WO2022047780A1 - 一种磷烯材料及其制备方法和应用 - Google Patents

一种磷烯材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022047780A1
WO2022047780A1 PCT/CN2020/113752 CN2020113752W WO2022047780A1 WO 2022047780 A1 WO2022047780 A1 WO 2022047780A1 CN 2020113752 W CN2020113752 W CN 2020113752W WO 2022047780 A1 WO2022047780 A1 WO 2022047780A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorene
phosphorus
orange
solvent
heating
Prior art date
Application number
PCT/CN2020/113752
Other languages
English (en)
French (fr)
Inventor
喻学锋
李睿
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/113752 priority Critical patent/WO2022047780A1/zh
Publication of WO2022047780A1 publication Critical patent/WO2022047780A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof

Definitions

  • the invention belongs to the technical field of preparation methods for crystalline phosphorus two-dimensional materials, and relates to a phosphorene material, a preparation method and applications thereof.
  • Elemental phosphorus materials have many kinds of allotropes, among which white phosphorus and red phosphorus have achieved extensive industrial applications, and black phosphorus has also achieved extensive research and attention in recent years due to its unique semiconductor properties and photoelectric thermal properties.
  • the unique two-dimensional lamellar structure of black phosphorus enables it to be further exfoliated into thin-layer black phosphorus nanosheets or even black phosphorus phosphorene, making a more significant leap in performance.
  • black phosphorus phosphorene Due to its very high carrier mobility and other advantages, black phosphorus phosphorene has great application potential in optoelectronic devices, energy, biomedicine and other fields. Its performance far exceeds that of graphene materials and is considered to be a very promising material. potential two-dimensional materials.
  • black phosphorene the application and development of black phosphorene are greatly limited at this stage, and there is still a long way to go before industrial production.
  • a technical difficulty of the existing black phosphorus phosphorene is that the water and oxygen stability is very poor, and it is easily oxidized. Even in the process of stripping, it may lose its semiconductor properties due to oxidation.
  • the serious bottleneck problem of lack of stability limits the application of black phosphorene to the laboratory stage, which lacks practical significance.
  • the object of the present invention is to provide a kind of phosphorene material and its preparation method and application.
  • the present invention provides a preparation method of phosphorene material, comprising the following steps:
  • the solvent is ethylenediamine, propylenediamine, butanediamine, pentamethylenediamine, hexamethylenediamine, heptanediamine, octanediamine, nonanediamine, decanediamine, diethylamine, diethylenetriamine, triamine
  • ethylenetetramine tetraethylenepentamine
  • ethanol ethanol
  • the heating temperature is 171-300° C., preferably 180-280° C. °C, too low temperature can not promote the conversion, will cause the product to be mainly reported solvent thermal black phosphorus; In the case of ethylenetetramine and tetraethylenepentamine, the higher degree of freedom of curling will promote the formation of phosphorene materials, and the synthesis temperature can be appropriately lowered.
  • the heating temperature is 120-300°C, preferably 160-280°C.
  • the phosphorene material is named orange phosphorene.
  • the elemental phosphorus source described in 1) is selected from one or a combination of at least two of white phosphorus, yellow phosphorus, red phosphorus, black phosphorus, purple phosphorus, blue phosphorus, and scarlet phosphorus.
  • the ratio of the elemental phosphorus source to the solvent in 1) is 0.3-20 g: 10 mL, preferably 0.5-10 g: 10 mL.
  • concentration of elemental phosphorus source is too low, white phosphorus oxide or phosphorus organic impurities will be obtained; when the concentration is too high, it will be sintered into a block in the hydrothermal kettle. In a suitable concentration range, increasing the concentration of raw materials will make the material flakes smaller in size and more densely distributed.
  • reaction time described in 2) is 3-100 hours, preferably 6-100 hours. Too short time will reduce the purity of the target product orange phosphorene, while prolonging the heating time is beneficial to improve the crystallinity of orange phosphorene, but excessively extending the heating time will lead to an unnecessary increase in the preparation cost.
  • step 2) specifically includes: transferring the mixed system to a closed container, and reacting for a period of time under heating conditions to obtain the phosphorene material;
  • the airtight container is a hydrothermal reactor
  • the volume of the airtight container is 1.5 to 3 times the volume of the mixing system in 1); if the volume of the airtight container is too small, it will cause a sharp increase in autogenous pressure and increase the safety risk of preparation, and if the volume is too large, it will cause waste;
  • the heating includes ordinary oven heating, oil bath heating, heating jacket heating, rotary oven heating and other technical means that can produce similar effects;
  • step 2) also includes cooling after the reaction is completed;
  • the cooling includes air cooling, forced cooling in a water bath and other technical means that can produce similar effects.
  • step 2) it also includes using a cleaning solvent to wash and dry the product obtained from the reaction;
  • the cleaning solvent is selected from one or a combination of at least two of ethanol, acetone, dimethylformamide (DMF), N-methylpyrrolidone (NMP) and water;
  • the drying includes ordinary oven drying, vacuum oven drying and other technical means that can produce similar effects;
  • the drying temperature is 50-100°C;
  • the drying time is 6 hours to 2 days, preferably overnight drying (about 10-14 hours);
  • it can be selected as required whether to perform low-temperature firing treatment in an inert gas atmosphere, so as to completely remove the adsorbed trace amine solvent, and the low temperature is below 400°C.
  • it also includes dispersing the phosphorene material to obtain a monodisperse phosphorene material with better dispersibility
  • the method used in the dispersion treatment includes commonly used dispersion techniques such as ball milling, water bath ultrasound, and probe ultrasound.
  • the present invention provides a phosphorene material prepared by any one of the above-mentioned methods for preparing a phosphorene material.
  • the present invention provides the application of the above-mentioned phosphorene material in the fields of photo/electrocatalytic reaction, battery electrode material, semiconductor optoelectronic element, flame retardant material, tumor tracer therapy and the like.
  • the present invention uses the solvothermal one-step method to directly prepare phosphorene materials in batches, the method is simple in process, low in cost, high in yield, large in scale-up production space and mature in technology, which is convenient for realizing industrialized mass production, and the product Spontaneous growth becomes a thin-layer structure with a sheet diameter of about 200 nm, and most of the sheet thicknesses are below 10 nm, so a large amount of monodisperse can be obtained only through simple redispersion without the need for traditional exfoliation methods that are energy-intensive and cannot be amplified.
  • Orange phosphorene products are: the present invention uses the solvothermal one-step method to directly prepare phosphorene materials in batches, the method is simple in process, low in cost, high in yield, large in scale-up production space and mature in technology, which is convenient for realizing industrialized mass production, and the product Spontaneous growth becomes a thin-layer structure with a sheet diameter of about 200 nm, and most of the sheet thicknesses
  • the method of the invention prepares and obtains a high-performance anti-oxidative orange phosphorene material with regular morphology, superior semiconductor properties and significantly enhanced water-oxygen stability, and its typical p-type semiconductor properties are expected to be obtained in the fields of catalytic reactions, semiconductor components and the like. Wide range of applications, two-dimensional lamellar morphology and large theoretical capacity are expected to be used in battery electrodes, flame retardant and other fields, and low biological toxicity also makes in vivo applications possible. Compared with the existing phosphorene materials, especially black phosphorene, the storage life of orange phosphorene is extended to several years, which greatly exceeds the cognitive scope of the existing phosphorene materials in the industry at the emerging stage, and subverts the phosphorus material water oxygen.
  • Fig. 1 is the real photo of orange phosphorene in Example 1 of the present invention.
  • Fig. 2 is the XRD pattern of orange phosphorene in Example 1 of the present invention.
  • Example 3 is a SEM picture of orange phosphorene in Example 1 of the present invention.
  • Example 4 is a photo of the ethanol dispersion liquid after redispersion of orange phosphorene in Example 1 of the present invention.
  • Example 5 is a TEM picture of orange phosphorene after redispersion in Example 1 of the present invention.
  • Example 6 is an AFM picture of orange phosphorene after redispersion in Example 1 of the present invention and a corresponding lamellar thickness analysis.
  • Fig. 7 is the Raman spectrum of orange phosphorene in Example 1 of the present invention.
  • Fig. 8 is the XRD pattern of orange phosphorene in Example 2 of the present invention.
  • Fig. 9 is the XRD pattern of orange phosphorene in Example 3 of the present invention.
  • FIG. 10 is a real picture of the red phosphorus raw material in Example 5 of the present invention and the phosphorene material prepared at the corresponding time.
  • Example 11 is the XRD pattern of orange phosphorene in Example 5 of the present invention.
  • Fig. 12 is the XRD pattern of orange phosphorene in the case of using propylene diamine as solvent in Example 6 of the present invention.
  • Example 13 is the XRD pattern of orange phosphorene in Example 7 of the present invention.
  • Fig. 14 is the semiconductor performance test figure of the orange phosphorene material obtained in the embodiment of the present invention 1, wherein (a) is ultraviolet-visible light-near infrared diffuse reflection figure, figure (b) is ultraviolet photoelectron spectrogram, figure ( c) is an X-ray photoelectron spectrum, and Figure (d) is a schematic diagram of the band gap structure.
  • Example 15 is an XPS detection chart of orange phosphorene obtained in Example 1 of the present invention and black phosphorene obtained by a traditional method in Comparative Example 1.
  • Example 16 is an AFM scan of the orange phosphorene obtained in Example 1 of the present invention and the black phosphorene material obtained by the traditional method in Comparative Example 1.
  • Example 17 is the XPS detection chart of fresh orange phosphorene and orange phosphorene placed in the air for 13 months in Example 1 of the present invention.
  • Figure 18 is a TEM image of the fresh orange phosphorene and the orange phosphorene placed in the air for 13 months in Example 1 of the present invention.
  • Figure 19 is a performance diagram of the electrocatalytic and photoelectric catalytic hydrogen evolution reactions of the black phosphorene obtained by the traditional method in the comparative example 1 and the orange phosphorene obtained in the embodiment 1 of the present invention after redispersion, wherein Figure (a) is the linear sweep voltammetry curve and Tafel slope diagram in the electrocatalytic hydrogen evolution reaction, Figure (b) is the linear sweep voltammetry curve and the Tafel slope diagram in the photoelectric catalytic hydrogen evolution reaction, and Figure (c) is the electrocatalytic and Chronoamperometry It curve of photoelectric catalytic hydrogen evolution reaction.
  • Black phosphorene materials also around 200 nm, were prepared using conventional CVT-exfoliation methods for comparison with orange phosphorene with similar flake diameters and flake thicknesses.
  • the preparation process of black phosphorus phosphorene is as follows: using 3g of red phosphorus, 0.12g of Sn, 0.06g of iodine, at a sintering temperature of 510 °C, in a quartz tube with an inner diameter of ⁇ 18mm and a length of 10cm to prepare black phosphorus bulk material, the preparation time is long 18h.
  • the bulk black phosphorus material was dispersed in NMP by ultrasonic for 10 hours in a water bath, and then peeled off into micro-nano sheets with a probe ultrasonic for 10 hours. Finally, the upper layer product was taken after centrifugation at 7000 rpm, which is an ideal black phosphorus phosphorus material of about 200 nm. .
  • a low-energy probe ultrasonic is used to disperse the orange phosphorene material, the ultrasonic power is 500W, and the time is 10 hours.
  • the orange phosphorene ethanol dispersion after the dispersion treatment is shown in Figure 4. Due to the large output, more orange ethanol dispersion can be obtained (because the image becomes black and white, the orange color cannot be reflected).
  • the TEM of orange phosphorene after dispersion treatment is shown in Fig. 5. It can be seen from Fig. 5 that the lamellae of orange phosphorene after dispersion treatment are uniform and independent, with almost no agglomeration, and the size of the lamellae decreases slightly, but basically remains unchanged. around 200nm.
  • the AFM picture of orange phosphorene after the dispersion treatment is shown in Figure 6, and the thickness of the phosphorene sheet is analyzed, and it can be seen that the thickness is below 10 nm.
  • the raw material in step (1) was replaced with 5N high-purity red phosphorus, 98.5% ordinary red phosphorus (AR), industrial white phosphorus, and black phosphorus prepared by solvothermal, and other conditions were the same as those in Example 1.
  • the prepared phosphorene material was subjected to XRD detection, as shown in FIG. 8 . It can be seen from FIG. 8 that the crystal structure did not change, and the obtained phosphorene material was still orange phosphorene.
  • the raw material concentration in step (1) was adjusted to 0.5 g, 5 g, 8 g, and 10 g of red phosphorus-containing raw materials per 10 mL of solvent, and the remaining conditions were the same as those in Example 1.
  • the prepared phosphorene material is subjected to XRD detection, as shown in FIG. 9 , it can be seen from FIG. 9 that the crystal structure has not changed, and the obtained phosphorene material is still orange phosphorene.
  • the heating temperature in step (2) was adjusted to 140, 160, 180, 200, 240, 260, and 280° C., and other conditions were the same as those in Example 1.
  • the prepared phosphorene material is tested by XRD, and the XRD test shows that when the heating temperature is above 160° C., the proportion of orange phosphorene in the product is above 50%.
  • the heating time in step (2) was adjusted to 3, 6, 9, and 96 hours, and the remaining conditions were the same as in Example 1.
  • Figure 10 shows the real picture of the red phosphorus raw material and the phosphorene material prepared at the corresponding time (the macroscopic morphology of the 96-hour sample is not different from that of the 9-hour sample, so it is no longer shown in Figure 10).
  • the prepared phosphorene material was tested by XRD, as shown in FIG. 11 . From FIG. 11 , it can be seen that the crystal structure did not change, and the obtained phosphorene material was still orange phosphorene. And through XRD detection, it can be known that the heating time is more than 6 hours, and the obtained products are basically all orange phosphorene.
  • the solvent used was replaced with short-chain solvents ethylenediamine, propylenediamine, and diethylenetriamine, and the heating temperature was adjusted to 140, 160, 180, 200, 220, and 240° C., and the remaining conditions were the same as those in Example 1.
  • XRD detection shows that the above three solvents have similar effects.
  • the XRD pattern of propylene diamine is used as a display, as shown in Figure 12. It can be seen from Figure 12 that phosphorene materials cannot be prepared at 140 and 160 °C in short-chain solvents. When the heating temperature is above 200°C, the obtained product is mainly orange phosphorene.
  • Example 2 The solvent used was replaced with the long-chain solvent hexanediamine, the heating temperature was adjusted to 160° C., and the remaining conditions were the same as those in Example 1.
  • the prepared phosphorene material was detected by XRD. As shown in Figure 13, the obtained product contained impurities, but the orange phosphorene material was still the main material.
  • step (2) The ordinary oven heating in step (2) is changed to oil bath heating or heating mantle heating, and there is no obvious difference between the products. If you add magnetic stirring to the hydrothermal kettle when heating in the oil bath/heating mantle, or use a rotary oven to heat the hydrothermal kettle, the additional crushing action will make the resulting material smaller in particle size and more crushed in shape (thickness changes). Not big, the sheet diameter will be as small as about 100nm or even smaller), but it has no obvious effect on the type of crystal.
  • the cooling mode of the reactor is changed to use a water bath for forced cooling, which has no effect on the products obtained therefrom.
  • the drying temperature of the product in the step (4) was adjusted to 50, 60, 80, 100° C., and the drying time was adjusted to 6 hours, 12 hours, 18 hours, 24 hours, and 72 hours, which had no effect on the crystallinity of the resulting product (XRD pattern).
  • the line is the same as in Figure 2).
  • Simple, low-energy-consumption technologies can be selected to further improve the dispersibility of orange phosphorene in different solvent systems, reduce the agglomeration of large particles, and prepare dispersions.
  • Technical means include but are not limited to commonly used dispersion techniques such as ball milling, water bath ultrasound, and probe ultrasound.
  • the orange phosphorene material obtained in Example 1 was analyzed by ultraviolet-visible light-near-infrared diffuse reflection, ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy. The results are shown in Figure 14a-c, respectively. It can be seen from the figures that orange phosphorene The valence band of is 1.06eV, which belongs to p-type semiconductor. The schematic diagram of its band gap structure is shown in Figure 14d.
  • Example 1 The orange phosphorene obtained in Example 1 and the black phosphorene material obtained by the traditional method in Comparative Example 1 were compared under different conditions for water and oxygen stability (when the total amount of materials is large, the overall stability is also higher) .
  • the XPS test was performed, as shown in Figure 15. It can be seen from Figure 15 that the black phosphorene has been mostly oxidized on the second day, and all the oxidation is completed on the fifth day. On the other hand, orange phosphorene remained more than half of the material intact and unoxidized after 5 days.
  • the difference in stability of monolithic phosphorene is more easily manifested than when the material is present in large quantities.
  • the orange phosphorene obtained in Example 1 and the black phosphorene material obtained by the traditional method in Comparative Example 1 were scanned by AFM, as shown in Figure 16. It can be seen from Figure 16 that the black phosphorene is scanning Oxidation bubbles (indicated by arrows) appeared during the process (about 1-2 hours), while orange phosphorene remained smooth and showed no signs of oxidation after being stored in air for one day at room temperature.
  • the orange phosphorene obtained in the embodiment 1 is prepared into a suspension in ethanol, and is stored in the air for more than one year (13 months), respectively to fresh orange phosphorene and the orange phosphorene after being stored for more than one year
  • the XPS assay was performed, as shown in Figure 17.
  • the XPS analysis indicated that the orange phosphorene after storage for more than one year had only a slight increase in the degree of oxidation compared to the fresh orange phosphorene.
  • the fresh orange phosphorene and the orange phosphorene stored for more than one year were tested by TEM respectively, as shown in Figure 18.
  • orange phosphorene is a better electrocatalytic and photoelectric catalytic hydrogen evolution catalyst than black phosphorene, and has extremely bright application prospects in other application fields, such as semiconductor components, battery electrodes, biomedicine, flame retardant, etc. .
  • the method of the present invention prepares a high-performance anti-oxidative orange phosphorene material with regular morphology, superior semiconductor properties and significantly enhanced water and oxygen stability.
  • Catalytic and photoelectric catalytic hydrogen evolution catalyst and has extremely bright application prospects in other application fields, such as semiconductor components, battery electrodes, biomedicine, flame retardant, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种磷烯材料及其制备方法和应用,制备方法包括:将单质磷源与溶剂混合并搅拌均匀得到混合体系;将混合体系在加热条件下反应,即得到磷烯材料;所述溶剂为乙二胺、丙二胺、丁二胺、戊二胺、己二胺、庚二胺、辛二胺、壬二胺、癸二胺、二乙胺、二乙烯三胺、三乙烯四胺、四乙烯五胺、乙醇、水中的一种或至少两种的组合;当所述溶剂包含乙二胺、丙二胺、丁二胺、戊二胺、二乙胺、二乙烯三胺、乙醇、水,所述加热温度为171-300℃;当所述溶剂包含己二胺、庚二胺、辛二胺、壬二胺、癸二胺、三乙烯四胺、四乙烯五胺,所述加热温度为120-300℃。

Description

一种磷烯材料及其制备方法和应用 技术领域
本发明属于结晶态磷二维材料制备方法技术领域,涉及一种磷烯材料及其制备方法和应用。
背景技术
单质磷材料具有很多种同质异形体,其中白磷、红磷都取得了广泛的工业应用,而黑磷凭借其独特的半导体性能和光电热特性,近年来也取得了广泛的研究与关注。黑磷独有的二维片层结构,使得其还能够进一步剥离成为薄层黑磷纳米片甚至黑磷磷烯,令性能取得更显著的飞跃。由于黑磷磷烯非常高的载流子迁移速率等优点,在光电子器件、能源、生物医学等领域中具有极大的应用潜力,其性能远远超过石墨烯材料,被认为是一种非常有潜力的二维材料。
然而,因黑磷磷烯制备技术的限制,目前其大批量生产非常困难。困难主要来源于以下几个方面:(1)黑磷磷烯的制备目前需要依托于高质量的黑磷块体材料,而块体材料的制备需要在高温高压条件下,通过气相传输手段来完成,不稳定程度极高,难以工业放大;(2)目前主流的以机械或者液相剥离手段,将块体黑磷转变为黑磷磷烯的方法更是极其耗时、成本很高,技术本身很难放大,同时黑磷磷烯的产量也非常低,导致大批量工业化生产根本无法实现。因此现阶段黑磷磷烯的应用与发展受到极大的限制,距离工业化生产还有漫长道路要走。此外,现有黑磷磷烯的一个卡脖子技术难点在于水氧稳定性很差,很容易被氧化,甚至在剥离的过程中,就可能因被氧化而失去半导体特性。在应用中,稳定性欠缺这个严重的瓶颈问题将黑磷磷烯的应用基本束缚在了实验室阶段,缺乏实际意义。上述这些重大缺陷制约了黑磷磷烯的进一步研究与发展。
因此新磷烯材料的开发开始成为领域内的研究热点,但由于绝大部分磷单质材料不具有二维片层结构,难以制备成磷烯材料,因此目前仅有少量的新型磷烯材料制备报道,包括紫磷磷烯、蓝磷磷烯等,制备方式仍以传统手段为主,并未能克服上述的问题。对新型磷烯结构的研究有望解决黑磷磷烯面临的重大瓶颈问题,推进磷烯材料的应用与放大生产,具有重大的战略与实际意义。
发明内容
为了解决上述背景技术中所提出的技术问题,本发明的目的是提供一种磷烯材料及其制 备方法和应用。
为了达到上述目的,本发明所采用的技术方案为:
一方面,本发明提供了一种磷烯材料的制备方法,包括以下步骤:
1)将单质磷源与溶剂混合并搅拌均匀得到混合体系;
2)将混合体系在加热条件下反应,即得到磷烯材料;
所述溶剂为乙二胺、丙二胺、丁二胺、戊二胺、己二胺、庚二胺、辛二胺、壬二胺、癸二胺、二乙胺、二乙烯三胺、三乙烯四胺、四乙烯五胺、乙醇、水中的一种或至少两种的组合;
当所述溶剂包含乙二胺、丙二胺、丁二胺、戊二胺、二乙胺、二乙烯三胺、乙醇、水时,所述加热温度为171-300℃,优选为180-280℃,过低的温度无法推进转化,会造成产物主要是已报道过的溶剂热黑磷;当所述溶剂包含己二胺、庚二胺、辛二胺、壬二胺、癸二胺、三乙烯四胺、四乙烯五胺时,更高的卷曲自由度会促进磷烯材料的形成,合成温度可适当降低,所述加热温度为120-300℃,优选为160-280℃。
进一步地,所述磷烯材料命名为橙磷磷烯。
进一步地,1)中所述的单质磷源选自白磷、黄磷、红磷、黑磷、紫磷、蓝磷、猩红磷中的一种或至少两种的组合。
进一步地,1)中所述单质磷源与溶剂的比例为0.3~20g:10mL,优选为0.5~10g:10mL。当单质磷源浓度太低时,会得到白色的磷氧化物或磷有机物杂质;当浓度太高时会在水热釜内烧结成块。在合适的浓度范围内,升高原料浓度会使得材料片径更小、分布更密集。
进一步地,2)中所述反应时间为3-100小时,优选为6-100小时。时间过短会降低目标产物橙磷磷烯的纯度,而延长加热时间有利于提高橙磷磷烯的结晶度,但过度延长加热时间会导致制备成本不必要的升高。
进一步地,步骤2)具体包括:将混合体系转移至密闭容器中,在加热条件下反应一段时间,即得到磷烯材料;
优选地,所述密闭容器为水热反应釜;
优选地,所述密闭容器的体积为1)中混合体系体积的1.5~3倍;密闭容器容积太小会造成自生压强急剧增加,提升制备的安全风险,而容积太大又会造成浪费;
优选地,所述加热包括普通烘箱加热、油浴加热、加热套加热、旋转烘箱加热以及能产生近似效果的其他技术手段;
优选地,步骤2)还包括反应完成后的冷却;
优选地,所述冷却包括空气冷却、水浴强制冷却以及能产生近似效果的其他技术手段。
进一步地,步骤2)后还包括使用清洗溶剂,将反应所得产物洗涤、干燥;
优选地,所述清洗溶剂选自乙醇、丙酮、二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)、水中的一种或至少两种的组合;
优选地,所述干燥包括普通烘箱干燥、真空烘箱干燥以及能产生近似效果的其他技术手段;
优选地,所述干燥的温度为50~100℃;
优选地,所述干燥的时间为6小时至2天,优选为隔夜干燥(约10~14小时);
优选地,可根据需要选择是否要在惰性气体氛围中低温烧制处理,以彻底脱除吸附的微量胺类溶剂,所述低温为400℃以下。
进一步地,还包括将磷烯材料进行分散处理,以获得分散性更佳的单分散磷烯材料;
优选地,所述分散处理所采用的方法包括球磨、水浴超声、探头超声等常用的分散技术。
另一方面,本发明提供了一种上述任一所述的磷烯材料的制备方法制备得到的磷烯材料。
再一方面,本发明提供了一种上述所述的磷烯材料在光/电催化反应、电池电极材料、半导体光电元件、阻燃材料以及肿瘤示踪治疗等领域中的应用。
本发明的有益效果是:本发明使用溶剂热一步法直接批量制备磷烯材料,该方法工艺简单、成本低廉、产率高、放大生产空间大且技术成熟,便于实现工业化大批量生产,并且产品自发的生长成为片径在200nm左右的薄层结构,大部分片层厚度在10nm以下,因而不需要高能耗、无法放大的传统剥离手段,仅通过简单的再分散,即可获得大量的单分散橙磷磷烯产品。
本发明方法制备获得了具有规整形貌、优势半导体性能和显著增强的水氧稳定性的高性能抗氧化橙磷磷烯材料,其典型的p型半导体特性有望在催化反应、半导体元件等领域取得广泛的应用,二维片层状形貌和大的理论容量则有望在电池电极、阻燃等领域取得应用,低生物毒性也让生物体内应用成为可能。相比现有的磷烯材料,尤其是黑磷磷烯,橙磷磷烯的储存寿命延长至数年,大大超出现阶段行业对已有磷烯材料的认知范围,颠覆了磷材料水氧稳定性差的传统认知,也保证了其实际应用的可能性。橙磷磷烯及其溶解热制备手段同时解决了背景技术中黑磷磷烯的三个瓶颈问题,具有多方面的深远意义,同时在产量和质量上的大幅提升也为开拓二维磷材料的工业实际应用奠定了扎实的基础。
附图说明
图1是本发明实施例1中的橙磷磷烯实物照片。
图2是本发明实施例1中的橙磷磷烯的XRD图谱。
图3是本发明实施例1中的橙磷磷烯的SEM图片。
图4是本发明实施例1中的橙磷磷烯再分散后的乙醇分散液照片。
图5是本发明实施例1中的再分散后的橙磷磷烯TEM图片。
图6是本发明实施例1中的再分散后橙磷磷烯的AFM图片及相应的片层厚度分析。
图7是本发明实施例1中的橙磷磷烯的拉曼图谱。
图8是本发明实施例2中的橙磷磷烯的XRD图谱。
图9是本发明实施例3中的橙磷磷烯的XRD图谱。
图10是本发明实施例5中的红磷原料以及相应时间下制备得到的磷烯材料实物图。
图11是本发明实施例5中的橙磷磷烯的XRD图谱。
图12是本发明实施例6中以丙二胺为溶剂的情况下橙磷磷烯的XRD图。
图13是本发明实施例7中的橙磷磷烯的XRD图谱。
图14是本发明实施例1中得到的橙磷磷烯材料的半导体性能测试图,其中(a)为紫外-可见光-近红外漫反射图,图(b)为紫外光电子能谱图,图(c)为X射线光电子能谱图,图(d)为带隙结构示意图。
图15是本发明实施例1中获得的橙磷磷烯与对比例1中使用传统方法获得的黑磷磷烯的XPS检测图。
图16是本发明实施例1中得到的橙磷磷烯与对比例1中使用传统方法获得的黑磷磷烯材料的AFM扫描图。
图17是本发明实施例1中新鲜橙磷磷烯和在空气中放置13个月的橙磷磷烯的XPS检测图。
图18是本发明实施例1中新鲜橙磷磷烯和在空气中放置13个月的橙磷磷烯的TEM检测图。
图19是对比例1中使用传统方法获得的黑磷磷烯和本发明实施例1中获得的橙磷磷烯再分散后用于电催化和光电催化析氢反应的性能图,其中图(a)为电催化析氢反应中的线性扫描伏安曲线和塔菲尔斜率图,图(b)为光电催化析氢反应中的线性扫描伏安曲线和塔菲尔斜率图,图(c)为电催化和光电催化析氢反应的计时电流I-t曲线。
具体实施方式
为了更好地理解本发明的内容,下面结合附图和具体实施方法对本发明内容作进一步说 明,但本发明的保护内容不局限于以下实施例。
对比例1
使用传统的CVT-剥离手段制备同样在200nm左右的黑磷磷烯材料,以便与具有相近片径和片层厚度的橙磷磷烯进行比较。黑磷磷烯的制备流程为:使用3g红磷,0.12g Sn,0.06g碘单质,在510℃的烧结温度下,于内径φ18mm,长10cm的石英管里制备黑磷块体材料,制备时长18h。随后将块体黑磷材料在NMP中水浴超声10小时分散,并用探头超声10小时剥离成微纳米片,最后在7000rpm下离心分离后取上层产品,即为理想的200nm左右的黑磷磷烯材料。
实施例1
(1)称取1g 6N高纯红磷原料,加入10mL四乙烯五胺溶剂中,室温下磁力搅拌2小时,使红磷原料在溶剂中均匀分散;
(2)将混合体系转移至25ml的水热反应釜中,拧紧反应釜盖,在220℃的普通烘箱中加热18个小时;
(3)待反应釜在空气中冷却至室温后,使用乙醇将所得的粉末产物多次洗涤、离心,洗去残留溶剂。
(4)将清洗过的红褐色固体在80℃的普通烘箱中过夜干燥,即得到粉末状的橙磷磷烯材料,产率超过80%,其实物照片如图1所示。橙磷磷烯的XRD图谱如图2所示,从图2可知其结构与已报道过的块体磷单质(PDF#44-0906)标准样相同,表明二者具有相同的晶体结构。橙磷磷烯的SEM图片如图3所示,从图3可知自发形成的磷烯片片径在200nm左右,片层厚度在10nm以下。
为使性能更好的体现,本实施例中采用低能耗探头超声对橙磷磷烯材料进行分散处理,超声功率为500W,时间10小时。分散处理后的橙磷磷烯乙醇分散液如图4所示,由于产量大,可以获得较多橙色的乙醇分散液(由于图变为黑白图后体现不出橙色)。分散处理后的橙磷磷烯TEM如图5所示,从图5可以看出,分散处理后橙磷磷烯的片层均匀独立,几乎无团聚,片层大小略有所下降,但基本还在200nm左右。分散处理后的橙磷磷烯的AFM图片如图6所示,对其中的磷烯片层厚度进行分析,可知厚度在10nm以下。
橙磷磷烯的拉曼图谱如图7所示,同时图中也将橙磷磷烯与原料红磷和传统黑磷磷烯(对比例1)的拉曼震动模式进行了比较,从图7可知橙磷磷烯与红磷原料更为接近,而与黑磷磷烯的振动模式有一定区别。而分散处理与否对其拉曼震动模式并没有什么影响。
实施例2
将步骤(1)中的原料更换为5N高纯红磷、98.5%普通红磷(AR)、工业白磷、溶剂热制备出的黑磷,其余条件同实施例1。将制备得到的磷烯材料进行XRD检测,如图8所示,从图8可知,晶体结构没有变化,得到的仍为橙磷磷烯材料。
实施例3
将步骤(1)中的原料浓度调整为每10mL溶剂中含红磷原料0.5g、5g、8g、10g,其余条件同实施例1。将制备得到的磷烯材料进行XRD检测,如图9所示,从图9可知,晶体结构没有变化,得到的仍为橙磷磷烯材料。
实施例4
将步骤(2)中的加热温度调整为140、160、180、200、240、260、280℃,其余条件同实施例1。将制备得到的磷烯材料进行XRD检测,通过XRD检测可知加热温度在160℃以上时,橙磷磷烯在产物中的比例在50%以上。
实施例5
将步骤(2)中的加热时间调整为3、6、9、96小时,其余条件同实施例1。红磷原料以及相应时间下制备得到的磷烯材料实物图如图10所示(96小时样品的宏观形貌与9小时样品并无不同,因此图10中不再显示)。将制备得到的磷烯材料进行XRD检测,如图11所示,从图11可知,晶体结构没有变化,得到的仍为橙磷磷烯材料。且通过XRD检测可知加热时间在6小时以上,得到产品基本全为橙磷磷烯。由于橙磷磷烯是由溶剂热黑磷转化而来,因此加热时间小于6小时会在产物中残留溶剂热黑磷杂质,导致产物显黑色(如图10所示),XRD中存在溶剂热黑磷的杂质峰(如图11所示)。
实施例6
将使用的溶剂替换为短链溶剂乙二胺、丙二胺、二乙烯三胺,加热温度调整为140,160,180、200、220、240℃,其余条件同实施例1。XRD检测可知,上述三种溶剂具有类似的效果,以丙二胺的XRD图作为展示,如图12所示,从图12可知,短链溶剂时140、160℃不能制备得到磷烯材料,当加热温度在200℃以上,得到产品以橙磷磷烯为主。
实施例7
将使用的溶剂替换为长链溶剂己二胺,加热温度调整为160℃,其余条件同实施例1。将制备得到的磷烯材料进行XRD检测,如图13所示,得到的产品含有杂质,但仍以橙磷磷烯材料为主。
实施例8
步骤(2)中的普通烘箱加热改为油浴加热或加热套加热,产品没有明显区别。若在油浴 /加热套加热时,于水热釜内加入磁子搅拌,或使用旋转烘箱加热水热釜,额外的破碎作用会使得到的材料粒径更小、形状更为破碎(厚度变化不大,片径会小到100nm左右甚至更小),但对于晶体种类没有明显影响。
实施例9
步骤(3)中反应釜的冷却方式改为使用水浴强制冷却,对所得产品没有影响。
洗涤溶剂更换为丙酮、DMF、NMP、水,对所得产品没有影响。
根据需求可选择在氮气气氛下于300℃左右加热,以脱除微量残留溶剂,XRD检测可知加热处理后的产品橙磷磷烯的结构依然完整(图线同图2)。
实施例10
步骤(4)中产品的干燥温度调整为50、60、80、100℃,干燥时间调整为6小时,12小时,18小时,24小时,72小时,对所得产品的结晶度没有影响(XRD图线同图2)。
使用普通烘箱或真空烘箱干燥,对产品没有明显影响。
可选择简单、低能耗的技术来进一步提升橙磷磷烯在不同溶剂体系中的分散度、减少大颗粒团聚、制备分散液。技术手段包括但不限于球磨、水浴超声、探头超声等常用的分散技术。
实施例11
对实施例1中得到的橙磷磷烯材料开展紫外-可见光-近红外漫反射、紫外光电子能谱和X射线光电子能谱分析,结果分别见于图14a-c,从图中可知橙磷磷烯的价带是1.06eV,属于p型半导体,其带隙结构示意图见图14d。
实施例12
将实施例1中得到的橙磷磷烯与对比例1中使用传统方法获得的黑磷磷烯材料在不同条件下对比水氧稳定性(在材料总量较多时,稳定性也整体较高)。于35℃、100%湿度的条件下存放1-5天后,进行XPS检测,如图15所示,从图15可知黑磷磷烯在第2天已经大部分氧化,第5天时全部氧化完毕,而橙磷磷烯在5天后依然有超过一半材料保持完整,未氧化。
单片磷烯的稳定性差异相比材料大量存在时更容易体现出来。将实施例1中得到的橙磷磷烯与对比例1中使用传统方法获得的黑磷磷烯材料使用AFM扫描,如图16所示,从图16中可以看出,黑磷磷烯在扫描过程中(大约1~2小时)便会出现氧化气泡(由箭头标识),而橙磷磷烯在室温下,于空气中存放一天之后依然表面光滑,没有氧化的迹象。
实施例13
将实施例1中得到的橙磷磷烯于乙醇中制备成悬浮液,在空气中存放超过一年(13个月), 分别对新鲜橙磷磷烯和存放超过一年后的橙磷磷烯进行XPS检测,如图17所示,XPS分析表明存放超过一年后的橙磷磷烯相比新鲜橙磷磷烯仅仅是氧化程度略有增加。分别对新鲜橙磷磷烯和存放超过一年后的橙磷磷烯进行TEM检测,如图18所示,TEM分析表明存放超过一年后的橙磷磷烯晶体的晶格结构依然完整,相比新鲜橙磷磷烯没有明显变化。而黑磷磷烯即使在尽量隔绝水氧的手套箱中存放,4个月左右也会完全氧化消失。
实施例14
基于橙磷磷烯的优越的稳定性及其半导体特性,在电催化与光电催化析氢反应中与对比例1中的传统黑磷磷烯进行性能比较,如图19所示,橙磷磷烯的活性和稳定性都明显优于黑磷磷烯。从图19a,b可知,线性扫描伏安曲线(LSV)显示当产生相同的析氢电流时,橙磷磷烯的过电势明显更低,并且塔菲尔斜率更小;从图19c可知,计时电流I-t曲线表明橙磷磷烯的残余电流百分比是黑磷磷烯的3~4倍,而衰减的速度要小于后者的十分之一。上述结果证明橙磷磷烯是比黑磷磷烯更优的电催化和光电催化析氢催化剂,且在其他的应用领域,如半导体元件、电池电极、生物医药、阻燃等具有极为光明的应用前景。
综上,本发明方法制备获得了具有规整形貌、优势半导体性能和显著增强的水氧稳定性的高性能抗氧化橙磷磷烯材料,橙磷磷烯是比黑磷磷烯更优的电催化和光电催化析氢催化剂,且在其他的应用领域,如半导体元件、电池电极、生物医药、阻燃等具有极为光明的应用前景。
以上所述仅为本发明的具体实施方式,不是全部的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (10)

  1. 一种磷烯材料的制备方法,其特征在于,包括以下步骤:
    1)将单质磷源与溶剂混合并搅拌均匀得到混合体系;
    2)将混合体系在加热条件下反应,即得到磷烯材料;
    所述溶剂为乙二胺、丙二胺、丁二胺、戊二胺、己二胺、庚二胺、辛二胺、壬二胺、癸二胺、二乙胺、二乙烯三胺、三乙烯四胺、四乙烯五胺、乙醇、水中的一种或至少两种的组合;
    当所述溶剂包含乙二胺、丙二胺、丁二胺、戊二胺、二乙胺、二乙烯三胺、乙醇、水时,所述加热温度为171-300℃,优选为180-280℃;当所述溶剂包含己二胺、庚二胺、辛二胺、壬二胺、癸二胺、三乙烯四胺、四乙烯五胺时,所述加热温度为120-300℃,优选为160-280℃。
  2. 根据权利要求1所述的磷烯材料的制备方法,其特征在于,所述磷烯材料命名为橙磷磷烯。
  3. 根据权利要求1所述的磷烯材料的制备方法,其特征在于,1)中所述的单质磷源选自白磷、黄磷、红磷、黑磷、紫磷、蓝磷、猩红磷中的一种或至少两种的组合。
  4. 根据权利要求1所述的磷烯材料的制备方法,其特征在于,1)中所述单质磷源与溶剂的比例为0.3~20g:10mL,优选为0.5~10g:10mL。
  5. 根据权利要求1所述的磷烯材料的制备方法,其特征在于,2)中所述反应时间为3-100小时,优选为6-100小时。
  6. 根据权利要求1所述的磷烯材料的制备方法,其特征在于,步骤2)具体包括:将混合体系转移至密闭容器中,在加热条件下反应一段时间,即得到磷烯材料;
    优选地,所述密闭容器为水热反应釜;
    优选地,所述密闭容器的体积为1)中混合体系体积的1.5~3倍;
    优选地,所述加热包括普通烘箱加热、油浴加热、加热套加热、旋转烘箱加热;
    优选地,步骤2)还包括反应完成后的冷却;
    优选地,所述冷却包括空气冷却、水浴强制冷却。
  7. 根据权利要求1-6任一项所述的磷烯材料的制备方法,其特征在于,步骤2)后还包括使用清洗溶剂,将反应所得产物洗涤、干燥;
    优选地,所述清洗溶剂选自乙醇、丙酮、DMF、NMP、水中的一种或至少两种的组合;
    优选地,所述干燥包括普通烘箱干燥、真空烘箱干燥;
    优选地,所述干燥的温度为50~100℃;
    优选地,所述干燥的时间为6小时至2天,优选为隔夜干燥;
    优选地,可根据需要选择是否要在惰性气体氛围中低温烧制处理,以彻底脱除吸附的微量胺类溶剂,所述低温为400℃以下。
  8. 根据权利要求1-7任一项所述的磷烯材料的制备方法,其特征在于,还包括将磷烯材料进行分散处理;
    优选地,所述分散处理所采用的方法包括球磨、水浴超声、探头超声。
  9. 权利要求1-8任一项所述的磷烯材料的制备方法制备得到的磷烯材料。
  10. 权利要求9所述的磷烯材料在光/电催化反应、电池电极材料、半导体光电元件、阻燃材料以及肿瘤示踪治疗领域中的应用。
PCT/CN2020/113752 2020-09-07 2020-09-07 一种磷烯材料及其制备方法和应用 WO2022047780A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113752 WO2022047780A1 (zh) 2020-09-07 2020-09-07 一种磷烯材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113752 WO2022047780A1 (zh) 2020-09-07 2020-09-07 一种磷烯材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022047780A1 true WO2022047780A1 (zh) 2022-03-10

Family

ID=80492404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113752 WO2022047780A1 (zh) 2020-09-07 2020-09-07 一种磷烯材料及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2022047780A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124008A (zh) * 2022-06-29 2022-09-30 西安热工研究院有限公司 一种紫磷纳米长带及其制备方法和应用
CN115417390A (zh) * 2022-10-18 2022-12-02 太原理工大学 一种单晶紫磷的制备方法
CN115851336A (zh) * 2022-11-30 2023-03-28 清华大学 紫磷晶体及其制备方法与应用、润滑油及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107188141A (zh) * 2017-07-10 2017-09-22 太原理工大学 一种低温批量合成黑磷纳米片材料的方法
CN109850859A (zh) * 2019-04-11 2019-06-07 福建师范大学 一种溶剂热制备二维黑磷纳米材料的方法
CN111483990A (zh) * 2020-04-22 2020-08-04 昆明理工大学 一种低成本高结晶度黑磷及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107188141A (zh) * 2017-07-10 2017-09-22 太原理工大学 一种低温批量合成黑磷纳米片材料的方法
CN109850859A (zh) * 2019-04-11 2019-06-07 福建师范大学 一种溶剂热制备二维黑磷纳米材料的方法
CN111483990A (zh) * 2020-04-22 2020-08-04 昆明理工大学 一种低成本高结晶度黑磷及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124008A (zh) * 2022-06-29 2022-09-30 西安热工研究院有限公司 一种紫磷纳米长带及其制备方法和应用
CN115124008B (zh) * 2022-06-29 2024-03-08 西安热工研究院有限公司 一种紫磷纳米长带及其制备方法和应用
CN115417390A (zh) * 2022-10-18 2022-12-02 太原理工大学 一种单晶紫磷的制备方法
CN115417390B (zh) * 2022-10-18 2023-07-28 太原理工大学 一种单晶紫磷的制备方法
CN115851336A (zh) * 2022-11-30 2023-03-28 清华大学 紫磷晶体及其制备方法与应用、润滑油及其制备方法与应用
CN115851336B (zh) * 2022-11-30 2023-08-18 清华大学 紫磷晶体及其制备方法与应用、润滑油及其制备方法与应用

Similar Documents

Publication Publication Date Title
WO2022047780A1 (zh) 一种磷烯材料及其制备方法和应用
Xue et al. 2D mesoporous ultrathin Cd0. 5Zn0. 5S nanosheet: fabrication mechanism and application potential for photocatalytic H2 evolution
Yuan et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity
Song et al. Metal-organic framework derived Fe/Fe3C@ N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions
Niu et al. Microwave-assisted solvothermal synthesis of novel hierarchical BiOI/rGO composites for efficient photocatalytic degardation of organic pollutants
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
CN105140475B (zh) 一种Fe3O4/MoS2锂离子电池负极材料的制备方法
CN106099126A (zh) 一种花状结构硫化钴/碳复合材料及其制备方法
CN111558391A (zh) 一种杂原子掺杂的钴金属催化剂及其制备方法
CN109534307B (zh) 一种g-C3N4晶相/非晶相同质结及其制备方法和应用
Lei et al. A comparative study on photocatalytic hydrogen evolution activity of synthesis methods of CDs/ZnIn2S4 photocatalysts
WO2021104087A1 (zh) 一种金属氧化物纳米颗粒及其制备方法和应用
Zhang et al. Fabrication and catalytic properties of novel urchin-like Co3O4
Dai et al. Room-temperature synthesis of various allotropes of carbon nanostructures (graphene, graphene polyhedra, carbon nanotubes and nano-onions, n-diamond nanocrystals) with aid of ultrasonic shock using ethanol and potassium hydroxide
CN109569665A (zh) 一种硫化铜/硫化钼复合材料的制备方法和应用
Yang et al. Synthesis of nitrogen-doped carbon nanostructures from polyurethane sponge for bioimaging and catalysis
CN113044831A (zh) 一种氮掺杂碳纳米管阵列的制备方法
CN114427104B (zh) 铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用
CN110229153B (zh) 一种插层分子及其制备方法、二维纳米复合材料
CN108975403A (zh) 一种可变组分氧化钒纳米带及其合成方法和应用
CN109701577B (zh) 一种利用碳纳米管作为硬模板制备多孔石墨相氮化碳的方法
CN105060272B (zh) 一种以卤虫卵壳作为碳源低温下制备碳纳米管的方法
CN106957441A (zh) 一种溶剂热法合成碳化MOFs的方法
CN113046765B (zh) 一种泡沫镍负载Fe2O3@Ni3S2复合结构OER电催化剂的制备方法
Cao et al. Construction of nanosized MoP decorated highly crystalline carbon nitride sphere as an excellent photocatalyst for boosted photocatalytic hydrogen production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952024

Country of ref document: EP

Kind code of ref document: A1