WO2022044460A1 - 補強繊維、及びそれを用いた成形体 - Google Patents

補強繊維、及びそれを用いた成形体 Download PDF

Info

Publication number
WO2022044460A1
WO2022044460A1 PCT/JP2021/020032 JP2021020032W WO2022044460A1 WO 2022044460 A1 WO2022044460 A1 WO 2022044460A1 JP 2021020032 W JP2021020032 W JP 2021020032W WO 2022044460 A1 WO2022044460 A1 WO 2022044460A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
conjugated diene
group
fiber
mass
Prior art date
Application number
PCT/JP2021/020032
Other languages
English (en)
French (fr)
Inventor
栄一 石田
哲行 趙
慎一 竹本
徹 浅田
次郎 田中
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to EP21860891.7A priority Critical patent/EP4206397A1/en
Priority to KR1020237006766A priority patent/KR20230058062A/ko
Priority to CN202180052452.2A priority patent/CN115989269A/zh
Priority to CA3193150A priority patent/CA3193150A1/en
Priority to JP2022545322A priority patent/JPWO2022044460A1/ja
Priority to US18/022,783 priority patent/US20230331941A1/en
Publication of WO2022044460A1 publication Critical patent/WO2022044460A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • D06M13/3255Vinylamine; Allylamine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • D06M13/332Di- or polyamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having amino or quaternary ammonium groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2413/00Belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/24Polymers or copolymers of alkenylalcohols or esters thereof; Polymers or copolymers of alkenylethers, acetals or ketones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • D10B2505/022Reinforcing materials; Prepregs for tyres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles

Definitions

  • the present invention relates to a reinforcing fiber having excellent adhesiveness to rubber and a molded product using the reinforcing fiber.
  • Synthetic organic fibers such as nylon 66, nylon 6, polyethylene terephthalate (PET), vinylon and rayon are inexpensive, have high strength, have excellent heat resistance and durability, and are lightweight, so they are used for automobile tires and oil brakes. It is used as a reinforcing fiber for hoses.
  • an adhesive method a method using an adhesive called RFL containing resorcinol / formaldehyde resin and rubber latex as main components is widely known in Patent Document 1. Further, in Patent Document 2, a device is devised to maintain strength and improve fatigue resistance by impregnating the inside with RFL.
  • Patent Document 3 proposes a technique relating to an adhesive containing an adhesive compound having an unsaturated carbon bond and an epoxy group that reacts with a vulcanizing agent used for vulcanizing rubber.
  • Patent Document 4 an active functional group layer is provided by applying a blocked isocyanate compound and an epoxy compound in the first stage, and latex and a low molecular weight conjugated diene rubber are used as main components in the second stage.
  • a technique using an adhesive component has been proposed.
  • Patent Document 5 proposes a technique that does not use RFL by applying a blocked isocyanate compound, an epoxy compound, an amine-based curing material, and a VP latex.
  • Patent Document 3 has a problem that the adhesiveness is inferior and the practicality is poor as compared with the conventional method using RFL.
  • the treatment described in Patent Document 4 requires a step of providing an intermediate layer called a rubberized layer, and also requires heat treatment at a high temperature in two stages, so that a large amount of energy is required for the treatment.
  • the reinforcing performance was deteriorated due to concern about thermal deterioration of the fiber.
  • Patent Document 4 only describes a technique of using an adhesive component containing latex as a main component, and does not describe the use of an adhesive component containing conjugated diene-based rubber as a main component.
  • the epoxy compounds used in Patent Documents 3 to 5 have a problem that they are not preferable in terms of working environment because they may cause factors such as mutagenicity and skin sensitization.
  • the present invention has been made in view of the above-mentioned conventional problems, and provides a reinforcing fiber having excellent adhesiveness to rubber without using resorcinol, formaldehyde and an epoxy compound, and a molded body using the same. do.
  • the present inventors have provided a surface-modified layer on at least a part of the surface of the fiber, and the surface-modified layer contains a polyamine compound having a specific weight average molecular weight.
  • the adhesiveness between the fiber and the rubber is improved without using resorcinol, formaldehyde and an epoxy compound, and completed the present invention.
  • a reinforcing fiber having a fiber, a surface-modified layer covering at least a part of the surface of the fiber, and an adhesive layer containing a conjugated diene-based rubber covering at least a part of the surface-modified layer.
  • the surface-modified layer is characterized by containing a polyamine compound having one or more functional groups selected from 1 to tertiary amino groups and imino groups and having a weight average molecular weight (Mw) of 300 or more. Reinforcing fiber.
  • Mn number average molecular weight
  • the reinforcing fiber according to any one of [1] to [4] above, wherein the conjugated diene rubber has a monomer unit derived from one or more selected from butadiene, isoprene and farnesene in the molecule. .. [6]
  • the conjugated diene rubber is a modified conjugated diene rubber having a hydrogen-binding functional group as a part of the conjugated diene rubber, and the hydrogen-binding functional group is a hydroxy group, an epoxy group, an aldehyde group, and the like.
  • [7] A molded product using the reinforcing fiber according to any one of the above [1] to [6].
  • the molded product according to the above [7] further having a rubber layer.
  • the present invention can provide a reinforcing fiber having excellent adhesiveness to rubber and a molded body using the reinforcing fiber without using resorcinol, formaldehyde and an epoxy compound.
  • the reinforcing fiber of the present invention has a reinforcing having a fiber, a surface-modified layer covering at least a part of the surface of the fiber, and an adhesive layer containing a conjugated diene rubber covering at least a part of the surface-modified layer. It is a fiber, and the surface-modified layer contains a polyamine compound having one or more functional groups selected from 1 to tertiary amino groups and imino groups and having a weight average molecular weight (Mw) of 300 or more. It is characterized by.
  • the "surface modifying layer covering at least a part of the surface of the fiber” means that the surface modifying layer is present on at least a part of the surface of the fiber, for example, as a film or a layer.
  • the raw material of the fiber contains a component corresponding to the surface-modified layer, and the component of the surface-modified layer may be present on a part of the surface of the fiber itself.
  • the "adhesive layer covering at least a part of the surface modified layer” may mean that the entire surface modified layer is covered with the adhesive layer, but at least a part thereof is covered with the adhesive layer. Any aspect may be used, for example, in which an adhesive component is present as a film or a layer.
  • the adhesive layer in the present invention can obtain reinforcing fibers having excellent adhesiveness to rubber even if it does not contain formaldehyde, which is harmful to the human body, or a resin made from formaldehyde.
  • the adhesive layer contains a resin made from formaldehyde as a raw material
  • examples of the resin include resanol / formaldehyde resin, phenol / formaldehyde resin, melamine / formaldehyde resin and derivatives thereof.
  • the formaldehyde component is contained in the adhesive layer, the content thereof is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and 3 parts by mass with respect to 100 parts by mass of the conjugated diene rubber.
  • the formaldehyde content can be measured by extracting the adhesive layer from the reinforcing fiber with a solvent such as toluene and then using HPLC or the like.
  • the surface-modified layer in the present invention may contain a polyamine compound having one or more functional groups selected from a primary to tertiary amino group and an imino group and having a weight average molecular weight (Mw) of 300 or more.
  • Mw weight average molecular weight
  • the "polyamine compound” refers to an aliphatic compound containing two or more amino groups in one molecule. Examples of the primary to tertiary amino groups include substituents represented by the following general formulas (I) to (III).
  • R 1 is a linear or branched alkylene chain having 1 to 20 carbon atoms which may have a substituent. Further, R 2 and R 3 each independently have a substituent. It is a linear or branched alkyl group having 1 to 20 carbon atoms which may be possessed.)
  • the primary amino group represented by the general formula (I) or the secondary amino group represented by the general formula (II) is preferable from the viewpoint of improving the adhesiveness.
  • the imino group is not particularly limited as long as it has a carbon-nitrogen double bond, and is, for example, an ethylidene amino group, a 1-methylpropyridene amino group, a 1,3-dimethylbutylidene amino group, 1-.
  • examples thereof include a methylethylideneamino group, a 4-N, N-dimethylaminobenzylideneamino group, a cyclohexylideneamino group and the like.
  • the weight average molecular weight of the polyamine compound in the present invention is 300 or more. If the weight average molecular weight is less than 300, the affinity with the adhesive layer containing the conjugated diene rubber is not exhibited, and the adhesive strength cannot be improved. From the viewpoint of improving the adhesiveness, the weight average molecular weight of the polyamine compound may be 500 or more, 800 or more, 1,000 or more, or 1,500 or more. May be good.
  • the upper limit of the weight average molecular weight of the polyamine compound is generally 1,000,000 or less, and may be 800,000 or less, considering the deterioration of production efficiency due to the deterioration of handleability.
  • the weight average molecular weight of the polyamine compound is a polystyrene-equivalent weight average molecular weight obtained from the measurement of gel permeation chromatography (GPC), and can be specifically measured by the method described in Examples.
  • the surface modification layer preferably covers the entire surface of the fiber from the viewpoint of improving the adhesiveness to the rubber, but it may substantially cover at least a part of the surface of the fiber.
  • the specific amount of the surface modification layer covering the surface of the fiber is preferably 0.01 to 5.00 parts by mass, preferably 0.05 to 3.00 parts by mass with respect to 100 parts by mass of the fiber used as a raw material.
  • the amount is more preferably 0.10 to 2.00 parts by mass, further preferably 0.20 to 1.00 parts by mass.
  • the fiber used for the surface-modified fiber of the present invention is not particularly limited, and a hydrophilic fiber or a hydrophobic fiber can be used.
  • the term "fiber” includes not only short fibers and long fibers but also non-woven fabrics, woven fabrics, knitted fabrics, felts, sponges and the like.
  • the hydrophilic synthetic fiber is composed of a hydrophilic functional group such as a hydroxy group, a carboxy group, a sulfonic acid group, and an amino group, and / or a thermoplastic resin having a hydrophilic bond such as an amide bond.
  • a thermoplastic resin include polyvinyl alcohol-based resin and polyamide-based resin [polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyamide 612, and polyamide 9C (polyamide composed of nonanediamine and cyclohexanedicarboxylic acid).
  • hydrophilic synthetic fiber one kind may be used alone, or two or more kinds may be used in combination. Further, these hydrophilic synthetic fibers may be further subjected to a hydrophilization treatment described later in order to further increase the hydrophilicity.
  • hydrophilic natural fiber examples include natural cellulose fibers such as wood pulp such as kraft pulp, cotton pulp, and non-wood pulp such as straw pulp.
  • hydrophilic regenerated fiber examples include regenerated cellulose fibers such as rayon, lyocell, cupra, and polynosic. Each of these natural fibers and regenerated fibers may be used alone or in combination of two or more. Further, these hydrophilic natural fibers and regenerated fibers may be further subjected to a hydrophilization treatment described later in order to further increase the hydrophilicity.
  • the hydrophilic fiber may have at least a hydrophilic surface.
  • a fiber having a hydrophilic treatment on the surface of the hydrophobic fiber or a core having a hydrophobic resin as a core and a sheath having a hydrophilic resin as a core may be a sheath type composite fiber or the like.
  • hydrophilic resins constituting the sheath the description of hydrophilic synthetic fibers is cited.
  • the hydrophobic fiber made of a hydrophobic resin include the hydrophobic fiber described later.
  • the hydrophilization treatment is not particularly limited as long as it is a treatment for chemically or physically imparting a hydrophilic functional group to the fiber surface.
  • a method of modifying with a compound containing a hydrophilic functional group such as a hydroxy group, an amino group, an ether group, an aldehyde group, a carbonyl group, a carboxy group and a urethane group or a derivative thereof, or a method of modifying the surface by irradiation with an electron beam. It can be carried out.
  • hydrophobic fibers that could not be firmly adhered to rubber by the conventional technique. Since the hydrophobic fiber generally does not have a polar functional group on the fiber surface, it has poor affinity with the adhesive component described later and cannot be firmly adhered to the rubber. However, by providing the surface modification layer on the fiber surface as in the present invention, even hydrophobic fibers can be firmly adhered to rubber.
  • hydrophobic fiber examples include polyolefin fibers such as polyethylene and polypropylene, polyester fibers such as polyethylene terephthalate, and total aromatic polyester fibers, among which the manufacturing cost is high. Polyester fibers are preferable because they are excellent in strength, heat resistance, durability and the like.
  • synthetic fibers and regenerated fibers are preferable among the fibers, and one or more fibers selected from polyamide fibers, polyvinyl alcohol fibers, polyester fibers, and regenerated cellulose fibers are preferable.
  • one type of fiber may be used alone, or two or more types may be used in combination.
  • the method for producing a fiber having a surface-modified layer on the surface is not particularly limited, but a method of preparing a solution of the polyamine compound with water or an organic solvent, adhering this solution to the fiber, and then drying it by heat treatment or the like.
  • the method of adhering the solution of the compound constituting the surface modification layer to the fiber is not particularly limited, and is selected from, for example, dipping, roll coater, oiling roller, oiling guide, nozzle (spray) coating, brush coating and the like 1. It is preferable to carry out by seed or more.
  • the heat treatment for drying the solution it is preferable to treat it at a treatment temperature of 100 to 250 ° C. for 0.1 seconds to 2 minutes.
  • the heat treatment may be performed only once at a specific temperature, or may be performed twice or more by changing the treatment temperature and the treatment time.
  • the surface modification layer may contain other components other than the above.
  • other components include cross-linking agents, acids, bases, inorganic salts, organic salts, pigments, dyes, antioxidants, polymerization initiators, plasticizers and the like.
  • the content of the other components in the surface-modified layer is preferably 20% by mass or less from the viewpoint of improving the adhesive force with rubber. It is more preferably 5% by mass or less, and further preferably 5% by mass or less.
  • the adhesive layer in the reinforcing fiber of the present invention is not particularly limited as long as it contains a conjugated diene-based rubber.
  • an adhesive component composed of an emulsion in which the conjugated diene-based rubber is dispersed in water is attached to the surface-modified fiber. It can be formed by.
  • aspects of the adhesive layer will be specifically described.
  • the conjugated diene-based rubber used in the present invention contains at least a monomer unit derived from the conjugated diene (hereinafter, also referred to as “conjugated diene unit”) in the molecule, and is, for example, a whole unit in the conjugated diene-based rubber. It is preferable that the weight unit contains 50 mol% or more of a monomer unit derived from a conjugated diene.
  • conjugated diene monomer examples include butadiene, 2-methyl-1,3-butadiene (hereinafter, also referred to as “isoprene”), 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, and the like.
  • 2-Methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadien, 1,3,7-octatriene, ⁇ -farnesene (Hereinafter, also referred to as "farnesen”), milsen, chloroprene and the like can be mentioned.
  • conjugated diene may be used alone or in combination of two or more. It is more preferable that the conjugated diene rubber has a monomer unit derived from one or more selected from butadiene, isoprene and farnesene from the viewpoint of reactivity at the time of vulcanization.
  • the conjugated diene-based rubber used in the present invention may contain a unit derived from a monomer other than the conjugated diene monomer as long as it does not inhibit adhesion.
  • monomers include copolymerizable ethylenically unsaturated monomers and aromatic vinyl compounds.
  • the ethylenically unsaturated monomer include olefins such as ethylene, 1-butene, and isobutylene.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, and 4 -Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2 -Vinylnaphthalene, vinylanthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, divinyl
  • the conjugated diene rubber contains a monomer unit derived from a monomer other than the conjugated diene monomer, the content thereof is preferably 30 mol% or less, preferably 10 mol% or less. Is more preferable, and 5 mol% or less is further preferable.
  • the conjugated diene-based rubber used in the present invention is preferably a modified conjugated diene-based rubber having a hydrogen-binding functional group in a part of the conjugated diene-based rubber, and contains a conjugated diene unit in at least a part of the polymer chain. Moreover, a modified conjugated diene-based rubber having a hydrogen-binding functional group at the side chain or the end of the polymer chain is more preferable.
  • the modified conjugated diene rubber can be bonded to each other by interacting with each of the rubber as an adherend and the surface-modified fiber.
  • the modified conjugated diene rubber and the adherend rubber are vulcanized to form a covalent bond, a strong cohesive force is generated, so that the adhesiveness is further improved. Further, it is considered that the hydrogen-bonding functional group contained in the modified conjugated diene-based rubber forms a hydrogen bond with the surface-modified layer of the surface-modified fiber to improve the adhesiveness.
  • hydrogen bond means a hydrogen atom (donor) which is bonded to an atom (O, N, S, etc.) having a large electronegativity and is electrically positively polarized, and a lone electron pair. It means a bond-like interaction formed with an electrically negative atom (acceptor).
  • the "hydrogen-bonding functional group” is a functional group capable of functioning as a donor and an acceptor in the hydrogen bond. Specifically, hydroxy group, epoxy group, ether group, mercapto group, carboxy group, carbonyl group, aldehyde group, amino group, imino group, imidazole group, urethane group, amide group, urea group, isocyanate group, nitrile group, Examples thereof include a silanol group and derivatives thereof. Examples of the derivative of the aldehyde group include its acetalized form. Examples of the derivative of the carboxy group include the salt thereof, the esterified product thereof, the amidated product thereof, and the acid anhydride thereof.
  • Examples of the derivative of the silanol group include its esterified product.
  • Examples of the carboxy group include a group derived from a monocarboxylic acid and a group derived from a dicarboxylic acid. Among these, hydroxy group, epoxy group, aldehyde group, acetalized form of aldehyde group, carbonyl group, carboxy group, salt of carboxy group, esterified form of carboxy group, acid anhydride of carboxy group, silanol group, silanol group.
  • One or more selected from the esterified product of the above, an amino group, an imidazole group, and a mercapto group is preferable.
  • the weight average molecular weight per epoxy group is 1,000 or more, while the epoxy used in the invention described in the above-mentioned prior art document.
  • the compounds have a molecular weight of less than 1,000 per epoxy group, and the two differ in the molecular weight of each epoxy group.
  • hydrogen-bonding functional groups hydroxy group, carboxy group, carbonyl group, carboxy group salt, carboxy group esterified product, from the viewpoint of improving adhesiveness and easiness of producing conjugated diene rubber.
  • one or more selected from the acid anhydride of the carboxy group is preferable, and one or more selected from the carboxy group, the esterified product of the carboxy group, and the acid anhydride of the carboxy group are more preferable, and the esterified product of maleic anhydride.
  • functional groups derived from maleic anhydride are more preferred.
  • the number of hydrogen-bonding functional groups in the modified conjugated diene-based rubber is preferably 2 or more, and more preferably 3 or more, on average per molecule from the viewpoint of obtaining reinforcing fibers having excellent rubber adhesiveness. It is preferable, and it is more preferable that the number is four or more. Further, the number of hydrogen-bonding functional groups is preferably 80 or less on average per molecule from the viewpoint of controlling the viscosity of the modified conjugated diene rubber in an appropriate range and improving the handleability. The number is more preferably less than 25, more preferably 25 or less, and even more preferably 15 or less.
  • the average number of hydrogen-bonding functional groups per molecule of modified conjugated diene-based rubber is calculated from the equivalent of hydrogen-bonding functional groups (g / eq) of the modified conjugated diene-based rubber and the number average molecular weight Mn in terms of styrene based on the following formula. Will be done.
  • the equivalent of the hydrogen-bonding functional group of the modified conjugated diene-based rubber means the mass of the conjugated diene bonded to one hydrogen-bonding functional group and other monomers other than the conjugated diene contained as necessary. do.
  • Average number of hydrogen-bonding functional groups per molecule [(number average molecular weight (Mn)) / (molecular weight of styrene unit) ⁇ (conjugated diene and, if necessary, average of other monomer units other than conjugated diene) Molecular weight)] / (equivalent to hydrogen-bonding functional group)
  • the method for calculating the equivalent of the hydrogen-bonding functional group can be appropriately selected depending on the type of the hydrogen-bonding functional group.
  • Examples of the method for obtaining the modified conjugated diene-based rubber include a method obtained by adding a modified compound to a polymerized product of the conjugated diene monomer (hereinafter, also referred to as “production method (1)”), and a conjugated diene polymer. (Hereinafter, also referred to as “manufacturing method (2)”), a method obtained by copolymerizing a conjugated diene monomer and a radically polymerizable compound having a hydrogen-binding functional group (hereinafter, also referred to as “manufacturing method (2)").
  • production method (3) a modified compound capable of reacting with the polymerization active terminal is added to the polymer of the unmodified conjugated diene monomer having a polymerization active end before the polymerization terminator is added.
  • production method (4) a modified compound capable of reacting with the polymerization active terminal is added to the polymer of the unmodified conjugated diene monomer having a polymerization active end before the polymerization terminator is added.
  • the production method (1) is a method of adding a modified compound to a polymerized conjugated diene monomer, that is, an unmodified conjugated diene-based rubber (hereinafter, also referred to as “unmodified conjugated diene-based rubber”).
  • the unmodified conjugated diene-based rubber can be obtained by polymerizing a conjugated diene and, if necessary, a monomer other than the conjugated diene by, for example, an emulsion polymerization method, a solution polymerization method, or the like.
  • a known or known method can be applied.
  • a Cheegler catalyst e.g., a metallocene catalyst
  • an anionic polymerizable active metal or active metal compound e.g., a polar compound.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentan, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, Examples thereof include aromatic hydrocarbons such as toluene and xylene.
  • anion-polymerizable active metal examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; and lanthanoid-based rare earth metals such as lanthanum and neodym. .. Among these anionic polymerizable active metals, alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable. As the anionic polymerizable active metal compound, an organic alkali metal compound is preferable.
  • organic alkali metal compound examples include organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stillbenlithium; , 1,4-Dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene and other polyfunctional organic lithium compounds; sodium naphthalene, potassium naphthalene and the like.
  • organic alkali metal compounds an organic lithium compound is preferable, and an organic monolithium compound is more preferable.
  • the amount of the organic alkali metal compound used can be appropriately set according to the melt viscosity, molecular weight, etc. of the target unmodified conjugated diene rubber and modified conjugated diene rubber, but 100 parts by mass of all the monomers containing the conjugated diene. However, it is usually used in an amount of 0.01 to 3 parts by mass.
  • the organic alkali metal compound can also be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, or dibenzylamine.
  • Polar compounds are usually used in anionic polymerization to adjust the microstructure of the conjugated diene moiety without inactivating the reaction.
  • the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether, 2,2-di (2-tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphines. Examples include compounds.
  • the polar compound is usually used in an amount of 0.01-1000 mol with respect to the organic alkali metal compound.
  • the temperature of the solution polymerization is usually in the range of ⁇ 80 to 150 ° C., preferably in the range of 0 to 100 ° C., and more preferably in the range of 10 to 90 ° C.
  • the polymerization mode may be either a batch type or a continuous type.
  • the polymerization reaction can be stopped by adding a polymerization inhibitor.
  • the polymerization terminator include alcohols such as methanol and isopropanol.
  • the unmodified conjugated diene-based rubber can be isolated by pouring the obtained polymerization reaction solution into a poor solvent such as methanol to precipitate a polymerized product, or by washing the polymerization reaction solution with water, separating and drying.
  • the solution polymerization method is preferable as the method for producing the unmodified conjugated diene-based rubber.
  • emulsification polymerization method a known or known method can be applied.
  • a monomer containing a predetermined amount of conjugated diene is emulsified and dispersed in the presence of an emulsifier, and emulsion polymerization is carried out by a radical polymerization initiator.
  • the emulsifier include long-chain fatty acid salts having 10 or more carbon atoms and rosin salts.
  • the long-chain fatty acid salt include potassium salts and sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
  • Water is usually used as the dispersion solvent, and a water-soluble organic solvent such as methanol or ethanol may be contained as long as the stability during polymerization is not impaired.
  • a water-soluble organic solvent such as methanol or ethanol
  • examples of the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, hydrogen peroxide and the like.
  • a chain transfer agent may be used to adjust the molecular weight of the resulting unmodified conjugated diene rubber.
  • chain transfer agent examples include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpenes, turpinolene, ⁇ -terpinene, ⁇ -methylstyrene dimer and the like.
  • the temperature of emulsion polymerization can be appropriately set depending on the type of radical polymerization initiator used, etc., but is usually in the range of 0 to 100 ° C, preferably in the range of 0 to 60 ° C.
  • the polymerization mode may be either continuous polymerization or batch polymerization.
  • the polymerization reaction can be stopped by adding a polymerization inhibitor.
  • the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
  • an antiaging agent may be added if necessary.
  • unreacted monomers are removed from the obtained latex as needed, and then salts such as sodium chloride, calcium chloride and potassium chloride are used as coagulants, and if necessary, nitrates, sulfuric acid and the like are used.
  • the polymer is recovered by coagulating the polymer while adjusting the pH of the coagulation system to a predetermined value by adding an acid, and then separating the dispersion solvent. Then, by washing with water, dehydrating, and then drying, an unmodified conjugated diene-based rubber can be obtained.
  • latex and extended oil prepared as an emulsified dispersion may be mixed and recovered as an oil-expanded unmodified conjugated diene-based rubber.
  • the modified compound used in the production method (1) is not particularly limited, but one having a hydrogen-bonding functional group is preferable from the viewpoint of improving the adhesiveness of the reinforcing fiber.
  • the hydrogen-bonding functional group include the same as described above. Among them, an amino group, an imidazole group, a urea group, a hydroxy group, an epoxy group, a mercapto group, a silanol group, an aldehyde group, a carboxy group and a derivative thereof are preferable from the viewpoint of the strength of the hydrogen bonding force.
  • the derivative of the carboxy group is preferably a salt thereof, an esterified product thereof, an amidated product thereof, or an acid anhydride thereof.
  • One of these modified compounds having a hydrogen-bonding functional group may be used alone, or two or more thereof may be used in combination.
  • modified compound examples include unsaturated carboxylic acids such as maleic acid, fumaric acid, citraconic acid, and itaconic acid; unsaturated such as maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride, and itaconic anhydride.
  • Carboxylic acid anhydrides unsaturated carboxylic acid esters such as maleic acid ester, fumaric acid ester, citraconic acid ester, and itaconic acid ester
  • unsaturated carboxylic acid amides such as maleic acid amide, fumaric acid amide, citraconic acid amide, and itaconic acid amide.
  • Saturated carboxylic acid imides such as maleic acid imide, fumaric acid imide, citraconic acid imide, and itaconic acid imide; vinyl trimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, mercaptomethylmethyldiethoxysilane, mercaptomethyltriethoxysilane , 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethoxydimethylsilane, 2-mercaptoethylethoxydimethylsilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3 -Mercaptpropyldimethoxymethylsilane, 3-mercaptopropyldiethoxymethylsilane, 3-mercaptopropyldimethoxyethylsilane, 3-mercaptopropyldiethoxyeth
  • the amount of the modified compound used is preferably 0.1 to 100 parts by mass, more preferably 0.5 to 50 parts by mass, and 1 to 1 to 50 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene rubber. It is more preferably 30 parts by mass.
  • the reaction temperature is usually preferably in the range of 0 to 200 ° C, more preferably in the range of 50 to 200 ° C.
  • a compound having a hydroxyl group such as 2-hydroxyethyl methacrylate or methanol after grafting maleic anhydride on an unmodified conjugated diene rubber obtained by living anionic polymerization, a compound such as water, etc. There is a method of reacting.
  • the amount of the modified compound added to the modified conjugated diene rubber is preferably 0.5 to 40 parts by mass, more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene rubber. , 1.5 to 20 parts by mass is more preferable.
  • the amount of the modified compound added to the modified conjugated diene rubber can be calculated based on the acid value of the modified compound, and various analytical instruments such as infrared spectroscopy and nuclear magnetic resonance spectroscopy are used. You can also ask for it.
  • the method for adding the modified compound to the unmodified conjugated diene rubber is not particularly limited, and is selected from, for example, a liquid unmodified conjugated diene rubber, an unsaturated carboxylic acid, an unsaturated carboxylic acid derivative, a silane compound, and the like.
  • examples thereof include a method of adding one or more modified compounds and, if necessary, a radical generator, and heating in the presence or absence of an organic solvent.
  • the radical generator to be used is not particularly limited, and commercially available organic peroxides, azo compounds, hydrogen peroxide and the like can be used.
  • the organic solvent used in the above method generally include a hydrocarbon solvent and a halogenated hydrocarbon solvent.
  • hydrocarbon solvents such as n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene, and xylene are preferable.
  • an antiaging agent may be added from the viewpoint of suppressing side reactions.
  • Anti-aging agents include 2,6-di-butyl-4-methylphenol (BHT), 2,2'-methylenebis (4-methyl-6-t-butylphenol), and 4,4'-thiobis (3-methyl).
  • Phosphoric acid-based antioxidant N-phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine (Nocrack 6C), bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (LA-77Y), N, N-dioctadecyl hydroxylamine (IrgastabFS042), bis (4-t-octylphenyl) amine (Irganox5057) and other amine-based antioxidants; dioctadecyl 3,3'-dithiobispropio Nate, didodecyl-3,3'-thiodipropionate (IrganoxPS800), bis [3- (dodecylthio) propionic acid-2,2-bis [3- (dodecylthio) -1-oxopropyloxy] methyl] -1, Sulfur-based antioxidants such as 3-propanediyl (
  • One type of antiaging agent may be used alone, or two or more types may be used in combination. Among these, it is effective and versatile to use 2,6-di-butyl-4-methylphenol, N-phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine (Nocrack 6C) and the like. It is preferable in terms of.
  • the amount of the antiaging agent added is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the unmodified conjugated diene rubber. When the amount of the antiaging agent added is within the above range, side reactions can be suppressed and a modified conjugated diene rubber can be obtained in good yield.
  • the weight average molecular weight (Mw) of the conjugated diene rubber is not particularly limited, but is preferably more than 2,000, more preferably 5,000 or more, and more preferably 10,000, from the viewpoint of improving the adhesiveness. It is more preferably 15,000 or more, further preferably 20,000 or more, particularly preferably 25,000 or more, and 120 from the viewpoint of handleability. It is preferably 000 or less, more preferably 100,000 or less, further preferably 75,000 or less, and even more preferably 55,000 or less.
  • the number average molecular weight (Mn) of the conjugated diene rubber is not particularly limited, but is preferably more than 2,000, more preferably 5,000 or more, and more preferably 10,000, from the viewpoint of improving the adhesiveness. It is more preferably 15,000 or more, further preferably 20,000 or more, particularly preferably 25,000 or more, and from the viewpoint of handleability. , 120,000 or less, more preferably 75,000 or less, further preferably 50,000 or less, and even more preferably 47,000 or less.
  • Mw and Mn of the conjugated diene rubber are polystyrene-equivalent weight average molecular weight and number average molecular weight obtained from the measurement of gel permeation chromatography (GPC), and specifically, they shall be measured by the method described in Examples. Can be done.
  • the molecular weight distribution (Mw / Mn) of the conjugated diene rubber is preferably 1.00 to 5.00, more preferably 1.00 to 3.00, and 1.00 to 2.00. It is even more preferably 1.00 to 1.50, and even more preferably 1.00 to 1.30. When Mw / Mn is within the above range, the variation in the viscosity of the conjugated diene rubber is small and the handling is easy.
  • the molecular weight distribution (Mw / Mn) means the ratio of the weight average molecular weight (Mw) / number average molecular weight (Mn) in terms of standard polystyrene obtained by GPC measurement.
  • the conjugated diene rubber is preferably liquid.
  • liquid means that the melt viscosity of the conjugated diene rubber measured at 38 ° C. is 4,000 Pa ⁇ s or less.
  • the melt viscosity is preferably 0.1 Pa ⁇ s or more, more preferably 1 Pa ⁇ s or more, further preferably 10 Pa ⁇ s or more, and 30 Pa ⁇ s or more. It is even more preferably 50 Pa ⁇ s or more, and from the viewpoint of handleability, it is preferably 2,500 Pa ⁇ s or less, and more preferably 2,100 Pa ⁇ s or less. ..
  • the melt viscosity of the conjugated diene rubber means the viscosity measured at 38 ° C. using a Brookfield type viscometer (B type viscometer).
  • the glass transition temperature (Tg) of a conjugated diene-based rubber may vary depending on the vinyl content of the conjugated diene unit, the type of the conjugated diene, the content of a unit derived from a monomer other than the conjugated diene, etc., but is -100.
  • the temperature is preferably -10 ° C, more preferably -100 to 0 ° C, and even more preferably -100 to -10 ° C.
  • the vinyl content of the conjugated diene rubber is preferably 80 mol% or less, more preferably 50 mol% or less, still more preferably 30 mol% or less. When the vinyl content is within the above range, the adhesiveness is improved.
  • the term "vinyl content” refers to a conjugated diene unit contained in a modified liquid diene rubber, which is bonded by a 1,2-bond or a 3,4-bond in a total of 100 mol% of the conjugated diene unit. It means the total mol% of (conjugated diene units having bonds other than 1,4-bonds).
  • the vinyl content is derived from the signal derived from the conjugated diene unit bonded by 1,2-bond or 3,4-bond using 1 H-NMR and the conjugated diene unit bonded by 1,4-bond. It can be calculated from the integrated value ratio of the signals of.
  • an adhesive layer by adhering an adhesive component composed of an emulsion in which the conjugated diene rubber is dispersed in water to a surface-modified fiber.
  • an emulsion (latex) of an adhesive component may be prepared in advance by a mechanical method or a chemical method, and used at a predetermined concentration by dilution or the like. preferable.
  • Examples of the mechanical method include a method using a homogenizer, a homomixer, a disperser mixer, a colloid mill, a pipeline mixer, a high-pressure homogenizer, an ultrasonic emulsifier, and the like, and these can be used alone or in combination.
  • Examples of the chemical method include various methods such as an inversion emulsification method, a D-phase emulsification method, an HLB temperature emulsification method, a gel emulsification method, and a liquid crystal emulsification method. Is preferable.
  • an emulsion having a fine particle size it may be preferable to carry out the work while heating at an appropriate temperature (for example, 30 to 80 ° C.) for the purpose of lowering the viscosity of the modified conjugated diene rubber.
  • an appropriate temperature for example, 30 to 80 ° C.
  • emulsifier examples include fatty acid soaps such as potassium or sodium salts such as oleic acid, lauric acid, myristic acid, palmitic acid and stearic acid, resin soaps such as potassium or sodium salts such as rosin and disproportionated rosin, alkylbenzene sulfonic acids and alkyls.
  • fatty acid soaps such as potassium or sodium salts such as oleic acid, lauric acid, myristic acid, palmitic acid and stearic acid
  • resin soaps such as potassium or sodium salts such as rosin and disproportionated rosin, alkylbenzene sulfonic acids and alkyls.
  • Sulfonic acid soap such as sodium or potassium salt such as naphthalene sulfonic acid, sulfate ester soap such as sodium salt such as oleyl sulfate ester, lauryl sulfate ester, polyoxyethylene alkyl sulfate ester, hexadecyl phosphate, polyoxyethylene lauryl ether phos.
  • Anionic soaps such as phosphate soaps such as fate, polyoxyethylene tridecyl ether phosphate and polyoxyethylene nonylphenyl phosphate, nonion soaps such as polyoxyethylene nonylphenyl ether, polyethylene glycol laurate and polyethylene glycol oleate, Examples thereof include aliphatic amine hydrochlorides such as dodecylamine hydrochloride, cation soaps such as octyltrimethylammonium chloride, dioctyldimethylammonium chloride, benzyldimethyloctylammounium salt, and alkylpyridium salts such as dodecylpyridium chloride. These may be used alone or in combination.
  • the amount of the emulsifier used is preferably 0.5 to 15 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the conjugated diene rubber.
  • the amount of the emulsifier used is not more than the above upper limit, the emulsion can be stably produced while suppressing the production cost. Further, when the amount of the emulsifier used is at least the above lower limit, it is possible to suppress an increase in the emulsion particle size and suppress the occurrence of creaming and separation phenomena.
  • alkaline substances such as sodium hydroxide, potassium hydroxide and amines can be added as needed to adjust the pH before use.
  • the content of the conjugated diene rubber in the adhesive component is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably, from the viewpoint of improving the adhesive force with the rubber. It is 10% by mass or more, and preferably 80% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less, still more preferably 40% by mass or less.
  • the content of the conjugated diene rubber in the adhesive component is within the above range, it is possible to prevent the viscosity of the adhesive component from becoming extremely high while obtaining sufficient adhesive force.
  • the conjugated diene rubber may be used alone or in combination of two or more.
  • the adhesive component in the present invention may contain components other than the conjugated diene-based rubber as long as the adhesive force with the rubber is not impaired.
  • the other components include other polymers (for example, unmodified conjugated diene-based rubber), acids, alkalis, antioxidants, curing agents, dispersants, pigments, dyes, adhesive aids, carbon black and the like.
  • the adhesive component contains another component, the content thereof is preferably 10,000 parts by mass or less, and preferably 1,000 parts by mass or less, based on 100 parts by mass of the conjugated diene rubber. It is more preferably 100 parts by mass or less, further preferably 50 parts by mass or less.
  • the method for producing the reinforcing fiber is not particularly limited, and the fiber can be produced by a method including a step of adhering the conjugated diene rubber to the fiber in a state of being dispersed in water.
  • the above-mentioned is made from the viewpoint of efficiently adhering the conjugated diene rubber to the surface-modified fiber (fiber having a surface-modified layer on the surface) and from the viewpoint of suppressing contamination of the manufacturing equipment.
  • a method including a step of adhering the conjugated diene rubber to the fiber in a state of being mixed with the oil may be adopted.
  • the following method can be mentioned.
  • the method (I) is not particularly limited as long as it is a method of forming an adhesive layer composed of the adhesive component on the surface of the surface-modified fiber, but from the viewpoint of improving the adhesiveness with rubber, the following step I-1 The method including is preferable.
  • Step I-1 A step of adhering the adhesive component to the surface of the surface-modified fiber.
  • step I-1 there is no particular limitation on the method of adhering the adhesive component to the surface-modified fiber, for example, a method of adhering the adhesive component as it is, a method of adding a solvent to the adhesive component as necessary, and adhering the adhesive component. And so on.
  • a method for adhering the adhesive component it is preferable to use one or more selected from dipping, roll coater, oiling roller, oiling guide, nozzle (spray) coating, brush coating and the like.
  • the amount of the adhesive component adhered is preferably 0.01 part by mass or more, preferably 0.1 part by mass, with respect to 100 parts by mass of the fiber used as a raw material, from the viewpoint of improving the adhesiveness between the reinforcing fiber and the rubber. It is more preferably 10 parts by mass or less, more preferably 1 part by mass or more, and from the viewpoint of the balance between manufacturing cost and effect, it is preferably 10 parts by mass or less, and 8 parts by mass or less. Is more preferable, and 7 parts by mass or less is further preferable.
  • the reinforcing fiber of the present invention can be obtained by adhering the adhesive component to the surface-modified fiber and then blending it at room temperature of about 20 ° C. for about 3 to 10 days.
  • Step I-2 may be carried out.
  • Step I-2 Heat treatment of the surface-modified fiber to which the adhesive component obtained in Step I-1 is attached
  • the heat treatment in Step I-2 is preferably performed at a treatment temperature of 100 to 200 ° C. for 0.1 seconds or more. It is preferable to carry out the treatment with a processing time of 2 minutes. Since the conjugated diene rubber contained in the adhesive component has a reactive multiple bond, the heat treatment in the presence of oxygen is preferably 200 ° C. or lower, more preferably 175 ° C. or lower.
  • the adhesive strength can be improved without reducing the amount of reactive multiple bonds in the conjugated diene rubber, the deterioration of the fibers is suppressed, and the quality such as coloring is also improved. It will be good.
  • the reinforcing fiber may contain components other than the surface-modified fiber and the adhesive component.
  • other components include cross-linking agents, acids, bases, inorganic salts, organic salts, pigments, dyes, antioxidants, polymerization initiators, plasticizers and the like.
  • the reinforcing fiber is preferably a multifilament having a single yarn fineness of 0.1 dtex or more and 30 dtex or less.
  • the single yarn fineness may be less than 0.1 dtex, but it is preferably 0.1 dtex or more because it is difficult to industrially produce it. Further, when the single yarn fineness is 30 dtex or less, the surface area of the fiber when it is made into a reinforcing fiber becomes large, so that the adhesiveness with rubber is improved.
  • the reinforcing fiber of the present invention has a single yarn fineness of more preferably 0.3 dtex or more, further preferably 0.5 dtex or more, still more preferably 1 dtex or more, and even more preferably 20 dtex or less, still more preferable. Is preferably a multifilament having 15 dtex or less, more preferably 10 dtex or less.
  • the rubber adhesive strength of the reinforcing fiber of the present invention is preferably 30N / 3 or more, more preferably 40N / 3 or more, further preferably 50N / 3 or more, and 60N / 3 or more.
  • the above is more preferable, and it is usually 200 N / 3 or less.
  • the rubber adhesive strength of the reinforcing fiber is at least the above lower limit value, a woven fabric, a knitted fabric, and a molded body having excellent reinforcing strength can be obtained.
  • the rubber adhesive strength of the reinforcing fiber can be measured by the method described in Examples.
  • the reinforcing fiber may have a fiber strength of 4 cN / dtex or more and 20 cN / dtex or less.
  • PET or nylon fiber having a strength of 6 cN / dtex or more is preferable.
  • vinylon or PET having a strength of 6 cN / dtex or more is preferable.
  • the reinforcing fiber of the present invention can be used in any shape, but it is preferable to use it in the form of a fiber cord, a woven fabric, a knitted fabric or the like containing the reinforcing fiber at least in a part thereof, and at least one of the reinforcing fibers is used. It is more preferable to use it as a woven fabric or a knitted fabric contained in a part. For example, as described later, it can be used as a knit that adheres to rubber. It can also be used as a reinforcing fiber to be embedded in resin, cement or the like.
  • the molded product of the present invention is not particularly limited as long as it uses the reinforcing fibers.
  • a molded body having the reinforcing fiber and the rubber layer (hereinafter, also referred to as “rubber molded body”) is particularly preferable.
  • the reinforcing fibers used in the rubber molded body are preferably used as a woven fabric or knitted fabric containing the reinforcing fibers at least in a part thereof, and the woven fabric or a knitted fabric containing the reinforcing fibers in at least a part thereof. It is more preferable to use it as a laminated body in which a reinforcing layer made of a knitted fabric and a rubber layer are laminated.
  • the rubber molded body can be used, for example, as a member of a tire such as an automobile tire, a belt such as a conveyor belt or a timing belt, a hose, and a rubber product such as a vibration-proof rubber.
  • a tire, a belt, or a hose It is more preferable to use it as a tire.
  • the automobile tire for example, it can be used for various members made of a composite material of a reinforcing fiber and a rubber component such as a belt, a carcass ply, a breaker, and a bead tape.
  • the hose can be used for transporting various fluids in various applications, and is suitable for, for example, a fluid transport hose for automobiles, particularly a liquid fuel hose for automobiles and a brake for automobiles. It is preferably used for oil hoses and fluid hoses, and more preferably used for brake oil hoses for automobiles.
  • the rubber molded body is preferably molded by using the reinforcing fiber and a rubber composition containing a compounding agent usually used in the rubber industry as a rubber component.
  • the rubber component is not particularly limited, but for example, NR (natural rubber), IR (polyisoprene rubber), BR (polybutadiene rubber), SBR (styrene-butadiene rubber), NBR (nitrile rubber), EPM (ethylene-).
  • Propylene copolymer rubber EPDM (ethylene-propylene-non-conjugated diene copolymer rubber), IIR (butyl rubber), halogenated butyl rubber, CR (chloroprene rubber) and the like can be mentioned.
  • NR NR
  • BR BR
  • SBR SBR
  • One of these rubber components may be used alone, or two or more of them may be used in combination.
  • those commonly used in the tire industry can be used.
  • natural rubber alone or a combination of natural rubber and SBR, natural rubber and BR, and SBR and BR.
  • the natural rubber is generally used in the tire industry such as TSR (Technically Specified Rubber) such as SMR (Malaysia TSR), SIR (Indonesian TSR), STR (Thai TSR) and RSS (Ribbed Smoked Sheet).
  • TSR Technicalnically Specified Rubber
  • SMR Magnetic Reliable TSR
  • SIR Indonesian TSR
  • STR Thai TSR
  • RSS Rabbed Smoked Sheet
  • modified natural rubber such as natural rubber used, high-purity natural rubber, epoxidized natural rubber, hydroxylated natural rubber, hydrogenated natural rubber, and grafted natural rubber.
  • the SBR general ones used for tire applications can be used, but specifically, those having a styrene content of 0.1 to 70% by mass are preferable, and those having a styrene content of 5 to 50% by mass are more preferable. It is more preferably 15 to 35% by mass. Further, a vinyl content of 0.1 to 60% by mass is preferable, and a vinyl content of 0.1 to 55% by mass is more preferable.
  • the weight average molecular weight (Mw) of the SBR is preferably 100,000 to 2,500,000, more preferably 150,000 to 2,000,000, and 200,000 to 1,500,000. Is more preferable. Within the above range, both workability and mechanical strength can be achieved.
  • the weight average molecular weight of SBR is a polystyrene-equivalent weight average molecular weight obtained from the measurement of gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a modified SBR in which a functional group is introduced into the SBR may be used as long as the effect of the present invention is not impaired.
  • the functional group include an amino group, an alkoxysilyl group, a hydroxy group, an epoxy group, a carboxy group and the like.
  • the rubber composition may further contain a filler in addition to the rubber component.
  • a filler examples include inorganic fillers such as carbon black, silica, clay, mica, calcium carbonate, magnesium hydroxide, aluminum hydroxide, barium sulfate, titanium oxide, glass fibers, fibrous fillers, and glass balloons; resin particles, Examples thereof include organic fillers such as wood flour and cork flour.
  • carbon black and silica are preferable from the viewpoint of improving physical properties such as improvement of mechanical strength.
  • the carbon black examples include furnace black, channel black, thermal black, acetylene black, and Ketjen black. Among these carbon blacks, furnace black is preferable from the viewpoint of improving the cross-linking speed and the mechanical strength.
  • the average particle size of the carbon black is preferably 5 to 100 nm, more preferably 5 to 80 nm, and even more preferably 5 to 70 nm.
  • the average particle size of the carbon black can be obtained by measuring the diameter of the particles with a transmission electron microscope and calculating the average value.
  • silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate and the like. Among these silicas, wet silica is preferable.
  • the average particle size of the silica is preferably 0.5 to 200 nm, more preferably 5 to 150 nm, and even more preferably 10 to 100 nm. The average particle size of the silica can be obtained by measuring the diameter of the particles with a transmission electron microscope and calculating the average value.
  • the content of the filler with respect to 100 parts by mass of the rubber component is preferably 20 to 150 parts by mass, more preferably 25 to 130 parts by mass, and 25 to 110 parts by mass. Is more preferable.
  • the content thereof is preferably 20 to 120 parts by mass and 20 to 90 parts by mass with respect to 100 parts by mass of the rubber component. Is more preferable, and 20 to 80 parts by mass is further preferable.
  • One of these fillers may be used alone, or two or more thereof may be used in combination.
  • the rubber composition may further contain a cross-linking agent in order to cross-link the rubber component.
  • a cross-linking agent examples include sulfur, sulfur compounds, oxygen, organic peroxides, phenolic resins, amino resins, quinone and quinonedioxime derivatives, halogen compounds, aldehyde compounds, alcohol compounds, epoxy compounds, metal halides and organics. Examples thereof include metal halides and silane compounds.
  • One of these cross-linking agents may be used alone, or two or more thereof may be used in combination.
  • the cross-linking agent is usually 0.1 to 10 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.8 to 5 parts by mass with respect to 100 parts by mass of the rubber component. It is contained in parts by mass.
  • the rubber composition may further contain a vulcanization accelerator, for example, when sulfur, a sulfur compound, or the like is contained as a cross-linking agent for cross-linking (vulcanizing) the rubber component.
  • a vulcanization accelerator for example, when sulfur, a sulfur compound, or the like is contained as a cross-linking agent for cross-linking (vulcanizing) the rubber component.
  • the brewing accelerator include guanidine-based compounds, sulfenamide-based compounds, thiazole-based compounds, thiuram-based compounds, thiourea-based compounds, dithiocarbamic acid-based compounds, aldehyde-amine-based compounds, aldehyde-ammonia-based compounds, and imidazoline. Examples thereof include system compounds and xantate compounds.
  • One of these vulcanization accelerators may be used alone, or two or more thereof may be used in combination.
  • the vulcanization accelerator is usually contained in an amount of 0.1 to 15 parts by mass, preferably
  • the rubber composition may further contain a vulcanization aid when, for example, sulfur, a sulfur compound, or the like is contained as a cross-linking agent for cross-linking (vulcanizing) the rubber component.
  • a vulcanization aid include fatty acids such as stearic acid, metal oxides such as zinc oxide, and fatty acid metal salts such as zinc stearate.
  • fatty acids such as stearic acid
  • metal oxides such as zinc oxide
  • fatty acid metal salts such as zinc stearate.
  • One of these vulcanization aids may be used alone, or two or more thereof may be used in combination.
  • the vulcanization aid is usually contained in an amount of 0.1 to 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition contains silica as a filler, it is preferable to further contain a silane coupling agent.
  • the silane coupling agent include sulfide compounds, mercapto compounds, vinyl compounds, amino compounds, glycidoxy compounds, nitro compounds, chloro compounds and the like. These silane coupling agents may be used alone or in combination of two or more.
  • the silane coupling agent is preferably contained in an amount of 0.1 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, and further preferably 1 to 15 parts by mass with respect to 100 parts by mass of silica. When the content of the silane coupling agent is within the above range, the dispersibility, the coupling effect, and the reinforcing property are improved.
  • the rubber composition is used for the purpose of improving processability, fluidity, etc., as long as it does not impair the effects of the present invention, and if necessary, silicon oil, aroma oil, TDAE (Treated Distilled Aromatic Extracts), MES (Mild Extracted). Solvates), RAE (Residual Aromatic Extracts), paraffin oil, process oils such as naphthenic oil, aliphatic hydrocarbon resins, alicyclic hydrocarbon resins, C9 resins, rosin resins, kumaron-inden resins, phenolic resins, etc.
  • the resin component of the above may be contained as a softening agent.
  • the content thereof is preferably less than 50 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition is used as an antioxidant, a wax, an antioxidant, a lubricant, and a light stabilizer, if necessary, for the purpose of improving weather resistance, heat resistance, oxidation resistance, etc., as long as the effects of the present invention are not impaired.
  • Agents, anti-scorch agents, processing aids, colorants such as pigments and pigments, flame retardants, antistatic agents, matting agents, anti-blocking agents, UV absorbers, mold release agents, foaming agents, antibacterial agents, antifungal agents , Additives such as fragrances may be contained.
  • the antioxidant include hindered phenol compounds, phosphorus compounds, lactone compounds, hydroxyl compounds and the like.
  • the antiaging agent include amine-ketone compounds, imidazole compounds, amine compounds, phenol compounds, sulfur compounds, phosphorus compounds and the like. These additives may be used alone or in combination of two or more.
  • the reinforcing fiber is embedded in the unvulcanized rubber composition, and the rubber composition is vulcanized to obtain the surface-modified fiber and the rubber component.
  • a molded body bonded via an adhesive component can be obtained.
  • the brake oil hose for an automobile has, for example, an inner rubber layer and an outer rubber layer, and has one or two reinforcing layers made of the reinforcing fibers between the inner rubber layer and the outer rubber layer. Things can be mentioned. Examples of the rubber component constituting the inner rubber layer and the outer rubber layer include those described above. Among them, EPDM, SBR and the like can be mentioned as the rubber component constituting the inner rubber layer, and EPDM, CR and the like can be mentioned as the rubber component constituting the outer rubber layer.
  • the reinforcing layer can be formed by braiding reinforcing fibers.
  • a reinforcing layer (first reinforcing layer) in which the reinforcing fibers are braided is formed on the outer surface of the inner rubber layer.
  • first reinforcing layer in which the reinforcing fibers are braided is formed on the outer surface of the inner rubber layer.
  • second reinforcing layer an intermediate rubber layer is further formed on the outer surface of the first reinforcing layer, and the reinforcing fiber is woven on the outer surface of the intermediate rubber layer (second reinforcing layer).
  • a reinforcing layer) may be formed. Then, it can be manufactured by forming an outer rubber layer on the outer surface of the reinforcing layer (first reinforcing layer or second reinforcing layer) and vulcanizing it.
  • the vulcanization temperature can be appropriately selected depending on the type of constituent material of each layer of the brake oil hose, but from the viewpoint of suppressing deterioration of the rubber and the reinforcing fiber and improving the adhesive strength between the rubber and the reinforcing fiber, the vulcanization temperature is 200 ° C. or less. It is preferable to have.
  • Production Example 1 Production of Modified Conjugated Diene Rubber (A-1) A sufficiently dried 5 L autoclave is substituted with nitrogen, 1140 g of hexane and 20.9 g of n-butyllithium (17 mass% hexane solution) are charged, and the temperature is adjusted to 50 ° C. After raising the temperature, 1390 g of butadiene was sequentially added and polymerized for 1 hour under stirring conditions while controlling the polymerization temperature to be 50 ° C. Then, methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water.
  • A-1 A sufficiently dried 5 L autoclave is substituted with nitrogen, 1140 g of hexane and 20.9 g of n-butyllithium (17 mass% hexane solution) are charged, and the temperature is adjusted to 50 ° C. After raising the temperature, 1390 g of butadiene
  • Butyl) -p-phenylenediamine (trade name "Nocrack 6C", manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) was added and reacted at 170 ° C. for 24 hours to modify maleic anhydride-modified liquid polybutadiene (A-1). ) was obtained.
  • Production Example 2 Production of Modified Conjugated Diene Rubber (A-2) A sufficiently dried 5 L autoclave is substituted with nitrogen, and 1260 g of hexane and 36.3 g of n-butyllithium (17 mass% hexane solution) are charged and heated to 50 ° C. After raising the temperature, 1260 g of butadiene was sequentially added under stirring conditions while controlling the polymerization temperature to be 50 ° C., and the mixture was polymerized for 1 hour. Then, methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the obtained polymer solution, the mixture was stirred, and the polymer solution was washed with water.
  • A-2 Modified Conjugated Diene Rubber
  • Production Example 3 Production of Modified Conjugated Diene Rubber (A-3) 9.0 g of methanol was added to 525 g of maleic anhydride-modified liquid polybutadiene (A-1) obtained in Production Example 1 and 6 at 80 ° C. The reaction was carried out for a period of time to obtain monomethyl maleate-modified liquid polybutadiene (A-3).
  • the methods for measuring and calculating the physical properties of the polyamine compound and the modified conjugated diene rubber are as follows. The results are shown in Tables 1 and 2. ⁇ Measurement method of weight average molecular weight, number average molecular weight and molecular weight distribution>
  • the weight average molecular weight (Mw) of the polyamine compound, the weight average molecular weight (Mw), the number average molecular weight (Mn) and the molecular weight distribution (Mw / Mn) of the modified conjugated diene rubber are determined by standard polystyrene by GPC (gel permeation chromatography). Obtained as a converted value.
  • the measuring device and conditions are as follows.
  • GPC device GPC device "GPC8020” manufactured by Tosoh Corporation -Separation column: "TSKgelG4000HXL” manufactured by Tosoh Corporation -Detector: "RI-8020” manufactured by Tosoh Corporation -Eluent: Tetrahydrofuran-Eluent flow rate: 1.0 ml / min-Sample concentration: 5 mg / 10 ml -Column temperature: 40 ° C
  • melt viscosity The melt viscosity of the modified conjugated diene rubber at 38 ° C. was measured with a Brookfield viscometer (manufactured by BROOKFIELD ENGINEERING LABS. INC.).
  • DSC differential scanning calorimetry
  • the vinyl content was calculated from the area ratio of the peak of the double bond derived from the vinylized diene compound and the peak of the double bond derived from the non-vinylized diene compound in the obtained spectrum.
  • the average number of hydrogen-bonding functional groups per molecule of modified conjugated diene-based rubber was calculated from the following formula from the equivalent of hydrogen-bonding functional groups (g / eq) of the modified conjugated diene-based rubber and the number average molecular weight Mn in terms of styrene. ..
  • Average number of hydrogen-bonding functional groups per molecule [(number average molecular weight (Mn)) / (molecular weight of styrene unit) ⁇ (conjugated diene and, if necessary, average of other monomer units other than conjugated diene) Molecular weight)] / (equivalent to hydrogen-bonding functional group)
  • the method for calculating the equivalent of the hydrogen-bonding functional group can be appropriately selected depending on the type of the hydrogen-bonding functional group.
  • the average number of hydrogen-bonding functional groups per molecule of maleic anhydride-modified conjugated diene-based rubber and monomethyl-modified conjugated diene-based rubber maleate was calculated for the maleic anhydride-modified conjugated diene-based rubber and monomethyl-modified conjugated diene-based maleate.
  • the acid value of the rubber was determined, and the equivalent amount (g / eq) of the hydrogen-bonding functional group was calculated from the acid value.
  • the sample after the denaturation reaction was washed 4 times with methanol (5 mL per 1 g of the sample) to remove impurities such as antioxidants, and then the sample was dried under reduced pressure at 80 ° C. for 12 hours.
  • the mass of the hydrogen-bonding functional group contained in 1 g of the maleic anhydride-modified conjugated diene-based rubber and the monomethyl-modified conjugated diene-based rubber maleate is calculated by the following formula, and further, the maleic anhydride-modified conjugated diene-based rubber is calculated.
  • the mass other than the functional group (polymer main chain mass) contained in 1 g of monomethyl-modified conjugated diene-based rubber maleate was calculated.
  • the equivalent of the hydrogen-bonding functional group (g / eq) was calculated from the following formula.
  • Table 2 shows the compounds used for the surface modification layer and their characteristics.
  • a twisted fiber cord was prepared by multiplying two nylon fibers (total fineness 1400 dtex, single yarn fineness 6.86 dtex), which are polyamide fibers, at an upper twist of 470 times / m and a lower twist of 470 times / m.
  • the twisted fiber cord was immersed in an aqueous solution containing a surface modifier (B-1) and then squeezed with a roller.
  • the obtained fiber cord was dried at 140 ° C. for 60 seconds and further heat-treated at 210 ° C. for 60 seconds to prepare a surface-modified fiber.
  • A-2 modified conjugated diene rubber
  • the fiber was squeezed with a roller, dried at 140 ° C. for 60 seconds, and then wound to prepare a reinforcing fiber.
  • Example 8 Reinforcing fibers were produced in the same manner as in Example 1 except that the fibers were changed to vinylon fibers (total fineness 1200 dtex, single yarn fineness 6.00 dtex) which are polyvinyl alcohol-based fibers.
  • Liquid B SBR latex (effective content 40% by mass): 207 parts by mass Vinyl pyridine-modified SBR latex (effective content 40% by mass): 233 parts by mass After mixing the above liquid B and the aged liquid A, the temperature is 25 ° C. The RFL solution was produced by aging for 16 hours.
  • NR rubber 70 parts by mass SBR rubber: 41.25 parts by mass Filler (carbon black): 45 parts by mass Vulcanizing agent (sulfur powder): 3.5 parts by mass Vulcanization aid (zinc flower, stealic acid): 6 parts by mass Vulcanization accelerator (thiazole type): 1 part by mass
  • the fiber and the rubber can be firmly adhered without using resorcinol, formaldehyde and an epoxy compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

レゾルシノール、ホルムアルデヒド及びエポキシ化合物を使用しなくても、ゴムとの接着性に優れる補強繊維、及びそれを用いた成形体を提供する。 繊維と、前記繊維の表面の少なくとも一部を覆う表面改質層と、前記表面改質層の少なくとも一部を覆う共役ジエン系ゴムを含有する接着層とを有する補強繊維であり、前記表面改質層が、1~3級アミノ基、及びイミノ基から選ばれる1種以上の官能基を有し、重量平均分子量(Mw)が300以上であるポリアミン化合物を含むことを特徴とする補強繊維。

Description

補強繊維、及びそれを用いた成形体
 本発明は、ゴムとの接着性に優れる補強繊維、及びそれを用いた成形体に関する。
 ナイロン66やナイロン6、ポリエチレンテレフタレート(PET)、ビニロン及びレーヨン等の合成有機繊維は廉価であり、強度が高く、耐熱性や耐久性に優れ、また軽量であることから、自動車のタイヤやオイルブレーキホースの補強繊維として用いられている。これらの製品において、ゴムが有する優れた物理的特性(例えば、高強度及び高弾性率)等を十分に発揮させるためには、繊維とゴムとを強固に接着させる必要がある。
 従来、かかる接着方法として、特許文献1ではレゾルシノール・ホルムアルデヒド樹脂とゴムラテックスとを主成分とするRFLと呼ばれる接着剤を用いる方法が広く知られている。また、特許文献2ではRFLを内部まで含浸させることで強度の保持や耐疲労性の改善を行う工夫がなされている。
 しかしながら、ホルムアルデヒドは発がん性の疑いがあり、レゾルシノールは環境ホルモンの疑いがあることから、これらの原料を使用しない代替材料の開発が望まれている。例えば、特許文献3には、ゴムの加硫に用いられる加硫剤と反応する不飽和炭素結合及びエポキシ基を有する接着化合物を含む接着剤に関する技術が提案されている。また、特許文献4には、1段目にブロックドイソシアネート化合物とエポキシ化合物とを付与することで活性な官能基層を設け、2段目にラテックス及び低分子量の共役ジエン系ゴムを主成分とする接着成分を用いる技術が提案されている。更に特許文献5にはブロックドイソシアネート化合物、エポキシ化合物、アミン系硬化材及びVPラテックスを付与することにより、RFLを用いない技術が提案されている。
特開昭58-2370号公報 特開平5-186926号公報 特開2011-111563号公報 欧州特許第3258006号明細書 国際公開第2010/125992号
 特許文献3に記載された方法は、従来のRFLを用いる方法に比べて、接着性が劣っており実用性に乏しいという問題があった。また、特許文献4に記載の処理は、ゴム引き層とよばれる中間層を設ける工程が必要であると共に、高温での熱処理を2段階で実施する必要があるため、処理に多大なエネルギーを必要とし、且つ繊維の熱劣化が懸念され補強性能が低下する場合があった。なお、特許文献4では、ラテックスを主成分とする接着成分を用いる技術が記載されているのみで、共役ジエン系ゴムを主成分とする接着成分を用いることに関しては記載がない。
 また、特許文献3~5において使用されているエポキシ化合物は、変異原性や皮膚感作性等の要因になる可能性があるため作業環境上好ましくないという問題がある。
 本発明は、前記従来の問題を鑑みてなされたものであって、レゾルシノール、ホルムアルデヒド及びエポキシ化合物を使用しなくても、ゴムとの接着性に優れる補強繊維、及びそれを用いた成形体を提供する。
 本発明者らは、前記課題を解決するために鋭意検討した結果、繊維の表面の少なくとも一部に表面改質層を設け、該表面改質層に特定の重量平均分子量を有するポリアミン化合物を含有させることによって、レゾルシノール、ホルムアルデヒド及びエポキシ化合物を使用しなくても、繊維とゴムとの接着性が向上することを見出し、本発明を完成させた。
 すなわち、本発明は以下[1]~[9]に関する。
[1]繊維と、前記繊維の表面の少なくとも一部を覆う表面改質層と、前記表面改質層の少なくとも一部を覆う共役ジエン系ゴムを含有する接着層とを有する補強繊維であり、
 前記表面改質層が、1~3級アミノ基、及びイミノ基から選ばれる1種以上の官能基を有し、重量平均分子量(Mw)が300以上であるポリアミン化合物を含むことを特徴とする補強繊維。
[2]前記繊維が、ポリアミド系繊維、ポリビニルアルコール系繊維、ポリエステル系繊維、及び再生セルロース系繊維から選ばれる1種以上の繊維である、前記[1]に記載の補強繊維。
[3]前記表面改質層の量が、原料として用いた繊維100質量部に対して0.01~5.00質量部である、前記[1]又は[2]に記載の補強繊維。
[4]前記共役ジエン系ゴムの数平均分子量(Mn)が2,000超120,000以下である、前記[1]~[3]のいずれかに記載の補強繊維。
[5]前記共役ジエン系ゴムが、分子内にブタジエン、イソプレン及びファルネセンから選ばれる1種以上に由来する単量体単位を有する、前記[1]~[4]のいずれかに記載の補強繊維。
[6]前記共役ジエン系ゴムが、共役ジエン系ゴムの一部に水素結合性官能基を有する変性共役ジエン系ゴムであり、該水素結合性官能基が、ヒドロキシ基、エポキシ基、アルデヒド基、アルデヒド基のアセタール化体、カルボニル基、カルボキシ基、カルボキシ基の塩、カルボキシ基のエステル化体、カルボキシ基の酸無水物、シラノール基、シラノール基のエステル化体、アミノ基、イミダゾール基、及びメルカプト基から選ばれる1種以上である、前記[1]~[5]のいずれかに記載の補強繊維。
[7]前記[1]~[6]のいずれかに記載の補強繊維を用いた、成形体。
[8]更にゴム層を有する、前記[7]に記載の成形体。
[9]前記成形体がタイヤ、ベルト又はホースである、前記[7]又は[8]に記載の成形体。
 本発明は、レゾルシノール、ホルムアルデヒド及びエポキシ化合物を使用しなくても、ゴムとの接着性に優れる補強繊維、及びそれを用いた成形体を提供することができる。
[補強繊維]
 本発明の補強繊維は、繊維と、前記繊維の表面の少なくとも一部を覆う表面改質層と、前記表面改質層の少なくとも一部を覆う共役ジエン系ゴムを含有する接着層とを有する補強繊維であり、前記表面改質層が、1~3級アミノ基、及びイミノ基から選ばれる1種以上の官能基を有し、重量平均分子量(Mw)が300以上であるポリアミン化合物を含むことを特徴とするものである。
 本発明によれば、繊維表面の少なくとも一部に特定のポリアミン化合物を含む表面改質層を設けているため、共役ジエン系ゴムと、ポリアミン化合物の置換基と、繊維との間でそれぞれ強い親和性が発現し、その結果、繊維とゴムとの接着性が向上する。
 なお、本発明において「繊維の表面の少なくとも一部を覆う表面改質層」とは、繊維の表面の少なくとも一部に、例えば、膜や層として表面改質層が存在する態様であってもよく、繊維の原料に表面改質層に相当する成分が含まれており、繊維そのものの表面の一部に表面改質層の成分が存在する態様であってもよい。
 また、本発明において「表面改質層の少なくとも一部を覆う接着層」とは、表面改質層の全体が接着層で覆われていてもよいが、少なくとも一部が接着層で覆われていればよく、例えば、膜や層として接着成分が存在する態様であってもよい。
 本発明における接着層は、人体に有害なホルムアルデヒド及びホルムアルデヒドを原料とした樹脂を含まなくてもゴムとの接着性に優れる補強繊維を得ることができる。本発明において、前記接着層が仮にホルムアルデヒドを原料とした樹脂を含む場合、当該樹脂としては、例えば、レゾルノール/ホルムアルデヒド樹脂、フェノール/ホルムアルデヒド樹脂、メラミン/ホルムアルデヒド樹脂及びこれらの誘導体が挙げられる。前記接着層において、前記ホルムアルデヒド成分を含む場合、その含有量は前記共役ジエン系ゴム100質量部に対して10質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることが更に好ましく、1質量部以下であることがより更に好ましく、実質的に含まないことが特に好ましい。ホルムアルデヒドの含有量は、補強繊維から接着層をトルエン等の溶媒で抽出した後、HPLC等を用いることで測定できる。
<表面改質層>
 本発明における表面改質層は、1~3級アミノ基、及びイミノ基から選ばれる1種以上の官能基を有し、重量平均分子量(Mw)が300以上であるポリアミン化合物を含むものであれば特に制限はない。なお、本発明において「ポリアミン化合物」とは1分子中にアミノ基を2つ以上含む脂肪族化合物を指す。
 前記1~3級アミノ基としては、下記一般式(I)~(III)で表される置換基が挙げられる。
  -R1-NH2   (I)
  -R1-NR2H  (II)
  -R1-NR23  (III)
(R1は、置換基を有していてもよい炭素数が1~20である直鎖状又は分岐状アルキレン鎖である。また、R2及びR3は、それぞれ独立して、置換基を有していてもよい炭素数1~20である直鎖状又は分岐状アルキル基である。)
 これらのアミノ基の中でも、接着性を向上させる観点から、前記一般式(I)で表される1級アミノ基又は前記一般式(II)で表される2級アミノ基が好ましい。
 また、前記イミノ基としては、炭素-窒素二重結合を有する基であれば特に制限はなく、例えばエチリデンアミノ基、1-メチルプロピリデンアミノ基、1,3-ジメチルブチリデンアミノ基、1-メチルエチリデンアミノ基、4-N,N-ジメチルアミノベンジリデンアミノ基、シクロヘキシリデンアミノ基等が挙げられる。
 本発明におけるポリアミン化合物の重量平均分子量は、300以上である。重量平均分子量が300未満であると共役ジエン系ゴムを含有する接着層との親和性が発現せず、接着力を向上させることができない。
 なお、接着性を向上させる観点から、ポリアミン化合物の重量平均分子量は500以上であってもよく、800以上であってもよく、1,000以上であってもよく、1,500以上であってもよい。
 なお、ポリアミン化合物の重量平均分子量の上限値は、取り扱い性の低下に伴う生産効率の悪化を考慮すると、一般的に1,000,000以下であり、800,000以下であってもよい。
 なお、ポリアミン化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めたポリスチレン換算の重量平均分子量であり、具体的には実施例に記載の方法により測定することができる。
 表面改質層は、ゴムとの接着性を向上させる観点から、繊維の表面の全部を覆っていることが好ましいが、実質的には繊維の表面の少なくとも一部を覆っていればよい。繊維の表面を覆う表面改質層の具体的な量は、原料として用いた繊維100質量部に対して0.01~5.00質量部であることが好ましく、0.05~3.00質量部であることがより好ましく、0.10~2.00質量部であることが更に好ましく、0.20~1.00質量部であることがより更に好ましい。
<繊維>
 本発明の表面改質繊維に用いる繊維に特に制限はなく、親水性繊維や疎水性繊維を用いることができる。なお、本発明において「繊維」とは、短繊維や長繊維だけでなく、不織布、織物、編物、フェルト及びスポンジ等の形態を含むものとする。
 親水性の合成繊維としては、ヒドロキシ基、カルボキシ基、スルホン酸基、及びアミノ基のような親水性官能基、及び/又は、アミド結合のような親水性結合を有する熱可塑性樹脂で構成される合成繊維を挙げることができる。
 このような熱可塑性樹脂の具体例は、ポリビニルアルコール系樹脂、ポリアミド系樹脂〔ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド9C(ノナンジアミンとシクロヘキサンジカルボン酸からなるポリアミド)等の脂肪族ポリアミド;ポリアミド9T(ノナンジアミンとテレフタル酸からなるポリアミド)等の芳香族ジカルボン酸と脂肪族ジアミンとから合成される半芳香族ポリアミド;ポリパラフェニレンテレフタルアミド等の芳香族ジカルボン酸と芳香族ジアミンとから合成される全芳香族ポリアミド等〕、ポリアクリルアミド系樹脂等が挙げられる。
 これらの中でも、ポリビニルアルコール系樹脂、及びポリアミド系樹脂が好ましい。親水性の合成繊維は、1種を単独で用いてもよく、2種以上を併用してもよい。また、これらの親水性の合成繊維は、親水性をより高めるべく、後述する親水化処理を更に施してもよい。
 親水性の天然繊維としては、クラフトパルプ等の木材パルプや木綿パルプ、ワラパルプ等の非木材パルプ等の天然セルロース繊維が挙げられる。
 親水性の再生繊維としては、レーヨン、リヨセル、キュプラ、及びポリノジック等の再生セルロース繊維が挙げられる。
 これらの天然繊維及び再生繊維は、それぞれ1種を単独で用いてもよく、2種以上を併用してもよい。また、これらの親水性の天然繊維及び再生繊維は、親水性をより高めるべく、後述する親水化処理を更に施してもよい。
 親水性繊維は、少なくとも表面が親水性を有していればよく、例えば、疎水性繊維の表面を親水化処理した繊維や、疎水性樹脂を芯部とし、鞘部を親水性樹脂とした芯鞘型複合繊維等であってもよい。鞘部を構成する親水性樹脂の例については、親水性の合成繊維についての記述が引用される。疎水性樹脂からなる疎水性繊維としては、後述の疎水性繊維が挙げられる。
 親水化処理は、化学的又は物理的に繊維表面に親水性官能基を付与する処理であれば特に限定はされないが、例えば、後述の疎水性樹脂からなる疎水性繊維をイソシアネート基、エポキシ基、ヒドロキシ基、アミノ基、エーテル基、アルデヒド基、カルボニル基、カルボキシ基及びウレタン基等の親水性官能基を含む化合物又はその誘導体により修飾する方法や、電子線照射により表面を改質する方法等で行うことができる。
 本発明においては、従来の技術ではゴムに対して強固に接着することができなかった疎水性繊維を用いることもできる。疎水性繊維は一般的に繊維表面に極性の官能基を有しないため、後述する接着成分との親和性に乏しく、ゴムと強固に接着することができなかった。しかしながら、本発明のように繊維表面に表面改質層を設けることにより、疎水性繊維であってもゴムと強固に接着することが可能になる。
 本発明に用いることができる疎水性繊維としては、例えば、ポリエチレン及びポリプロピレン等のポリオレフィン系繊維、ポリエチレンテレフタレート等のポリエステル系繊維、及び全芳香族ポリエステル系繊維等が挙げられ、これらの中でも、製造コスト、強度、耐熱性及び耐久性等に優れることから、ポリエステル系繊維が好ましい。
 本発明においては、前記繊維の中でも合成繊維及び再生繊維が好ましく、中でもポリアミド系繊維、ポリビニルアルコール系繊維、ポリエステル系繊維、及び再生セルロース系繊維から選ばれる1種以上の繊維が好ましい。
 なお、本発明において、繊維は1種を単独で用いてもよく、2種以上を併用してもよい。
<表面改質層を有する繊維(表面改質繊維)の製造方法>
 表面改質層を表面に有する繊維の製造方法に特に制限はないが、前記ポリアミン化合物の水又は有機溶媒による溶液を調製し、この溶液を前記繊維に付着させ、その後、熱処理等により乾燥させる方法により製造することができる。
 前記表面改質層を構成する化合物の溶液を繊維に付着させる方法に特に制限はなく、例えば、浸漬、ロールコーター、オイリングローラー、オイリングガイド、ノズル(スプレー)塗布、及び刷毛塗り等から選ばれる1種以上により行うことが好ましい。
 前記溶液を乾燥させるための熱処理としては、好ましくは100~250℃の処理温度で、0.1秒~2分間処理することが好ましい。なお、熱処理は特定の温度で1回のみ行ってもよく、また、処理温度及び処理時間を変えて2回以上行ってもよい。
 前記表面改質層は、前記以外の他の成分を含有してもよい。他の成分としては、架橋剤、酸、塩基、無機塩、有機塩、顔料、染料、酸化防止剤、重合開始剤、可塑剤等が挙げられる。
 表面改質層が前記他の成分を含有する場合、表面改質層中の他の成分の含有量は、ゴムとの接着力を向上させる観点から、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。
<接着層>
 本発明の補強繊維における接着層は共役ジエン系ゴムを含有するものであれば特に制限はなく、例えば、共役ジエン系ゴムを水に分散させたエマルションからなる接着成分を表面改質繊維に付着させることにより形成することができる。以下、接着層の態様について具体的に説明する。
〔共役ジエン系ゴム〕
 本発明において用いる共役ジエン系ゴムは、分子内に少なくとも共役ジエンに由来する単量体単位(以下、「共役ジエン単位」とも称する)を含むものであり、例えば、共役ジエン系ゴム中の全単量体単位中に共役ジエンに由来する単量体単位を50モル%以上含有するものが好ましい。
 前記共役ジエン単量体としては、例えば、ブタジエン、2-メチル-1,3-ブタジエン(以下、「イソプレン」とも称する)、2,3-ジメチルブタジエン、2-フェニルブタジエン、1,3-ペンタジエン、2-メチルー1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、β-ファルネセン(以下、「ファルネセン」とも称する)、ミルセン、クロロプレン等が挙げられる。これら共役ジエンは、1種を単独で用いてもよく、2種以上を併用してもよい。共役ジエン系ゴムは、加硫時の反応性の観点からブタジエン、イソプレン及びファルネセンから選ばれる1種以上に由来する単量体単位を有することがより好ましい。
 本発明において用いる共役ジエン系ゴムは、接着を阻害しない程度であれば前記共役ジエン単量体以外の他の単量体に由来する単位を含んでいてもよい。他の単量体としては、共重合可能なエチレン性不飽和単量体や芳香族ビニル化合物が挙げられる。
 前記エチレン性不飽和単量体としては、例えば、エチレン、1-ブテン、及びイソブチレン等のオレフィン等が挙げられる。
 前記芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、及びジビニルベンゼン等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 共役ジエン系ゴムが共役ジエン単量体以外の他の単量体に由来する単量体単位を含有する場合、その含有量は30モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることが更に好ましい。
 本発明において用いる共役ジエン系ゴムは、共役ジエン系ゴムの一部に水素結合性官能基を有する変性共役ジエン系ゴムであることが好ましく、少なくとも一部の重合体鎖に共役ジエン単位を含み、かつ、該重合体鎖の側鎖又は末端に水素結合性官能基を有する変性共役ジエン系ゴムがより好ましい。
 共役ジエン系ゴムとして前記変性共役ジエン系ゴムを用いた場合、変性共役ジエン系ゴムが被着体であるゴム及び表面改質繊維のそれぞれと相互作用することによって、両者を接着させることができる。変性共役ジエン系ゴムと被着ゴムとを加硫し、共有結合を形成させた場合は、強い凝集力が生じるため、より一層接着性が向上する。
 また、変性共役ジエン系ゴムに含まれる水素結合性官能基が表面改質繊維の表面改質層と水素結合を形成することにより接着性が向上すると考えられる。
 なお、本明細書において、「水素結合」とは、電気陰性度の大きな原子(O、N、S等)に結合し、電気的に陽性に分極した水素原子(ドナー)と、孤立電子対を有する電気的に陰性な原子(アクセプター)との間に形成される結合性の相互作用を意味する。
 本発明において「水素結合性官能基」とは、前記水素結合においてドナー及びアクセプターとして機能することができる官能基である。具体的には、ヒドロキシ基、エポキシ基、エーテル基、メルカプト基、カルボキシ基、カルボニル基、アルデヒド基、アミノ基、イミノ基、イミダゾール基、ウレタン基、アミド基、ウレア基、イソシアネート基、ニトリル基、シラノール基及びこれらの誘導体等が挙げられる。アルデヒド基の誘導体としては、そのアセタール化体が挙げられる。カルボキシ基の誘導体としては、その塩、そのエステル化体、そのアミド化体、その酸無水物が挙げられる。シラノール基の誘導体としては、そのエステル化体が挙げられる。また、カルボキシ基としては、モノカルボン酸由来の基、ジカルボン酸由来の基が挙げられる。これらの中でも、ヒドロキシ基、エポキシ基、アルデヒド基、アルデヒド基のアセタール化体、カルボニル基、カルボキシ基、カルボキシ基の塩、カルボキシ基のエステル化体、カルボキシ基の酸無水物、シラノール基、シラノール基のエステル化体、アミノ基、イミダゾール基、及びメルカプト基から選ばれる1種以上が好ましい。
 なお、本発明において共役ジエン系ゴムがエポキシ基を有する場合、エポキシ基1個当たりの重量平均分子量は1,000以上であり、一方、前述の先行技術文献に記載の発明で用いられているエポキシ化合物は、エポキシ基1個当たりの分子量が1,000未満であり、両者はエポキシ基1個当たりの分子量の点で相違するものである。
 これらの水素結合性官能基の中でも、接着性を向上させる観点、共役ジエン系ゴムの製造容易性の観点から、ヒドロキシ基、カルボキシ基、カルボニル基、カルボキシ基の塩、カルボキシ基のエステル化体、及びカルボキシ基の酸無水物から選ばれる1種以上が好ましく、カルボキシ基、カルボキシ基のエステル化体、及びカルボキシ基の酸無水物から選ばれる1種以上がより好ましく、無水マレイン酸のエステル化体及び無水マレイン酸由来の官能基が更に好ましい。
 変性共役ジエン系ゴム中の水素結合性官能基数は、ゴム接着性に優れる補強繊維を得る観点から、1分子当たりの平均で、2個以上であることが好ましく、3個以上であることがより好ましく、4個以上であることが更に好ましい。また、前記水素結合性官能基数は、変性共役ジエン系ゴムの粘度を適切な範囲に制御し、取り扱い性を向上させる観点から、1分子当たりの平均で、80個以下であることが好ましく、40個以下であることがより好ましく、25個以下であることが更に好ましく、15個以下であることがより更に好ましい。
 変性共役ジエン系ゴム1分子当たりの平均水素結合性官能基数は、変性共役ジエン系ゴムの水素結合性官能基の当量(g/eq)とスチレン換算の数平均分子量Mnから、下記式に基づき算出される。変性共役ジエン系ゴムの水素結合性官能基の当量は、水素結合性官能基1個当たりに結合している共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体の質量を意味する。
 1分子当たりの平均水素結合性官能基数=[(数平均分子量(Mn))/(スチレン単位の分子量)×(共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(水素結合性官能基の当量)
 なお、水素結合性官能基の当量の算出方法は、水素結合性官能基の種類により適宜選択することができる。
 変性共役ジエン系ゴムを得る方法としては、例えば、共役ジエン単量体の重合化物に変性化合物を付加することにより得る方法(以下、「製造方法(1)」とも称する)や、共役ジエン重合体を酸化することにより得る方法(以下、「製造方法(2)」とも称する)、共役ジエン単量体と水素結合性官能基を有するラジカル重合性化合物とを共重合することにより得る方法(以下、「製造方法(3)」とも称する)、重合活性末端を有する未変性の共役ジエン単量体の重合化物に対して重合停止剤を添加する前に該重合活性末端と反応し得る変性化合物を添加する方法(以下、「製造方法(4)」とも称する)が挙げられる。中でも、生産性の観点から、製造方法(1)又は(2)又は(3)により製造することが好ましく、製造方法(1)又は(3)により製造することがより好ましく、製造方法(1)により製造することが更に好ましい。
〔変性共役ジエン系ゴムの製造方法(1)〕
 製造方法(1)は、共役ジエン単量体の重合化物、すなわち未変性の共役ジエン系ゴム(以下、「未変性共役ジエン系ゴム」とも称する)に変性化合物を付加する方法である。
 未変性共役ジエン系ゴムは、共役ジエン及び必要に応じて共役ジエン以外の他の単量体を、例えば、乳化重合法、又は溶液重合法等により重合して得ることができる。
 前記溶液重合法としては、公知又は公知に準ずる方法を適用できる。例えば、溶媒中で、チーグラー系触媒、メタロセン系触媒、アニオン重合可能な活性金属又は活性金属化合物を使用して、必要に応じて極性化合物の存在下で、所定量の共役ジエンを含む単量体を重合する。
 溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。
 アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。これらアニオン重合可能な活性金属の中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。
 アニオン重合可能な活性金属化合物としては、有機アルカリ金属化合物が好ましい。有機アルカリ金属化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。これら有機アルカリ金属化合物の中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。
 前記有機アルカリ金属化合物の使用量は、目的とする未変性共役ジエン系ゴム及び変性共役ジエン系ゴムの溶融粘度、分子量等に応じて適宜設定できるが、共役ジエンを含む全単量体100質量部に対して、通常0.01~3質量部の量で使用される。
 前記有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン等の第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
 極性化合物は、アニオン重合において、通常、反応を失活させず、共役ジエン部位のミクロ構造を調整するため用いられる。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル、2,2-ジ(2-テトラヒドロフリル)プロパン等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物等が挙げられる。極性化合物は、有機アルカリ金属化合物に対して、通常0.01~1000モルの量で使用される。
 溶液重合の温度は、通常-80~150℃の範囲、好ましくは0~100℃の範囲、より好ましくは10~90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、メタノール、イソプロパノール等のアルコールが挙げられる。得られた重合反応液をメタノール等の貧溶媒に注いで、重合化物を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することにより未変性共役ジエン系ゴムを単離できる。
 未変性共役ジエン系ゴムの製造方法としては、前記方法の中でも、溶液重合法が好ましい。
 前記乳化重合法としては、公知又は公知に準ずる方法を適用できる。例えば、所定量の共役ジエンを含む単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合する。
 乳化剤としては、例えば炭素数10以上の長鎖脂肪酸塩及びロジン酸塩等が挙げられる。長鎖脂肪酸塩としては、例えば、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の脂肪酸のカリウム塩又はナトリウム塩等が挙げられる。
 分散溶媒としては通常、水が使用され、重合時の安定性が阻害されない範囲で、メタノール、エタノール等の水溶性有機溶媒を含んでいてもよい。
 ラジカル重合開始剤としては、例えば過硫酸アンモニウムや過硫酸カリウムのような過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。
 得られる未変性共役ジエン系ゴムの分子量を調整するため、連鎖移動剤を使用してもよい。連鎖移動剤としては、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ-テルピネン、α-メチルスチレンダイマー等が挙げられる。
 乳化重合の温度は、使用するラジカル重合開始剤の種類等により適宜設定できるが、通常0~100℃の範囲、好ましくは0~60℃の範囲である。重合様式は、連続重合、回分重合のいずれでもよい。
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、イソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン化合物、ヒドロキノンやベンゾキノン等のキノン系化合物、亜硝酸ナトリウム等が挙げられる。
 重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウム等の塩を凝固剤とし、必要に応じて硝酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら、重合化物を凝固させた後、分散溶媒を分離することによって重合化物を回収する。次いで水洗、及び脱水後、乾燥することで、未変性共役ジエン系ゴムが得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展した未変性共役ジエン系ゴムとして回収してもよい。
(製造方法(1)で用いる変性化合物)
 製造方法(1)で用いる変性化合物に特に制限はないが、補強繊維の接着性を向上させる観点から、水素結合性官能基を有しているものが好ましい。水素結合性官能基としては、前述と同様のものが挙げられる。それらの中でも、水素結合力の強さの観点から、アミノ基、イミダゾール基、ウレア基、ヒドロキシ基、エポキシ基、メルカプト基、シラノール基、アルデヒド基、カルボキシ基及びその誘導体が好ましい。カルボキシ基の誘導体としては、その塩、そのエステル化体、そのアミド化体、又はその酸無水物が好ましい。これらの水素結合性官能基を有する変性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 前記変性化合物としては、例えば、マレイン酸、フマル酸、シトラコン酸、イタコン酸等の不飽和カルボン酸;無水マレイン酸、無水シトラコン酸、無水2,3-ジメチルマレイン酸、無水イタコン酸等の不飽和カルボン酸無水物;マレイン酸エステル、フマル酸エステル、シトラコン酸エステル、イタコン酸エステル等の不飽和カルボン酸エステル;マレイン酸アミド、フマル酸アミド、シトラコン酸アミド、イタコン酸アミド等の不飽和カルボン酸アミド;マレイン酸イミド、フマル酸イミド、シトラコン酸イミド、イタコン酸イミド等の不飽和カルボン酸イミド;ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、メルカプトメチルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメトキシジメチルシラン、2-メルカプトエチルエトキシジメチルシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルジエトキシメチルシラン、3-メルカプトプロピルジメトキシエチルシラン、3-メルカプトプロピルジエトキシエチルシラン、3-メルカプトプロピルメトキシジメチルシラン、3-メルカプトプロピルエトキシジメチルシラン等のシラン化合物等が挙げられる。
 前記変性化合物の使用量は、未変性共役ジエン系ゴム100質量部に対して、0.1~100質量部であることが好ましく、0.5~50質量部であることがより好ましく、1~30質量部であることが更に好ましい。
 反応温度は通常0~200℃の範囲が好ましく、50~200℃の範囲がより好ましい。
 また、未変性共役ジエン系ゴムに前記変性化合物をグラフト化し水素結合性官能基を導入した後、更に該官能基と反応し得る変性化合物を添加して別の水素結合性官能基を重合体中に導入してもよい。具体的には、例えば、リビングアニオン重合して得られる未変性共役ジエン系ゴムに対し、無水マレイン酸をグラフト化した後、2-ヒドロキシエチルメタクリレートやメタノール等の水酸基を有する化合物、水等の化合物を反応させる方法が挙げられる。
 変性共役ジエン系ゴムにおける変性化合物の付加量は、未変性共役ジエン系ゴム100質量部に対して、0.5~40質量部であることが好ましく、1~30質量部であることがより好ましく、1.5~20質量部であることが更に好ましい。なお、変性共役ジエン系ゴム中に付加された変性化合物量は、変性化合物の酸価を基に算出することもでき、また、赤外分光法、核磁気共鳴分光法等の各種分析機器を用いて求めることもできる。
 前記変性化合物を未変性共役ジエン系ゴムに付加させる方法は特に限定されず、例えば、液状の未変性共役ジエン系ゴムと、不飽和カルボン酸、不飽和カルボン酸誘導体、及びシラン化合物等から選ばれる1種以上の変性化合物と、更に必要に応じてラジカル発生剤を加えて、有機溶媒の存在下又は非存在下に加熱する方法が挙げられる。使用するラジカル発生剤には特に制限はなく、通常市販されている有機過酸化物、アゾ系化合物、過酸化水素等が使用できる。
 前記方法で使用される有機溶媒としては、一般的には炭化水素系溶媒、ハロゲン化炭化水素系溶媒が挙げられる。これら有機溶媒の中でも、n-ブタン、n-ヘキサン、n-ヘプタン、シクロヘキサン、ベンゼン、トルエン、及びキシレン等の炭化水素系溶媒が好ましい。
 更に、前記方法により変性化合物を付加する反応を行う際、副反応を抑制する観点等から、老化防止剤を添加してもよい。老化防止剤としては、2,6-ジ-ブチル-4-メチルフェノール(BHT)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)(AO-40)、3,9-ビス[1,1-ジメチル-2-[3-(3-t-ブチル-4-ヒドロキシ―5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(AO-80)、2,4-ビス(オクチルチオメチル)-6-メチルフェノール(Irganox1520L)、2,4-ビス[(ドデシルチオ)メチル]-6-メチルフェノール(Irganox1726)、2-[1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)エチル]4,6-ジ-ペンチルフェニルアクリレート(SumilizerGM)、ヒドロキノン、p-メトキシフェノール等のフェノール系老化防止剤;亜リン酸トリス(2,4-ジーブチルフェニル)(Irganox168)等のリン酸系老化防止剤;N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(ノクラック6C)、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(LA-77Y),N,N-ジオクタデシルヒドロキシルアミン(IrgastabFS042)、ビス(4-t-オクチルフェニル)アミン(Irganox5057)等のアミン系老化防止剤;ジオクタデシル3,3’-ジチオビスプロピオネート、ジドデシル-3,3’-チオジプロピオネート(IrganoxPS800)、ビス[3-(ドデシルチオ)プロピオン酸-2,2-ビス[3-(ドデシルチオ)-1-オキソプロピルオキシ]メチル]-1,3-プロパンジイル(MumilizerTP-D)等のイオウ系老化防止剤;6-t-ブチル-[3-(2,4,8,10-テトラ-t-ブチルジベンゾ[d、f][1,3,2]ジオキサホスフェピン-6-イルオキシ)プロピル]-メチルフェノール(SumilizerGP)等のフェノール系老化防止剤とリン酸系老化防止剤との複合防止剤;等が挙げられる。老化防止剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、2,6-ジ-ブチル-4-メチルフェノール、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(ノクラック6C)等を用いることが効果や汎用性の面で好ましい。
 老化防止剤の添加量は、未変性共役ジエン系ゴム100質量部に対して、0.01~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。老化防止剤の添加量が前記範囲内であると、副反応を抑制することができ、収率よく変性共役ジエン系ゴムを得ることができる。
〔共役ジエン系ゴムの物性〕
 共役ジエン系ゴムの重量平均分子量(Mw)は特に制限はないが、接着性を向上させる観点から、2,000超であることが好ましく、5,000以上であることがより好ましく、10,000以上であることが更に好ましく、15,000以上であることがより更に好ましく、20,000以上であることがより更に好ましく、25,000以上であることが特に好ましく、取り扱い性の観点から、120,000以下であることが好ましく、100,000以下であることがより好ましく、75,000以下であることが更に好ましく、55,000以下であることがより更に好ましい。
 共役ジエン系ゴムの数平均分子量(Mn)は特に制限はないが、接着性を向上させる観点から、2,000超であることが好ましく、5,000以上であることがより好ましく、10,000以上であることが更に好ましく、15,000以上であることがより更に好ましく、20,000以上であることがより更に好ましく、25,000以上であることが特に好ましく、そして、取り扱い性の観点から、120,000以下であることが好ましく、75,000以下であることがより好ましく、50,000以下であることが更に好ましく、47,000以下であることがより更に好ましい。
 共役ジエン系ゴムのMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めたポリスチレン換算の重量平均分子量及び数平均分子量であり、具体的には実施例に記載の方法により測定することができる。
 共役ジエン系ゴムの分子量分布(Mw/Mn)は、1.00~5.00であることが好ましく、1.00~3.00であることがより好ましく、1.00~2.00であることが更に好ましく、1.00~1.50であることがより更に好ましく、1.00~1.30であることが特に好ましい。Mw/Mnが前記範囲内であると、共役ジエン系ゴムの粘度のばらつきが小さく、取り扱いが容易である。分子量分布(Mw/Mn)は、GPCの測定により求めた標準ポリスチレン換算の重量平均分子量(Mw)/数平均分子量(Mn)の比を意味する。
 また、共役ジエン系ゴムと繊維との接着性の観点から、共役ジエン系ゴムは液状であることが好ましい。
 本明細書において「液状」とは、共役ジエン系ゴムの38℃で測定した溶融粘度が4,000Pa・s以下であることを示す。該溶融粘度は接着性を向上させる観点から、0.1Pa・s以上であることが好ましく、1Pa・s以上であることがより好ましく、10Pa・s以上であることが更に好ましく、30Pa・s以上であることがより更に好ましく、50Pa・s以上であることがより更に好ましく、取り扱い性の観点から、2,500Pa・s以下であることが好ましく、2,100Pa・s以下であることがより好ましい。前記溶融粘度が前記範囲内であると、共役ジエン系ゴムの接着性を向上させつつ、取り扱い性を良好にすることができる。
 なお、共役ジエン系ゴムの溶融粘度は、ブルックフィールド型粘度計(B型粘度計)を用いて38℃にて測定した粘度を意味する。
 共役ジエン系ゴムのガラス転移温度(Tg)は、共役ジエン単位のビニル含量、共役ジエンの種類、共役ジエン以外の他の単量体に由来する単位の含有量等によって変化し得るが、-100~10℃であることが好ましく、-100~0℃であることがより好ましく、-100~-10℃であることが更に好ましい。Tgが前記範囲であると、高粘度化が抑制でき取り扱いが容易になる。
 共役ジエン系ゴムのビニル含量は80モル%以下であることが好ましく、50モル%以下であることがより好ましく、30モル%以下であることが更に好ましい。ビニル含量が前記範囲内であると接着性が向上する。
 本明細書において「ビニル含量」とは、変性液状ジエン系ゴムに含まれる、共役ジエン単位の合計100モル%中、1,2-結合又は3,4-結合で結合をしている共役ジエン単位(1,4-結合以外で結合をしている共役ジエン単位)の合計モル%を意味する。ビニル含量は、1H-NMRを用いて1,2-結合又は3,4-結合で結合をしている共役ジエン単位由来のシグナルと1,4-結合で結合をしている共役ジエン単位由来のシグナルの積分値比から算出することができる。
 本発明においては、前記共役ジエン系ゴムを水に分散させたエマルションからなる接着成分を表面改質繊維に付着させることにより接着層を形成することが好ましい。共役ジエン系ゴムを水に分散させて水中油滴型エマルションとして用いる場合、機械的方法又は化学的方法により接着成分のエマルション(ラテックス)を予め調製し、希釈等により所定の濃度で使用することが好ましい。
 機械的方法としてはホモジナイザー、ホモミキサー、ディスパーサーミキサー、コロイドミル、パイプラインミキサー、高圧ホモジナイザー、超音波乳化機等を用いる方法が挙げられ、これらを単独又は組み合わせて使用できる。
 化学的方法としては、反転乳化法、D相乳化法、HLB温度乳化法、ゲル乳化法及び液晶乳化法等種々の方法が挙げられ、簡便に粒子径の細かいエマルションが得られる観点から反転乳化法が好ましい。また粒子径の細かいエマルションを得るためには、変性共役ジエン系ゴムの粘度を下げる目的で適当な温度(例えば30~80℃)で加熱しながら作業を実施することが好ましい場合もある。
 乳化剤としてはオレイン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等のカリウム又はナトリウム塩等の脂肪酸石鹸、ロジン、不均化ロジン等のカリウム又はナトリウム塩等の樹脂石鹸、アルキルベンゼンスルホン酸やアルキルナフタレンスルホン酸等のナトリウム又はカリウム塩等のスルホン酸石鹸、オレイル硫酸エステル、ラウリル硫酸エステル、ポリオキシエチレンアルキル硫酸エステル等のナトリウム塩等の硫酸エステル石鹸、ヘキサデシルフォスフェート、ポリオキシエチレンラウリルエーテルフォスフェート、ポリオキシエチレントリデシルエーテルフォスフェート、ポリオキシエチレンノニルフェニルフォスフェート等のリン酸塩石鹸等のアニオン石鹸、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールラウレート、ポリエチレングリコールオレエート等のノニオン石鹸、ドデシルアミン塩酸塩等の脂肪族アミン塩酸塩、オクチルトリメチルアンモニウムクロライド、ジオクチルジメチルアンモニウムクロライド、ベンジルジメチルオクチルアンモウニウム塩、ドデシルピリジウムクロライド等のアルキルピリジウム塩等のカチオン石鹸などが挙げられる。これらは単独でも混合して用いてもよい。
 前記乳化剤の使用量は共役ジエン系ゴム100質量部に対して、0.5~15質量部であることが好ましく、1~10質量部であることがより好ましい。乳化剤の使用量が前記上限以下であると、製造コストを抑えつつエマルションを安定的に生成することができる。また、乳化剤の使用量が前記下限以上であると、エマルション粒子径の増大を抑制し、クリーミングや分離現象の発生を抑制することができる。
 エマルションの安定性を高める目的で、必要に応じて水酸化ナトリウム、水酸化カリウム、アミン類のようなアルカリ性物質を添加し、pHを調整して使用することもできる。
 接着成分をエマルションとする場合における接着成分中の共役ジエン系ゴムの含有量は、ゴムとの接着力を向上させる観点から、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上であり、そして、好ましくは80質量%以下、より好ましくは60質量%以下、更に好ましくは50質量%以下、より更に好ましくは40質量%以下である。接着成分中の共役ジエン系ゴムの含有量が前記範囲内であると、十分な接着力を得つつ、接着成分の粘度が極端に高くなることを防ぐことができる。
 本発明においては、前記共役ジエン系ゴムは、1種を単独で用いてもよく、2種以上を併用してもよい。また、本発明における接着成分は、ゴムとの接着力を阻害しない範囲内で共役ジエン系ゴム以外の他の成分を含んでもよい。
 前記他の成分としては、他のポリマー(例えば未変性共役ジエン系ゴム)、酸、アルカリ、酸化防止剤、硬化剤、分散剤、顔料、染料、接着助剤、カーボンブラック等が挙げられる。
 前記接着成分が他の成分を含有する場合、その含有量は、共役ジエン系ゴム100質量部に対して、10,000質量部以下であることが好ましく、1,000質量部以下であることがより好ましく、100質量部以下であることが更に好ましく、50質量部以下であることがより更に好ましい。
<補強繊維の製造方法>
 補強繊維の製造方法に特に制限はなく、前記共役ジエン系ゴムを水に分散させた状態で繊維に付着させる工程を含む方法で製造することができる。なお、本発明においては、前記表面改質繊維(表面に表面改質層を有する繊維)に対して共役ジエン系ゴムを効率的に付着させる観点、及び製造設備の汚染を抑制する観点から、前記共役ジエン系ゴムを前記オイルと混合した状態で繊維に付着させる工程を含む方法を採用してもよい。
 本発明の補強繊維のより具体的な製造方法としては、下記方法が挙げられる。
〔方法(I)〕
 方法(I)としては、表面改質繊維の表面に前記接着成分からなる接着層を形成する方法であれば特に制限はないが、ゴムとの接着性を向上させる観点から、下記工程I-1を含む方法が好ましい。
 工程I-1:前記接着成分を表面改質繊維の表面に付着させる工程
 工程I-1において、前記接着成分を表面改質繊維に付着させる方法に特に制限はなく、例えば、前記接着成分をそのまま付着させる方法、前記接着成分に必要に応じて溶媒を加えて付着させる方法等が挙げられる。
 前記接着成分を付着させる方法として、浸漬、ロールコーター、オイリングローラー、オイリングガイド、ノズル(スプレー)塗布、及び刷毛塗り等から選ばれる1種以上により行うことが好ましい。
 前記接着成分の付着量は、補強繊維とゴムとの接着性を向上させる観点から、原料として用いた繊維100質量部に対して、0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、1質量部以上であることが更に好ましく、そして、製造コストと効果とのバランスの観点から、10質量部以下であることが好ましく、8質量部以下であることがより好ましく、7質量部以下であることが更に好ましい。
 本発明においては、接着成分を表面改質繊維に付着させた後、20℃程度の室温で3日~10日程度なじませることにより本発明の補強繊維を得ることができるが、場合によっては下記工程I-2を実施してもよい。
 工程I-2:工程I-1で得られた前記接着成分が付着した表面改質繊維を熱処理する工程
 工程I-2における熱処理は、好ましくは100~200℃の処理温度で0.1秒~2分の処理時間で行うことが好ましい。前記接着成分に含まれる共役ジエン系ゴムは反応性多重結合を有しているため、酸素存在下での熱処理は200℃以下であることが好ましく、175℃以下であることがより好ましい。熱処理の温度が前記範囲内であると、共役ジエン系ゴム中の反応性多重結合量が減少することなく、接着力を向上させることができ、更に繊維の劣化も抑制し、着色等の品質も良好となる。
 前記補強繊維は、前記表面改質繊維及び前記接着成分以外の他の成分を含有してもよい。他の成分としては、架橋剤、酸、塩基、無機塩、有機塩、顔料、染料、酸化防止剤、重合開始剤、可塑剤等が挙げられる。
<補強繊維の物性>
 前記補強繊維は、単糸繊度が0.1dtex以上30dtex以下のマルチフィラメントであることが好ましい。単糸繊度は0.1dtex未満であってもよいが工業的に製造することが難しいことから0.1dtex以上が好ましい。また、単糸繊度が30dtex以下であると、補強繊維とした場合における繊維の表面積が大きくなるため、ゴムとの接着性が向上する。当該観点から、本発明の補強繊維は、単糸繊度がより好ましくは0.3dtex以上、更に好ましくは0.5dtex以上、より更に好ましくは1dtex以上であり、そして、より好ましくは20dtex以下、更に好ましくは15dtex以下、より更に好ましくは10dtex以下であるマルチフィラメントであることが好ましい。
 本発明の補強繊維のゴム接着力は、30N/3本以上であることが好ましく、40N/3本以上であることがより好ましく、50N/3本以上であることが更に好ましく、60N/3本以上であることがより更に好ましく、通常、200N/3本以下である。補強繊維のゴム接着力が前記下限値以上であると、補強強度に優れた織物、編み物及び成形体を得ることができる。
 なお、補強繊維のゴム接着力は、実施例に記載の方法により測定することができる。
 前記補強繊維は、繊維の強度が4cN/dtex以上20cN/dtex以下であってもよい。例えば、タイヤコードに使用する場合は6cN/dtex以上の強度を持ったPETやナイロン繊維が好ましい。または、ホースに使用する場合は6cN/dtex以上の強度を持ったビニロンやPETが好ましい。
 本発明の補強繊維は、任意の形状で使用することができるが、該補強繊維を少なくとも一部に含む、繊維コード、織物、編物等の形態で使用することが好ましく、該補強繊維を少なくとも一部に含む、織物又は編物として使用することがより好ましい。例えば、後述するとおりゴムに接着する編物として使用することができる。また、樹脂やセメント等に埋め込む補強繊維として使用することもできる。
[成形体]
 本発明の成形体は、前記補強繊維を用いたものであれば特に限定されない。中でも、前記補強繊維がゴムとの優れた接着性を有することから、特に前記補強繊維とゴム層とを有する成形体(以下、「ゴム成形体」とも称する)が好ましい。前記ゴム成形体に用いられる補強繊維は、ゴムの形態保持という観点からは、該補強繊維を少なくとも一部に含む織物又は編物として用いられることが好ましく、該補強繊維を少なくとも一部に含む織物又は編物からなる補強層とゴム層とを積層した積層体として用いられることがより好ましい。
 前記ゴム成形体は、例えば自動車用タイヤ等のタイヤ、コンベアベルト、タイミングベルト等のベルト、ホース、及び防振ゴム等のゴム製品の部材として使用することができ、中でも、タイヤ、ベルト、又はホースとして用いることがより好ましい。
 前記自動車用タイヤとしては、例えばベルト、カーカスプライ、ブレーカー、ビードテープ等の補強繊維とゴム成分との複合材からなる各種部材に使用できる。
 前記ホースとしては、種々の用途における各種流体の輸送を目的に使用することができ、例えば、自動車用の流体輸送用ホースに好適であり、特に、自動車用の液体燃料用ホース、自動車用のブレーキオイルホース、及び冷媒用ホースに用いることが好ましく、自動車用のブレーキオイルホースに用いることがより好ましい。
 前記ゴム成形体は、前記補強繊維と、ゴム成分に通常ゴム業界で用いられる配合剤を配合したゴム組成物とを用いて成形されることが好ましい。
 ゴム成分としては、特に限定はされないが、例えば、NR(天然ゴム)、IR(ポリイソプレンゴム)、BR(ポリブタジエンゴム)、SBR(スチレン-ブタジエンゴム)、NBR(ニトリルゴム)、EPM(エチレン-プロピレン共重合体ゴム)、EPDM(エチレン-プロピレン-非共役ジエン共重合体ゴム)、IIR(ブチルゴム)、ハロゲン化ブチルゴム、CR(クロロプレンゴム)等が挙げられる。これらの中でも、NR、BR、SBRを用いることがより好ましい。これらのゴム成分は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。タイヤ用途においては、タイヤ工業において一般的に用いられるものが使用できる。中でも、天然ゴム単独、あるいは天然ゴムとSBR、天然ゴムとBR、SBRとBRとを組み合わせて使用することが好ましい。
 前記天然ゴムとしては、例えばSMR(マレーシア産TSR)、SIR(インドネシア産TSR)、STR(タイ産TSR)等のTSR(Technically Specified Rubber)やRSS(Ribbed Smoked Sheet)等のタイヤ工業において一般的に用いられる天然ゴム、高純度天然ゴム、エポキシ化天然ゴム、水酸基化天然ゴム、水素添加天然ゴム、グラフト化天然ゴム等の改質天然ゴムが挙げられる。
 前記SBRとしては、タイヤ用途に用いられる一般的なものを使用できるが、具体的には、スチレン含量が0.1~70質量%のものが好ましく、5~50質量%のものがより好ましく、15~35質量%のものが更に好ましい。また、ビニル含量が0.1~60質量%のものが好ましく、0.1~55質量%のものがより好ましい。
 前記SBRの重量平均分子量(Mw)は100,000~2,500,000であることが好ましく、150,000~2,000,000であることがより好ましく、200,000~1,500,000であることが更に好ましい。前記範囲である場合、加工性と機械強度を両立することができる。なお、SBRの重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)の測定から求めたポリスチレン換算の重量平均分子量である。
 前記SBRとしては、本発明の効果を損ねない範囲であれば、SBRに官能基が導入された変性SBRを用いてもよい。官能基としては、例えばアミノ基、アルコキシシリル基、ヒドロキシ基、エポキシ基、カルボキシ基等が挙げられる。
 前記ゴム組成物は、前記ゴム成分に加えて、更にフィラーを含有してもよい。該フィラーとしては、例えば、カーボンブラック、シリカ、クレー、マイカ、炭酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、酸化チタン、ガラス繊維、繊維状フィラー、ガラスバルーン等の無機フィラー;樹脂粒子、木粉、及びコルク粉等の有機フィラー等が挙げられる。このようなフィラーがゴム組成物に含まれることにより、機械強度、耐熱性、又は耐候性等の物性の改善、硬度の調整、ゴムの増量が可能となる。
 機械強度の向上等の物性の改善等の観点からは、前記フィラーの中でも、カーボンブラック及びシリカが好ましい。
 前記カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、及びケッチェンブラック等が挙げられる。架橋速度や機械強度向上の観点からは、これらカーボンブラックの中でも、ファーネスブラックが好ましい。
 前記カーボンブラックの平均粒径としては、5~100nmであることが好ましく、5~80nmであることがより好ましく、5~70nmであることが更に好ましい。なお、前記カーボンブラックの平均粒径は、透過型電子顕微鏡により粒子の直径を測定してその平均値を算出することにより求めることができる。
 前記シリカとしては、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等を挙げることができる。これらシリカの中でも、湿式シリカが好ましい。
 前記シリカの平均粒径は、0.5~200nmであることが好ましく、5~150nmであることがより好ましく、10~100nmであることが更に好ましい。
 なお、前記シリカの平均粒径は、透過型電子顕微鏡により粒子の直径を測定して、その平均値を算出することにより求めることができる。
 前記ゴム組成物において、前記ゴム成分100質量部に対する前記フィラーの含有量は20~150質量部であることが好ましく、25~130質量部であることがより好ましく、25~110質量部であることが更に好ましい。
 また、前記フィラーとして、シリカ及びカーボンブラック以外のフィラーを用いる場合には、その含有量は、前記ゴム成分100質量部に対して、20~120質量部であることが好ましく、20~90質量部であることがより好ましく、20~80質量部であることが更に好ましい。
 これらフィラーは1種を単独で用いてもよく、2種以上を併用してもよい。
 前記ゴム組成物は、前記ゴム成分を架橋するために、更に架橋剤を含有していてもよい。該架橋剤としては、例えば、硫黄、硫黄化合物、酸素、有機過酸化物、フェノール樹脂、アミノ樹脂、キノン及びキノンジオキシム誘導体、ハロゲン化合物、アルデヒド化合物、アルコール化合物、エポキシ化合物、金属ハロゲン化物及び有機金属ハロゲン化物、及びシラン化合物等が挙げられる。これら架橋剤は1種を単独で用いてもよく、2種以上を併用してもよい。前記架橋剤は、架橋物の力学物性の観点から、前記ゴム成分100質量部に対し、通常0.1~10質量部、好ましくは0.5~10質量部、より好ましくは0.8~5質量部含有される。
 前記ゴム組成物は、例えば前記ゴム成分を架橋(加硫)するための架橋剤として硫黄、硫黄化合物等が含まれている場合には、更に加硫促進剤を含有していてもよい。該加硫促進剤としては、例えば、グアニジン系化合物、スルフェンアミド系化合物、チアゾール系化合物、チウラム系化合物、チオウレア系化合物、ジチオカルバミン酸系化合物、アルデヒド-アミン系化合物、アルデヒド-アンモニア系化合物、イミダゾリン系化合物、及びキサンテート系化合物等が挙げられる。これら加硫促進剤は1種を単独で用いてもよく、2種以上を併用してもよい。前記加硫促進剤は、前記ゴム成分100質量部に対し、通常0.1~15質量部、好ましくは0.1~10質量部含有される。
 前記ゴム組成物は、例えば前記ゴム成分を架橋(加硫)するための架橋剤として硫黄、硫黄化合物等が含まれている場合には、更に加硫助剤を含有していてもよい。該加硫助剤としては、例えば、ステアリン酸等の脂肪酸、亜鉛華等の金属酸化物、ステアリン酸亜鉛等の脂肪酸金属塩が挙げられる。これら加硫助剤は1種を単独で用いてもよく、2種以上を併用してもよい。前記加硫助剤は、前記ゴム成分100質量部に対し、通常0.1~15質量部、好ましくは1~10質量部含有される。
 前記ゴム組成物がフィラーとしてシリカを含有する場合は、更にシランカップリング剤を含有することが好ましい。該シランカップリング剤としては、例えば、スルフィド系化合物、メルカプト系化合物、ビニル系化合物、アミノ系化合物、グリシドキシ系化合物、ニトロ系化合物、クロロ系化合物等が挙げられる。
 これらシランカップリング剤は、1種を単独で用いてもよく、2種以上を併用してもよい。前記シランカップリング剤は、シリカ100質量部に対して好ましくは0.1~30質量部、より好ましくは0.5~20質量部、更に好ましくは1~15質量部含有される。シランカップリング剤の含有量が前記範囲内であると、分散性、カップリング効果、補強性が向上する。
 前記ゴム組成物は、本発明の効果を阻害しない範囲で、加工性、流動性等の改良を目的とし、必要に応じてシリコンオイル、アロマオイル、TDAE(Treated Distilled Aromatic Extracts)、MES(Mild Extracted Solvates)、RAE(Residual AromaticExtracts)、パラフィンオイル、ナフテンオイル等のプロセスオイル、脂肪族炭化水素樹脂、脂環族炭化水素樹脂、C9系樹脂、ロジン系樹脂、クマロン・インデン系樹脂、フェノール系樹脂等の樹脂成分を軟化剤として含有してもよい。前記ゴム組成物が前記プロセスオイルを軟化剤として含有する場合には、その含有量は、前記ゴム成分100質量部に対して50質量部より少ないことが好ましい。
 前記ゴム組成物は、本発明の効果を阻害しない範囲で、耐候性、耐熱性、耐酸化性等の向上を目的として、必要に応じて老化防止剤、ワックス、酸化防止剤、滑剤、光安定剤、スコーチ防止剤、加工助剤、顔料や色素等の着色剤、難燃剤、帯電防止剤、艶消し剤、ブロッキング防止剤、紫外線吸収剤、離型剤、発泡剤、抗菌剤、防カビ剤、香料等の添加剤を含有してもよい。酸化防止剤としては、例えば、ヒンダードフェノール系化合物、リン系化合物、ラクトン系化合物、ヒドロキシル系化合物等が挙げられる。老化防止剤としては、例えば、アミン-ケトン系化合物、イミダゾール系化合物、アミン系化合物、フェノール系化合物、硫黄系化合物及びリン系化合物等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 前記ゴム成形体の製造方法としては、例えば、前記補強繊維を未加硫の前記ゴム組成物に埋設し、該ゴム組成物を加硫処理することにより、表面改質繊維とゴム成分とが前記接着成分を介して接着された成形体を得ることができる。
 前記自動車用のブレーキオイルホースとしては、例えば、内側ゴム層と外側ゴム層とを有し、内側ゴム層と外ゴム層との間に1層又は2層の前記補強繊維からなる補強層を有するものが挙げられる。
 内側ゴム層と外側ゴム層を構成するゴム成分としては、前述のものが挙げられる。中でも、内側ゴム層を構成するゴム成分としては、EPDM、SBR等が挙げられ、外側ゴム層を構成するゴム成分としては、EPDM、CR等が挙げられる。前記補強層は、補強繊維を編組して形成することができる。
 前記ブレーキオイルホースの製造方法としては、内側ゴム層の外表面上に、前記補強繊維を編組した補強層(第1補強層)を形成する。2層の補強層を形成する場合には、第1補強層の外表面上に更に中間ゴム層を形成し、該中間ゴム層の外表面上に、前記補強繊維を編組した補強層(第2補強層)を形成してもよい。そして、補強層(第1補強層又は第2補強層)の外表面上に外側ゴム層を形成し、加硫することにより製造することができる。
 加硫温度は、ブレーキオイルホースの各層の構成材料の種類等により適宜選択できるが、ゴムと補強繊維の劣化を抑制し、ゴムと補強繊維との接着力を向上させる観点から、200℃以下であることが好ましい。
 以下、実施例等により本発明を更に具体的に説明するが、本発明はかかる実施例等により何ら限定されない。
<変性共役ジエン系ゴムの製造>
・下記式(1a)で表される単量体単位を有する変性共役ジエン系ゴムの製造
Figure JPOXMLDOC01-appb-C000001
製造例1:変性共役ジエン系ゴム(A-1)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1140g及びn-ブチルリチウム(17質量%ヘキサン溶液)20.9gを仕込み、50℃に昇温した後、撹拌条件下、重合温度が50℃となるように制御しながら、ブタジエン1390gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性液状ポリブタジエン(A’-1)を得た。
 続いて、窒素置換を行った容量1Lのオートクレーブ中に、得られた未変性液状ポリブタジエン(A’-1)500gを仕込み、無水マレイン酸25gとN-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(商品名「ノクラック6C」、大内新興化学工業株式会社製)0.5gを添加し、170℃で24時間反応させて、無水マレイン酸変性液状ポリブタジエン(A-1)を得た。
製造例2:変性共役ジエン系ゴム(A-2)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1260g及びn-ブチルリチウム(17質量%ヘキサン溶液)36.3gを仕込み、50℃に昇温した後、撹拌条件下、重合温度が50℃となるように制御しながら、ブタジエン1260gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、未変性液状ポリブタジエン(A’-2)を得た。
 続いて、窒素置換を行った容量1Lのオートクレーブ中に、得られた未変性液状ポリブタジエン(A’-2)500gを仕込み、無水マレイン酸25gとN-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(商品名「ノクラック6C」、大内新興化学工業株式会社製)0.5gを添加し、170℃で24時間反応させて、無水マレイン酸変性液状ポリブタジエンを得た。得られた無水マレイン酸変性液状ポリブタジエン525gに対し、メタノールを8.5g添加し、80℃で6時間反応させて、マレイン酸モノメチル変性液状ポリブタジエン(A-2)を得た。
製造例3:変性共役ジエン系ゴム(A-3)の製造
 製造例1で得られた無水マレイン酸変性液状ポリブタジエン(A-1)525gに対し、メタノールを9.0g添加し、80℃で6時間反応させて、マレイン酸モノメチル変性液状ポリブタジエン(A-3)を得た。
 なお、ポリアミン化合物及び変性共役ジエン系ゴムの各物性の測定方法及び算出方法は以下の通りである。結果を表1及び2に示す。
<重量平均分子量、数平均分子量及び分子量分布の測定方法>
 ポリアミン化合物の重量平均分子量(Mw)、変性共役ジエン系ゴムの重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)は、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算値として求めた。測定装置及び条件は、以下の通りである。
・装置    :東ソー株式会社製GPC装置「GPC8020」
・分離カラム :東ソー株式会社製「TSKgelG4000HXL」
・検出器   :東ソー株式会社製「RI-8020」
・溶離液   :テトラヒドロフラン
・溶離液流量 :1.0ml/分
・サンプル濃度:5mg/10ml
・カラム温度 :40℃
<溶融粘度の測定方法>
 変性共役ジエン系ゴムの38℃における溶融粘度をブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS. INC.製)により測定した。
<ガラス転移温度の測定方法>
 変性共役ジエン系ゴム10mgをアルミパンに採取し、示差走査熱量測定(DSC)により10℃/分の昇温速度条件においてサーモグラムを測定し、DDSCのピークトップの値をガラス転移温度とした。
<ビニル含量の測定方法>
 変性共役ジエン系ゴムのビニル含量を、日本電子株式会社製1H-NMR(500MHz)を使用し、サンプル/重クロロホルム=50mg/1mLの濃度、積算回数1024回で測定した。得られたスペクトルのビニル化されたジエン化合物由来の二重結合のピークと、ビニル化されていないジエン化合物由来の二重結合のピークとの面積比から、ビニル含量を算出した。
<1分子当たりの平均水素結合性官能基数>
 変性共役ジエン系ゴム1分子当たりの平均水素結合性官能基数は、変性共役ジエン系ゴムの水素結合性官能基の当量(g/eq)とスチレン換算の数平均分子量Mnから、下記式より算出した。
 1分子当たりの平均水素結合性官能基数=[(数平均分子量(Mn))/(スチレン単位の分子量)×(共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体単位の平均分子量)]/(水素結合性官能基の当量)
 なお、水素結合性官能基の当量の算出方法は、水素結合性官能基の種類により適宜選択することができる。
 無水マレイン酸変性共役ジエン系ゴム、及びマレイン酸モノメチル変性共役ジエン系ゴムの1分子当たりの平均水素結合性官能基数の算出は、無水マレイン酸変性共役ジエン系ゴム、及びマレイン酸モノメチル変性共役ジエン系ゴムの酸価を求め、該酸価から水素結合性官能基の当量(g/eq)を算出することにより行った。
 変性反応後の試料をメタノールで4回洗浄(試料1gに対して5mL)して酸化防止剤等の不純物を除去した後、試料を80℃で12時間、減圧乾燥した。変性反応後の試料3gにトルエン180mL、エタノール20mLを加え溶解した後、0.1N水酸化カリウムのエタノール溶液で中和滴定し、下記式より酸価を求めた。
 酸価(mgKOH/g)=(A-B)×F×5.611/S
 A:中和に要した0.1N水酸化カリウムのエタノール溶液滴下量(mL)
 B:試料を含まないブランクでの0.1N水酸化カリウムのエタノール溶液滴下量(mL)
 F:0.1N水酸化カリウムのエタノール溶液の力価
 S:秤量した試料の質量(g)
 酸価から、下記式により無水マレイン酸変性共役ジエン系ゴム、及びマレイン酸モノメチル変性共役ジエン系ゴム1g当たりに含まれる水素結合性官能基の質量を算出し、更に無水マレイン酸変性共役ジエン系ゴム、及びマレイン酸モノメチル変性共役ジエン系ゴム1g当たりに含まれる官能基以外の質量(重合体主鎖質量)を算出した。そして、以下の式より水素結合性官能基の当量(g/eq)を算出した。
 〔1g当たり水素結合性官能基質量〕=〔酸価〕/〔56.11〕×〔水素結合性官能基分子量〕/1000
 〔1g当たり重合体主鎖質量〕=1-〔1g当たり水素結合性官能基質量〕
 〔水素結合性官能基の当量〕=〔1g当たり重合体主鎖質量〕/(〔1g当たり水素結合性官能基質量〕/〔水素結合性官能基分子量〕)
Figure JPOXMLDOC01-appb-T000002
 表面改質層に用いた化合物及びその特性を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 なお、表2中の化合物は以下のとおりである。
〔B-1〕
 ポリエチレンイミン(株式会社日本触媒製 SP-200)
〔B-2〕
 ポリアリルアミン(ニットーボーメディカル株式会社製 PAA-15)
〔B-3〕
 ポリアリルアミン(ニットーボーメディカル株式会社製 PAA-01)
〔B-4〕
 ポリエチレンイミン(株式会社日本触媒製 SP-006)
〔B-5〕
 ポリアリルアミン(ニットーボーメディカル株式会社製 PAS-21)
〔B-6〕
 ポリエチレンイミン(BASFジャパン株式会社製 Lupasolシリーズ)
〔X-1〕
4級アンモニウム含有アクリルポリマー(大成ファインケミカル株式会社1WX-1020)
〔X-2〕
エチレンジアミン(富士フィルム和光純薬株式会社製)
〔X-3〕
トリエチレンテトラミン(富士フィルム和光純薬株式会社製)
〔X-4〕
ペンタエチレンヘキサミン(富士フィルム和光純薬株式会社製)
<接着層を構成する共役ジエン系ゴム含有エマルションの調製>
 表1に記載の各変性共役ジエンゴム300gに非イオン性界面活性剤18gを添加し、均一に混合した。次いで、撹拌を継続しながら水酸化ナトリウム水溶液682gを徐々に添加し、固形分30質量部のエマルションを得た。
<表面改質層を構成する水溶液の調製>
 表2に記載の化合物5gと、水955gとを混合することにより、表面改質層を構成する水溶液をそれぞれ調製した。
<実施例1>
 ポリアミド系繊維であるナイロン繊維(総繊度1400dtex、単糸繊度6.86dtex)2本を、上撚470回/m、下撚470回/mで掛けることにより、撚り合わせ繊維コードを作製した。
 前記撚り合わせ繊維コードを、表面改質剤(B-1)を含む水溶液中に浸漬した後、ローラーで搾液した。得られた繊維コードを140℃で60秒間乾燥処理し、更に210℃で60秒間熱処理することにより表面改質繊維を作製した。
 次いで、変性共役ジエン系ゴム(A-2)を含むエマルションに浸漬した後、ローラーで搾液し140℃で60秒間乾燥処理した後に巻き取ることにより補強繊維を作製した。
<実施例2~7、9~11及び比較例1~5>
 表面改質層、接着層及びそれらの付着量を表3に記載のとおりに変更したこと以外は実施例1と同様の方法で補強繊維を作製した。
<実施例8>
 繊維をポリビニルアルコール系繊維であるビニロン繊維(総繊度1200dtex、単糸繊度6.00dtex)に変更したこと以外は実施例1と同様の方法で補強繊維を作製した。
<参考例1、2>
 参考例1としてポリアミド系繊維であるナイロン6繊維(繊度1400dtex、単糸繊度6.86dtex)2本、参考例2としてポリビニルアルコール系繊維であるビニロン繊維(繊度1200dtex、単糸繊度6.00dtex)2本を、それぞれ、上撚470回/m、下撚470回/mを掛けることにより撚り合わせ繊維コードを作製した。これを後述のRFL液に浸漬した後、ローラーで搾液し付与し140℃で60秒間乾燥し、更に210℃で60秒間熱処理することにより参考例1及び2の補強繊維を作製した。
 なお、使用したRFL液は下記の方法にて調製した。
〔RFL液の調整〕
A液
  水                    :1727質量部
  レゾルシノール              :  15質量部
  ホルムアルデヒド(有効分37質量%)   :  16質量部
  水酸化ナトリウム水溶液(有効分10質量%):   4質量部
 上記A液を25℃の温度で6時間熟成した。
B液
  SBRラテックス(有効分40質量%)         :207質量部
  ビニルピリジン変性SBRラテックス(有効分40質量%): 233質量部
 上記B液と熟成済みのA液とを混合した後、25℃の温度で16時間熟成してRFL液を製造した。
<ゴム接着力の測定>
 実施例、比較例及び参考例で得られた補強繊維について、下記方法で評価用供試体を作製した。この評価用試供体をゴムからT型剥離させるときに要した力(N/3本)を測定し、ゴム接着力として評価した。結果を表3に示す。
 ゴム接着力の評価結果は、数値が大きいほど補強繊維とゴムとの接着力が大きいことを示す。
〔評価用供試体の作製〕
 前述の実施例、比較例及び参考例で作製した補強繊維を、後述の配合により調製したNR/SBR未加硫のゴム組成物に一定の間隔を空け3本並べた。次いで、150℃、圧力20kg/cm2の条件で30分間プレス加硫することにより評価用供試体を作製した。
〔NR/SBR未加硫ゴムの配合組成〕
 NRゴム              :   70質量部
 SBRゴム             :41.25質量部
 フィラー(カーボンブラック)    :   45質量部
 加硫剤(硫黄粉)          :  3.5質量部
 加硫助剤(亜鉛華、ステアリン酸)  :    6質量部
 加硫促進剤(チアゾール系)     :    1質量部
Figure JPOXMLDOC01-appb-T000004
 実施例及び比較例の結果より明らかなように、本発明によれば、ゴムとの接着性に優れる補強繊維を得ることができる。特に本発明によれば、レゾルシノール、ホルムアルデヒド及びエポキシ化合物を使用しなくても、繊維とゴムとを強固に接着できる。

Claims (9)

  1.  繊維と、前記繊維の表面の少なくとも一部を覆う表面改質層と、前記表面改質層の少なくとも一部を覆う共役ジエン系ゴムを含有する接着層とを有する補強繊維であり、
     前記表面改質層が、1~3級アミノ基、及びイミノ基から選ばれる1種以上の官能基を有し、重量平均分子量(Mw)が300以上であるポリアミン化合物を含むことを特徴とする補強繊維。
  2.  前記繊維が、ポリアミド系繊維、ポリビニルアルコール系繊維、ポリエステル系繊維、及び再生セルロース系繊維から選ばれる1種以上の繊維である、請求項1に記載の補強繊維。
  3.  前記表面改質層の量が、原料として用いた繊維100質量部に対して0.01~5.00質量部である、請求項1又は2に記載の補強繊維。
  4.  前記共役ジエン系ゴムの数平均分子量(Mn)が2,000超120,000以下である、請求項1~3のいずれかに記載の補強繊維。
  5.  前記共役ジエン系ゴムが、分子内にブタジエン、イソプレン及びファルネセンから選ばれる1種以上に由来する単量体単位を有する、請求項1~4のいずれかに記載の補強繊維。
  6.  前記共役ジエン系ゴムが、共役ジエン系ゴムの一部に水素結合性官能基を有する変性共役ジエン系ゴムであり、該水素結合性官能基が、ヒドロキシ基、エポキシ基、アルデヒド基、アルデヒド基のアセタール化体、カルボニル基、カルボキシ基、カルボキシ基の塩、カルボキシ基のエステル化体、カルボキシ基の酸無水物、シラノール基、シラノール基のエステル化体、アミノ基、イミダゾール基、及びメルカプト基から選ばれる1種以上である、請求項1~5のいずれかに記載の補強繊維。
  7.  請求項1~6のいずれかに記載の補強繊維を用いた、成形体。
  8.  更にゴム層を有する、請求項7に記載の成形体。
  9.  前記成形体がタイヤ、ベルト又はホースである、請求項7又は8に記載の成形体。
PCT/JP2021/020032 2020-08-25 2021-05-26 補強繊維、及びそれを用いた成形体 WO2022044460A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21860891.7A EP4206397A1 (en) 2020-08-25 2021-05-26 Reinforcing fibers and molded body using same
KR1020237006766A KR20230058062A (ko) 2020-08-25 2021-05-26 보강 섬유, 및 그것을 사용한 성형체
CN202180052452.2A CN115989269A (zh) 2020-08-25 2021-05-26 增强纤维及使用了该增强纤维的成型体
CA3193150A CA3193150A1 (en) 2020-08-25 2021-05-26 Reinforcing fibers and molded body using same
JP2022545322A JPWO2022044460A1 (ja) 2020-08-25 2021-05-26
US18/022,783 US20230331941A1 (en) 2020-08-25 2021-05-26 Reinforcing fibers and molded body using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020141954 2020-08-25
JP2020-141954 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022044460A1 true WO2022044460A1 (ja) 2022-03-03

Family

ID=80353005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020032 WO2022044460A1 (ja) 2020-08-25 2021-05-26 補強繊維、及びそれを用いた成形体

Country Status (8)

Country Link
US (1) US20230331941A1 (ja)
EP (1) EP4206397A1 (ja)
JP (1) JPWO2022044460A1 (ja)
KR (1) KR20230058062A (ja)
CN (1) CN115989269A (ja)
CA (1) CA3193150A1 (ja)
TW (1) TW202208458A (ja)
WO (1) WO2022044460A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4017131B1 (ja) * 1962-01-09 1965-08-04
JPS4927440B1 (ja) * 1969-01-14 1974-07-17
JPS60209071A (ja) * 1984-03-26 1985-10-21 株式会社クラレ 繊維処理剤
EP3258006A1 (de) 2016-06-14 2017-12-20 Continental Reifen Deutschland GmbH Verfahren zur herstellung einer festigkeitsträgerlage, festigkeitsträgerlage und fahrzeugreifen
WO2019230700A1 (ja) * 2018-05-29 2019-12-05 株式会社クラレ 補強繊維及びその製造方法、並びにそれを用いた成形体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582370B2 (ja) 1975-12-08 1983-01-17 株式会社日立製作所 ユアツシキシンドウシケンキ
JP3157587B2 (ja) 1991-03-13 2001-04-16 株式会社ブリヂストン ゴム補強用ポリアミド繊維コード
JP5677942B2 (ja) 2009-04-28 2015-02-25 株式会社ブリヂストン 有機繊維コード用接着剤組成物、並びにそれを用いたゴム補強材、タイヤおよび接着方法
JP2011111563A (ja) 2009-11-27 2011-06-09 Toyoda Gosei Co Ltd 接着剤、補強糸を備えたゴムホース及びゴムホースの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4017131B1 (ja) * 1962-01-09 1965-08-04
JPS4927440B1 (ja) * 1969-01-14 1974-07-17
JPS60209071A (ja) * 1984-03-26 1985-10-21 株式会社クラレ 繊維処理剤
EP3258006A1 (de) 2016-06-14 2017-12-20 Continental Reifen Deutschland GmbH Verfahren zur herstellung einer festigkeitsträgerlage, festigkeitsträgerlage und fahrzeugreifen
WO2019230700A1 (ja) * 2018-05-29 2019-12-05 株式会社クラレ 補強繊維及びその製造方法、並びにそれを用いた成形体

Also Published As

Publication number Publication date
TW202208458A (zh) 2022-03-01
KR20230058062A (ko) 2023-05-02
JPWO2022044460A1 (ja) 2022-03-03
US20230331941A1 (en) 2023-10-19
CA3193150A1 (en) 2022-03-03
EP4206397A1 (en) 2023-07-05
CN115989269A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
JP7314128B2 (ja) 補強繊維及びその製造方法、並びにそれを用いた成形体
JP7458367B2 (ja) 補強繊維及びその製造方法、並びにそれを用いた成形体
WO2022044460A1 (ja) 補強繊維、及びそれを用いた成形体
JP7071218B2 (ja) 補強繊維及びその製造方法、並びにそれを用いた成形体
WO2021106559A1 (ja) 表面改質繊維、補強繊維、及びそれを用いた成形体
JP7323104B2 (ja) 補強繊維及びその製造方法、並びにそれを用いた成形体
WO2023085412A1 (ja) 補強繊維、その製造方法、及び補強繊維を用いたエラストマー製品
JP2022040774A (ja) 成形体及びその製造方法
WO2023085413A1 (ja) 水系接着剤、それを用いた補強繊維、及び補強繊維を用いたエラストマー製品
KR20240104111A (ko) 수계 접착제, 그것을 사용한 보강 섬유, 및 보강 섬유를 사용한 엘라스토머 제품
KR20240107320A (ko) 보강 섬유, 그 제조 방법, 및 보강 섬유를 사용한 엘라스토머 제품
CN118302573A (en) Aqueous adhesive, reinforcing fiber using the same, and elastomer product using the reinforcing fiber
JP2022040767A (ja) 補強繊維及びその製造方法、並びにそれを用いた成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545322

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3193150

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860891

Country of ref document: EP

Effective date: 20230327