WO2022038808A1 - 操舵装置 - Google Patents

操舵装置 Download PDF

Info

Publication number
WO2022038808A1
WO2022038808A1 PCT/JP2021/008005 JP2021008005W WO2022038808A1 WO 2022038808 A1 WO2022038808 A1 WO 2022038808A1 JP 2021008005 W JP2021008005 W JP 2021008005W WO 2022038808 A1 WO2022038808 A1 WO 2022038808A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
command value
angle
mode
torque
Prior art date
Application number
PCT/JP2021/008005
Other languages
English (en)
French (fr)
Inventor
真 大野
ロバート フックス
勉 田村
裕貴 中原
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Publication of WO2022038808A1 publication Critical patent/WO2022038808A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a steering device.
  • Patent Document 1 discloses a technique for notifying that a vehicle is likely to deviate from the lane by vibrating the steering wheel.
  • a steering device that can switch the steering mode to the manual steering mode by the driver performing steering operation (steering intervention) in the automatic steering mode.
  • the driver manually steers the steering wheel.
  • the steering mode becomes a transition mode that transitions from the automatic steering mode to the manual steering mode.
  • the automatic steering mode is switched to the manual steering mode.
  • the driver cannot recognize when the mode is switched to the manual steering mode. Therefore, even though the steering mode is switched to the manual steering mode, the driver may take his / her hand off the steering wheel.
  • An object of the present invention is to provide a steering device capable of notifying a driver of a switch from a transition mode to a manual steering mode or a switch from a transition mode to an automatic steering mode by vibration.
  • An embodiment of the present invention includes a steering member, an electric motor that applies torque to the steering member, and a control unit that controls the electric motor.
  • the control unit includes the electric motor based on an automatic steering command value.
  • the automatic steering mode that controls the automatic steering mode, the manual steering mode that controls the electric motor based on the manual steering command value, and the manual steering mode or the manual steering mode from the automatic steering mode based on the automatic steering command value and the manual steering command value.
  • a steering device including a transition mode for transitioning from a steering mode to the automatic steering mode, and notifying the switching between the transition mode and the manual steering mode or the switching between the transition mode and the automatic steering mode by torque vibration. do.
  • control unit performs the torque vibration when the ratio of the automatic steering command value becomes equal to or less than the first ratio from a state where the ratio of the automatic steering command value is larger than a predetermined first ratio in the transition mode. Is given.
  • an angle control unit that sets an angle control torque command value for reducing the angle deviation between the steering angle command value, which is the target steering angle for automatic steering, and the actual steering angle to zero.
  • an automatic steering command value setting unit that sets the automatic steering command value using the angle control torque command value calculated by the angle control unit, and the control unit includes the angle deviation in the transition mode.
  • control unit performs the torque vibration when the ratio of the manual steering command value becomes equal to or less than the second ratio from a state where the ratio of the manual steering command value is larger than a predetermined second ratio in the transition mode. Is given.
  • an angle control unit that sets an angle control torque command value for reducing the angle deviation between the steering angle command value, which is the target steering angle for automatic steering, and the actual steering angle to zero.
  • an automatic steering command value setting unit that sets the automatic steering command value using the angle control torque command value calculated by the angle control unit, and the control unit includes the angle deviation in the transition mode.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an electric power steering device according to an embodiment of the vehicle steering device of the present invention.
  • FIG. 2 is a block diagram for explaining the electrical configuration of the motor control ECU.
  • FIG. 3 is a graph showing an example of setting the manual steering torque command values T m and mc with respect to the steering torque T tb .
  • FIG. 4 is a block diagram showing the configuration of the angle control unit.
  • FIG. 5 is an explanatory diagram for explaining the operation of the limiter.
  • FIG. 6 is a block diagram showing the configuration of the basic command value calculation unit.
  • FIG. 7 is an explanatory diagram for explaining the operation of the ⁇ calculation unit.
  • FIG. 8A is a time chart showing changes in ⁇ and ⁇ in the transition mode, FIG.
  • FIG. 8B is a time chart showing changes in the absolute value
  • FIG. 8C is a time chart.
  • 8D is a time chart showing a change in steering torque Ttb
  • FIG. 8E is a time chart showing waveforms of vibration torque command values T m and vi .
  • FIG. 9 is a schematic diagram for explaining the operation of the vibration command value generation unit.
  • the electric power steering device 1 has a steering wheel (steering wheel) 2 as a steering member for steering a vehicle, and rotation of the steering wheel 2. It is provided with a steering mechanism 4 for steering the steering wheel 3 in conjunction with the steering wheel 3 and a steering assist mechanism 5 for assisting the steering of the driver.
  • the steering wheel 2 and the steering mechanism 4 are mechanically connected via a steering shaft 6 and an intermediate shaft 7.
  • the steering shaft 6 includes an input shaft 8 connected to the steering wheel 2 and an output shaft 9 connected to the intermediate shaft 7.
  • the input shaft 8 and the output shaft 9 are rotatably connected to each other via a torsion bar 10.
  • a torque sensor 12 is arranged in the vicinity of the torsion bar 10.
  • the torque sensor 12 detects the steering torque (torquer torque) T tb applied to the steering wheel 2 based on the relative rotational displacement amounts of the input shaft 8 and the output shaft 9.
  • the steering torque Ttb detected by the torque sensor 12 is, for example, the torque for steering to the left is detected as a positive value, and the torque for steering to the right is a negative value.
  • the steering mechanism 4 includes a rack and pinion mechanism including a pinion shaft 13 and a rack shaft 14 as a steering shaft.
  • a steering wheel 3 is connected to each end of the rack shaft 14 via a tie rod 15 and a knuckle arm (not shown).
  • the pinion shaft 13 is connected to the intermediate shaft 7.
  • the pinion shaft 13 rotates in conjunction with the steering of the steering wheel 2.
  • a pinion 16 is connected to the tip of the pinion shaft 13.
  • the rack shaft 14 extends linearly along the left-right direction of the vehicle.
  • a rack 17 that meshes with the pinion 16 is formed at an axially intermediate portion of the rack shaft 14.
  • the steering assist mechanism 5 includes an electric motor 18 for generating a steering assist force (assist torque) and a speed reducer 19 for amplifying the output torque of the electric motor 18 and transmitting it to the steering mechanism 4.
  • the speed reducer 19 includes a worm gear mechanism including a worm gear 20 and a worm wheel 21 that meshes with the worm gear 20.
  • the speed reducer 19 is housed in the gear housing 22.
  • the reduction ratio (gear ratio) of the speed reducer 19 is represented by N.
  • the reduction ratio N is represented by the ratio of the rotation speed of the worm gear 20 to the rotation speed of the worm wheel 21.
  • the worm gear 20 is rotationally driven by the electric motor 18. Further, the worm wheel 21 is integrally rotatably connected to the output shaft 9. The worm wheel 21 is rotationally driven by the worm gear 20.
  • the worm gear 20 When the worm gear 20 is rotationally driven by the electric motor 18, motor torque is applied to the worm wheel 21 and the steering shaft 6, and the steering shaft 6 (output shaft 9) rotates. Then, the rotation of the steering shaft 6 is transmitted to the pinion shaft 13 via the intermediate shaft 7 and converted into axial movement of the rack shaft 14. As a result, the steering wheel 3 is steered. That is, by rotationally driving the worm gear 20 by the electric motor 18, steering assistance by the electric motor 18 and steering of the steering wheel 3 become possible.
  • the electric motor 18 is provided with a rotation angle sensor 23 for detecting the rotation angle of the rotor of the electric motor 18.
  • the torque applied to the output shaft 9 includes a motor torque by the electric motor 18 and a disturbance torque other than the motor torque.
  • the disturbance torque T lc other than the motor torque includes a steering torque T tb and a road surface load torque T rl .
  • the road surface load torque Trl is a torque applied to the output shaft 9 from the road surface side by the self-aligning torque generated in the tire, the force generated by the suspension and tire wheel alignment, the frictional force of the rack and pinion mechanism, and the like.
  • Trl the road surface load torque transmitted from the road surface side to the output shaft 9
  • Trlc the value obtained by dividing Trl by the reduction ratio N of the speed reducer 19 ( Trl / N)
  • the vehicle has a vehicle speed sensor 24 for detecting the vehicle speed V, a CCD (Charge Coupled Device) camera 25 for photographing the road ahead in the traveling direction of the vehicle, a GPS (Global Positioning System) 26 for detecting the position of the vehicle, A radar 27 for detecting a road shape and an obstacle and a map information memory 28 for storing map information are installed.
  • V vehicle speed
  • CCD Charge Coupled Device
  • GPS Global Positioning System
  • the CCD camera 25, GPS 26, radar 27, and map information memory 28 are connected to a higher-level ECU (ECU: Electronic Control Unit) 201 for performing automatic support control and automatic operation control.
  • the upper ECU 201 performs peripheral environment recognition, own vehicle position estimation, route planning, etc. based on the information and map information obtained by the CCD camera 25, GPS 26, and radar 27, and determines the control target value of steering and the drive actuator. ..
  • the host ECU 201 sets a steering angle command value ⁇ cmda for automatic steering.
  • the automatic steering control is, for example, a control for driving the vehicle along a target track.
  • the steering angle command value ⁇ cmda is a target value of the steering angle for automatically driving the vehicle along the target track. Since the process of setting the steering angle command value ⁇ cmda is well known, detailed description thereof will be omitted here.
  • the rotation angle of the output shaft 9 is referred to as a "steering angle".
  • the steering angle command value ⁇ cmda set by the upper ECU 201 is given to the motor control ECU 202 via the vehicle-mounted network.
  • the steering torque Ttb detected by the torque sensor 12, the output signal of the rotation angle sensor 23, and the vehicle speed V detected by the vehicle speed sensor 24 are input to the motor control ECU 202.
  • the motor control ECU 202 controls the electric motor 18 based on these input signals and the information given from the host ECU 201.
  • motor control ECU 202 is controlled by a microcomputer 40 and a drive circuit (inverter circuit) that supplies power to the electric motor 18. 31 and a current detection circuit 32 for detecting a current flowing through the electric motor 18 (hereinafter referred to as “motor current I”) are provided.
  • the microcomputer 40 includes a CPU and a memory (ROM, RAM, non-volatile memory, etc.), and functions as a plurality of functional processing units by executing a predetermined program.
  • the plurality of function processing units include a manual steering command value setting unit 41, an automatic steering command value setting unit 42, a basic command value calculation unit 43, a vibration command value generation unit 44, and a command value addition unit 45. It includes a motor current command value calculation unit 46, a current deviation calculation unit 47, a PI control unit 48, a PWM (Pulse Width Modulation) control unit 49, a rotation angle calculation unit 50, and a reduction ratio division unit 51.
  • PWM Pulse Width Modulation
  • the rotation angle calculation unit 50 calculates the rotor rotation angle ⁇ m of the electric motor 18 based on the output signal of the rotation angle sensor 23.
  • the reduction ratio dividing unit 51 divides the rotor rotation angle ⁇ m calculated by the rotation angle calculation unit 50 by the reduction ratio N, so that the rotor rotation angle ⁇ m is set to the rotation angle (actual steering angle) ⁇ of the output shaft 9. Convert.
  • the manual steering command value setting unit 41 sets the target value (assist torque command value) of the assist torque required for the manual operation as the manual steering torque command values T m and mc .
  • the manual steering torque command values T m and mc are examples of the "manual steering command value" of the present invention.
  • the manual steering command value setting unit 41 sets the manual steering torque command values T m and mc based on the steering torque T tb detected by the torque sensor 12 and the vehicle speed V detected by the vehicle speed sensor 24.
  • the manual steering torque command values T m and mc are set to positive values when the steering assist force for leftward steering should be generated from the electric motor 18, and the steering assist force for rightward steering is generated from the electric motor 18. When it should be done, it is set to a negative value.
  • the manual steering torque command values T m and mc take a positive value for a positive value of the steering torque T tb and a negative value for a negative value of the steering torque T tb .
  • the manual steering torque command values T m and mc are set so that the larger the absolute value of the steering torque T tb , the larger the absolute value. Further, the manual steering torque command values Tm and mc are set so that the larger the vehicle speed V detected by the vehicle speed sensor 24, the smaller the absolute value thereof.
  • the automatic steering command value setting unit 42 sets the motor torque target value for automatic steering as the automatic steering torque command values T m, ad based on the steering angle command value ⁇ cmda or the like given from the host ECU 201.
  • the automatic steering torque command value T m, ad is an example of the "automatic steering command value" of the present invention. The details of the automatic steering command value setting unit 42 will be described later.
  • the basic command value calculation unit 43 includes a manual steering torque command value T m, mc set by the manual steering command value setting unit 41, and an automatic steering torque command value T m, mc set by the automatic steering command value setting unit 42 .
  • the a and the angle deviation ⁇ calculated by the angle control unit 61 in the automatic steering command value setting unit 42 are input.
  • the basic command value calculation unit 43 calculates the motor torque basic command value T mo based on these inputs. The details of the basic command value calculation unit 43 will be described later.
  • the vibration command value generation unit 44 generates vibration torque command values Tm, vi for notifying the driver of the switching between the transition mode and the manual steering mode, which will be described later, based on the angle deviation ⁇ calculated by the angle control unit 61. Generate. The details of the vibration command value generation unit 44 will be described later.
  • the command value adding unit 45 calculates the motor torque command value T m by adding the vibration torque command values T m and vi to the motor torque basic command value T mo .
  • the motor current command value calculation unit 46 calculates the motor current command value Icmd by dividing the motor torque command value Tm calculated by the command value addition unit 45 by the torque constant Kt of the electric motor 18.
  • the PI control unit 48 performs a PI calculation (proportional integral calculation) for the current deviation ⁇ I calculated by the current deviation calculation unit 47 to guide the motor current I flowing through the electric motor 18 to the motor current command value I cmd . Generate a drive command value.
  • the PWM control unit 49 generates a PWM control signal having a duty ratio corresponding to the drive command value and supplies it to the drive circuit 31. As a result, the electric power corresponding to the drive command value is supplied to the electric motor 18.
  • the automatic steering command value setting unit 42 includes an angle control unit 61 and a limiter 62, as shown in FIG. [3.1] Angle control unit 61
  • the angle control unit 61 has an angle control torque required for angle control (steering angle control) based on the steering angle command value ⁇ cmda given from the host ECU 201 and the actual steering angle ⁇ calculated by the reduction ratio division unit 51. Set the command values T m and ac .
  • the angle control unit 61 includes a low-pass filter (LPF) 71, a feedback control unit 72, and a reduction ratio division unit 75.
  • LPF low-pass filter
  • the low-pass filter 71 performs low-pass filter processing on the steering angle command value ⁇ cmda given by the upper ECU 201.
  • the steering angle command value after the low-pass filter processing is expressed by "steering angle command value ⁇ cmd ".
  • the steering angle command value ⁇ cmd after the low-pass filter processing is given to the feedback control unit 72.
  • the feedback control unit 72 is provided to bring the actual steering angle ⁇ calculated by the reduction ratio division unit 51 (see FIG. 2) closer to the steering angle command value ⁇ cmd .
  • the feedback control unit 72 includes an angle deviation calculation unit 72A and a PD control unit 72B.
  • the angle deviation ⁇ calculated by the angle deviation calculation unit 72A is given to the PD control unit 72B and also to the basic command value calculation unit 43 and the vibration command value generation unit 44.
  • the PD control unit 72B calculates the feedback torque T fb by performing a PD calculation (proportional differential calculation) on the angle deviation ⁇ calculated by the angle deviation calculation unit 72A.
  • the feedback torque T fb is given to the reduction ratio division unit 75.
  • the reduction ratio division unit 75 calculates the angle control torque command value T m, ac (torque command value for the electric motor 18) by dividing the feedback torque T fb by the reduction ratio N.
  • the angle control torque command values T m and ac are given to the limiter 62 (see FIG. 2).
  • the limiter 62 is provided to facilitate the driver to release the automatic steering during the automatic steering.
  • the limiter 62 calculates the angle control torque command values sat Tmin and Tmax (T m, ac ) after the limiting process based on the following equation (1).
  • the angle control torque command values sat Tmin, Tmax (T m, ac ) after the limiting process become the automatic steering torque command values T m, ad .
  • the limiter 62 has an angle control torque command value T m, ac when the angle control torque command value T m , ac is a value of the lower limit saturation value T min or more and the upper limit saturation value T max or less. Is output as it is. Further, the limiter 62 outputs the lower limit saturation value T min if the angle control torque command values T m and ac are less than the lower limit saturation value T min . Further, the limiter 62 outputs the upper limit saturation value T max when the angle control torque command values T m and ac are larger than the upper limit saturation value T max .
  • the basic command value calculation unit 43 includes an absolute value calculation unit 101, a division unit 102, a ⁇ calculation unit 103, and an ⁇ calculation unit 104. It includes an ⁇ multiplication unit 105, a ⁇ multiplication unit 106, and an addition unit 107.
  • the absolute value calculation unit 101 calculates the absolute value
  • the division unit 102 divides the absolute value
  • the ⁇ calculation unit 103 calculates the weighting coefficient ⁇ based on the following equation (2). That is, the ⁇ calculation unit 103 calculates the weighting coefficient ⁇ by using the saturation function sat 0 , 1 (
  • the ⁇ calculation unit 103 outputs 1 if
  • the ⁇ calculation unit 104 calculates the weight coefficient ⁇ by subtracting ⁇ from 1. That is, as shown by the broken line of the chain line in FIG. 10, the ⁇ calculation unit 104 outputs 0 if
  • the ⁇ multiplication unit 104 multiplies the automatic steering torque command values T m, ad set by the automatic steering command value setting unit 42 (see FIG. 2) by the weighting coefficient ⁇ calculated by the ⁇ calculation unit 104. Calculate ⁇ , T m, and ad .
  • the ⁇ multiplication unit 106 multiplies the manual steering torque command value Tm, mc set by the manual steering command value setting unit 41 (see FIG. 2) by the weighting coefficient ⁇ calculated by the ⁇ calculation unit 103. Calculate ⁇ ⁇ T m, mc .
  • the addition unit 107 adds the ⁇ ⁇ T m, ad calculated by the ⁇ multiplication unit 105 and the ⁇ ⁇ T m, mc calculated by the ⁇ multiplication unit 106 to obtain the motor torque basic command value T mo .
  • the motor torque basic command value T mo is expressed by the following equation (3).
  • the basic command value calculation unit 43 calculates the motor torque basic command value T mo by weighting and adding the automatic steering torque command values T m and ad and the manual steering torque command values T m and mc .
  • This motor torque basic command value T mo is given to the command value addition unit 45 (see FIG. 2).
  • the vibration torque command values T m and vi generated by the vibration command value generation unit 44 are added to the motor torque basic command value T mo to obtain the final motor torque command value T m . Is calculated. Then, the electric motor 18 is feedback-controlled based on the motor torque command value T m .
  • the weighting factor ⁇ with respect to the manual steering torque command values T m and mc is 1 when (
  • the weighting coefficient ⁇ for the automatic steering torque command values T m and ad is 0 when
  • the ratio of the automatic steering torque command values T m and ad (corresponding to ⁇ in this embodiment) is a predetermined number.
  • vibration torque command values T m, vi (hereinafter, may be referred to as "first vibration torque command value T m, vi ") are generated. Output.
  • the vibration command value generation unit 44 sets the vibration command value generation unit 44 when
  • a vibration torque command value T m, vi (first vibration torque command value T m, vi ) having a predetermined waveform is generated and output.
  • vibration command value generation unit 44 will be described more specifically with reference to the time charts of FIGS. 8A to 8D.
  • FIG. 8A shows the changes in ⁇ and ⁇ in the transition mode.
  • FIG. 8B shows the change of the absolute value
  • FIG. 8C shows a period (warning period) in which the warning is given in the transition mode.
  • FIG. 8D shows the change in steering torque Ttb in the transition mode.
  • FIG. 8E shows the waveforms of the vibration torque command values T m and vi .
  • the vibration command value generation unit 44 sets the vibration torque command values T m, vi of the waveform as shown by the solid line in FIG. 8E. Generate and output.
  • the waveform of the vibration torque command value Tm, vi is a waveform for 1 second such that the damped wave is continuous twice. Therefore, the vibration torque command values Tm and vi are output from the time point t1 to the time point t2 one second later. As a result, vibration is applied to the steering wheel 2 as shown in the steering torque Ttb of FIG. 8D.
  • the automatic steering torque command value T m, ad is set to the automatic steering torque command value T m, ad . Since the reaction force based on the reaction force (reaction force with respect to manual steering) is masked by the vibration torque and the driver feels that the reaction force is released from the automatic steering torque, it becomes easier for the driver to recognize that the manual steering mode can be switched.
  • the period for outputting the vibration torque command values T m and vi may be as follows. -Period from a predetermined time before switching from the transition mode to the manual steering mode to after a predetermined time when switching from the transition mode to the manual steering mode-A predetermined time from the time when the transition mode is switched to the manual steering mode-Transition mode Predetermined time from a point slightly after the time when the mode was switched to the manual steering mode
  • the vibration command value generation unit 44 generates the first vibration torque command value Tm, vi for notifying the driver of the switching between the transition mode and the manual steering mode.
  • the vibration torque command value T m, vi (hereinafter, “second vibration torque” for notifying the driver of the switching between the transition mode and the automatic steering mode).
  • the command value T m, vi2 ) may be generated.
  • the vibration command value generation unit 44 is in a state where, for example, in the transition mode, the ratio of the manual steering torque command values Tm and mc (corresponding to ⁇ in this embodiment) is larger than the predetermined second ratio.
  • the second vibration torque command values Tm and vi2 may be generated and output. More specifically, the vibration command value generation unit 44 determines when
  • the second vibration torque command value Tm, vi2 of the waveform may be generated and output. In this way, the driver can recognize that the steering mode is switched from the manual steering mode (transition mode) to the automatic steering mode.
  • the automatic steering command value setting unit 42 includes an angle control unit 61 and a limiter 62, but the limiter 62 may be omitted. In that case, the angle control torque command values T m and ac calculated by the angle control unit 61 become the automatic steering torque command values T m and ad .
  • the manual steering command value setting unit 41 sets the target value of the assist torque as the manual steering command value (manual steering torque command value T m, mc ), but the manual steering command value is set.
  • the unit 41 sets the steering angle according to the operation as a manual steering command value (manual steering angle command value). It may be set as.
  • the manual steering angle command value and the steering angle command value ⁇ cmda for automatic steering given from the upper ECU 201 are weighted and added according to the angle deviation ⁇ .
  • the motor torque basic command value T mo is calculated by controlling the angle after the weighting addition.
  • weighting addition in the basic command value calculation unit 43 is not limited to the one corresponding to the angle deviation ⁇ .
  • weighting may be performed according to the elapsed time from the steering intervention of the driver, and the ratio of the manual steering torque command values T m and mc may increase as the time elapses from the steering intervention.
  • weighting may be performed according to the magnitude of the steering torque T tb , and the ratio of the manual steering torque command values T m and mc may increase as the steering torque T tb increases.
  • waveforms of the vibration torque command values Tm and vi generated by the vibration command value generation unit 44 may be different from the above-mentioned example.
  • the present invention can also be applied to a steering-by-wire system.
  • the reaction force motor of the steering-by-wire system corresponds to the electric motor of the present invention.

Abstract

制御部は、自動操舵指令値に基づき電動モータを制御する自動操舵モードと、手動操舵指令値に基づき電動モータを制御する手動操舵モードと、自動操舵指令値および手動操舵指令値に基づき自動操舵モードから手動操舵モードまたは手動操舵モードから自動操舵モードに遷移する遷移モードとを含み、遷移モードと手動操舵モードとの切り替えまたは遷移モードと自動操舵モードとの切り替えをトルク振動により報知する。

Description

操舵装置
 この発明は、操舵装置に関する。
 下記特許文献1には、車両が車線から逸脱する可能性が高いことを、ステアリングホイールの振動により報知する技術が開示されている。
特開2017-65587号公報
 自動操舵モード時に運転者が操舵操作(操舵介入)を行うことによって、操舵モードを手動操舵モードに切り替えることができる操舵装置が知られている。この種の操舵装置において、自動操舵モードから手動操舵モードに切り替えたいときには、運転者は手動でステアリングホイールを操舵する。これにより、操舵モードは、自動操舵モードから手動操舵モードに遷移する遷移モードとなる。そして、操舵トルクがある程度大きくなると、自動操舵モードから手動操舵モードに切り替わる。しかしながら、運転者は、手動操舵モードにいつ切り替わったかを認識できない。このため、操舵モードが手動操舵モードに切り替わっているのにかかわらず、運転者がステアリングホイールから手を離してしまうおそれがある。
 また、手動操舵モードから自動操舵モードに切り替わった場合にも、運転者は、自動操舵モードにいつ切り替わったかを認識できない。
 この発明の目的は、遷移モードから手動操舵モードへの切り替わりまたは遷移モードから自動操舵モードへの切り替わりを振動によって運転者に知らせることができる操舵装置を提供することである。
 この発明の一実施形態は、操舵部材と、前記操舵部材にトルクを付与する電動モータと、前記電動モータを制御する制御部とを備え、前記制御部は、自動操舵指令値に基づき前記電動モータを制御する自動操舵モードと、手動操舵指令値に基づき前記電動モータを制御する手動操舵モードと、前記自動操舵指令値および前記手動操舵指令値に基づき前記自動操舵モードから前記手動操舵モードまたは前記手動操舵モードから前記自動操舵モードに遷移する遷移モードとを含み、前記遷移モードと前記手動操舵モードとの切り替えまたは前記遷移モードと前記自動操舵モードとの切り替えをトルク振動により報知する、操舵装置を提供する。
 この構成では、遷移モードから手動操舵モードへの切り替わりまたは遷移モードから自動操舵モードへの切り替えを振動によって運転者に知らせることができるようになる。
 この発明の一実施形態では、前記制御部は、前記遷移モードにおいて、前記自動操舵指令値の割合が所定の第1比率よりも大きい状態から前記第1比率以下になったときに、前記トルク振動を付与する。
 この発明の一実施形態では、自動操舵のための目標の操舵角である操舵角指令値と実操舵角との間の角度偏差を零に近づけるための角度制御トルク指令値を設定する角度制御部と、前記角度制御部によって演算される角度制御トルク指令値を用いて、前記自動操舵指令値を設定する自動操舵指令値設定部とを含み、前記制御部は、前記遷移モードにおいて、前記角度偏差の絶対値が所定の第1閾値未満の状態から前記第1閾値以上となったときに、前記トルク振動を付与する。
 この発明の一実施形態では、前記制御部は、前記遷移モードにおいて、前記手動操舵指令値の割合が所定の第2比率よりも大きい状態から前記第2比率以下になったときに、前記トルク振動を付与する。
 この発明の一実施形態では、自動操舵のための目標の操舵角である操舵角指令値と実操舵角との間の角度偏差を零に近づけるための角度制御トルク指令値を設定する角度制御部と、前記角度制御部によって演算される角度制御トルク指令値を用いて、前記自動操舵指令値を設定する自動操舵指令値設定部とを含み、前記制御部は、前記遷移モードにおいて、前記角度偏差の絶対値が所定の第2閾値よりも大きい状態から前記第2閾値以下となったときに、前記トルク振動を付与する。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、本発明の車両用操舵装置の一実施形態である電動パワーステアリング装置の概略構成を示す模式図である。 図2は、モータ制御用ECUの電気的構成を説明するためのブロック図である。 図3は、操舵トルクTtbに対する手動操舵トルク指令値Tm,mcの設定例を示すグラフである。 図4は、角度制御部の構成を示すブロック図である。 図5は、リミッタの動作を説明するための説明図である。 図6は、基本指令値演算部の構成を示すブロック図である。 図7は、β演算部の動作を説明するための説明図である。 図8Aは、遷移モード時のαおよびβの変化を示すタイムチャートであり、図8Bは、角度偏差の絶対値|Δθ|の変化および警告閾値Wthを示すタイムチャートであり、図8Cは、警告期間を示すタイムチャートであり、図8Dは、操舵トルクTtbの変化を示すタイムチャートであり、図8Eは、振動トルク指令値Tm,viの波形を示すタイムチャートである。 図9は、振動指令値生成部の動作を説明するための模式図である。
 以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
[1]電動パワーステアリング装置1の概略構成
 図1に示すように、電動パワーステアリング装置1は、車両を操向するための操舵部材としてのステアリングホイール(ハンドル)2と、このステアリングホイール2の回転に連動して転舵輪3を転舵する転舵機構4と、運転者の操舵を補助するための操舵補助機構5とを備えている。ステアリングホイール2と転舵機構4とは、ステアリングシャフト6および中間軸7を介して機械的に連結されている。
 ステアリングシャフト6は、ステアリングホイール2に連結された入力軸8と、中間軸7に連結された出力軸9とを含む。入力軸8と出力軸9とは、トーションバー10を介して相対回転可能に連結されている。
 トーションバー10の近傍には、トルクセンサ12が配置されている。トルクセンサ12は、入力軸8および出力軸9の相対回転変位量に基づいて、ステアリングホイール2に与えられた操舵トルク(トーションバートルク)Ttbを検出する。この実施形態では、トルクセンサ12によって検出される操舵トルクTtbは、例えば、左方向への操舵のためのトルクが正の値として検出され、右方向への操舵のためのトルクが負の値として検出され、その絶対値が大きいほど操舵トルクTtbの大きさが大きくなるものとする。
 転舵機構4は、ピニオン軸13と、転舵軸としてのラック軸14とを含むラックアンドピニオン機構からなる。ラック軸14の各端部には、タイロッド15およびナックルアーム(図示略)を介して転舵輪3が連結されている。ピニオン軸13は、中間軸7に連結されている。ピニオン軸13は、ステアリングホイール2の操舵に連動して回転するようになっている。ピニオン軸13の先端には、ピニオン16が連結されている。ラック軸14は、車両の左右方向に沿って直線状に延びている。ラック軸14の軸方向の中間部には、ピニオン16に噛み合うラック17が形成されている。
 ステアリングホイール2が操舵(回転)されると、この回転が、ステアリングシャフト6および中間軸7を介して、ピニオン軸13に伝達される。そして、ピニオン軸13の回転は、ピニオン16およびラック17によって、ラック軸14の軸方向移動に変換される。これにより、転舵輪3が転舵される。
 操舵補助機構5は、操舵補助力(アシストトルク)を発生するための電動モータ18と、電動モータ18の出力トルクを増幅して転舵機構4に伝達するための減速機19とを含む。減速機19は、ウォームギヤ20と、このウォームギヤ20と噛み合うウォームホイール21とを含むウォームギヤ機構からなる。減速機19は、ギヤハウジング22内に収容されている。以下において、減速機19の減速比(ギヤ比)をNで表す。減速比Nは、ウォームホイール21の回転速度に対するウォームギヤ20の回転速度の比で表される。
 ウォームギヤ20は、電動モータ18によって回転駆動される。また、ウォームホイール21は、出力軸9に一体回転可能に連結されている。ウォームホイール21は、ウォームギヤ20によって回転駆動される。
 電動モータ18によってウォームギヤ20が回転駆動されると、ウォームホイール21およびステアリングシャフト6にモータトルクが付与され、ステアリングシャフト6(出力軸9)が回転する。そして、ステアリングシャフト6の回転は、中間軸7を介してピニオン軸13に伝達され、ラック軸14の軸方向移動に変換される。これにより、転舵輪3が転舵される。すなわち、電動モータ18によってウォームギヤ20を回転駆動することによって、電動モータ18による操舵補助や転舵輪3の転舵が可能となる。電動モータ18には、電動モータ18のロータの回転角を検出するための回転角センサ23が設けられている。
 出力軸9(電動モータ18の駆動対象)に加えられるトルクとしては、電動モータ18によるモータトルクと、モータトルク以外の外乱トルクとがある。モータトルク以外の外乱トルクTlcには、操舵トルクTtbと路面負荷トルクTrlとが含まれる。
 路面負荷トルクTrlは、タイヤに発生するセルフアライニングトルク、サスペンションやタイヤホイールアライメントによって発生する力、ラックアンドピニオン機構の摩擦力等によって、路面側から出力軸9に加えられるトルクである。以下において、路面側から出力軸9に伝達される路面負荷トルクをTrlで表し、Trlを減速機19の減速比Nで除算した値(Trl/N)をTrlcで表すことにする。
 車両には、車速Vを検出するための車速センサ24、車両の進行方向前方の道路を撮影するCCD(Charge Coupled Device)カメラ25、自車位置を検出するためのGPS(Global Positioning System)26、道路形状や障害物を検出するためのレーダー27および地図情報を記憶した地図情報メモリ28が搭載されている。
 CCDカメラ25、GPS26、レーダー27および地図情報メモリ28は、自動支援制御や自動運転制御を行うための上位ECU(ECU:Electronic Control Unit)201に接続されている。上位ECU201は、CCDカメラ25、GPS26およびレーダー27によって得られる情報および地図情報を元に、周辺環境認識、自車位置推定、経路計画等を行い、操舵や駆動アクチュエータの制御目標値の決定を行う。
 この実施形態では、上位ECU201は、自動操舵のための操舵角指令値θcmdaを設定する。この実施形態では、自動操舵制御は、例えば、目標軌道に沿って車両を走行させるための制御である。操舵角指令値θcmdaは、車両を目標軌道に沿って自動走行させるための操舵角の目標値である。このような操舵角指令値θcmdaを設定する処理は、周知であるため、ここでは詳細な説明を省略する。この実施形態では、出力軸9の回転角を「操舵角」ということにする。
 上位ECU201によって設定される操舵角指令値θcmdaは、車載ネットワークを介して、モータ制御用ECU202に与えられる。トルクセンサ12によって検出される操舵トルクTtb、回転角センサ23の出力信号、車速センサ24によって検出される車速Vは、モータ制御用ECU202に入力される。モータ制御用ECU202は、これらの入力信号および上位ECU201から与えられる情報に基づいて、電動モータ18を制御する。
[2]モータ制御用ECU202の電気的構成
 図2に示すように、モータ制御用ECU202は、マイクロコンピュータ40と、マイクロコンピュータ40によって制御され、電動モータ18に電力を供給する駆動回路(インバータ回路)31と、電動モータ18に流れる電流(以下、「モータ電流I」という)を検出するための電流検出回路32とを備えている。
 マイクロコンピュータ40は、CPUおよびメモリ(ROM、RAM、不揮発性メモリなど)を備えており、所定のプログラムを実行することによって、複数の機能処理部として機能するようになっている。この複数の機能処理部には、手動操舵指令値設定部41と、自動操舵指令値設定部42と、基本指令値演算部43と、振動指令値生成部44と、指令値加算部45と、モータ電流指令値演算部46と、電流偏差演算部47と、PI制御部48と、PWM(Pulse Width Modulation)制御部49と、回転角演算部50と、減速比除算部51とを含む。
 回転角演算部50は、回転角センサ23の出力信号に基づいて、電動モータ18のロータ回転角θを演算する。減速比除算部51は、回転角演算部50によって演算されるロータ回転角θを減速比Nで除算することにより、ロータ回転角θを出力軸9の回転角(実操舵角)θに換算する。
 手動操舵指令値設定部41は、手動操作に必要なアシストトルクの目標値(アシストトルク指令値)を、手動操舵トルク指令値Tm,mcとして設定する。手動操舵トルク指令値Tm,mcは、本発明の「手動操舵指令値」の一例である。手動操舵指令値設定部41は、トルクセンサ12によって検出される操舵トルクTtbと車速センサ24によって検出される車速Vとに基づいて、手動操舵トルク指令値Tm,mcを設定する。
 操舵トルクTtbに対する手動操舵トルク指令値Tm,mcの設定例は、図3に示されている。手動操舵トルク指令値Tm,mcは、電動モータ18から左方向操舵のための操舵補助力を発生させるべきときには正の値とされ、電動モータ18から右方向操舵のための操舵補助力を発生させるべきときには負の値とされる。手動操舵トルク指令値Tm,mcは、操舵トルクTtbの正の値に対しては正をとり、操舵トルクTtbの負の値に対しては負をとる。そして、手動操舵トルク指令値Tm,mcは、操舵トルクTtbの絶対値が大きくなるほど、その絶対値が大きくなるように設定される。また、手動操舵トルク指令値Tm,mcは、車速センサ24によって検出される車速Vが大きいほど、その絶対値が小さくなるように設定される。
 自動操舵指令値設定部42は、上位ECU201から与えられる操舵角指令値θcmda等に基づいて、自動操舵のためのモータトルク目標値を自動操舵トルク指令値Tm,adとして設定する。自動操舵トルク指令値Tm,adは、本発明の「自動操舵指令値」の一例である。自動操舵指令値設定部42の詳細については、後述する。
 基本指令値演算部43には、手動操舵指令値設定部41によって設定される手動操舵トルク指令値Tm,mcと、自動操舵指令値設定部42によって設定される自動操舵トルク指令値Tm,adと、自動操舵指令値設定部42内の角度制御部61によって演算される角度偏差Δθとが入力される。基本指令値演算部43は、これらの入力に基づいて、モータトルク基本指令値Tmoを演算する。基本指令値演算部43の詳細については、後述する。
 振動指令値生成部44は、角度制御部61によって演算される角度偏差Δθに基づいて、後述する遷移モードと手動操舵モードとの切り替わりを運転者に知らせるための振動トルク指令値Tm,viを生成する。振動指令値生成部44の詳細については後述する。
 指令値加算部45は、モータトルク基本指令値Tmoに振動トルク指令値Tm,viを加算することにより、モータトルク指令値Tを演算する。
 モータ電流指令値演算部46は、指令値加算部45によって演算されたモータトルク指令値Tを電動モータ18のトルク定数Kで除算することにより、モータ電流指令値Icmdを演算する。
 電流偏差演算部47は、モータ電流指令値演算部46によって得られたモータ電流指令値Icmdと電流検出回路32によって検出されたモータ電流Iとの偏差ΔI(=Icmd-I)を演算する。
 PI制御部48は、電流偏差演算部47によって演算された電流偏差ΔIに対するPI演算(比例積分演算)を行うことにより、電動モータ18に流れるモータ電流Iをモータ電流指令値Icmdに導くための駆動指令値を生成する。PWM制御部49は、前記駆動指令値に対応するデューティ比のPWM制御信号を生成して、駆動回路31に供給する。これにより、前記駆動指令値に対応した電力が電動モータ18に供給されることになる。
 以下、自動操舵指令値設定部42、基本指令値演算部43および振動指令値生成部44について詳しく説明する。
[3]自動操舵指令値設定部42の説明
 自動操舵指令値設定部42は、図2に示すように、角度制御部61と、リミッタ62とを含む。
[3.1]角度制御部61
 角度制御部61は、上位ECU201から与えられる操舵角指令値θcmdaと減速比除算部51によって演算される実操舵角θとに基づいて、角度制御(操舵角制御)に必要となる角度制御トルク指令値Tm,acを設定する。
 図4に示すように、角度制御部61は、ローパスフィルタ(LPF)71と、フィードバック制御部72と、減速比除算部75とを含む。
 ローパスフィルタ71は、上位ECU201から与えられる操舵角指令値θcmdaに対してローパスフィルタ処理を行う。ローパスフィルタ処理後の操舵角指令値を、「操舵角指令値θcmd」で表すことにする。ローパスフィルタ処理後の操舵角指令値θcmdは、フィードバック制御部72に与えられる。
 フィードバック制御部72は、減速比除算部51(図2参照)によって演算される実操舵角θを、操舵角指令値θcmdに近づけるために設けられている。フィードバック制御部72は、角度偏差演算部72AとPD制御部72Bとを含む。角度偏差演算部72Aは、操舵角指令値θcmdと実操舵角θとの偏差Δθ(=θcmd-θ)を演算する。角度偏差演算部72Aによって演算された角度偏差Δθは、PD制御部72Bに与えられるとともに、基本指令値演算部43および振動指令値生成部44にも与えられる。
 PD制御部72Bは、角度偏差演算部72Aによって演算される角度偏差Δθに対してPD演算(比例微分演算)を行うことにより、フィードバックトルクTfbを演算する。フィードバックトルクTfbは、減速比除算部75に与えられる。
 減速比除算部75は、フィードバックトルクTfbを減速比Nで除算することにより、角度制御トルク指令値Tm,ac(電動モータ18に対するトルク指令値)を演算する。この角度制御トルク指令値Tm,acは、リミッタ62(図2参照)に与えられる。
[3.2]リミッタ62
 リミッタ62は、後述するように自動操舵中に運転者が自動操舵を解除しやすくするために設けられている。リミッタ62は、角度制御部61によって設定される角度制御トルク指令値Tm,acを所定の下限飽和値Tmin(Tmin<0)と上限飽和値Tmax(Tmax>0)との間に制限する。この実施形態では、Tmin=-Tmaxである。具体的には、リミッタ62は、次式(1)に基づいて、制限処理後の角度制御トルク指令値satTmin,Tmax(Tm,ac)を演算する。制限処理後の角度制御トルク指令値satTmin,Tmax(Tm,ac)が自動操舵トルク指令値Tm,adとなる。
Figure JPOXMLDOC01-appb-M000001
 リミッタ62は、図5に示すように、角度制御トルク指令値Tm,acが下限飽和値Tmin以上でかつ上限飽和値Tmax以下の値であるときには、角度制御トルク指令値Tm,acを、そのまま出力する。また、リミッタ62は、角度制御トルク指令値Tm,acが下限飽和値Tmin未満であれば、下限飽和値Tminを出力する。また、リミッタ62は、角度制御トルク指令値Tm,acが上限飽和値Tmaxよりも大きいときには上限飽和値Tmaxを出力する。
[4]基本指令値演算部43の説明
 図6に示すように、基本指令値演算部43は、絶対値演算部101と、除算部102と、β演算部103と、α演算部104と、α乗算部105と、β乗算部106と、加算部107とを含んでいる。
 絶対値演算部101は、角度偏差Δθの絶対値|Δθ|を演算する。除算部102は、絶対値演算部101によって演算された角度偏差Δθの絶対値|Δθ|を、予め設定された有効角度偏差幅Wで除算することによって、重み演算用変数|Δθ|/Wを演算する。なお、W>0である。
 β演算部103は、次式(2)に基づいて、重み係数βを演算する。つまり、β演算部103は、次式(2)で定義される飽和関数sat0,1(|Δθ|/W)を用いて、重み係数βを演算する。
Figure JPOXMLDOC01-appb-M000002
 つまり、β演算部103は、図7に実線の折れ線で示すように、|Δθ|/Wが1よりも大きければ、1を出力する。また、β演算部103は、|Δθ|/Wが0以上でかつ1以下であれば、|Δθ|/Wの演算結果を出力する。したがって、重み係数βは0以上1以下の値をとる。
 α演算部104は、1からβを減算することにより、重み係数αを演算する。つまり、α演算部104は、図10に鎖線の折れ線で示すように、|Δθ|/Wが1よりも大きければ、0を出力する。また、α演算部104は、|Δθ|/Wが0以上でかつ1以下であれば、{1-(|Δθ|/W)}の演算結果を出力する。したがって、重み係数αは0以上1以下の値をとる。
 α乗算部104は、自動操舵指令値設定部42(図2参照)によって設定される自動操舵トルク指令値Tm,adに、α演算部104によって演算された重み係数αを乗算することにより、α・Tm,adを演算する。
 β乗算部106は、手動操舵指令値設定部41(図2参照)によって設定された手動操舵トルク指令値Tm,mcに、β演算部103によって演算された重み係数βを乗算することにより、β・Tm,mcを演算する。
 加算部107は、α乗算部105によって演算されたα・Tm,adと、β乗算部106によって演算されたβ・Tm,mcとを加算することによって、モータトルク基本指令値Tmoを演算する。モータトルク基本指令値Tmoは、次式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 つまり、基本指令値演算部43は、自動操舵トルク指令値Tm,adと、手動操舵トルク指令値Tm,mcとを重み付け加算することにより、モータトルク基本指令値Tmoを演算する。
 このモータトルク基本指令値Tmoは、指令値加算部45(図2参照)に与えられる。指令値加算部45では、モータトルク基本指令値Tmoに、振動指令値生成部44によって生成される振動トルク指令値Tm,viが加算されることによって、最終的なモータトルク指令値Tが演算される。そして、モータトルク指令値Tに基づいて電動モータ18がフィードバック制御される。
 手動操舵トルク指令値Tm,mcに対する重み係数βは、(|Δθ|/W)>1のときには1となり、0≦|Δθ|≦1のときには(|Δθ|/W)となる。一方、自動操舵トルク指令値Tm,adに対する重み係数αは、|Δθ|/W>1のときには0となり、0≦|Δθ|/W≦1のときには(1-|Δθ|/W)となる。
 したがって、|Δθ|/W>1のときには、β=1でかつα=0となるので、Tmo=Tm,mcとなる。これにより、角度偏差Δθの絶対値|Δθ|が有効角度偏差幅Wよりも大きいときには、手動操舵トルク指令値Tm,mcに基づいて操舵が行われることになる。これにより、手動操舵によって操舵が行われる。つまり、|Δθ|/W>1のときには、操舵モードは、手動操舵モードとなる。
 |Δθ|/Wが零のときには、β=0でかつα=1となるので、Tmo=Tm,adとなる。これにより、角度偏差Δθが0のときには、自動操舵トルク指令値Tm,adに基づいて操舵が行われることになる。つまり、|Δθ|/Wが零のときには、操舵モードは、自動操舵モードとなる。以下において、自動操舵モードから手動操舵モードに遷移するモードおよび手動操舵モードから自動操舵モードに遷移するモードを遷移モードということにする。
 |Δθ|/Wが0≦|Δθ|/W≦1の範囲内にある場合には、|Δθ|/Wが小さくなるほど(|Δθ|が零に近づくほど)、βが小さくなり、αが大きくなる。一方、自動操舵トルク指令値Tm,adの絶対値は、|Δθ|が小さくなるほど小さくなる。また、手動操舵トルク指令値Tm,mcの絶対値は、角度偏差Δθに関係なく、操舵トルクTtbの絶対値|Ttb|が大きくなるほど大きくなる。
 したがって、|Δθ|/Wが0≦|Δθ|/W≦1の範囲内にある場合において、運転者が操舵操作を行っていないときには、|Ttb|および|Δθ|は比較的小さいので、主として自動操舵トルク指令値Tm,adに基づいて操舵が行われることになる。
 |Δθ|/Wが0≦|Δθ|/W≦1の範囲内にある場合において、運転者が操舵操作(操舵介入)を行うと、|Ttb|が大きくなるため、主として手動操舵トルク指令値Tm,mcに基づいて操舵が行われることになる。つまり、操舵モードが遷移モードになる。この際、|Δθ|が大きくなり、角度制御トルク指令値Tm,acの絶対値|Tm,ac|が大きくなるが、角度制御部61によって設定される角度制御トルク指令値Tm,acに対してリミッタ62によって制限がかけられているので、操舵反力が大きくなるのが抑制され、運転者は操舵介入を行いやすくなる。
 |Δθ|/Wが0≦|Δθ|/W≦1の範囲内にある場合において、運転者が操舵介入を行っている途中で操舵介入の度合を弱めた場合、|Ttb|が大きい状態から小さい状態に変化するため、|Δθ|も大きい状態から小さい状態に変化する。これにより、式(3)に基づき、操舵介入の度合に応じて手動操舵トルク指令値Tm,mcの絶対値は大きい状態から小さい状態へ変化し、自動操舵トルク指令値Tm,adは小さい状態から大きい状態へ変化する。運転者が操舵介入を行っている途中で操舵介入の度合を強めた場合は、それぞれ逆方向に変化する。よって、運転者が操舵介入の度合を調整するだけで、自動操舵が主体的な状態と運転者の操舵が主体的な状態とを、切り替えのつなぎ目を意識することなく、シームレスにスムーズに切り替えることができる。
[5]振動指令値生成部44の説明
 振動指令値生成部44は、例えば、遷移モードにおいて、自動操舵トルク指令値Tm,adの割合(この実施形態ではαに相当する)が所定の第1比率よりも大きい状態から第1比率以下になった場合に、振動トルク指令値Tm,vi(以下において「第1振動トルク指令値Tm,vi」という場合がある。)を生成して出力する。
 αは、図7に示すように、|Δθ|が大きくなるほど小さくなる。この実施形態では、振動指令値生成部44は、遷移モードにおいて、|Δθ|が所定の第1警告閾値Wth(warning threshold)未満の状態から第1警告閾値Wth以上となったときに、所定の波形の振動トルク指令値Tm,vi(第1振動トルク指令値Tm,vi)を生成して出力する。
 以下、図8A~図8Dのタイムチャートを参照して、振動指令値生成部44の動作をより具体的に説明する。
 図8Aは、遷移モード時のαおよびβの変化を示している。図8Bは、遷移モード時の角度偏差の絶対値|Δθ|の変化および警告閾値Wthを示している。図8Cは、遷移モード時において警告が行われている期間(警告期間)を示している。図8Dは、遷移モード時の操舵トルクTtbの変化を示している。図8Eは、振動トルク指令値Tm,viの波形を示している。
 自動操舵モード時において、運転者が操舵操作(操舵介入)を行うと、角度偏差の絶対値|Δθ|が徐々に大きくなる(図8B参照)。これにより、αが徐々に小さくなり、βが徐々に大きくなる(図8A参照)。これにより、自動操舵トルク指令値Tm,adの割合が徐々に小さくなり、手動操舵トルク指令値Tm,mcの割合が徐々に大きくなる。
 そして、角度偏差の絶対値|Δθ|が警告閾値Wthに達すると(時点t1)、振動指令値生成部44は、図8Eに実線で示すような波形の振動トルク指令値Tm,viを生成して出力する。図8Eの例では、振動トルク指令値Tm,viの波形は、減衰波が2回連続するような1秒間の波形である。したがって、振動トルク指令値Tm,viは、時点t1からその1秒後の時点t2まで出力される。これにより、図8Dの操舵トルクTtbに示すように、ステアリングホイール2に振動が与えられる。
 例えば、図9に矢印Aで示すように、車両110が第1走行レーンL1を自動操舵によって走行している場合に、矢印Bで示すように、運転者の手動操舵によって第2走行レーンL2に車線変更を行った場合には、車線変更の途中でステアリングホイール2に振動が与えられることになる。
 これにより、運転者は、自動操舵モード(遷移モード)から手動操舵モードに操舵モードが切り替えられることを認識することができる。このため、運転者は、ステアリングホイール2から手を放してはいけないことを認識する。
 この実施形態のように、自動操舵トルク指令値Tm,adが発生している状態で、振動トルク指令値Tm,viが出力された場合には、自動操舵トルク指令値Tm,adに基づく反力(手動操舵に対する反力)が振動トルクによってマスキングされ、自動操舵トルクから解放された感覚を運転者が感じるので、運転者は手動操舵モードに切り替えられることを認識しやすくなる。
 なお、振動トルク指令値Tm,viを出力する期間は、次のような期間であってもよい。
・遷移モードから手動操舵モードに切り替わる時点の所定時間前から、遷移モードから手動操舵モードに切り替わった時点の所定時間後までの期間
・遷移モードから手動操舵モードに切り替わった時点から所定時間
・遷移モードから手動操舵モードに切り替わった時点よりも若干後の時点から所定時間
[6]変形例の説明
 以上、この発明の実施形態について説明したが、この発明はさらに他の形態で実施することもできる。
 例えば、前述の実施形態では、振動指令値生成部44は、遷移モードと手動操舵モードとの切り替わりを運転者に知らせるための第1振動トルク指令値Tm,viを生成している。しかし、振動指令値生成部44は、それに代えてまたはそれに加えて、遷移モードと自動操舵モードとの切り替わりを運転者に知らせるための振動トルク指令値Tm,vi(以下、「第2振動トルク指令値Tm,vi2」という。)を生成してもよい。
 具体的には、振動指令値生成部44は、例えば、遷移モードにおいて、手動操舵トルク指令値Tm,mcの割合(この実施形態ではβに相当する)が所定の第2比率よりも大きい状態から第2比率以下になった場合に、第2振動トルク指令値Tm,vi2を生成して出力してもよい。より具体的には、振動指令値生成部44は、遷移モードにおいて、|Δθ|が所定の第2警告閾値Wth2よりも大きい状態から第2警告閾値Wth2以下となったときに、所定の波形の第2振動トルク指令値Tm,vi2を生成して出力してもよい。このようにすると、運転者は、手動操舵モード(遷移モード)から自動操舵モードに操舵モードが切り替えられることを認識することができる。
 また、前述の実施形態では、自動操舵指令値設定部42は、角度制御部61と、リミッタ62とから構成されているが、リミッタ62は省略されてもよい。その場合には、角度制御部61によって演算される角度制御トルク指令値Tm,acが自動操舵トルク指令値Tm,adとなる。
 また、前述の実施形態では、手動操舵指令値設定部41は、アシストトルクの目標値を手動操舵指令値(手動操舵トルク指令値Tm,mc)として設定しているが、手動操舵指令値設定部41は、例えば特開2019-194059号公報に記載されているように、運転者がステアリングホイールを操作した場合に当該操作に応じた操舵角を、手動操舵指令値(手動操舵角度指令値)として設定してもよい。その場合には、手動操舵角度指令値と上位ECU201から与えられる自動操舵用の操舵角指令値θcmdaとが、角度偏差Δθに応じて重み付け加算される。そして、重み付け加算後の角度が角度制御されることにより、モータトルク基本指令値Tmoが演算される。
 また、基本指令値演算部43における重み付け加算は、角度偏差Δθに応じたものに限定されない。例えば、運転者の操舵介入からの経過時間に応じて重み付けを行い、操舵介入から時間が経過する程、手動操舵トルク指令値Tm,mcの割合が増加するものであってもよい。または、操舵トルクTtbの大きさに応じて重み付けを行い、操舵トルクTtbが大きくなる程、手動操舵トルク指令値Tm,mcの割合が増加するものであってもよい。
 また、振動指令値生成部44によって生成される振動トルク指令値Tm,viの波形は、前述の例とは異なる波形であってもよい。
 前述の実施形態では、この発明をコラム式EPSに適用した例を示したが、この発明は、コラム式EPS以外のEPSにも適用することができる。
 また、この発明は、ステアバイワイヤシステムにも適用することができる。その場合には、ステアバイワイヤシステムの反力モータが、本発明の電動モータに相当する。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
 この出願は、2020年8月18日に日本国特許庁に提出された特願2020-138171号に対応しており、その出願の全開示はここに引用により組み込まれるものとする。
 1…電動パワーステアリング装置、3…転舵輪、4…転舵機構、18…電動モータ、41…手動操舵指令値設定部、42…自動操舵指令値設定部、43…基本指令値演算部、44…振動指令値生成部、45…指令値加算部、61…角度制御部、62…リミッタ、63…路面負荷推定部、64…減算部、101…絶対値演算部、102…除算部、103…β演算部、104…α演算部、105…α乗算部、106…β乗算部、107…加算部、201…上位ECU、202…モータ制御用ECU 

Claims (5)

  1.  操舵部材と、
     前記操舵部材にトルクを付与する電動モータと、
     前記電動モータを制御する制御部とを備え、
     前記制御部は、
     自動操舵指令値に基づき前記電動モータを制御する自動操舵モードと、
     手動操舵指令値に基づき前記電動モータを制御する手動操舵モードと、
     前記自動操舵指令値および前記手動操舵指令値に基づき前記自動操舵モードから前記手動操舵モードまたは前記手動操舵モードから前記自動操舵モードに遷移する遷移モードとを含み、
     前記遷移モードと前記手動操舵モードとの切り替えまたは前記遷移モードと前記自動操舵モードとの切り替えをトルク振動により報知する、操舵装置。
  2.  前記制御部は、前記遷移モードにおいて、前記自動操舵指令値の割合が所定の第1比率よりも大きい状態から前記第1比率以下になったときに、前記トルク振動を付与する、請求項1に記載の操舵装置。
  3.  自動操舵のための目標の操舵角である操舵角指令値と実操舵角との間の角度偏差を零に近づけるための角度制御トルク指令値を設定する角度制御部と、
     前記角度制御部によって演算される角度制御トルク指令値を用いて、前記自動操舵指令値を設定する自動操舵指令値設定部とを含み、
     前記制御部は、前記遷移モードにおいて、前記角度偏差の絶対値が所定の第1閾値未満状態から前記第1閾値以上となったときに、前記トルク振動を付与する、請求項1に記載の操舵装置。
  4.  前記制御部は、前記遷移モードにおいて、前記手動操舵指令値の割合が所定の第2比率よりも大きい状態から前記第2比率以下になったときに、前記トルク振動を付与する、請求項1に記載の操舵装置。
  5.  自動操舵のための目標の操舵角である操舵角指令値と実操舵角との間の角度偏差を零に近づけるための角度制御トルク指令値を設定する角度制御部と、
     前記角度制御部によって演算される角度制御トルク指令値を用いて、前記自動操舵指令値を設定する自動操舵指令値設定部とを含み、
     前記制御部は、前記遷移モードにおいて、前記角度偏差の絶対値が所定の第2閾値よりも大きい状態から前記第2閾値以下となったときに、前記トルク振動を付与する、請求項1に記載の操舵装置。
PCT/JP2021/008005 2020-08-18 2021-03-02 操舵装置 WO2022038808A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-138171 2020-08-18
JP2020138171 2020-08-18

Publications (1)

Publication Number Publication Date
WO2022038808A1 true WO2022038808A1 (ja) 2022-02-24

Family

ID=80322892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008005 WO2022038808A1 (ja) 2020-08-18 2021-03-02 操舵装置

Country Status (1)

Country Link
WO (1) WO2022038808A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210354748A1 (en) * 2020-05-18 2021-11-18 Toyota Jidosha Kabushiki Kaisha Vehicle driver assistance system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264829A (ja) * 2009-05-13 2010-11-25 Toyota Motor Corp 走行支援装置
WO2015071035A1 (en) * 2013-11-12 2015-05-21 Valeo Schalter Und Sensoren Gmbh Method for operating a display when switching a motor vehicle from an automatic into a manual drive mode, driver assistance device and motor vehicle
JP2016132352A (ja) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 自動運転車両システム
JP2017154623A (ja) * 2016-03-02 2017-09-07 株式会社ジェイテクト 車両用制御装置
JP2018062321A (ja) * 2016-10-14 2018-04-19 トヨタ自動車株式会社 車両制御システム
JP2018062308A (ja) * 2016-10-14 2018-04-19 オムロン株式会社 運転モード切替制御装置、方法およびプログラム
WO2019082980A1 (ja) * 2017-10-26 2019-05-02 株式会社小糸製作所 車両用前照灯システム、車両用ランプシステム
JP2020168918A (ja) * 2019-04-02 2020-10-15 株式会社ジェイテクト 操舵装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264829A (ja) * 2009-05-13 2010-11-25 Toyota Motor Corp 走行支援装置
WO2015071035A1 (en) * 2013-11-12 2015-05-21 Valeo Schalter Und Sensoren Gmbh Method for operating a display when switching a motor vehicle from an automatic into a manual drive mode, driver assistance device and motor vehicle
JP2016132352A (ja) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 自動運転車両システム
JP2017154623A (ja) * 2016-03-02 2017-09-07 株式会社ジェイテクト 車両用制御装置
JP2018062321A (ja) * 2016-10-14 2018-04-19 トヨタ自動車株式会社 車両制御システム
JP2018062308A (ja) * 2016-10-14 2018-04-19 オムロン株式会社 運転モード切替制御装置、方法およびプログラム
WO2019082980A1 (ja) * 2017-10-26 2019-05-02 株式会社小糸製作所 車両用前照灯システム、車両用ランプシステム
JP2020168918A (ja) * 2019-04-02 2020-10-15 株式会社ジェイテクト 操舵装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210354748A1 (en) * 2020-05-18 2021-11-18 Toyota Jidosha Kabushiki Kaisha Vehicle driver assistance system
US11718341B2 (en) * 2020-05-18 2023-08-08 Toyota Jidosha Kabushiki Kaisha Vehicle driver assistance system

Similar Documents

Publication Publication Date Title
CN111417565B (zh) 车辆用转向操纵装置
EP3608203B1 (en) Motor control apparatus
EP2050653B1 (en) Steering system
JP3412579B2 (ja) 車両の電動パワーステアリング装置
US11685430B2 (en) Motor control device
JP2019098817A (ja) 車両用操舵装置
EP3756976B1 (en) Motor control apparatus including steering angle calculation apparatus
WO2020105620A1 (ja) 操舵装置および操舵装置におけるモータ制御方法
US11383760B2 (en) Steering system
US11091195B2 (en) Motor control device and motor control method
WO2022038808A1 (ja) 操舵装置
JP2020192855A (ja) 電動パワーステアリング装置
JP2005297906A (ja) 電気式動力舵取装置
JP4140321B2 (ja) 電動パワーステアリング装置
JP5293136B2 (ja) 車両用操舵装置
JP2008132918A (ja) 車両用電動パワーステアリング装置の制御装置
JP3725455B2 (ja) 車両の操舵制御装置
WO2023127149A1 (ja) モータ制御装置
WO2023286169A1 (ja) モータ制御装置
WO2023079776A1 (ja) モータ制御装置
JP3883980B2 (ja) 車両用操舵装置
JP2023069907A (ja) モータ制御装置
JP2022022717A (ja) 操舵装置
JP2022034398A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP