WO2022045369A1 - 空気組成調整装置、冷凍装置、及び輸送用コンテナ - Google Patents

空気組成調整装置、冷凍装置、及び輸送用コンテナ Download PDF

Info

Publication number
WO2022045369A1
WO2022045369A1 PCT/JP2021/031992 JP2021031992W WO2022045369A1 WO 2022045369 A1 WO2022045369 A1 WO 2022045369A1 JP 2021031992 W JP2021031992 W JP 2021031992W WO 2022045369 A1 WO2022045369 A1 WO 2022045369A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
sensor
casing
adjusting device
composition adjusting
Prior art date
Application number
PCT/JP2021/031992
Other languages
English (en)
French (fr)
Inventor
完 池宮
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020145228A external-priority patent/JP7161116B2/ja
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2022045369A1 publication Critical patent/WO2022045369A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • This disclosure relates to an air composition adjusting device, a refrigerating device, and a container for transportation.
  • a gas sensor for measuring an air component has been used in an air composition adjusting device for adjusting the oxygen concentration and carbon dioxide concentration in the space inside a shipping container (see, for example, Patent Document 1).
  • the concentration of oxygen and carbon dioxide in the internal space is measured by a gas sensor, and the concentration is controlled to be within an appropriate range.
  • the gas sensor may deteriorate due to the corrosive components in the air flowing in from the outside or inside of the refrigerator.
  • the corrosive component is a gas containing a component that corrodes a substance such as sulfur, phosphorus, calcium, chlorine, and ammonia.
  • the purpose of this disclosure is to suppress deterioration of the gas sensor that measures the components of air.
  • the first aspect of the present disclosure is The transport unit (31) that transports air and The adjustment unit (34, 35) that adjusts the composition of the air in the target space,
  • An air circuit (3) that introduces air into the adjusting unit (34, 35) by the transport unit (31) and supplies the gas whose composition has been adjusted to the target space.
  • a gas sensor (51) arranged in the target space and measuring the components of air, It is premised on an air composition adjusting device equipped with.
  • This air composition adjuster It is characterized by comprising a contact suppressing portion (100) for suppressing contact of a corrosive component in air with the gas sensor (51).
  • the contact between the gas sensor (51) and the corrosive component in the air is suppressed, and the deterioration of the gas sensor (51) is suppressed.
  • a second aspect of the present disclosure is, in the first aspect, the first aspect.
  • the contact suppressing portion (100) is characterized by being composed of a wall member (101) arranged around the gas sensor (51) and suppressing the flow of air toward the gas sensor (51).
  • the contact between the gas sensor (51) and the corrosive component in the air can be suppressed by the wall member (101).
  • a third aspect of the present disclosure is the second aspect.
  • a sensor casing (90) for accommodating the gas sensor (51) is provided.
  • the sensor casing (90) is provided with an inlet (94) for introducing air into the sensor casing (90).
  • the wall member (101) is characterized in that it is arranged between the introduction port (94) and the gas sensor (51).
  • the wall member (101) arranged between the inlet (94) and the gas sensor (51) suppresses the corrosive component that enters the sensor box together with the air from touching the gas sensor (51). can.
  • a fourth aspect of the present disclosure is, in the third aspect, the third aspect.
  • the inlet (94) is located below the gas sensor (51).
  • the wall member (101) is characterized by having a portion arranged below the gas sensor (51).
  • the corrosive component enters the sensor casing (90) together with the air from the introduction port (94) arranged below the gas sensor (51), and the corrosive component reaches the gas sensor (51). It is suppressed by the wall member (101).
  • a fifth aspect of the present disclosure is, in the third aspect, the third aspect.
  • the introduction port (94) has a first introduction port (94a) that introduces air inside the target space into the sensor casing (90) and air outside the target space inside the sensor casing (90).
  • Including the second inlet (94b) to be introduced into At least one of the first introduction port (94a) and the second introduction port (94b) is arranged below the gas sensor (51).
  • the wall member (101) is characterized by having a portion arranged below the gas sensor (51).
  • the corrosive component is an oxygen sensor. Can be suppressed from contacting with.
  • the sixth aspect of the present disclosure is, in any one of the second to fifth aspects,.
  • the wall member (101) includes a plurality of dividers (102) arranged to open at least one side of the hexahedron.
  • the gas sensor (51) is arranged in the space inside the hexahedron.
  • the gas sensor (51) can detect the gas component because at least one surface of the hexahedron is open while suppressing the corrosion component from coming into contact with the gas sensor (51) by the partition plate (102). can.
  • a seventh aspect of the present disclosure is, in the first aspect, the first aspect.
  • the contact suppressing portion (100) is characterized by having an adsorbent (105) that adsorbs a corrosive component in the air.
  • the corrosive component in the air is adsorbed on the adsorbent (105), it is possible to suppress the corrosive component from coming into contact with the gas sensor (51).
  • the eighth aspect of the present disclosure is, in the seventh aspect, the seventh aspect.
  • a sensor casing (90) for accommodating the gas sensor (51) is provided.
  • the adsorbent (105) is characterized in that it is arranged inside the sensor casing (90).
  • the corrosive component of the air that has entered the inside of the sensor casing (90) is adsorbed by the adsorbent (105), so that the corrosive component can be suppressed from coming into contact with the gas sensor (51).
  • a ninth aspect of the present disclosure is, in the seventh aspect, the seventh aspect.
  • a sensor casing (90) for accommodating the gas sensor (51) is provided.
  • An introduction path (59) for introducing air into the sensor casing (90) is connected to the sensor casing (90).
  • the adsorbent (105) is characterized in that it is arranged in the introduction path (59).
  • the contact between the gas sensor (51) and the corrosive component can be suppressed by providing the adsorbent (105) in the introduction path (59) for introducing air into the sensor casing (90).
  • a tenth aspect of the present disclosure is, in the seventh aspect, the seventh aspect.
  • a sensor casing (90) for accommodating the gas sensor (51) is provided.
  • the sensor casing (90) has an inlet (94) for introducing air into the sensor casing (90).
  • the adsorbent (105) is characterized in that it is arranged at the introduction port (94).
  • the adsorbent (105) at the introduction port (94) of the sensor casing (90), the contact between the gas sensor (51) and the corrosive component can be suppressed.
  • the adsorbent (105) may be provided in both the introduction path (59) and the introduction port (94) for introducing air into the sensor casing (90). With such a configuration, the contact between the gas sensor (51) and the corrosive component can be suppressed more sufficiently.
  • the eleventh aspect of the present disclosure is the seventh aspect in the seventh aspect.
  • the adsorbent (105) is characterized in that it is arranged in an inflow portion where air flows into the air circuit (3).
  • the contact between the gas sensor (51) and the corrosive component can be suppressed by providing the adsorbent (105) at the inflow portion of the air into the air circuit (3).
  • the twelfth aspect of the present disclosure is, in any one of the first to eleventh aspects,.
  • the contact suppressing portion (100) is characterized by being composed of a member that suppresses corrosion of the gas sensor (51) by a corrosive component containing sulfur or phosphorus.
  • deterioration of the gas sensor (51) can be suppressed by suppressing contact between the gas sensor (51) and sulfur or phosphorus.
  • the thirteenth aspect of the present disclosure is It is equipped with a component (21 to 24) of the refrigerant circuit (20) that performs the refrigeration cycle and an air composition adjusting unit (60) that adjusts the air composition of the target space.
  • a refrigerating device that cools the air in the target space with the evaporator (24) of the refrigerant circuit (20).
  • the air composition adjusting unit (60) is characterized by being configured by any one of the first to twelfth aspects of the air composition adjusting device.
  • the contact between the gas sensor (51) and the corrosive component can be suppressed, and the deterioration of the gas sensor (51) can be suppressed.
  • the fourteenth aspect of the present disclosure is A transport container provided with a container body (2) for transporting fresh food and a transport refrigerating device (10) for cooling the inside of the container body (2) as a target space.
  • the transport refrigerating apparatus (10) is characterized by being configured by the refrigerating apparatus of the thirteenth aspect.
  • the first aspect of the present disclosure is an air composition adjusting device for introducing air adjusted to a composition different from that of the outside air into the target space, the adjusting unit (34,35) for adjusting the composition of the air, and the target space.
  • a transport unit (31) that conveys air to the target space, a sensor (51) that measures the concentration of components in the air in the target space, a sensor casing (90) that houses the sensor (51), and the target space.
  • a passage (78) for introducing air into the sensor casing (90) and an opening / closing mechanism (79) for opening and closing the passage (78) are provided.
  • a fifteenth aspect of the present disclosure is, in any one of the first to twelfth aspects, a sensor casing (90) accommodating the sensor (51) and air in the target space of the sensor casing (90). It is provided with a passage (78) to be introduced inside and an opening / closing mechanism (79) for opening and closing the passage (78).
  • the air whose composition has been adjusted is conveyed to the target space.
  • the concentration of components in the air in the target space is measured by the sensor (51).
  • the sensor (51) is housed in the sensor casing (90). Inside the sensor casing (90), air in the target space is introduced through the passage (78).
  • the opening / closing mechanism (79) opens / closes the passage (78).
  • the opening / closing mechanism (79) is in a closed state while the operation of the air composition adjusting device (60) is stopped.
  • the opening / closing mechanism (79) is closed while the operation of the air composition adjusting device (60) is stopped.
  • the opening / closing mechanism (79) is closed while the operation of the air composition adjusting device (60) is stopped.
  • a seventeenth aspect of the present disclosure is a control unit that executes a first operation of closing the opening / closing mechanism (79) in conjunction with an operation stop operation of the air composition adjusting device (60) in the fifteenth or sixteenth aspect. (55) is provided.
  • control unit (55) executes the first operation.
  • the first operation is an operation of closing the opening / closing mechanism (79) in conjunction with the operation stop operation of the air composition adjusting device (60).
  • the eighteenth aspect of the present disclosure is a refrigerating apparatus provided with the air composition adjusting apparatus (60) according to any one of the fifteenth to the seventeenth.
  • the opening / closing mechanism (79) is opened so that measurement by the sensor (51) is required inside the sensor casing (90). Air in the target space can be introduced.
  • a nineteenth aspect of the present disclosure is, in the eighteenth aspect, a control unit (55) that executes a second operation of closing the opening / closing mechanism (79) in conjunction with an operation stop operation of the refrigerating apparatus (10). Be prepared.
  • control unit (55) executes the second operation.
  • the second operation is an operation of closing the opening / closing mechanism (79) in conjunction with the operation of stopping the operation of the refrigerating device (10).
  • the twentieth aspect of the present disclosure is a container provided with the refrigerating apparatus (10) of the eighteenth or nineteenth aspect.
  • the opening / closing mechanism (79) is opened so that the object is inside the sensor casing (90) when measurement by the sensor (51) is required.
  • the air in the space can be introduced.
  • FIG. 1 is a perspective view of the transport refrigerating apparatus according to the first embodiment of the present invention as viewed from the outside of the refrigerator.
  • FIG. 2 is a side sectional view showing a schematic configuration of the transport refrigerating apparatus of FIG.
  • FIG. 3 is a piping system diagram showing the configuration of the refrigerant circuit of the transport refrigerating apparatus of FIG. 1.
  • FIG. 4 is a piping system diagram showing an air circuit of the CA device of the transport refrigerating device of FIG. 1, and shows an air flow in the first operation.
  • FIG. 5 is a piping system diagram showing an air circuit of the CA device of the transport refrigerating device of FIG. 1, and shows an air flow in the second operation.
  • FIG. 1 is a perspective view of the transport refrigerating apparatus according to the first embodiment of the present invention as viewed from the outside of the refrigerator.
  • FIG. 2 is a side sectional view showing a schematic configuration of the transport refrigerating apparatus of FIG.
  • FIG. 3 is a
  • FIG. 6 is a piping system diagram showing an air circuit of the CA device of the transport refrigerating device of FIG. 1, and shows an air flow in an outside air introduction operation.
  • FIG. 7 is a piping system diagram showing an air circuit of the CA device of the transport refrigerating device of FIG. 1, and shows an air flow in a sensor calibration operation.
  • FIG. 8 is a rear perspective view of the casing of the refrigerating apparatus for transportation, showing the arrangement of the sensor unit.
  • FIG. 9 is a perspective view of the sensor unit.
  • FIG. 10 is a perspective view showing the inside of the sensor unit.
  • FIG. 11 is a perspective view of the sensor unit as viewed from the back.
  • FIG. 12A is a perspective view showing the resin cover of the modified example 3.
  • FIG. 12B is a cross-sectional view of the resin cover of FIG. 12A.
  • FIG. 13 is a perspective view showing the inside of the sensor unit according to the second embodiment.
  • FIG. 14 is a perspective view of the cover of the sensor casing according to the first modification of the second embodiment.
  • FIG. 15 is a perspective view showing the inside of the sensor casing according to the second modification of the second embodiment.
  • FIG. 16 is a partially enlarged view of the air circuit of the CA device according to the third modification of the second embodiment.
  • FIG. 17 is a partially enlarged view of the air circuit of the CA device according to the modified example 4 of the second embodiment.
  • FIG. 18 is a piping system diagram showing an air circuit of the CA device according to the third embodiment.
  • FIG. 19 is a perspective view of the transport refrigerating apparatus according to the third embodiment.
  • FIG. 20 is a piping system diagram showing the air circuit according to the fourth embodiment, and shows the air flow in the first generation operation.
  • FIG. 21 is a flowchart showing the procedure of the first operation.
  • FIG. 22 is a flowchart showing the procedure of the second operation.
  • FIG. 23 is a perspective view of the transport refrigerating apparatus according to the modified example of the fourth embodiment.
  • FIG. 24 is a piping system diagram showing an air circuit of the air composition adjusting device according to the modified example of the fourth embodiment.
  • Embodiment 1 of the present invention will be described in detail with reference to the drawings.
  • the present embodiment relates to a transport container (1) provided with an air composition adjusting device (60) for adjusting the composition of air in a target space.
  • the air composition adjusting device (60) includes a gas supply unit (30) and a sensor unit (50).
  • the gas supply unit (30) includes a transport unit for transporting air (air pump (31) described later), an adjusting unit for adjusting the composition of air (first and second adsorption cylinders (34, 35) described later), and the gas supply unit (30). It has an air circuit (3) in which air is introduced into the adjusting unit by a transport unit and air having an adjusted composition is supplied to the target space.
  • the sensor unit (50) has sensors (51, 52) that are arranged in the target space and measure the components of air.
  • the transportation container (1) includes a container body (2) and a transportation refrigerating device (10), and is used for marine transportation and the like.
  • the transport refrigerating device (10) cools the air inside the container body (2) (target space).
  • Perishables (plants (15)) are stored in a box in the internal space (target space) of the container body (2).
  • the plant (15) is, for example, fruits and vegetables such as bananas and avocados, vegetables, grains, bulbs, fresh flowers, etc., and breathes to take in oxygen (O 2 ) in the air and release carbon dioxide (CO 2 ).
  • the container body (2) is formed in the shape of an elongated rectangular parallelepiped box with one end face open.
  • the transport refrigerating device (10) includes a casing (12), a refrigerant circuit (20), and a CA device (air composition adjusting device / Controlled Atmosphere System) (60).
  • the casing (12) of the transport refrigerating device (10) is attached so as to close the open end of the container body (2).
  • the transport refrigerating device (10) includes a refrigerant circuit (20) that performs a refrigerating cycle, and cools the air inside the container body (2) by the evaporator (24) of the refrigerant circuit (20).
  • the casing (12) of the transport refrigerating device (10) is located inside the outer wall (12a) of the container body (2) and inside the container body (2). It has an inner wall (12b).
  • the outer wall (12a) and the inner wall (12b) of the refrigerator are made of, for example, an aluminum alloy.
  • the outer wall (12a) of the refrigerator is attached to the peripheral edge of the opening of the container body (2) so as to close the opening end of the container body (2).
  • the lower part of the outer wall (12a) bulges toward the inside of the container body (2).
  • the inner wall (12b) is arranged facing the outer wall (12a).
  • the inner wall (12b) bulges inward corresponding to the lower part of the outer wall (12a).
  • a heat insulating material (12c) is provided in the space between the inner wall (12b) and the outer wall (12a).
  • the casing (12) is formed with two service openings (14) for maintenance arranged side by side in the width direction.
  • the two service openings (14) are closed by openable first and second service doors (16A, 16B), respectively.
  • the second service door (16B) is formed with a ventilation port (16D) that can be opened and closed by a rotating lid (16C) that rotates with respect to the central axis.
  • a partition plate (18) is arranged in the container body (2).
  • the partition plate (18) is composed of a substantially rectangular plate member, and is arranged so as to face the inner surface of the casing (12).
  • the partition plate (18) divides the interior space (target space) in which the plants (15) in the refrigerator of the container body (2) are stored and the storage space (S2) in the refrigerator.
  • a suction port (18a) is formed between the upper end of the partition plate (18) and the ceiling surface in the container body (2).
  • the air inside the container body (2) is taken into the storage space (S2) inside the refrigerator through the suction port (18a).
  • the storage space (S2) in the refrigerator will be provided with a partition wall (13) extending in the horizontal direction.
  • the partition wall (13) is attached to the upper end of the partition plate (18) and has an opening in which the internal fan (26) described later is installed.
  • the partition wall (13) has a storage space (S2) in the refrigerator, a primary space (S21) on the suction side of the fan (26) in the refrigerator, and a secondary space (S22) on the outlet side of the fan (26) in the refrigerator. And partition.
  • the primary space (S21) is arranged on the upper side and the secondary space (S22) is arranged on the lower side.
  • a floor board (19) on which the boxed plant (15) is placed is provided above the bottom surface of the container body (2).
  • An underfloor flow path (19a) is formed between the bottom surface of the container body (2) and the floor plate (19).
  • a gap is provided between the lower end of the partition plate (18) and the bottom surface in the container body (2), and the storage space (S2) in the refrigerator communicates with the underfloor flow path (19a).
  • an air outlet (18b) that blows out air cooled by the transport refrigerating device (10) into the container body (2). Is formed.
  • An outside fan (25) is installed near the condenser (22).
  • the outside fan (25) is rotationally driven by the outside fan motor (25a) to send the air (outside air) in the outside space of the container body (2) to the condenser (22).
  • the condenser (22) between the refrigerant pressurized by the compressor (21) and flowing inside the condenser (22) and the outside air sent to the condenser (22) by the outside fan (25). Heat exchange takes place.
  • Two internal fans (26) are installed near the evaporator (24).
  • the internal fan (26) is rotationally driven by the internal fan motor (26a), sucks the internal air of the container body (2) from the suction port (18a), and blows it out to the evaporator (24).
  • the internal fan motor (26a) In the evaporator (24), between the refrigerant decompressed by the expansion valve (23) and flowing inside the evaporator (24) and the internal air sent to the evaporator (24) by the internal fan (26). Heat exchange takes place at.
  • the compressor (21) and the condenser (22) are stored in the storage space (S1) outside the refrigerator.
  • the condenser (22) is arranged in the central portion in the vertical direction of the external storage space (S1), and the external storage space (S1) is divided into a lower first space (S11) and an upper second space (S12). Divide into and.
  • an outside fan (25) and an electrical component box (17) are provided in the second space (S12.
  • the evaporator (24) is housed in the secondary space (S22) of the storage space (S2) in the refrigerator.
  • the above-mentioned two internal fans (26) are arranged side by side in the width direction of the casing (12) (see FIG. 1).
  • the CA device (60) provided in the container body (2) is controlled by a gas supply unit (30), an exhaust unit (46), and a sensor unit (50). It is equipped with a unit (55) and adjusts the oxygen concentration and carbon dioxide concentration of the air inside the container body (2).
  • concentration used in the following description refer to "volume concentration”.
  • the gas supply unit (30) is a unit that generates air whose composition has been adjusted for supplying into the inside of the container body (2). In the present embodiment, it is a device that generates nitrogen-concentrated air having a low oxygen concentration for supplying into the refrigerator of the container body (2).
  • the gas supply unit (30) is configured by VPSA (Vacuum Pressure Swing Adsorption). As shown in FIG. 1, the gas supply unit (30) is arranged in the lower left corner portion of the storage space (S1) outside the refrigerator.
  • the gas supply unit (30) is for adsorbing the nitrogen component in the air, the air pump (31), the first direction control valve (32) and the second direction control valve (33). It has an air circuit (3) to which a first adsorption cylinder (34) and a second adsorption cylinder (35) provided inside the adsorbent are connected.
  • the components of the air circuit (3) are housed in the unit case (36).
  • the air pump (31) has a first pump mechanism (pressurized pump mechanism) (31a) and a second pump mechanism (decompression pump mechanism) (31b) that sucks air, pressurizes it, and discharges it.
  • the first pump mechanism (31a) and the second pump mechanism (31b) are connected to the drive shaft of the motor (31c).
  • the air circuit (3) to which components such as the air pump (31) are connected includes an outside air passage (41), a pressure passage (42), a decompression passage (43), and a supply passage (44).
  • a membrane filter (37) having air permeability and waterproofness is provided at the other end of the outside air passage (41).
  • the other end of the outside air passage (41) provided with the membrane filter (37) is arranged in the second space (S12) above the condenser (22) of the outside storage space (S1). ..
  • One end of the pressure passage (42) is connected to the discharge port of the first pump mechanism (31a).
  • the other end of the pressurizing passage (42) branches into two and is connected to the first direction control valve (32) and the second direction control valve (33).
  • One end of the decompression passage (43) is connected to the suction port of the second pump mechanism (31b).
  • the other end of the pressure reducing passage (43) branches into two and is connected to the first direction control valve (32) and the second direction control valve (33).
  • One end of the supply passage (44) is connected to the discharge port of the second pump mechanism (31b).
  • the other end of the supply passage (44) opens to the secondary space (S22) on the outlet side of the internal fan (26) in the internal storage space (S2) of the container body (2).
  • a check valve (65) is provided to allow the flow of air toward the storage space (S2) in the refrigerator and prevent the backflow of air.
  • blower fans (49) that cool the air pump (31) by blowing air toward the air pump (31).
  • the first pump mechanism (31a) which is a pressurized pump mechanism, supplies pressurized air to one of the adsorption cylinders (34, 35), so that the nitrogen in the pressurized air in the adsorption cylinder (34, 35) is supplied.
  • Desorption operation (operation to generate nitrogen-enriched air) is performed.
  • the supply passage (44) is a passage in which the adsorption cylinder (34, 35) alternately performs the adsorption operation and the desorption operation, and the nitrogen-concentrated air generated by the desorption operation is supplied into the refrigerator of the container body (2). ..
  • the exit of 31b) is connected by a bypass passage (47).
  • the bypass passage (47) is provided with a bypass on-off valve (48) whose opening and closing is controlled by the control unit (55).
  • the outside air introduction passage (40) is provided by the outside air passage (41), a part of the pressurizing passage (42), the bypass passage (47) having the bypass on-off valve (48), and the part of the supply passage (44). Is configured.
  • the outside air introduction passage (40) supplies pressurized air (air having the same composition as the outside air) that has passed through the pressurizing pump mechanism (31a) into the refrigerator.
  • the outside air introduction passage (40) is provided with a cooling unit (40a) that passes through the space outside the unit case (36).
  • the first direction control valve (32) and the second direction control valve (33) are provided in the air circuit (3) and are arranged between the air pump (31) and the first and second suction cylinders (34, 35).
  • the first-direction control valve (32) and the second-direction control valve (33) have two connection states (first), which will be described later, in which the connection state between the air pump (31) and the first and second suction cylinders (34, 35) is described. 1. Switch to the second connection state). This switching operation is controlled by the control unit (55).
  • the first direction control valve (32) has a pressurizing passage (42) connected to the discharge port of the first pump mechanism (31a) and a pressure reducing passage (43) connected to the suction port of the second pump mechanism (31b). ) And one end (inflow port at the time of pressurization) of the first suction cylinder (34).
  • the first direction control valve (32) communicates the first suction cylinder (34) with the discharge port of the first pump mechanism (31a) and shuts off from the suction port of the second pump mechanism (31b) (FIG.
  • the second direction control valve (33) has a pressurizing passage (42) connected to the discharge port of the first pump mechanism (31a) and a pressure reducing passage (43) connected to the suction port of the second pump mechanism (31b). ) And one end of the second suction cylinder (35).
  • the second direction control valve (33) communicates the second suction cylinder (35) with the suction port of the second pump mechanism (31b) and shuts off the second suction cylinder (35) from the discharge port of the first pump mechanism (31a) (FIG.
  • the air circuit (3) is switched to the first connection state (see FIG. 4).
  • the discharge port of the first pump mechanism (31a) and the first suction cylinder (34) are connected, and the suction port of the second pump mechanism (31b) and the second suction cylinder (35) are connected. Be connected.
  • the first adsorption cylinder (34) performs an adsorption operation of adsorbing the nitrogen component in the outside air to the adsorbent
  • the second adsorption cylinder (35) performs a desorption operation of desorbing the nitrogen component adsorbed by the adsorbent. Is done.
  • the air circuit (3) switches to the second connection state (see FIG. 5).
  • the discharge port of the first pump mechanism (31a) and the second suction cylinder (35) are connected, and the suction port of the second pump mechanism (31b) and the first suction cylinder (34) are connected. Be connected.
  • the second suction cylinder (35) performs the suction operation
  • the first suction cylinder (34) performs the desorption operation.
  • the first adsorption cylinder (34) and the second adsorption cylinder (35) are composed of a cylindrical member whose inside is filled with an adsorbent.
  • the adsorbent filled in the first adsorption cylinder (34) and the second adsorption cylinder (35) has a property of adsorbing a nitrogen component under pressure and desorbing the adsorbed nitrogen component under reduced pressure.
  • the adsorbent filled in the first adsorption cylinder (34) and the second adsorption cylinder (35) is, for example, smaller than the molecular diameter of the nitrogen molecule (3.0 angstroms) and the molecular diameter of the oxygen molecule (2.8 angstroms).
  • the nitrogen component in the outside air is adsorbed on the adsorbent. do.
  • oxygen-concentrated air having a lower nitrogen concentration and a higher oxygen concentration than the outside air is generated because the nitrogen component is smaller than that of the outside air.
  • the nitrogen component adsorbed by the adsorbent is desorbed.
  • nitrogen-concentrated air having a higher nitrogen concentration and a lower oxygen concentration than the outside air is generated by containing a larger amount of nitrogen components than the outside air.
  • nitrogen-concentrated air having a component ratio of 92% nitrogen concentration and 8% oxygen concentration is generated.
  • oxygen-concentrated air generated from the pressurized outside air is stored in the container body (2).
  • One end of the oxygen discharge passage (45) for guiding to the outside is connected.
  • One end of the oxygen discharge passage (45) branches into two and is connected to each of the other ends of the first suction cylinder (34) and the second suction cylinder (35).
  • the other end of the oxygen discharge passage (45) opens outside the gas supply unit (30), that is, outside the container body (2).
  • the oxygen discharge passage (45) to the first suction cylinder (34) are connected to the portion where the oxygen discharge passage (45) is connected to the first suction cylinder (34) and the branch portion connected to the second suction cylinder (35).
  • a check valve (61) is provided to prevent backflow of air to the second suction cylinder (35).
  • a check valve (62) and an orifice (63) are provided in order from one end to the other in the middle of the oxygen discharge passage (45).
  • the check valve (62) prevents backflow of nitrogen-concentrated air from the exhaust connection passage (71), which will be described later, to the first adsorption cylinder (34) and the second adsorption cylinder (35).
  • the orifice (63) decompresses the oxygen-concentrated air flowing out of the first adsorption cylinder (34) and the second adsorption cylinder (35) before discharging the oxygen-concentrated air to the outside of the refrigerator.
  • a pressure sensor (66) is provided in the oxygen discharge passage (45), which is a passage for discharging oxygen-concentrated air from the adsorption cylinders (34, 35) to the outside of the refrigerator.
  • the pressure sensor (66) is arranged between the confluence point (P0) of the first suction cylinder (34) and the second suction cylinder (35) and the check valve (62).
  • the exhaust connection passage (71) is a passage that connects the discharge port of the decompression pump mechanism (31b) to the oxygen discharge passage (45) on the downstream side of the pressure sensor (66).
  • the check valve (62) includes a first connection point (P1) to which the pressure sensor (66) and the oxygen discharge passage (45) are connected, an oxygen discharge passage (45), and an exhaust connection passage (71). Is provided between the second connection point (P2) to which is connected.
  • the check valve (62) allows air flow from the first connection point (P1) to the second connection point (P2) and prohibits air flow in the reverse direction.
  • the air circuit (3) is provided with a supply / discharge switching mechanism (70) for switching between a gas supply operation and a gas discharge operation.
  • the gas supply operation is an operation of supplying nitrogen-concentrated air from the first adsorption cylinder (34) and the second adsorption cylinder (35) into the container main body (2).
  • the gas discharge operation is an operation of discharging nitrogen-concentrated air from the first adsorption cylinder (34) and the second adsorption cylinder (35) to the outside of the refrigerator.
  • the supply / discharge switching mechanism (70) has an exhaust connection passage (71), an exhaust on-off valve (72), and a supply on-off valve (73).
  • One end of the exhaust connection passage (71) is connected to the supply passage (44), and the other end is connected to the oxygen discharge passage (45).
  • the other end of the exhaust connection passage (71) is connected to the oxygen discharge passage (45) on the outside of the refrigerator rather than the orifice (63).
  • the exhaust on-off valve (72) is provided in the exhaust connection passage (71).
  • the exhaust on-off valve (72) is composed of a solenoid valve arranged in the middle of the exhaust connection passage (71).
  • the exhaust on-off valve (72) switches between an open state that allows the flow of nitrogen-enriched air flowing in from the supply passage (44) and a closed state that blocks the flow of nitrogen-concentrated air.
  • the opening / closing operation of the exhaust on-off valve (72) is controlled by the control unit (55).
  • the supply on-off valve (73) is provided in the supply passage (44) and is arranged inside the refrigerator from the connection portion between the supply passage (44) and the exhaust connection passage (71).
  • the supply on-off valve (73) is composed of a solenoid valve that switches between an open state that allows the flow of air to the inside of the refrigerator and a closed state that blocks the flow of air to the inside of the refrigerator.
  • the opening / closing operation of the supply on-off valve (73) is controlled by the control unit (55).
  • the exhaust section (46) includes an exhaust passage (46a) connecting the storage space (S2) inside the refrigerator and the space outside the refrigerator, and an exhaust valve (46a) connected to the exhaust passage (46a). It has a 46b) and a membrane filter (46c) provided at the inflow end (inner end) of the exhaust passage (46a).
  • the exhaust passage (46a) penetrates the casing (12) in and out.
  • the exhaust valve (46b) is provided inside the exhaust passage (46a).
  • the exhaust valve (46b) is composed of a solenoid valve that switches between an open state that allows the flow of air in the exhaust passage (46a) and a closed state that blocks the flow of air in the exhaust passage (46a). The opening / closing operation of the exhaust valve (46b) is controlled by the control unit (55).
  • the sensor unit (50) is provided in the secondary space (S22) on the outlet side of the internal fan (26) in the internal storage space (S2).
  • the sensor unit (50) has an oxygen sensor (51), a carbon dioxide sensor (52), a membrane filter (54), and an exhaust pipe (57).
  • the oxygen sensor (51) and carbon dioxide sensor (52) are housed in a sensor casing (90).
  • the sensor casing (90) is provided with an introduction port (94) described later for introducing air into the sensor casing (90), and the membrane filter (54) of FIG. 4 is attached to the introduction port (94).
  • the oxygen sensor (51) is composed of a zirconia type sensor.
  • the carbon dioxide sensor (52) is composed of a non-dispersive infrared (NDIR) sensor.
  • One end of the exhaust pipe (57) is connected to the sensor casing (90), and the other end of the exhaust pipe (57) opens near the suction port of the internal fan (26).
  • the secondary space (S22) and the primary space (S21) of the storage space (S2) are separated by a membrane filter (54), an oxygen sensor (51), a carbon dioxide sensor (52), and an exhaust pipe (57). It communicates through the formed communication passage (58).
  • a membrane filter (54) an oxygen sensor (51), a carbon dioxide sensor (52), and an exhaust pipe (57). It communicates through the formed communication passage (58).
  • the pressure in the primary space (S21) becomes lower than the pressure in the secondary space (S22), and this pressure difference causes the oxygen sensor (51) and the carbon dioxide sensor (51).
  • the communication passage (58) including 52) the air inside the refrigerator flows from the secondary space (S22) side to the primary space (S21) side.
  • the internal air passes through the oxygen sensor (51) and the carbon dioxide sensor (52) in this way, and the oxygen concentration of the internal air is measured by the oxygen sensor (51). Then, the carbon dioxide concentration in the air inside the refrigerator is measured by the carbon dioxide sensor (52).
  • the air supply measurement operation described later is performed in which the concentration of the nitrogen-concentrated air generated in the first and second suction cylinders (34, 35) is measured by the oxygen sensor (gas sensor of the present disclosure) (51).
  • a sensor circuit (80) for doing this is provided.
  • the sensor circuit (80) includes a branch pipe (81) and a branch on-off valve (gas concentration on-off valve) (82), and a part of the air flowing through the supply passage (44) is branched to an oxygen sensor (51). ) And the carbon dioxide sensor (52).
  • branch pipe (81) One end of the branch pipe (81) is connected to the supply passage (44), and the other end is connected to the sensor casing (90).
  • the branch pipe (81) branches from the supply passage (44) in the unit case (36) and communicates with the internal space.
  • a check valve (64) is provided at the other end of the branch pipe (81) to allow air flow from one end to the other end and prevent backflow of air.
  • the branch on-off valve (82) is provided inside the unit case (36).
  • the branch on-off valve (82) is composed of a solenoid valve that switches between an open state that allows the air flow of the branch pipe (81) and a closed state that blocks the air flow of the branch pipe (81).
  • the opening / closing operation of the branch on-off valve (82) is controlled by the control unit (55).
  • the nitrogen-concentrated air generated by the gas supply unit (30) is guided to the oxygen sensor (51) via the branch pipe (81). , The oxygen concentration of the nitrogen-concentrated air is measured by the oxygen sensor (51).
  • the air composition adjuster if the measured value of the sensor deviates from the actual value, the adjustment of the concentration becomes unstable, so outside air is introduced into the gas sensor (51) at a predetermined timing to calibrate (correct the measured value). Will be done.
  • the outside air pressurized by the air pump (31) bypasses the first and second suction cylinders (34, 35) and passes through the branch pipe (81) as described later. Introduced to the oxygen sensor (51).
  • the air circuit (3) introduces the outside air into the first and second suction cylinders (34, 35) by the air pump (31), the first passage (75) (outside air passage). (41) and the pressurizing passage (42)) and the oxygen sensor (51) branching from the first passage (41, 42) between the air pump (31) and the first and second suction cylinders (34, 35). It has a second passage (76) (bypass passage (47) and branch pipe (81)) that communicates with.
  • the second passage (76) is provided with a gas-liquid separator (85) for removing the moisture of the air introduced into the oxygen sensor (51).
  • a drain pipe (77) for discharging the moisture separated from the air is connected to the gas-liquid separator (85).
  • FIG. 8 is a rear perspective view of the casing (12) of the transport refrigerating device (10), showing the arrangement of the sensor casing (90).
  • 9 is an enlarged perspective view of the sensor casing (90)
  • FIG. 10 is a perspective view showing the inside of the sensor casing (90)
  • FIG. 11 is a perspective view of the sensor casing (90) as viewed from the back.
  • the oxygen sensor (51) and the carbon dioxide sensor (52) are housed in the sensor casing (90).
  • the gas-liquid separator (85) is fixed to the sensor casing (90).
  • the gas-liquid separator (85) has a cylindrical container (86).
  • the container (86) of the gas-liquid separator (85) has an inflow port (86a) through which air flows in, an outflow port (86b) through which air from which (a part of) water has been removed flows out, and is separated from air.
  • a drainage port (not shown) is formed to drain the discharged water.
  • the drain pipe (77) connected to the gas-liquid separator (85) discharges water to the drain pan (28) provided in the casing (12) in order to receive the drain water generated in the transport refrigerating device (10). It extends downward from the gas-liquid separator (85).
  • the exhaust pipe (57) connected to the sensor casing (90) is open on the suction port side of the internal fan (26).
  • the sensor casing (90) has a sensor casing main body (91) and a cover (92).
  • the gas-liquid separator (85) is fixed to the cover (92) of the sensor casing (90) using a bracket (87).
  • the sensor casing (90) is fixed to the casing (12) of the transport refrigerating device (10) by the bracket (93).
  • the sensor casing (90) is located in the storage space (S2) inside the refrigerator.
  • a wall member (101) is arranged inside the sensor casing (90).
  • the wall member (101) is a hollow box-shaped member formed of a plurality of partition plates (102).
  • the wall member (101) is composed of a plurality of partition plates (102) arranged so as to open at least one surface of the hexahedron (the left side surface of FIG. 10 in this embodiment).
  • the oxygen sensor (51) arranged inside the sensor casing (90) is located in the space inside the wall member (101), and the surface other than the left side in the figure is covered by the partition plate (102).
  • the wall member (101) suppresses the flow of air toward the oxygen sensor (51) by the partition plate (102) arranged around the oxygen sensor (51). As a result, the wall member (101) prevents the corrosive component from coming into contact with the oxygen sensor (51) when the air introduced into the oxygen sensor (51) contains, for example, a corrosive component containing sulfur. It functions as a contact suppression unit (100) to suppress. It is conceivable that the corrosive component is generated from the corrugated cardboard in the box containing the plant as a cargo, the wood pallet on which the corrugated cardboard is placed, or is contained in the outside air.
  • the sensor casing (90) is provided with an introduction port (94) for introducing air into the inside and an outlet (95) for allowing air to flow out to the outside.
  • the introduction port (94) includes a first introduction port (94a) and a second introduction port (94b).
  • the first introduction port (94a) is an opening for introducing the air outside the internal space into the sensor casing (90).
  • the second introduction port (94b) is an opening for introducing the air inside the interior space into the sensor casing (90).
  • the first introduction port (94a) is provided on the side surface of the sensor casing (90) as shown in FIGS. 9 and 10, and the branch pipe (81) (second passage (76)) is connected to the first introduction port (94a).
  • the second introduction port (94b) is provided on the back surface of the sensor casing (90) and is open to the interior space.
  • Membrane filters (54) that allow air to pass through without allowing moisture to pass through are attached to the first introduction port (94a) and the second introduction port (94b), respectively.
  • the membrane filter (54) is provided in the ventilation holes of the hexagonal fastening member.
  • An exhaust pipe (57) is connected to the outlet (95).
  • Both the first introduction port (94a) and the second introduction port (94b) are arranged below the oxygen sensor (51).
  • a partition plate (102) arranged below the oxygen sensor (51) has a partition plate (102) between the oxygen sensor (51) and the first introduction port (94a) and the second introduction port (94b). It is configured to be located.
  • the outlet (86b) of the gas-liquid separator (86) and the first inlet (94a) are connected by a connecting pipe (59).
  • the connecting pipe (59) constitutes a first introduction path (59a) for supplying air from the air pump (31) into the sensor casing (90).
  • the second introduction port (94b) for introducing the air inside the refrigerator into the sensor casing (90) constitutes the second introduction path (59b).
  • the control unit (55) controls the concentration adjustment operation to bring the oxygen concentration and the carbon dioxide concentration of the air inside the container body (2) to desired concentrations.
  • the control unit (55) has the composition (oxygen concentration and carbon dioxide concentration) of the air inside the container body (2) based on the measurement results of the oxygen sensor (51) and the carbon dioxide sensor (52). Controls the operation of the gas supply unit (30), the exhaust unit (46) and the sensor unit (50) so as to have a desired composition (for example, oxygen concentration 5%, carbon dioxide concentration 5%).
  • the control unit (55) includes, for example, a microcomputer that controls each element of the CA device (60), and a storage medium such as a memory or a disk in which an implementable control program is stored.
  • the detailed structure and algorithm of the control unit (55) may be any combination of hardware and software.
  • the unit control unit (150) shown in FIG. 3 executes a cooling operation for cooling the air inside the container body (2).
  • the operation of the compressor (21), expansion valve (23), outside fan (25) and inside fan (26) by the unit control unit (150) is based on the measurement results of the temperature sensor (not shown).
  • the temperature of the air inside the refrigerator is controlled so as to reach a desired target temperature.
  • the refrigerant circuit (20) the refrigerant circulates and a steam compression refrigeration cycle is performed.
  • the internal air of the container body (2) guided to the internal storage space (S2) by the internal fan (26) is a refrigerant that flows inside the evaporator (24) when it passes through the evaporator (24). Cooled by.
  • the air inside the refrigerator cooled by the evaporator (24) is blown out from the outlet (18b) again into the refrigerator of the container body (2) through the underfloor flow path (19a). As a result, the air inside the container body (2) is cooled.
  • the control unit (55) switches both the first direction control valve (32) and the second direction control valve (33) to the first state shown in FIG.
  • the first suction cylinder (34) communicates with the discharge port of the first pump mechanism (31a) and is shut off from the suction port of the second pump mechanism (31b), and the second suction is performed.
  • the cylinder (35) communicates with the suction port of the second pump mechanism (31b) and is in the first connection state in which it is cut off from the discharge port of the first pump mechanism (31a).
  • the outside air pressurized by the first pump mechanism (31a) is supplied to the first suction cylinder (34), while the second pump mechanism (31b) is supplied to the second suction cylinder (35). Inhales nitrogen-concentrated air whose nitrogen concentration is higher than that of the outside air and whose oxygen concentration is lower than that of the outside air.
  • the first pump mechanism (31a) sucks in the outside air through the outside air passage (41) and pressurizes it, and discharges the pressurized outside air (pressurized air) to the pressurized passage (42).
  • the pressurized air discharged to the pressurized passage (42) flows through the pressurized passage (42). Then, the pressurized air is supplied to the first adsorption cylinder (34) via the pressurized passage (42).
  • pressurized air flows into the first adsorption cylinder (34), and the nitrogen component contained in the pressurized air is adsorbed by the adsorbent.
  • pressurized outside air is supplied from the first pump mechanism (31a), and the nitrogen component in the outside air is adsorbed by the adsorbent, whereby the nitrogen concentration.
  • oxygen-concentrated air which is lower than the outside air and has a higher oxygen concentration than the outside air.
  • the oxygen-concentrated air flows out from the first adsorption cylinder (34) to the oxygen discharge passage (45).
  • the second pump mechanism (31b) sucks air from the second suction cylinder (35). At that time, the nitrogen component adsorbed by the adsorbent of the second adsorption cylinder (35) is sucked by the second pump mechanism (31b) together with air and desorbed from the adsorbent. As described above, during the first operation, in the second suction cylinder (35), the air inside is sucked by the second pump mechanism (31b), and the nitrogen component adsorbed by the adsorbent is desorbed. As a result, nitrogen-concentrated air containing a nitrogen component desorbed from the adsorbent and having a nitrogen concentration higher than that of the outside air and an oxygen concentration lower than that of the outside air is generated. The nitrogen-concentrated air is sucked into the second pump mechanism (31b), pressurized, and then discharged to the supply passage (44).
  • Second operation the control unit (55) switches both the first direction control valve (32) and the second direction control valve (33) to the second state shown in FIG.
  • the first suction cylinder (34) communicates with the suction port of the second pump mechanism (31b) and is shut off from the discharge port of the first pump mechanism (31a), and the second suction is performed.
  • the cylinder (35) communicates with the discharge port of the first pump mechanism (31a) and is in the second connection state in which the suction port of the second pump mechanism (31b) is cut off.
  • the first pump mechanism (31a) sucks in the outside air through the outside air passage (41) and pressurizes it, and discharges the pressurized outside air (pressurized air) to the pressurized passage (42).
  • the pressurized air discharged to the pressurized passage (42) flows through the pressurized passage (42).
  • the pressurized air is supplied to the second adsorption cylinder (35) via the pressurized passage (42).
  • pressurized air flows into the second adsorption cylinder (35), and the nitrogen component contained in the pressurized air is adsorbed by the adsorbent.
  • pressurized outside air is supplied from the first pump mechanism (31a), and the nitrogen component in the outside air is adsorbed by the adsorbent, whereby the nitrogen concentration.
  • oxygen-concentrated air which is lower than the outside air and has a higher oxygen concentration than the outside air.
  • the oxygen-concentrated air flows out from the second adsorption cylinder (35) to the oxygen discharge passage (45).
  • the second pump mechanism (31b) sucks air from the first suction cylinder (34). At that time, the nitrogen component adsorbed by the adsorbent of the first adsorption cylinder (34) is sucked by the second pump mechanism (31b) together with air and desorbed from the adsorbent. As described above, during the second operation, the air inside the first suction cylinder (34) is sucked by the second pump mechanism (31b), and the nitrogen component adsorbed by the adsorbent is desorbed. As a result, nitrogen-concentrated air containing a nitrogen component desorbed from the adsorbent and having a nitrogen concentration higher than that of the outside air and an oxygen concentration lower than that of the outside air is generated. The nitrogen-concentrated air is sucked into the second pump mechanism (31b), pressurized, and then discharged to the supply passage (44).
  • the exhaust on-off valve (72) is controlled to the closed state and the supply on-off valve (73) is controlled to the open state by the control unit (55). ..
  • the nitrogen-enriched air alternately generated in the first adsorption cylinder (34) and the second adsorption cylinder (35) is supplied to the inside of the container body (2) through the supply passage (44) to concentrate oxygen. Air is discharged to the outside of the refrigerator through the oxygen discharge passage (45).
  • the exhaust on-off valve (72) is controlled to the open state and the supply on-off valve (73) is controlled to the closed state by the control unit (55).
  • the nitrogen-concentrated air that is alternately generated in the first adsorption cylinder (34) and the second adsorption cylinder (35) and discharged to the supply passage (44) is discharged from the oxygen discharge passage (71) to the oxygen discharge passage (71). It flows into 45) and is discharged to the outside of the refrigerator together with the oxygen-concentrated air flowing through the oxygen discharge passage (45).
  • the outside air introduction operation of introducing the outside air into the refrigerator of the container body (2) is also possible.
  • the first direction control valve (32) is set to the first state
  • the second direction control valve (33) is set to the second state
  • the bypass on-off valve (48) is opened. ..
  • the air supply on-off valve (73) is opened and the branch on-off valve (82) is closed.
  • the air pump (31) is started in this state, the outside air is composed of an outside air passage (41), a part of the pressurizing passage (42), a bypass passage (47), and a part of the supply passage (44). It flows through the outside air introduction passage (40) shown by the thick solid line.
  • the CA device (60) uses the control unit (55) to change the composition (oxygen concentration and carbon dioxide concentration) of the air inside the container body (2) to a desired composition (for example, an oxygen concentration of 5%). Perform a concentration adjustment operation to adjust the carbon dioxide concentration to 5%).
  • the concentration adjustment operation the gas supply unit (30) is used so that the composition of the air inside the container body (2) becomes a desired composition based on the measurement results of the oxygen sensor (51) and the carbon dioxide sensor (52). And the operation of the exhaust unit (46) is controlled.
  • control unit (55) controls the branch on-off valve (82) to the closed state. Further, during the concentration adjustment operation, the control unit (55) communicates with the unit control unit (150), and the unit control unit (150) rotates the internal fan (26). As a result, the internal air is supplied to the oxygen sensor (51) and the carbon dioxide sensor (52) by the internal fan (26), and the oxygen concentration and the carbon dioxide concentration of the internal air are measured.
  • the gas supply operation is performed by alternately repeating the first operation and the second operation to adjust the oxygen concentration in the refrigerator.
  • the exhaust valve (46b) of the exhaust unit (46) is controlled to be in the open state, and the amount of nitrogen-enriched air supplied to the inside of the container body (2) by the gas supply operation is taken out of the refrigerator. Discharge.
  • the control unit (55) stops the operation of the gas supply unit (30) to stop the gas supply operation, and the exhaust valve (46b). ) Is closed to stop the exhaust operation. Since the plant (15) breathes in the container body (2), the oxygen concentration in the air inside the container body (2) decreases, eventually reaching 5% of the target oxygen concentration.
  • the bypass on-off valve (48) is opened to bypass the outside air sucked to the air pump (31) and the first and second suction cylinders (34, 35) to bypass the container body. It can be performed by the outside air introduction operation supplied to the inside of the refrigerator in (2). At this time, since the outside air passes through the cooling unit (40a), the temperature rise of the air inside the refrigerator is suppressed.
  • the oxygen concentration (and carbon dioxide concentration) of the air inside the refrigerator can be adjusted by appropriately switching between the gas supply operation, the gas discharge operation, and the outside air introduction operation.
  • an air supply measurement operation for measuring the oxygen concentration of the nitrogen-concentrated air generated in the gas supply unit (30) can be performed by a command from a user or periodically (for example, every 10 days).
  • the air supply measurement operation is performed in parallel when the internal fan (26) is stopped during the gas supply operation such as the above-mentioned concentration adjustment operation or test run.
  • the control unit (55) controls the branch on-off valve (82) to the open state and the supply on-off valve (73) to the closed state during the gas supply operation. As a result, all of the nitrogen-enriched air flowing through the supply passage (44) flows into the branch pipe (81). The nitrogen-enriched air flowing into the branch pipe (81) is introduced into the oxygen sensor (51), and the oxygen concentration is measured.
  • the composition (oxygen concentration, nitrogen concentration) of the nitrogen-concentrated air generated in the gas supply unit (30) is desired. It is possible to confirm whether it is in the state of.
  • the sensor calibration operation of FIG. 7 can be performed by introducing outside air into the sensor unit (50) to calibrate the oxygen sensor (51).
  • the sensor calibration operation can be performed, for example, by temporarily stopping the concentration adjustment while cooling the inside of the refrigerator, performing the sensor calibration operation in a short time (about 10 minutes), and then returning to the concentration adjustment operation.
  • the first direction control valve (32) is set to the first state
  • the second direction control valve (33) is set to the second state
  • the bypass on-off valve (48) is opened.
  • the air supply on-off valve (73) is closed and the branch on-off valve (82) is opened.
  • the outside air passes through the gas-liquid separator (85). Therefore, the oxygen sensor (51) is in contact with the outside air from which at least a part of the moisture has been removed.
  • the air outside the inside of the refrigerator flows into the sensor casing (90) from the first introduction port (94a) in FIG.
  • the air is the air whose composition is adjusted by the suction cylinder (34, 35) during the supply air measurement operation, and the outside air that bypasses the suction cylinder (34, 35) during the sensor calibration operation.
  • These airs fill the inside of the sensor casing (90) and head toward the outlet (95) (see Path (R2)).
  • the partition plate (102) on the lower surface of the wall member (101) is located between the second introduction port (94b) and the oxygen sensor (51), and the oxygen sensor (51) partitions other than the left side in the figure. Since it is covered with a plate (102), even if the air outside the refrigerator contains a corrosive component, the contact between the corrosive component and the oxygen sensor (51) is suppressed.
  • the wall member (101) that suppresses the flow of air toward the oxygen sensor (51) as the contact suppressing unit (100) that suppresses the contact of the corrosive component containing sulfur with the oxygen sensor (51). is provided. According to this configuration, the contact between the oxygen sensor (51) and the corrosive component is suppressed by the wall member (101). Therefore, deterioration of the oxygen sensor can be suppressed.
  • an introduction port (94) for introducing air into the inside is formed in a sensor casing (90) accommodating an oxygen sensor (51) inside, and a wall member (101) is provided with the introduction port (94) and oxygen. It is placed between the sensor (51).
  • the wall member (101) can prevent the corrosive component that enters the sensor box (90) from the introduction port (64) together with the air from coming into contact with the oxygen sensor (51).
  • Both mouths (94b) are located below the oxygen sensor (51). Then, a part of the wall member (101) is arranged below the oxygen sensor (51).
  • the corrosive component is suppressed from coming into contact with the oxygen sensor (51). Be done. Therefore, the contact between the oxygen sensor (51) and the corrosive component due to the air inside the refrigerator during normal operation and the contact between the oxygen sensor (51) and the corrosive component due to the air outside the refrigerator during sensor calibration can be suppressed.
  • the wall member (101) is composed of a plurality of partition plates (102), and these partition plates (102) are arranged so as to open at least one surface of the hexahedron.
  • the oxygen sensor (51) is located in the space inside the hexahedron.
  • the corrosive component can be suppressed from coming into contact with the oxygen sensor (51) by the partition plate (102).
  • the oxygen sensor (51) can detect air components. Since the wall member (101) may have a plurality of partition plates (102) arranged around the oxygen sensor (51), the configuration can be simplified.
  • the gas-liquid separator (85) As a result, it is possible to prevent the oxygen sensor (51) and the carbon dioxide sensor (52) from failing due to the adhesion of moisture.
  • both the first introduction port (94a) and the second introduction port (94b) are arranged below the oxygen sensor (51), but the first introduction port (94a) and the second introduction port (94a) One of 94b) may be configured to be located below the oxygen sensor (51).
  • the oxygen sensor (51) and the corrosive component due to the outside air at the time of sensor calibration are placed. Contact can be suppressed.
  • the second introduction port (94b) below the oxygen sensor and arranging a part of the wall member (101) between them, contact between the oxygen sensor (51) and the corrosive component due to the air inside the refrigerator during normal operation is suppressed. Be done.
  • the wall member (101) has a shape in which one surface of the hexahedron is opened by a plurality of partition plates (102).
  • the shape of the wall member (101) may be changed to another shape as long as the corrosive component introduced into the sensor casing (90) is suppressed from coming into contact with the oxygen sensor (51).
  • the resin cover (103) shown in FIGS. 12A and 12B may be used instead of the wall member (101).
  • the resin cover (103) is a synthetic resin molded part that covers the circumference of the gas sensor (51, 52).
  • the resin cover (103) has a main body (103a), an inlet (103b) for taking in air into the main body (103a), and an outlet (103c) for discharging air from the inside of the main body (103a).
  • a main body (103a) Inside the main body (103a), an accommodating portion (103d) for accommodating the detection unit (51a) of the gas sensor (51) is formed.
  • the inlet (103b) is configured to introduce the air in the sensor casing (90) into the accommodating portion (103d) and the outlet (103c) to allow air to flow out of the accommodating portion (103d) into the sensor casing (90).
  • the casing is configured to introduce the air in the sensor casing (90) into the accommodating portion (103d) and the outlet (103c) to allow air to flow out of the accommodating portion (103d) into the sensor casing (90).
  • the sensor casing (90) is not provided, and the resin cover (103) accommodating the oxygen sensor (51) is connected to the branch pipe (81) and the exhaust pipe (57).
  • the carbon dioxide sensor (52) may be housed in the resin cover (103) and connected to the branch pipe (81) and the exhaust pipe (57).
  • the inlet (103b) and the outlet (103b) of the resin cover (103) are formed in a cylindrical shape, but the inlet (103b) and the outlet (103b) are formed in a cylindrical shape. You don't have to.
  • two holes penetrating from the outer surface to the inner surface of the main body portion (103a) may be formed, and these holes may be used as an inlet (103b) and an outlet (103b).
  • the diameter of the hole may be set to, for example, about 2.5 mm, and the resin cover (103) may be arranged so that the inlet (103b) faces downward and the outlet (103c) faces upward.
  • the reason for arranging in this way is that the oxygen sensor (51) generates heat, so that the air in the accommodating portion (103d) escapes upward, and even if water intrudes into the accommodating portion (103d), the water escapes downward. ..
  • Embodiment 2 The second embodiment is an example in which an adsorbent (105) that adsorbs a corrosive component in the air is used as the contact suppressing portion (100).
  • the adsorbent (105) can be arranged inside the sensor casing (90) instead of the wall member (101) of the first embodiment.
  • FIG. 13 shows an example in which the adsorbent (105) is provided on the bottom surface of the sensor casing (90).
  • the adsorbent (105) has a base material and an adsorbent (for example, zeolite or activated carbon) supported on the base material.
  • This embodiment 2 has the same configuration as the first embodiment including the air circuit (3) except that the adsorbent (105) is provided instead of the wall member (101). Therefore, the description of other configurations of the adsorbent (105) will be omitted.
  • the corrosive component contained in the air introduced into the sensor casing (90) is adsorbed by the adsorbent (105) in the sensor casing (90). Therefore, it is possible to prevent the corrosive component from coming into contact with the oxygen sensor (51).
  • the adsorbent (105) may be provided inside the sensor casing (90) together with the wall member (101) of the first embodiment. With this configuration, contact of the corrosive component with the oxygen sensor (51) can be suppressed by both the wall member (101) and the adsorbent (105).
  • the adsorbent (105) may be arranged at a position different from that in FIG. 13 in the sensor casing (90), such as the back surface of the cover (92) of the sensor casing (90). Even with such a configuration, the corrosive component in the air is adsorbed by the adsorbent (105), so that the corrosive component can be suppressed from coming into contact with the oxygen sensor (51).
  • the adsorbent (105) may be provided in the air circuit (3) in a different arrangement from the examples of FIGS. 13 and 14.
  • FIG. 15 is an example in which the resin cover (103) accommodating the oxygen sensor (51) and the adsorbent (105) are arranged in the sensor casing (90).
  • the resin cover (103) is arranged so that the inflow port (103b) formed by the holes formed in the main body portion (103a) faces downward and the outflow port (103c) faces upward.
  • the adsorbent (105) is arranged on the back surface (the surface on which the second introduction port (94b) is formed) of the sensor casing (90), and is located on the same surface as the oxygen sensor (51) and the resin cover (103). ..
  • the adsorbent (105) is a substantially rectangular base material on which an adsorbent is supported.
  • FIG. 16 is a partially enlarged view of the air circuit (3) according to the modified example 3.
  • the adsorbent (105) is arranged in the connecting pipe (59) which is the first introduction path (59a) for introducing air into the inside of the sensor casing (90).
  • the adsorbent (105) is arranged at the introduction port (94) to which the connecting pipe (59) is connected to the sensor casing (90), for example, together with the membrane filter (54). May be good.
  • a plurality of adsorbents (105) provided in the air circuit (3) may be provided, and the adsorbents (105) may be arranged in the sensor casing (90) and at other positions.
  • the connecting pipe (59) which is the first introduction path (59a) for introducing the outside air into the sensor casing (90), and the second to introduce the air inside the refrigerator into the sensor casing (90). 2 It may be arranged in both of the second introduction port (94b) constituting the introduction path (59b).
  • the corrosive component of air introduced into the sensor casing (90) is adsorbed on the adsorbent (105) in the vicinity of the sensor casing (90).
  • the corrosive component is suppressed from coming into contact with the oxygen sensor (51), and the deterioration of the oxygen sensor (51) is suppressed.
  • the adsorbent (105) may be provided at a position other than the inside of the sensor casing (90).
  • FIG. 17 is a diagram showing an air circuit (3) of the CA device according to the modified example 4 of the second embodiment.
  • the adsorbent (105) is arranged together with the membrane filter (76) in the inflow portion where the outside air flows into the air circuit (3).
  • bypass passage (78) parallel to the first suction cylinder (34) is connected to the pressure passage (42), and the other end is connected to the oxygen discharge passage (45).
  • a bypass on-off valve (78a) is provided in the bypass passage (78).
  • outside air is flowed in the order of a bypass passage (78) having a bypass on-off valve (78a), an oxygen discharge passage (45), an exhaust connection passage (71), a supply passage (44), and a branch pipe (81). Outside air can be introduced into the oxygen sensor (51) during calibration.
  • the second passage (76) is a passage that branches from the first passage and can introduce outside air into the oxygen sensor (51), it is a passage that branches from the first passage (75) and then joins. May be good.
  • the corrosive component contained in the outside air flowing into the air circuit (3) can be adsorbed by the adsorbent (105). Therefore, it is possible to prevent the corrosive component from coming into contact with the oxygen sensor (51) during the calibration operation in which the outside air is introduced into the oxygen sensor (51).
  • the sensor casing (90) may be arranged in the space outside the refrigerator instead of the space inside the refrigerator.
  • the sensor casing (90) arranged outside the refrigerator has a membrane filter (54) and a second introduction path (59b) arranged in the secondary space (S22) inside the refrigerator. Connected with. Even with this configuration, it is possible to prevent corrosive components in the air from coming into contact with the oxygen sensor (51).
  • the first introduction port (94a) shown in FIGS. 9 to 11 uses the sensor casing (90) for the outside air when the oxygen sensor (51) is calibrated. ), And the second introduction port (94b) introduces the air inside the refrigerator into the sensor casing (90).
  • Embodiment 4 has the same basic configuration and operation as the first embodiment described above.
  • the fourth embodiment includes an air supply on-off valve (79) as an on-off mechanism in the first embodiment.
  • FIG. 20 shows the first generation operation of the first embodiment, but also in the fourth embodiment, the second generation operation, the outside air introduction operation, and the sensor configuration operation are performed in the same manner as in the first embodiment.
  • the sensor unit (50) of the fourth embodiment is provided in the secondary space (S22) on the outlet side of the internal fan (26) in the internal storage space (S2).
  • the sensor unit (50) includes an oxygen sensor (51), a carbon dioxide sensor (52), an exhaust pipe (57), an air supply pipe (78), an air supply on-off valve (79) as an opening / closing mechanism, and a membrane. It has a filter (54).
  • the oxygen sensor (51) and the carbon dioxide sensor (52) are housed in the sensor casing (90).
  • One end of the air supply pipe (78) is connected to the sensor casing (90).
  • the other end of the air supply pipe (78) opens into the storage space (S2) inside the refrigerator.
  • the air supply pipe (78) constitutes a passage for introducing the air inside the refrigerator inside the sensor casing (90).
  • a membrane filter (54) is attached to the other end of the air supply pipe (78).
  • the air inside the refrigerator that has passed through the membrane filter (54) flows into the inside of the sensor casing (90).
  • the sensor casing (90) is provided with an exhaust port (not shown).
  • An exhaust pipe (57) is connected to the exhaust port.
  • the air supply on-off valve (79) is connected to the air supply pipe (78).
  • the air supply on-off valve (79) is composed of a solenoid valve that switches between an open state that allows air flow in the air supply pipe (78) and a closed state that blocks air flow in the air supply pipe (78).
  • the opening / closing operation of the air supply on-off valve (79) is controlled by the control unit (55).
  • the air supply on-off valve (79) as an on-off mechanism is not limited to the valve.
  • the opening / closing mechanism may be a shutter or a damper.
  • the opening / closing mechanism is a shutter
  • the shutter is provided at the connection port of the air supply pipe (78) in the sensor casing (90).
  • the opening / closing mechanism is a damper
  • the damper is provided in the air supply pipe (78).
  • the oxygen sensor (51) of the present embodiment is a zirconia type sensor.
  • the element of the oxygen sensor (51) is composed of platinum and zirconia.
  • the oxygen sensor (51) measures the oxygen concentration by electrically measuring the amount of oxygen ions moving in the solid electrolytes of platinum and zirconia.
  • a small amount of metal oxide is added to platinum and zirconia of the oxygen sensor (51) as a bonding aid. Platinum and zirconia are bonded by binding the bonding aids to each other at the interface between platinum and zirconia.
  • Corrosive components may be generated from the packaging container housed in the internal space of the container body (2) or the fresh food packed in the packaging container.
  • the corrosive component is a component that corrodes the oxygen sensor (51).
  • the corrosive component circulates in the transportation container (1) together with the air in the refrigerator.
  • the oxygen sensor (51) When the oxygen sensor (51) is energized, the oxygen sensor (51) generates heat and becomes hot. On the other hand, when the oxygen sensor (51) switches from the energized state to the non-energized state, the oxygen sensor (51) does not generate heat and the temperature drops. When the temperature of the oxygen sensor (51) decreases, the temperature inside the sensor casing (90) decreases, and the relative humidity inside the sensor casing (90) increases. When the relative humidity in the sensor casing (90) rises, moisture condenses and a water film is formed on the surface of the oxygen sensor (51).
  • the corrosive component that has flowed into the sensor casing (90) together with the air inside the refrigerator enters the water film on the surface of the oxygen sensor (51)
  • the corrosive component reacts with the bonding aid of the oxygen sensor (51) in the water film.
  • the bonding auxiliary agent of the oxygen sensor (51) reacts with the bonding force of the bonding auxiliary agent is weakened, the bonding force of platinum and zirconia is reduced, and the output of the oxygen sensor (51) is reduced. This is the deterioration of the oxygen sensor (51).
  • the corrosive component contains a sulfur component.
  • Sulfate ions can be mentioned as a corrosive component that easily penetrates into the water film.
  • the control unit (55) performs the following control while the air composition adjusting device (60) and the transport refrigerating device (10) are in operation.
  • step ST11 the control unit (55) controls the air composition adjusting device (60) to execute a concentration adjusting operation for adjusting the air composition.
  • step ST12 the control unit (55) controls the air pump (31) to convey the concentration-adjusted air to the space inside the container body (2).
  • the air supply on-off valve (79) is in the open state, and the air inside the refrigerator flows into the inside of the sensor casing (90) through the air supply pipe (78).
  • the oxygen sensor (51) measures the oxygen concentration in the air flowing into the sensor casing (90).
  • step ST13 the control unit (55) determines whether or not the operation stop command of the air composition adjusting device (60) has been received. If the determination in step ST13 is "YES”, branch to step ST14. If the determination in step ST13 is "NO”, step ST13 is repeated.
  • the operation stop command of the air composition adjusting device (60) is output, for example, when the stop button is pressed by the user.
  • the operation stop command of the transport refrigerating device (10) may be output.
  • step ST14 the control unit (55) controls the air supply on-off valve (79) and executes the first operation of closing the air supply on-off valve (79).
  • the air supply on-off valve (79) is switched to the closed state.
  • the air flow is cut off in the air supply pipe (78).
  • deterioration of the oxygen sensor (51) can be suppressed by preventing the corrosive component from coming into contact with the oxygen sensor (51) for a long time.
  • the timing of performing the first operation in conjunction with the operation stop operation of the air composition adjusting device (60) is immediately before the operation of the air composition adjusting device (60) is stopped, at the same time as the operation stop operation, and immediately after the operation is stopped. It may be either.
  • the control unit (55) may perform the first operation when receiving a stop command for monitoring the oxygen sensor (51).
  • the monitoring of the oxygen sensor (51) is stopped, for example, when the concentration adjustment operation is completed in the air composition adjusting device (60), the air supply measurement operation is completed, and the sensor calibration operation is completed.
  • step ST14 the user may manually switch the air supply on-off valve (79) to the closed state. That is, the air supply on-off valve (79) may be closed while the operation of the air composition adjusting device (60) is stopped.
  • the control unit (55) performs the following control while the air composition adjusting device (60) is stopped and the transport refrigerating device (10) is operated.
  • step ST21 the unit control unit (100) controls the transport refrigerating device (10) to execute a cooling operation for cooling the internal space of the container body (2).
  • step ST22 the unit control unit (100) controls the internal fan (26) to convey the temperature-controlled air to the internal space of the container body (2).
  • the air supply on-off valve (79) is in the open state, and the air inside the refrigerator flows into the inside of the sensor casing (90) through the air supply pipe (78).
  • step ST23 the unit control unit (100) determines whether or not the operation stop command of the transport refrigerating device (10) has been received. If the judgment in step ST23 is "YES”, the process branches to step ST24. If the determination in step ST23 is "NO”, step ST23 is repeated.
  • the operation stop command of the transport refrigerating device (10) is output, for example, when the stop button is pressed by the user.
  • step ST24 the control unit (55) controls the air supply on-off valve (79) and executes the second operation of closing the air supply on-off valve (79).
  • the air supply on-off valve (79) is switched to the closed state.
  • the air flow is cut off in the air supply pipe (78).
  • deterioration of the oxygen sensor (51) can be suppressed by preventing the corrosive component from coming into contact with the oxygen sensor (51) for a long time.
  • the timing of performing the second operation in conjunction with the operation stop operation of the transport refrigerating device (10) is immediately before the operation of the transport refrigerating device (10) is stopped, at the same time as the operation stop operation, and immediately after the operation is stopped. It may be either.
  • an operation of introducing outside air into the inside of the sensor casing (90) may be performed.
  • the first direction control valve (32) is set to the first state
  • the second direction control valve (33) is set to the second state.
  • the bypass on-off valve (48) is opened.
  • the supply on-off valve (73) is closed and the branch on-off valve (82) is opened.
  • the corrosive component staying inside the sensor casing (90) is discharged to the outside of the sensor casing (90). Specifically, the corrosive component is discharged to the outside of the sensor casing (90) from the exhaust port.
  • the corrosive component that has passed through the exhaust pipe (57) from the exhaust port is discharged to the primary space (S21) on the suction side of the internal fan (26).
  • the control unit (55) switches the supply air on-off valve (79) to the closed state after introducing the outside air into the sensor casing (90) or before introducing the outside air.
  • the corrosion component can be prevented from coming into contact with the sensor (51) for a long period of time, and deterioration of the sensor (51) can be suppressed.
  • the rotating lid (16C) is opened and the ventilation port (16D) is opened so that the outside air is introduced into the internal space through the ventilation port (16D). You may.
  • the outside air introduced into the interior space through the ventilation port (16D) is circulated in the interior space by the interior fan (26).
  • the air inside the refrigerator including the outside air passes through the membrane filter (54) of the sensor casing (90) and flows into the inside of the sensor casing (90).
  • the ventilation port (16D) communicates with the primary space (S21) on the suction side of the internal fan (26). Therefore, the outside air taken in from the ventilation port (16D) is introduced from the primary space (S21) to the secondary space (S22) on the outlet side of the casing fan (26) and placed in the secondary space (S22). It flows into the inside of the sensor casing (90). As a result, the corrosive component can be discharged from the inside of the sensor casing (90).
  • the air having the adjusted composition is conveyed to the target space.
  • the concentration of components in the air in the target space is measured by the sensor (51).
  • the sensor (51) is housed in the sensor casing (90). Inside the sensor casing (90), air in the target space is introduced through the passage (78).
  • the opening / closing mechanism (79) opens / closes the passage (78).
  • the opening / closing mechanism (79) is closed while the operation of the air composition adjusting device (60) is stopped.
  • the opening / closing mechanism (79) is closed while the operation of the air composition adjusting device (60) is stopped.
  • the control unit (55) executes the first operation.
  • the first operation is an operation of closing the opening / closing mechanism (79) in conjunction with the operation stop operation of the air composition adjusting device (60).
  • the sensor casing (90) in the refrigerating device provided with the air composition adjusting device (60), by opening the opening / closing mechanism (79), when the measurement by the sensor (51) is required, the sensor casing (90) The air in the target space can be introduced inside the.
  • control unit (55) executes the second operation.
  • the second operation is an operation of closing the opening / closing mechanism (79) in conjunction with the operation of stopping the operation of the refrigerating device (10).
  • the opening / closing mechanism (79) is opened so that the measurement by the sensor (51) is required inside the sensor casing (90). Air in the target space can be introduced.
  • FIG. 23 is a perspective view of the transport refrigerating apparatus according to the modified example of the fourth embodiment.
  • the same parts as those in the fourth embodiment are designated by the same reference numerals, and only the differences will be described.
  • the sensor casing (90) is arranged outside the refrigerator. Specifically, the sensor casing (90) is arranged on the left side of the electrical component box (17) in the second space (S12) of the storage space (S1) outside the refrigerator.
  • the "left side” means the direction when the surface of the transport refrigerating device (10) exposed to the outside of the transport container (1) is viewed from the front.
  • one end of the air supply pipe (78) is connected to the sensor casing (90).
  • the other end of the air supply pipe (78) opens into the storage space (S2) inside the refrigerator.
  • a membrane filter (54) is attached to the other end of the air supply pipe (78).
  • the air supply pipe (78) constitutes a passage for introducing the air inside the refrigerator into the inside of the sensor casing (90) arranged outside the refrigerator.
  • the air supply on-off valve (79) is connected to the air supply pipe (78).
  • the air supply on-off valve (79) is composed of a solenoid valve that switches between an open state that allows air flow in the air supply pipe (78) and a closed state that blocks air flow in the air supply pipe (78).
  • the opening / closing operation of the air supply on-off valve (79) is controlled by the control unit (55).
  • the embodiment may have the following configuration.
  • the oxygen sensor (51) has been described as a gas sensor for suppressing deterioration due to a corrosive component, but deterioration may occur in a gas sensor other than the oxygen sensor (51). Therefore, in addition to the carbon dioxide sensor (52), other gas sensors such as an ethylene sensor and a refrigerant leak sensor that may be used for a transportation container (1) equipped with an air composition adjusting device are also described above.
  • the contact suppression unit (100) of the embodiment can be provided.
  • the ethylene sensor is a sensor that detects the ethylene concentration in the refrigerator
  • the refrigerant leak sensor is a sensor that detects the refrigerant leak into the refrigerator.
  • the oxygen sensor (51) and the carbon dioxide sensor (52) may be other than the method described in the embodiment.
  • hydrogen sulfide is exemplified as a corrosive component, but the contact suppressing portion (100) of each embodiment can be provided for other corrosive components including calcium, chlorine, phosphorus and the like.
  • sulfate ion is exemplified as a corrosive component, but other corrosive components including sulfur component other than sulfate ion, phosphoric acid, calcium, chlorine, ammonia and the like flow into the inside of the sensor casing (90). May be shut off by the air supply on-off valve (79).
  • one air pump (31) has a first pump mechanism (31a) and a second pump mechanism (31b), but the first pump mechanism (31a) and the second pump mechanism (31b) May consist of two separate air pumps.
  • the transport unit of the embodiment may be configured by using a blower.
  • each suction portion may be composed of three suction cylinders, and a total of six suction cylinders may be used.
  • the adjusting unit (34, 35) of the above embodiment is not limited to the configuration using an adsorbent such as zeolite, and for example, nitrogen is used by using a gas separation membrane in which the permeability of nitrogen and the permeability of oxygen (and carbon dioxide) are different. Concentrated air and oxygen-concentrated air may be generated, and the composition of the air inside the refrigerator may be adjusted by these concentrated air.
  • the CA device (60) according to the present invention can be used for adjusting the composition of air in a warehouse such as a container for marine transportation, a container for land transportation, a simple freezing and refrigerating warehouse, and a warehouse at room temperature.
  • the freezing device may be a device that cools the internal space of a stationary storage (freezing / refrigerating warehouse), not for transportation.
  • the present disclosure is useful for an air composition adjusting device, a transport refrigerating device, and a transport container.
  • Air container 1 Transport container 2 Container body 3 Air circuit 10 Transport refrigeration equipment (refrigeration equipment) 20 Refrigerant circuit 21 Compressor (component) 22 Condensator (component) 23 Expansion valve (component) 24 Evaporator (component) 31 Air pump (conveyor) 34 1st adsorption cylinder (adjustment part) 35 2nd adsorption cylinder (adjustment part) 51 Oxygen sensor (gas sensor) 59 2nd connecting pipe (introduction route) 60 Air composition adjustment device (air composition adjustment unit) 90 Sensor casing 94 Introductory port (introduction path) 94a 1st introduction port 94b 2nd introduction port 100 Contact suppression part 101 Wall member 102 Partition plate 103 Resin cover 103b Inflow port 103c Outlet 105 Adsorbent

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

空気組成調整装置には、空気中の腐食成分がガスセンサ(51)に接触するのを抑制する接触抑制部(100)が設けられる。

Description

空気組成調整装置、冷凍装置、及び輸送用コンテナ
 本開示は、空気組成調整装置、冷凍装置、及び輸送用コンテナに関する。
 従来、輸送用コンテナの庫内空間の酸素濃度や二酸化炭素濃度を調整する空気組成調整装置では、空気の成分を測定するガスセンサが用いられている(例えば、特許文献1参照)。この空気組成調整装置では、ガスセンサで庫内空間の酸素や二酸化炭素の濃度を測定しながら、その濃度が適切な範囲になるように制御される。
特開平08-000168号公報
 しかしながら、ガスセンサは、庫外や庫内から流入する空気中の腐食成分により劣化するおそれがある。腐食成分は、硫黄、リン、カルシウム、塩素、アンモニアなどのように物質を腐食させる成分を含むガスである。
 本開示の目的は、空気の成分を測定するガスセンサの劣化を抑えることである。
 本開示の第1の態様は、
 空気を搬送する搬送部(31)と、
 対象空間の空気の組成を調整する調整部(34,35)と、
 前記搬送部(31)によって空気を前記調整部(34,35)に導入し、組成を調整したガスを対象空間へ供給する空気回路(3)と、
 前記対象空間に配置されて空気の成分を測定するガスセンサ(51)と、
を備えた空気組成調整装置を前提とする。
 この空気組成調整装置は、
 空気中の腐食成分が前記ガスセンサ(51)に接触するのを抑制する接触抑制部(100)を備える
ことを特徴とする。
 第1の態様では、ガスセンサ(51)と空気中の腐食成分との接触が抑制されて、ガスセンサ(51)の劣化が抑えられる。
 本開示の第2の態様は、第1の態様において、
 前記接触抑制部(100)は、前記ガスセンサ(51)の周囲に配置されて前記ガスセンサ(51)へ向かう空気の流れを抑制する壁部材(101)で構成される
ことを特徴とする。
 第2の態様では、ガスセンサ(51)と空気中の腐食成分との接触を壁部材(101)によって抑制できる。
 本開示の第3の態様は、第2の態様において、
 前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
 前記センサケーシング(90)は、その内部へ空気を導入する導入口(94)を備え、
 前記壁部材(101)は、前記導入口(94)と前記ガスセンサ(51)との間に配置される
ことを特徴とする。
 第3の態様では、導入口(94)とガスセンサ(51)との間に配置される壁部材(101)によって、センサボック内へ空気と共に侵入する腐食成分がガスセンサ(51)に触れるのを抑制できる。
 本開示の第4の態様は、第3の態様において、
 前記導入口(94)は、前記ガスセンサ(51)の下方に配置され、
 前記壁部材(101)は、前記ガスセンサ(51)の下方に配置される部分を有する
ことを特徴とする。
 第4の態様では、ガスセンサ(51)の下方に配置される導入口(94)からセンサケーシング(90)内へ腐食成分が空気と共に侵入し、その腐食成分がガスセンサ(51)に到達するのを壁部材(101)によって抑えられる。
 本開示の第5の態様は、第3の態様において、
 前記導入口(94)は、前記対象空間の内部の空気を前記センサケーシング(90)内へ導入する第1導入口(94a)と、前記対象空間の外の空気を前記センサケーシング(90)内へ導入する第2導入口(94b)を含み、
 前記第1導入口(94a)及び第2導入口(94b)の少なくとも一方は、前記ガスセンサ(51)の下方に配置され、
 前記壁部材(101)は、前記ガスセンサ(51)の下方に配置される部分を有する
ことを特徴とする。
 第5の態様では、対象空間の内部の空気または対象空間の外部の空気をセンサケーシング(90)内へ導入するときに、これらの空気に腐食成分が含まれていても、腐食成分が酸素センサと接触するのを抑えられる。
 本開示の第6の態様は、第2から第5の態様の何れか1つにおいて、
 前記壁部材(101)は、六面体の少なくとも一面を開放するように配置される複数の仕切板(102)を含み、
 前記六面体の内部の空間に前記ガスセンサ(51)が配置される
ことを特徴とする。
 第6の態様では、腐食成分がガスセンサ(51)に接触するのを仕切板(102)により抑えながら、六面体の少なくとも一面が開放されているのでガスセンサ(51)でガスの成分を検出することができる。
 本開示の第7の態様は、第1の態様において、
 前記接触抑制部(100)は、空気中の腐食成分を吸着する吸着材(105)を有する
ことを特徴とする。
 第7の態様では、空気中の腐食成分が吸着材(105)に吸着されるので、ガスセンサ(51)に腐食成分が接触するのを抑えられる。
 本開示の第8の態様は、第7の態様において、
 前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
 前記吸着材(105)は、前記センサケーシング(90)の内部に配置される
ことを特徴とする。
 第8の態様では、センサケーシング(90)の内部に侵入した空気の腐食成分を吸着材(105)で吸着することにより、ガスセンサ(51)に腐食成分が接触するのを抑制できる。
 本開示の第9の態様は、第7の態様において、
 前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
 前記センサケーシング(90)には、その内部へ空気を導入する導入路(59)が接続され、
 前記吸着材(105)は、前記導入路(59)に配置される
ことを特徴とする。
 第9の態様では、センサケーシング(90)の内部へ空気を導入する導入路(59)に吸着材(105)を設けることにより、ガスセンサ(51)と腐食成分の接触を抑制できる。
 本開示の第10の態様は、第7の態様において、
 前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
 前記センサケーシング(90)は、その内部へ空気を導入する導入口(94)を有し、
 前記吸着材(105)は前記導入口(94)に配置される
ことを特徴とする。
 第10の態様では、センサケーシング(90)の導入口(94)に吸着材(105)を設けることにより、ガスセンサ(51)と腐食成分の接触を抑制できる。吸着材(105)は、センサケーシング(90)の内部へ空気を導入する導入路(59)と導入口(94)の両方に設けてもよい。そのように構成すると、ガスセンサ(51)と腐食成分の接触をより十分に抑制できる。
 本開示の第11の態様は、第7の態様において、
 前記吸着材(105)は、前記空気回路(3)へ空気が流入する流入部に配置される
ことを特徴とする。
 第11の態様では、空気回路(3)への空気の流入部に吸着材(105)を設けることにより、ガスセンサ(51)と腐食成分の接触を抑制できる。
 本開示の第12の態様は、第1から第11の態様の何れか1つにおいて、
 前記接触抑制部(100)は、硫黄またはリンを含む腐食成分により前記ガスセンサ(51)が腐食するのを抑制する部材で構成される
ことを特徴とする。
 第12の態様では、ガスセンサ(51)と硫黄やリンとの接触を抑えることで、ガスセンサ(51)の劣化を抑制できる。
 本開示の第13の態様は、
 冷凍サイクルを行う冷媒回路(20)の構成要素(21~24)と、対象空間の空気の組成を調整する空気組成調整部(60)とを備え、
 前記冷媒回路(20)の蒸発器(24)で前記対象空間の空気を冷却する冷凍装置であって、
 前記空気組成調整部(60)は、第1から第12の態様の何れか1つの空気組成調整装置で構成される
ことを特徴とする。
 第13の態様では、空気組成調整装置を備えた冷凍装置において、ガスセンサ(51)と腐食成分の接触を抑制し、ガスセンサ(51)の劣化を抑えられる。
 本開示の第14の態様は、
 生鮮物を輸送するコンテナ本体(2)と、前記コンテナ本体(2)の庫内を対象空間として冷却する輸送用冷凍装置(10)とを備える輸送用コンテナであって、
 前記輸送用冷凍装置(10)は、第13の態様の冷凍装置で構成される
ことを特徴とする。
 第14の態様では、空気組成調整装置と輸送用冷凍装置を備えた輸送用コンテナにおいて、ガスセンサ(51)と腐食成分の接触を抑制し、ガスセンサ(51)の劣化を抑えられる。
本開示の第1の態様は、外気とは異なる組成に調整した空気を対象空間に導入する空気組成調整装置であって、空気の組成を調整する調整部(34,35)と、前記対象空間に空気を搬送する搬送部(31)と、前記対象空間における空気中の成分の濃度を測定するセンサ(51)と、前記センサ(51)を収容するセンサケーシング(90)と、前記対象空間の空気を前記センサケーシング(90)の内部に導入する通路(78)と、前記通路(78)を開閉する開閉機構(79)とを備える。
 本開示の第15の態様は、第1から第12の何れか1つの態様において、前記センサ(51)を収容するセンサケーシング(90)と、前記対象空間の空気を前記センサケーシング(90)の内部に導入する通路(78)と、前記通路(78)を開閉する開閉機構(79)とを備える。
 第15の態様では、組成が調整された空気が対象空間に搬送される。対象空間における空気中の成分の濃度がセンサ(51)で測定される。センサ(51)は、センサケーシング(90)に収容される。センサケーシング(90)の内部には、通路(78)を介して、対象空間の空気が導入される。開閉機構(79)は、通路(78)を開閉する。
 開閉機構(79)を開くことで、センサ(51)による測定が必要なときに、センサケーシング(90)の内部に対象空間の空気を導入することができる。これにより、腐食成分が長時間にわたってセンサ(51)に接触しないようにして、センサ(51)の劣化を抑えることができる。
 本開示の第16の態様は、第15の態様において、前記空気組成調整装置(60)の運転停止中に、前記開閉機構(79)が閉状態である。
 第16の態様では、開閉機構(79)は、空気組成調整装置(60)の運転停止中に閉状態となっている。これにより、空気組成調整装置(60)の運転停止中に、センサケーシング(90)の内部に腐食成分が流入するのを抑えることができる。
 本開示の第17の態様は、第15又は16の態様において、前記空気組成調整装置(60)の運転停止動作に連動して、前記開閉機構(79)を閉じる第1動作を実行する制御部(55)を備える。
 第17の態様では、制御部(55)は、第1動作を実行する。第1動作は、空気組成調整装置(60)の運転停止動作に連動して、開閉機構(79)を閉じる動作である。
 このように、第1動作において、開閉機構(79)を閉じることで、空気組成調整装置(60)の運転停止中に、センサケーシング(90)の内部に腐食成分が流入するのを抑えることができる。
 本開示の第18の態様は、第15から第17のいずれか1つに記載の空気組成調整装置(60)を備えた冷凍装置である。
 第18の態様では、空気組成調整装置(60)を備えた冷凍装置において、開閉機構(79)を開くことで、センサ(51)による測定が必要なときに、センサケーシング(90)の内部に対象空間の空気を導入することができる。
 本開示の第19の態様は、第18の態様において、前記冷凍装置(10)の運転停止動作に連動して、前記開閉機構(79)を閉じる第2動作を実行する制御部(55)を備える。
 第19の態様では、制御部(55)は、第2動作を実行する。第2動作は、冷凍装置(10)の運転停止動作に連動して、開閉機構(79)を閉じる動作である。
 このように、第2動作において、開閉機構(79)を閉じることで、冷凍装置(10)の運転停止中に、センサケーシング(90)の内部に腐食成分が流入するのを抑えることができる。
 本開示の第20の態様は、第18又は19の態様の冷凍装置(10)を備えたコンテナである。
 第20の態様では、冷凍装置(10)を備えた輸送用コンテナにおいて、開閉機構(79)を開くことで、センサ(51)による測定が必要なときに、センサケーシング(90)の内部に対象空間の空気を導入することができる。
図1は、本発明の実施形態1に係る輸送用冷凍装置を庫外側から見た斜視図である。 図2は、図1の輸送用冷凍装置の概略構成を示す側面断面図である。 図3は、図1の輸送用冷凍装置の冷媒回路の構成を示す配管系統図である。 図4は、図1の輸送用冷凍装置のCA装置の空気回路を示す配管系統図であり、第1動作における空気の流れを示す。 図5は、図1の輸送用冷凍装置のCA装置の空気回路を示す配管系統図であり、第2動作における空気の流れを示す。 図6は、図1の輸送用冷凍装置のCA装置の空気回路を示す配管系統図であり、外気導入動作における空気の流れを示す。 図7は、図1の輸送用冷凍装置のCA装置の空気回路を示す配管系統図であり、センサ校正動作における空気の流れを示す。 図8は、輸送用冷凍装置のケーシングの背面側斜視図であり、センサユニットの配置を示す。 図9は、センサユニットの斜視図である。 図10は、センサユニットの内部を示す斜視図である。 図11は、センサユニットを背面から観た斜視図である。 図12Aは、変形例3の樹脂カバーを示す斜視図である。 図12Bは、図12Aの樹脂カバーの断面図である。 図13は、実施形態2に係るセンサユニットの内部を示す斜視図である。 図14は、実施形態2の変形例1に係るセンサケーシングのカバーの斜視図である。 図15は、実施形態2の変形例2に係るセンサケーシングの内部を示す斜視図である。 図16は、実施形態2の変形例3に係るCA装置の空気回路の部分拡大図である。 図17は、実施形態2の変形例4に係るCA装置の空気回路の部分拡大図である。 図18は、実施形態3に係るCA装置の空気回路を示す配管系統図である。 図19は、実施形態3に係る輸送用冷凍装置の斜視図である。 図20は、実施形態4に係る空気回路を示す配管系統図であり、第1生成動作における空気の流れを示す。 図21は、第1動作の手順を示すフローチャート図である。 図22は、第2動作の手順を示すフローチャート図である。 図23は、実施形態4の変形例に係る輸送用冷凍装置の斜視図である。 図24は、実施形態4の変形例に係る空気組成調整装置の空気回路を示す配管系統図である。
 《実施形態1》
 以下、本発明の実施形態1を図面に基づいて詳細に説明する。
 〈全体構成〉
 本実施形態は、対象空間の空気の組成を調整する空気組成調整装置(60)を備えた輸送用コンテナ(1)に関する。空気組成調整装置(60)は、ガス供給ユニット(30)とセンサユニット(50)を備える。ガス供給ユニット(30)は、空気を搬送する搬送部(後述のエアポンプ(31))と、空気の組成を調整する調整部(後述の第1,第2吸着筒(34,35))と、搬送部によって空気を調整部に導入し、組成を調整した空気を対象空間へ供給する空気回路(3)とを有する。センサユニット(50)は、対象空間に配置されて空気の成分を測定するセンサ(51,52)を有する。
 〈輸送用コンテナ〉
 輸送用コンテナ(1)は、図1及び図2に示すように、コンテナ本体(2)と輸送用冷凍装置(10)とを備え、海上輸送等に用いられる。輸送用冷凍装置(10)は、コンテナ本体(2)の庫内(対象空間)の空気を冷却する。コンテナ本体(2)の庫内空間(対象空間)には、生鮮物(植物(15))が箱詰めされた状態で収納される。植物(15)は、例えば、バナナやアボカド等の青果物、野菜、穀物、球根、生花等であり、空気中の酸素(O)を取り込んで二酸化炭素(CO)を放出する呼吸を行う。
 コンテナ本体(2)は、一方の端面が開口する細長い直方体の箱状に形成されている。輸送用冷凍装置(10)は、ケーシング(12)と、冷媒回路(20)と、CA装置(空気組成調整装置/Controlled Atmosphere System)(60)とを備える。輸送用冷凍装置(10)のケーシング(12)はコンテナ本体(2)の開口端を塞ぐように取り付けられている。
 〈輸送用冷凍装置〉
 輸送用冷凍装置(10)は、冷凍サイクルを行う冷媒回路(20)を備え、コンテナ本体(2)の庫内空気を冷媒回路(20)の蒸発器(24)で冷却する。
  〈ケーシング〉
 図2に示すように、輸送用冷凍装置(10)のケーシング(12)は、コンテナ本体(2)の庫外側に位置する庫外壁(12a)と、コンテナ本体(2)の庫内側に位置する庫内壁(12b)とを備えている。庫外壁(12a)及び庫内壁(12b)は、例えば、アルミニウム合金によって構成される。
 庫外壁(12a)は、コンテナ本体(2)の開口端を塞ぐようにコンテナ本体(2)の開口の周縁部に取り付けられている。庫外壁(12a)は、下部がコンテナ本体(2)の庫内側へ膨出している。
 庫内壁(12b)は、庫外壁(12a)と対向して配置されている。庫内壁(12b)は、庫外壁(12a)の下部に対応して庫内側へ膨出している。庫内壁(12b)と庫外壁(12a)との間の空間には、断熱材(12c)が設けられる。
 このように、ケーシング(12)の下部は、コンテナ本体(2)の庫内側に向かって膨出している。これにより、ケーシング(12)の下部におけるコンテナ本体(2)の庫外側に庫外収納空間(S1)が形成され、ケーシング(12)の上部におけるコンテナ本体(2)の庫内側に庫内収納空間(S2)が形成されている。
 図1に示すように、ケーシング(12)には、メンテナンス用の2つのサービス用開口(14)が幅方向に並んで形成されている。2つのサービス用開口(14)は、それぞれ開閉自在な第1及び第2サービス扉(16A,16B)によって閉塞されている。第2サービス扉(16B)には、中心軸に対して回転する回転蓋(16C)で開閉可能な換気口(16D)が形成されている。
 図2に示すように、コンテナ本体(2)の庫内には、仕切板(18)が配置される。この仕切板(18)は、略矩形状の板部材で構成され、ケーシング(12)の庫内側の面と対向して配置されている。この仕切板(18)によって、コンテナ本体(2)の庫内の植物(15)が収納される庫内空間(対象空間)と、庫内収納空間(S2)とが区画される。
 仕切板(18)の上端とコンテナ本体(2)内の天井面との間には吸込口(18a)が形成される。コンテナ本体(2)の庫内空気は、吸込口(18a)を通って庫内収納空間(S2)に取り込まれる。
 庫内収納空間(S2)には、水平方向に延びる区画壁(13)が設けられる。区画壁(13)は、仕切板(18)の上端部に取り付けられ、後述の庫内ファン(26)が設置される開口を有する。区画壁(13)は、庫内収納空間(S2)を、庫内ファン(26)の吸込側の1次空間(S21)と、庫内ファン(26)の吹出側の2次空間(S22)とに区画する。本実施形態では、1次空間(S21)が上側に配置され、2次空間(S22)が下側に配置されている。
 コンテナ本体(2)内には、コンテナ本体(2)の底面の上方に、箱詰めされた植物(15)が載置される床板(19)が設けられる。コンテナ本体(2)内の底面と床板(19)との間には、床下流路(19a)が形成される。仕切板(18)の下端とコンテナ本体(2)内の底面との間には隙間が設けられ、庫内収納空間(S2)が床下流路(19a)に連通している。
 床板(19)におけるコンテナ本体(2)の奥側(図2で右側)には、輸送用冷凍装置(10)によって冷却された空気をコンテナ本体(2)の庫内へ吹き出す吹出口(18b)が形成されている。
  〈冷媒回路の構成と機器配置〉
 図3に示すように、冷媒回路(20)は、その構成要素である圧縮機(21)と凝縮器(22)と膨張弁(23)と蒸発器(24)とを、冷媒配管(20a)によって順に接続することによって構成された閉回路である。
 凝縮器(22)の近傍には、庫外ファン(25)が設けられる。庫外ファン(25)は、庫外ファンモータ(25a)によって回転駆動され、コンテナ本体(2)の庫外空間の空気(外気)を凝縮器(22)へ送る。凝縮器(22)では、圧縮機(21)で加圧されて凝縮器(22)の内部を流れる冷媒と、庫外ファン(25)によって凝縮器(22)に送られた外気との間で熱交換が行われる。
 蒸発器(24)の近傍には、庫内ファン(26)が2つ設けられる。庫内ファン(26)は、庫内ファンモータ(26a)によって回転駆動され、コンテナ本体(2)の庫内空気を吸込口(18a)から吸引して蒸発器(24)へ吹き出す。蒸発器(24)では、膨張弁(23)で減圧されて蒸発器(24)の内部を流れる冷媒と、庫内ファン(26)によって蒸発器(24)に送られた庫内空気との間で熱交換が行われる。
 図1に示すように、圧縮機(21)及び凝縮器(22)は、庫外収納空間(S1)に収納される。凝縮器(22)は、庫外収納空間(S1)の上下方向の中央部分に配置され、庫外収納空間(S1)を下側の第1空間(S11)と上側の第2空間(S12)とに区画する。第1空間(S11)には、圧縮機(21)と、圧縮機(21)を可変速で駆動する駆動回路が収納されたインバータボックス(29)と、CA装置(60)のガス供給ユニット(30)とが設けられる。第2空間(S12)には、庫外ファン(25)と電装品ボックス(17)とが設けられる。
 図2に示すように、蒸発器(24)は、庫内収納空間(S2)の2次空間(S22)に収納されている。庫内収納空間(S2)の蒸発器(24)の上方には、上述の2つの庫内ファン(26)がケーシング(12)の幅方向に並んで配置される(図1参照)。
 〈空気組成調整装置〉
  図4~図7に示すように、コンテナ本体(2)に設けられているCA装置(60)は、ガス供給ユニット(30)と、排気部(46)と、センサユニット(50)と、制御部(55)とを備え、コンテナ本体(2)の庫内空気の酸素濃度と二酸化炭素濃度とを調整する。なお、以下の説明で用いる「濃度」は、全て「体積濃度」を指す。
  〈ガス供給ユニット〉
 ガス供給ユニット(30)は、コンテナ本体(2)の庫内に供給するための成分調整された空気を生成するユニットである。本実施形態においては、コンテナ本体(2)の庫内に供給するための低酸素濃度の窒素濃縮空気を生成する装置である。本実施形態では、ガス供給ユニット(30)は、VPSA(Vacuum Pressure Swing Adsorption)によって構成されている。ガス供給ユニット(30)は、図1に示すように、庫外収納空間(S1)の左下のコーナー部に配置される。
 図4に示すように、ガス供給ユニット(30)は、エアポンプ(31)と、第1方向制御弁(32)及び第2方向制御弁(33)と、空気中の窒素成分を吸着するための吸着剤が内部に設けられた第1吸着筒(34)及び第2吸着筒(35)とが接続された空気回路(3)を有する。空気回路(3)の構成部品はユニットケース(36)に収容されている。
   (エアポンプ)
 エアポンプ(31)は、空気を吸引して加圧して吐出する第1ポンプ機構(加圧ポンプ機構)(31a)及び第2ポンプ機構(減圧ポンプ機構)(31b)を有する。第1ポンプ機構(31a)及び第2ポンプ機構(31b)はモータ(31c)の駆動軸に接続されている。
   (空気回路)
 エアポンプ(31)等の構成部品が接続される空気回路(3)は、外気通路(41)、加圧通路(42)、減圧通路(43)、及び供給通路(44)を含む。
 第1ポンプ機構(31a)の吸込口には、ユニットケース(36)を内外に貫通する外気通路(41)の一端が接続される。外気通路(41)の他端には、通気性と防水性を有するメンブレンフィルタ(37)が設けられる。図示していないが、メンブレンフィルタ(37)が設けられる外気通路(41)の他端は、庫外収納空間(S1)の凝縮器(22)の上方の第2空間(S12)に配置される。
 第1ポンプ機構(31a)の吐出口には加圧通路(42)の一端が接続される。加圧通路(42)の他端は2つに分岐して、第1方向制御弁(32)及び第2方向制御弁(33)に接続される。
 第2ポンプ機構(31b)の吸込口には、減圧通路(43)の一端が接続される。減圧通路(43)の他端は2つに分岐して、第1方向制御弁(32)及び第2方向制御弁(33)に接続される。第2ポンプ機構(31b)の吐出口には、供給通路(44)の一端が接続される。供給通路(44)の他端は、コンテナ本体(2)の庫内収納空間(S2)において、庫内ファン(26)の吹出側の2次空間(S22)に開口する。供給通路(44)の他端部には、庫内収納空間(S2)へ向かう空気の流通を許容し、空気の逆流を防止する逆止弁(65)が設けられる。
 エアポンプ(31)の側方には、エアポンプ(31)に向かって送風することでエアポンプ(31)を冷却する送風ファン(49)が2つ設けられている。
 加圧ポンプ機構である第1ポンプ機構(31a)は、一方の吸着筒(34,35)に加圧した空気を供給することによって、その吸着筒(34,35)において加圧空気中の窒素成分を吸着剤に吸着する吸着動作を行う。減圧ポンプ機構である第2ポンプ機構(31b)は、他方の吸着筒(35,34)内から空気を吸引することによって、その吸着筒(35,34)の吸着剤に吸着している窒素成分を脱着する脱着動作(窒素濃縮空気を生成する動作)を行う。
 供給通路(44)は、吸着筒(34,35)において吸着動作と脱着動作とを交互に行って、脱着動作で生成した窒素濃縮空気をコンテナ本体(2)の庫内に供給する通路である。
 加圧通路(42)の加圧ポンプ機構(31a)の出口部(加圧ポンプ機構(31a)と方向制御弁(32,33)との間)と、供給通路(44)の減圧ポンプ機構(31b)の出口部は、バイパス通路(47)で接続されている。バイパス通路(47)には、制御部(55)によって開閉制御されるバイパス開閉弁(48)が設けられている。
 外気通路(41)と、加圧通路(42)の一部と、バイパス開閉弁(48)を有するバイパス通路(47)と、供給通路(44)の一部とにより、外気導入通路(40)が構成されている。外気導入通路(40)は、加圧ポンプ機構(31a)を通過した加圧空気(外気と組成の等しい空気)を庫内へ供給する。外気導入通路(40)には、ユニットケース(36)の外部の空間を通る冷却部(40a)が設けられる。
   (方向制御弁)
 第1方向制御弁(32)及び第2方向制御弁(33)は空気回路(3)に設けられ、エアポンプ(31)と第1,第2吸着筒(34,35)との間に配置される。第1方向制御弁(32)及び第2方向制御弁(33)は、エアポンプ(31)と第1,第2吸着筒(34,35)との接続状態を、後述する2つの接続状態(第1,第2の接続状態)に切り換える。この切り換え動作は、制御部(55)によって制御される。
 第1方向制御弁(32)は、第1ポンプ機構(31a)の吐出口に接続された加圧通路(42)と、第2ポンプ機構(31b)の吸込口に接続された減圧通路(43)と、第1吸着筒(34)の一端部(加圧時の流入口)とに接続される。第1方向制御弁(32)は、第1吸着筒(34)を第1ポンプ機構(31a)の吐出口に連通させて第2ポンプ機構(31b)の吸込口から遮断する第1状態(図4に示す状態)と、第1吸着筒(34)を第2ポンプ機構(31b)の吸込口に連通させて第1ポンプ機構(31a)の吐出口から遮断する第2状態(図5に示す状態)とに切り換わる。
 第2方向制御弁(33)は、第1ポンプ機構(31a)の吐出口に接続された加圧通路(42)と、第2ポンプ機構(31b)の吸込口に接続された減圧通路(43)と、第2吸着筒(35)の一端部とに接続される。第2方向制御弁(33)は、第2吸着筒(35)を第2ポンプ機構(31b)の吸込口に連通させて第1ポンプ機構(31a)の吐出口から遮断する第1状態(図4に示す状態)と、第2吸着筒(35)を第1ポンプ機構(31a)の吐出口に連通させて第2ポンプ機構(31b)の吸込口から遮断する第2状態(図5に示す状態)とに切り換わる。
 第1方向制御弁(32)及び第2方向制御弁(33)を共に第1状態に設定すると、空気回路(3)が、第1の接続状態に切り換わる(図4を参照)。第1の接続状態では、第1ポンプ機構(31a)の吐出口と第1吸着筒(34)とが接続され、第2ポンプ機構(31b)の吸込口と第2吸着筒(35)とが接続される。この状態では、第1吸着筒(34)では外気中の窒素成分を吸着剤に吸着させる吸着動作が行われ、第2吸着筒(35)では吸着剤に吸着された窒素成分を脱着させる脱着動作が行われる。
 第1方向制御弁(32)及び第2方向制御弁(33)を共に第2状態に設定すると、空気回路(3)が、第2の接続状態に切り換わる(図5を参照)。第2の接続状態では、第1ポンプ機構(31a)の吐出口と第2吸着筒(35)とが接続され、第2ポンプ機構(31b)の吸込口と第1吸着筒(34)とが接続される。この状態では、第2吸着筒(35)で吸着動作が行われ、第1吸着筒(34)で脱着動作が行われる。
   (吸着筒)
 第1吸着筒(34)及び第2吸着筒(35)は、内部に吸着剤が充填された円筒部材で構成されている。第1吸着筒(34)及び第2吸着筒(35)に充填された吸着剤は、加圧下では窒素成分を吸着し、減圧下では、吸着した窒素成分を脱着させる性質を有する。
 第1吸着筒(34)及び第2吸着筒(35)に充填された吸着剤は、例えば、窒素分子の分子径(3.0オングストローム)よりも小さく且つ酸素分子の分子径(2.8オングストローム)よりも大きな孔径の細孔を有する多孔体のゼオライトである。このような孔径のゼオライトを吸着剤に用いると、空気中の窒素成分を吸着することができる。
 第1吸着筒(34)及び第2吸着筒(35)では、エアポンプ(31)から加圧された外気が供給されて内部が加圧されると、吸着剤に該外気中の窒素成分が吸着する。その結果、外気よりも窒素成分が少なくなることで外気よりも窒素濃度が低く酸素濃度が高い酸素濃縮空気が生成される。一方、第1吸着筒(34)及び第2吸着筒(35)では、エアポンプ(31)によって内部の空気が吸引されて減圧されると、吸着剤に吸着されていた窒素成分が脱着する。その結果、外気よりも窒素成分を多く含むことで外気よりも窒素濃度が高く酸素濃度が低い窒素濃縮空気が生成される。本実施形態では、例えば、窒素濃度92%、酸素濃度8%の成分比率の窒素濃縮空気が生成される。
 第1吸着筒(34)及び第2吸着筒(35)の他端部(加圧時の流出口)には、加圧された外気から生成された酸素濃縮空気をコンテナ本体(2)の庫外へ導くための酸素排出通路(45)の一端が接続される。酸素排出通路(45)の一端は、2つに分岐し、第1吸着筒(34)及び第2吸着筒(35)の他端部のそれぞれに接続される。酸素排出通路(45)の他端は、ガス供給ユニット(30)の外部、即ち、コンテナ本体(2)の庫外で開口する。酸素排出通路(45)が第1吸着筒(34)に接続された部分及び第2吸着筒(35)に接続された分岐部分には、酸素排出通路(45)から第1吸着筒(34)及び第2吸着筒(35)への空気の逆流を防止するための逆止弁(61)がそれぞれ設けられる。
 酸素排出通路(45)の途中には、逆止弁(62)とオリフィス(63)とが一端から他端に向かって順に設けられる。逆止弁(62)は、後述する排気用接続通路(71)からの窒素濃縮空気の第1吸着筒(34)及び第2吸着筒(35)側への逆流を防止する。オリフィス(63)は、第1吸着筒(34)及び第2吸着筒(35)から流出した酸素濃縮空気を庫外への排出前に減圧する。
 吸着筒(34,35)から酸素濃縮空気を庫外へ排出する通路である酸素排出通路(45)には、圧力センサ(66)が設けられる。圧力センサ(66)は、第1吸着筒(34)及び第2吸着筒(35)の合流点(P0)と逆止弁(62)との間に配置される。
 排気用接続通路(71)は、減圧ポンプ機構(31b)の吐出口を圧力センサ(66)の下流側で酸素排出通路(45)に接続する通路である。前記逆止弁(62)は、圧力センサ(66)と酸素排出通路(45)とが接続された第1接続点(P1)と、酸素排出通路(45)と排気用接続通路(71)とが接続された第2接続点(P2)との間に設けられる。逆止弁(62)は、第1接続点(P1)から第2接続点(P2)への空気の流れを許容し、逆方向への空気の流れを禁止する。
   (給排切換機構)
 空気回路(3)には、ガス供給動作とガス排出動作とを切り換える給排切換機構(70)が設けられる。ガス供給動作は、窒素濃縮空気を第1吸着筒(34)及び第2吸着筒(35)からコンテナ本体(2)の庫内に供給する動作である。ガス排出動作は、窒素濃縮空気を第1吸着筒(34)及び第2吸着筒(35)から庫外へ排出する動作である。給排切換機構(70)は、排気用接続通路(71)と、排気用開閉弁(72)と、供給用開閉弁(73)とを有する。
 排気用接続通路(71)は、一端が供給通路(44)に接続され、他端が酸素排出通路(45)に接続される。排気用接続通路(71)の他端は、酸素排出通路(45)にオリフィス(63)よりも庫外側で接続される。
 排気用開閉弁(72)は、排気用接続通路(71)に設けられる。排気用開閉弁(72)は、排気用接続通路(71)の中途部に配置された電磁弁で構成される。排気用開閉弁(72)は、供給通路(44)から流入した窒素濃縮空気の流通を許容する開状態と、窒素濃縮空気の流通を遮断する閉状態とに切り換わる。排気用開閉弁(72)の開閉動作は、制御部(55)によって制御される。
 供給用開閉弁(73)は供給通路(44)に設けられ、供給通路(44)と排気用接続通路(71)の接続部よりも庫内側に配置される。供給用開閉弁(73)は、庫内側への空気の流通を許容する開状態と、庫内側への空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。供給用開閉弁(73)の開閉動作は、制御部(55)によって制御される。
  〈排気部〉
 図2,図4に示すように、排気部(46)は、庫内収納空間(S2)と庫外空間とを繋ぐ排気通路(46a)と、排気通路(46a)に接続された排気弁(46b)と、排気通路(46a)の流入端部(庫内側端部)に設けられたメンブレンフィルタ(46c)とを有する。排気通路(46a)は、ケーシング(12)を内外に貫通している。排気弁(46b)は、排気通路(46a)の庫内側に設けられる。排気弁(46b)は、排気通路(46a)における空気の流通を許容する開状態と、排気通路(46a)における空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。排気弁(46b)の開閉動作は、制御部(55)によって制御される。
 庫内ファン(26)の回転中に制御部(55)によって排気弁(46b)を開くと、庫内空間に繋がる庫内収納空間(S2)の空気(庫内空気)が庫外へ排出される排気動作が行われる。
 具体的には、庫内ファン(26)が回転すると、吹出側の2次空間(S22)の圧力が、庫外空間の圧力(大気圧)よりも高くなる。これにより、排気弁(46b)が開状態であるときには、排気通路(46a)の両端部の間で生じる圧力差(庫外空間と2次空間(S22)との間の圧力差)により、庫内空間に繋がる庫内収納空間(S2)の空気(庫内空気)が排気通路(46a)を通って庫外空間へ排出される。
  〈センサユニットの回路構成〉
 図2,図4に示すように、センサユニット(50)は、庫内収納空間(S2)における庫内ファン(26)の吹出側の2次空間(S22)に設けられる。センサユニット(50)は、酸素センサ(51)と、二酸化炭素センサ(52)と、メンブレンフィルタ(54)と、排気管(57)とを有する。酸素センサ(51)と二酸化炭素センサ(52)はセンサケーシング(90)に収容される。センサケーシング(90)は、その内部へ空気を導入する後述の導入口(94)を備え、図4のメンブレンフィルタ(54)は導入口(94)に装着される。
 酸素センサ(51)は、ジルコニア式センサで構成される。二酸化炭素センサ(52)は、非分散型赤外線方式(NDIR:non dispersive infrared)のセンサで構成される。排気管(57)の一端はセンサケーシング(90)に連結され、排気管(57)の他端は庫内ファン(26)の吸込口の近傍で開口する。
 庫内収納空間(S2)の2次空間(S22)と1次空間(S21)とは、メンブレンフィルタ(54)、酸素センサ(51)、二酸化炭素センサ(52)、及び排気管(57)によって形成される連通路(58)を介して連通している。庫内ファン(26)の運転中には、1次空間(S21)の圧力が2次空間(S22)の圧力よりも低くなるので、この圧力差により、酸素センサ(51)と二酸化炭素センサ(52)とを含む連通路(58)において2次空間(S22)側から1次空間(S21)側へ庫内空気が流れる。庫内ファン(26)の運転中は、このようにして庫内空気が酸素センサ(51)と二酸化炭素センサ(52)とを通過し、酸素センサ(51)において庫内空気の酸素濃度が測定され、二酸化炭素センサ(52)において庫内空気の二酸化炭素濃度が測定される。
 空気回路(3)には、第1,第2吸着筒(34,35)で生成した窒素濃縮空気の濃度を酸素センサ(本開示のガスセンサ)(51)で測定する後述の給気測定動作を行うためのセンサ回路(80)が設けられている。センサ回路(80)は、分岐管(81)と分岐開閉弁(ガス濃度測定用開閉弁)(82)とを備え、供給通路(44)を流れる空気の一部を分岐させて酸素センサ(51)及び二酸化炭素センサ(52)に導く。
 分岐管(81)は、一端が供給通路(44)に接続され、他端がセンサケーシング(90)に連結される。分岐管(81)は、ユニットケース(36)内において供給通路(44)から分岐して庫内空間に連通している。分岐管(81)の他端部(庫内部分)には、一端から他端へ向かう空気の流れを許容し、空気の逆流を防止する逆止弁(64)が設けられている。
 分岐開閉弁(82)は、ユニットケース(36)の内部に設けられている。分岐開閉弁(82)は、分岐管(81)の空気の流通を許容する開状態と、分岐管(81)の空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。分岐開閉弁(82)の開閉動作は、制御部(55)によって制御される。
 庫内ファン(26)の運転停止中に給気測定動作を行うとき、ガス供給ユニット(30)で生成された窒素濃縮空気が、分岐管(81)を介して酸素センサ(51)に導かれ、酸素センサ(51)において窒素濃縮空気の酸素濃度が測定される。
 空気組成調整装置では、センサの測定値が実際の値からずれると、濃度の調整が不安定になるため、所定のタイミングでガスセンサ(51)に外気を導入して校正(測定値の補正)が行われる。酸素センサ(51)の校正中には、後述するようにエアポンプ(31)で加圧された外気が第1,第2吸着筒(34,35)をバイパスして分岐管(81)を通り、酸素センサ(51)に導入される。
 酸素センサ(51)に外気を導入するため、空気回路(3)は、エアポンプ(31)により外気を第1,第2吸着筒(34,35)に導入する第1通路(75)(外気通路(41)及び加圧通路(42))と、エアポンプ(31)と第1,第2吸着筒(34,35)の間で第1通路(41,42)から分岐して酸素センサ(51)に連通する第2通路(76)(バイパス通路(47)及び分岐管(81))を有する。
 第2通路(76)には、酸素センサ(51)に導入される空気の水分を除去するために気液分離器(85)が設けられている。気液分離器(85)には、空気から分離された水分を排出するドレン管(77)が接続される。
 次に、センサケーシング(90)の配置と構造について説明する。
  〈センサユニットの配置と構造〉
 図8は、輸送用冷凍装置(10)のケーシング(12)の背面側斜視図であり、センサケーシング(90)の配置を示す。図9はセンサケーシング(90)の拡大斜視図、図10はセンサケーシング(90)の内部を示す斜視図、図11はセンサケーシング(90)を背面から観た斜視図である。
 前述したように、酸素センサ(51)と二酸化炭素センサ(52)はセンサケーシング(90)内に収容されている。気液分離器(85)はセンサケーシング(90)に固定される。図9に示すように、気液分離器(85)は筒状の容器(86)を有する。気液分離器(85)の容器(86)には、空気が流入する流入口(86a)と、水分(の一部)が除去された空気が流出する流出口(86b)と、空気から分離された水分を排出する排水口(図示せず)とが形成される。
 図8において、センサケーシング(90)に固定された気液分離器(85)が有する流入口(86a)には、第2通路(76)の一部である分岐管(81)が接続される。気液分離器(85)に接続されたドレン管(77)は、輸送用冷凍装置(10)で発生するドレン水を受けるためにケーシング(12)に設けられたドレンパン(28)に水分を排出するように、気液分離器(85)から下方へ延びている。センサケーシング(90)に接続された排気管(57)は、庫内ファン(26)の吸込口側で開口している。
 センサケーシング(90)はセンサケーシング本体(91)とカバー(92)とを有する。気液分離器(85)はブラケット(87)を用いてセンサケーシング(90)のカバー(92)に固定されている。センサケーシング(90)はブラケット(93)により輸送用冷凍装置(10)のケーシング(12)に固定される。本実施形態では、センサケーシング(90)は庫内収納空間(S2)に位置する。
 センサケーシング(90)の内部には、図10に示すように、壁部材(101)が配置される。壁部材(101)は、複数の仕切板(102)で形成された中空箱状の部材である。壁部材(101)は、六面体の少なくとも一面(この実施形態では図10の左側面)を開放するように配置された複数の仕切板(102)で構成されている。センサケーシング(90)の内部に配置された酸素センサ(51)は、壁部材(101)の内側の空間に位置し、仕切板(102)により図の左側以外の面が覆われている。
 壁部材(101)は、酸素センサ(51)の周囲に配置された仕切板(102)により、酸素センサ(51)へ向かう空気の流れを抑制する。このことにより、壁部材(101)は、酸素センサ(51)に導入される空気に例えば硫黄を含む腐食成分が含まれている場合に、その腐食成分が酸素センサ(51)に接触するのを抑制する接触抑制部(100)として機能する。腐食成分は、積荷である植物を箱詰めした庫内のダンボールやそれらを載せた木材パレットから発生する場合や、外気に含まれる場合が考えられる。
 センサケーシング(90)は、その内部へ空気を導入する導入口(94)と、外部へ空気が流出する導出口(95)を備える。導入口(94)は、第1導入口(94a)と第2導入口(94b)を含む。第1導入口(94a)は、庫内空間の外部の空気をセンサケーシング(90)内へ導入する開口である。第2導入口(94b)は、庫内空間の内部の空気をセンサケーシング(90)内へ導入する開口である。
 第1導入口(94a)は図9,図10に示すようにセンサケーシング(90)の側面に設けられ、分岐管(81)(第2通路(76))が接続される。第2導入口(94b)は、図11に示すようにセンサケーシング(90)の背面に設けられ、庫内空間に開放されている。第1導入口(94a)及び第2導入口(94b)には、それぞれ、水分を通さずに空気を通すメンブレンフィルタ(54)が装着される。メンブレンフィルタ(54)は、六角形状の締結部材の通気孔に設けられる。導出口(95)には排気管(57)が接続される。
 第1導入口(94a)及び第2導入口(94b)は、いずれも酸素センサ(51)の下方に配置されている。壁部材(101)は、酸素センサ(51)の下方に配置される仕切板(102)が、酸素センサ(51)と第1導入口(94a)及び第2導入口(94b)との間に位置するように構成される。
 気液分離器(86)の流出口(86b)と第1導入口(94a)とは連絡管(59)で接続される。連絡管(59)は、エアポンプ(31)から空気をセンサケーシング(90)内に供給する第1導入路(59a)を構成する。センサケーシング(90)内へ庫内空気を導入する第2導入口(94b)は第2導入路(59b)を構成する。
  〈制御部〉
 制御部(55)は、コンテナ本体(2)の庫内空気の酸素濃度及び二酸化炭素濃度を所望の濃度にする濃度調整運転の制御を実行する。具体的には、制御部(55)は、酸素センサ(51)及び二酸化炭素センサ(52)の測定結果に基づいて、コンテナ本体(2)の庫内空気の組成(酸素濃度及び二酸化炭素濃度)が所望の組成(例えば、酸素濃度5%、二酸化炭素濃度5%)になるように、ガス供給ユニット(30)、排気部(46)及びセンサユニット(50)の動作を制御する。
 制御部(55)は、例えば、CA装置(60)の各要素を制御するマイクロコンピュータと、実施可能な制御プログラムが記憶されたメモリやディスク等の記憶媒体とを含む。制御部(55)の詳細な構造やアルゴリズムは、どのようなハードウェアとソフトウェアとの組み合わせであってもよい。
 -運転動作-
 〈冷媒回路の運転動作〉
 本実施形態では、図3に示すユニット制御部(150)によって、コンテナ本体(2)の庫内空気を冷却する冷却運転が実行される。
 冷却運転では、ユニット制御部(150)により、圧縮機(21)、膨張弁(23)、庫外ファン(25)及び庫内ファン(26)の動作が、図示しない温度センサの測定結果に基づいて庫内空気の温度が所望の目標温度になるように制御される。冷媒回路(20)では、冷媒が循環して蒸気圧縮式冷凍サイクルが行われる。庫内ファン(26)によって庫内収納空間(S2)へ導かれたコンテナ本体(2)の庫内空気は、蒸発器(24)を通過する際に該蒸発器(24)の内部を流れる冷媒によって冷却される。蒸発器(24)で冷却された庫内空気は、床下流路(19a)を通って吹出口(18b)から再びコンテナ本体(2)の庫内へ吹き出される。これにより、コンテナ本体(2)の庫内空気が冷却される。
 〈ガス供給ユニットの動作〉
  (ガス生成動作)
 ガス供給ユニット(30)では、第1吸着筒(34)が加圧されると同時に第2吸着筒(35)が減圧される第1動作(図4を参照)と、第1吸着筒(34)が減圧されると同時に第2吸着筒(35)が加圧される第2動作(図5を参照)とが、所定の時間で交互に繰り返され、窒素濃縮空気と酸素濃縮空気とが生成される。各動作の切り換えは、制御部(55)が第1方向制御弁(32)及び第2方向制御弁(33)を操作することによって行われる。
   《第1動作》
 第1動作では、制御部(55)によって、第1方向制御弁(32)及び第2方向制御弁(33)が共に、図4に示す第1状態に切り換えられる。これにより、空気回路(3)は、第1吸着筒(34)が第1ポンプ機構(31a)の吐出口に連通して第2ポンプ機構(31b)の吸込口から遮断され、且つ第2吸着筒(35)が第2ポンプ機構(31b)の吸込口に連通して第1ポンプ機構(31a)の吐出口から遮断された第1接続状態となる。この第1接続状態では、第1ポンプ機構(31a)によって加圧された外気が第1吸着筒(34)に供給される一方、第2ポンプ機構(31b)が、第2吸着筒(35)から窒素濃度が外気よりも高く酸素濃度が外気よりも低い窒素濃縮空気を吸引する。
 具体的には、第1ポンプ機構(31a)は、外気通路(41)を介して外気を吸い込んで加圧し、加圧した外気(加圧空気)を加圧通路(42)に吐出する。加圧通路(42)に吐出された加圧空気は、加圧通路(42)を流れる。そして、加圧空気が加圧通路(42)を介して第1吸着筒(34)へ供給される。
 このようにして、第1吸着筒(34)には、加圧空気が流入し、該加圧空気に含まれる窒素成分が吸着剤に吸着される。第1動作中に、第1吸着筒(34)では、第1ポンプ機構(31a)から加圧された外気が供給されて該外気中の窒素成分が吸着剤に吸着されることにより、窒素濃度が外気よりも低く酸素濃度が外気よりも高い酸素濃縮空気が生成される。酸素濃縮空気は、第1吸着筒(34)から酸素排出通路(45)に流出する。
 第2ポンプ機構(31b)は、第2吸着筒(35)から空気を吸引する。その際、第2吸着筒(35)の吸着剤に吸着された窒素成分が、空気と共に第2ポンプ機構(31b)に吸引されて吸着剤から脱着する。このように、第1動作中に、第2吸着筒(35)では、第2ポンプ機構(31b)によって内部の空気が吸引されて、吸着剤に吸着された窒素成分が脱着する。このことにより、吸着剤から脱着した窒素成分を含み、窒素濃度が外気よりも高く酸素濃度が外気よりも低い窒素濃縮空気が生成される。窒素濃縮空気は、第2ポンプ機構(31b)に吸い込まれ、加圧された後、供給通路(44)に吐出される。
   《第2動作》
 第2動作では、制御部(55)によって、第1方向制御弁(32)及び第2方向制御弁(33)が共に、図5に示す第2状態に切り換えられる。これにより、空気回路(3)は、第1吸着筒(34)が第2ポンプ機構(31b)の吸込口に連通して第1ポンプ機構(31a)の吐出口から遮断され、且つ第2吸着筒(35)が第1ポンプ機構(31a)の吐出口に連通して第2ポンプ機構(31b)の吸込口から遮断された第2接続状態となる。この第2接続状態では、第1ポンプ機構(31a)によって加圧された外気が第2吸着筒(35)に供給される一方、第2ポンプ機構(31b)が、第1吸着筒(34)から窒素濃縮空気を吸引する。
 具体的には、第1ポンプ機構(31a)は、外気通路(41)を介して外気を吸い込んで加圧し、加圧した外気(加圧空気)を加圧通路(42)に吐出する。加圧通路(42)に吐出された加圧空気は、加圧通路(42)を流れる。そして、加圧空気が加圧通路(42)を介して第2吸着筒(35)へ供給される。
 このようにして、第2吸着筒(35)には、加圧空気が流入し、該加圧空気に含まれる窒素成分が吸着剤に吸着される。第2動作中に、第2吸着筒(35)では、第1ポンプ機構(31a)から加圧された外気が供給されて該外気中の窒素成分が吸着剤に吸着されることにより、窒素濃度が外気よりも低く酸素濃度が外気よりも高い酸素濃縮空気が生成される。酸素濃縮空気は、第2吸着筒(35)から酸素排出通路(45)に流出する。
 第2ポンプ機構(31b)は、第1吸着筒(34)から空気を吸引する。その際、第1吸着筒(34)の吸着剤に吸着された窒素成分が、空気と共に第2ポンプ機構(31b)に吸引されて吸着剤から脱着する。このように、第2動作中に、第1吸着筒(34)では、第2ポンプ機構(31b)によって内部の空気が吸引されて、吸着剤に吸着された窒素成分が脱着する。このことにより、吸着剤から脱着した窒素成分を含み、窒素濃度が外気よりも高く酸素濃度が外気よりも低い窒素濃縮空気が生成される。窒素濃縮空気は、第2ポンプ機構(31b)に吸い込まれ、加圧された後、供給通路(44)に吐出される。
  (ガス供給動作/ガス排出動作)
 ガス供給ユニット(30)では、給排切換機構(70)によって、空気回路(3)において生成した窒素濃縮空気をコンテナ本体(2)の庫内に供給するガス供給動作と、脱着動作の開始時点から所定時間の間、生成した窒素濃縮空気をコンテナ本体(2)の庫内へ供給せずに排気するガス排出動作とが切り換えられる。
 図4,図5に示すように、ガス供給動作では、制御部(55)によって、排気用開閉弁(72)が閉状態に制御され、供給用開閉弁(73)が開状態に制御される。これにより、第1吸着筒(34)及び第2吸着筒(35)において交互に生成された窒素濃縮空気が供給通路(44)を通ってコンテナ本体(2)の庫内へ供給され、酸素濃縮空気は酸素排出通路(45)を通って庫外へ排出される。
 図示を省略するが、ガス排出動作では、制御部(55)によって、排気用開閉弁(72)が開状態に制御され、供給用開閉弁(73)が閉状態に制御される。これにより、第1吸着筒(34)及び第2吸着筒(35)において交互に生成されて供給通路(44)に吐出された窒素濃縮空気は、排気用接続通路(71)から酸素排出通路(45)に流入し、酸素排出通路(45)を流れる酸素濃縮空気と共に庫外へ排出される。
  (外気導入動作)
 本実施形態では、外気をコンテナ本体(2)の庫内へ導入する外気導入動作も可能である。図6に示す外気導入動作では、第1方向制御弁(32)が第1状態に設定され、第2方向制御弁(33)が第2状態に設定され、バイパス開閉弁(48)が開かれる。給気用開閉弁(73)は開かれ、分岐開閉弁(82)は閉じられる。この状態でエアポンプ(31)を起動すると、外気が、外気通路(41)と加圧通路(42)の一部とバイパス通路(47)と供給通路(44)の一部とにより構成された、太い実線で示した外気導入通路(40)を流れる。外気導入通路(40)の通路抵抗が、方向切換弁(32,33)及び吸着筒(34,35)を通る流路の通路抵抗よりも小さいためである。そして、外気導入通路(40)を流れる外気と組成の同じ空気がコンテナ本体(2)の庫内へ押し込まれる。
 〈CA装置の濃度調整運転〉
 本実施形態では、CA装置(60)は、制御部(55)によって、コンテナ本体(2)の庫内空気の組成(酸素濃度及び二酸化炭素濃度)を所望の組成(例えば、酸素濃度5%、二酸化炭素濃度5%)に調整する濃度調整運転を行う。濃度調整運転では、酸素センサ(51)及び二酸化炭素センサ(52)の測定結果に基づいて、コンテナ本体(2)の庫内空気の組成が所望の組成となるように、ガス供給ユニット(30)及び排気部(46)の動作が制御される。
 濃度調整運転中は、制御部(55)は、分岐開閉弁(82)を閉状態に制御する。また、濃度調整運転中、制御部(55)は、ユニット制御部(150)と通信し、該ユニット制御部(150)によって庫内ファン(26)を回転させる。これにより、酸素センサ(51)及び二酸化炭素センサ(52)には、庫内ファン(26)によって庫内空気が供給され、庫内空気の酸素濃度と二酸化炭素濃度とが測定される。
 濃度調整運転中、第1動作及び第2動作を交互に繰り返してガス供給動作を行い、庫内の酸素濃度を調整する。このとき、排気部(46)の排気弁(46b)を開状態に制御して、ガス供給動作によって窒素濃縮空気をコンテナ本体(2)の庫内に供給した分だけ庫内空気を庫外へ排出する。庫内空気の酸素濃度が所定値(例えば8%ま)で低下すると、制御部(55)は、ガス供給ユニット(30)の運転を停止してガス供給動作を停止すると共に、排気弁(46b)を閉じて排気動作を停止する。コンテナ本体(2)の庫内では、植物(15)が呼吸を行うため、コンテナ本体(2)の庫内空気の酸素濃度が減少し、やがて目標酸素濃度の5%に至る。
 庫内空気の酸素濃度を上昇させる運転は、バイパス開閉弁(48)を開いて、エアポンプ(31)に吸引した外気を、第1及び第2吸着筒(34,35)をバイパスさせてコンテナ本体(2)の庫内に供給する外気導入動作で行うことができる。このとき、外気は冷却部(40a)を通るので、庫内空気の温度上昇が抑えられる。
 また、詳細は省略するが、庫内空気の酸素濃度(及び二酸化炭素濃度)の調整は、ガス供給動作、ガス排出動作、及び外気導入動作を適宜切り換えて行うこともできる。
  (給気測定動作)
 本実施形態では、ユーザからの指令により又は定期的(例えば、10日毎)に、ガス供給ユニット(30)において生成された窒素濃縮空気の酸素濃度を測定する給気測定動作を行える。給気測定動作は、上述の濃度調整運転や試運転等のガス供給動作中に庫内ファン(26)が停止した際に並行して行われる。
 制御部(55)は、ガス供給動作中に、分岐開閉弁(82)を開状態に制御すると共に供給用開閉弁(73)を閉状態に制御する。これにより、供給通路(44)を流れる窒素濃縮空気の全てが分岐管(81)に流入する。分岐管(81)に流入した窒素濃縮空気は、酸素センサ(51)に導入され、酸素濃度が測定される。
 このように、ガス供給ユニット(30)において生成された窒素濃縮空気の酸素濃度を測定することにより、ガス供給ユニット(30)において生成された窒素濃縮空気の組成(酸素濃度、窒素濃度)が所望の状態であるかを確認することができる。
  (センサ校正動作)
 本実施形態では、外気をセンサユニット(50)に導入して酸素センサ(51)を校正する図7のセンサ校正動作を行うことができる。センサ校正動作は、例えば庫内を冷却しながら濃度調整を一旦停止して短時間(10分程度)で行い、その後に濃度調整運転に戻すことができる。
 センサ校正動作では、第1方向制御弁(32)が第1状態に設定され、第2方向制御弁(33)が第2状態に設定され、バイパス開閉弁(48)が開かれる。給気用開閉弁(73)は閉じられ、分岐開閉弁(82)は開かれる。この状態でエアポンプ(31)を起動すると、外気が、第1通路(75)と第2通路(76)を流れ、センサユニット(50)に導入される。酸素センサ(51)は、検出値が外気の酸素濃度を示すように校正される。
 センサ校正動作中に、外気は気液分離器(85)を通過する。そのため、酸素センサ(51)には、水分の少なくとも一部が除去された外気が接触する。
  (センサケーシング内の空気の流れ)
 通常の運転時は、図10において、センサケーシング(90)へ第2導入口(94b)から庫内空気が流入する。第2導入口(94b)から流入した庫内空気は、センサケーシング(90)内を満たしつつ導出口(95)へ向かう(経路(R1)参照)。その際、第2導入口(94b)と酸素センサ(51)の間に壁部材(101)の下面の仕切板(102)が位置し、且つ酸素センサ(51)が図の左側以外は仕切板(102)で覆われているので、庫内空気に腐食成分が含まれていても、その腐食成分と酸素センサ(51)との接触が抑えられる。
 給気測定動作時やセンサ校正動作時は、図10において、センサケーシング(90)へ第1導入口(94a)から庫内の外の空気が流入する。その空気は、給気測定動作時は吸着筒(34,35)で組成が調整された空気、センサ校正動作時は吸着筒(34,35)をバイパスした外気である。これらの空気は、センサケーシング(90)内を満たしつつ導出口(95)へ向かう(経路(R2)参照)。この場合も、第2導入口(94b)と酸素センサ(51)の間に壁部材(101)の下面の仕切板(102)が位置し、且つ酸素センサ(51)が図の左側以外は仕切板(102)で覆われているので、庫内の外の空気に腐食成分が含まれていても、その腐食成分と酸素センサ(51)との接触が抑えられる。
  -実施形態1の効果-
 この実施形態1では、硫黄を含む腐食成分が酸素センサ(51)に接触するのを抑制する接触抑制部(100)として、酸素センサ(51)へ向かう空気の流れを抑制する壁部材(101)を設けている。この構成によれば、酸素センサ(51)と腐食成分との接触が壁部材(101)によって抑制される。よって、酸素センサの劣化が抑えられる。
 実施形態1では、酸素センサ(51)を内部に収容するセンサケーシング(90)に、内部へ空気を導入する導入口(94)を形成し、壁部材(101)を導入口(94)と酸素センサ(51)との間に配置している。この構成によれば、導入口(64)からセンサボック(90)内へ空気と共に侵入する腐食成分が酸素センサ(51)に接触するのを壁部材(101)によって抑制できる。
 この実施形態1では、対象空間の内部の空気をセンサケーシング(90)内へ導入する第1導入口(94a)と、対象空間の外部の空気をセンサケーシング(90)内へ導入する第2導入口(94b)の両方を酸素センサ(51)の下方に配置している。そして、壁部材(101)の一部を、酸素センサ(51)の下方に配置している。
 この構成によれば、センサケーシング(90)内に導入される庫内空気と庫外空気のどちらに腐食成分が含まれている場合でも、腐食成分が酸素センサ(51)に接触するのを抑えられる。したがって、通常運転時の庫内空気による酸素センサ(51)と腐食成分の接触も、センサ校正時の庫外空気による酸素センサ(51)と腐食成分の接触も抑えられる。
 この実施形態では、複数の仕切板(102)で壁部材(101)を構成し、これらの仕切板(102)を、六面体の少なくとも一面を開放する形状になるように配置している。酸素センサ(51)は、その六面体の内部の空間に位置する。
 この構成によれば、腐食成分が酸素センサ(51)に接触するのを仕切板(102)により抑えることができる。それと同時に、六面体の少なくとも一面が開放されているので、酸素センサ(51)で空気の成分検出も行える。壁部材(101)は複数の仕切板(102)を酸素センサ(51)の周囲に配置すればよいため、構成を簡素化できる。
 この実施形態1では、分岐管(81)からセンサケーシング(90)へ流入する空気の水分の少なくとも一部が気液分離器(85)で除去される。このことにより、酸素センサ(51)や二酸化炭素センサ(52)が水分の付着により故障するのを抑えられる。
  -実施形態1の変形例-
 (変形例1)
 実施形態1では、第1導入口(94a)と第2導入口(94b)の両方を酸素センサ(51)の下方に配置しているが、第1導入口(94a)と第2導入口(94b)の一方が酸素センサ(51)の下方に位置する構成にしてもよい。
 第1導入口(94a)を酸素センサ(51)の下方に配置し、その間に壁部材(101)の一部を配置すると、センサ校正時の庫外空気による酸素センサ(51)と腐食成分の接触を抑えられる。第2導入口(94b)を酸素センサの下方に配置し、その間に壁部材(101)の一部を配置すると、通常運転時の庫内空気による酸素センサ(51)と腐食成分の接触を抑えられる。
 (変形例2)
 実施形態1では、壁部材(101)を複数の仕切板(102)で六面体の一面が開放される形状としている。しかしながら、壁部材(101)の形状は、センサケーシング(90)に導入される腐食成分が酸素センサ(51)に接触するのを抑える形状である限り、他の形状に変更してもよい。
 (変形例3)
 実施形態1の接触抑制部(100)には、壁部材(101)の代わりに図12A,図12Bに示す樹脂カバー(103)を用いてもよい。
 樹脂カバー(103)は、ガスセンサ(51,52)の周囲を覆う合成樹脂の成形部品である。樹脂カバー(103)は、本体部(103a)と、本体部(103a)の内部へ空気を取り込む流入口(103b)と、本体部(103a)の内部から空気を排出する流出口(103c)とを有する。本体部(103a)の内部には、ガスセンサ(51)の検出部(51a)を収容する収容部(103d)が形成されている。流入口(103b)はセンサケーシング(90)内の空気を収容部(103d)に導入し、流出口(103c)は収容部(103d)から空気をセンサケーシング(90)内へ流出させるよう構成される。
 この変形例3では、センサケーシング(90)は設けられず、酸素センサ(51)を収容した樹脂カバー(103)が、分岐管(81)及び排気管(57)に配管接続される。なお、二酸化炭素センサ(52)も同様に樹脂カバー(103)に収容し、分岐管(81)及び排気管(57)に配管接続するとよい。
 この変形例3では、樹脂カバー(103)の内部に収容される酸素センサ(51)の検出部(51a)に流入口(103b)から空気が流入し、その後、空気は樹脂カバー(103)から流出口(103c)を通って流出する。
 この構成では、樹脂カバー(103)の内部に流入する空気の流量が制限されるので、空気に含まれる腐食成分が酸素センサ(51)に接触するのを抑制できる。同時に、樹脂カバー(103)に流入口(103b)と流出口(103c)を設けたことにより空気は連続して酸素センサ(51)を通過するので、酸素センサ(51)による空気の成分検出が阻害されることもない。
 図12A,図12Bでは樹脂カバー(103)の流入口(103b)と流出口(103b)を筒状に形成しているが、流入口(103b)と流出口(103b)は、筒状に形成しなくてもよい。例えば、本体部(103a)の外面から内面に貫通する2つの孔を形成し、これらの孔を流入口(103b)と流出口(103b)にしてもよい。その場合、孔の直径を例えば約2.5mmにし、流入口(103b)が下向きになり、流出口(103c)が上向きになるように樹脂カバー(103)を配置するとよい。このように配置する理由は、酸素センサ(51)は発熱するので収容部(103d)の空気が上に抜け、収容部(103d)に仮に水が浸入しても水は下に抜けるからである。
 《実施形態2》
 実施形態2は、接触抑制部(100)として、空気中の腐食成分を吸着する吸着材(105)を用いた例である。
 吸着材(105)は、実施形態1の壁部材(101)の代わりにセンサケーシング(90)の内部に配置することができる。図13は、吸着材(105)をセンサケーシング(90)の底面に設ける例を示す。吸着材(105)は、基材と、基材に担持された吸着剤(例えばゼオライトや活性炭)とを有する。
 この実施形態2は、壁部材(101)の代わりに吸着材(105)を設けること以外は、空気回路(3)を含めて実施形態1と構成が共通する。そのため、吸着材(105)の他の構成についての説明は省略する。
 この実施形態2では、センサケーシング(90)内へ導入される空気に含まれる腐食成分が、センサケーシング(90)内で吸着材(105)に吸着される。したがって、酸素センサ(51)に腐食成分が接触するのを抑えられる。
 なお、吸着材(105)は、実施形態1の壁部材(101)とともにセンサケーシング(90)の内部に設けてもよい。このように構成すると、酸素センサ(51)に腐食成分が接触するのを壁部材(101)と吸着材(105)の両方で抑制できる。
  -実施形態2の変形例-
 (変形例1)
 吸着材(105)は、図14に示すように、センサケーシング(90)のカバー(92)の裏面など、センサケーシング(90)内の図13とは異なる位置に配置してもよい。このように構成しても、吸着材(105)で空気中の腐食成分を吸着することにより、腐食成分が酸素センサ(51)に接触するのを抑えられる。
 (変形例2)
 吸着材(105)は、図13及び図14の例とは異なる配置で空気回路(3)に設けてもよい。
 図15は、センサケーシング(90)内に、酸素センサ(51)を収容した樹脂カバー(103)と、吸着材(105)とを配置した例である。樹脂カバー(103)は、本体部(103a)に形成された孔で構成される流入口(103b)が下向きになり、流出口(103c)が上向きになるように配置される。吸着材(105)は、センサケーシング(90)の背面(第2導入口(94b)が形成された面)側に配置され、酸素センサ(51)及び樹脂カバー(103)と同じ面に位置する。吸着材(105)は、概略長方形の基材に吸着剤が担持されたものである。
 この構成では、第2導入口(94b)を通過する空気に腐食成分が含まれていると、その腐食成分が吸着材(105)に効果的に吸着される。空気はさらに樹脂カバー(103)の流入口(103b)を通過して樹脂カバー(103)内に導入される。よって、腐食成分が酸素センサ(51)に接触するのを効果的に抑制できる。
 (変形例3)
 図16は、変形例3に係る空気回路(3)の部分拡大図である。この変形例3では、図示するように、吸着材(105)は、センサケーシング(90)の内部へ空気を導入する第1導入路(59a)である連絡管(59)に配置される。吸着材(105)は、図16に仮想線で示すように、センサケーシング(90)に連絡管(59)が接続される導入口(94)に、例えば前記メンブレンフィルタ(54)とともに配置してもよい。
 空気回路(3)に設ける吸着材(105)を複数にし、吸着材(105)をセンサケーシング(90)内とそれ以外の位置に配置してもよい。また、複数の吸着材(105)を、センサケーシング(90)へ外気を導入する第1導入路(59a)である連絡管(59)と、センサケーシング(90)へ庫内空気を導入する第2導入路(59b)を構成する第2導入口(94b)の両方に配置してもよい。
 この変形例3によれば、センサケーシング(90)内へ導入される空気の腐食成分がセンサケーシング(90)の近傍で吸着材(105)に吸着される。その結果、腐食成分が酸素センサ(51)に接触するのが抑制され、酸素センサ(51)の劣化が抑制される。
 (変形例4)
 吸着材(105)は、センサケーシング(90)の内部以外の位置に設けてもよい。
 図17は、実施形態2の変形例4に係るCA装置の空気回路(3)を示す図である。この変形例4では、吸着材(105)は、空気回路(3)へ外気が流入する流入部にメンブレンフィルタ(76)とともに配置される。
 また、この変形例4では、第1吸着筒(34)と並列のバイパス通路(78)の一端を加圧通路(42)に、他端を酸素排出通路(45)に接続している。バイパス通路(78)にはバイパス開閉弁(78a)が設けられている。この構成では、バイパス開閉弁(78a)を有するバイパス通路(78)、酸素排出通路(45)、排気用接続通路(71)、供給通路(44)及び分岐管(81)の順に外気を流し、校正時に酸素センサ(51)に外気を導入できる。このように、第2通路(76)は第1通路から分岐して酸素センサ(51)に外気を導入できる通路であれば、第1通路(75)より分岐してから合流する通路であってもよい。
 この変形例4の他の構成は変形例1と共通する。
 この変形例4によれば、空気回路(3)に流入する外気に含まれる腐食成分を吸着材(105)で吸着できる。したがって、外気が酸素センサ(51)に導入される校正動作の際に、腐食成分が酸素センサ(51)と接触するのを抑制できる。
 《実施形態3》
 図18,図19に示すように、センサケーシング(90)は、庫内空間ではなく庫外空間に配置してもよい。庫外に配置されるセンサケーシング(90)は、図18の配管系統図に示すように、庫内の2次空間(S22)に配置されるメンブレンフィルタ(54)と第2導入路(59b)で接続される。このように構成しても、空気中の腐食成分が酸素センサ(51)に接触するのを抑えられる。
 このようにセンサケーシング(90)を庫外空間に配置する構成においても、図9~図11に示す第1導入口(94a)は酸素センサ(51)の校正時に庫外空気をセンサケーシング(90)内に導入し、第2導入口(94b)は庫内空気をセンサケーシング(90)内に導入する。
 《実施形態4》
 実施形態4は、上述した実施形態1と基本的な構成および運転は同じである。実施形態4は、実施形態1において開閉機構としての給気開閉弁(79)を備える。なお、図20は、実施形態1の第1生成動作を示すが、実施形態4においても、実施形態1と同様にして、第2生成動作、外気導入動作、センサ構成動作が行われる。
 図20に示すように、実施形態4のセンサユニット(50)は、庫内収納空間(S2)における庫内ファン(26)の吹出側の2次空間(S22)に設けられる。センサユニット(50)は、酸素センサ(51)と、二酸化炭素センサ(52)と、排気管(57)と、給気管(78)と、開閉機構としての給気開閉弁(79)と、メンブレンフィルタ(54)とを有する。
 酸素センサ(51)及び二酸化炭素センサ(52)は、センサケーシング(90)に収容される。センサケーシング(90)には、給気管(78)の一端が接続されている。給気管(78)の他端は、庫内収納空間(S2)に開口する。給気管(78)は、センサケーシング(90)の内部に庫内空気を導入する通路を構成している。
  給気管(78)の他端には、メンブレンフィルタ(54)が取り付けられる。センサケーシング(90)の内部には、メンブレンフィルタ(54)を通過した庫内空気が流入する。センサケーシング(90)には、排気口(図示省略)が設けられる。排気口には、排気管(57)が接続される。
 給気管(78)には、給気開閉弁(79)が接続される。給気開閉弁(79)は、給気管(78)における空気の流通を許容する開状態と、給気管(78)における空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。給気開閉弁(79)の開閉動作は、制御部(55)によって制御される。
 なお、開閉機構としての給気開閉弁(79)は、弁に限定されない。例えば、開閉機構は、シャッタでもよく、ダンパでもよい。開閉機構がシャッタの場合、シャッタは、センサケーシング(90)における給気管(78)の接続口に設けられる。開閉機構がダンパの場合、ダンパは、給気管(78)に設けられる。
 〈センサの劣化について〉
 次に、酸素センサ(51)の劣化について説明する。
  (酸素センサの構造)
 本実施形態の酸素センサ(51)は、ジルコニア式のセンサである。酸素センサ(51)の素子は、白金及びジルコニアで構成される。酸素センサ(51)は、白金及びジルコニアの固体電解質中を移動する酸素イオンの量を電気的に測定することで酸素濃度を測定する。
 酸素センサ(51)の白金及びジルコニアには、接合補助剤として微量の金属酸化物が添加されている。白金とジルコニアとの界面で接合補助剤同士が結合することで、白金及びジルコニアが接合される。
  (酸素センサの劣化の課題)
 コンテナ本体(2)の庫内空間に収容された包装容器又は包装容器に梱包された生鮮物などから腐食成分が発生することがある。ここで、腐食成分とは、酸素センサ(51)を腐食させる成分のことである。腐食成分は、庫内の空気とともに輸送用コンテナ(1)内を循環する。
 酸素センサ(51)が通電状態の場合、酸素センサ(51)は発熱し高温になる。一方、酸素センサ(51)が通電状態から非通電状態に切り替わると、酸素センサ(51)は発熱しなくなるので温度が下がる。酸素センサ(51)の温度が下がると、センサケーシング(90)内の温度が低下し、センサケーシング(90)内の相対湿度が上昇する。センサケーシング(90)内の相対湿度が上昇すると、水分が結露して、酸素センサ(51)の表面に水膜が形成される。
 庫内の空気とともにセンサケーシング(90)に流入した腐食成分が酸素センサ(51)表面の水膜中に侵入すると、水膜内で腐食成分と酸素センサ(51)の接合補助剤が反応する。腐食成分と酸素センサ(51)の接合補助剤が反応すると、接合補助剤の結合力が弱まり、白金とジルコニアの接合力が低下し、酸素センサ(51)の出力が低下する。これが酸素センサ(51)の劣化である。
 ここで、腐食成分は、硫黄成分を含む。水膜中に侵入しやすい腐食成分としては、硫酸イオンが挙げられる。
 〈第1動作〉
 制御部(55)は、空気組成調整装置(60)及び輸送用冷凍装置(10)が運転された状態において、以下の制御を行う。
 図21に示すように、ステップST11において、制御部(55)は、空気組成調整装置(60)を制御して、空気の組成を調整する濃度調整運転を実行する。
 ステップST12において、制御部(55)は、エアポンプ(31)を制御して、濃度調整された空気をコンテナ本体(2)の庫内空間に搬送する。このとき、給気開閉弁(79)は開状態となっており、庫内空気が給気管(78)を通ってセンサケーシング(90)の内部に流入する。酸素センサ(51)は、センサケーシング(90)内に流入した空気中の酸素濃度を測定する。
 ステップST13において、制御部(55)は、空気組成調整装置(60)の運転停止指令を受けたかを判定する。ステップST13での判定が「YES」の場合、ステップST14に分岐する。ステップST13での判定が「NO」の場合、ステップST13を繰り返し行う。
 ここで、空気組成調整装置(60)の運転停止指令は、例えば、ユーザによって停止ボタンが押された場合に出力される。なお、空気組成調整装置(60)の運転停止指令と同時に、輸送用冷凍装置(10)の運転停止指令を出力するようにしてもよい。
 ステップST14において、制御部(55)は、給気開閉弁(79)を制御して、給気開閉弁(79)を閉じる第1動作を実行する。
 第1動作では、給気開閉弁(79)が閉状態に切り換えられる。給気開閉弁(79)を閉じることで、給気管(78)において空気の流通が遮断される。これにより、空気組成調整装置(60)の運転停止中に、センサケーシング(90)の内部に庫内空気が流入するのを抑えることができる。その結果、腐食成分が長時間にわたって酸素センサ(51)に接触しないようにして、酸素センサ(51)の劣化を抑えることができる。
 空気組成調整装置(60)の運転停止動作に連動して第1動作を行うタイミングは、空気組成調整装置(60)の運転を停止させる直前、運転停止動作と同時、運転を停止させた直後の何れかであればよい。
 制御部(55)は、酸素センサ(51)のモニタリングの停止指令を受けた場合に、第1動作を行うようにしてもよい。酸素センサ(51)のモニタリングは、例えば、空気組成調整装置(60)において濃度調整運転が終了した場合、給気測定動作が終了した場合、及びセンサ校正動作が終了した場合に停止する。
 なお、ステップST14では、ユーザが手動で給気開閉弁(79)を閉状態に切り換えるようにしてもよい。つまり、空気組成調整装置(60)の運転停止中に、給気開閉弁(79)を閉状態であればよい。
 〈第2動作〉
 制御部(55)は、空気組成調整装置(60)が運転停止された状態で且つ輸送用冷凍装置(10)が運転された状態において、以下の制御を行う。
 図22に示すように、ステップST21において、ユニット制御部(100)は、輸送用冷凍装置(10)を制御して、コンテナ本体(2)の庫内空間を冷却する冷却運転を実行する。
 ステップST22において、ユニット制御部(100)は、庫内ファン(26)を制御して、温度調整された空気をコンテナ本体(2)の庫内空間に搬送する。このとき、給気開閉弁(79)は開状態となっており、庫内空気が給気管(78)を通ってセンサケーシング(90)の内部に流入する。
 ステップST23において、ユニット制御部(100)は、輸送用冷凍装置(10)の運転停止指令を受けたかを判定する。ステップST23での判定が「YES」の場合、ステップST24に分岐する。ステップST23での判定が「NO」の場合、ステップST23を繰り返し行う。
 ここで、輸送用冷凍装置(10)の運転停止指令は、例えば、ユーザによって停止ボタンが押された場合に出力される。
 ステップST24において、制御部(55)は、給気開閉弁(79)を制御して、給気開閉弁(79)を閉じる第2動作を実行する。
 第2動作では、給気開閉弁(79)が閉状態に切り換えられる。給気開閉弁(79)を閉じることで、給気管(78)において空気の流通が遮断される。これにより、輸送用冷凍装置(10)の運転停止中に、センサケーシング(90)の内部に庫内空気が流入するのを抑えることができる。その結果、腐食成分が長時間にわたって酸素センサ(51)に接触しないようにして、酸素センサ(51)の劣化を抑えることができる。
 輸送用冷凍装置(10)の運転停止動作に連動して第2動作を行うタイミングは、輸送用冷凍装置(10)の運転を停止させる直前、運転停止動作と同時、運転を停止させた直後の何れかであればよい。
 なお、第1動作又は第2動作を行う際に、センサケーシング(90)の内部に外気を導入する動作を行うようにしてもよい。具体的に、外気を導入する動作では、図7に示すように、第1方向制御弁(32)が第1状態に設定され、第2方向制御弁(33)が第2状態に設定され、バイパス開閉弁(48)が開かれる。供給用開閉弁(73)は閉じられ、分岐開閉弁(82)は開かれる。この状態でエアポンプ(31)を起動すると、外気が、第1通路(75)と第2通路(76)を流れ、センサケーシング(90)の内部に導入される。
 センサケーシング(90)の内部に外気を導入すると、センサケーシング(90)の内部に滞留する腐食成分が、センサケーシング(90)の外部に排出される。具体的には、腐食成分は、排気口からセンサケーシング(90)の外部に排出される。本実施形態においては、排気口から排気管(57)を通った腐食成分は、庫内ファン(26)の吸込側の1次空間(S21)に排出される。これにより、空気組成調整装置(60)の運転停止中、又は輸送用冷凍装置(10)の運転停止中に、腐食成分によってセンサ(51)が劣化するのを抑えることができる。
 制御部(55)は、センサケーシング(90)に外気を導入した後、又は外気を導入する前に、給気開閉弁(79)を閉状態に切り換える。これにより、腐食成分が長時間にわたってセンサ(51)に接触しないようにして、センサ(51)の劣化を抑えることができる。
 また、第1動作又は第2動作を行う前に、回転蓋(16C)を開状態として換気口(16D)を開くことで、換気口(16D)を通して、庫内空間に外気を導入するようにしてもよい。換気口(16D)を通して庫内空間に導入された外気は、庫内ファン(26)によって庫内空間を流通する。外気を含む庫内空気は、センサケーシング(90)のメンブレンフィルタ(54)を通過して、センサケーシング(90)の内部に流入する。
 本実施形態においては、換気口(16D)が庫内ファン(26)の吸込側の1次空間(S21)と連通している。このため、換気口(16D)から取り込まれた外気が、1次空間(S21)から庫内ファン(26)の吹出側の2次空間(S22)に導入され、2次空間(S22)に配置されたセンサケーシング(90)の内部に流入する。その結果、センサケーシング(90)の内部から腐食成分を排出することができる。
  -実施形態4の効果-
 実施形態4の特徴によれば、組成が調整された空気が対象空間に搬送される。対象空間における空気中の成分の濃度がセンサ(51)で測定される。センサ(51)は、センサケーシング(90)に収容される。センサケーシング(90)の内部には、通路(78)を介して、対象空間の空気が導入される。開閉機構(79)は、通路(78)を開閉する。
 開閉機構(79)を開くことで、センサ(51)による測定が必要なときに、センサケーシング(90)の内部に対象空間の空気を導入することができる。これにより、腐食成分が長時間にわたってセンサ(51)に接触しないようにして、センサ(51)の劣化を抑えることができる。
 実施形態4の特徴によれば、開閉機構(79)は、空気組成調整装置(60)の運転停止中に閉状態となっている。これにより、空気組成調整装置(60)の運転停止中に、センサケーシング(90)の内部に腐食成分が流入するのを抑えることができる。
 実施形態4の特徴によれば、制御部(55)は、第1動作を実行する。第1動作は、空気組成調整装置(60)の運転停止動作に連動して、開閉機構(79)を閉じる動作である。
 このように、第1動作において、開閉機構(79)を閉じることで、空気組成調整装置(60)の運転停止中に、センサケーシング(90)の内部に腐食成分が流入するのを抑えることができる。
 実施形態4の特徴によれば、空気組成調整装置(60)を備えた冷凍装置において、開閉機構(79)を開くことで、センサ(51)による測定が必要なときに、センサケーシング(90)の内部に対象空間の空気を導入することができる。
 本実施形態の特徴によれば、制御部(55)は、第2動作を実行する。第2動作は、冷凍装置(10)の運転停止動作に連動して、開閉機構(79)を閉じる動作である。
 このように、第2動作において、開閉機構(79)を閉じることで、冷凍装置(10)の運転停止中に、センサケーシング(90)の内部に腐食成分が流入するのを抑えることができる。
 実施形態4の特徴によれば、冷凍装置(10)を備えたコンテナにおいて、開閉機構(79)を開くことで、センサ(51)による測定が必要なときに、センサケーシング(90)の内部に対象空間の空気を導入することができる。
 〈実施形態4の変形例〉
 図23は、本実施形態4の変形例に係る輸送用冷凍装置の斜視図である。以下、前記実施形態4と同じ部分については同じ符号を付し、相違点についてのみ説明する。
 図23に示すように、センサケーシング(90)は、庫外に配置されている。具体的には、センサケーシング(90)は、庫外収納空間(S1)の第2空間(S12)における電装品ボックス(17)の左側に配置される。ここで、「左側」は、輸送用コンテナ(1)の外部に露出した輸送用冷凍装置(10)の面を正面から見たときの方向を意味する。
 図24に示すように、センサケーシング(90)には、給気管(78)の一端が接続されている。給気管(78)の他端は、庫内収納空間(S2)に開口する。給気管(78)の他端には、メンブレンフィルタ(54)が取り付けられる。給気管(78)は、庫内空気を、庫外に配置されたセンサケーシング(90)の内部に導入する通路を構成している。
 給気管(78)には、給気開閉弁(79)が接続される。給気開閉弁(79)は、給気管(78)における空気の流通を許容する開状態と、給気管(78)における空気の流通を遮断する閉状態とに切り換わる電磁弁で構成される。給気開閉弁(79)の開閉動作は、制御部(55)によって制御される。
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
 例えば、前記実施形態では、腐食成分による劣化を抑える対象のガスセンサとして酸素センサ(51)を説明したが、劣化は酸素センサ(51)以外のガスセンサで生じることも考えられる。そこで、前記二酸化炭素センサ(52)を始め、その他にも空気組成調整装置を備える輸送用コンテナ(1)に用いる可能性のあるエチレンセンサや冷媒漏洩センサなどの他のガスセンサに対しても、前記実施形態の接触抑制部(100)を設けることができる。エチレンセンサは庫内のエチレン濃度を検知するセンサ、冷媒漏洩センサは庫内への冷媒漏れを検知するセンサである。酸素センサ(51)や二酸化炭素センサ(52)は実施形態で説明した方式以外のものであってもよい。
 前記実施形態では、腐食成分として硫化水素を例示したが、カルシウム、塩素、またはリンなどを含む他の腐食成分に対しても各実施形態の接触抑制部を(100)を設けることができる。
 前記実施形態では、センサケーシング(90)内に対象のガスセンサである酸素センサ(51)を配置した例を説明したが、センサケーシング(90)を設けない場合でも接触抑制部(100)を設けることができる。
 前記実施形態4では、腐食成分として硫酸イオンを例示したが、硫酸イオン以外の硫黄成分、リン酸、カルシウム、塩素、アンモニアなどを含む他の腐食成分が、センサケーシング(90)の内部に流入するのを給気開閉弁(79)で遮断してもよい。
 前記実施形態では、1つのエアポンプ(31)が第1ポンプ機構(31a)と第2ポンプ機構(31b)とを有する構成としていたが、第1ポンプ機構(31a)と第2ポンプ機構(31b)とは、2つの個別のエアポンプによって構成されていてもよい。
 前記実施形態の搬送部は、送風機を用いて構成してもよい。
 前記各実施形態では、第1吸着部及び第2吸着部として、それぞれ1本の吸着筒を用いて窒素の吸着及び脱着を行うようにしていたが、各吸着部を構成する吸着筒の本数は1本に限定されない。例えば、各吸着部を3本の吸着筒で構成し、合計6本の吸着筒を用いることとしてもよい。
 前記実施形態の調整部(34,35)は、ゼオライトなどの吸着剤を用いる構成に限定されず、例えば窒素の透過率と酸素(及び二酸化炭素)の透過率が異なるガス分離膜を用いて窒素濃縮空気及び酸素濃縮空気を生成し、これらの濃縮空気により庫内空気の組成を調整する構成であってもよい。
 また、前記各実施形態では、海上輸送用のコンテナ本体(2)に設けられる輸送用冷凍装置(10)に本発明に係るCA装置(60)を適用した例について説明したが、本発明に係るCA装置(60)の用途はこれに限られない。本発明に係るCA装置(60)は、海上輸送用のコンテナの他、例えば、陸上輸送用のコンテナ、単なる冷凍冷蔵倉庫、常温の倉庫等の庫内空気の組成の調整に用いることができる。冷凍装置は、輸送用でなく、定置型の貯蔵庫(冷凍冷蔵倉庫)の庫内空間を冷却する装置であってもよい。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 以上説明したように、本開示は、空気組成調整装置、輸送用冷凍装置、及び輸送用コンテナについて有用である。
 1   輸送用コンテナ
 2   コンテナ本体
 3   空気回路
 10  輸送用冷凍装置(冷凍装置)
 20  冷媒回路
 21  圧縮機(構成要素)
 22  凝縮器(構成要素)
 23  膨張弁(構成要素)
 24  蒸発器(構成要素)
 31  エアポンプ(搬送部)
 34  第1吸着筒(調整部)
 35  第2吸着筒(調整部)
 51  酸素センサ(ガスセンサ)
 59  第2連絡管(導入路)
 60  空気組成調整装置(空気組成調整部)
 90  センサケーシング
 94  導入口(導入路)
 94a  第1導入口
 94b  第2導入口
 100  接触抑制部
 101  壁部材
 102  仕切板
 103  樹脂カバー
 103b 流入口
 103c 流出口
 105  吸着材

Claims (20)

  1.  空気を搬送する搬送部(31)と、
     対象空間の空気の組成を調整する調整部(34,35)と、
     前記搬送部(31)によって空気を前記調整部(34,35)に導入し、組成を調整した空気を対象空間へ供給する空気回路(3)と、
     前記対象空間に配置されて空気の成分を測定するガスセンサ(51)と、
    を備えた空気組成調整装置であって、
     空気中の腐食成分が前記ガスセンサ(51)に接触するのを抑制する接触抑制部(100)を備える
    ことを特徴とする空気組成調整装置。
  2.  請求項1において、
     前記接触抑制部(100)は、前記ガスセンサ(51)の周囲に配置されて前記ガスセンサ(51)へ向かう空気の流れを抑制する壁部材(101)で構成される
    ことを特徴とする空気組成調整装置。
  3.  請求項2において、
     前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
     前記センサケーシング(90)は、その内部へ空気を導入する導入口(94)を備え、
     前記壁部材(101)は、前記導入口(94)と前記ガスセンサ(51)との間に配置される
    ことを特徴とする空気組成調整装置。
  4.  請求項3において、
     前記導入口(94)は、前記ガスセンサ(51)の下方に配置され、
     前記壁部材(101)は、前記ガスセンサ(51)の下方に配置される部分を有する
    ことを特徴とする空気組成調整装置。
  5.  請求項3において、
     前記導入口(94)は、前記対象空間の内部の空気を前記センサケーシング(90)内へ導入する第1導入口(94a)と、前記対象空間の外の空気を前記センサケーシング(90)内へ導入する第2導入口(94b)を含み、
     前記第1導入口(94a)及び第2導入口(94b)の少なくとも一方は、前記ガスセンサ(51)の下方に配置され、
     前記壁部材(101)は、前記ガスセンサ(51)の下方に配置される部分を有する
    ことを特徴とする空気組成調整装置。
  6.  請求項2から5の何れか1つにおいて、
     前記壁部材(101)は、六面体の少なくとも一面を開放するように配置される複数の仕切板(102)を含み、
     前記六面体の内部の空間に前記ガスセンサ(51)が配置される
    ことを特徴とする空気組成調整装置。
  7.  請求項1において、
     前記接触抑制部(100)は、空気中の腐食成分を吸着する吸着材(105)を有する
    ことを特徴とする空気組成調整装置。
  8.  請求項7において、
     前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
     前記吸着材(105)は、前記センサケーシング(90)の内部に配置される
    ことを特徴とする空気組成調整装置。
  9.  請求項7において、
     前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
     前記センサケーシング(90)には、その内部へ空気を導入する導入路(59)が接続され、
     前記吸着材(105)は、前記導入路(59)に配置される
    ことを特徴とする空気組成調整装置。
  10.  請求項7において、
     前記ガスセンサ(51)を内部に収容するセンサケーシング(90)を備え、
     前記センサケーシング(90)は、その内部へ空気を導入する導入口(94)を有し、
     前記吸着材(105)は前記導入口(94)に配置される
    ことを特徴とする空気組成調整装置。
  11.  請求項7において、
     前記吸着材(105)は、前記空気回路(3)へ空気が流入する流入部に配置される
    ことを特徴とする空気組成調整装置。
  12.  請求項1から11の何れか1つにおいて、
     前記接触抑制部(100)は、硫黄またはリンを含む腐食成分により前記ガスセンサ(51)が腐食するのを抑制する部材で構成される
    ことを特徴とする空気組成調整装置。
  13.  冷凍サイクルを行う冷媒回路(20)の構成要素(21~24)と、対象空間の空気の組成を調整する空気組成調整部(60)とを備え、
     前記冷媒回路(20)の蒸発器(24)で前記対象空間の空気を冷却する冷凍装置であって、
     前記空気組成調整部(60)は、請求項1から12の何れか1つの空気組成調整装置で構成される
    ことを特徴とする冷凍装置。
  14.  生鮮物を輸送するコンテナ本体(2)と、前記コンテナ本体(2)の庫内を対象空間として冷却する輸送用冷凍装置(10)とを備える輸送用コンテナであって、
     前記輸送用冷凍装置(10)は、請求項13の冷凍装置で構成される
    ことを特徴とする輸送用コンテナ。
  15.  請求項1から12の何れか1つにおいて、
     前記センサ(51)を収容するセンサケーシング(90)と、
     前記対象空間の空気を前記センサケーシング(90)の内部に導入する通路(78)と、
     前記通路(78)を開閉する開閉機構(79)とを備えた
    ことを特徴とする空気組成調整装置。
  16.  請求項15において、
     前記空気組成調整装置(60)の運転停止中に、前記開閉機構(79)が閉状態である
    ことを特徴とする空気組成調整装置。
  17.  請求項15又は16において、
     前記空気組成調整装置(60)の運転停止動作に連動して、前記開閉機構(79)を閉じる第1動作を実行する制御部(55)を備えた
    ことを特徴とする空気組成調整装置。
  18.  請求項15から17のうち何れか1つに記載の空気組成調整装置(60)を備えた
    ことを特徴とする冷凍装置。
  19.  請求項18において、
     前記冷凍装置(10)の運転停止動作に連動して、前記開閉機構(79)を閉じる第2動作を実行する制御部(55)を備えた
    ことを特徴とする冷凍装置。
  20.  請求項18又は19に記載の冷凍装置(10)を備えた
    ことを特徴とする輸送用コンテナ。
PCT/JP2021/031992 2020-08-31 2021-08-31 空気組成調整装置、冷凍装置、及び輸送用コンテナ WO2022045369A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020145228A JP7161116B2 (ja) 2020-08-31 2020-08-31 空気組成調整装置、冷凍装置、及びコンテナ
JP2020145451 2020-08-31
JP2020-145228 2020-08-31
JP2020-145451 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022045369A1 true WO2022045369A1 (ja) 2022-03-03

Family

ID=80353491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031992 WO2022045369A1 (ja) 2020-08-31 2021-08-31 空気組成調整装置、冷凍装置、及び輸送用コンテナ

Country Status (1)

Country Link
WO (1) WO2022045369A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090325A (ja) * 2000-09-13 2002-03-27 Tdk Corp センサ用フィルター、センサカバー、センサおよびフィルター膜
JP2005324098A (ja) * 2004-05-13 2005-11-24 Honda Motor Co Ltd オゾン浄化装置
JP2016061465A (ja) * 2014-09-16 2016-04-25 ダイキン工業株式会社 コンテナ用冷凍装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090325A (ja) * 2000-09-13 2002-03-27 Tdk Corp センサ用フィルター、センサカバー、センサおよびフィルター膜
JP2005324098A (ja) * 2004-05-13 2005-11-24 Honda Motor Co Ltd オゾン浄化装置
JP2016061465A (ja) * 2014-09-16 2016-04-25 ダイキン工業株式会社 コンテナ用冷凍装置

Similar Documents

Publication Publication Date Title
US10168092B2 (en) Refrigeration device for container
JP6137249B2 (ja) 庫内空気調節装置及びそれを備えたコンテナ用冷凍装置
JP6056993B2 (ja) コンテナ用冷凍装置
EP3872428B1 (en) Inside air control system
WO2017038038A1 (ja) コンテナ用冷凍装置
WO2017038055A1 (ja) コンテナ用冷凍装置
US20230192395A1 (en) Air composition adjustment device, refrigeration apparatus, and transportation container
JP2017125670A (ja) ガス供給装置
JP6551592B2 (ja) 気体供給装置、庫内空気調節装置、及びコンテナ用冷凍装置
US9907316B2 (en) Gas supply device and refrigeration device for container provided with said gas supply device
WO2022045369A1 (ja) 空気組成調整装置、冷凍装置、及び輸送用コンテナ
JP7064154B2 (ja) 空気組成調整装置、冷凍装置、コンテナ、及び空気組成調整方法
JP7161116B2 (ja) 空気組成調整装置、冷凍装置、及びコンテナ
JP2017219287A (ja) ガス供給装置及びそれを備えたコンテナ用冷凍装置
WO2022004548A1 (ja) 空気組成調整装置、輸送用冷凍装置、及び輸送用コンテナ
JP2022040583A (ja) 空気組成調整装置、冷凍装置、及び輸送用コンテナ
JP6662053B2 (ja) ガス供給装置及びそれを備えたコンテナ用冷凍装置
JP2022040585A (ja) 空気組成調整装置、冷凍装置、及び輸送用コンテナ
JP7057518B2 (ja) コンテナ用冷凍装置
JP2019052825A (ja) 気体供給装置、庫内空気調節装置、及びコンテナ用冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861789

Country of ref document: EP

Kind code of ref document: A1