のキャリア密度をより高めることができる。なお、バリア層の厚みは、8nm以上15nm以下であることがより好ましい。
 再成長層141は、n型不純物を含む窒化物半導体で構成され、ゲート電極153を挟んで両側のバリア層131、中間層123、スペーサ層121、及びチャネル層115に設けられる。具体的には、再成長層141は、バリア層131からチャネル層115までを掘り込んだ一対の凹部をn型窒化物半導体にて埋め込むことで設けられる。例えば、再成長層141は、選択マスクを用いて、ソース電極143S及びドレイン電極143Dに
対応する領域に設けられた凹部にn型不純物を含む窒化物半導体を選択的にエピタキシャル成長させることで設けられてもよい。
 再成長層141は、バリア層131よりも高い導電性を有するため、再成長層141の上に設けられるソース電極143S及びドレイン電極143Dと、二次元電子ガス層(2DEG)とを低抵抗で電気的に接続することができる。例えば、再成長層は、Si又はGeなどのn型不純物を1.0×1019個/cm以上で含むGaNにて構成されてもよい。または、再成長層141は、GaNよりも低温成長しやすい、n型不純物を含むAlInGaNにて構成されてもよい。
 ソース電極143S及びドレイン電極143Dは、導電性材料にて構成され、ゲート電極153を挟んで両側に設けられた再成長層141の上に設けられる。ソース電極143S及びドレイン電極143Dは、再成長層141を介して、チャネル層115に生じた二次元電子ガス層(2DEG)と電気的に接続することができる。ソース電極143S及びドレイン電極143Dは、再成長層141側からTi(チタン)、Al(アルミニウム)、Ni(ニッケル)、及びAu(金)を順次積層した構造で設けられてもよい。
 ゲート絶縁膜151は、絶縁性材料にて構成され、バリア層131の上に設けられる。具体的には、ゲート絶縁膜151は、バリア層131及びゲート電極153に対して絶縁性を有する材料で設けられる。これによれば、ゲート絶縁膜151は、イオンなどの不純物からバリア層131の表面を保護すると共にバリア層131の表面を良好にすることで、半導体装置100の特性の低下を抑制することができる。例えば、ゲート絶縁膜151は、膜厚10nm程度のAl又はHfOにて単層膜又は積層膜として設けられてもよい。
 ゲート電極153は、導電性材料にて構成され、ゲート絶縁膜151の上に設けられる。ゲート電極153は、ソース電極143S及びドレイン電極143Dの間に設けられ、ゲート絶縁膜151と共にMIS(Metal-Insulator-Semiconductor)ゲートを構成する。例えば、ゲート電極153は、ゲート絶縁膜151側からNi(ニッケル)及びAu(金)を積層することで設けられてもよい。
 ゲート電極153は、印加される電圧によって、チャネル層115に形成される二次元電子ガス層(2DEG)のキャリア濃度を制御することができる。具体的には、ゲート電極153は、下方のバリア層131に形成される空乏層の厚みを印加電圧によって制御することで、チャネル層115に生じる二次元電子ガス層(2DEG)のキャリア濃度を電界効果にて制御することができる。
 以上にて説明したように、本実施形態に係る半導体装置100は、熱によるチャネル層115及びバリア層131の界面の乱れを抑制することができるため、熱によるチャネル層115及びバリア層131の層構造の劣化を抑制することができる。したがって、本開示に係る技術によれば、半導体装置100の耐熱性を向上させることができる。
 これによれば、本実施形態に係る半導体装置100は、再成長層141の形成時にさらに高温での結晶成長を行うことができるため、再成長層141の結晶性を向上させることができる。したがって、半導体装置100は、ソース電極143S及びドレイン電極143Dと、二次元電子ガス層(2DEG)との接触抵抗を低減し、出力効率を向上させることができる。
 また、本実施形態に係る半導体装置100は、再成長層141の形成時における二次元電子ガス層(2DEG)のシート抵抗の劣化を抑制することができるため、出力効率を向
上させることができる。
 さらに、本実施形態に係る半導体装置100は、再成長層141の形成に、高温プロセスであるMOCVD(Metal Organic Chemical Vapor Deposition)を用いることができる。これによれば、半導体装置100は、再成長層141をより選択的に形成することができるため、意図しない領域に形成された再成長層141の除去などのプロセス工程を簡略化することができる。また、半導体装置100は、MOCVDにおいて、再成長層141の再成長前のガス雰囲気をH、N、又はNHにて制御することで、再成長面の清浄化を行うことができる。したがって、半導体装置100は、再成長層141の界面の接触抵抗及びキャリアトラップを低減することができる。
 <2.半導体装置の製造方法>
 次に、図4~図9を参照して、本実施形態に係る半導体装置100の製造方法の一例について説明する。図4~図9は、本実施形態に係る半導体装置100の製造方法の各工程を示す縦断面図である。
 まず、図4に示すように、例えば、基板110の上に、第1バッファ層111、第2バッファ層113、チャネル層115、スペーサ層121、中間層123、及びバリア層131を順次エピタキシャル成長させる。なお、基板110は、Si基板、サファイア基板、SiC基板、GaN基板、AlN基板、GaAs基板、ZnO基板、又はScAlMgO基板などを用いることができるが、以下ではSi基板を用いた場合を例示して説明を行う。
 例えば、まず、(111)面を主面とするSi基板をMOCVD装置に導入し、1000℃で10分程度のサーマルクリーニングを行った後、AlNを700℃~1100℃程度で100nm~300nmエピタキシャル成長させることで、第1バッファ層111を形成する。次に、第1バッファ層111の上にAl組成0.20程度のAlGaNを900℃~1100℃程度で100nm~500nmエピタキシャル成長させることで、第2バッファ層113を形成する。続いて、第2バッファ層113の上にGaNを900℃~1100℃程度で500nm~2000nmエピタキシャル成長させることで、チャネル層115を形成する。
 その後、チャネル層115の上にAlNを900℃~1100℃で0.5nm~5nm程度エピタキシャル成長させることで、スペーサ層121を形成する。次に、スペーサ層121の上にAlInGaNを700℃~900℃で0.5nm~5nm程度エピタキシャル成長させることで、中間層123を形成する。続いて、中間層123の上にAlInNを700℃~900℃で5nm~20nm程度エピタキシャル成長させることで、バリア層131を形成する。
 次に、図5に示すように、バリア層131の上にSiN、SiO、又はAl2Oなどを成膜することで、ゲート絶縁膜151を形成する。続いて、ソース電極143S及びドレイン電極143Dに対応する領域を開口するようにパターニングされたレジストを用いて、ゲート絶縁膜151をウェットエッチングし、ソース電極143S及びドレイン電極143Dに対応する領域のゲート絶縁膜151を除去する。
 続いて、図6に示すように、ソース電極143S及びドレイン電極143Dに対応する領域のバリア層131、中間層123、スペーサ層121、及びチャネル層115をドライエッチングによって除去することで、100nm程度の深さの開口部141Hを形成する。
 次に、図7に示すように、MOCVD、MBE(Molecular Beam Epitaxy)、又はスパッタを用いて、開口部141Hに選択的にn型のGaNをエピタキシャル成長させることで、再成長層141を形成する。このとき、n型不純物としては、例えば、Si又はGeなどを用いることができる。
 続いて、図8に示すように、再成長層141の上にTi、Al、Ni、及びAuを順次積層させることで、ソース電極143S及びドレイン電極143Dを形成する。
 その後、図9に示すように、ソース電極143S及びドレイン電極143Dの間のゲート絶縁膜151の上にNi及びAuを順次積層させることで、ゲート電極153を形成する。
 以上の工程により、本実施形態に係る半導体装置100を形成することができる。
 <3.変形例>
 続いて、図10~図13を参照して、本実施形態に係る半導体装置100の第1~第4の変形例について説明する。なお、図10~図13では、第2バッファ層113より上の構成についてのみ示す。第1~第4の変形例に係る半導体装置では、第2バッファ層113以下の構成は、図1で示した半導体装置100と実質的に同様である。
 (第1の変形例)
 図10は、第1の変形例に係る半導体装置100Aの構成を示す縦断面図である。第1の変形例に係る半導体装置100Aは、中間層123Aを構成するAlInGaNの組成が半導体装置100Aの積層方向に変動する点が図1で示した半導体装置100と異なる。
 具体的には、中間層123Aは、スペーサ層121側からバリア層131側に向かう方向に、Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)のGa組成の割合(1-x1-y1)が段階的又は連続的に減少するように設けられてもよい。すなわち、中間層123Aは、結晶成長方向に向かってGa組成の割合が小さくなるように設けられてもよい。これによれば、中間層123Aは、スペーサ層121及びバリア層131を構成する窒化物半導体の組成差を緩和することができるため、各層をより容易にエピタキシャル成長させることが可能となる。
 (第2の変形例)
 図11は、第2の変形例に係る半導体装置100Bの構成を示す縦断面図である。第2の変形例に係る半導体装置100Bは、中間層123とバリア層131との間にグレーデッド層125がさらに設けられている点が図1で示した半導体装置100と異なる。
 具体的には、グレーデッド層125は、中間層123とバリア層131との間に設けられ、中間層123側からバリア層131側に向かう方向にGa組成の割合が段階的又は連続的に減少するAlInGaNで構成されてもよい。グレーデッド層125の厚みは、例えば、0.5nm以上5nm以下であってもよい。これによれば、グレーデッド層125は、中間層123及びバリア層131を構成する窒化物半導体の組成差を緩和することができるため、各層をより容易にエピタキシャル成長させることが可能となる。
 図11では、中間層123とバリア層131との間にグレーデッド層125が設けられる例を示したが、本変形例はかかる例示に限定されない。グレーデッド層125は、スペーサ層121と中間層123との間に設けられてもよい。このような場合でも、グレーデッド層125は、スペーサ層121及び中間層123を構成する窒化物半導体の組成差を緩和することができるため、各層をより容易にエピタキシャル成長させることが可能となる。
 (第3の変形例)
 図12は、第3の変形例に係る半導体装置100Cの構成を示す縦断面図である。第3の変形例に係る半導体装置100Cは、バリア層131の上に保護層133が設けられている点が図1で示した半導体装置100と異なる。
 具体的には、保護層133は、AlInGaNで構成され、バリア層131の上に設けられる。保護層133の厚みは、例えば、0.5nm以上5nm以下であってもよい。これによれば、保護層133は、ゲート絶縁膜151の成膜プロセス等からバリア層131を保護することができるため、バリア層131の形成後にバリア層131の結晶性が劣化することを抑制することができる。
 (第4の変形例)
 図13は、第4の変形例に係る半導体装置100Dの構成を示す縦断面図である。第4の変形例に係る半導体装置100Dは、チャネル層115が上部チャネル層115B及び下部チャネル層115Aで構成されている点が図1で示した半導体装置100と異なる。
 具体的には、下部チャネル層115Aは、例えば、GaNで構成されてもよい。上部チャネル層115Bは、例えば、AlGaN、InGaN、又はAlInGaNで構成されてもよい。
 上部チャネル層115Bには、上部チャネル層115Bの上に設けられるスペーサ層121、中間層123、及びバリア層131との分極の大きさの差によって二次元電子ガス層(2DEG)が生成される。したがって、上部チャネル層115Bは、スペーサ層121、中間層123、及びバリア層131よりもバンドギャップが小さい窒化物半導体で構成される。一方、下部チャネル層115Aは、二次元電子ガス層(2DEG)の生成に寄与しないため、バンドギャップの大きさを考慮することなくエピタキシャル成長の容易さ等を考慮して窒化物半導体で構成される。
 チャネル層115が複数層で構成される場合でも、半導体装置100Dは、図1で示した半導体装置100と同様の効果を得ることができる。
 なお、上記の変形例は、互いに組み合わせることも可能である。
 <4.適用例>
 (4.1.半導体モジュール)
 続いて、図14を参照して、本開示に係る技術の第1の適用例である半導体モジュールについて説明する。図14は、半導体モジュール1の構成を示す模式的な斜視図である。
 図14に示すように、半導体モジュール1は、例えば、アレイ状に形成された複数のエッジアンテナ20と、スイッチ10、低ノイズアンプ41、バンドパスフィルタ42、及びパワーアンプ43等のフロントエンド部品とが1つのチップ50上の上にモジュールとして実装されたアンテナ一体型モジュールである。半導体モジュール1は、例えば、無線通信用のトランシーバとして用いられ得る。
 半導体モジュール1は、例えば、スイッチ10、低ノイズアンプ41、又はパワーアンプ43等を構成するトランジスタとして本実施形態に係る半導体装置100を含む。例えば、より高い周波数帯域の電波を使用する第5世代移動体通信(5G)では、電波の伝搬損失がより大きくなってしまう。そのため、5Gに対応した半導体モジュール1では、より高い電力で電波を送信することが望まれる。本実施形態に係る半導体装置100を含む半導体モジュール1は、デバイス特性を向上させることができるため、高出力、低消費電力、及び高信頼性の無線通信を行うことが可能である。すなわち、半導体モジュール1は、第5世代移動体通信(5G)に対してより好適に用いることが可能である。
 (4.2.無線通信装置)
 次に、図15を参照して、本開示に係る技術の第2の適用例である無線通信装置について説明する。図15は、無線通信装置2の構成を示すブロック図である。
 図15に示すように、無線通信装置2は、アンテナANTと、アンテナスイッチ回路3と、高電力増幅器HPAと、高周波集積回路RFIC(Radio Frequency Integrated Circuit)と、ベースバンド部BBと、音声出力部MICと、データ出力部DTと、インタフェース部I/F(例えば、無線LAN(Wireless Local Area Network:W-LAN)、又はBluetooth(登録商標)など)とを備える。無線通信装置2は、例えば、音声、データ通信、及びLAN接続などの多機能を有する携帯電話システムである。
 無線通信装置2では、送信時に、ベースバンド部BBから高周波集積回路RFIC、高電力増幅器HPA、及びアンテナスイッチ回路3を介してアンテナANTに送信信号が出力される。また、無線通信装置2では、受信時に、アンテナANTからアンテナスイッチ回路3及び高周波集積回路RFICを介してベースバンド部BBに受信信号が入力される。ベースバンド部BBにて処理された受信信号は、例えば、音声出力部MIC、データ出力部DT、又はインタフェース部I/Fから無線通信装置2の外部に出力される。
 無線通信装置2は、アンテナスイッチ回路3、高電力増幅器HPA、高周波集積回路RFIC、又はベースバンド部BB等を構成するトランジスタとして本実施形態に係る半導体装置100を含む。これによれば、無線通信装置2は、デバイス特性をより向上させることができるため、高出力、低消費電力、及び高信頼性の無線通信を行うことが可能である。
 以下では、チャネル層からバリア層までを積層した積層体を用いて、本開示に係る技術の実施可能性及び効果について詳細に説明する。ただし、本開示に係る技術が以下の例に限定されるわけではない。
 (実施例)
 GaNからなるチャネル層の上に、膜厚1nmのAl0.9Ga0.1Nからなるスペーサ層、膜厚1nmのAl0.8In0.1Ga0.1Nからなる中間層、及び膜厚9nmのAl0.81In0.19Nからなるバリア層を順次積層し、実施例に係る積層体を作製した。
 (比較例)
 GaNからなるチャネル層の上に、膜厚1nmのAl0.9Ga0.1Nからなるスペーサ層、及び膜厚9nmのAl0.81In0.19Nからなるバリア層を順次積層し、比較例に係る積層体を作製した。
 (測定結果)
 実施例及び比較例に係る積層体のチャネル層に生成される二次元電子ガス層のシート抵抗を渦電流法によって測定した。二次元電子ガス層のシート抵抗の測定は、積層体の形成直後、800℃3分間の熱処理後、850℃3分間の熱処理後、又は900℃3分間の熱処理後の4点で行った。測定結果を図16の散布図に示す。
 図16では、積層体の形成直後の測定結果を「as grown」、800℃3分間の熱処理後の測定結果を「800℃」、850℃3分間の熱処理後の測定結果を「850℃」、900℃3分間の熱処理後の測定結果を「900℃」にて示す。
 図16の散布図からわかるように、実施例に係る積層体は、比較例に係る積層体に対して、850℃以上での熱処理による二次元電子ガス層のシート抵抗の増大を抑制することができる。具体的には、比較例に係る積層体では、850℃3分間の熱処理にてシート抵抗が約1.5倍程度に増大し、900℃3分間の熱処理にてシート抵抗が約4倍程度まで増大してしまう。一方で、実施例に係る積層体では、900℃3分間の熱処理でもシート抵抗は約1.2倍程度の増大に留まっている。したがって、実施例に係る積層体は、比較例に係る積層体に対して、耐熱性が向上していることがわかる。例えば、実施例に係る積層体は、850℃3分間の熱処理後であっても、二次元電子ガス層のシート抵抗を280Ω/□以下に抑制することができる。
 これによれば、本実施形態に係る半導体装置は、実施例に係る積層体を用いることで、850℃3分間の熱処理を行うことができるため、再成長層の結晶性を向上させることができる。したがって、本実施形態に係る半導体装置は、二次元電子ガス層のシート抵抗を280Ω/□以下に抑制すると共に、ソース電極及びドレイン電極と、二次元電子ガス層との接触抵抗を低減させることができるため、出力効率を向上させることができる。
 以上、実施形態及び変形例を挙げて、本開示にかかる技術を説明した。ただし、本開示にかかる技術は、上記実施の形態等に限定されるわけではなく、種々の変形が可能である。
 さらに、実施形態で説明した構成および動作の全てが本開示の構成および動作として必須であるとは限らない。たとえば、各実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として理解されるべきである。
 本明細書および添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるとして記載された様態に限定されない」と解釈されるべきである。「有する」という用語は、「有するとして記載された様態に限定されない」と解釈されるべきである。
 本明細書で使用した用語には、単に説明の便宜のために用いており、構成及び動作を限定する目的で使用したわけではない用語が含まれる。たとえば、「右」、「左」、「上」、「下」などの用語は、参照している図面上での方向を示しているにすぎない。また、「内側」、「外側」という用語は、それぞれ、注目要素の中心に向かう方向、注目要素の中心から離れる方向を示しているにすぎない。これらに類似する用語や同様の趣旨の用語についても同様である。
 なお、本開示にかかる技術は、以下のような構成を取ることも可能である。以下の構成を備える本開示にかかる技術によれば、本実施形態に係る半導体装置は、熱処理によるチャネル層及びバリア層の間の合金拡散を抑制することができるため、より高温で熱処理を行った場合でも二次元電子ガス層のシート抵抗の増大を抑制することができる。したがって、本実施形態に係る半導体装置は、耐熱性を向上させることができる。本開示にかかる技術が奏する効果は、ここに記載された効果に必ずしも限定されるわけではなく、本開示中に記載されたいずれの効果であってもよい。
(1)
 第1窒化物半導体を含むチャネル層と、
 前記第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含み、前記チャネル層の上に設けられたスペーサ層と、
 Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)を含み、前記スペーサ層の上に設けられた中間層と、
 Alx2In(1-x2)N(0<x2<1)を含み、前記中間層の上に設けられたバリア層と
を備える、半導体装置。
(2)
 前記x1、前記x2、及び前記y1は、x1<x2、及びy1<(1-x2)の関係式を満たす、上記(1)に記載の半導体装置。
(3)
 前記x2は、0.7超である、上記(1)又は(2)に記載の半導体装置。
(4)
 前記中間層の厚みは、0.5nm以上10nm以下である、上記(1)~(3)のいずれか一項に記載の半導体装置。
(5)
 前記バリア層の厚みは、4nm以上20nm以下である、上記(1)~(4)のいずれか一項に記載の半導体装置。
(6)
 前記中間層に含まれる前記Alx1Iny1Ga(1-x1-y1)Nは、前記スペーサ層から前記バリア層に向かってGaの割合が低下する、上記(1)~(5)のいずれか一項に記載の半導体装置。
(7)
 前記第2窒化物半導体は、Alx3Iny3Ga(1-x3-y3)N(0<x3<1,0≦y3<1,0<x3+y3<1)である、上記(1)~(6)のいずれか一項に記載の半導体装置。
(8)
 前記スペーサ層の厚みは、0.5nm以上3nm以下である、上記(1)~(7)のいずれか一項に記載の半導体装置。
(9)
 前記第1窒化物半導体は、Alx4Iny4Ga(1-x4-y4)N(0≦x4≦1,0≦y4≦1,0≦x4+y4≦1)である、上記(1)~(8)のいずれか一項に記載の半導体装置。
(10)
 n型のAlInGaNを含み、前記バリア層から前記スペーサ層まで掘り込まれた一対の凹部にそれぞれ設けられた再成長層と、
 前記再成長層の一方の上に設けられたソース電極と、
 前記再成長層の他方の上に設けられたドレイン電極と
をさらに備える、上記(1)~(9)のいずれか一項に記載の半導体装置。
(11)
 前記バリア層の上にゲート絶縁膜を介して設けられたゲート電極をさらに備える、上記(1)~(10)のいずれか一項に記載の半導体装置。
(12)
 前記チャネル層には、2次元電子ガス層が生成され、
 前記2次元電子ガス層のシート抵抗は、280Ω/□以下である、上記(1)~(11)のいずれか一項に記載の半導体装置。
(13)
 第1窒化物半導体を含むチャネル層と、
 前記第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含み、前記チャネル層の上に設けられたスペーサ層と、
 Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)を含み、前記スペーサ層の上に設けられた中間層と、
 Alx2In(1-x2)N(0<x2<1)を含み、前記中間層の上に設けられたバリア層と
を含む半導体装置
を備える、半導体モジュール。
(14)
 第1窒化物半導体を含むチャネル層と、
 前記第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含み、前記チャネル層の上に設けられたスペーサ層と、
 Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)を含み、前記スペーサ層の上に設けられた中間層と、
 Alx2In(1-x2)N(0<x2<1)を含み、前記中間層の上に設けられたバリア層と
を含む半導体装置
を備える、無線通信装置。
 本出願は、日本国特許庁において2020年9月1日に出願された日本特許出願番号2020-147166号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (14)

  1.  第1窒化物半導体を含むチャネル層と、
     前記第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含み、前記チャネル層の上に設けられたスペーサ層と、
     Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)を含み、前記スペーサ層の上に設けられた中間層と、
     Alx2In(1-x2)N(0<x2<1)を含み、前記中間層の上に設けられたバリア層と
    を備える、半導体装置。
  2.  前記x1、前記x2、及び前記y1は、x1<x2、及びy1<(1-x2)の関係式を満たす、請求項1に記載の半導体装置。
  3.  前記x2は、0.7超である、請求項1に記載の半導体装置。
  4.  前記中間層の厚みは、0.5nm以上10nm以下である、請求項1に記載の半導体装置。
  5.  前記バリア層の厚みは、4nm以上20nm以下である、請求項1に記載の半導体装置。
  6.  前記中間層に含まれる前記Alx1Iny1Ga(1-x1-y1)Nは、前記スペーサ層から前記バリア層に向かってGaの割合が低下する、請求項1に記載の半導体装置。
  7.  前記第2窒化物半導体は、Alx3Iny3Ga(1-x3-y3)N(0<x3<1,0≦y3<1,0<x3+y3<1)である、請求項1に記載の半導体装置。
  8.  前記スペーサ層の厚みは、0.5nm以上3nm以下である、請求項1に記載の半導体装置。
  9.  前記第1窒化物半導体は、Alx4Iny4Ga(1-x4-y4)N(0≦x4≦1,0≦y4≦1,0≦x4+y4≦1)である、請求項1に記載の半導体装置。
  10.  n型のAlInGaNを含み、前記バリア層から前記スペーサ層まで掘り込まれた一対の凹部にそれぞれ設けられた再成長層と、
     前記再成長層の一方の上に設けられたソース電極と、
     前記再成長層の他方の上に設けられたドレイン電極と
    をさらに備える、請求項1に記載の半導体装置。
  11.  前記バリア層の上にゲート絶縁膜を介して設けられたゲート電極をさらに備える、請求項1に記載の半導体装置。
  12.  前記チャネル層には、2次元電子ガス層が生成され、
     前記2次元電子ガス層のシート抵抗は、280Ω/□以下である、請求項1に記載の半導体装置。
  13.  第1窒化物半導体を含むチャネル層と、
     前記第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含み、前記チャネル層の上に設けられたスペーサ層と、
     Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)を含み、前記スペーサ層の上に設けられた中間層と、
     Alx2In(1-x2)N(0<x2<1)を含み、前記中間層の上に設けられたバリア層と
    を含む半導体装置
    を備える、半導体モジュール。
  14.  第1窒化物半導体を含むチャネル層と、
     前記第1窒化物半導体よりバンドギャップが大きい第2窒化物半導体を含み、前記チャネル層の上に設けられたスペーサ層と、
     Alx1Iny1Ga(1-x1-y1)N(0<x1<1,0<y1<1,0<x1+y1<1)を含み、前記スペーサ層の上に設けられた中間層と、
     Alx2In(1-x2)N(0<x2<1)を含み、前記中間層の上に設けられたバリア層と
    を含む半導体装置
    を備える、無線通信装置。
PCT/JP2021/029047 2020-09-01 2021-08-05 半導体装置、半導体モジュール、及び無線通信装置 WO2022049983A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/041,870 US20240030332A1 (en) 2020-09-01 2021-08-05 Semiconductor device, semiconductor module, and wireless communication apparatus
CN202180051723.2A CN116097409A (zh) 2020-09-01 2021-08-05 半导体设备、半导体模块和无线通信装置
JP2022546184A JPWO2022049983A1 (ja) 2020-09-01 2021-08-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147166 2020-09-01
JP2020-147166 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022049983A1 true WO2022049983A1 (ja) 2022-03-10

Family

ID=80491682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029047 WO2022049983A1 (ja) 2020-09-01 2021-08-05 半導体装置、半導体モジュール、及び無線通信装置

Country Status (4)

Country Link
US (1) US20240030332A1 (ja)
JP (1) JPWO2022049983A1 (ja)
CN (1) CN116097409A (ja)
WO (1) WO2022049983A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228611A1 (ja) * 2022-05-24 2023-11-30 ソニーセミコンダクタソリューションズ株式会社 高電子移動度トランジスタ及び半導体装置
WO2024048266A1 (ja) * 2022-09-01 2024-03-07 ソニーグループ株式会社 半導体デバイス、半導体モジュールおよび無線通信装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197644A (ja) * 2001-12-26 2003-07-11 Matsushita Electric Ind Co Ltd 通信機器用半導体装置
JP2005217364A (ja) * 2004-02-02 2005-08-11 Nippon Telegr & Teleph Corp <Ntt> リセスゲート構造hfetおよびその製造方法
JP2015192004A (ja) * 2014-03-28 2015-11-02 国立大学法人 名古屋工業大学 ドレイン電流密度・相互コンダクタンスを大幅に改善したリセス構造のmis型ノーマリオフhemt素子
JP2016225578A (ja) * 2015-06-03 2016-12-28 富士通株式会社 化合物半導体装置及びその製造方法
JP2018085414A (ja) * 2016-11-22 2018-05-31 富士通株式会社 化合物半導体装置
WO2019208034A1 (ja) * 2018-04-27 2019-10-31 ソニーセミコンダクタソリューションズ株式会社 スイッチングトランジスタ及び半導体モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197644A (ja) * 2001-12-26 2003-07-11 Matsushita Electric Ind Co Ltd 通信機器用半導体装置
JP2005217364A (ja) * 2004-02-02 2005-08-11 Nippon Telegr & Teleph Corp <Ntt> リセスゲート構造hfetおよびその製造方法
JP2015192004A (ja) * 2014-03-28 2015-11-02 国立大学法人 名古屋工業大学 ドレイン電流密度・相互コンダクタンスを大幅に改善したリセス構造のmis型ノーマリオフhemt素子
JP2016225578A (ja) * 2015-06-03 2016-12-28 富士通株式会社 化合物半導体装置及びその製造方法
JP2018085414A (ja) * 2016-11-22 2018-05-31 富士通株式会社 化合物半導体装置
WO2019208034A1 (ja) * 2018-04-27 2019-10-31 ソニーセミコンダクタソリューションズ株式会社 スイッチングトランジスタ及び半導体モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228611A1 (ja) * 2022-05-24 2023-11-30 ソニーセミコンダクタソリューションズ株式会社 高電子移動度トランジスタ及び半導体装置
WO2024048266A1 (ja) * 2022-09-01 2024-03-07 ソニーグループ株式会社 半導体デバイス、半導体モジュールおよび無線通信装置

Also Published As

Publication number Publication date
CN116097409A (zh) 2023-05-09
US20240030332A1 (en) 2024-01-25
JPWO2022049983A1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
JP5479446B2 (ja) 窒化物および炭化シリコンをベースとする集積デバイス、および窒化物をベースとする集積デバイスを製造する方法
US9029916B2 (en) Gallium nitride based semiconductor devices and methods of manufacturing the same
US7033912B2 (en) Silicon carbide on diamond substrates and related devices and methods
KR102055839B1 (ko) 질화계 반도체 소자
KR20140013247A (ko) 질화물계 반도체 소자 및 그의 제조 방법
WO2022049983A1 (ja) 半導体装置、半導体モジュール、及び無線通信装置
CN108417627B (zh) 一种用于制备GaN基高频微波器件的方法
JP6279294B2 (ja) フッ化物系または塩化物系化合物を含むゲート誘電体を備えたiii族窒化物系トランジスタ
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
JP5608969B2 (ja) 化合物半導体装置及びその製造方法
CN113192836A (zh) 射频半导体器件的制备方法及其结构
JP6693142B2 (ja) 半導体装置、電子部品、電子機器、および半導体装置の製造方法
WO2021029183A1 (ja) 半導体装置、半導体モジュールおよび電子機器
WO2022163196A1 (ja) 半導体装置、半導体モジュールおよび電子機器
CN112768359A (zh) 用于制备射频半导体器件的方法及其结构
WO2024048266A1 (ja) 半導体デバイス、半導体モジュールおよび無線通信装置
WO2023276275A1 (ja) 半導体装置、半導体モジュール、および無線通信装置
US20240234564A1 (en) Semiconductor device, semiconductor module, and wireless communication apparatus
US20220416065A1 (en) Semiconductor device, electric circuit, and wireless communication apparatus
WO2022019017A1 (ja) 半導体装置、半導体モジュール、及び無線通信装置
US20240170565A1 (en) Semiconductor device and wireless communication device
WO2022000362A1 (en) Semiconductor device and fabrication method thereof
CN117751456A (zh) 半导体设备、半导体模块以及无线通信装置
CN116762177A (zh) 半导体结构及其制备方法、电子设备
CN113903664A (zh) 半导体器件的制备方法及其结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546184

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18041870

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864041

Country of ref document: EP

Kind code of ref document: A1