WO2022045370A1 - 空気組成調整装置、冷凍装置、及び輸送用コンテナ - Google Patents

空気組成調整装置、冷凍装置、及び輸送用コンテナ Download PDF

Info

Publication number
WO2022045370A1
WO2022045370A1 PCT/JP2021/031994 JP2021031994W WO2022045370A1 WO 2022045370 A1 WO2022045370 A1 WO 2022045370A1 JP 2021031994 W JP2021031994 W JP 2021031994W WO 2022045370 A1 WO2022045370 A1 WO 2022045370A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
sensor
cover
passage
casing
Prior art date
Application number
PCT/JP2021/031994
Other languages
English (en)
French (fr)
Inventor
完 池宮
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202180052619.5A priority Critical patent/CN115885143A/zh
Priority to EP21861790.0A priority patent/EP4184089A4/en
Publication of WO2022045370A1 publication Critical patent/WO2022045370A1/ja
Priority to US18/167,951 priority patent/US20230192395A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/74Large containers having means for heating, cooling, aerating or other conditioning of contents
    • B65D88/744Large containers having means for heating, cooling, aerating or other conditioning of contents heating or cooling through the walls or internal parts of the container, e.g. circulation of fluid inside the walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/48Arrangements of indicating or measuring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/003Transport containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2588/00Large container
    • B65D2588/74Large container having means for heating, cooling, aerating or other conditioning of contents
    • B65D2588/743Large container having means for heating, cooling, aerating or other conditioning of contents blowing or injecting heating, cooling or other conditioning fluid inside the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/74Large containers having means for heating, cooling, aerating or other conditioning of contents
    • B65D88/745Large containers having means for heating, cooling, aerating or other conditioning of contents blowing or injecting heating, cooling or other conditioning fluid inside the container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment

Definitions

  • This disclosure relates to an air composition adjusting device, a refrigerating device, and a container for transportation.
  • a gas sensor for measuring an air component has been used in an air composition adjusting device for adjusting the oxygen concentration and carbon dioxide concentration in the space inside a shipping container (see, for example, Patent Document 1).
  • the concentration of oxygen and carbon dioxide in the internal space is measured by a gas sensor, and the concentration is controlled to be within an appropriate range.
  • the gas sensor may deteriorate due to the corrosive components in the air flowing in from the outside or inside of the refrigerator.
  • the corrosive component is a gas containing a component that corrodes a substance such as sulfur, phosphorus, calcium, chlorine, and ammonia.
  • the purpose of this disclosure is to suppress deterioration of the gas sensor that measures the components of air.
  • the first aspect of the present disclosure is a transport unit (31) for transporting air for an air composition adjusting device, and a transport unit (31).
  • the adjusting unit (34, 35) that adjusts the composition of the air in the target space and the transport unit (31) introduce the air into the adjusting unit (34, 35) and supply the air with the adjusted composition to the target space.
  • An air circuit (3) a gas sensor (51) arranged in the target space to measure air components, a cover (101) covering the circumference of the gas sensor (51), and air in the cover (101). It includes a cover unit (100) including an inflow path (111) for taking in and an outflow path (112) for letting out air in the cover (101).
  • the contact between the gas sensor (51) and the corrosive component in the air is suppressed, and the deterioration of the gas sensor (51) is suppressed.
  • the inner diameter of the inflow path (111) and the inner diameter of the outflow path (112) are 1 mm or more and 4 mm or less.
  • the responsiveness of the gas sensor (51) deteriorates. If the inner diameters of the outflow passage (112) and the inflow passage (111) are too small, the responsiveness of the gas sensor (51) deteriorates. If the inner diameters of the outflow passage (112) and the inflow passage (111) are too large, the contact time or frequency between the gas sensor (51) and the corrosive component increases, and the gas sensor (51) tends to deteriorate.
  • the inner diameter of the outflow passage (112) and the inner diameter of the inflow passage (111) to 1 mm or more and 4 mm or less, deterioration of the gas sensor (51) can be suppressed while ensuring the responsiveness of the gas sensor (51).
  • a third aspect is that in the first or second aspect, the outflow channel (112) is located above the cover (101).
  • heat from the gas sensor (51) or the like can be discharged to the outside of the cover (101) from the outflow path (112) at the top of the cover (101). As a result, the temperature rise inside the cover (101) can be suppressed.
  • the inflow path (111) is located at the lower part of the cover (101).
  • the water inside the cover (101) can be discharged to the outside of the cover (101) from the inflow path (111) at the lower part () of the cover (101).
  • the detection unit (51a) of the gas sensor (51) is on a straight line connecting the inflow path (111) and the outflow path (112). Located in.
  • the air flowing from the inflow path (111) to the outflow path (112) easily passes through the detection unit (51a), so that the responsiveness of the gas sensor (51) can be ensured.
  • a sixth aspect is that in any one of the first to fifth aspects, the inflow path (111) is composed of a first hole (h1) formed in the cover (101), and the outflow path (112) is formed. ) Is composed of a second hole (h2) formed in the cover (101).
  • the flow path resistance of the inflow path (111) and the outflow path (112) can be reduced.
  • a seventh aspect is, in any one of the first to fifth aspects, the inflow path (111) is composed of a first cylinder portion (131) connected to the cover (101), and the outflow path is formed. (112) is configured by a second cylinder portion (132) connected to the cover (101).
  • the gas sensor (51) is configured to generate heat in the ON state, and the cover (101) generates heat of the gas sensor (51). It is configured to form an air flow accordingly.
  • an updraft is formed in the cover (101) due to the gas sensor (51) being turned on. As a result, the air in the cover (101) can be conveyed.
  • a ninth aspect in any one of the first to eighth aspects, comprises a sensor casing (90) that houses the gas sensor (51) inside, and the sensor casing (90) allows air to be inside the sensor casing (90).
  • the introduction port (94) to be introduced is provided, and the cover (101) is arranged between the introduction port (94) and the gas sensor (51).
  • the cover (101) arranged between the inlet (94) and the gas sensor (51) allows the corrosive component that enters the sensor casing (90) together with the air to touch the gas sensor (51). Can be suppressed.
  • a tenth aspect is a portion in which the introduction port (94) is arranged below the gas sensor (51) and the cover (101) is arranged below the gas sensor (51) in the ninth aspect. Has.
  • the corrosive component enters the sensor casing (90) together with the air from the introduction port (94) arranged below the gas sensor (51), and the corrosive component reaches the gas sensor (51). It is suppressed by the cover (101).
  • the introduction port (94) has a first introduction port (94a) for introducing the air inside the target space into the sensor casing (90) and the target space.
  • a second introduction port (94b) for introducing the air outside the sensor casing (90) into the sensor casing (90), and at least one of the first introduction port (94a) and the second introduction port (94b) is the gas sensor (51).
  • the cover (101) has a portion that is located below the gas sensor (51).
  • the corrosive component is a gas sensor ( Reaching 51) is suppressed by the cover (101).
  • a twelfth aspect includes, in any one of the first to eighth aspects, a contact suppressing portion that suppresses the corrosion component in the air from coming into contact with the gas sensor (51), and the contact suppressing portion (100) is provided.
  • a thirteenth aspect comprises, in the twelfth aspect, a sensor casing (90) accommodating the gas sensor (51) inside, and the adsorbent (105) is arranged inside the sensor casing (90). ..
  • the corrosive component of the air that has entered the inside of the sensor casing (90) is adsorbed by the adsorbent (105), so that the corrosive component can be suppressed from coming into contact with the gas sensor (51).
  • the sensor casing (90) for accommodating the gas sensor (51) is provided in the sensor casing (90), and the introduction path (59) for introducing air into the sensor casing (90) is provided. ) Is connected, and the adsorbent (105) is arranged in the introduction path (59).
  • the contact between the gas sensor (51) and the corrosive component can be suppressed by providing the adsorbent (105) in the introduction path (59) for introducing air into the sensor casing (90).
  • a fifteenth aspect includes, in the twelfth aspect, a sensor casing (90) for accommodating the gas sensor (51) inside, and the sensor casing (90) has an introduction port (94) for introducing air into the inside thereof.
  • the adsorbent (105) is arranged at the introduction port (94).
  • the adsorbent (105) at the introduction port (94) of the sensor casing (90), the contact between the gas sensor (51) and the corrosive component can be suppressed.
  • the adsorbent (105) may be provided in both the introduction path (59) and the introduction port (94) for introducing air into the sensor casing (90). With such a configuration, the contact between the gas sensor (51) and the corrosive component can be suppressed more sufficiently.
  • the adsorbent (105) is arranged in an inflow portion where air flows into the air circuit (3).
  • the contact between the gas sensor (51) and the corrosive component can be suppressed by providing the adsorbent (105) at the inflow portion of the air into the air circuit (3).
  • the seventeenth aspect is any one of the twelfth to sixteenth aspects, wherein the adsorbent () adsorbs a corrosive component containing sulfur or phosphorus.
  • the eighteenth aspect comprises the components (21 to 24) of the refrigerant circuit (20) that performs the refrigeration cycle, and the air composition adjusting unit (60) that adjusts the air composition of the target space, and the refrigerant circuit (20).
  • the air composition adjusting unit (60) is composed of any one of the air composition adjusting devices of the first to the seventeenth aspects. Will be done.
  • the contact between the gas sensor (51) and the corrosive component can be suppressed, and the deterioration of the gas sensor (51) can be suppressed.
  • a nineteenth aspect is a transportation container including a container body (2) for transporting fresh food and a transportation freezing device (10) for cooling the inside of the container body (2) as a target space.
  • the transport freezing device (10) is composed of the refrigerating device of the eighteenth aspect.
  • FIG. 1 is a perspective view of the transport refrigerating apparatus according to the first embodiment of the present invention as viewed from the outside of the refrigerator.
  • FIG. 2 is a side sectional view showing a schematic configuration of the transport refrigerating apparatus of FIG.
  • FIG. 3 is a piping system diagram showing the configuration of the refrigerant circuit of the transport refrigerating apparatus of FIG. 1.
  • FIG. 4 is a piping system diagram showing an air circuit of the CA device of the transport refrigerating device of FIG. 1, and shows an air flow in the first operation.
  • FIG. 5 is a piping system diagram showing an air circuit of the CA device of the transport refrigerating device of FIG. 1, and shows an air flow in the second operation.
  • FIG. 1 is a perspective view of the transport refrigerating apparatus according to the first embodiment of the present invention as viewed from the outside of the refrigerator.
  • FIG. 2 is a side sectional view showing a schematic configuration of the transport refrigerating apparatus of FIG.
  • FIG. 3 is a
  • FIG. 6 is a piping system diagram showing an air circuit of the CA device of the transport refrigerating device of FIG. 1, and shows an air flow in an outside air introduction operation.
  • FIG. 7 is a piping system diagram showing an air circuit of the CA device of the transport refrigerating device of FIG. 1, and shows an air flow in a sensor calibration operation.
  • FIG. 8 is a rear perspective view of the casing of the refrigerating apparatus for transportation, showing the arrangement of the sensor unit.
  • FIG. 9 is a perspective view of the sensor unit.
  • FIG. 10 is a perspective view showing the inside of the sensor unit.
  • FIG. 11 is a perspective view of the sensor unit as viewed from the back.
  • FIG. 12 is a perspective view showing the inside of the sensor unit.
  • FIG. 13 is a schematic perspective view of the cover unit.
  • FIG. 14 is a view of the cover unit as viewed from the top.
  • FIG. 15 is a cross-sectional view of the cover unit.
  • FIG. 16 is a cross-sectional view of the cover unit according to the second modification of the first embodiment.
  • FIG. 17 is a perspective view showing the inside of the sensor casing according to the second embodiment.
  • FIG. 18 is a perspective view of a configuration in which an adsorbent is provided on the case cover according to the first modification of the second embodiment.
  • FIG. 19 is a perspective view showing the inside of the sensor casing according to the second modification of the second embodiment.
  • FIG. 20 is a partially enlarged view of the air circuit of the CA device according to the third modification of the second embodiment.
  • FIG. 21 is a partially enlarged view of the air circuit of the CA device according to the modified example 4 of the second embodiment.
  • FIG. 22 is a piping system diagram showing an air circuit of the CA device according to the third embodiment.
  • FIG. 23 is a perspective view of the transport refrigerating apparatus according to the third embodiment.
  • Embodiment 1 of the present invention will be described in detail with reference to the drawings.
  • the present embodiment relates to a transport container (1) provided with an air composition adjusting device (60) for adjusting the composition of air in a target space.
  • the air composition adjusting device (60) includes a gas supply unit (30) and a sensor unit (50).
  • the gas supply unit (30) includes a transport unit for transporting air (air pump (31) described later), an adjusting unit for adjusting the composition of air (first and second adsorption cylinders (34, 35) described later), and the gas supply unit (30). It has an air circuit (3) in which air is introduced into the adjusting unit by a transport unit and air having an adjusted composition is supplied to the target space.
  • the sensor unit (50) has sensors (51, 52) that are arranged in the target space and measure the components of air.
  • the transportation container (1) includes a container body (2) and a transportation refrigerating device (10), and is used for marine transportation and the like.
  • the transport refrigerating device (10) cools the air inside the container body (2) (target space).
  • Perishables (plants (15)) are stored in a box in the internal space (target space) of the container body (2).
  • the plant (15) is, for example, fruits and vegetables such as bananas and avocados, vegetables, grains, bulbs, fresh flowers, etc., and breathes to take in oxygen (O 2 ) in the air and release carbon dioxide (CO 2 ).
  • the container body (2) is formed in the shape of an elongated rectangular parallelepiped box with one end face open.
  • the transport refrigerating device (10) includes a casing (12), a refrigerant circuit (20), and a CA device (air composition adjusting device / Controlled Atmosphere System) (60).
  • the casing (12) of the transport refrigerating device (10) is attached so as to close the open end of the container body (2).
  • the transport refrigerating device (10) includes a refrigerant circuit (20) that performs a refrigerating cycle, and cools the air inside the container body (2) by the evaporator (24) of the refrigerant circuit (20).
  • the casing (12) of the transport refrigerating device (10) is located inside the outer wall (12a) of the container body (2) and inside the container body (2). It has an inner wall (12b).
  • the outer wall (12a) and the inner wall (12b) of the refrigerator are made of, for example, an aluminum alloy.
  • the outer wall (12a) of the refrigerator is attached to the peripheral edge of the opening of the container body (2) so as to close the opening end of the container body (2).
  • the lower part of the outer wall (12a) bulges toward the inside of the container body (2).
  • the inner wall (12b) is arranged facing the outer wall (12a).
  • the inner wall (12b) bulges inward corresponding to the lower part of the outer wall (12a).
  • a heat insulating material (12c) is provided in the space between the inner wall (12b) and the outer wall (12a).
  • the casing (12) is formed with two service openings (14) for maintenance arranged side by side in the width direction.
  • the two service openings (14) are closed by openable first and second service doors (16A, 16B), respectively.
  • the second service door (16B) is formed with a ventilation port (16D) that can be opened and closed by a rotating lid (16C) that rotates with respect to the central axis.
  • a partition plate (18) is arranged in the container body (2).
  • the partition plate (18) is composed of a substantially rectangular plate member, and is arranged so as to face the inner surface of the casing (12).
  • the partition plate (18) divides the interior space (target space) in which the plants (15) in the refrigerator of the container body (2) are stored and the storage space (S2) in the refrigerator.
  • a suction port (18a) is formed between the upper end of the partition plate (18) and the ceiling surface in the container body (2).
  • the air inside the container body (2) is taken into the storage space (S2) inside the refrigerator through the suction port (18a).
  • the storage space (S2) in the refrigerator will be provided with a partition wall (13) extending in the horizontal direction.
  • the partition wall (13) is attached to the upper end of the partition plate (18) and has an opening in which the internal fan (26) described later is installed.
  • the partition wall (13) has a storage space (S2) in the refrigerator, a primary space (S21) on the suction side of the fan (26) in the refrigerator, and a secondary space (S22) on the outlet side of the fan (26) in the refrigerator. And partition.
  • the primary space (S21) is arranged on the upper side and the secondary space (S22) is arranged on the lower side.
  • a floor board (19) on which the boxed plant (15) is placed is provided above the bottom surface of the container body (2).
  • An underfloor flow path (19a) is formed between the bottom surface of the container body (2) and the floor plate (19).
  • a gap is provided between the lower end of the partition plate (18) and the bottom surface in the container body (2), and the storage space (S2) in the refrigerator communicates with the underfloor flow path (19a).
  • an air outlet (18b) that blows out air cooled by the transport refrigerating device (10) into the container body (2). Is formed.
  • An outside fan (25) is installed near the condenser (22).
  • the outside fan (25) is rotationally driven by the outside fan motor (25a) to send the air (outside air) in the outside space of the container body (2) to the condenser (22).
  • the condenser (22) between the refrigerant pressurized by the compressor (21) and flowing inside the condenser (22) and the outside air sent to the condenser (22) by the outside fan (25). Heat exchange takes place.
  • Two internal fans (26) are installed near the evaporator (24).
  • the internal fan (26) is rotationally driven by the internal fan motor (26a), sucks the internal air of the container body (2) from the suction port (18a), and blows it out to the evaporator (24).
  • the internal fan motor (26a) In the evaporator (24), between the refrigerant decompressed by the expansion valve (23) and flowing inside the evaporator (24) and the internal air sent to the evaporator (24) by the internal fan (26). Heat exchange takes place at.
  • the compressor (21) and the condenser (22) are stored in the storage space (S1) outside the refrigerator.
  • the condenser (22) is arranged in the central portion in the vertical direction of the external storage space (S1), and the external storage space (S1) is divided into a lower first space (S11) and an upper second space (S12). Divide into and.
  • an outside fan (25) and an electrical component box (17) are provided in the second space (S12.
  • the evaporator (24) is housed in the secondary space (S22) of the storage space (S2) in the refrigerator.
  • the above-mentioned two internal fans (26) are arranged side by side in the width direction of the casing (12) (see FIG. 1).
  • the CA device (60) provided in the container body (2) is controlled by a gas supply unit (30), an exhaust unit (46), and a sensor unit (50). It is equipped with a unit (55) and adjusts the oxygen concentration and carbon dioxide concentration of the air inside the container body (2).
  • concentration used in the following description refer to "volume concentration”.
  • the gas supply unit (30) is a unit that generates air whose composition has been adjusted for supplying into the inside of the container body (2). In the present embodiment, it is a device that generates nitrogen-concentrated air having a low oxygen concentration for supplying into the refrigerator of the container body (2).
  • the gas supply unit (30) is configured by VPSA (Vacuum Pressure Swing Adsorption). As shown in FIG. 1, the gas supply unit (30) is arranged in the lower left corner portion of the storage space (S1) outside the refrigerator.
  • the gas supply unit (30) is for adsorbing the nitrogen component in the air, the air pump (31), the first direction control valve (32) and the second direction control valve (33). It has an air circuit (3) to which a first adsorption cylinder (34) and a second adsorption cylinder (35) provided inside the adsorbent are connected.
  • the components of the air circuit (3) are housed in the unit case (36).
  • the air pump (31) has a first pump mechanism (pressurized pump mechanism) (31a) and a second pump mechanism (decompression pump mechanism) (31b) that sucks air, pressurizes it, and discharges it.
  • the first pump mechanism (31a) and the second pump mechanism (31b) are connected to the drive shaft of the motor (31c).
  • the air circuit (3) to which components such as the air pump (31) are connected includes an outside air passage (41), a pressure passage (42), a decompression passage (43), and a supply passage (44).
  • a membrane filter (37) having air permeability and waterproofness is provided at the other end of the outside air passage (41).
  • the other end of the outside air passage (41) provided with the membrane filter (37) is arranged in the second space (S12) above the condenser (22) of the outside storage space (S1). ..
  • One end of the pressure passage (42) is connected to the discharge port of the first pump mechanism (31a).
  • the other end of the pressurizing passage (42) branches into two and is connected to the first direction control valve (32) and the second direction control valve (33).
  • One end of the decompression passage (43) is connected to the suction port of the second pump mechanism (31b).
  • the other end of the pressure reducing passage (43) branches into two and is connected to the first direction control valve (32) and the second direction control valve (33).
  • One end of the supply passage (44) is connected to the discharge port of the second pump mechanism (31b).
  • the other end of the supply passage (44) opens to the secondary space (S22) on the outlet side of the internal fan (26) in the internal storage space (S2) of the container body (2).
  • a check valve (65) is provided to allow the flow of air toward the storage space (S2) in the refrigerator and prevent the backflow of air.
  • blower fans (49) that cool the air pump (31) by blowing air toward the air pump (31).
  • the first pump mechanism (31a) which is a pressurized pump mechanism, supplies pressurized air to one of the adsorption cylinders (34, 35), so that the nitrogen in the pressurized air in the adsorption cylinder (34, 35) is supplied.
  • Desorption operation (operation to generate nitrogen-enriched air) is performed.
  • the supply passage (44) is a passage in which the adsorption cylinder (34, 35) alternately performs the adsorption operation and the desorption operation, and the nitrogen-concentrated air generated by the desorption operation is supplied into the refrigerator of the container body (2). ..
  • the exit of 31b) is connected by a bypass passage (47).
  • the bypass passage (47) is provided with a bypass on-off valve (48) whose opening and closing is controlled by the control unit (55).
  • the outside air introduction passage (40) is provided by the outside air passage (41), a part of the pressurizing passage (42), the bypass passage (47) having the bypass on-off valve (48), and the part of the supply passage (44). Is configured.
  • the outside air introduction passage (40) supplies pressurized air (air having the same composition as the outside air) that has passed through the pressurizing pump mechanism (31a) into the refrigerator.
  • the outside air introduction passage (40) is provided with a cooling unit (40a) that passes through the space outside the unit case (36).
  • the first direction control valve (32) and the second direction control valve (33) are provided in the air circuit (3) and are arranged between the air pump (31) and the first and second suction cylinders (34, 35).
  • the first-direction control valve (32) and the second-direction control valve (33) have two connection states (first), which will be described later, in which the connection state between the air pump (31) and the first and second suction cylinders (34, 35) is described. 1. Switch to the second connection state). This switching operation is controlled by the control unit (55).
  • the first direction control valve (32) has a pressurizing passage (42) connected to the discharge port of the first pump mechanism (31a) and a pressure reducing passage (43) connected to the suction port of the second pump mechanism (31b). ) And one end (inflow port at the time of pressurization) of the first suction cylinder (34).
  • the first direction control valve (32) communicates the first suction cylinder (34) with the discharge port of the first pump mechanism (31a) and shuts off from the suction port of the second pump mechanism (31b) (FIG.
  • the second direction control valve (33) has a pressurizing passage (42) connected to the discharge port of the first pump mechanism (31a) and a pressure reducing passage (43) connected to the suction port of the second pump mechanism (31b). ) And one end of the second suction cylinder (35).
  • the second direction control valve (33) communicates the second suction cylinder (35) with the suction port of the second pump mechanism (31b) and shuts off the second suction cylinder (35) from the discharge port of the first pump mechanism (31a) (FIG.
  • the air circuit (3) is switched to the first connection state (see FIG. 4).
  • the discharge port of the first pump mechanism (31a) and the first suction cylinder (34) are connected, and the suction port of the second pump mechanism (31b) and the second suction cylinder (35) are connected. Be connected.
  • the first adsorption cylinder (34) performs an adsorption operation of adsorbing the nitrogen component in the outside air to the adsorbent
  • the second adsorption cylinder (35) performs a desorption operation of desorbing the nitrogen component adsorbed by the adsorbent. Is done.
  • the air circuit (3) switches to the second connection state (see FIG. 5).
  • the discharge port of the first pump mechanism (31a) and the second suction cylinder (35) are connected, and the suction port of the second pump mechanism (31b) and the first suction cylinder (34) are connected. Be connected.
  • the second suction cylinder (35) performs the suction operation
  • the first suction cylinder (34) performs the desorption operation.
  • the first adsorption cylinder (34) and the second adsorption cylinder (35) are composed of a cylindrical member whose inside is filled with an adsorbent.
  • the adsorbent filled in the first adsorption cylinder (34) and the second adsorption cylinder (35) has a property of adsorbing a nitrogen component under pressure and desorbing the adsorbed nitrogen component under reduced pressure.
  • the adsorbent filled in the first adsorption cylinder (34) and the second adsorption cylinder (35) is, for example, smaller than the molecular diameter of the nitrogen molecule (3.0 angstroms) and the molecular diameter of the oxygen molecule (2.8 angstroms).
  • the nitrogen component in the outside air is adsorbed on the adsorbent. do.
  • oxygen-concentrated air having a lower nitrogen concentration and a higher oxygen concentration than the outside air is generated because the nitrogen component is smaller than that of the outside air.
  • the nitrogen component adsorbed by the adsorbent is desorbed.
  • nitrogen-concentrated air having a higher nitrogen concentration and a lower oxygen concentration than the outside air is generated by containing a larger amount of nitrogen components than the outside air.
  • nitrogen-concentrated air having a component ratio of 92% nitrogen concentration and 8% oxygen concentration is generated.
  • oxygen-concentrated air generated from the pressurized outside air is stored in the container body (2).
  • One end of the oxygen discharge passage (45) for guiding to the outside is connected.
  • One end of the oxygen discharge passage (45) branches into two and is connected to each of the other ends of the first suction cylinder (34) and the second suction cylinder (35).
  • the other end of the oxygen discharge passage (45) opens outside the gas supply unit (30), that is, outside the container body (2).
  • the oxygen discharge passage (45) to the first suction cylinder (34) are connected to the portion where the oxygen discharge passage (45) is connected to the first suction cylinder (34) and the branch portion connected to the second suction cylinder (35).
  • a check valve (61) is provided to prevent backflow of air to the second suction cylinder (35).
  • a check valve (62) and an orifice (63) are provided in order from one end to the other in the middle of the oxygen discharge passage (45).
  • the check valve (62) prevents backflow of nitrogen-concentrated air from the exhaust connection passage (71), which will be described later, to the first adsorption cylinder (34) and the second adsorption cylinder (35).
  • the orifice (63) decompresses the oxygen-concentrated air flowing out of the first adsorption cylinder (34) and the second adsorption cylinder (35) before discharging the oxygen-concentrated air to the outside of the refrigerator.
  • a pressure sensor (66) is provided in the oxygen discharge passage (45), which is a passage for discharging oxygen-concentrated air from the adsorption cylinders (34, 35) to the outside of the refrigerator.
  • the pressure sensor (66) is arranged between the confluence point (P0) of the first suction cylinder (34) and the second suction cylinder (35) and the check valve (62).
  • the exhaust connection passage (71) is a passage that connects the discharge port of the decompression pump mechanism (31b) to the oxygen discharge passage (45) on the downstream side of the pressure sensor (66).
  • the check valve (62) includes a first connection point (P1) to which the pressure sensor (66) and the oxygen discharge passage (45) are connected, an oxygen discharge passage (45), and an exhaust connection passage (71). Is provided between the second connection point (P2) to which is connected.
  • the check valve (62) allows air flow from the first connection point (P1) to the second connection point (P2) and prohibits air flow in the reverse direction.
  • the air circuit (3) is provided with a supply / discharge switching mechanism (70) for switching between a gas supply operation and a gas discharge operation.
  • the gas supply operation is an operation of supplying nitrogen-concentrated air from the first adsorption cylinder (34) and the second adsorption cylinder (35) into the container main body (2).
  • the gas discharge operation is an operation of discharging nitrogen-concentrated air from the first adsorption cylinder (34) and the second adsorption cylinder (35) to the outside of the refrigerator.
  • the supply / discharge switching mechanism (70) has an exhaust connection passage (71), an exhaust on-off valve (72), and a supply on-off valve (73).
  • One end of the exhaust connection passage (71) is connected to the supply passage (44), and the other end is connected to the oxygen discharge passage (45).
  • the other end of the exhaust connection passage (71) is connected to the oxygen discharge passage (45) on the outside of the refrigerator rather than the orifice (63).
  • the exhaust on-off valve (72) is provided in the exhaust connection passage (71).
  • the exhaust on-off valve (72) is composed of a solenoid valve arranged in the middle of the exhaust connection passage (71).
  • the exhaust on-off valve (72) switches between an open state that allows the flow of nitrogen-enriched air flowing in from the supply passage (44) and a closed state that blocks the flow of nitrogen-concentrated air.
  • the opening / closing operation of the exhaust on-off valve (72) is controlled by the control unit (55).
  • the supply on-off valve (73) is provided in the supply passage (44) and is arranged inside the refrigerator from the connection portion between the supply passage (44) and the exhaust connection passage (71).
  • the supply on-off valve (73) is composed of a solenoid valve that switches between an open state that allows the flow of air to the inside of the refrigerator and a closed state that blocks the flow of air to the inside of the refrigerator.
  • the opening / closing operation of the supply on-off valve (73) is controlled by the control unit (55).
  • the exhaust section (46) includes an exhaust passage (46a) connecting the storage space (S2) inside the refrigerator and the space outside the refrigerator, and an exhaust valve (46a) connected to the exhaust passage (46a). It has a 46b) and a membrane filter (46c) provided at the inflow end (inner end) of the exhaust passage (46a).
  • the exhaust passage (46a) penetrates the casing (12) in and out.
  • the exhaust valve (46b) is provided inside the exhaust passage (46a).
  • the exhaust valve (46b) is composed of a solenoid valve that switches between an open state that allows the flow of air in the exhaust passage (46a) and a closed state that blocks the flow of air in the exhaust passage (46a). The opening / closing operation of the exhaust valve (46b) is controlled by the control unit (55).
  • the sensor unit (50) is provided in the secondary space (S22) on the outlet side of the internal fan (26) in the internal storage space (S2).
  • the sensor unit (50) has an oxygen sensor (51), a carbon dioxide sensor (52), a membrane filter (54), and an exhaust pipe (57).
  • the oxygen sensor (51) and carbon dioxide sensor (52) are housed in a sensor casing (90).
  • the sensor casing (90) is provided with an introduction port (94) described later for introducing air into the sensor casing (90), and the membrane filter (54) of FIG. 4 is attached to the introduction port (94).
  • the oxygen sensor (51) is composed of a zirconia type sensor.
  • the carbon dioxide sensor (52) is composed of a non-dispersive infrared (NDIR) sensor.
  • One end of the exhaust pipe (57) is connected to the sensor casing (90), and the other end of the exhaust pipe (57) opens near the suction port of the internal fan (26).
  • the secondary space (S22) and the primary space (S21) of the storage space (S2) are separated by a membrane filter (54), an oxygen sensor (51), a carbon dioxide sensor (52), and an exhaust pipe (57). It communicates through the formed communication passage (58).
  • a membrane filter (54) an oxygen sensor (51), a carbon dioxide sensor (52), and an exhaust pipe (57). It communicates through the formed communication passage (58).
  • the pressure in the primary space (S21) becomes lower than the pressure in the secondary space (S22), and this pressure difference causes the oxygen sensor (51) and the carbon dioxide sensor (51).
  • the communication passage (58) including 52) the air inside the refrigerator flows from the secondary space (S22) side to the primary space (S21) side.
  • the internal air passes through the oxygen sensor (51) and the carbon dioxide sensor (52) in this way, and the oxygen concentration of the internal air is measured by the oxygen sensor (51). Then, the carbon dioxide concentration in the air inside the refrigerator is measured by the carbon dioxide sensor (52).
  • the air supply measurement operation described later is performed in which the concentration of the nitrogen-concentrated air generated in the first and second suction cylinders (34, 35) is measured by the oxygen sensor (gas sensor of the present disclosure) (51).
  • a sensor circuit (80) for doing this is provided.
  • the sensor circuit (80) includes a branch pipe (81) and a branch on-off valve (gas concentration on-off valve) (82), and a part of the air flowing through the supply passage (44) is branched to an oxygen sensor (51). ) And the carbon dioxide sensor (52).
  • branch pipe (81) One end of the branch pipe (81) is connected to the supply passage (44), and the other end is connected to the sensor casing (90).
  • the branch pipe (81) branches from the supply passage (44) in the unit case (36) and communicates with the internal space.
  • a check valve (64) is provided at the other end of the branch pipe (81) to allow air flow from one end to the other end and prevent backflow of air.
  • the branch on-off valve (82) is provided inside the unit case (36).
  • the branch on-off valve (82) is composed of a solenoid valve that switches between an open state that allows the air flow of the branch pipe (81) and a closed state that blocks the air flow of the branch pipe (81).
  • the opening / closing operation of the branch on-off valve (82) is controlled by the control unit (55).
  • the nitrogen-concentrated air generated by the gas supply unit (30) is guided to the oxygen sensor (51) via the branch pipe (81). , The oxygen concentration of the nitrogen-concentrated air is measured by the oxygen sensor (51).
  • the air composition adjuster if the measured value of the sensor deviates from the actual value, the adjustment of the concentration becomes unstable, so outside air is introduced into the gas sensor (51) at a predetermined timing to calibrate (correct the measured value). Will be done.
  • the outside air pressurized by the air pump (31) bypasses the first and second suction cylinders (34, 35) and passes through the branch pipe (81) as described later. Introduced to the oxygen sensor (51).
  • the air circuit (3) introduces the outside air into the first and second suction cylinders (34, 35) by the air pump (31), the first passage (75) (outside air passage). (41) and the pressurizing passage (42)) and the oxygen sensor (51) branching from the first passage (41, 42) between the air pump (31) and the first and second suction cylinders (34, 35). It has a second passage (76) (bypass passage (47) and branch pipe (81)) that communicates with.
  • the second passage (76) is provided with a gas-liquid separator (85) for removing the moisture of the air introduced into the oxygen sensor (51).
  • a drain pipe (77) for discharging the moisture separated from the air is connected to the gas-liquid separator (85).
  • FIG. 8 is a rear perspective view of the casing (12) of the transport refrigerating device (10), showing the arrangement of the sensor casing (90).
  • FIG. 9 is an enlarged perspective view of the sensor casing (90)
  • FIG. 10 is a perspective view showing the inside of the sensor casing (90), and the cover unit of the oxygen sensor is represented by a virtual line.
  • FIG. 11 is a perspective view of the sensor casing (90) as viewed from the back.
  • FIG. 12 shows It is another perspective view which shows the inside of the sensor casing (90).
  • the cover unit (100) which will be described later, is shown by a broken line in detail.
  • the oxygen sensor (51) and the carbon dioxide sensor (52) are housed in the sensor casing (90).
  • the gas-liquid separator (85) is fixed to the sensor casing (90).
  • the gas-liquid separator (85) has a cylindrical container (86).
  • the container (86) of the gas-liquid separator (85) has an inflow port (86a) through which air flows in, an outflow port (86b) through which air from which (a part of) water has been removed flows out, and is separated from air.
  • a drainage port (not shown) is formed to drain the discharged water.
  • the drain pipe (77) connected to the gas-liquid separator (85) discharges water to the drain pan (28) provided in the casing (12) in order to receive the drain water generated in the transport refrigerating device (10). It extends downward from the gas-liquid separator (85).
  • the exhaust pipe (57) connected to the sensor casing (90) is open on the suction port side of the internal fan (26).
  • the sensor casing (90) has a sensor casing main body (91) and a case cover (92).
  • the gas-liquid separator (85) is fixed to the case cover (92) of the sensor casing (90) using a bracket (87).
  • the sensor casing (90) is fixed to the casing (12) of the transport refrigerating device (10) by the bracket (93).
  • the sensor casing (90) is located in the storage space (S2) inside the refrigerator.
  • the sensor casing (90) is provided with an introduction port (94) for introducing air into the inside and an outlet (95) for allowing air to flow out to the outside.
  • the introduction port (94) includes a first introduction port (94a) and a second introduction port (94b).
  • the first introduction port (94a) is an opening for introducing the air outside the internal space into the sensor casing (90).
  • the second introduction port (94b) is an opening for introducing the air inside the interior space into the sensor casing (90).
  • the first introduction port (94a) is provided on the side surface of the sensor casing (90) as shown in FIGS. 9 and 10, and the branch pipe (81) (second passage (76)) is connected to the first introduction port (94a).
  • the second introduction port (94b) is provided on the back surface of the sensor casing (90) and is open to the interior space.
  • Membrane filters (54) that allow air to pass through without allowing moisture to pass through are attached to the first introduction port (94a) and the second introduction port (94b), respectively.
  • the membrane filter (54) is provided in the ventilation holes of the hexagonal fastening member.
  • An exhaust pipe (57) is connected to the outlet (95).
  • Both the first introduction port (94a) and the second introduction port (94b) are arranged below the oxygen sensor (51).
  • the outlet (86b) of the gas-liquid separator (85) and the first inlet (94a) are connected by a connecting pipe (59).
  • the connecting pipe (59) constitutes a first introduction path (59a) for supplying air from the air pump (31) into the sensor casing (90).
  • the second introduction port (94b) for introducing the air inside the refrigerator into the sensor casing (90) constitutes the second introduction path (59b).
  • the air composition adjusting device (60) includes a cover unit (100).
  • the cover unit (100) covers the periphery of the oxygen sensor (51).
  • the cover unit (100) is made of a resin material.
  • the cover unit (100) is a molded part made of synthetic resin.
  • the cover unit (100) prevents corrosive components (eg, sulfur) in the air from coming into contact with the oxygen sensor (51). It is conceivable that the corrosive component is generated from the corrugated cardboard in the box containing the plant as a cargo, the wood pallet on which the corrugated cardboard is placed, or is contained in the outside air.
  • the cover unit (100) has a cover (101) and a pair of mounting portions (120).
  • the oxygen sensor (51) does not show a cross section but shows an appearance.
  • the cover (101) is formed in the shape of a bottomed cylinder.
  • the cover (101) includes a tubular body (102) and a hemispherical top (103) that closes an axial end of the body (102).
  • a storage space (104) for accommodating the oxygen sensor (51) is formed inside the cover (101).
  • the pair of mounting portions (120) are radially outward from the portion near the bottom of the cover (101). Extend to.
  • the pair of mounting portions (120) face each other with the cover (101) interposed therebetween.
  • a fastening member such as a screw is fastened to the mounting portion (120).
  • the cover unit (100) that covers the oxygen sensor (51) is fixed to the sensor casing (90) (see FIG. 12).
  • a first flat portion (107) is formed in a portion closer to the lower side thereof, and a second flat portion (108) is formed in a portion closer to the upper side thereof.
  • the first flat portion (107) and the second flat portion (108) are planar portions along the axial direction of the cover (101).
  • the axial direction referred to here corresponds to the direction perpendicular to the opening surface (101a) of the cover (101).
  • the first flat portion (107) and the second flat portion (108) are formed, for example, by a notch.
  • the first flat portion (107) and the second flat portion (108) are displaced by approximately 180 ° with respect to the axis P of the cover (101).
  • the first flat portion (107) and the second flat portion (108) each constitute a wall facing each other.
  • the first flat portion (107) extends from one mounting portion (120) to the middle of the top (103) of the cover (101).
  • the second flat portion (108) extends from the other mounting portion (120) to the middle of the top of the cover (101).
  • An inflow path (111) is formed in the first flat portion (107).
  • the inflow path (111) is a flow path for taking in the air in the sensor casing (90) into the cover (101).
  • the inflow path (111) is composed of a first hole (h1) formed in the first flat portion (107).
  • An outflow path (112) is formed in the second flat portion (108).
  • the outflow path (112) is a flow path for letting the air in the cover (101) outflow to the outside.
  • the outflow path (112) is composed of a second hole (h2) formed in the second flat portion (108).
  • the inflow path (111) and the outflow path (112) face each other with the oxygen sensor (51) in between.
  • the oxygen sensor (51) has a detection unit (51a) which is the main body of the sensor, a mesh unit (51b) that covers the detection unit (51a), and a plurality of output terminals (51c) connected to the detection unit (51a). , With a substrate (51d) on which these output terminals (51c) are supported.
  • the mesh portion (51b) has a plurality of holes through which air can flow while protecting the detection portion (51a).
  • the detection unit (51a) is arranged between the inflow path (111) and the outflow path (112) of the cover unit (100). As shown in FIG. 15, the detection unit (51a) is located on the straight line X connecting the inflow path (111) and the outflow path (112). In other words, the detection unit (51a) is positioned so as to overlap the inflow path (111) and the outflow path (112) in the air flow direction of the inflow path (111) and the outflow path (112).
  • the substrate (51d) also serves as a closing member that closes the opening surface (101a) of the cover (101).
  • a containment space (104) is partitioned between the cover (101) and the substrate (51d).
  • the inner diameter of the outflow passage (112) and the inner diameter of the inflow passage (111) are preferably 1 mm or more and 4 mm or less. If the inner diameter of the outflow passage (112) and the inner diameter of the inflow passage (111) are too small, the flow path resistance of the air flowing through the cover unit (100) becomes excessively large. In this case, a malfunction may occur due to the deterioration of the responsiveness of the oxygen sensor (51).
  • the oxygen concentration of the internal air is adjusted to 5%.
  • the oxygen concentration detected by the oxygen sensor (51) is about 5%.
  • outside air containing about 21% oxygen is introduced into the oxygen sensor (51). If the responsiveness of the oxygen sensor (51) deteriorates, the detection concentration of the oxygen sensor (51) does not easily increase in the sensor calibration operation, so the time required for calibration may become long (for example, it may take 10 minutes or more). rice field.
  • the inner diameter of the outflow passage (112) and the inner diameter of the inflow passage (111) By setting the inner diameter of the outflow passage (112) and the inner diameter of the inflow passage (111) to 4 mm or less, it is possible to prevent the flow resistance of the air flowing through the cover unit (100) from becoming excessively large. Therefore, it is possible to prevent the air containing the corrosive component from passing through the oxygen sensor (51) excessively. As a result, the contact time or contact frequency between the oxygen sensor (51) and the corrosive component can be reduced, and deterioration of the oxygen sensor (51) can be suppressed.
  • the inner diameter of the outflow passage (112) and the inner diameter of the inflow passage (111) are 2.5 mm.
  • the inner diameter of the outflow passage (112) and the inner diameter of the inflow passage (111) are preferably the same, but may differ by, for example, by several mm.
  • the oxygen sensor (51) generates heat when it is energized and turned on.
  • the oxygen sensor (51) is a zirconia type sensor, and when it is energized and turned on, it may generate heat up to about 450 ° C. Therefore, when the oxygen sensor (51) is operating, an updraft can be formed in the accommodation space (104) in the cover (101). As a result, a part of the air in the sensor casing (90) can be easily introduced into the cover (101).
  • the outflow path (112) is located at the upper part of the cover (101), it becomes easy to guide the updraft due to heat generation to the outflow path (112). This facilitates the formation of an air flow inside the cover (101) and allows the heat of the oxygen sensor (51) to be quickly released to the outside.
  • the control unit (55) controls the concentration adjustment operation to bring the oxygen concentration and the carbon dioxide concentration of the air inside the container body (2) to desired concentrations.
  • the control unit (55) has the composition (oxygen concentration and carbon dioxide concentration) of the air inside the container body (2) based on the measurement results of the oxygen sensor (51) and the carbon dioxide sensor (52). Controls the operation of the gas supply unit (30), the exhaust unit (46) and the sensor unit (50) so as to have a desired composition (for example, oxygen concentration 5%, carbon dioxide concentration 5%).
  • the control unit (55) includes, for example, a microcomputer that controls each element of the CA device (60), and a storage medium such as a memory or a disk in which an implementable control program is stored.
  • the detailed structure and algorithm of the control unit (55) may be any combination of hardware and software.
  • the unit control unit (150) shown in FIG. 3 executes a cooling operation for cooling the air inside the container body (2).
  • the operation of the compressor (21), expansion valve (23), outside fan (25) and inside fan (26) by the unit control unit (150) is based on the measurement results of the temperature sensor (not shown).
  • the temperature of the air inside the refrigerator is controlled so as to reach a desired target temperature.
  • the refrigerant circuit (20) the refrigerant circulates and a steam compression refrigeration cycle is performed.
  • the internal air of the container body (2) guided to the internal storage space (S2) by the internal fan (26) is a refrigerant that flows inside the evaporator (24) when it passes through the evaporator (24). Cooled by.
  • the air inside the refrigerator cooled by the evaporator (24) is blown out from the outlet (18b) again into the refrigerator of the container body (2) through the underfloor flow path (19a). As a result, the air inside the container body (2) is cooled.
  • the control unit (55) switches both the first direction control valve (32) and the second direction control valve (33) to the first state shown in FIG.
  • the first suction cylinder (34) communicates with the discharge port of the first pump mechanism (31a) and is shut off from the suction port of the second pump mechanism (31b), and the second suction is performed.
  • the cylinder (35) communicates with the suction port of the second pump mechanism (31b) and is in the first connection state in which it is cut off from the discharge port of the first pump mechanism (31a).
  • the outside air pressurized by the first pump mechanism (31a) is supplied to the first suction cylinder (34), while the second pump mechanism (31b) is supplied to the second suction cylinder (35). Inhales nitrogen-concentrated air whose nitrogen concentration is higher than that of the outside air and whose oxygen concentration is lower than that of the outside air.
  • the first pump mechanism (31a) sucks in the outside air through the outside air passage (41) and pressurizes it, and discharges the pressurized outside air (pressurized air) to the pressurized passage (42).
  • the pressurized air discharged to the pressurized passage (42) flows through the pressurized passage (42). Then, the pressurized air is supplied to the first adsorption cylinder (34) via the pressurized passage (42).
  • pressurized air flows into the first adsorption cylinder (34), and the nitrogen component contained in the pressurized air is adsorbed by the adsorbent.
  • pressurized outside air is supplied from the first pump mechanism (31a), and the nitrogen component in the outside air is adsorbed by the adsorbent, whereby the nitrogen concentration.
  • oxygen-concentrated air which is lower than the outside air and has a higher oxygen concentration than the outside air.
  • the oxygen-concentrated air flows out from the first adsorption cylinder (34) to the oxygen discharge passage (45).
  • the second pump mechanism (31b) sucks air from the second suction cylinder (35). At that time, the nitrogen component adsorbed by the adsorbent of the second adsorption cylinder (35) is sucked by the second pump mechanism (31b) together with air and desorbed from the adsorbent. As described above, during the first operation, in the second suction cylinder (35), the air inside is sucked by the second pump mechanism (31b), and the nitrogen component adsorbed by the adsorbent is desorbed. As a result, nitrogen-concentrated air containing a nitrogen component desorbed from the adsorbent and having a nitrogen concentration higher than that of the outside air and an oxygen concentration lower than that of the outside air is generated. The nitrogen-concentrated air is sucked into the second pump mechanism (31b), pressurized, and then discharged to the supply passage (44).
  • Second operation the control unit (55) switches both the first direction control valve (32) and the second direction control valve (33) to the second state shown in FIG.
  • the first suction cylinder (34) communicates with the suction port of the second pump mechanism (31b) and is shut off from the discharge port of the first pump mechanism (31a), and the second suction is performed.
  • the cylinder (35) communicates with the discharge port of the first pump mechanism (31a) and is in the second connection state in which the suction port of the second pump mechanism (31b) is cut off.
  • the first pump mechanism (31a) sucks in the outside air through the outside air passage (41) and pressurizes it, and discharges the pressurized outside air (pressurized air) to the pressurized passage (42).
  • the pressurized air discharged to the pressurized passage (42) flows through the pressurized passage (42).
  • the pressurized air is supplied to the second adsorption cylinder (35) via the pressurized passage (42).
  • pressurized air flows into the second adsorption cylinder (35), and the nitrogen component contained in the pressurized air is adsorbed by the adsorbent.
  • pressurized outside air is supplied from the first pump mechanism (31a), and the nitrogen component in the outside air is adsorbed by the adsorbent, whereby the nitrogen concentration.
  • oxygen-concentrated air which is lower than the outside air and has a higher oxygen concentration than the outside air.
  • the oxygen-concentrated air flows out from the second adsorption cylinder (35) to the oxygen discharge passage (45).
  • the second pump mechanism (31b) sucks air from the first suction cylinder (34). At that time, the nitrogen component adsorbed by the adsorbent of the first adsorption cylinder (34) is sucked by the second pump mechanism (31b) together with air and desorbed from the adsorbent. As described above, during the second operation, the air inside the first suction cylinder (34) is sucked by the second pump mechanism (31b), and the nitrogen component adsorbed by the adsorbent is desorbed. As a result, nitrogen-concentrated air containing a nitrogen component desorbed from the adsorbent and having a nitrogen concentration higher than that of the outside air and an oxygen concentration lower than that of the outside air is generated. The nitrogen-concentrated air is sucked into the second pump mechanism (31b), pressurized, and then discharged to the supply passage (44).
  • the exhaust on-off valve (72) is controlled to the closed state and the supply on-off valve (73) is controlled to the open state by the control unit (55). ..
  • the nitrogen-enriched air alternately generated in the first adsorption cylinder (34) and the second adsorption cylinder (35) is supplied to the inside of the container body (2) through the supply passage (44) to concentrate oxygen. Air is discharged to the outside of the refrigerator through the oxygen discharge passage (45).
  • the exhaust on-off valve (72) is controlled to the open state and the supply on-off valve (73) is controlled to the closed state by the control unit (55).
  • the nitrogen-concentrated air that is alternately generated in the first adsorption cylinder (34) and the second adsorption cylinder (35) and discharged to the supply passage (44) is discharged from the oxygen discharge passage (71) to the oxygen discharge passage (71). It flows into 45) and is discharged to the outside of the refrigerator together with the oxygen-concentrated air flowing through the oxygen discharge passage (45).
  • the outside air introduction operation of introducing the outside air into the refrigerator of the container body (2) is also possible.
  • the first direction control valve (32) is set to the first state
  • the second direction control valve (33) is set to the second state
  • the bypass on-off valve (48) is opened. ..
  • the air supply on-off valve (73) is opened and the branch on-off valve (82) is closed.
  • the air pump (31) is started in this state, the outside air is composed of an outside air passage (41), a part of the pressurizing passage (42), a bypass passage (47), and a part of the supply passage (44). It flows through the outside air introduction passage (40) shown by the thick solid line.
  • the CA device (60) uses the control unit (55) to change the composition (oxygen concentration and carbon dioxide concentration) of the air inside the container body (2) to a desired composition (for example, an oxygen concentration of 5%). Perform a concentration adjustment operation to adjust the carbon dioxide concentration to 5%).
  • the concentration adjustment operation the gas supply unit (30) is used so that the composition of the air inside the container body (2) becomes a desired composition based on the measurement results of the oxygen sensor (51) and the carbon dioxide sensor (52). And the operation of the exhaust unit (46) is controlled.
  • control unit (55) controls the branch on-off valve (82) to the closed state. Further, during the concentration adjustment operation, the control unit (55) communicates with the unit control unit (150), and the unit control unit (150) rotates the internal fan (26). As a result, the internal air is supplied to the oxygen sensor (51) and the carbon dioxide sensor (52) by the internal fan (26), and the oxygen concentration and the carbon dioxide concentration of the internal air are measured.
  • the gas supply operation is performed by alternately repeating the first operation and the second operation to adjust the oxygen concentration in the refrigerator.
  • the exhaust valve (46b) of the exhaust unit (46) is controlled to be in the open state, and the amount of nitrogen-enriched air supplied to the inside of the container body (2) by the gas supply operation is taken out of the refrigerator. Discharge.
  • the control unit (55) stops the operation of the gas supply unit (30) to stop the gas supply operation, and the exhaust valve (46b). ) Is closed to stop the exhaust operation. Since the plant (15) breathes in the container body (2), the oxygen concentration in the air inside the container body (2) decreases, eventually reaching 5% of the target oxygen concentration.
  • the bypass on-off valve (48) is opened to bypass the outside air sucked to the air pump (31) and the first and second suction cylinders (34, 35) to bypass the container body. It can be performed by the outside air introduction operation supplied to the inside of the refrigerator in (2). At this time, since the outside air passes through the cooling unit (40a), the temperature rise of the air inside the refrigerator is suppressed.
  • the oxygen concentration (and carbon dioxide concentration) of the air inside the refrigerator can be adjusted by appropriately switching between the gas supply operation, the gas discharge operation, and the outside air introduction operation.
  • an air supply measurement operation for measuring the oxygen concentration of the nitrogen-concentrated air generated in the gas supply unit (30) can be performed by a command from a user or periodically (for example, every 10 days).
  • the air supply measurement operation is performed in parallel when the internal fan (26) is stopped during the gas supply operation such as the above-mentioned concentration adjustment operation or test run.
  • the control unit (55) controls the branch on-off valve (82) to the open state and the supply on-off valve (73) to the closed state during the gas supply operation. As a result, all of the nitrogen-enriched air flowing through the supply passage (44) flows into the branch pipe (81). The nitrogen-enriched air flowing into the branch pipe (81) is introduced into the oxygen sensor (51), and the oxygen concentration is measured.
  • the composition (oxygen concentration, nitrogen concentration) of the nitrogen-concentrated air generated in the gas supply unit (30) is desired. It is possible to confirm whether it is in the state of.
  • the sensor calibration operation of FIG. 7 can be performed by introducing outside air into the sensor unit (50) to calibrate the oxygen sensor (51).
  • the sensor calibration operation can be performed, for example, by temporarily stopping the concentration adjustment while cooling the inside of the refrigerator, performing the sensor calibration operation in a short time (about 10 minutes), and then returning to the concentration adjustment operation.
  • the first direction control valve (32) is set to the first state
  • the second direction control valve (33) is set to the second state
  • the bypass on-off valve (48) is opened.
  • the air supply on-off valve (73) is closed and the branch on-off valve (82) is opened.
  • the outside air passes through the gas-liquid separator (85). Therefore, the oxygen sensor (51) is in contact with the outside air from which at least a part of the moisture has been removed.
  • the air outside the inside of the refrigerator flows into the sensor casing (90) from the first introduction port (94a) in FIG.
  • the air is the air whose composition is adjusted by the suction cylinder (34, 35) during the supply air measurement operation, and the outside air that bypasses the suction cylinder (34, 35) during the sensor calibration operation.
  • These airs fill the inside of the sensor casing (90) and head toward the outlet (95) (see Path (R2)).
  • the body portion (102) of the cover (101) is located between the second introduction port (94b) and the oxygen sensor (51).
  • the oxygen sensor (51) is covered with the cover (101), even if the air outside the refrigerator contains a corrosive component, the contact between the corrosive component and the oxygen sensor (51) is suppressed. Be done.
  • the first embodiment has a cover (101) that surrounds the oxygen sensor (51). Therefore, the cover (101) can prevent the corrosive component in the air from coming into contact with the oxygen sensor (51). As a result, deterioration of the oxygen sensor (51) can be suppressed.
  • the flow path resistance of the cover (101) can be reduced, and the responsiveness of the oxygen sensor (51) is lowered. Can be suppressed. As a result, for example, the time for the sensor calibration operation can be shortened, and the sensor calibration operation can be quickly shifted to the concentration adjustment operation.
  • the contact time and contact frequency between the oxygen sensor (51) and the corrosive component can be reduced.
  • deterioration of the oxygen sensor (51) can be suppressed, and the useful life of the oxygen sensor (51) can be increased.
  • the outflow channel (112) is located at the top of the cover (101). Therefore, since the heat of the oxygen sensor (51) can be discharged to the outside of the cover (101), it is possible to prevent the temperature of the air inside the cover (101) from becoming excessively high. It is also possible to suppress the generation of dew condensation inside the cover (101) by cooling such relatively high temperature air when the oxygen sensor (51) is stopped. In addition, by discharging the air from the upper side of the cover (101), it is possible to promote the updraft caused by the heat generation of the oxygen sensor (51).
  • the inflow path (111) is located at the bottom of the cover (101). Therefore, the water inside the cover (101) can be discharged to the outside of the cover (101) through the inflow path (111) by its own weight.
  • the detection unit (51a) of the oxygen sensor (51) is located between the inflow path (111) and the outflow path (112). As a result, air easily passes around the detection unit (51a), so that the responsiveness of the oxygen sensor (51) can be improved.
  • the inflow path (111) is composed of a first hole (h1) formed in the cover (101), and the outflow path (112) is composed of a second hole (h2) formed in the cover (101). ..
  • the inflow path (111) and the outflow path (112) are shortened. Therefore, the inner diameters of the inflow path (111) and the outflow path (112) can be secured to some extent, and the resistance of these flow paths can be reduced. Processing of the inflow channel (111) and the outflow channel (112) is also easy.
  • the oxygen sensor (51) is configured to generate heat in the ON state, and the cover (101) forms an air flow with the heat generated by the oxygen sensor (51). Therefore, the air flow can be secured even in the cover (101), and the oxygen concentration can be accurately detected by the oxygen sensor (51).
  • the sensor casing (90) is provided with an introduction port (94) for introducing air into the inside thereof, and the cover (101) is arranged between the introduction port (94) and the oxygen sensor (51). Therefore, it is possible to prevent the corrosive component invading from the introduction port (94) from coming into contact with the oxygen sensor (51).
  • the introduction port (94) is arranged below the oxygen sensor (51), and the cover (101) has a portion (body portion (102)) arranged below the oxygen sensor (51). Therefore, it is possible to prevent the corrosive component that has entered from the introduction port (94) on the lower side of the oxygen sensor (51) from coming into contact with the oxygen sensor (51).
  • the introduction port (94) introduces the air inside the target space into the sensor casing (90) and the air outside the target space into the sensor casing (90).
  • Including the second inlet (94b), at least one of the first inlet (94a) and the second inlet (94b) is located below the oxygen sensor (51) and the cover (101) is the oxygen sensor (101). It has a part placed below 51).
  • the gas-liquid separator (85) As a result, it is possible to prevent the oxygen sensor (51) and the carbon dioxide sensor (52) from failing due to the adhesion of moisture.
  • both the first introduction port (94a) and the second introduction port (94b) are arranged below the oxygen sensor (51), but the first introduction port (94a) and the second introduction port (94a) One of 94b) may be configured to be located below the oxygen sensor (51).
  • the oxygen sensor (51) and the corrosive component come into contact with each other due to the outside air during sensor calibration. Can be suppressed. If the second inlet (94b) is placed below the oxygen sensor and a part of the cover (101) is placed between them, the contact between the oxygen sensor (51) and the corrosive component due to the air inside the refrigerator during normal operation can be suppressed. ..
  • the cover unit (100) of the first embodiment forms an inflow path (111) and an outflow path (112) by forming a hole () in the cover (101).
  • the cover unit (100) may form an inflow path (111) and an outflow path (112) by providing a tubular portion (131, 132) of the cover (101).
  • the first cylinder portion (131) and the second cylinder portion (132) are connected around the body portion (102) of the cover (101). Will be done.
  • An inflow path (111) is formed inside the first cylinder portion (131).
  • the inflow path (111) communicates with the outside of the cover (101) and the accommodation space (104).
  • An outflow path (112) is formed inside the second cylinder portion (132).
  • the outflow channel (112) communicates the outside of the cover (101) with the accommodation space (104).
  • the first cylinder portion (131) and the second cylinder portion (132) face each other.
  • the basic configuration is the same as that of the first embodiment.
  • Embodiment 2 is an example in which, in addition to the cover unit (100) of the first embodiment, an adsorbent (105) that adsorbs a corrosive component in the air is used as a contact suppressing portion.
  • the adsorbent (105) can be placed inside the sensor casing (90).
  • FIG. 17 shows an example in which the adsorbent (105) is provided on the bottom surface of the sensor casing (90).
  • the adsorbent (105) has a base material and an adsorbent (for example, zeolite or activated carbon) supported on the base material.
  • This embodiment 2 has the same configuration as the first embodiment including the air circuit (3) except that the adsorbent (105) is provided instead of the wall member (101). Therefore, the description of other configurations of the adsorbent (105) will be omitted.
  • the corrosive component contained in the air introduced into the sensor casing (90) is adsorbed by the adsorbent (105) in the sensor casing (90). Therefore, it is possible to prevent the corrosive component from coming into contact with the oxygen sensor (51).
  • the adsorbent (105) may be provided inside the sensor casing (90) together with the wall member (101) of the first embodiment. With this configuration, contact of the corrosive component with the oxygen sensor (51) can be suppressed by both the wall member (101) and the adsorbent (105).
  • the adsorbent (105) may be arranged at a position different from that in FIG. 17 in the sensor casing (90), such as the back surface of the case cover (92) of the sensor casing (90). Even with such a configuration, the corrosive component in the air is adsorbed by the adsorbent (105), so that the corrosive component can be suppressed from coming into contact with the oxygen sensor (51).
  • the adsorbent (105) may be provided in the air circuit (3) in a different arrangement from the examples of FIGS. 17 and 18.
  • the adsorbent (105) is arranged on the back surface (the surface on which the second introduction port (94b) is formed) of the sensor casing (90), and the oxygen sensor (51) and the cover (101) are arranged. Located on the same surface as.
  • the adsorbent (105) is a substantially rectangular base material on which an adsorbent is supported.
  • FIG. 20 is a partially enlarged view of the air circuit (3) according to the modified example 3.
  • the adsorbent (105) is arranged in the connecting pipe (59) which is the first introduction path (59a) for introducing air into the inside of the sensor casing (90).
  • the adsorbent (105) is arranged at the introduction port (94) to which the connecting pipe (59) is connected to the sensor casing (90), for example, together with the membrane filter (54). May be good.
  • a plurality of adsorbents (105) provided in the air circuit (3) may be provided, and the adsorbents (105) may be arranged in the sensor casing (90) and at other positions.
  • the connecting pipe (59) which is the first introduction path (59a) for introducing the outside air into the sensor casing (90), and the second to introduce the air inside the refrigerator into the sensor casing (90). 2 It may be arranged in both of the second introduction port (94b) constituting the introduction path (59b).
  • the corrosive component of air introduced into the sensor casing (90) is adsorbed on the adsorbent (105) in the vicinity of the sensor casing (90).
  • the corrosive component is suppressed from coming into contact with the oxygen sensor (51), and the deterioration of the oxygen sensor (51) is suppressed.
  • the adsorbent (105) may be provided at a position other than the inside of the sensor casing (90).
  • FIG. 21 is a diagram showing an air circuit (3) of the CA device according to the modified example 4 of the second embodiment.
  • the adsorbent (105) is arranged together with the membrane filter (76) in the inflow portion where the outside air flows into the air circuit (3).
  • bypass passage (78) parallel to the first suction cylinder (34) is connected to the pressure passage (42), and the other end is connected to the oxygen discharge passage (45).
  • a bypass on-off valve (78a) is provided in the bypass passage (78).
  • outside air is flowed in the order of a bypass passage (78) having a bypass on-off valve (78a), an oxygen discharge passage (45), an exhaust connection passage (71), a supply passage (44), and a branch pipe (81). Outside air can be introduced into the oxygen sensor (51) during calibration.
  • the second passage (76) is a passage that branches from the first passage and can introduce outside air into the oxygen sensor (51), it is a passage that branches from the first passage (75) and then joins. May be good.
  • the corrosive component contained in the outside air flowing into the air circuit (3) can be adsorbed by the adsorbent (105). Therefore, it is possible to prevent the corrosive component from coming into contact with the oxygen sensor (51) during the calibration operation in which the outside air is introduced into the oxygen sensor (51).
  • the sensor casing (90) may be arranged in the space outside the refrigerator instead of the space inside the refrigerator.
  • the sensor casing (90) arranged outside the refrigerator has a membrane filter (54) and a second introduction path (59b) arranged in the secondary space (S22) inside the refrigerator. Connected via. Even with this configuration, it is possible to prevent corrosive components in the air from coming into contact with the oxygen sensor (51).
  • the first introduction port (94a) shown in FIGS. 9 to 11 uses the sensor casing (90) for the outside air when the oxygen sensor (51) is calibrated. ), And the second introduction port (94b) introduces the air inside the refrigerator into the sensor casing (90).
  • the embodiment may have the following configuration.
  • the oxygen sensor (51) has been described as a gas sensor for suppressing deterioration due to a corrosive component, but deterioration may occur in a gas sensor other than the oxygen sensor (51). Therefore, in addition to the carbon dioxide sensor (52), other gas sensors such as an ethylene sensor and a refrigerant leak sensor that may be used for a transportation container (1) equipped with an air composition adjusting device are also described above.
  • the cover (101) and the contact suppressing portion (105) of the embodiment can be provided.
  • the ethylene sensor is a sensor that detects the ethylene concentration in the refrigerator
  • the refrigerant leak sensor is a sensor that detects the refrigerant leak into the refrigerator.
  • the oxygen sensor (51) and the carbon dioxide sensor (52) may be other than the method described in the embodiment.
  • hydrogen sulfide is exemplified as a corrosive component, but the contact suppressing portion (100) of each embodiment can be provided for other corrosive components including calcium, chlorine, phosphorus and the like.
  • one air pump (31) has a first pump mechanism (31a) and a second pump mechanism (31b), but the first pump mechanism (31a) and the second pump mechanism (31b) May consist of two separate air pumps.
  • the transport unit of the embodiment may be configured by using a blower.
  • each suction portion may be composed of three suction cylinders, and a total of six suction cylinders may be used.
  • the adjusting unit (34, 35) of the above embodiment is not limited to the configuration using an adsorbent such as zeolite, and for example, nitrogen is used by using a gas separation membrane in which the permeability of nitrogen and the permeability of oxygen (and carbon dioxide) are different. Concentrated air and oxygen-concentrated air may be generated, and the composition of the air inside the refrigerator may be adjusted by these concentrated air.
  • the CA device (60) according to the present invention can be used for adjusting the composition of air in a warehouse such as a container for marine transportation, a container for land transportation, a simple freezing and refrigerating warehouse, and a warehouse at room temperature.
  • the freezing device may be a device that cools the internal space of a stationary storage (freezing / refrigerating warehouse), not for transportation.
  • the cover unit (100) may be composed of only the cover (101).
  • the present disclosure is useful for an air composition adjusting device, a transport refrigerating device, and a transport container.
  • Transport container 2 Container body 3 Air circuit 10 Transport refrigeration equipment (refrigeration equipment) 20 Refrigerant circuit 21 Compressor (component) 22 Condensator (component) 23 Expansion valve (component) 24 Evaporator (component) 31 Air pump (conveyor) 34 1st adsorption cylinder (adjustment part) 35 2nd adsorption cylinder (adjustment part) 51 Oxygen sensor (gas sensor) 51a Detection unit 59 2nd connecting pipe (introduction path) 60 Air composition adjustment device (air composition adjustment unit) 90 Sensor casing 94 Introductory port (introduction path) 94a 1st inlet 94b 2nd inlet 100 Cover unit 101 Cover 105 Adsorbent 111 Inflow path 112 Outflow path 131 1st cylinder 132 2nd cylinder h1 1st hole h2 2nd hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Abstract

空気組成調整装置(60)には、ガスセンサ(51)の周囲を覆うカバー(101)と、カバー(101)内に空気を取り込む流入路(111)と、カバー(101)内の空気を流出させる流出路(112)とを含むカバーユニット(100)が設けられる。

Description

空気組成調整装置、冷凍装置、及び輸送用コンテナ
 本開示は、空気組成調整装置、冷凍装置、及び輸送用コンテナに関する。
 従来、輸送用コンテナの庫内空間の酸素濃度や二酸化炭素濃度を調整する空気組成調整装置では、空気の成分を測定するガスセンサが用いられている(例えば、特許文献1参照)。この空気組成調整装置では、ガスセンサで庫内空間の酸素や二酸化炭素の濃度を測定しながら、その濃度が適切な範囲になるように制御される。
特開平08-000168号公報
 しかしながら、ガスセンサは、庫外や庫内から流入する空気中の腐食成分により劣化するおそれがある。腐食成分は、硫黄、リン、カルシウム、塩素、アンモニアなどのように物質を腐食させる成分を含むガスである。
 本開示の目的は、空気の成分を測定するガスセンサの劣化を抑えることである。
 本開示の第1の態様は、空気組成調整装置を対象とし、空気を搬送する搬送部(31)と、
 対象空間の空気の組成を調整する調整部(34,35)と、前記搬送部(31)によって空気を前記調整部(34,35)に導入し、組成を調整した空気を対象空間へ供給する空気回路(3)と、前記対象空間に配置されて空気の成分を測定するガスセンサ(51)と、前記ガスセンサ(51)の周囲を覆うカバー(101)と、該カバー(101)内に空気を取り込む流入路(111)と、該カバー(101)内の空気を流出させる流出路(112)とを含むカバーユニット(100)とを備えている。
 第1の態様では、ガスセンサ(51)をカバー(101)で覆うことにより、ガスセンサ(51)と空気中の腐食成分との接触が抑制され、ガスセンサ(51)の劣化が抑えられる。
 第2の態様は、第1の態様において、前記流入路(111)の内径、および前記流出路(112)の内径が、1mm以上4mm以下である。
 流出路(112)および流入路(111)の内径が小さすぎると、ガスセンサ(51)の応答性が悪化する。流出路(112)および流入路(111)の内径が大きすぎると、ガスセンサ(51)と腐食成分との接触する時間、あるいは頻度が増え、ガスセンサ(51)が劣化し易くなる。流出路(112)の内径、および流入路(111)の内径を1mm以上4mm以下とすることで、ガスセンサ(51)の応答性を確保しつつ、ガスセンサ(51)の劣化を抑制できる。
 第3の態様は、第1または第2の態様において、前記流出路(112)は、前記カバー(101)の上部に位置する。
 第3の態様では、ガスセンサ(51)などの熱をカバー(101)上部の流出路(112)から、カバー(101)の外部へ排出できる。これにより、カバー(101)の内部の温度上昇を抑制できる。
 第4の態様は、第1から第3の何れか1つの態様において、前記流入路(111)は、前記カバー(101)の下部に位置する。
 第4の態様では、カバー(101)の内部の水をカバー(101)下部()の流入路(111)から、カバー(101)の外部へ排出できる。
 第5の態様は、第1から第4の何れか1つの態様において、前記ガスセンサ(51)の検知部(51a)が、前記流入路(111)と前記流出路(112)とを結ぶ直線上に位置する。
 第5の態様では、流入路(111)から流出路(112)へ流れる空気が、検知部(51a)を通過し易くなるので、ガスセンサ(51)の応答性を確保できる。
 第6の態様は、第1から第5の何れか1つの態様において、前記流入路(111)は、前記カバー(101)に形成した第1穴(h1)によって構成され、前記流出路(112)は、前記カバー(101)に形成した第2穴(h2)によって構成される。
 第6の態様では、流入路(111)および流出路(112)の流路抵抗を低減できる。
 第7の態様は、第1から第5の何れか1つの態様において、前記流入路(111)は、前記カバー(101)に接続された第1筒部(131)によって構成され、前記流出路(112)は、前記カバー(101)に接続された第2筒部(132)によって構成される。
 第8の態様は、第1から第7の何れか1つの態様において、前記ガスセンサ(51)は、ON状態において発熱するように構成され、前記カバー(101)は、前記ガスセンサ(51)の発熱に伴い空気流れを形成するように構成される。
 第8の態様では、ガスセンサ(51)がON状態になることに起因して、カバー(101)内に上昇気流が形成される。これにより、カバー(101)内の空気を搬送できる。
 第9の態様は、第1から第8の何れか1つの態様において、前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、前記センサケーシング(90)は、その内部へ空気を導入する導入口(94)を備え、前記カバー(101)は、前記導入口(94)と前記ガスセンサ(51)との間に配置される。
 第9の態様では、導入口(94)とガスセンサ(51)との間に配置されるカバー(101)によって、センサケーシング(90)内へ空気と共に侵入する腐食成分がガスセンサ(51)に触れるのを抑制できる。
 第10の態様は、第9の態様において、前記導入口(94)は、前記ガスセンサ(51)の下方に配置され、前記カバー(101)は、前記ガスセンサ(51)の下方に配置される部分を有する。
 第10の態様では、ガスセンサ(51)の下方に配置される導入口(94)からセンサケーシング(90)内へ腐食成分が空気と共に侵入し、その腐食成分がガスセンサ(51)に到達するのをカバー(101)によって抑えられる。
 第11の態様は、第9の態様において、前記導入口(94)は、前記対象空間の内部の空気を前記センサケーシング(90)内へ導入する第1導入口(94a)と、前記対象空間の外の空気を前記センサケーシング(90)内へ導入する第2導入口(94b)を含み、前記第1導入口(94a)及び第2導入口(94b)の少なくとも一方は、前記ガスセンサ(51)の下方に配置され、前記カバー(101)は、前記ガスセンサ(51)の下方に配置される部分を有する。
 第11の態様では、対象空間の内部の空気または対象空間の外部の空気をセンサケーシング(90)内へ導入するときに、これらの空気に腐食成分が含まれていても、腐食成分がガスセンサ(51)に到達するのをカバー(101)によって抑えられる。
 第12の態様は、第1から第8の何れか1つの態様において、空気中の腐食成分がガスセンサ(51)に接触するのを抑制する接触抑制部を備え、前記接触抑制部(100)は、空気中の腐食成分を吸着する吸着材(105)を有する。
 第12の態様では、空気中の腐食成分が吸着材(105)に吸着されるので、ガスセンサ(51)に腐食成分が接触するのを抑えられる。
 第13の態様は、第12の態様において、前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、前記吸着材(105)は、前記センサケーシング(90)の内部に配置される。
 第13の態様では、センサケーシング(90)の内部に侵入した空気の腐食成分を吸着材(105)で吸着することにより、ガスセンサ(51)に腐食成分が接触するのを抑制できる。
 第14の態様は、第12の態様において、前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、前記センサケーシング(90)には、その内部へ空気を導入する導入路(59)が接続され、前記吸着材(105)は、前記導入路(59)に配置される。
 第14の態様では、センサケーシング(90)の内部へ空気を導入する導入路(59)に吸着材(105)を設けることにより、ガスセンサ(51)と腐食成分の接触を抑制できる。
 第15の態様は、第12の態様において、前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、前記センサケーシング(90)は、その内部へ空気を導入する導入口(94)を有し、前記吸着材(105)は前記導入口(94)に配置される。
 第15の態様では、センサケーシング(90)の導入口(94)に吸着材(105)を設けることにより、ガスセンサ(51)と腐食成分の接触を抑制できる。吸着材(105)は、センサケーシング(90)の内部へ空気を導入する導入路(59)と導入口(94)の両方に設けてもよい。そのように構成すると、ガスセンサ(51)と腐食成分の接触をより十分に抑制できる。
 第16の態様は、第12の態様において、前記吸着材(105)は、前記空気回路(3)へ空気が流入する流入部に配置される。
 第16の態様では、空気回路(3)への空気の流入部に吸着材(105)を設けることにより、ガスセンサ(51)と腐食成分の接触を抑制できる。
 第17の態様は、第12から第16の態様の何れか1つにおいて、前記吸着剤()は、硫黄またはリンを含む腐食成分を吸着する。
 第17の態様では、硫黄またはリンを含む腐食成分がガスセンサ(51)と接触することを抑制でき、ガスセンサ(51)の劣化を抑制できる。
 第18の態様は、冷凍サイクルを行う冷媒回路(20)の構成要素(21~24)と、対象空間の空気の組成を調整する空気組成調整部(60)とを備え、前記冷媒回路(20)の蒸発器(24)で前記対象空間の空気を冷却する冷凍装置であって、前記空気組成調整部(60)は、第1から第17の態様の何れか1つの空気組成調整装置で構成される。
 第18の態様では、空気組成調整装置を備えた冷凍装置において、ガスセンサ(51)と腐食成分の接触を抑制でき、ガスセンサ(51)の劣化を抑えられる。
 第19の態様は、生鮮物を輸送するコンテナ本体(2)と、前記コンテナ本体(2)の庫内を対象空間として冷却する輸送用冷凍装置(10)とを備える輸送用コンテナであって、前記輸送用冷凍装置(10)は、第18の態様の冷凍装置で構成される。
 第19の態様では、空気組成調整装置と輸送用冷凍装置を備えた輸送用コンテナにおいて、ガスセンサ(51)と腐食成分の接触を抑制でき、ガスセンサ(51)の劣化を抑えられる。
図1は、本発明の実施形態1に係る輸送用冷凍装置を庫外側から見た斜視図である。 図2は、図1の輸送用冷凍装置の概略構成を示す側面断面図である。 図3は、図1の輸送用冷凍装置の冷媒回路の構成を示す配管系統図である。 図4は、図1の輸送用冷凍装置のCA装置の空気回路を示す配管系統図であり、第1動作における空気の流れを示す。 図5は、図1の輸送用冷凍装置のCA装置の空気回路を示す配管系統図であり、第2動作における空気の流れを示す。 図6は、図1の輸送用冷凍装置のCA装置の空気回路を示す配管系統図であり、外気導入動作における空気の流れを示す。 図7は、図1の輸送用冷凍装置のCA装置の空気回路を示す配管系統図であり、センサ校正動作における空気の流れを示す。 図8は、輸送用冷凍装置のケーシングの背面側斜視図であり、センサユニットの配置を示す。 図9は、センサユニットの斜視図である。 図10は、センサユニットの内部を示す斜視図である。 図11は、センサユニットを背面から観た斜視図である。 図12は、センサユニットの内部を示す斜視図である。 図13は、カバーユニットの概略の斜視図である。 図14は、カバーユニットを頂部から見た図である。 図15は、カバーユニットの断面図である。 図16は、実施形態1の変形例2に係るカバーユニットの断面図である。 図17は、実施形態2に係るセンサケーシングの内部を示す斜視図である。 図18は、実施形態2の変形例1に係るケースカバーに吸着材を設けた構成の斜視図である。 図19は、実施形態2の変形例2に係るセンサケーシングの内部を示す斜視図である。 図20は、実施形態2の変形例3に係るCA装置の空気回路の部分拡大図である。 図21は、実施形態2の変形例4に係るCA装置の空気回路の部分拡大図である。 図22は、実施形態3に係るCA装置の空気回路を示す配管系統図である。 図23は、実施形態3に係る輸送用冷凍装置の斜視図である。
 《実施形態1》
 以下、本発明の実施形態1を図面に基づいて詳細に説明する。
 〈全体構成〉
 本実施形態は、対象空間の空気の組成を調整する空気組成調整装置(60)を備えた輸送用コンテナ(1)に関する。空気組成調整装置(60)は、ガス供給ユニット(30)とセンサユニット(50)を備える。ガス供給ユニット(30)は、空気を搬送する搬送部(後述のエアポンプ(31))と、空気の組成を調整する調整部(後述の第1,第2吸着筒(34,35))と、搬送部によって空気を調整部に導入し、組成を調整した空気を対象空間へ供給する空気回路(3)とを有する。センサユニット(50)は、対象空間に配置されて空気の成分を測定するセンサ(51,52)を有する。
 〈輸送用コンテナ〉
 輸送用コンテナ(1)は、図1及び図2に示すように、コンテナ本体(2)と輸送用冷凍装置(10)とを備え、海上輸送等に用いられる。輸送用冷凍装置(10)は、コンテナ本体(2)の庫内(対象空間)の空気を冷却する。コンテナ本体(2)の庫内空間(対象空間)には、生鮮物(植物(15))が箱詰めされた状態で収納される。植物(15)は、例えば、バナナやアボカド等の青果物、野菜、穀物、球根、生花等であり、空気中の酸素(O)を取り込んで二酸化炭素(CO)を放出する呼吸を行う。
 コンテナ本体(2)は、一方の端面が開口する細長い直方体の箱状に形成されている。輸送用冷凍装置(10)は、ケーシング(12)と、冷媒回路(20)と、CA装置(空気組成調整装置/Controlled Atmosphere System)(60)とを備える。輸送用冷凍装置(10)のケーシング(12)はコンテナ本体(2)の開口端を塞ぐように取り付けられている。
 〈輸送用冷凍装置〉
 輸送用冷凍装置(10)は、冷凍サイクルを行う冷媒回路(20)を備え、コンテナ本体(2)の庫内空気を冷媒回路(20)の蒸発器(24)で冷却する。
  〈ケーシング〉
 図2に示すように、輸送用冷凍装置(10)のケーシング(12)は、コンテナ本体(2)の庫外側に位置する庫外壁(12a)と、コンテナ本体(2)の庫内側に位置する庫内壁(12b)とを備えている。庫外壁(12a)及び庫内壁(12b)は、例えば、アルミニウム合金によって構成される。
 庫外壁(12a)は、コンテナ本体(2)の開口端を塞ぐようにコンテナ本体(2)の開口の周縁部に取り付けられている。庫外壁(12a)は、下部がコンテナ本体(2)の庫内側へ膨出している。
 庫内壁(12b)は、庫外壁(12a)と対向して配置されている。庫内壁(12b)は、庫外壁(12a)の下部に対応して庫内側へ膨出している。庫内壁(12b)と庫外壁(12a)との間の空間には、断熱材(12c)が設けられる。
 このように、ケーシング(12)の下部は、コンテナ本体(2)の庫内側に向かって膨出している。これにより、ケーシング(12)の下部におけるコンテナ本体(2)の庫外側に庫外収納空間(S1)が形成され、ケーシング(12)の上部におけるコンテナ本体(2)の庫内側に庫内収納空間(S2)が形成されている。
 図1に示すように、ケーシング(12)には、メンテナンス用の2つのサービス用開口(14)が幅方向に並んで形成されている。2つのサービス用開口(14)は、それぞれ開閉自在な第1及び第2サービス扉(16A,16B)によって閉塞されている。第2サービス扉(16B)には、中心軸に対して回転する回転蓋(16C)で開閉可能な換気口(16D)が形成されている。
 図2に示すように、コンテナ本体(2)の庫内には、仕切板(18)が配置される。この仕切板(18)は、略矩形状の板部材で構成され、ケーシング(12)の庫内側の面と対向して配置されている。この仕切板(18)によって、コンテナ本体(2)の庫内の植物(15)が収納される庫内空間(対象空間)と、庫内収納空間(S2)とが区画される。
 仕切板(18)の上端とコンテナ本体(2)内の天井面との間には吸込口(18a)が形成される。コンテナ本体(2)の庫内空気は、吸込口(18a)を通って庫内収納空間(S2)に取り込まれる。
 庫内収納空間(S2)には、水平方向に延びる区画壁(13)が設けられる。区画壁(13)は、仕切板(18)の上端部に取り付けられ、後述の庫内ファン(26)が設置される開口を有する。区画壁(13)は、庫内収納空間(S2)を、庫内ファン(26)の吸込側の1次空間(S21)と、庫内ファン(26)の吹出側の2次空間(S22)とに区画する。本実施形態では、1次空間(S21)が上側に配置され、2次空間(S22)が下側に配置されている。
 コンテナ本体(2)内には、コンテナ本体(2)の底面の上方に、箱詰めされた植物(15)が載置される床板(19)が設けられる。コンテナ本体(2)内の底面と床板(19)との間には、床下流路(19a)が形成される。仕切板(18)の下端とコンテナ本体(2)内の底面との間には隙間が設けられ、庫内収納空間(S2)が床下流路(19a)に連通している。
 床板(19)におけるコンテナ本体(2)の奥側(図2で右側)には、輸送用冷凍装置(10)によって冷却された空気をコンテナ本体(2)の庫内へ吹き出す吹出口(18b)が形成されている。
  〈冷媒回路の構成と機器配置〉
 図3に示すように、冷媒回路(20)は、その構成要素である圧縮機(21)と凝縮器(22)と膨張弁(23)と蒸発器(24)とを、冷媒配管(20a)によって順に接続することによって構成された閉回路である。
 凝縮器(22)の近傍には、庫外ファン(25)が設けられる。庫外ファン(25)は、庫外ファンモータ(25a)によって回転駆動され、コンテナ本体(2)の庫外空間の空気(外気)を凝縮器(22)へ送る。凝縮器(22)では、圧縮機(21)で加圧されて凝縮器(22)の内部を流れる冷媒と、庫外ファン(25)によって凝縮器(22)に送られた外気との間で熱交換が行われる。
 蒸発器(24)の近傍には、庫内ファン(26)が2つ設けられる。庫内ファン(26)は、庫内ファンモータ(26a)によって回転駆動され、コンテナ本体(2)の庫内空気を吸込口(18a)から吸引して蒸発器(24)へ吹き出す。蒸発器(24)では、膨張弁(23)で減圧されて蒸発器(24)の内部を流れる冷媒と、庫内ファン(26)によって蒸発器(24)に送られた庫内空気との間で熱交換が行われる。
 図1に示すように、圧縮機(21)及び凝縮器(22)は、庫外収納空間(S1)に収納される。凝縮器(22)は、庫外収納空間(S1)の上下方向の中央部分に配置され、庫外収納空間(S1)を下側の第1空間(S11)と上側の第2空間(S12)とに区画する。第1空間(S11)には、圧縮機(21)と、圧縮機(21)を可変速で駆動する駆動回路が収納されたインバータボックス(29)と、CA装置(60)のガス供給ユニット(30)とが設けられる。第2空間(S12)には、庫外ファン(25)と電装品ボックス(17)とが設けられる。
 図2に示すように、蒸発器(24)は、庫内収納空間(S2)の2次空間(S22)に収納されている。庫内収納空間(S2)の蒸発器(24)の上方には、上述の2つの庫内ファン(26)がケーシング(12)の幅方向に並んで配置される(図1参照)。
 〈空気組成調整装置〉
  図4~図7に示すように、コンテナ本体(2)に設けられているCA装置(60)は、ガス供給ユニット(30)と、排気部(46)と、センサユニット(50)と、制御部(55)とを備え、コンテナ本体(2)の庫内空気の酸素濃度と二酸化炭素濃度とを調整する。なお、以下の説明で用いる「濃度」は、全て「体積濃度」を指す。
  〈ガス供給ユニット〉
 ガス供給ユニット(30)は、コンテナ本体(2)の庫内に供給するための成分調整された空気を生成するユニットである。本実施形態においては、コンテナ本体(2)の庫内に供給するための低酸素濃度の窒素濃縮空気を生成する装置である。本実施形態では、ガス供給ユニット(30)は、VPSA(Vacuum Pressure Swing Adsorption)によって構成されている。ガス供給ユニット(30)は、図1に示すように、庫外収納空間(S1)の左下のコーナー部に配置される。
 図4に示すように、ガス供給ユニット(30)は、エアポンプ(31)と、第1方向制御弁(32)及び第2方向制御弁(33)と、空気中の窒素成分を吸着するための吸着剤が内部に設けられた第1吸着筒(34)及び第2吸着筒(35)とが接続された空気回路(3)を有する。空気回路(3)の構成部品はユニットケース(36)に収容されている。
   (エアポンプ)
 エアポンプ(31)は、空気を吸引して加圧して吐出する第1ポンプ機構(加圧ポンプ機構)(31a)及び第2ポンプ機構(減圧ポンプ機構)(31b)を有する。第1ポンプ機構(31a)及び第2ポンプ機構(31b)はモータ(31c)の駆動軸に接続されている。
   (空気回路)
 エアポンプ(31)等の構成部品が接続される空気回路(3)は、外気通路(41)、加圧通路(42)、減圧通路(43)、及び供給通路(44)を含む。
 第1ポンプ機構(31a)の吸込口には、ユニットケース(36)を内外に貫通する外気通路(41)の一端が接続される。外気通路(41)の他端には、通気性と防水性を有するメンブレンフィルタ(37)が設けられる。図示していないが、メンブレンフィルタ(37)が設けられる外気通路(41)の他端は、庫外収納空間(S1)の凝縮器(22)の上方の第2空間(S12)に配置される。
 第1ポンプ機構(31a)の吐出口には加圧通路(42)の一端が接続される。加圧通路(42)の他端は2つに分岐して、第1方向制御弁(32)及び第2方向制御弁(33)に接続される。
 第2ポンプ機構(31b)の吸込口には、減圧通路(43)の一端が接続される。減圧通路(43)の他端は2つに分岐して、第1方向制御弁(32)及び第2方向制御弁(33)に接続される。第2ポンプ機構(31b)の吐出口には、供給通路(44)の一端が接続される。供給通路(44)の他端は、コンテナ本体(2)の庫内収納空間(S2)において、庫内ファン(26)の吹出側の2次空間(S22)に開口する。供給通路(44)の他端部には、庫内収納空間(S2)へ向かう空気の流通を許容し、空気の逆流を防止する逆止弁(65)が設けられる。
 エアポンプ(31)の側方には、エアポンプ(31)に向かって送風することでエアポンプ(31)を冷却する送風ファン(49)が2つ設けられている。
 加圧ポンプ機構である第1ポンプ機構(31a)は、一方の吸着筒(34,35)に加圧した空気を供給することによって、その吸着筒(34,35)において加圧空気中の窒素成分を吸着剤に吸着する吸着動作を行う。減圧ポンプ機構である第2ポンプ機構(31b)は、他方の吸着筒(35,34)内から空気を吸引することによって、その吸着筒(35,34)の吸着剤に吸着している窒素成分を脱着する脱着動作(窒素濃縮空気を生成する動作)を行う。
 供給通路(44)は、吸着筒(34,35)において吸着動作と脱着動作とを交互に行って、脱着動作で生成した窒素濃縮空気をコンテナ本体(2)の庫内に供給する通路である。
 加圧通路(42)の加圧ポンプ機構(31a)の出口部(加圧ポンプ機構(31a)と方向制御弁(32,33)との間)と、供給通路(44)の減圧ポンプ機構(31b)の出口部は、バイパス通路(47)で接続されている。バイパス通路(47)には、制御部(55)によって開閉制御されるバイパス開閉弁(48)が設けられている。
 外気通路(41)と、加圧通路(42)の一部と、バイパス開閉弁(48)を有するバイパス通路(47)と、供給通路(44)の一部とにより、外気導入通路(40)が構成されている。外気導入通路(40)は、加圧ポンプ機構(31a)を通過した加圧空気(外気と組成の等しい空気)を庫内へ供給する。外気導入通路(40)には、ユニットケース(36)の外部の空間を通る冷却部(40a)が設けられる。
   (方向制御弁)
 第1方向制御弁(32)及び第2方向制御弁(33)は空気回路(3)に設けられ、エアポンプ(31)と第1,第2吸着筒(34,35)との間に配置される。第1方向制御弁(32)及び第2方向制御弁(33)は、エアポンプ(31)と第1,第2吸着筒(34,35)との接続状態を、後述する2つの接続状態(第1,第2の接続状態)に切り換える。この切り換え動作は、制御部(55)によって制御される。
 第1方向制御弁(32)は、第1ポンプ機構(31a)の吐出口に接続された加圧通路(42)と、第2ポンプ機構(31b)の吸込口に接続された減圧通路(43)と、第1吸着筒(34)の一端部(加圧時の流入口)とに接続される。第1方向制御弁(32)は、第1吸着筒(34)を第1ポンプ機構(31a)の吐出口に連通させて第2ポンプ機構(31b)の吸込口から遮断する第1状態(図4に示す状態)と、第1吸着筒(34)を第2ポンプ機構(31b)の吸込口に連通させて第1ポンプ機構(31a)の吐出口から遮断する第2状態(図5に示す状態)とに切り換わる。
 第2方向制御弁(33)は、第1ポンプ機構(31a)の吐出口に接続された加圧通路(42)と、第2ポンプ機構(31b)の吸込口に接続された減圧通路(43)と、第2吸着筒(35)の一端部とに接続される。第2方向制御弁(33)は、第2吸着筒(35)を第2ポンプ機構(31b)の吸込口に連通させて第1ポンプ機構(31a)の吐出口から遮断する第1状態(図4に示す状態)と、第2吸着筒(35)を第1ポンプ機構(31a)の吐出口に連通させて第2ポンプ機構(31b)の吸込口から遮断する第2状態(図5に示す状態)とに切り換わる。
 第1方向制御弁(32)及び第2方向制御弁(33)を共に第1状態に設定すると、空気回路(3)が、第1の接続状態に切り換わる(図4を参照)。第1の接続状態では、第1ポンプ機構(31a)の吐出口と第1吸着筒(34)とが接続され、第2ポンプ機構(31b)の吸込口と第2吸着筒(35)とが接続される。この状態では、第1吸着筒(34)では外気中の窒素成分を吸着剤に吸着させる吸着動作が行われ、第2吸着筒(35)では吸着剤に吸着された窒素成分を脱着させる脱着動作が行われる。
 第1方向制御弁(32)及び第2方向制御弁(33)を共に第2状態に設定すると、空気回路(3)が、第2の接続状態に切り換わる(図5を参照)。第2の接続状態では、第1ポンプ機構(31a)の吐出口と第2吸着筒(35)とが接続され、第2ポンプ機構(31b)の吸込口と第1吸着筒(34)とが接続される。この状態では、第2吸着筒(35)で吸着動作が行われ、第1吸着筒(34)で脱着動作が行われる。
   (吸着筒)
 第1吸着筒(34)及び第2吸着筒(35)は、内部に吸着剤が充填された円筒部材で構成されている。第1吸着筒(34)及び第2吸着筒(35)に充填された吸着剤は、加圧下では窒素成分を吸着し、減圧下では、吸着した窒素成分を脱着させる性質を有する。
 第1吸着筒(34)及び第2吸着筒(35)に充填された吸着剤は、例えば、窒素分子の分子径(3.0オングストローム)よりも小さく且つ酸素分子の分子径(2.8オングストローム)よりも大きな孔径の細孔を有する多孔体のゼオライトである。このような孔径のゼオライトを吸着剤に用いると、空気中の窒素成分を吸着することができる。
 第1吸着筒(34)及び第2吸着筒(35)では、エアポンプ(31)から加圧された外気が供給されて内部が加圧されると、吸着剤に該外気中の窒素成分が吸着する。その結果、外気よりも窒素成分が少なくなることで外気よりも窒素濃度が低く酸素濃度が高い酸素濃縮空気が生成される。一方、第1吸着筒(34)及び第2吸着筒(35)では、エアポンプ(31)によって内部の空気が吸引されて減圧されると、吸着剤に吸着されていた窒素成分が脱着する。その結果、外気よりも窒素成分を多く含むことで外気よりも窒素濃度が高く酸素濃度が低い窒素濃縮空気が生成される。本実施形態では、例えば、窒素濃度92%、酸素濃度8%の成分比率の窒素濃縮空気が生成される。
 第1吸着筒(34)及び第2吸着筒(35)の他端部(加圧時の流出口)には、加圧された外気から生成された酸素濃縮空気をコンテナ本体(2)の庫外へ導くための酸素排出通路(45)の一端が接続される。酸素排出通路(45)の一端は、2つに分岐し、第1吸着筒(34)及び第2吸着筒(35)の他端部のそれぞれに接続される。酸素排出通路(45)の他端は、ガス供給ユニット(30)の外部、即ち、コンテナ本体(2)の庫外で開口する。酸素排出通路(45)が第1吸着筒(34)に接続された部分及び第2吸着筒(35)に接続された分岐部分には、酸素排出通路(45)から第1吸着筒(34)及び第2吸着筒(35)への空気の逆流を防止するための逆止弁(61)がそれぞれ設けられる。
 酸素排出通路(45)の途中には、逆止弁(62)とオリフィス(63)とが一端から他端に向かって順に設けられる。逆止弁(62)は、後述する排気用接続通路(71)からの窒素濃縮空気の第1吸着筒(34)及び第2吸着筒(35)側への逆流を防止する。オリフィス(63)は、第1吸着筒(34)及び第2吸着筒(35)から流出した酸素濃縮空気を庫外への排出前に減圧する。
 吸着筒(34,35)から酸素濃縮空気を庫外へ排出する通路である酸素排出通路(45)には、圧力センサ(66)が設けられる。圧力センサ(66)は、第1吸着筒(34)及び第2吸着筒(35)の合流点(P0)と逆止弁(62)との間に配置される。
 排気用接続通路(71)は、減圧ポンプ機構(31b)の吐出口を圧力センサ(66)の下流側で酸素排出通路(45)に接続する通路である。前記逆止弁(62)は、圧力センサ(66)と酸素排出通路(45)とが接続された第1接続点(P1)と、酸素排出通路(45)と排気用接続通路(71)とが接続された第2接続点(P2)との間に設けられる。逆止弁(62)は、第1接続点(P1)から第2接続点(P2)への空気の流れを許容し、逆方向への空気の流れを禁止する。
   (給排切換機構)
 空気回路(3)には、ガス供給動作とガス排出動作とを切り換える給排切換機構(70)が設けられる。ガス供給動作は、窒素濃縮空気を第1吸着筒(34)及び第2吸着筒(35)からコンテナ本体(2)の庫内に供給する動作である。ガス排出動作は、窒素濃縮空気を第1吸着筒(34)及び第2吸着筒(35)から庫外へ排出する動作である。給排切換機構(70)は、排気用接続通路(71)と、排気用開閉弁(72)と、供給用開閉弁(73)とを有する。
 排気用接続通路(71)は、一端が供給通路(44)に接続され、他端が酸素排出通路(45)に接続される。排気用接続通路(71)の他端は、酸素排出通路(45)にオリフィス(63)よりも庫外側で接続される。
 排気用開閉弁(72)は、排気用接続通路(71)に設けられる。排気用開閉弁(72)は、排気用接続通路(71)の中途部に配置された電磁弁で構成される。排気用開閉弁(72)は、供給通路(44)から流入した窒素濃縮空気の流通を許容する開状態と、窒素濃縮空気の流通を遮断する閉状態とに切り換わる。排気用開閉弁(72)の開閉動作は、制御部(55)によって制御される。
 供給用開閉弁(73)は供給通路(44)に設けられ、供給通路(44)と排気用接続通路(71)の接続部よりも庫内側に配置される。供給用開閉弁(73)は、庫内側への空気の流通を許容する開状態と、庫内側への空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。供給用開閉弁(73)の開閉動作は、制御部(55)によって制御される。
  〈排気部〉
 図2,図4に示すように、排気部(46)は、庫内収納空間(S2)と庫外空間とを繋ぐ排気通路(46a)と、排気通路(46a)に接続された排気弁(46b)と、排気通路(46a)の流入端部(庫内側端部)に設けられたメンブレンフィルタ(46c)とを有する。排気通路(46a)は、ケーシング(12)を内外に貫通している。排気弁(46b)は、排気通路(46a)の庫内側に設けられる。排気弁(46b)は、排気通路(46a)における空気の流通を許容する開状態と、排気通路(46a)における空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。排気弁(46b)の開閉動作は、制御部(55)によって制御される。
 庫内ファン(26)の回転中に制御部(55)によって排気弁(46b)を開くと、庫内空間に繋がる庫内収納空間(S2)の空気(庫内空気)が庫外へ排出される排気動作が行われる。
 具体的には、庫内ファン(26)が回転すると、吹出側の2次空間(S22)の圧力が、庫外空間の圧力(大気圧)よりも高くなる。これにより、排気弁(46b)が開状態であるときには、排気通路(46a)の両端部の間で生じる圧力差(庫外空間と2次空間(S22)との間の圧力差)により、庫内空間に繋がる庫内収納空間(S2)の空気(庫内空気)が排気通路(46a)を通って庫外空間へ排出される。
  〈センサユニットの回路構成〉
 図2,図4に示すように、センサユニット(50)は、庫内収納空間(S2)における庫内ファン(26)の吹出側の2次空間(S22)に設けられる。センサユニット(50)は、酸素センサ(51)と、二酸化炭素センサ(52)と、メンブレンフィルタ(54)と、排気管(57)とを有する。酸素センサ(51)と二酸化炭素センサ(52)はセンサケーシング(90)に収容される。センサケーシング(90)は、その内部へ空気を導入する後述の導入口(94)を備え、図4のメンブレンフィルタ(54)は導入口(94)に装着される。
 酸素センサ(51)は、ジルコニア式センサで構成される。二酸化炭素センサ(52)は、非分散型赤外線方式(NDIR:non dispersive infrared)のセンサで構成される。排気管(57)の一端はセンサケーシング(90)に連結され、排気管(57)の他端は庫内ファン(26)の吸込口の近傍で開口する。
 庫内収納空間(S2)の2次空間(S22)と1次空間(S21)とは、メンブレンフィルタ(54)、酸素センサ(51)、二酸化炭素センサ(52)、及び排気管(57)によって形成される連通路(58)を介して連通している。庫内ファン(26)の運転中には、1次空間(S21)の圧力が2次空間(S22)の圧力よりも低くなるので、この圧力差により、酸素センサ(51)と二酸化炭素センサ(52)とを含む連通路(58)において2次空間(S22)側から1次空間(S21)側へ庫内空気が流れる。庫内ファン(26)の運転中は、このようにして庫内空気が酸素センサ(51)と二酸化炭素センサ(52)とを通過し、酸素センサ(51)において庫内空気の酸素濃度が測定され、二酸化炭素センサ(52)において庫内空気の二酸化炭素濃度が測定される。
 空気回路(3)には、第1,第2吸着筒(34,35)で生成した窒素濃縮空気の濃度を酸素センサ(本開示のガスセンサ)(51)で測定する後述の給気測定動作を行うためのセンサ回路(80)が設けられている。センサ回路(80)は、分岐管(81)と分岐開閉弁(ガス濃度測定用開閉弁)(82)とを備え、供給通路(44)を流れる空気の一部を分岐させて酸素センサ(51)及び二酸化炭素センサ(52)に導く。
 分岐管(81)は、一端が供給通路(44)に接続され、他端がセンサケーシング(90)に連結される。分岐管(81)は、ユニットケース(36)内において供給通路(44)から分岐して庫内空間に連通している。分岐管(81)の他端部(庫内部分)には、一端から他端へ向かう空気の流れを許容し、空気の逆流を防止する逆止弁(64)が設けられている。
 分岐開閉弁(82)は、ユニットケース(36)の内部に設けられている。分岐開閉弁(82)は、分岐管(81)の空気の流通を許容する開状態と、分岐管(81)の空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。分岐開閉弁(82)の開閉動作は、制御部(55)によって制御される。
 庫内ファン(26)の運転停止中に給気測定動作を行うとき、ガス供給ユニット(30)で生成された窒素濃縮空気が、分岐管(81)を介して酸素センサ(51)に導かれ、酸素センサ(51)において窒素濃縮空気の酸素濃度が測定される。
 空気組成調整装置では、センサの測定値が実際の値からずれると、濃度の調整が不安定になるため、所定のタイミングでガスセンサ(51)に外気を導入して校正(測定値の補正)が行われる。酸素センサ(51)の校正中には、後述するようにエアポンプ(31)で加圧された外気が第1,第2吸着筒(34,35)をバイパスして分岐管(81)を通り、酸素センサ(51)に導入される。
 酸素センサ(51)に外気を導入するため、空気回路(3)は、エアポンプ(31)により外気を第1,第2吸着筒(34,35)に導入する第1通路(75)(外気通路(41)及び加圧通路(42))と、エアポンプ(31)と第1,第2吸着筒(34,35)の間で第1通路(41,42)から分岐して酸素センサ(51)に連通する第2通路(76)(バイパス通路(47)及び分岐管(81))を有する。
 第2通路(76)には、酸素センサ(51)に導入される空気の水分を除去するために気液分離器(85)が設けられている。気液分離器(85)には、空気から分離された水分を排出するドレン管(77)が接続される。
 次に、センサケーシング(90)の配置と構造について説明する。
  〈センサユニットの配置と構造〉
 図8は、輸送用冷凍装置(10)のケーシング(12)の背面側斜視図であり、センサケーシング(90)の配置を示す。図9はセンサケーシング(90)の拡大斜視図、図10はセンサケーシング(90)の内部を示す斜視図であり、酸素センサのカバーユニットを仮想線で表している。図11はセンサケーシング(90)を背面から観た斜視図である。図12は、
センサケーシング(90)の内部を示す他の斜視図である。図10では、詳細は後述するカバーユニット(100)を破線で示している。
 前述したように、酸素センサ(51)と二酸化炭素センサ(52)はセンサケーシング(90)内に収容されている。気液分離器(85)はセンサケーシング(90)に固定される。図9に示すように、気液分離器(85)は筒状の容器(86)を有する。気液分離器(85)の容器(86)には、空気が流入する流入口(86a)と、水分(の一部)が除去された空気が流出する流出口(86b)と、空気から分離された水分を排出する排水口(図示せず)とが形成される。
 図8において、センサケーシング(90)に固定された気液分離器(85)が有する流入口(86a)には、第2通路(76)の一部である分岐管(81)が接続される。気液分離器(85)に接続されたドレン管(77)は、輸送用冷凍装置(10)で発生するドレン水を受けるためにケーシング(12)に設けられたドレンパン(28)に水分を排出するように、気液分離器(85)から下方へ延びている。センサケーシング(90)に接続された排気管(57)は、庫内ファン(26)の吸込口側で開口している。
 センサケーシング(90)はセンサケーシング本体(91)とケースカバー(92)とを有する。気液分離器(85)はブラケット(87)を用いてセンサケーシング(90)のケースカバー(92)に固定されている。センサケーシング(90)はブラケット(93)により輸送用冷凍装置(10)のケーシング(12)に固定される。本実施形態では、センサケーシング(90)は庫内収納空間(S2)に位置する。
 センサケーシング(90)は、その内部へ空気を導入する導入口(94)と、外部へ空気が流出する導出口(95)を備える。導入口(94)は、第1導入口(94a)と第2導入口(94b)を含む。第1導入口(94a)は、庫内空間の外部の空気をセンサケーシング(90)内へ導入する開口である。第2導入口(94b)は、庫内空間の内部の空気をセンサケーシング(90)内へ導入する開口である。
 第1導入口(94a)は図9,図10に示すようにセンサケーシング(90)の側面に設けられ、分岐管(81)(第2通路(76))が接続される。第2導入口(94b)は、図11に示すようにセンサケーシング(90)の背面に設けられ、庫内空間に開放されている。第1導入口(94a)及び第2導入口(94b)には、それぞれ、水分を通さずに空気を通すメンブレンフィルタ(54)が装着される。メンブレンフィルタ(54)は、六角形状の締結部材の通気孔に設けられる。導出口(95)には排気管(57)が接続される。
 第1導入口(94a)及び第2導入口(94b)は、いずれも酸素センサ(51)の下方に配置されている。
 気液分離器(85)の流出口(86b)と第1導入口(94a)とは連絡管(59)で接続される。連絡管(59)は、エアポンプ(31)から空気をセンサケーシング(90)内に供給する第1導入路(59a)を構成する。センサケーシング(90)内へ庫内空気を導入する第2導入口(94b)は第2導入路(59b)を構成する。
 <カバーユニット酸素センサの詳細>
 空気組成調整装置(60)は、カバーユニット(100)を備える。カバーユニット(100)は、酸素センサ(51)の周囲を覆う。カバーユニット(100)は、樹脂材料で構成される。カバーユニット(100)は、合成樹脂の成形部品である。カバーユニット(100)は、空気中の腐食成分(例えば硫黄)が酸素センサ(51)に接触することを抑制する。腐食成分は、積荷である植物を箱詰めした庫内のダンボールやそれらを載せた木材パレットから発生する場合や、外気に含まれる場合が考えられる。
 図13~図15に示すように、カバーユニット(100)は、カバー(101)と一対の取付部(120)とを有する。なお、図15においては、便宜上、酸素センサ(51)は断面を示さず外観を示している。
カバー(101)は、有底筒状に形成される。カバー(101)は、筒状の胴部(102)と、該胴部(102)の軸方向の一端を閉塞する半球形状の頂部(103)とを含む。カバー(101)の内部には、酸素センサ(51)が収容される収容空間(104)が形成される
 一対の取付部(120)は、カバー(101)の底部寄りの部分から径方向外方に延出する。一対の取付部(120)は、カバー(101)を挟んで互いに対向する。取付部(120)には、ビスなどの締結部材が締結される。これにより、酸素センサ(51)を覆った状態のカバーユニット(100)がセンサケーシング(90)に固定される(図12を参照)。
 カバー(101)には、その下側寄りの部分に第1平坦部(107)が形成され、その上側寄りの部分に第2平坦部(108)が形成される。第1平坦部(107)および第2平坦部(108)は、カバー(101)の軸方向に沿った平面状の部分である。ここでいう、軸方向は、カバー(101)の開口面(101a)と垂直な方向に対応する。第1平坦部(107)および第2平坦部(108)は、例えば切り欠きによって形成される。第1平坦部(107)および第2平坦部(108)は、カバー(101)の軸心Pを中心として概ね180°ずれている。第1平坦部(107)および第2平坦部(108)は、互いに対向する壁をそれぞれ構成している。第1平坦部(107)は、一方の取付部(120)からカバー(101)の頂部(103)の途中に亘って延びている。第2平坦部(108)は、他方の取付部(120)からカバー(101)の頂部の途中に亘って延びている。
 第1平坦部(107)には、流入路(111)が形成される。流入路(111)は、センサケーシング(90)内の空気をカバー(101)内に取り込むための流路である。流入路(111)は、第1平坦部(107)に形成した第1穴(h1)によって構成される。
 第2平坦部(108)には、流出路(112)が形成される。流出路(112)は、カバー(101)内の空気を外部に流出させるための流路である。流出路(112)は、第2平坦部(108)に形成した第2穴(h2)によって構成される。流入路(111)および流出路(112)は、酸素センサ(51)を挟んで互いに対向する。
 酸素センサ(51)は、そのセンサの本体である検知部(51a)と、検知部(51a)を覆うメッシュ部(51b)と、検知部(51a)と接続する複数の出力端子(51c)と、これらの出力端子(51c)が支持される基板(51d)とを有する。メッシュ部(51b)は、検知部(51a)を保護するとともに空気が流通可能な複数の孔を有する。
 検知部(51a)は、カバーユニット(100)の流入路(111)および流出路(112)の間に配置される。図15に示すように、検知部(51a)は、流入路(111)と流出路(112)とを結ぶ直線X上に位置している。言い換えると、検知部(51a)は、流入路(111)および流出路(112)の空気流通方向において、流入路(111)および流出路(112)と重なる位置にある。基板(51d)は、カバー(101)の開口面(101a)を塞ぐ閉塞部材を兼用している。カバー(101)および基板(51d)の間に収容空間(104)が区画される。
 <流出路および流入路の内径について>
 流出路(112)の内径、および流入路(111)の内径は、1mm以上4mm以下とすることが好ましい。流出路(112)の内径、および流入路(111)の内径が小さすぎると、カバーユニット(100)を流れる空気の流路抵抗が過剰に大きくなる。この場合、酸素センサ(51)の応答性が悪化することに起因して不具合を招くことがある。
 具体的には、例えば庫内空気の酸素濃度を調整する運転(詳細は後述する濃度調整運転)において、庫内空気の酸素濃度を5%に調節する。この場合、酸素センサ(51)で検出される酸素濃度は5%程度になる。一方、この運転から、酸素センサ(51)を校正する運転(詳細は後述するセンサ校正動作)を行う場合、酸素センサ(51)には、約21%の酸素を含む外気が導入される。酸素センサ(51)の応答性が悪くなると、センサ校正動作では、酸素センサ(51)の検出濃度がなかなか上昇しないため、校正に要する時間が長くなる(例えば10分以上かかってしまう)ことがあった。逆に、センサ校正動作から、濃度調整運転を再開する場合にも、酸素センサ(51)の応答性が悪くなると、酸素センサ(51)の検出濃度がなかなか低下しないため、濃度調整運転の再開時間が遅くなったり、酸素濃度の制御性が悪化したりすることがあった。
 これに対し、流出路(112)の内径、および流入路(111)の内径を1mm以上とすることで、カバーユニット(100)を流れる空気の流路抵抗が過剰に大きくなることを抑制できる。このため、酸素センサ(51)の応答性を確保でき、上述した不具合を回避できる。
 流出路(112)の内径、および流入路(111)の内径を4mm以下とすることで、カバーユニット(100)を流れる空気の流路抵抗が過剰に大きくなることを抑制できる。このため、腐食成分を含んだ空気が過剰に酸素センサ(51)を通過することを抑制できる。この結果、酸素センサ(51)と腐食成分の接触時間、あるいは接触頻度を減らすことができ、酸素センサ(51)の劣化を抑制できる。
 本例では、流出路(112)の内径、および流入路(111)の内径を2.5mmとしている。流出路(112)の内径、および流入路(111)の内径は同じであることが好ましいが、例えば数mm程度異なっていてもよい。
 <カバー内の気流について>
 酸素センサ(51)は、通電されてON状態になることで発熱する。具体的には、酸素センサ(51)は、ジルコニア式センサであり、通電されてON状態なることで約450℃まで発熱することがある。このため、酸素センサ(51)の動作時においては、カバー(101)内の収容空間(104)において上昇気流を形成できる。この結果、センサケーシング(90)内の一部の空気をカバー(101)内に導入し易くなる。
 特に流出路(112)がカバー(101)の上部に位置するため、発熱に伴う上昇気流を流出路(112)へ導き易くなる。これにより、カバー(101)の内部で空気流れを形成し易くなるとともに、酸素センサ(51)の熱を速やかに外部へ放出できる。
  〈制御部〉
 制御部(55)は、コンテナ本体(2)の庫内空気の酸素濃度及び二酸化炭素濃度を所望の濃度にする濃度調整運転の制御を実行する。具体的には、制御部(55)は、酸素センサ(51)及び二酸化炭素センサ(52)の測定結果に基づいて、コンテナ本体(2)の庫内空気の組成(酸素濃度及び二酸化炭素濃度)が所望の組成(例えば、酸素濃度5%、二酸化炭素濃度5%)になるように、ガス供給ユニット(30)、排気部(46)及びセンサユニット(50)の動作を制御する。
 制御部(55)は、例えば、CA装置(60)の各要素を制御するマイクロコンピュータと、実施可能な制御プログラムが記憶されたメモリやディスク等の記憶媒体とを含む。制御部(55)の詳細な構造やアルゴリズムは、どのようなハードウェアとソフトウェアとの組み合わせであってもよい。
 -運転動作-
 〈冷媒回路の運転動作〉
 本実施形態では、図3に示すユニット制御部(150)によって、コンテナ本体(2)の庫内空気を冷却する冷却運転が実行される。
 冷却運転では、ユニット制御部(150)により、圧縮機(21)、膨張弁(23)、庫外ファン(25)及び庫内ファン(26)の動作が、図示しない温度センサの測定結果に基づいて庫内空気の温度が所望の目標温度になるように制御される。冷媒回路(20)では、冷媒が循環して蒸気圧縮式冷凍サイクルが行われる。庫内ファン(26)によって庫内収納空間(S2)へ導かれたコンテナ本体(2)の庫内空気は、蒸発器(24)を通過する際に該蒸発器(24)の内部を流れる冷媒によって冷却される。蒸発器(24)で冷却された庫内空気は、床下流路(19a)を通って吹出口(18b)から再びコンテナ本体(2)の庫内へ吹き出される。これにより、コンテナ本体(2)の庫内空気が冷却される。
 〈ガス供給ユニットの動作〉
  (ガス生成動作)
 ガス供給ユニット(30)では、第1吸着筒(34)が加圧されると同時に第2吸着筒(35)が減圧される第1動作(図4を参照)と、第1吸着筒(34)が減圧されると同時に第2吸着筒(35)が加圧される第2動作(図5を参照)とが、所定の時間で交互に繰り返され、窒素濃縮空気と酸素濃縮空気とが生成される。各動作の切り換えは、制御部(55)が第1方向制御弁(32)及び第2方向制御弁(33)を操作することによって行われる。
   《第1動作》
 第1動作では、制御部(55)によって、第1方向制御弁(32)及び第2方向制御弁(33)が共に、図4に示す第1状態に切り換えられる。これにより、空気回路(3)は、第1吸着筒(34)が第1ポンプ機構(31a)の吐出口に連通して第2ポンプ機構(31b)の吸込口から遮断され、且つ第2吸着筒(35)が第2ポンプ機構(31b)の吸込口に連通して第1ポンプ機構(31a)の吐出口から遮断された第1接続状態となる。この第1接続状態では、第1ポンプ機構(31a)によって加圧された外気が第1吸着筒(34)に供給される一方、第2ポンプ機構(31b)が、第2吸着筒(35)から窒素濃度が外気よりも高く酸素濃度が外気よりも低い窒素濃縮空気を吸引する。
 具体的には、第1ポンプ機構(31a)は、外気通路(41)を介して外気を吸い込んで加圧し、加圧した外気(加圧空気)を加圧通路(42)に吐出する。加圧通路(42)に吐出された加圧空気は、加圧通路(42)を流れる。そして、加圧空気が加圧通路(42)を介して第1吸着筒(34)へ供給される。
 このようにして、第1吸着筒(34)には、加圧空気が流入し、該加圧空気に含まれる窒素成分が吸着剤に吸着される。第1動作中に、第1吸着筒(34)では、第1ポンプ機構(31a)から加圧された外気が供給されて該外気中の窒素成分が吸着剤に吸着されることにより、窒素濃度が外気よりも低く酸素濃度が外気よりも高い酸素濃縮空気が生成される。酸素濃縮空気は、第1吸着筒(34)から酸素排出通路(45)に流出する。
 第2ポンプ機構(31b)は、第2吸着筒(35)から空気を吸引する。その際、第2吸着筒(35)の吸着剤に吸着された窒素成分が、空気と共に第2ポンプ機構(31b)に吸引されて吸着剤から脱着する。このように、第1動作中に、第2吸着筒(35)では、第2ポンプ機構(31b)によって内部の空気が吸引されて、吸着剤に吸着された窒素成分が脱着する。このことにより、吸着剤から脱着した窒素成分を含み、窒素濃度が外気よりも高く酸素濃度が外気よりも低い窒素濃縮空気が生成される。窒素濃縮空気は、第2ポンプ機構(31b)に吸い込まれ、加圧された後、供給通路(44)に吐出される。
   《第2動作》
 第2動作では、制御部(55)によって、第1方向制御弁(32)及び第2方向制御弁(33)が共に、図5に示す第2状態に切り換えられる。これにより、空気回路(3)は、第1吸着筒(34)が第2ポンプ機構(31b)の吸込口に連通して第1ポンプ機構(31a)の吐出口から遮断され、且つ第2吸着筒(35)が第1ポンプ機構(31a)の吐出口に連通して第2ポンプ機構(31b)の吸込口から遮断された第2接続状態となる。この第2接続状態では、第1ポンプ機構(31a)によって加圧された外気が第2吸着筒(35)に供給される一方、第2ポンプ機構(31b)が、第1吸着筒(34)から窒素濃縮空気を吸引する。
 具体的には、第1ポンプ機構(31a)は、外気通路(41)を介して外気を吸い込んで加圧し、加圧した外気(加圧空気)を加圧通路(42)に吐出する。加圧通路(42)に吐出された加圧空気は、加圧通路(42)を流れる。そして、加圧空気が加圧通路(42)を介して第2吸着筒(35)へ供給される。
 このようにして、第2吸着筒(35)には、加圧空気が流入し、該加圧空気に含まれる窒素成分が吸着剤に吸着される。第2動作中に、第2吸着筒(35)では、第1ポンプ機構(31a)から加圧された外気が供給されて該外気中の窒素成分が吸着剤に吸着されることにより、窒素濃度が外気よりも低く酸素濃度が外気よりも高い酸素濃縮空気が生成される。酸素濃縮空気は、第2吸着筒(35)から酸素排出通路(45)に流出する。
 第2ポンプ機構(31b)は、第1吸着筒(34)から空気を吸引する。その際、第1吸着筒(34)の吸着剤に吸着された窒素成分が、空気と共に第2ポンプ機構(31b)に吸引されて吸着剤から脱着する。このように、第2動作中に、第1吸着筒(34)では、第2ポンプ機構(31b)によって内部の空気が吸引されて、吸着剤に吸着された窒素成分が脱着する。このことにより、吸着剤から脱着した窒素成分を含み、窒素濃度が外気よりも高く酸素濃度が外気よりも低い窒素濃縮空気が生成される。窒素濃縮空気は、第2ポンプ機構(31b)に吸い込まれ、加圧された後、供給通路(44)に吐出される。
  (ガス供給動作/ガス排出動作)
 ガス供給ユニット(30)では、給排切換機構(70)によって、空気回路(3)において生成した窒素濃縮空気をコンテナ本体(2)の庫内に供給するガス供給動作と、脱着動作の開始時点から所定時間の間、生成した窒素濃縮空気をコンテナ本体(2)の庫内へ供給せずに排気するガス排出動作とが切り換えられる。
 図4,図5に示すように、ガス供給動作では、制御部(55)によって、排気用開閉弁(72)が閉状態に制御され、供給用開閉弁(73)が開状態に制御される。これにより、第1吸着筒(34)及び第2吸着筒(35)において交互に生成された窒素濃縮空気が供給通路(44)を通ってコンテナ本体(2)の庫内へ供給され、酸素濃縮空気は酸素排出通路(45)を通って庫外へ排出される。
 図示を省略するが、ガス排出動作では、制御部(55)によって、排気用開閉弁(72)が開状態に制御され、供給用開閉弁(73)が閉状態に制御される。これにより、第1吸着筒(34)及び第2吸着筒(35)において交互に生成されて供給通路(44)に吐出された窒素濃縮空気は、排気用接続通路(71)から酸素排出通路(45)に流入し、酸素排出通路(45)を流れる酸素濃縮空気と共に庫外へ排出される。
  (外気導入動作)
 本実施形態では、外気をコンテナ本体(2)の庫内へ導入する外気導入動作も可能である。図6に示す外気導入動作では、第1方向制御弁(32)が第1状態に設定され、第2方向制御弁(33)が第2状態に設定され、バイパス開閉弁(48)が開かれる。給気用開閉弁(73)は開かれ、分岐開閉弁(82)は閉じられる。この状態でエアポンプ(31)を起動すると、外気が、外気通路(41)と加圧通路(42)の一部とバイパス通路(47)と供給通路(44)の一部とにより構成された、太い実線で示した外気導入通路(40)を流れる。外気導入通路(40)の通路抵抗が、方向切換弁(32,33)及び吸着筒(34,35)を通る流路の通路抵抗よりも小さいためである。そして、外気導入通路(40)を流れる外気と組成の同じ空気がコンテナ本体(2)の庫内へ押し込まれる。
 〈CA装置の濃度調整運転〉
 本実施形態では、CA装置(60)は、制御部(55)によって、コンテナ本体(2)の庫内空気の組成(酸素濃度及び二酸化炭素濃度)を所望の組成(例えば、酸素濃度5%、二酸化炭素濃度5%)に調整する濃度調整運転を行う。濃度調整運転では、酸素センサ(51)及び二酸化炭素センサ(52)の測定結果に基づいて、コンテナ本体(2)の庫内空気の組成が所望の組成となるように、ガス供給ユニット(30)及び排気部(46)の動作が制御される。
 濃度調整運転中は、制御部(55)は、分岐開閉弁(82)を閉状態に制御する。また、濃度調整運転中、制御部(55)は、ユニット制御部(150)と通信し、該ユニット制御部(150)によって庫内ファン(26)を回転させる。これにより、酸素センサ(51)及び二酸化炭素センサ(52)には、庫内ファン(26)によって庫内空気が供給され、庫内空気の酸素濃度と二酸化炭素濃度とが測定される。
 濃度調整運転中、第1動作及び第2動作を交互に繰り返してガス供給動作を行い、庫内の酸素濃度を調整する。このとき、排気部(46)の排気弁(46b)を開状態に制御して、ガス供給動作によって窒素濃縮空気をコンテナ本体(2)の庫内に供給した分だけ庫内空気を庫外へ排出する。庫内空気の酸素濃度が所定値(例えば8%ま)で低下すると、制御部(55)は、ガス供給ユニット(30)の運転を停止してガス供給動作を停止すると共に、排気弁(46b)を閉じて排気動作を停止する。コンテナ本体(2)の庫内では、植物(15)が呼吸を行うため、コンテナ本体(2)の庫内空気の酸素濃度が減少し、やがて目標酸素濃度の5%に至る。
 庫内空気の酸素濃度を上昇させる運転は、バイパス開閉弁(48)を開いて、エアポンプ(31)に吸引した外気を、第1及び第2吸着筒(34,35)をバイパスさせてコンテナ本体(2)の庫内に供給する外気導入動作で行うことができる。このとき、外気は冷却部(40a)を通るので、庫内空気の温度上昇が抑えられる。
 また、詳細は省略するが、庫内空気の酸素濃度(及び二酸化炭素濃度)の調整は、ガス供給動作、ガス排出動作、及び外気導入動作を適宜切り換えて行うこともできる。
  (給気測定動作)
 本実施形態では、ユーザからの指令により又は定期的(例えば、10日毎)に、ガス供給ユニット(30)において生成された窒素濃縮空気の酸素濃度を測定する給気測定動作を行える。給気測定動作は、上述の濃度調整運転や試運転等のガス供給動作中に庫内ファン(26)が停止した際に並行して行われる。
 制御部(55)は、ガス供給動作中に、分岐開閉弁(82)を開状態に制御すると共に供給用開閉弁(73)を閉状態に制御する。これにより、供給通路(44)を流れる窒素濃縮空気の全てが分岐管(81)に流入する。分岐管(81)に流入した窒素濃縮空気は、酸素センサ(51)に導入され、酸素濃度が測定される。
 このように、ガス供給ユニット(30)において生成された窒素濃縮空気の酸素濃度を測定することにより、ガス供給ユニット(30)において生成された窒素濃縮空気の組成(酸素濃度、窒素濃度)が所望の状態であるかを確認することができる。
  (センサ校正動作)
 本実施形態では、外気をセンサユニット(50)に導入して酸素センサ(51)を校正する図7のセンサ校正動作を行うことができる。センサ校正動作は、例えば庫内を冷却しながら濃度調整を一旦停止して短時間(10分程度)で行い、その後に濃度調整運転に戻すことができる。
 センサ校正動作では、第1方向制御弁(32)が第1状態に設定され、第2方向制御弁(33)が第2状態に設定され、バイパス開閉弁(48)が開かれる。給気用開閉弁(73)は閉じられ、分岐開閉弁(82)は開かれる。この状態でエアポンプ(31)を起動すると、外気が、第1通路(75)と第2通路(76)を流れ、センサユニット(50)に導入される。酸素センサ(51)は、検出値が外気の酸素濃度を示すように校正される。
 センサ校正動作中に、外気は気液分離器(85)を通過する。そのため、酸素センサ(51)には、水分の少なくとも一部が除去された外気が接触する。
  (センサケーシング内の空気の流れ)
 通常の運転時は、図10において、センサケーシング(90)へ第2導入口(94b)から庫内空気が流入する。第2導入口(94b)から流入した庫内空気は、センサケーシング(90)内を満たしつつ導出口(95)へ向かう(経路(R1)参照)。その際、第2導入口(94b)と酸素センサ(51)の間にカバー(101)の胴部(102)が位置する。加えて、酸素センサ(51)はカバー(101)で覆われているので、庫内空気に腐食成分が含まれていても、その腐食成分と酸素センサ(51)との接触が抑えられる。
 給気測定動作時やセンサ校正動作時は、図10において、センサケーシング(90)へ第1導入口(94a)から庫内の外の空気が流入する。その空気は、給気測定動作時は吸着筒(34,35)で組成が調整された空気、センサ校正動作時は吸着筒(34,35)をバイパスした外気である。これらの空気は、センサケーシング(90)内を満たしつつ導出口(95)へ向かう(経路(R2)参照)。この場合も、第2導入口(94b)と酸素センサ(51)の間にカバー(101)の胴部(102)が位置する。加えて、酸素センサ(51)はカバー(101)で覆われているので、庫内の外の空気に腐食成分が含まれていても、その腐食成分と酸素センサ(51)との接触が抑えられる。
  -実施形態1の効果-
 実施形態1は、酸素センサ(51)の周囲を覆うカバー(101)を有する。このため、空気中の腐食成分が酸素センサ(51)に接触することを、カバー(101)によって抑制できる。その結果、酸素センサ(51)の劣化を抑制できる。
 カバーユニット(100)の流入路(111)および流出路(112)の内径を1mm以上とすることで、カバー(101)の流路抵抗を低減でき、酸素センサ(51)の応答性が低下することを抑制できる。これにより、例えばセンサ校正動作の時間を短縮できたり、センサ校正動作から濃度調整運転へ速やかに移行できたりできる。
 カバーユニット(100)の流入路(111)および流出路(112)の内径を4mm以下とすることで、酸素センサ(51)と腐食成分の接触時間、接触頻度を減らすことができる。これにより、酸素センサ(51)の劣化を抑制でき、酸素センサ(51)の耐用年数を増大できる。
 流出路(112)はカバー(101)の上部に位置する。このため、酸素センサ(51)の熱をカバー(101)の外部へ排出できるので、カバー(101)の内部の空気の温度が過剰に高くなることを抑制できる。このような比較的高温の空気が、酸素センサ(51)の停止時などにおいて冷えることで、カバー(101)の内部で結露水が発生してしまうことも抑制できる。加えて、空気をカバー(101)の上部側から排出することで、酸素センサ(51)の発熱に起因する上昇気流を促すことができる。
 流入路(111)はカバー(101)の下部に位置する。このため、カバー(101)の内部の水をその自重により流入路(111)を通じてカバー(101)の外部へ排出できる。
 酸素センサ(51)の検知部(51a)は、流入路(111)と流出路(112)との間に位置する。これにより、空気が検知部(51a)の周囲を通過しやすくなるため、酸素センサ(51)の応答性を向上できる。
 流入路(111)は、カバー(101)に形成した第1穴(h1)によって構成され、前記流出路(112)は、前記カバー(101)に形成した第2穴(h2)によって構成される。このように、流入路(111)および流出路(112)を穴(h1,h2)により構成することで、流入路(111)および流出路(112)の流路長が短くなる。このため、流入路(111)および流出路(112)の内径をある程度確保しつつ、これらの流路抵抗を低減できる。流入路(111)および流出路(112)の加工も容易である。
 酸素センサ(51)は、ON状態において発熱するように構成され、カバー(101)は、酸素センサ(51)の発熱に伴い空気流れを形成する。このため、カバー(101)内においても、空気流れを確保でき、酸素センサ(51)により酸素濃度を精度よく検出できる。
 センサケーシング(90)は、その内部へ空気を導入する導入口(94)を備え、カバー(101)は、導入口(94)と酸素センサ(51)との間に配置される。このため、導入口(94)から侵入した腐食成分が酸素センサ(51)と接触することを抑制できる。
 導入口(94)は、酸素センサ(51)の下方に配置され、カバー(101)は、酸素センサ(51)の下方に配置される部分(胴部(102))を有する。このため、酸素センサ(51)の下側の導入口(94)から侵入した腐食成分が酸素センサ(51)と接触することを抑制できる。
 導入口(94)は、対象空間の内部の空気を前記センサケーシング(90)内へ導入する第1導入口(94a)と、対象空間の外の空気を前記センサケーシング(90)内へ導入する第2導入口(94b)を含み、第1導入口(94a)及び第2導入口(94b)の少なくとも一方は、酸素センサ(51)の下方に配置され、カバー(101)は、酸素センサ(51)の下方に配置される部分を有する。
 このため、酸素センサ(51)の下側の第1導入口(94a)や第2導入口(94b)から侵入した腐食成分が酸素センサ(51)と接触することを抑制できる。
 実施形態1では、分岐管(81)からセンサケーシング(90)へ流入する空気の水分の少なくとも一部が気液分離器(85)で除去される。このことにより、酸素センサ(51)や二酸化炭素センサ(52)が水分の付着により故障するのを抑えられる。
  -実施形態1の変形例-
 (変形例1)
 実施形態1では、第1導入口(94a)と第2導入口(94b)の両方を酸素センサ(51)の下方に配置しているが、第1導入口(94a)と第2導入口(94b)の一方が酸素センサ(51)の下方に位置する構成にしてもよい。
 第1導入口(94a)を酸素センサ(51)の下方に配置し、その間にカバー(101)の一部を配置すると、センサ校正時の庫外空気による酸素センサ(51)と腐食成分の接触を抑えられる。第2導入口(94b)を酸素センサの下方に配置し、その間にカバー(101)の一部を配置すると、通常運転時の庫内空気による酸素センサ(51)と腐食成分の接触を抑えられる。
 (変形例2)
 実施形態1のカバーユニット(100)は、カバー(101)に穴()を形成することで、流入路(111)および流出路(112)を形成している。しかし、カバーユニット(100)は、カバー(101)の筒部(131,132)を設けることにより、流入路(111)および流出路(112)を形成してもよい。
 図16に示すように、変形例2のカバーユニット(100)には、カバー(101)の胴部(102)の周囲に第1筒部(131)と第2筒部(132)とが接続される。第1筒部(131)の内部には、流入路(111)が形成される。流入路(111)は、カバー(101)の外部と収容空間(104)と連通する。第2筒部(132)の内部には、流出路(112)が形成される。流出路(112)は、カバー(101)の外部と収容空間(104)とを連通する。本例では、第1筒部(131)と第2筒部(132)とが互いに対向する。それ以外の基本的な構成は、実施形態1と同じである。
 《実施形態2》
 実施形態2は、実施形態1のカバーユニット(100)に加えて、接触抑制部として、空気中の腐食成分を吸着する吸着材(105)を用いた例である。
 吸着材(105)は、センサケーシング(90)の内部に配置することができる。図17は、吸着材(105)をセンサケーシング(90)の底面に設ける例を示す。吸着材(105)は、基材と、基材に担持された吸着剤(例えばゼオライトや活性炭)とを有する。
 この実施形態2は、壁部材(101)の代わりに吸着材(105)を設けること以外は、空気回路(3)を含めて実施形態1と構成が共通する。そのため、吸着材(105)の他の構成についての説明は省略する。
 この実施形態2では、センサケーシング(90)内へ導入される空気に含まれる腐食成分が、センサケーシング(90)内で吸着材(105)に吸着される。したがって、酸素センサ(51)に腐食成分が接触するのを抑えられる。
 なお、吸着材(105)は、実施形態1の壁部材(101)とともにセンサケーシング(90)の内部に設けてもよい。このように構成すると、酸素センサ(51)に腐食成分が接触するのを壁部材(101)と吸着材(105)の両方で抑制できる。
  -実施形態2の変形例-
 (変形例1)
 吸着材(105)は、図18に示すように、センサケーシング(90)のケースカバー(92)の裏面など、センサケーシング(90)内の図17とは異なる位置に配置してもよい。このように構成しても、吸着材(105)で空気中の腐食成分を吸着することにより、腐食成分が酸素センサ(51)に接触するのを抑えられる。
 (変形例2)
 吸着材(105)は、図17及び図18の例とは異なる配置で空気回路(3)に設けてもよい。
 図19に示すように、吸着材(105)は、センサケーシング(90)の背面(第2導入口(94b)が形成された面)側に配置され、酸素センサ(51)及びカバー(101)と同じ面に位置する。吸着材(105)は、概略長方形の基材に吸着剤が担持されたものである。
 この構成では、第2導入口(94b)を通過する空気に腐食成分が含まれていると、その腐食成分が吸着材(105)に効果的に吸着される。空気はさらにカバー(101)の流入路(111)を通過してカバー(101)内に導入される。よって、腐食成分が酸素センサ(51)に接触するのを効果的に抑制できる。
 (変形例3)
 図20は、変形例3に係る空気回路(3)の部分拡大図である。この変形例3では、図示するように、吸着材(105)は、センサケーシング(90)の内部へ空気を導入する第1導入路(59a)である連絡管(59)に配置される。吸着材(105)は、図20に仮想線で示すように、センサケーシング(90)に連絡管(59)が接続される導入口(94)に、例えば前記メンブレンフィルタ(54)とともに配置してもよい。
 空気回路(3)に設ける吸着材(105)を複数にし、吸着材(105)をセンサケーシング(90)内とそれ以外の位置に配置してもよい。また、複数の吸着材(105)を、センサケーシング(90)へ外気を導入する第1導入路(59a)である連絡管(59)と、センサケーシング(90)へ庫内空気を導入する第2導入路(59b)を構成する第2導入口(94b)の両方に配置してもよい。
 この変形例3によれば、センサケーシング(90)内へ導入される空気の腐食成分がセンサケーシング(90)の近傍で吸着材(105)に吸着される。その結果、腐食成分が酸素センサ(51)に接触するのが抑制され、酸素センサ(51)の劣化が抑制される。
 (変形例4)
 吸着材(105)は、センサケーシング(90)の内部以外の位置に設けてもよい。
 図21は、実施形態2の変形例4に係るCA装置の空気回路(3)を示す図である。この変形例4では、吸着材(105)は、空気回路(3)へ外気が流入する流入部にメンブレンフィルタ(76)とともに配置される。
 また、この変形例4では、第1吸着筒(34)と並列のバイパス通路(78)の一端を加圧通路(42)に、他端を酸素排出通路(45)に接続している。バイパス通路(78)にはバイパス開閉弁(78a)が設けられている。この構成では、バイパス開閉弁(78a)を有するバイパス通路(78)、酸素排出通路(45)、排気用接続通路(71)、供給通路(44)及び分岐管(81)の順に外気を流し、校正時に酸素センサ(51)に外気を導入できる。このように、第2通路(76)は第1通路から分岐して酸素センサ(51)に外気を導入できる通路であれば、第1通路(75)より分岐してから合流する通路であってもよい。
 この変形例4の他の構成は変形例1と共通する。
 この変形例4によれば、空気回路(3)に流入する外気に含まれる腐食成分を吸着材(105)で吸着できる。したがって、外気が酸素センサ(51)に導入される校正動作の際に、腐食成分が酸素センサ(51)と接触するのを抑制できる。
 《実施形態3》
 図22,図23に示すように、センサケーシング(90)は、庫内空間ではなく庫外空間に配置してもよい。庫外に配置されるセンサケーシング(90)は、図22の配管系統図に示すように、庫内の2次空間(S22)に配置されるメンブレンフィルタ(54)と第2導入路(59b)を介して接続される。このように構成しても、空気中の腐食成分が酸素センサ(51)に接触するのを抑えられる。
 このようにセンサケーシング(90)を庫外空間に配置する構成においても、図9~図11に示す第1導入口(94a)は酸素センサ(51)の校正時に庫外空気をセンサケーシング(90)内に導入し、第2導入口(94b)は庫内空気をセンサケーシング(90)内に導入する。
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
 例えば、前記実施形態では、腐食成分による劣化を抑える対象のガスセンサとして酸素センサ(51)を説明したが、劣化は酸素センサ(51)以外のガスセンサで生じることも考えられる。そこで、前記二酸化炭素センサ(52)を始め、その他にも空気組成調整装置を備える輸送用コンテナ(1)に用いる可能性のあるエチレンセンサや冷媒漏洩センサなどの他のガスセンサに対しても、前記実施形態のカバー(101)や接触抑制部(105)を設けることができる。エチレンセンサは庫内のエチレン濃度を検知するセンサ、冷媒漏洩センサは庫内への冷媒漏れを検知するセンサである。酸素センサ(51)や二酸化炭素センサ(52)は実施形態で説明した方式以外のものであってもよい。
 前記実施形態では、腐食成分として硫化水素を例示したが、カルシウム、塩素、またはリンなどを含む他の腐食成分に対しても各実施形態の接触抑制部を(100)を設けることができる。
 前記実施形態では、センサケーシング(90)内に対象のガスセンサである酸素センサ(51)を配置した例を説明したが、センサケーシング(90)を設けない場合でも接触抑制部(100)を設けることができる。
 前記実施形態では、1つのエアポンプ(31)が第1ポンプ機構(31a)と第2ポンプ機構(31b)とを有する構成としていたが、第1ポンプ機構(31a)と第2ポンプ機構(31b)とは、2つの個別のエアポンプによって構成されていてもよい。
 前記実施形態の搬送部は、送風機を用いて構成してもよい。
 前記各実施形態では、第1吸着部及び第2吸着部として、それぞれ1本の吸着筒を用いて窒素の吸着及び脱着を行うようにしていたが、各吸着部を構成する吸着筒の本数は1本に限定されない。例えば、各吸着部を3本の吸着筒で構成し、合計6本の吸着筒を用いることとしてもよい。
 前記実施形態の調整部(34,35)は、ゼオライトなどの吸着剤を用いる構成に限定されず、例えば窒素の透過率と酸素(及び二酸化炭素)の透過率が異なるガス分離膜を用いて窒素濃縮空気及び酸素濃縮空気を生成し、これらの濃縮空気により庫内空気の組成を調整する構成であってもよい。
 また、前記各実施形態では、海上輸送用のコンテナ本体(2)に設けられる輸送用冷凍装置(10)に本発明に係るCA装置(60)を適用した例について説明したが、本発明に係るCA装置(60)の用途はこれに限られない。本発明に係るCA装置(60)は、海上輸送用のコンテナの他、例えば、陸上輸送用のコンテナ、単なる冷凍冷蔵倉庫、常温の倉庫等の庫内空気の組成の調整に用いることができる。冷凍装置は、輸送用でなく、定置型の貯蔵庫(冷凍冷蔵倉庫)の庫内空間を冷却する装置であってもよい。
 カバーユニット(100)は、カバー(101)のみによって構成されてもよい。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 以上説明したように、本開示は、空気組成調整装置、輸送用冷凍装置、及び輸送用コンテナについて有用である。
 1   輸送用コンテナ
 2   コンテナ本体
 3   空気回路
 10  輸送用冷凍装置(冷凍装置)
 20  冷媒回路
 21  圧縮機(構成要素)
 22  凝縮器(構成要素)
 23  膨張弁(構成要素)
 24  蒸発器(構成要素)
 31  エアポンプ(搬送部)
 34  第1吸着筒(調整部)
 35  第2吸着筒(調整部)
 51  酸素センサ(ガスセンサ)
 51a   検知部
 59  第2連絡管(導入路)
 60  空気組成調整装置(空気組成調整部)
 90  センサケーシング
 94  導入口(導入路)
 94a  第1導入口
 94b  第2導入口
 100   カバーユニット
  101   カバー
 105  吸着材
 111   流入路
  112   流出路
 131   第1筒部
 132   第2筒部
 h1    第1穴
 h2    第2穴

Claims (19)

  1.  空気を搬送する搬送部(31)と、
     対象空間の空気の組成を調整する調整部(34,35)と、
     前記搬送部(31)によって空気を前記調整部(34,35)に導入し、組成を調整した空気を対象空間へ供給する空気回路(3)と、
     前記対象空間に配置されて空気の成分を測定するガスセンサ(51)と、
     前記ガスセンサ(51)の周囲を覆うカバー(101)と、該カバー(101)内に空気を取り込む流入路(111)と、該カバー(101)内の空気を流出させる流出路(112)とを含むカバーユニット(100)とを備えている
    ことを特徴とする空気組成調整装置。
  2.  請求項1において、
     前記流入路(111)の内径、および前記流出路(112)の内径が、1mm以上4mm以下である
    ことを特徴とする空気組成調整装置。
  3.  請求項1または2において、
     前記流出路(112)は、前記カバー(101)の上部に位置する
    ことを特徴とする空気組成調整装置。
  4.  請求項1から3の何れか1つにおいて、
     前記流入路(111)は、前記カバー(101)の下部に位置する
    ことを特徴とする空気組成調整装置。
  5.  請求項1から4の何れか1つにおいて、
     前記ガスセンサ(51)の検知部(51a)が、前記流入路(111)と前記流出路(112)とを結ぶ直線上に位置する
    ことを特徴とする空気組成調整装置。
  6.  請求項1から5の何れか1つにおいて、
     前記流入路(111)は、前記カバー(101)に形成した第1穴(h1)によって構成され、
     前記流出路(112)は、前記カバー(101)に形成した第2穴(h2)によって構成される
    ことを特徴とする空気組成調整装置。
  7.  請求項1から5の何れか1つにおいて、
     前記流入路(111)は、前記カバー(101)に接続された第1筒部(131)によって構成され、
     前記流出路(112)は、前記カバー(101)に接続された第2筒部(132)によって構成される
    ことを特徴とする空気組成調整部材。
  8.  請求項1から7の何れか1つにおいて、
     前記ガスセンサ(51)は、ON状態において発熱するように構成され、
     前記カバー(101)は、前記ガスセンサ(51)の発熱に伴い空気流れを形成するように構成される
    ことを特徴とする空気組成調整部材。
  9.  請求項1から8の何れか1つにおいて、
     前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
     前記センサケーシング(90)は、その内部へ空気を導入する導入口(94)を備え、
     前記カバー(101)は、前記導入口(94)と前記ガスセンサ(51)との間に配置される
    ことを特徴とする空気組成調整装置。
  10.  請求項9において、
     前記導入口(94)は、前記ガスセンサ(51)の下方に配置され、
     前記カバー(101)は、前記ガスセンサ(51)の下方に配置される部分を有する
    ことを特徴とする空気組成調整装置。
  11.  請求項9において、
     前記導入口(94)は、前記対象空間の内部の空気を前記センサケーシング(90)内へ導入する第1導入口(94a)と、前記対象空間の外の空気を前記センサケーシング(90)内へ導入する第2導入口(94b)を含み、
     前記第1導入口(94a)及び前記第2導入口(94b)の少なくとも一方は、前記ガスセンサ(51)の下方に配置され、
     前記カバー(101)は、前記ガスセンサ(51)の下方に配置される部分()を有する
    ことを特徴とする空気組成調整装置。
  12.  請求項1から8の何れか1つにおいて、
     空気中の腐食成分がガスセンサ(51)に接触するのを抑制する接触抑制部を備え、
     前記接触抑制部は、空気中の腐食成分を吸着する吸着材(105)を有する
    ことを特徴とする空気組成調整装置。
  13.  請求項12において、
     前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
     前記吸着材(105)は、前記センサケーシング(90)の内部に配置される
    ことを特徴とする空気組成調整装置。
  14.  請求項12において、
     前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
     前記センサケーシング(90)には、その内部へ空気を導入する導入路(59)が接続され、
     前記吸着材(105)は、前記導入路(59)に配置される
    ことを特徴とする空気組成調整装置。
  15.  請求項12において、
     前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
     前記センサケーシング(90)は、その内部へ空気を導入する導入口(94)を有し、
     前記吸着材(105)は前記導入口(94)に配置される
    ことを特徴とする空気組成調整装置。
  16.  請求項12において、
     前記吸着材(105)は、前記空気回路(3)へ空気が流入する流入部に配置される
    ことを特徴とする空気組成調整装置。
  17.  請求項12から16の何れか1つにおいて、
     前記吸着材(105)は、硫黄またはリンを含む腐食成分を吸着する
    ことを特徴とする空気組成調整装置。
  18.  冷凍サイクルを行う冷媒回路(20)の構成要素(21~24)と、対象空間の空気の組成を調整する空気組成調整部(60)とを備え、
     前記冷媒回路(20)の蒸発器(24)で前記対象空間の空気を冷却する冷凍装置であって、
     前記空気組成調整部(60)は、請求項1から17の何れか1つの空気組成調整装置で構成される
    ことを特徴とする冷凍装置。
  19.  生鮮物を輸送するコンテナ本体(2)と、前記コンテナ本体(2)の庫内を対象空間として冷却する輸送用冷凍装置(10)とを備える輸送用コンテナであって、
     前記輸送用冷凍装置(10)は、請求項18の冷凍装置で構成される
    ことを特徴とする輸送用コンテナ。
PCT/JP2021/031994 2020-08-31 2021-08-31 空気組成調整装置、冷凍装置、及び輸送用コンテナ WO2022045370A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180052619.5A CN115885143A (zh) 2020-08-31 2021-08-31 空气组成调节装置、制冷装置及运输用集装箱
EP21861790.0A EP4184089A4 (en) 2020-08-31 2021-08-31 AIR COMPOSITION ADJUSTMENT DEVICE, REFRIGERATION DEVICE AND TRANSPORT CONTAINER
US18/167,951 US20230192395A1 (en) 2020-08-31 2023-02-13 Air composition adjustment device, refrigeration apparatus, and transportation container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-145451 2020-08-31
JP2020145451 2020-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/167,951 Continuation US20230192395A1 (en) 2020-08-31 2023-02-13 Air composition adjustment device, refrigeration apparatus, and transportation container

Publications (1)

Publication Number Publication Date
WO2022045370A1 true WO2022045370A1 (ja) 2022-03-03

Family

ID=80353468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031994 WO2022045370A1 (ja) 2020-08-31 2021-08-31 空気組成調整装置、冷凍装置、及び輸送用コンテナ

Country Status (5)

Country Link
US (1) US20230192395A1 (ja)
EP (1) EP4184089A4 (ja)
JP (2) JP7161131B2 (ja)
CN (1) CN115885143A (ja)
WO (1) WO2022045370A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183379B2 (ja) 2019-02-28 2022-12-05 日精エー・エス・ビー機械株式会社 容器の金型および容器の製造方法
JP2024067389A (ja) * 2022-11-04 2024-05-17 三菱重工サーマルシステムズ株式会社 制御システム、移動体、制御方法および制御プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168A (ja) 1994-06-15 1996-01-09 Carrier Corp 冷凍コンテナ用の庫内環境制御システムの制御方法
JP2002090325A (ja) * 2000-09-13 2002-03-27 Tdk Corp センサ用フィルター、センサカバー、センサおよびフィルター膜
JP2016061465A (ja) * 2014-09-16 2016-04-25 ダイキン工業株式会社 コンテナ用冷凍装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057436A (en) * 1989-10-02 1991-10-15 Agmaster, Inc. Method and apparatus for detecting toxic gases
JP2002195718A (ja) * 2000-12-28 2002-07-10 Nakano Refrigerators Co Ltd ショーケース等の集中管理装置
JP3912317B2 (ja) * 2002-05-28 2007-05-09 ソニー株式会社 ガス検出装置
KR102374332B1 (ko) * 2017-03-03 2022-03-16 엘지전자 주식회사 듀얼 히터 가스센서 모듈
SG11202002861QA (en) * 2017-09-29 2020-04-29 Daikin Ind Ltd Internal air adjustment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168A (ja) 1994-06-15 1996-01-09 Carrier Corp 冷凍コンテナ用の庫内環境制御システムの制御方法
JP2002090325A (ja) * 2000-09-13 2002-03-27 Tdk Corp センサ用フィルター、センサカバー、センサおよびフィルター膜
JP2016061465A (ja) * 2014-09-16 2016-04-25 ダイキン工業株式会社 コンテナ用冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184089A4

Also Published As

Publication number Publication date
JP7161131B2 (ja) 2022-10-26
JP2022041987A (ja) 2022-03-11
CN115885143A (zh) 2023-03-31
EP4184089A1 (en) 2023-05-24
JP7148829B2 (ja) 2022-10-06
EP4184089A4 (en) 2023-12-27
US20230192395A1 (en) 2023-06-22
JP2022041988A (ja) 2022-03-11

Similar Documents

Publication Publication Date Title
US10168092B2 (en) Refrigeration device for container
US20210161075A1 (en) Indoor air-conditioning device and container refrigeration device equipped with same
US20180235247A1 (en) Indoor air conditioning device and container freezer device comprising same
US10295243B2 (en) Refrigeration device for container
WO2022045370A1 (ja) 空気組成調整装置、冷凍装置、及び輸送用コンテナ
US11419341B2 (en) Inside air control system
EP3872428B1 (en) Inside air control system
US11051525B2 (en) Gas supply device, interior air adjustment device, and container refrigeration device
US9907316B2 (en) Gas supply device and refrigeration device for container provided with said gas supply device
JP2016191532A (ja) コンテナ用冷凍装置
WO2022045369A1 (ja) 空気組成調整装置、冷凍装置、及び輸送用コンテナ
JP7064154B2 (ja) 空気組成調整装置、冷凍装置、コンテナ、及び空気組成調整方法
WO2022004548A1 (ja) 空気組成調整装置、輸送用冷凍装置、及び輸送用コンテナ
JP7161116B2 (ja) 空気組成調整装置、冷凍装置、及びコンテナ
JP2022040583A (ja) 空気組成調整装置、冷凍装置、及び輸送用コンテナ
JP2022040585A (ja) 空気組成調整装置、冷凍装置、及び輸送用コンテナ
JP7339567B2 (ja) 庫内空気調節装置、冷凍装置、および輸送用コンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021861790

Country of ref document: EP

Effective date: 20230214

NENP Non-entry into the national phase

Ref country code: DE