WO2022042410A1 - 复合振膜及其制备方法 - Google Patents

复合振膜及其制备方法 Download PDF

Info

Publication number
WO2022042410A1
WO2022042410A1 PCT/CN2021/113442 CN2021113442W WO2022042410A1 WO 2022042410 A1 WO2022042410 A1 WO 2022042410A1 CN 2021113442 W CN2021113442 W CN 2021113442W WO 2022042410 A1 WO2022042410 A1 WO 2022042410A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
parts
composite
dispersion
nano
Prior art date
Application number
PCT/CN2021/113442
Other languages
English (en)
French (fr)
Inventor
陈闰
郭建君
虞成城
Original Assignee
深圳市信维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市信维通信股份有限公司 filed Critical 深圳市信维通信股份有限公司
Publication of WO2022042410A1 publication Critical patent/WO2022042410A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/046Elimination of a polymeric phase
    • C08J2201/0462Elimination of a polymeric phase using organic solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • C08J2397/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/021Diaphragms comprising cellulose-like materials, e.g. wood, paper, linen

Definitions

  • the invention relates to the technical field of vibrating membranes, in particular to a composite vibrating membrane and a preparation method thereof.
  • in-ear headphones With the increasingly fast-paced social life, consumers prefer small and portable in-ear headphones rather than traditional headphones. Due to the smaller size of in-ear headphones, the requirements for headphone materials are also stricter, including the diaphragm material. Due to the volume limitation of the earphones and mainly driven by the mobile phone or the Bluetooth of the mobile phone, the diaphragm of the in-ear earphone is required to be as light and thin as possible under the premise of maintaining rigidity. In recent years, how to prepare a diaphragm with a high elastic ratio has always been a research hotspot in the field of earphones.
  • diaphragms of materials such as diamond, graphene, and beryllium on the market. These diaphragms have super rigidity and low density, and are excellent materials for preparing diaphragms.
  • Due to the difficulty and high cost of processing these materials large-scale promotion is impossible in a short period of time, and the R&D personnel transferred the research center to the composite diaphragm.
  • Nanomaterials such as graphene and carbon nanotubes are used to dope and modify the polymer materials with high damping and low density, or directly use the sprayed graphene coating and carbon fiber film composite to obtain high-performance films.
  • nano-scale materials including graphene, carbon nanotubes, carbon nanofibers and fumed silica are often prone to agglomeration when they are directly doped and stirred. Agglomerated particles of different sizes will not only fail to improve the effect of modification and enhancement, but also lead to a decrease in the uniformity of the film, and if a large amount of dispersant is added, it will affect the properties of the film itself; directly spray graphene, or weave carbon nanometers Fiber and other methods also face the problems of difficult processing and high cost.
  • the technical problem to be solved by the present invention is to provide a composite vibrating membrane and a preparation method thereof.
  • the composite vibrating membrane has high mechanical strength, simple preparation process and low cost.
  • the technical scheme adopted in the present invention is:
  • a composite vibrating membrane is prepared from the following raw materials in parts by weight: 5-15 parts of microcrystalline cellulose, 100-120 parts of cellulose dispersion, 5-15 parts of porogen, 150-200 parts of displacer, nanometer 5-30 parts of reinforcing material, 100-150 parts of dispersion liquid and 5-10 parts of surfactant.
  • the preparation method of the composite vibrating membrane comprises the following steps: mixing microcrystalline cellulose, cellulose dispersion and a porogen to obtain a first mixed solution; leveling the first mixed solution in a mold to obtain a cellulose wet film; The cellulose wet film is put into a displacer for replacement to obtain a porous cellulose wet film; the porous cellulose wet film is subjected to a first drying treatment to obtain a porous cellulose film; the nano-reinforced material, the dispersion liquid and the surface active The porous cellulose membrane is immersed in the nano-dispersion solution, and then subjected to ultrasonic vibration treatment to obtain a composite cellulose membrane intermediate; the composite cellulose membrane intermediate is sequentially dried for a second time Treatment and compaction treatment are performed to obtain a composite cellulose film; the composite cellulose film is subjected to air pressure molding to obtain the composite vibrating film.
  • Microcrystalline cellulose and nano-enhancing materials are used as the raw materials for preparing the diaphragm.
  • the cellulose film adsorbs the nano-enhancing materials, the mechanical strength of the diaphragm can be greatly improved.
  • the microcrystalline cellulose is first processed into a porous structure, which is conducive to the effective adsorption of nano-enhancing materials; in the preparation process, the use of displacers of different polarities can control the pore size of the material, and with different concentrations of nano-dispersion
  • the composite membrane of different proportions and shapes can be prepared from the liquid to meet different needs; the nano-reinforced material can be self-grown and adsorbed on the porous cellulose membrane, and continuous ultrasonic vibration can ensure that the nano-reinforced material will not agglomerate and can be uniformly Adsorption can greatly improve the strength of the cellulose membrane; the nano-dispersion can be used many times, the utilization rate is high, and the adsorption process is simple, which can effectively reduce the cost; the cellulose membrane itself is biodegradable, compared with plastic diaphragms and metal diaphragms The diaphragm is more environmentally friendly.
  • the key idea of the present invention is: using microcrystalline cellulose and nano-enhancing material as raw materials for preparing the diaphragm, when the cellulose film adsorbs the nano-enhancing material, the strength of the diaphragm can be greatly improved.
  • a composite vibrating membrane is prepared from the following raw materials in parts by weight: 5-15 parts of microcrystalline cellulose, 100-120 parts of cellulose dispersion, 5-15 parts of porogen, 150-200 parts of displacer, nanometer 5-30 parts of reinforcing material, 100-150 parts of dispersion liquid and 5-10 parts of surfactant.
  • the beneficial effects of the present invention are: using microcrystalline cellulose and nano-enhancing materials as raw materials for preparing the diaphragm, when the cellulose film adsorbs the nano-enhancing materials, the mechanical strength of the diaphragm can be greatly improved.
  • microcrystalline cellulose is at least one of lignocellulose and bacterial cellulose.
  • the cellulose dispersion is at least one of water, methanol, ethanol, isopropanol, acetone, tert-butanol and octane.
  • the porogen is at least one of polyethylene glycol, polyvinyl alcohol, hydrogen peroxide and hydroxycellulose.
  • the displacement agent is at least one of ethanol, acetone, tert-butanol and potassium hydroxide solution.
  • the nano-enhancing material is at least one of graphene powder, graphene nanosheets, single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers and fumed silica.
  • the dispersion liquid is at least one of deionized water, NMP, DMF and ethanol.
  • the surfactant is at least one of sodium dodecylbenzenesulfonate, quaternary ammonium compounds and fatty acid glycerides.
  • microcrystalline cellulose As can be seen from the above description, the types of microcrystalline cellulose, cellulose dispersion, porogen, displacement agent, nano-reinforcing material, dispersion and surfactant can be selected as required.
  • the preparation method of the composite vibrating membrane comprises the following steps: mixing microcrystalline cellulose, cellulose dispersion and a porogen to obtain a first mixed solution; leveling the first mixed solution in a mold to obtain a cellulose wet film; The cellulose wet film is put into a displacer for replacement to obtain a porous cellulose wet film; the porous cellulose wet film is subjected to a first drying treatment to obtain a porous cellulose film; the nano-reinforced material, the dispersion liquid and the surface active The porous cellulose membrane is immersed in the nano-dispersion solution, and then subjected to ultrasonic vibration treatment to obtain a composite cellulose membrane intermediate; the composite cellulose membrane intermediate is sequentially dried for a second time Treatment and compaction treatment are performed to obtain a composite cellulose film; the composite cellulose film is subjected to air pressure molding to obtain the composite vibrating film.
  • the microcrystalline cellulose is first processed into a porous structure, which is conducive to the effective adsorption of nano-reinforced materials; the use of displacers of different polarities in the preparation process can control the pore size of the material, and can be prepared with different concentrations of nano-dispersion. Different proportions and shapes of composite membranes can be produced to meet different needs; the nano-reinforced materials can be self-grown and adsorbed on the porous cellulose membrane, and continuous ultrasonic oscillation can ensure that the nano-reinforced materials will not agglomerate, and can be uniformly adsorbed.
  • the strength of the cellulose membrane is greatly improved; the nano-dispersion can be used many times, the utilization rate is high, and the adsorption process is simple, which can effectively reduce the cost; the cellulose membrane itself is biodegradable, and compared with plastic diaphragms and metal diaphragms, more friendly to the environment.
  • the second drying treatment is carried out in a vacuum drying oven at a temperature of 50-100° C. and a time of 6-12 hours.
  • a composite vibrating membrane is prepared from the following raw materials in parts by weight: 5-15 parts of microcrystalline cellulose, 100-120 parts of cellulose dispersion, 5-15 parts of porogen, 150-200 parts of displacer, nanometer 5-30 parts of reinforcing material, 100-150 parts of dispersion liquid and 5-10 parts of surfactant.
  • the microcrystalline cellulose is at least one of lignocellulose and bacterial cellulose.
  • the cellulose dispersion is at least one of water, methanol, ethanol, isopropanol, acetone, tert-butanol and octane.
  • the porogen is at least one of polyethylene glycol, polyvinyl alcohol, hydrogen peroxide and hydroxycellulose.
  • the displacement agent is at least one of ethanol, acetone, tert-butanol and potassium hydroxide solution.
  • the nano-enhancing material is at least one of graphene powder, graphene nano-sheets, single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers and fumed silica.
  • the dispersion liquid is at least one of deionized water, NMP, DMF and ethanol.
  • the surfactant is at least one of sodium dodecylbenzenesulfonate, quaternary ammonium compounds and fatty acid glycerides.
  • the preparation method of the composite diaphragm comprises the following steps:
  • microcrystalline cellulose, cellulose dispersion and porogen can be added to the mixing container for mixing, and after the first mixed solution is obtained, filtration and defoaming can be performed in sequence. Bubble removes air bubbles.
  • a certain degree of drying may be performed after the first mixed liquid is leveled, and it may be left to dry at room temperature.
  • the first drying treatment can be performed by room temperature drying, freeze drying, vacuum heating drying, or the like.
  • the porous cellulose membrane is immersed in the nano-dispersion liquid, and then subjected to ultrasonic vibration treatment to obtain a composite cellulose membrane intermediate.
  • the ultrasonic vibration treatment time is 12-24 hours, and the nano-enhanced material can undergo self-growth and adsorption.
  • the composite cellulose membrane intermediate is sequentially subjected to a second drying treatment and a compacting treatment to obtain a composite cellulose membrane.
  • the second drying treatment is performed in a vacuum drying oven, the temperature is 50-100° C., and the time is 6-12 hours.
  • the compaction treatment can be realized by a tablet press, and the pressure of the compaction treatment is 0.2 ⁇ 0.5MPa.
  • the air pressure forming can be realized by a pneumatic machine, and the pressure of the air pressure forming is 0.3-0.8 MPa.
  • the second embodiment of the present invention is a composite diaphragm, which is different from the first embodiment in that:
  • the composite diaphragm is prepared from the following raw materials by weight: 10 parts of microcrystalline cellulose, 100 parts of cellulose dispersion, 5 parts of porogen, 150 parts of displacer, 5 parts of nano-reinforced material, 120 parts of dispersion liquid and surface Active agent 5 parts.
  • the microcrystalline cellulose is lignocellulose
  • the cellulose dispersion is water
  • the porogen is polyethylene glycol
  • the displacer is acetone
  • the nano-enhancing material is graphene powder
  • the dispersion liquid is ethanol
  • the surfactant is sodium dodecylbenzenesulfonate.
  • the replacement time is 6h.
  • the first drying treatment is to put it in an oven and dry under nitrogen protection, the temperature is 60°C, and the time is 6h.
  • the time of ultrasonic vibration treatment is 12h.
  • the temperature of the second drying treatment is 60° C. and the time is 6 h; the pressure of the compaction treatment is 0.2 MPa.
  • the pressure of air pressure forming is 0.4MPa.
  • the third embodiment of the present invention is a composite diaphragm, and the difference from the first embodiment is:
  • the composite diaphragm is prepared from the following raw materials by weight: 5 parts of microcrystalline cellulose, 110 parts of cellulose dispersion, 10 parts of porogen, 180 parts of displacer, 8 parts of nano-reinforced material, 100 parts of dispersion liquid and surface 8 servings of active agent.
  • the microcrystalline cellulose is bacterial cellulose
  • the cellulose dispersion is ethanol
  • the porogen is polyvinyl alcohol
  • the displacer is ethanol
  • the nano-reinforced material is carbon nanofibers
  • the dispersion is
  • the liquid is water
  • the surfactant is a fatty acid glyceride.
  • the replacement time is 6h.
  • the first drying treatment is to put it in an oven and dry under nitrogen protection, the temperature is 60°C, and the time is 6h.
  • the time of ultrasonic vibration treatment is 18h.
  • the temperature of the second drying treatment is 50° C. and the time is 8 h; the pressure of the compaction treatment is 0.3 MPa.
  • the pressure of air pressure forming is 0.3MPa.
  • the fourth embodiment of the present invention is a composite diaphragm, and the difference from the first embodiment is:
  • the composite diaphragm is prepared from the following raw materials by weight: 15 parts of microcrystalline cellulose, 120 parts of cellulose dispersion, 15 parts of porogen, 200 parts of displacer, 30 parts of nano-reinforced material, 150 parts of dispersion liquid and surface 10 actives.
  • the microcrystalline cellulose is bacterial cellulose
  • the cellulose dispersion is ethanol
  • the porogen is polyvinyl alcohol
  • the displacer is ethanol
  • the nano-enhancing material is graphene nano-sheets
  • the The dispersion is water
  • the surfactant is a fatty acid glyceride.
  • the replacement time is 6h.
  • the first drying treatment is to put it in an oven and dry under nitrogen protection, the temperature is 60°C, and the time is 6h.
  • the time of ultrasonic vibration treatment is 24h.
  • the temperature of the second drying treatment is 100° C.
  • the time is 12 h
  • the pressure of the compaction treatment is 0.5 MPa.
  • the pressure of air pressure forming is 0.8MPa.
  • the tensile mechanical properties of the composite vibrating membranes from Embodiments 2 to 4 were tested and the PET vibrating membrane was used as a control group.
  • the test samples were all 15mm ⁇ 80mm standard splines, and the test equipment was a new Sansi brand universal testing machine.
  • the test results As shown in Table 1,
  • the composite diaphragm provided by the present invention and the preparation method thereof have the advantages of simple preparation process and low cost, and the obtained composite diaphragm has good mechanical properties and can meet the needs of use.

Abstract

本发明公开了一种复合振膜及其制备方法,复合振膜由如下重量份的原料制备而成:微晶纤维素5~15份、纤维素分散液100~120份、致孔剂5~15份、置换剂150~200份、纳米增强材料5~30份、分散液100~150份和表面活性剂5~10份。采用微晶纤维素和纳米增强材料作为制备振膜的原料,当纤维素膜吸附纳米增强材料后,可以大大提高振膜的强度。复合振膜的制备过程简单,成本低。

Description

复合振膜及其制备方法 技术领域
本发明涉及振膜技术领域,尤其涉及一种复合振膜及其制备方法。
背景技术
随着社会生活的日益快节奏化,消费者更加青睐于小巧便携的入耳式耳机而非传统的头戴式耳机。入耳式耳机由于体积较小,因此对耳机材料的要求也更加严格,其中就包括振膜材料。由于耳机体积限制,加上主要靠手机或手机蓝牙推动,入耳式耳机的振膜要求在保持刚性的前提下尽可能的轻且薄。近年来,如何制备具备高弹性比率的振膜,一直是耳机领域的研究热点。
目前市面上已经有了可实用的金刚石、石墨烯和铍等材料的振膜,这些振膜刚性超强且密度较低,是制备振膜的优良材料。但是由于这些材料的加工难度非常大且成本昂贵,在短时间内不可能大规模的推广,研发人员们又将研究中心转移到复合振膜上。选用石墨烯、碳纳米管等纳米材料对本身高阻尼低密度的高分子材料进行掺杂改性,或者直接使用喷涂石墨烯涂层、碳纤维薄膜复合来得到高性能的薄膜。但这几种方式都有其弊端:包括石墨烯、碳纳米管、碳纳米纤维和气相二氧化硅等在内的纳米级材料,在直接进行掺杂搅拌的时候,常常容易出现团聚现象,形成大小不一的团聚颗粒,不但起不到改性增强作用,还会导致薄膜的均匀性下降,而如果加入大量的分散剂,又会影响薄膜本身的性质;直接喷涂石墨烯,或者编织碳纳米纤维等方法,又同样面对加工难度大和成本高的问题。
技术问题
本发明所要解决的技术问题是:提供一种复合振膜及其制备方法,复合振膜的力学强度高,制备过程简单且成本低。
技术解决方案
为了解决上述技术问题,本发明采用的技术方案为:
一种复合振膜,由如下重量份的原料制备而成:微晶纤维素5~15份、纤维素分散液100~120份、致孔剂5~15份、置换剂150~200份、纳米增强材料5~30份、分散液100~150份和表面活性剂5~10份。
本发明采用的另一技术方案为:
复合振膜的制备方法,将微晶纤维素、纤维素分散液和致孔剂进行混合,得到第一混合液;将所述第一混合液在模具中流平,得到纤维素湿膜;将所述纤维素湿膜放入置换剂中进行置换,得到多孔纤维素湿膜;对所述多孔纤维素湿膜进行第一干燥处理,得到多孔纤维素膜;将纳米增强材料、分散液和表面活性剂进行混合,得到纳米分散液;将所述多孔纤维素膜浸入纳米分散液中,然后进行超声震荡处理,得到复合纤维素膜中间体;将所述复合纤维素膜中间体依次进行第二干燥处理和压实处理,得到复合纤维素膜;将所述复合纤维素膜进行气压成型,得到所述复合振膜。
有益效果
本发明的有益效果在于:
1、采用微晶纤维素和纳米增强材料作为制备振膜的原料,当纤维素膜吸附纳米增强材料后,可以大大提高振膜的力学强度。
2、在制备振膜时,先将微晶纤维素处理成多孔结构,有利于有效吸附纳米增强材料;在制备过程中采用不同极性的置换剂可以控制材料的孔径,搭配不同浓度的纳米分散液可以制备出不同比例和形态的复合膜,满足不同的使用需求;纳米增强材料可在多孔纤维素膜上进行自生长吸附,不断进行超声震荡可保证纳米增强材料不会发生团聚,可进行均匀吸附,大幅度提高纤维素膜的强度;纳米分散液可多次使用,利用率高,并且吸附过程简单,可有效降低成本;纤维素膜本身具备生物降解性,相比于塑料振膜和金属振膜,对环境更加友好。
本发明的实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式予以说明。
本发明最关键的构思在于:采用微晶纤维素和纳米增强材料作为制备振膜的原料,当纤维素膜吸附纳米增强材料后,可以大大提高振膜的强度。
一种复合振膜,由如下重量份的原料制备而成:微晶纤维素5~15份、纤维素分散液100~120份、致孔剂5~15份、置换剂150~200份、纳米增强材料5~30份、分散液100~150份和表面活性剂5~10份。
从上述描述可知,本发明的有益效果在于:采用微晶纤维素和纳米增强材料作为制备振膜的原料,当纤维素膜吸附纳米增强材料后,可以大大提高振膜的力学强度。
进一步的,所述微晶纤维素为木质纤维素和细菌纤维素中的至少一种。
进一步的,所述纤维素分散液为水、甲醇、乙醇、异丙醇、丙酮、叔丁醇和辛烷中的至少一种。
进一步的,所述致孔剂为聚乙二醇、聚乙烯醇、过氧化氢和羟基纤维素中的至少一种。
进一步的,所述置换剂为乙醇、丙酮、叔丁醇和氢氧化钾溶液中的至少一种。
进一步的,所述纳米增强材料为石墨烯粉末、石墨烯纳米片、单壁碳纳米管、多壁碳纳米管、碳纳米纤维和气相二氧化硅中的至少一种。
进一步的,所述分散液为去离子水、NMP、DMF和乙醇中的至少一种。
进一步的,所述表面活性剂为十二烷基苯磺酸钠、季铵化物和脂肪酸甘油酯中的至少一种。
由上述描述可知,微晶纤维素、纤维素分散液、致孔剂、置换剂、纳米增强材料、分散液以及表面活性剂的种类可以根据需要进行选择。
本发明涉及的另一技术方案为:
复合振膜的制备方法,将微晶纤维素、纤维素分散液和致孔剂进行混合,得到第一混合液;将所述第一混合液在模具中流平,得到纤维素湿膜;将所述纤维素湿膜放入置换剂中进行置换,得到多孔纤维素湿膜;对所述多孔纤维素湿膜进行第一干燥处理,得到多孔纤维素膜;将纳米增强材料、分散液和表面活性剂进行混合,得到纳米分散液;将所述多孔纤维素膜浸入纳米分散液中,然后进行超声震荡处理,得到复合纤维素膜中间体;将所述复合纤维素膜中间体依次进行第二干燥处理和压实处理,得到复合纤维素膜;将所述复合纤维素膜进行气压成型,得到所述复合振膜。
由上述描述可知,先将微晶纤维素处理成多孔结构,有利于有效吸附纳米增强材料;在制备过程中采用不同极性的置换剂可以控制材料的孔径,搭配不同浓度的纳米分散液可以制备出不同比例和形态的复合膜,满足不同的使用需求;纳米增强材料可在多孔纤维素膜上进行自生长吸附,不断进行超声震荡可保证纳米增强材料不会发生团聚,可进行均匀吸附,大幅度提高纤维素膜的强度;纳米分散液可多次使用,利用率高,并且吸附过程简单,可有效降低成本;纤维素膜本身具备生物降解性,相比于塑料振膜和金属振膜,对环境更加友好。
进一步的,所述第二干燥处理在真空干燥箱中进行,温度为50~100℃,时间为6~12h。
实施例一
本发明的实施例一为:
一种复合振膜,由如下重量份的原料制备而成:微晶纤维素5~15份、纤维素分散液100~120份、致孔剂5~15份、置换剂150~200份、纳米增强材料5~30份、分散液100~150份和表面活性剂5~10份。所述微晶纤维素为木质纤维素和细菌纤维素中的至少一种。所述纤维素分散液为水、甲醇、乙醇、异丙醇、丙酮、叔丁醇和辛烷中的至少一种。所述致孔剂为聚乙二醇、聚乙烯醇、过氧化氢和羟基纤维素中的至少一种。所述置换剂为乙醇、丙酮、叔丁醇和氢氧化钾溶液中的至少一种。所述纳米增强材料为石墨烯粉末、石墨烯纳米片、单壁碳纳米管、多壁碳纳米管、碳纳米纤维和气相二氧化硅中的至少一种。所述分散液为去离子水、NMP、DMF和乙醇中的至少一种。所述表面活性剂为十二烷基苯磺酸钠、季铵化物和脂肪酸甘油酯中的至少一种。
所述复合振膜的制备方法包括如下步骤:
1、将微晶纤维素、纤维素分散液和致孔剂进行混合,得到第一混合液。
混合时,可将微晶纤维素、纤维素分散液和致孔剂可以添加至混合容器中进行混合,在得到第一混合液之后可以进行依次进行过滤和脱泡处理,过滤可以去除杂质,脱泡可以去除气泡。
2、将所述第一混合液在模具中流平,得到纤维素湿膜。
本实施例中,可在第一混合液流平之后进行一定程度的干燥处理,可以在室温下静置干燥。
3、将所述纤维素湿膜放入置换剂中进行置换,得到多孔纤维素湿膜。
4、对所述多孔纤维素湿膜进行第一干燥处理,得到多孔纤维素膜。
第一干燥处理可以采用室温干燥、冷冻干燥、真空加热干燥等方式进行。
5、将纳米增强材料、分散液和表面活性剂进行混合,得到纳米分散液。
6、将所述多孔纤维素膜浸入纳米分散液中,然后进行超声震荡处理,得到复合纤维素膜中间体。
本实施例中,超声震荡处理的时间为12~24h,纳米增强材料可进行自生长吸附。
7、将所述复合纤维素膜中间体依次进行第二干燥处理和压实处理,得到复合纤维素膜。
本实施例中,所述第二干燥处理在真空干燥箱中进行,温度为50~100℃,时间为6~12h。压实处理可通过压片机来实现,压实处理的压力为0.2~0.5MPa。
8、将所述复合纤维素膜进行气压成型,得到所述复合振膜。
本实施例中,气压成型可通过气压机实现,气压成型的压力为0.3~0.8MPa。
实施例二
本发明的实施例二为一种复合振膜,与实施例一的不同之处在于:
复合振膜由如下重量份的原料制备而成:微晶纤维素10份、纤维素分散液100份、致孔剂5份、置换剂150份、纳米增强材料5份、分散液120份和表面活性剂5份。所述微晶纤维素为木质纤维素,所述纤维素分散液为水,所述致孔剂为聚乙二醇,所述置换剂为丙酮,所述纳米增强材料为石墨烯粉末,所述分散液为乙醇,所述表面活性剂为十二烷基苯磺酸钠。
在制备复合振膜时,步骤3中,置换时间为6h。步骤4中,第一干燥处理为放入烘箱中,在氮气保护下进行干燥,温度为60℃,时间为6h。步骤6中,超声震荡处理的时间为12h。步骤7中,第二干燥处理的温度为60℃,时间为6h;压实处理的压力为0.2MPa。步骤8中,气压成型的压力为0.4MPa。
实施例三
本发明的实施例三为一种复合振膜,与实施例一的不同之处在于:
复合振膜由如下重量份的原料制备而成:微晶纤维素5份、纤维素分散液110份、致孔剂10份、置换剂180份、纳米增强材料8份、分散液100份和表面活性剂8份。所述微晶纤维素为细菌纤维素,所述纤维素分散液为乙醇,所述致孔剂为聚乙烯醇,所述置换剂为乙醇,所述纳米增强材料为碳纳米纤维,所述分散液为水,所述表面活性剂为脂肪酸甘油酯。
在制备复合振膜时,步骤3中,置换时间为6h。步骤4中,第一干燥处理为放入烘箱中,在氮气保护下进行干燥,温度为60℃,时间为6h。步骤6中,超声震荡处理的时间为18h。步骤7中,第二干燥处理的温度为50℃,时间为8h;压实处理的压力为0.3MPa。步骤8中,气压成型的压力为0.3MPa。
实施例四
本发明的实施例四为一种复合振膜,与实施例一的不同之处在于:
复合振膜由如下重量份的原料制备而成:微晶纤维素15份、纤维素分散液120份、致孔剂15份、置换剂200份、纳米增强材料30份、分散液150份和表面活性剂10份。所述微晶纤维素为细菌纤维素,所述纤维素分散液为乙醇,所述致孔剂为聚乙烯醇,所述置换剂为乙醇,所述纳米增强材料为石墨烯纳米片,所述分散液为水,所述表面活性剂为脂肪酸甘油酯。
在制备复合振膜时,步骤3中,置换时间为6h。步骤4中,第一干燥处理为放入烘箱中,在氮气保护下进行干燥,温度为60℃,时间为6h。步骤6中,超声震荡处理的时间为24h。步骤7中,第二干燥处理的温度为100℃,时间为12h;压实处理的压力为0.5MPa。步骤8中,气压成型的压力为0.8MPa。
性能测试
对实施例二至实施例四的复合振膜进行拉伸力学性能测试并以PET振膜作为对照组,测试样品均为15mm×80mm标准样条,测试设备为新三思牌万能试验机,测试结果如表1所示,
表1 拉伸力学性能测试结果表
  断裂伸长率 杨氏模量
实施例二 22% 5.1Gpa
实施例三 17% 7.8Gpa
实施例四 11% 8.8Gpa
PET(常用振膜材料) 43% 2.4Gpa
从表1可以看出,实施例二至实施例四的复合振膜较PET振膜力学性能更好。
综上所述,本发明提供的一种复合振膜及其制备方法,制备过程简单,成本低,且得到的复合振膜的力学性能好,能满足使用需求。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种复合振膜,其特征在于,由如下重量份的原料制备而成:微晶纤维素5~15份、纤维素分散液100~120份、致孔剂5~15份、置换剂150~200份、纳米增强材料5~30份、分散液100~150份和表面活性剂5~10份。
  2. 根据权利要求1所述的复合振膜,其特征在于,所述微晶纤维素为木质纤维素和细菌纤维素中的至少一种。
  3. 根据权利要求1所述的复合振膜,其特征在于,所述纤维素分散液为水、甲醇、乙醇、异丙醇、丙酮、叔丁醇和辛烷中的至少一种。
  4. 根据权利要求1所述的复合振膜,其特征在于,所述致孔剂为聚乙二醇、聚乙烯醇、过氧化氢和羟基纤维素中的至少一种。
  5. 根据权利要求1所述的复合振膜,其特征在于,所述置换剂为乙醇、丙酮、叔丁醇和氢氧化钾溶液中的至少一种。
  6. 根据权利要求1所述的复合振膜,其特征在于,所述纳米增强材料为石墨烯粉末、石墨烯纳米片、单壁碳纳米管、多壁碳纳米管、碳纳米纤维和气相二氧化硅中的至少一种。
  7. 根据权利要求1所述的复合振膜,其特征在于,所述分散液为去离子水、NMP、DMF和乙醇中的至少一种。
  8. 根据权利要求1所述的复合振膜,其特征在于,所述表面活性剂为十二烷基苯磺酸钠、季铵化物和脂肪酸甘油酯中的至少一种。
  9. 权利要求1-8任意一项所述的复合振膜的制备方法,其特征在于,将微晶纤维素、纤维素分散液和致孔剂进行混合,得到第一混合液;将所述第一混合液在模具中流平,得到纤维素湿膜;将所述纤维素湿膜放入置换剂中进行置换,得到多孔纤维素湿膜;对所述多孔纤维素湿膜进行第一干燥处理,得到多孔纤维素膜;将纳米增强材料、分散液和表面活性剂进行混合,得到纳米分散液;将所述多孔纤维素膜浸入纳米分散液中,然后进行超声震荡处理,得到复合纤维素膜中间体;将所述复合纤维素膜中间体依次进行第二干燥处理和压实处理,得到复合纤维素膜;将所述复合纤维素膜进行气压成型,得到所述复合振膜。
  10. 根据权利要求9所述的复合振膜的制备方法,其特征在于,所述第二干燥处理在真空干燥箱中进行,温度为50~100℃,时间为6~12h。
PCT/CN2021/113442 2020-08-24 2021-08-19 复合振膜及其制备方法 WO2022042410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010854652.7A CN112080024A (zh) 2020-08-24 2020-08-24 复合振膜及其制备方法
CN2020108546527 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022042410A1 true WO2022042410A1 (zh) 2022-03-03

Family

ID=73728514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113442 WO2022042410A1 (zh) 2020-08-24 2021-08-19 复合振膜及其制备方法

Country Status (2)

Country Link
CN (1) CN112080024A (zh)
WO (1) WO2022042410A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116836596A (zh) * 2023-06-30 2023-10-03 常州第六元素材料科技股份有限公司 改性氧化石墨烯振膜及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080024A (zh) * 2020-08-24 2020-12-15 深圳市信维通信股份有限公司 复合振膜及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051892A (ja) * 1996-07-30 1998-02-20 Foster Electric Co Ltd ヘッドホン用ドライバー
JP2004023509A (ja) * 2002-06-18 2004-01-22 Foster Electric Co Ltd 電気音響変換器用振動板
CN101990148A (zh) * 2009-07-31 2011-03-23 鸿富锦精密工业(深圳)有限公司 振动膜及应用该振动膜的扬声器
CN102174214A (zh) * 2011-03-07 2011-09-07 海南光宇生物科技有限公司 细菌纤维素/石墨烯复合材料及其制备方法
CN104157815A (zh) * 2014-08-22 2014-11-19 海南光宇生物科技有限公司 一种细菌纤维素多孔薄膜及其制备方法
CN105118688A (zh) * 2015-09-08 2015-12-02 哈尔滨工业大学 一种细菌纤维素/活性碳纤维/石墨烯膜材料的制备方法及其应用
CN105323697A (zh) * 2014-07-28 2016-02-10 美特科技(苏州)有限公司 一种复合振膜的制造方法及使用该方法制造的振膜
CN105860143A (zh) * 2016-05-14 2016-08-17 上海大学 一种柔性纳米纤维素-石墨烯复合膜及其制备方法
CN108399964A (zh) * 2018-01-22 2018-08-14 浙江理工大学 基于纳米微晶纤维素衬底的石墨烯导电薄膜的制备方法
KR102058922B1 (ko) * 2018-07-17 2019-12-26 (주)씨엔엔티 스피커 진동판용 나노복합체 시트(sheet) 및 스피커 진동판용 나노복합체 시트(sheet)의 제조방법
CN112080024A (zh) * 2020-08-24 2020-12-15 深圳市信维通信股份有限公司 复合振膜及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051892A (ja) * 1996-07-30 1998-02-20 Foster Electric Co Ltd ヘッドホン用ドライバー
JP2004023509A (ja) * 2002-06-18 2004-01-22 Foster Electric Co Ltd 電気音響変換器用振動板
CN101990148A (zh) * 2009-07-31 2011-03-23 鸿富锦精密工业(深圳)有限公司 振动膜及应用该振动膜的扬声器
CN102174214A (zh) * 2011-03-07 2011-09-07 海南光宇生物科技有限公司 细菌纤维素/石墨烯复合材料及其制备方法
CN105323697A (zh) * 2014-07-28 2016-02-10 美特科技(苏州)有限公司 一种复合振膜的制造方法及使用该方法制造的振膜
CN104157815A (zh) * 2014-08-22 2014-11-19 海南光宇生物科技有限公司 一种细菌纤维素多孔薄膜及其制备方法
CN105118688A (zh) * 2015-09-08 2015-12-02 哈尔滨工业大学 一种细菌纤维素/活性碳纤维/石墨烯膜材料的制备方法及其应用
CN105860143A (zh) * 2016-05-14 2016-08-17 上海大学 一种柔性纳米纤维素-石墨烯复合膜及其制备方法
CN108399964A (zh) * 2018-01-22 2018-08-14 浙江理工大学 基于纳米微晶纤维素衬底的石墨烯导电薄膜的制备方法
KR102058922B1 (ko) * 2018-07-17 2019-12-26 (주)씨엔엔티 스피커 진동판용 나노복합체 시트(sheet) 및 스피커 진동판용 나노복합체 시트(sheet)의 제조방법
CN112080024A (zh) * 2020-08-24 2020-12-15 深圳市信维通信股份有限公司 复合振膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, MEICAN ET AL.: "Review on Preparation and Application of Cellulose Nanopaper with Porous Structure", CHINA PULP & PAPER, vol. 38, no. 9, 15 September 2019 (2019-09-15), pages 59 - 68, XP055904660, ISSN: 0254-508X *
XU, RUQING: "Research on Acoustic Properties of the Diaphragm Based on Bacterial Cellulose", SCIENCE-ENGINEERING (I), CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 07, 15 July 2012 (2012-07-15), pages 1 - 93, XP055904645, ISSN: 1674-0246 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116836596A (zh) * 2023-06-30 2023-10-03 常州第六元素材料科技股份有限公司 改性氧化石墨烯振膜及其制备方法
CN116836596B (zh) * 2023-06-30 2024-04-02 常州第六元素材料科技股份有限公司 改性氧化石墨烯振膜及其制备方法

Also Published As

Publication number Publication date
CN112080024A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2022042410A1 (zh) 复合振膜及其制备方法
CN108530073B (zh) 一种柔性自支撑三维多孔石墨烯膜的制备方法
CN106571454B (zh) 一种用于锂电池的网络状硅/石墨复合材料及制备方法
WO2015109272A1 (en) Material and method of manufacture of electrodes and porous filters formed of ice-templated graphene-oxide and carbon nanotube composite, and applications thereof
CN113527753B (zh) 一种常压制备的生物基泡沫材料及其制备方法和应用
CN107903434B (zh) 一种各向异性聚乙烯醇气凝胶材料及其制备方法
CN112980044A (zh) 一种高性能大块芳纶纳米纤维气凝胶及其制备方法和应用
CN113150314A (zh) 互穿网络多孔结构的复合凝胶电解质材料及其制备和应用
CN104693474A (zh) 三维多孔材料的制备方法
CN110316725B (zh) 一种高密度高强度石墨烯框架材料及其制备方法
CN107903575B (zh) 一种电容器电极用石墨烯酚醛树脂基复合纤维膜的制备方法
CN114773684A (zh) 一种化学交联的纤维素基复合泡沫及其制备方法和应用
KR20190063873A (ko) 주름진 형태의 3차원 그래핀 구조체의 제조 방법
CN115725111B (zh) 兼具宽带低频吸声和隔热的复合气凝胶及其制备和应用
CN111354907A (zh) 一种pmma聚合物涂层隔膜及其制备方法
CN113980367B (zh) 一种压力敏感的导电天然胶乳海绵复合材料及其制备方法
CN112724454B (zh) 一种环保型化学发泡剂及其制备方法
CN108745290A (zh) 具有高效吸油性能的石墨烯/碳纳米管复合气凝胶的制备方法
CN110467207B (zh) 一种勃姆石纳米棒气凝胶的制备方法
CN114696035A (zh) 一种锂离子电池用纤维素基复合隔膜及其制备方法
CN113981677A (zh) 纤维多孔复合吸音材料及其制备方法和用途
CN108163845A (zh) 一种多孔石墨烯材料的制备方法
CN114243209A (zh) 一种复合隔膜材料及其制备方法和应用
CN110282612B (zh) 一种均一微孔炭微米花及其普适性制备方法和应用
CN112094464A (zh) 一种石墨烯卤化丁基橡胶复合材料制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860248

Country of ref document: EP

Kind code of ref document: A1