WO2022038827A1 - 回転電機のステータ、回転電機及びホイール - Google Patents

回転電機のステータ、回転電機及びホイール Download PDF

Info

Publication number
WO2022038827A1
WO2022038827A1 PCT/JP2021/014926 JP2021014926W WO2022038827A1 WO 2022038827 A1 WO2022038827 A1 WO 2022038827A1 JP 2021014926 W JP2021014926 W JP 2021014926W WO 2022038827 A1 WO2022038827 A1 WO 2022038827A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
stator
electric machine
rotary electric
coil end
Prior art date
Application number
PCT/JP2021/014926
Other languages
English (en)
French (fr)
Inventor
大祐 佐藤
健 徳山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022038827A1 publication Critical patent/WO2022038827A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors

Definitions

  • the present invention relates to a rotary electric machine stator, a rotary electric machine, and a wheel.
  • Patent Document 1 states, "In the stator of the rotary electric machine of the present invention, the winding has a rectangular cross-sectional shape in the direction perpendicular to the axis, and the overall shape when unfolded is meandering like a crank.
  • the conductor is composed of a straight portion laminated in the slot and a cross section connecting the straight portions and projecting from both side surfaces of the stator core in the axial direction. . ".”
  • the motor (rotary electric machine) is required to improve the cooling performance as the heat generation density of the coil increases.
  • the heat transfer area at the end of the coil is small because there are welded parts of the coil, and the effect of direct oil cooling can be sufficiently obtained. There wasn't.
  • An object of the present invention is to provide a stator, a rotary electric machine, and a wheel of a rotary electric machine capable of suppressing the thermal resistance and the electric resistance of the coil end portion.
  • the present invention includes a stator core having a plurality of slots, an in-slot coil portion arranged inside the slot, and a coil end portion provided outside the slot.
  • a coil is provided, and the coil end portion is provided along the axial direction of the coil portion in the slot, and is formed thinner in the radial direction than the coil portion in the slot. It is composed of a second coil end portion connecting the first coil end portions adjacent to the second coil end portion, and the axial width of the second coil end portion is larger than the circumferential width of the in-slot coil portion.
  • the thermal resistance and the electrical resistance of the coil end portion can be suppressed. Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1st Embodiment It is a perspective view of the main part of the motor (rotary electric machine) according to 1st Embodiment. It is a perspective view of the coil used for the motor shown in FIG. It is an enlarged view of the main part of the stator shown in FIG. It is a schematic assembly drawing of the coil shown in FIG. It is an assembly schematic diagram of the stator shown in FIG. It is a figure for demonstrating the operation of the coil end part shown in FIG. It is sectional drawing of a stator. It is a perspective view of the coil used for the motor by 2nd Embodiment. It is a perspective view of the coil used for the motor by 3rd Embodiment. It is a front view of the stator used for the motor by 3rd Embodiment.
  • the present embodiment relates to a direct oil-cooled motor (rotary electric machine) for driving an automobile as an example.
  • FIG. 1 is a perspective view of a main part of a motor 1 (rotary electric machine) according to the first embodiment.
  • the motor 1 is mainly composed of a rotor 2 and a stator 3.
  • the rotor 2 is composed of a rotor core and a magnet, and rotates on the outer circumference of the stator 3.
  • the stator 3 is composed of a stator core and a coil 31, and is fixed to the stator 3.
  • the coil 31 is cooled by directly contacting a liquid refrigerant (cooling oil or the like).
  • FIG. 2 is a perspective view of the coil 31 used in the motor 1 (rotary electric machine) according to the first embodiment.
  • FIG. 3 is an enlarged view of a main part of the stator 3 showing a state in which the coil 31 is housed in a plurality of slots 34 of the stator 3.
  • the coil 31 includes an in-slot coil portion 311 arranged inside the slot 34 and a coil end portion 312 provided outside the slot 34.
  • the first coil end portion 312A is formed along the axial direction from the inside of the slot 34 and is thinner than the inside of the slot 34.
  • the second coil end portion 312B connects the adjacent first coil end portions 312A, and is formed wider than in the slot 34.
  • the coil end portion 312 is provided along the axial direction of the in-slot coil portion 311 and is formed thinner in the radial direction than the in-slot coil portion 311. It is composed of a second coil end portion 312B connecting adjacent first coil end portions 312A.
  • the axial width (length) of the second coil end portion 312B is larger than the circumferential width (length) of the in-slot coil portion 311.
  • the coil 31 is made of a conductive material.
  • the coil end portion 312 is thinly processed by, for example, press working, but the processing method is not limited to this. In this embodiment, the thickness of the first coil end portion 312A and the second coil end portion 312B in the radial direction are the same.
  • the stator core 30 is composed of a teeth 32 and a core back 33.
  • the teeth 32 and the core back 33 are made of a magnetic material.
  • the coil end surface 35 is a surface of the axial end portion of the stator core 30.
  • the slot 34 is a gap between adjacent teeth 32.
  • the coil end portion 312 is formed (arranged) along the circumferential direction of the stator core 30.
  • Thermal resistance is reduced by expanding the heat transfer area of the coil end portion 312. Further, the electric resistance is reduced by expanding the coil cross-sectional area of the coil end portion 312.
  • FIG. 4 is a schematic assembly diagram of the coil 31.
  • the coil 31 is assembled by stacking and welding each turn.
  • the weld is at the end of the coil for each turn.
  • a concentrated wave winding it is formed concentrated in the slots between the phases (for example, between the UV phase, the VW phase, and the WU phase).
  • the coil 31 of the present embodiment is composed of the coils of the first turn to the Nth turn (N: a natural number of 2 or more) to be laminated.
  • N a natural number of 2 or more
  • the circumferential length of each turn is determined by the number of poles and the number of slots of the motor 1.
  • the coil end portion 312 of the coil of the adjacent turn and the coil end surface 35 indicating the surface of the axial end portion of the stator core 30 form a flow path through which the refrigerant that comes into contact with the coil 31 flows along the circumferential direction of the stator core 30. (Fig. 3).
  • FIG. 5 is a schematic assembly diagram of the stator 3
  • FIG. 6 is a diagram for explaining the operation of the coil end portion 312.
  • the space 313 is a gap formed in the coil 31 in the radial direction.
  • the teeth 32 are radially inserted into the space 313.
  • the core back 33 is joined (fixed) to the teeth 32 through the space 313 of the coil 31.
  • one of the teeth 32 and the core back 33 may be provided with a convex portion, and the other may be provided with a concave portion or the like that fits with the convex portion.
  • the teeth 32 and the core back 33 may be fixed with an adhesive or the like.
  • the refrigerant flows through the gap formed between the rares (layers) of the coil end portion 312.
  • FIG. 7 is a cross-sectional view of the stator 3 showing the details of the flow path of the refrigerant.
  • the slot seal 36 closes the slot opening.
  • the slot seal 36 is preferably formed of, for example, a material having oil resistance, heat resistance and non-conductivity such as resin and rubber.
  • the frame 37 covers the shaft end side and the inner peripheral side of the stator 3, and forms a flow path with the coil 31 and the coil end surface 35. In the flow path 38, the refrigerant flows in the circumferential direction.
  • the frame 37 is made of a metal such as aluminum or stainless steel (SUS) in order to ensure mechanical strength.
  • the stator 3 includes a frame 37 that covers the shaft end side and the inner peripheral side of the stator core 30.
  • a coil end surface 35 showing the surface of the axial end of the stator core 30 and an internal surface of the frame 37 facing the coil end surface 35 form a flow path for flowing a refrigerant that comes into contact with the coil 31 along the circumferential direction of the stator core 30.
  • the refrigerant supply / discharge port 39 is formed on the inner peripheral side of the frame 37, and the refrigerant is supplied through the refrigerant supply / discharge port 39.
  • the refrigerant supply / discharge port 39 means a refrigerant suction port or a refrigerant discharge port.
  • the refrigerant inlet and outlet may be provided separately.
  • the thermal resistance and the electrical resistance of the coil end portion 312 can be suppressed.
  • FIG. 8 is a perspective view of the coil 31 used in the motor 1 (rotary electric machine) according to the second embodiment.
  • the coil 31 of the present embodiment includes a step 314. Since the components other than the coil 31 are the same as those in the first embodiment, the description thereof will be omitted.
  • the step 314 is formed so that the shaft end side of the coil end portion 312 is thin and the stator core side is thick.
  • the coil end portion 312 includes a step 314 formed thicker on the inner side in the axial direction than on the outer side in the axial direction. This reduces the electrical resistance of the coil 31.
  • FIG. 9 is a perspective view of the coil 31, and FIG. 10 is a front view of the stator 3.
  • the coil 31 of the present embodiment includes a recess 315. Since the components other than the coil 31 are the same as those in the first embodiment, the description thereof will be omitted.
  • the recess 315 is formed on the coil surface in the axial direction.
  • the in-slot coil portion 311 includes a recess 315 formed along the axial direction.
  • the recess 315 is formed on the coil surface in the axial direction and serves as a flow path for the refrigerant.
  • the recesses 315 are provided at both ends of the coil portion 311 in the slot in the width direction (circumferential direction).
  • the teeth 32 formed between the slots 34 adjacent to each other in the circumferential direction and the recesses 315 form a flow path for flowing the refrigerant to be brought into contact with the coil 31 along the axial direction.
  • the refrigerant flows in the axial direction through the recess 315 formed in the coil 31 as a flow path.
  • the coil portion 311 in the slot can be cooled.
  • FIG. 11 is a developed view of the coil 31 used in the motor 1 (rotary electric machine) according to the fourth embodiment.
  • the difference from the first embodiment is that in the coil 31 of the present embodiment, a plurality of turns are formed at once. Since the components other than the coil 31 are the same as those in the first embodiment, the description thereof will be omitted.
  • the coil 31 is formed so that a plurality of turns are formed at once, bent at the second coil end portion 312B between turns, and the coils of each turn overlap in the radial direction.
  • the coil of the first turn to the coil of the Nth turn are integrally formed.
  • the second coil end portion 312B connecting the coils of adjacent turns comprises a bent portion 312B_1. Since the thickness of the second coil end portion 312B is thin, it is easy to bend. In addition, productivity is improved because the welding process is not required.
  • FIG. 12 is a cross-sectional view of a stator 3 used in the motor 1 (rotary electric machine) according to the fifth embodiment.
  • the stator 3 of the present embodiment includes an insulating spacer 40. Since the components other than the insulating spacer 40 are the same as those in the first embodiment, the description thereof will be omitted.
  • the insulating spacer 40 is made of an insulating material and is installed on a frame 37 facing the end of the coil shaft.
  • the stator 3 includes an insulating spacer 40 installed on the inner surface of the frame 37 facing the coil end surface 35.
  • the insulating spacer 40 narrows the flow path of the refrigerant, increases the flow rate of the refrigerant, and improves the cooling performance. If the inner wall of the metal frame 37 is piled up on the coil 31 side in the axial direction, an electric discharge may occur between the inner wall of the frame 37 and the coil 31, so the insulating spacer 40 is formed of an insulating material.
  • FIG. 13 is a cross-sectional view of a main part of the stator 3 used in the motor 1 (rotary electric machine) according to the sixth embodiment.
  • the difference from the first embodiment is the positional relationship between the welded portion 316 of the coil 31 and the refrigerant supply / discharge port 39.
  • the description is omitted because it is the same as the first embodiment except for the positional relationship between the welded portion 316 of the coil 31 and the refrigerant supply / discharge port 39.
  • the refrigerant supply / discharge port 39 is formed on the frame 37 located on the inner circumference of the welded portion 316 of the coil 31. Welded points 316 are joined by welding the coil ends of each turn. In the case of a concentrated wave winding, it is formed concentrated in the slots 34 between the phases.
  • the refrigerant supply / discharge port 39 is a through hole formed in the frame 37 located on the inner circumference of the welded portion 316. The refrigerant flows radially in the vicinity of the welded portion 316 and then flows circumferentially between the coils.
  • the coil 31 includes a welded portion 316 (welded portion) for welding the coils of adjacent turns.
  • the frame 37 is provided with a refrigerant supply / discharge port 39 (refrigerant suction port or discharge port) leading to the welded portion 316 on the inner peripheral side.
  • the welded portion 316 prevents the refrigerant from flowing in the circumferential direction, but by installing the refrigerant supply / discharge port 39 on the inner peripheral side, the refrigerant in the vicinity of the welded portion 316 flows in the radial direction, so that the welded portion 316 flows. Cooling performance is improved without hindering.
  • FIG. 14 is a schematic view of a wheel using a motor 1 (rotary electric machine) provided with the stator 3 according to any one of the first to sixth embodiments. Since the driving force of the motor 1 in which the thermal resistance and the electric resistance are suppressed is directly transmitted to the wheel, energy loss can be reduced.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本発明の課題は、コイルエンド部の熱抵抗と電気抵抗を抑制することができる回転電機のステータ、回転電機及びホイールを提供することである。コイルは、スロットの内部に配置されるスロット内コイル部と、スロットの外部に設けられるコイルエンド部を備える。コイルエンド部は、スロット内コイル部の軸方向に沿って設けられ、かつスロット内コイル部よりも径方向において薄く形成される第1コイルエンド部と、周方向に隣り合う第1コイルエンド部を繋ぐ第2コイルエンド部と、により構成される。第2コイルエンド部の軸方向の幅は、スロット内コイル部の周方向の幅よりも大きい。

Description

回転電機のステータ、回転電機及びホイール
 本発明は、回転電機のステータ、回転電機及びホイールに関する。
 導体の占積率を高めることができる回転電機の固定子(ステータ)が知られている(例えば、特許文献1参照)。特許文献1には、「この発明の回転電機の固定子では、巻線は、軸線に対して垂直方向の断面形状が矩形形状であるとともに、展開したときの全体形状がクランク状に蛇行した形状である導体で構成され、導体は、スロット内に積層された直線部と、この直線部同士を接続しているとともに固定子鉄心の両側面から軸線方向に突出した渡り部とから構成されている。」と記載されている。
特開2001-145286号公報
 特許文献1に記載されるような技術では、コイルエンド部と直線部の断面積をほぼ等しくしている。しかし、コイルエンド部は内側の方が電流密度が高く、断面積を等しくすると銅損が増大するという問題がある。
 また、モータ(回転電機)はコイルの発熱密度増加に伴って、冷却性能向上が求められている。しかし、コイルに冷却油を直接接触させて冷却する直接油冷方式では、コイルの溶接箇所などがあるため、コイルエンド部の伝熱面積が小さく、直接油冷の効果を十分に得ることができなかった。
 本発明の目的は、コイルエンド部の熱抵抗と電気抵抗を抑制することができる回転電機のステータ、回転電機及びホイールを提供することにある。
 上記目的を達成するために、本発明は、複数のスロットを有するステータコアと、前記スロットの内部に配置されるスロット内コイル部と、前記スロットの外部に設けられるコイルエンド部と、により構成されるコイルと、を備え、前記コイルエンド部は、前記スロット内コイル部の軸方向に沿って設けられ、かつ前記スロット内コイル部よりも径方向において薄く形成される第1コイルエンド部と、周方向に隣り合う前記第1コイルエンド部を繋ぐ第2コイルエンド部と、により構成され、前記第2コイルエンド部の軸方向の幅は、前記スロット内コイル部の周方向の幅よりも大きい。
 本発明によれば、コイルエンド部の熱抵抗と電気抵抗を抑制することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第1の実施形態によるモータ(回転電機)の要部斜視図である。 図1に示すモータに用いられるコイルの斜視図である。 図1に示すステータの要部拡大図である。 図1に示すコイルの組立概略図である。 図1に示すステータの組立概略図である。 図3に示すコイルエンド部の作用を説明するための図である。 ステータの断面図である。 第2の実施形態によるモータに用いられるコイルの斜視図である。 第3の実施形態によるモータに用いられるコイルの斜視図である。 第3の実施形態によるモータに用いられるステータの正面図である。 第4の実施形態によるモータに用いられるコイルの展開図である。 第5の実施形態によるモータに用いられるステータの断面図である。 第6の実施形態によるモータに用いられるステータの要部断面図である。 第1~第6の実施形態のいずれかのステータを備えたモータを用いたホイールの模式図である。
 以下、図面を用いて、本発明の実施形態によるモータ(回転電機)のステータの構成を説明する。なお、各図において、同一符号は同一部分を示す。
 [第1の実施形態]
 本実施形態は、一例として、自動車を駆動する直接油冷方式のモータ(回転電機)に関する。
 (全体構成)
 図1は、第1の実施形態によるモータ1(回転電機)の要部斜視図である。モータ1は、主として、ロータ2とステータ3から構成される。ロータ2は、ロータコアと磁石で構成され、ステータ3の外周を回転する。ステータ3は、ステータコアとコイル31で構成され、固定されている。コイル31は、液体の冷媒(冷却油等)に直接接触して冷却される。
 (コイルの構成)
 次に、図2及び図3を用いて、コイル31の構成を詳細に説明する。図2は、第1の実施形態によるモータ1(回転電機)に用いられるコイル31の斜視図である。図3は、ステータ3の複数のスロット34にコイル31が収納された状態を示すステータ3の要部拡大図である。
 図2に示すように、コイル31は、スロット34の内部に配置されるスロット内コイル部311と、スロット34の外部に設けられるコイルエンド部312を備える。第1コイルエンド部312Aは、スロット34内から軸方向に沿っており、スロット34内よりも薄く形成される。第2コイルエンド部312Bは、隣り合う第1コイルエンド部312Aを繋いでおり、スロット34内よりも幅広く形成される。
 換言すれば、コイルエンド部312は、スロット内コイル部311の軸方向に沿って設けられ、かつスロット内コイル部311よりも径方向において薄く形成される第1コイルエンド部312Aと、周方向に隣り合う第1コイルエンド部312Aを繋ぐ第2コイルエンド部312Bと、により構成される。第2コイルエンド部312Bの軸方向の幅(長さ)は、スロット内コイル部311の周方向の幅(長さ)よりも大きい。
 コイル31は、導電性材料で形成される。コイルエンド部312は、例えば、プレス加工で薄く加工されるが、加工方法はこれに限定されない。なお、本実施形態では、第1コイルエンド部312Aと第2コイルエンド部312Bの径方向の厚さは同じである。
 図3に示すように、ステータコア30は、ティース32と、コアバック33と、により構成される。ティース32とコアバック33は、磁性材料で形成される。コイルエンド面35は、ステータコア30の軸方向端部の面である。スロット34は、隣り合うティース32間の隙間である。コイルエンド部312は、ステータコア30の周方向に沿って形成(配置)される。
 コイルエンド部312の伝熱面積が拡大することで熱抵抗が低減する。また、コイルエンド部312のコイル断面積が拡大することで電気抵抗が低減する。
 (コイルの組立方法)
 図4は、コイル31の組立概略図である。コイル31は、各ターンを積み上げ、溶接して組み立てられる。溶接箇所は、各ターンのコイル端部となる。集中波巻の場合、相間(例えば、UV相間、VW相間、WU相間)のスロットに集中して形成される。
 本実施形態のコイル31は、積層される1ターン目のコイルからNターン目(N:2以上の自然数)のコイルにより構成される。なお、図4の例では、ターン数は4であるが、これに限定されない。各ターンの周方向の長さは、モータ1の極数、スロット数によって決まる。
 隣接するターンのコイルのコイルエンド部312と、ステータコア30の軸方向端部の面を示すコイルエンド面35と、によりステータコア30の周方向に沿ってコイル31に接触させる冷媒を流す流路が形成される(図3)。
 (ステータの組立方法)
 次に、図5及び図6を用いてステータ3の組立方法を説明する。図5はステータ3の組立概略図であり、図6はコイルエンド部312の作用を説明するための図である。
 図5に示すように、スペース313は、コイル31に径方向で形成された隙間である。ティース32は、スペース313に径方向に差し込まれる。コアバック33は、コイル31のスペース313を通したティース32と接合(固定)される。なお、ティース32とコアバック33のうち一方に凸部を設け、他方に凸部と嵌合する凹部等を設けてもよい。あるいはティース32とコアバック33を接着剤等により固定してもよい。
 図6に示すように、本実施形態のコイルエンド部312によれば、冷媒はコイルエンド部312のレア(層)間に形成された隙間を流れる。
 (冷媒の流路の詳細)
 図7は、冷媒の流路の詳細を示すステータ3の断面図である。スロットシール36は、スロット開口部を閉塞する。スロットシール36は、例えば、樹脂、ゴム等の耐油性、耐熱性及び非導電性を有する材料で形成されることが好ましい。
 フレーム37は、ステータ3の軸端側、内周側を覆い、コイル31、コイルエンド面35で流路を形成する。流路38では、冷媒が周方向に流れる。フレーム37は、機械的な強度を確保するため、例えば、アルミ、ステンレス(SUS)等の金属で形成される。
 換言すれば、ステータ3は、ステータコア30の軸端側及び内周側を覆うフレーム37を備える。ステータコア30の軸方向端部の面を示すコイルエンド面35と、それに対向するフレーム37の内部の面と、によりステータコア30の周方向に沿ってコイル31に接触させる冷媒を流す流路が形成される。
 冷媒給排口39は、フレーム37の内周側に形成され、ここを介して冷媒が供給される。冷媒給排口39をフレーム37の内周側に形成することにより、モータ1(回転電機)の径を小さくすることができる。また、モータ1をインホイールモータとしてホイールに適用するときに、径方向の干渉を避けることができる。なお、冷媒給排口39は、冷媒の吸入口又は排出口を意味する。冷媒の吸入口と排出口を別々に設けてもよい。
 以上説明したように、本実施形態によれば、コイルエンド部312の熱抵抗と電気抵抗を抑制することができる。
 [第2の実施形態]
 図8は、第2の実施形態によるモータ1(回転電機)に用いられるコイル31の斜視図である。第1の実施形態との相違点は、本実施形態のコイル31は段差314を備えることである。なお、コイル31以外の構成要素は、第1の実施形態と同じであるため説明を省略する。
 図8に示すように、段差314は、コイルエンド部312の軸端側を薄く、ステータコア側を厚くするように形成される。換言すれば、コイルエンド部312は、軸方向の外側より軸方向の内側において厚く形成される段差314を備える。これにより、コイル31の電気抵抗が低減される。
 [第3の実施形態]
 次に、図9及び図10を用いて第3の実施形態によるモータ1(回転電機)に用いられるコイル31とその作用を説明する。図9は、コイル31の斜視図であり、図10は、ステータ3の正面図である。第1の実施形態との相違点は、本実施形態のコイル31は凹部315を備えることである。なお、コイル31以外の構成要素は、第1の実施形態と同じであるため説明を省略する。
 図9に示すように、凹部315はコイル表面に軸方向に形成される。換言すれば、スロット内コイル部311は、軸方向に沿って形成される凹部315を備える。コイル31に軸方向の凹部315を形成することで、コイル31の凹部315を冷媒の流路とする。軸方向に冷媒が流れることで、スロット34内のコイル31を冷却でき、冷却性能が向上する。
 図10に示すように、凹部315は、コイル表面に軸方向に形成され、冷媒の流路となる。凹部315は、スロット内コイル部311の幅方向(周方向)の両端に設けられる。周方向に隣り合うスロット34の間に形成されるティース32と、凹部315と、により軸方向に沿ってコイル31に接触させる冷媒を流す流路が形成される。その結果、冷媒はコイル31に形成された凹部315を流路として、軸方向に流れる。これにより、スロット内コイル部311を冷却することができる。
 [第4の実施形態]
 図11は、第4の実施形態によるモータ1(回転電機)に用いられるコイル31の展開図である。第1の実施形態との相違点は、本実施形態のコイル31では、複数のターンが一括に形成されることである。なお、コイル31以外の構成要素は、第1の実施形態と同じであるため説明を省略する。
 図11に示すように、コイル31は、複数のターンが一括に形成され、ターン間の第2コイルエンド部312Bで折り曲げられ、各ターンのコイルが径方向に重なるように形成される。換言すれば、1ターン目のコイルからNターン目のコイルは、一体に形成される。隣接するターンのコイルを接続する第2コイルエンド部312Bは、折り曲げ部312B_1を備える。第2コイルエンド部312Bの厚みは薄いため、折り曲げ易い。また、溶接工程が不要となるため、生産性が向上する。
 [第5の実施形態]
 図12は、第5の実施形態によるモータ1(回転電機)に用いられるステータ3の断面図である。第1の実施形態との相違点は、本実施形態のステータ3は、絶縁スペーサ40を備えることである。なお、絶縁スペーサ40以外の構成要素は、第1の実施形態と同じであるため説明を省略する。
 絶縁スペーサ40は、絶縁材料で形成され、コイル軸端に面するフレーム37に設置される。換言すれば、ステータ3は、コイルエンド面35に対向するフレーム37の内部の面に設置される絶縁スペーサ40を備える。絶縁スペーサ40により、冷媒の流路が狭くなり、冷媒の流速が増加して冷却性能が向上する。なお、金属製のフレーム37の内壁を軸方向のコイル31側に盛るとフレーム37の内壁とコイル31との間で放電するおそれがあるため、絶縁スペーサ40を絶縁材料で形成した。
 [第6の実施形態]
 図13は、第6の実施形態によるモータ1(回転電機)に用いられるステータ3の要部断面図である。第1の実施形態との相違点は、コイル31の溶接箇所316と冷媒給排口39の位置関係である。なお、コイル31の溶接箇所316と冷媒給排口39の位置関係以外は、第1の実施形態と同じであるため説明を省略する。
 本実施形態では、冷媒給排口39をコイル31の溶接箇所316の内周に位置するフレーム37に形成する。溶接箇所316は、各ターンのコイル端部を溶接して接合する。集中波巻の場合、相間のスロット34に集中して形成される。冷媒給排口39は、溶接箇所316の内周に位置するフレーム37に形成された貫通孔である。冷媒は、溶接箇所316の近傍を径方向に流れた後、コイル間を周方向に流れる。
 換言すれば、コイル31は、隣接するターンのコイルを溶接する溶接箇所316(溶接部)を備える。フレーム37は、内周側に溶接箇所316に通じる冷媒給排口39(冷媒の吸入口又は排出口)を備える。
 溶接箇所316は冷媒が周方向に流れることを妨げるが、冷媒給排口39を内周側に設置することで、溶接箇所316の近傍の冷媒は径方向に流れるため、溶接箇所316は流れを妨げず、冷却性能が向上する。
 (ホイール)
 図14は、第1~第6の実施形態のいずれかのステータ3を備えたモータ1(回転電機)を用いたホイールの模式図である。熱抵抗と電気抵抗を抑制したモータ1の駆動力がホイールへ直接伝達されるため、エネルギー損失を低減することができる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…モータ、2…ロータ、3…ステータ、30…ステータコア、31…コイル、311…スロット内コイル部、312…コイルエンド部、312A…第1コイルエンド部、312B…第2コイルエンド部、312B_1…折り曲げ部、313…スペース、314…段差、315…凹部316…溶接箇所、32…ティース、33…コアバック、34…スロット、35…コイルエンド面、36…スロットシール、37…フレーム、38…流路、39…冷媒給排口、40…絶縁スペーサ

Claims (13)

  1.  複数のスロットを有するステータコアと、
     前記スロットの内部に配置されるスロット内コイル部と、前記スロットの外部に設けられるコイルエンド部と、により構成されるコイルと、を備え、
     前記コイルエンド部は、
     前記スロット内コイル部の軸方向に沿って設けられ、かつ前記スロット内コイル部よりも径方向において薄く形成される第1コイルエンド部と、
     周方向に隣り合う前記第1コイルエンド部を繋ぐ第2コイルエンド部と、により構成され、
     前記第2コイルエンド部の軸方向の幅は、
     前記スロット内コイル部の周方向の幅よりも大きい
     ことを特徴とする回転電機のステータ。
  2.  請求項1に記載の回転電機のステータであって、
     前記コイルエンド部は、
     前記ステータコアの周方向に沿って形成される
     ことを特徴とする回転電機のステータ。
  3.  請求項2に記載の回転電機のステータであって、
     前記コイルは、
     積層される1ターン目のコイルからNターン目(N:2以上の自然数)のコイルにより構成され、
     隣接するターンのコイルの前記コイルエンド部と、前記ステータコアの軸方向端部の面を示すコイルエンド面と、により前記ステータコアの周方向に沿って前記コイルに接触させる冷媒を流す流路が形成される
     ことを特徴とする回転電機のステータ。
  4.  請求項1に記載の回転電機のステータであって、
     前記コイルエンド部は、
     軸方向の外側より軸方向の内側において厚く形成される段差を備える
     ことを特徴とする回転電機のステータ。
  5.  請求項1に記載の回転電機のステータであって、
     前記スロット内コイル部は、
     軸方向に沿って形成される凹部を備える
     ことを特徴とする回転電機のステータ。
  6.  請求項5に記載の回転電機のステータであって、
     前記凹部は、
     前記スロット内コイル部の幅方向の両端に設けられる
     ことを特徴とする回転電機のステータ。
  7.  請求項6に記載の回転電機のステータであって、
     周方向に隣り合う前記スロットの間に形成されるティースと、前記凹部と、により軸方向に沿って前記コイルに接触させる冷媒を流す流路が形成される
     ことを特徴とする回転電機のステータ。
  8.  請求項3に記載の回転電機のステータであって、
     前記1ターン目のコイルから前記Nターン目のコイルは、一体に形成され、
     隣接するターンのコイルを接続する前記第2コイルエンド部は、
     折り曲げ部を備える
     ことを特徴とする回転電機のステータ。
  9.  請求項1に記載の回転電機のステータであって、
     前記ステータコアの軸端側及び内周側を覆うフレームを備え、
     前記ステータコアの軸方向端部の面を示すコイルエンド面と、それに対向する前記フレームの内部の面と、により前記ステータコアの周方向に沿って前記コイルに接触させる冷媒を流す流路が形成される
     ことを特徴とする回転電機のステータ。
  10.  請求項9に記載の回転電機のステータであって、
     前記コイルエンド面に対向する前記フレームの内部の面に設置される絶縁スペーサを備える
     ことを特徴とする回転電機のステータ。
  11.  請求項9に記載の回転電機のステータであって、
     前記コイルは、
     隣接するターンのコイルを溶接する溶接部を備え、
     前記フレームは、
     内周側に前記溶接部に通じる冷媒の吸入口又は排出口を備える
     ことを特徴とする回転電機のステータ。
  12.  請求項1に記載のステータを備えた回転電機。
  13.  請求項12に記載の回転電機を用いたホイール。
PCT/JP2021/014926 2020-08-21 2021-04-08 回転電機のステータ、回転電機及びホイール WO2022038827A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020140351A JP2022035794A (ja) 2020-08-21 2020-08-21 回転電機のステータ、回転電機及びホイール
JP2020-140351 2020-08-21

Publications (1)

Publication Number Publication Date
WO2022038827A1 true WO2022038827A1 (ja) 2022-02-24

Family

ID=80322618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014926 WO2022038827A1 (ja) 2020-08-21 2021-04-08 回転電機のステータ、回転電機及びホイール

Country Status (2)

Country Link
JP (1) JP2022035794A (ja)
WO (1) WO2022038827A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231196A (ja) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd 永久磁石ロータ及びその着磁方法
JP2008167565A (ja) * 2006-12-28 2008-07-17 Hitachi Ltd 永久磁石回転電機とその製造方法及び永久磁石式回転電機を備えた自動車
JP2010119263A (ja) * 2008-11-14 2010-05-27 Denso Corp モータおよびその制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231196A (ja) * 2000-02-16 2001-08-24 Matsushita Electric Ind Co Ltd 永久磁石ロータ及びその着磁方法
JP2008167565A (ja) * 2006-12-28 2008-07-17 Hitachi Ltd 永久磁石回転電機とその製造方法及び永久磁石式回転電機を備えた自動車
JP2010119263A (ja) * 2008-11-14 2010-05-27 Denso Corp モータおよびその制御装置

Also Published As

Publication number Publication date
JP2022035794A (ja) 2022-03-04

Similar Documents

Publication Publication Date Title
JP4501762B2 (ja) 車両用交流発電機
JP7344807B2 (ja) コイルボビン、分布巻ラジアルギャップ型回転電機の固定子コア及び分布巻ラジアルギャップ型回転電機
EP1199787B1 (en) Automotive alternator with cooling of the stator coil ends
JP6402257B2 (ja) 固定子コイル、これを備えた固定子、およびこれを備えた回転電機
US10193409B2 (en) Stator for rotating electric machine, rotating electric machine equipped with same, and manufacturing methods therefor
JP5005354B2 (ja) 回転電機
JP2004357472A (ja) 電動機の冷却構造
JP2007104783A (ja) 車両用回転電機
WO2016035533A1 (ja) 回転電機のステータ、及びこれを備えた回転電機
JP2009268161A (ja) 回転電機の固定子及び回転電機
JP2007244065A (ja) 集中巻きモータのステータ構造
JP2018026929A (ja) 電動モータ
JP2013062963A (ja) 回転電機
WO2019123977A1 (ja) 固定子の製造方法
JP7315334B2 (ja) 回転電機及び車両
JP2008125324A (ja) 回転電機の固定子
JP6416655B2 (ja) 回転電機の固定子
WO2022038827A1 (ja) 回転電機のステータ、回転電機及びホイール
JP6279122B1 (ja) 回転電機
JP7250214B2 (ja) 固定子および回転電機
JP2018170814A (ja) 回転電機の固定子及びそれを用いた回転電機
JP2003125547A (ja) 回転電機
JP5988840B2 (ja) 回転電機の固定子
WO2019208032A1 (ja) 固定子、及び回転電機
JP2020184830A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857979

Country of ref document: EP

Kind code of ref document: A1