WO2022036910A1 - 一种阵列基板、显示面板 - Google Patents

一种阵列基板、显示面板 Download PDF

Info

Publication number
WO2022036910A1
WO2022036910A1 PCT/CN2020/131123 CN2020131123W WO2022036910A1 WO 2022036910 A1 WO2022036910 A1 WO 2022036910A1 CN 2020131123 W CN2020131123 W CN 2020131123W WO 2022036910 A1 WO2022036910 A1 WO 2022036910A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
floating
array substrate
wiring
floating metal
Prior art date
Application number
PCT/CN2020/131123
Other languages
English (en)
French (fr)
Inventor
徐志达
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/973,014 priority Critical patent/US11798953B2/en
Publication of WO2022036910A1 publication Critical patent/WO2022036910A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/48Flattening arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present application relates to the field of display technology, and in particular, to an array substrate and a display panel.
  • the signal lines of the array substrate corresponding to the display area are connected to the terminal pads on the edge of the array substrate through metal lines in the fanout area, and an inverted triangle area is formed between adjacent fanout areas.
  • some products will set other metal lines (such as COM lines, etc.) in the inverted triangle area. Because the metal lines in the inverted triangle area form a similar "retaining wall" design, the terrain of this area is different. .
  • There are two main ways to make an alignment film one is to transfer the alignment film using a printing plate, and the other is to use inkjet printing (Inkjet).
  • the present application provides an array substrate and a display panel, which can solve the phenomenon of uneven brightness of the display area caused by the uneven topography of the alignment film surface.
  • the present application provides an array substrate, including a display area and a non-display area, wherein the non-display area is provided with at least two fan-out areas connected to a driver chip, and two adjacent fan-out areas located on the same side of the display area An inverted triangle is formed between the zones;
  • the array substrate includes metal traces and floating metal traces, the metal traces include a first metal trace and a second metal trace, and the first metal traces are fan-shaped and routed in the fan-out area, The second metal trace is set corresponding to the inverted triangle area;
  • the floating metal line includes a first floating metal line located in the inverted triangle region, and the first floating metal line is located between the first metal wiring and the second metal wiring;
  • the array substrate further includes an alignment film, and the alignment film is disposed on the metal wiring and the floating metal wire.
  • the orthographic projection of the metal trace on the array substrate does not overlap with the orthographic projection of the floating metal line on the array substrate.
  • At least two of the first metal traces are distributed in a divergent manner at one end close to the display area, and are distributed in a concentrated manner at an end away from the display area, and at least two of the second metal traces are distributed.
  • the metal wirings are arranged at intervals from near to far from the display area.
  • the floating metal line further includes a second floating metal line located in the inverted triangle region, and the second floating metal line is located between two adjacent second metal wirings between.
  • the floating metal line further includes a third floating metal line located in the fan-out region, and the third floating metal line is located between two adjacent first metal traces between.
  • the second metal trace includes a first part and a second part that are symmetrically arranged along a center line between two adjacent fan-out regions, and the first part is located on the center line.
  • the wiring directions of the first metal traces adjacent to the same side are the same, and the wiring directions of the second portion and the first metal traces adjacent to the center line are the same.
  • the first metal wiring and the second metal wiring are arranged in different layers, and the floating metal wiring includes a first-layer floating metal wiring arranged in the same layer as the first metal wiring.
  • metal lines and a second layer of floating metal lines disposed on the same layer as the second metal wirings the orthographic projection of the first layer of floating metal lines on the array substrate is the same as the second layer of floating metal lines
  • the orthographic projections of the metal lines on the array substrate are non-overlapping.
  • the metal wiring and the floating metal wiring are located on the same layer, and the distance between the floating metal wiring and the metal wiring is greater than 8 microns.
  • the floating metal line includes a multi-segment floating metal block, and the floating metal block is along a wiring direction of the first metal wiring and/or the second metal wiring interval distribution.
  • the direction of the gap formed between two adjacent floating metal blocks is perpendicular to the wiring direction of the second metal trace and the first metal trace.
  • the present application also provides a display panel, including an array substrate, the array substrate includes a display area and a non-display area, and the non-display area is provided with at least two fan-out areas connected to a driving chip, located at the same location as the display area.
  • An inverted triangular area is formed between two adjacent fan-out areas on the side;
  • the array substrate includes metal traces and floating metal traces, the metal traces include a first metal trace and a second metal trace, and the first metal traces are fan-shaped and routed in the fan-out area, The second metal trace is set corresponding to the inverted triangle area;
  • the floating metal line includes a first floating metal line located in the inverted triangle region, and the first floating metal line is located between the first metal wiring and the second metal wiring;
  • the array substrate further includes an alignment film, and the alignment film is disposed on the metal wiring and the floating metal wire.
  • the orthographic projection of the metal traces on the array substrate does not overlap with the orthographic projection of the floating metal lines on the array substrate.
  • At least two of the first metal traces are distributed at one end close to the display area, and are distributed in a concentrated manner at one end away from the display area, and at least two of the second metal traces are distributed
  • the metal wirings are arranged at intervals from near to far from the display area.
  • the floating metal line further includes a second floating metal line located in the inverted triangle region, and the second floating metal line is located between two adjacent second metal wirings between.
  • the floating metal line further includes a third floating metal line located in the fan-out region, and the third floating metal line is located between two adjacent first metal traces between.
  • the second metal wiring includes a first portion and a second portion symmetrically arranged along a center line between two adjacent fan-out regions, and the first portion is connected to the center line located on the center line.
  • the wiring directions of the first metal traces adjacent to the same side are the same, and the wiring directions of the second portion and the first metal traces adjacent to the center line are the same.
  • the first metal wiring and the second metal wiring are arranged in different layers, and the floating metal wiring includes a first-layer floating metal wiring arranged in the same layer as the first metal wiring.
  • metal lines and a second layer of floating metal lines disposed on the same layer as the second metal wirings the orthographic projection of the first layer of floating metal lines on the array substrate is the same as the second layer of floating metal lines
  • the orthographic projections of the metal lines on the array substrate are non-overlapping.
  • the metal wiring and the floating metal wiring are located in the same layer, and the distance between the floating metal wiring and the metal wiring is greater than 8 microns.
  • the floating metal line includes a multi-segment floating metal block, and the floating metal block is along a wiring direction of the first metal wiring and/or the second metal wiring interval distribution.
  • the direction of the gap formed between two adjacent floating metal blocks is perpendicular to the wiring direction of the second metal wiring and the first metal wiring.
  • the present application provides an array substrate and a display panel.
  • the array substrate includes a fan-out area corresponding to at least one side of the display area, and is formed between two adjacent fan-out areas located on the same side of the display area.
  • the present application improves the terrain of the inverted triangle area by arranging floating metal lines at the non-wiring part of the inverted triangle area, that is, arranging floating metal lines between the first metal wiring and the second metal wiring. Therefore, the "retaining wall" effect formed by the second metal traces in the inverted triangle area is weakened, and the phenomenon of uneven brightness of the display area caused by the uneven topography of the surface of the alignment film is solved.
  • FIG. 1 is a schematic structural diagram of an array substrate provided by the present application.
  • FIG. 2 is a schematic partial structure diagram of the first array substrate provided in Embodiment 1 of the present application;
  • FIG. 3 is a schematic partial structure diagram of the second type of array substrate provided in Embodiment 1 of the present application.
  • FIG. 4 is a schematic partial structure diagram of the first array substrate provided in the second embodiment of the present application.
  • FIG. 5 is a schematic partial structure diagram of the second type of array substrate provided in the second embodiment of the present application.
  • FIG. 6 is a schematic partial structure diagram of the first array substrate provided in Embodiment 3 of the present application.
  • FIG. 7 is a schematic partial structure diagram of the second type of array substrate provided in Embodiment 3 of the present application.
  • FIG. 8 is a schematic cross-sectional view of an array substrate provided by the present application.
  • FIG. 9 is a schematic cross-sectional view of the non-display area of the array substrate provided by the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features.
  • pluralit means two or more, unless otherwise expressly and specifically defined. In this application, “/” means “or”.
  • the signal lines of the display area of the display panel are usually connected to multiple driver chips through the metal traces of the fan-out area, which can greatly reduce the metal traces in the fan-out area.
  • the width of the wiring in the corresponding frame direction so as to realize the narrow frame design.
  • the signal lines of the non-display area of the display panel are usually arranged in the inverted triangle area formed between two adjacent fan-out areas.
  • the space can be utilized to the greatest extent, but in order to To avoid problems such as signal crosstalk between different signal lines, there will be a certain distance between the signal lines in the inverted triangle area and the metal traces in the fan-out area. Within this distance, there is no wiring design, which makes the inverted triangle area.
  • the signal lines inside are easy to form a design similar to a "retaining wall".
  • it is easy to form a "gully" between the signal lines in the inverted triangle area and the metal traces in the fan-out area.
  • the material of the alignment film is easy to form accumulations at the "grooves", and the thickness of the alignment film here is thicker than that of the alignment film in other places, which affects the uniformity of the surface topography of the alignment film.
  • the purpose of the present application is to provide an array substrate and a display panel, which can improve the topography of the inverted triangle area and increase the uniformity of the thickness of the alignment film, thereby solving the phenomenon of uneven brightness in the display area caused by the uneven topography of the alignment film surface.
  • FIG. 1 it is a schematic structural diagram of an array substrate provided by the present application.
  • the array substrate includes a display area 101 and a non-display area 102 , wherein the non-display area 102 includes a fan-out area 103 corresponding to at least one side of the display area 101 .
  • a plurality of the fan-out areas 103 are provided on one side of the display area 101 as an example for description.
  • an inverted triangle area 104 is formed between two adjacent fan-out areas 103 located on the same side of the display area 101 .
  • the array substrate includes metal traces 200 and floating metal wires 300.
  • the metal traces 200 include first metal traces 201 and second metal traces 202.
  • the first metal traces 201 are fan-shaped.
  • the second metal traces 202 are disposed corresponding to the inverted triangle region 104 .
  • the first metal traces 201 are distributed in a divergent manner at an end close to the display area 101 , and are distributed in a concentrated manner at an end away from the display area 101 .
  • One end of the first metal trace 201 is connected to a signal wire (eg, a data signal wire) in the display area 101 of the array substrate, and the other end of the first metal trace 201 is connected to a terminal on the edge of the array substrate
  • the first metal trace 201 in the fan-out region 103 is electrically connected to a driver chip (eg, a data driver chip).
  • the signal lines include data signal lines and gate signal lines in the display area, which are used for conducting current and voltage.
  • the first metal traces 201 in each of the fan-out regions 103 are symmetrically arranged on the centerline of the fan-out region 103 .
  • the floating metal line 300 includes a first floating metal line 301 located in the inverted triangle region 104 , and the first floating metal line 301 is located between the first metal trace 201 and all the between the second metal traces 202 .
  • the second metal wiring 202 is a common electrode line (COM line), but it is not limited thereto.
  • the shape of the second metal trace 202 may be one or a combination of more than one of a straight line, a curved line, and a broken line.
  • the floating metal wire 300 is insulated from the metal wire 200, and the orthographic projection of the metal wire 200 on the array substrate is the same as the floating wire 300 on the array substrate.
  • the orthographic projections on are non-overlapping.
  • the second metal traces 202 are symmetrically arranged along the center line between two adjacent fan-out regions 103 (ie, the center line of the inverted triangle region).
  • the first part 2021 and the second part 2022, the first part 2021 is in the same wiring direction as the first metal trace 201 adjacent to the same side of the center line, and the second part 2022 is located on the same side of the center line.
  • the wiring directions of the adjacent first metal traces 201 are the same. With this design, since the wiring directions of the second metal traces 202 and the first metal traces 201 are consistent, space can be saved and the space utilization of the inverted triangle region 104 can be improved.
  • the floating metal line 300 in the present application has no actual electrical function, and is only used to improve the topography of the fan-out region 103 / the inverted triangle region 104 .
  • FIG. 2 it is a schematic partial structure diagram of the first array substrate provided in the first embodiment of the present application.
  • the first floating metal wire 301 may be linear and arranged along the wiring direction of the first metal wire 201 and/or the second metal wire 202 . Because the first floating metal line 301 fills up the "" Therefore, the subsequent alignment film material can be formed on a relatively flat substrate, so that the alignment film material can be smoothly diffused to the second metal traces 202 in the inverted triangle region 104, which is beneficial to The diffusion of the alignment film material prevents the alignment film material from accumulating in the "groove" region, thereby ensuring the uniformity of the film thickness of the alignment film.
  • the first floating metal line may also include a multi-segment floating metal block 301a, and the floating metal block 301a is along the first metal trace 201 and/or the second metal
  • the wiring directions of the traces 202 are distributed at intervals. Because the floating metal block 301a mostly fills up the gap formed between the second metal trace 202 in the inverted triangle area 104 and the first metal trace 201 in the fan-out area 103 gully", thus greatly reducing the amount of alignment film material deposited in the "gully" area.
  • the alignment film material on the side of the first metal trace 201 can also be guided to the side of the second metal trace 202, similar to The function of "drainage” is beneficial to the diffusion of the alignment film material, thereby ensuring the uniformity of the film thickness of the alignment film.
  • the direction of the gap formed between two adjacent floating metal blocks 301 a is perpendicular to the wiring direction of the second metal trace 202 and the first metal trace 201 , that is, the gap The direction is from the side of the fan-out area 103 to the side of the inverted triangle area 104 . Since a "trench" is formed corresponding to the position between the two adjacent floating metal blocks 301a, the alignment film material can flow in the direction indicated by the arrow in the figure depending on the topography of the trench, and the adjacent two floating metal blocks
  • the grooves formed between 301a have a guiding function, which can guide the material of the alignment film to flow along the direction of the fan-out region 103 toward the side of the inverted triangular region 104 .
  • the deposited alignment film material will smoothly flow into the inverted triangle region 104 across the first metal trace 201 and the second metal trace 202, thereby improving the alignment The uniformity of the film edge thickness, thereby solving the phenomenon of uneven brightness of the display area caused by the uneven topography of the alignment film surface.
  • the distance between two adjacent floating metal blocks 301a is 1 micrometer to 10 micrometers. Therefore, the terrain (gap) between the two adjacent floating metal blocks 301a can form a phenomenon similar to "capillaries", which is beneficial to the effect of "drainage".
  • the shape of the floating metal block 301a includes, but is not limited to, triangular, circular, rectangular, parallelogram, rhombus and other structures.
  • the metal wiring 200 and the floating metal wiring 300 are located on the same layer, and the distance between the floating metal wiring 300 and the metal wiring 200 is greater than 8 microns. In this way, short circuits between adjacent metal traces will not be caused due to reasons such as manufacturing processes.
  • the array substrate includes a stacked substrate 400 , a first metal layer 500 , a first insulating layer 600 , a second metal layer 700 , a second insulating layer 800 and an alignment film 900 .
  • a metal layer 500 includes but is not limited to gate electrodes and gate signal lines
  • the second metal layer 700 includes but is not limited to source electrodes, drain electrodes, and data signal lines.
  • the metal trace 200 and the floating metal wire 300 may be made of the same layer and the same material as the first metal layer 500, or the metal trace 200 and the floating metal wire 300 may be made of the same material as the first metal layer 500.
  • the two metal layers 700 are made of the same layer and the same material.
  • the first metal wire 201 and the second metal wire 202 are disposed in different layers
  • the floating metal wire 300 includes a first metal wire 201 disposed in the same layer as the first metal wire 201 .
  • a layer of floating metal lines and a second layer of floating metal lines disposed on the same layer as the second metal traces 202, the orthographic projection of the first layer of floating metal lines on the array substrate is the same as the first layer of floating metal lines.
  • the orthographic projections of the two-layer floating metal lines on the array substrate are non-overlapping.
  • the floating metal line 300 can be formed after exposure and development together with the first metal layer and/or the second metal layer, no additional photomask is required, and because the floating metal line 300 is The floating metal structure will not have any effect on the electrical properties of the panel itself.
  • the subsequent alignment film material can be formed on a relatively flat substrate, so that the alignment film material can be smoothly diffused to the second metal path in the inverted triangular region 104.
  • the diffusion of the alignment film material is facilitated, and the alignment film material is prevented from accumulating in the “gully” region, thereby ensuring the uniformity of the film thickness of the alignment film.
  • the structure of this embodiment is the same as/similar to the array substrate in the above-mentioned first embodiment, the difference is that at least two of the second metal traces 202 are close to the display area 101
  • the floating metal lines 300 further include second floating metal lines 302 located in the inverted triangle region 104, and the second floating metal lines 302 are located in two adjacent second metal lines. between lines 202.
  • the orthographic projection of the metal trace 200 on the array substrate does not overlap with the orthographic projection of the floating metal line 300 on the array substrate.
  • the structure design of the second floating metal line 302 is the same as that of the first floating metal line 301 .
  • FIG. 4 it is a schematic partial structure diagram of the first array substrate provided in the second embodiment of the present application.
  • the second floating metal lines 302 may be linear and arranged along the wiring direction of the second metal traces 202 . Since the second floating metal line 302 fills the “gap” formed between the two adjacent second metal lines 202 in the inverted triangle region 104, the subsequent alignment film material can be formed on the On a relatively flat substrate, the alignment film material can be further diffused to the second metal traces 202 on the boundary side of the array substrate, so as to prevent the alignment film material from running on two adjacent second metals. The "gully" regions between the lines 202 are built up, thereby ensuring the film thickness uniformity of the alignment film.
  • the second floating metal lines may also include multi-segment floating metal blocks 302 a, and the floating metal blocks 302 a are spaced along the wiring direction of the second metal traces 202 . Since the floating metal block 302a mostly fills the "gap" formed between the adjacent two second metal traces 202 in the inverted triangle region 104, the alignment film material is greatly reduced in the adjacent two The amount of buildup in the "gully" area between the second metal traces 202 . In addition, since the gap between the two adjacent floating metal blocks 302a is provided, it can play a role similar to "drainage", which is beneficial to the diffusion of the alignment film material, thereby ensuring the uniformity of the film thickness of the alignment film.
  • the distance between two adjacent floating metal blocks 302a is 1 micrometer to 10 micrometers.
  • the shape of the floating metal block 302a includes, but is not limited to, triangular, circular, rectangular, parallelogram, rhombus and other structures.
  • the structure of this embodiment is the same as/similar to the array substrate in the above-mentioned second embodiment, the difference is that the floating metal line 300 further includes a third floating metal line located in the fan-out region 103 A metal wire 303 is placed, and the third floating metal wire 303 is located between two adjacent first metal wires 201 .
  • the orthographic projection of the metal trace 200 on the array substrate does not overlap with the orthographic projection of the floating metal line 300 on the array substrate.
  • the structure design of the third floating metal line 303 may be consistent with that of the second floating metal line 302 and the first floating metal line 301 .
  • FIG. 6 a schematic partial structure diagram of the first array substrate provided in the third embodiment of the present application.
  • the third floating metal wires 303 may be linear and arranged along the wiring direction of the first metal wires 201 . Since the third floating metal line 303 fills the "gap" formed between the two adjacent first metal lines 201 in the fan-out region 103, the subsequent alignment film material can be formed on the On a relatively flat substrate, the alignment film material can be uniformly diffused in the fan-out region 103 , avoiding the “gully” region of the alignment film material between two adjacent first metal traces 201 accumulation, thereby ensuring the uniformity of the film thickness of the alignment film.
  • the third floating metal line may also include multi-segment floating metal blocks 303 a, and the floating metal blocks 303 a are spaced along the wiring direction of the first metal wiring 201 . Since most of the floating metal block 303a fills the "gap" formed between the two adjacent first metal traces 201, the alignment film material is greatly reduced in the adjacent two first metal traces 201. The amount of accumulation in the "gully" areas between. In addition, because the gap between the two adjacent floating metal blocks 303a is provided, it can play a role similar to "drainage", which is beneficial to the diffusion of the alignment film material, thereby ensuring the uniformity of the film thickness of the alignment film.
  • the distance between two adjacent floating metal blocks 303a is 1 micrometer to 10 micrometers.
  • the shape of the floating metal block 303a includes, but is not limited to, triangular, circular, rectangular, parallelogram, rhombus and other structures.
  • the present application also provides a display panel, including the above-mentioned array substrate, color filter substrate, and liquid crystal layer.
  • the topography of the inverted triangle area and/or the fan-out area can be improved, thereby weakening the fan-out area
  • the "retaining wall" effect formed by the first metal trace and the second metal trace in the inverted triangular region improves the uniformity of the film thickness of the alignment film and solves the brightness of the display area caused by the uneven topography of the alignment film surface. uneven phenomenon.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种阵列基板、显示面板,阵列基板包括扇出区和位于相邻两扇出区之间的倒三角区。阵列基板包括金属走线和浮置金属线,金属走线包括位于扇出区内的第一金属走线和位于倒三角区的第二金属走线。浮置金属线包括位于第一金属走线与第二金属走线之间的第一浮置金属线;阵列基板还包括配向膜,配向膜设置于金属走线和浮置金属线上。

Description

一种阵列基板、显示面板 技术领域
本申请涉及显示技术领域,尤其涉及一种阵列基板、显示面板。
背景技术
随着平板显示技术的发展,高分辨率、高对比度、高刷新速率、窄边框、薄型化已成为平板显示发展趋势,目前液晶显示仍为平板显示的主流产品。特别是现在大尺寸平板显示器的开发已经全面向8K分辨率靠近,要在极高的分辨率情况下保持窄边框的特色,并且达到较好的显示效果,许多制程工艺条件都会受到挑战,比如配向膜(PI)在阵列基板一侧的涂布情况。
通常,阵列基板对应显示区的信号线会通过扇出区(fanout区)的金属线连接至阵列基板边缘的端子焊盘上,相邻的扇出区之间形成倒三角区。为了实现液晶显示的窄边框设计,有些产品会在该倒三角区设置其他金属线(如COM线等),由于倒三角区的金属线形成类似“挡墙”设计,使得该区域的地形存在差异。现有的制作配向膜的方式主要有两种,一种是使用印刷版转印配向膜,另一种是通过喷墨打印(Inkjet Printing)的涂布方式制作配向膜,采用喷墨打印的方式制作配向膜时,由于对应不同位置的配向膜溶液的单滴量是一致的(一般为85ng),但由于上述倒三角区的金属线容易形成“挡墙”效应,使得配向膜材料在此处更加容易堆积,偏厚,导致配向膜表面地形不均一,从而使液晶在配向膜的表面的分布混乱,进而导致扇出区/倒三角区附近的显示区偏亮,造成亮度不均(mura)现象。
因此,现有技术存在缺陷,急需解决。
技术问题
本申请提供一种阵列基板、显示面板,能够解决由于配向膜表面地形不均一而导致的显示区亮度不均的现象。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种阵列基板,包括显示区和非显示区,所述非显示区设置有至少两个与驱动芯片连接的扇出区,位于所述显示区同侧的相邻两所述扇出区之间形成有倒三角区;
所述阵列基板包括金属走线和浮置金属线,所述金属走线包括第一金属走线和第二金属走线,所述第一金属走线呈扇形布线于所述扇出区内,所述第二金属走线对应所述倒三角区设置;
所述浮置金属线包括位于所述倒三角区的第一浮置金属线,所述第一浮置金属线位于所述第一金属走线与所述第二金属走线之间;
所述阵列基板还包括配向膜,所述配向膜设置于所述金属走线和所述浮置金属线上。
在本申请的阵列基板中,所述金属走线在所述阵列基板上的正投影与所述浮置金属线在所述阵列基板上的正投影非重叠。
在本申请的阵列基板中,至少两条所述第一金属走线靠近所述显示区的一端呈发散式分布,在远离所述显示区的一端呈集中式分布,至少两条所述第二金属走线距所述显示区由近及远依次间隔排布。
在本申请的阵列基板中,所述浮置金属线还包括位于所述倒三角区的第二浮置金属线,所述第二浮置金属线位于相邻两所述第二金属走线之间。
在本申请的阵列基板中,所述浮置金属线还包括位于所述扇出区的第三浮置金属线,所述第三浮置金属线位于相邻两所述第一金属走线之间。
在本申请的阵列基板中,所述第二金属走线包括沿相邻两所述扇出区之间的中心线对称设置的第一部分和第二部分,所述第一部分与位于所述中心线同侧邻近的所述第一金属走线的布线方向一致,所述第二部分与位于所述中心线同侧邻近的所述第一金属走线的布线方向一致。
在本申请的阵列基板中,所述第一金属走线和所述第二金属走线异层设置,所述浮置金属线包括与所述第一金属走线同层设置的第一层浮置金属线以及与所述第二金属走线同层设置的第二层浮置金属线,所述第一层浮置金属线在所述阵列基板上的正投影与所述第二层浮置金属线在所述阵列基板上的正投影非重叠。
在本申请的阵列基板中,所述金属走线与所述浮置金属线位于同一层,且所述浮置金属线与所述金属走线之间的距离大于8微米。
在本申请的阵列基板中,所述浮置金属线包括多段式的浮置金属块,所述浮置金属块沿所述第一金属走线和/或所述第二金属走线的布线方向间隔分布。
在本申请的阵列基板中,相邻两所述浮置金属块之间形成的间隙的方向垂直于所述第二金属走线与所述第一金属走线的布线方向。
本申请还提供一种显示面板,包括阵列基板,所述阵列基板包括显示区和非显示区,所述非显示区设置有至少两个与驱动芯片连接的扇出区,位于所述显示区同侧的相邻两所述扇出区之间形成有倒三角区;
所述阵列基板包括金属走线和浮置金属线,所述金属走线包括第一金属走线和第二金属走线,所述第一金属走线呈扇形布线于所述扇出区内,所述第二金属走线对应所述倒三角区设置;
所述浮置金属线包括位于所述倒三角区的第一浮置金属线,所述第一浮置金属线位于所述第一金属走线与所述第二金属走线之间;
所述阵列基板还包括配向膜,所述配向膜设置于所述金属走线和所述浮置金属线上。
在本申请的显示面板中,所述金属走线在所述阵列基板上的正投影与所述浮置金属线在所述阵列基板上的正投影非重叠。
在本申请的显示面板中,至少两条所述第一金属走线靠近所述显示区的一端呈发散式分布,在远离所述显示区的一端呈集中式分布,至少两条所述第二金属走线距所述显示区由近及远依次间隔排布。
在本申请的显示面板中,所述浮置金属线还包括位于所述倒三角区的第二浮置金属线,所述第二浮置金属线位于相邻两所述第二金属走线之间。
在本申请的显示面板中,所述浮置金属线还包括位于所述扇出区的第三浮置金属线,所述第三浮置金属线位于相邻两所述第一金属走线之间。
在本申请的显示面板中,所述第二金属走线包括沿相邻两所述扇出区之间的中心线对称设置的第一部分和第二部分,所述第一部分与位于所述中心线同侧邻近的所述第一金属走线的布线方向一致,所述第二部分与位于所述中心线同侧邻近的所述第一金属走线的布线方向一致。
在本申请的显示面板中,所述第一金属走线和所述第二金属走线异层设置,所述浮置金属线包括与所述第一金属走线同层设置的第一层浮置金属线以及与所述第二金属走线同层设置的第二层浮置金属线,所述第一层浮置金属线在所述阵列基板上的正投影与所述第二层浮置金属线在所述阵列基板上的正投影非重叠。
在本申请的显示面板中,所述金属走线与所述浮置金属线位于同一层,且所述浮置金属线与所述金属走线之间的距离大于8微米。
在本申请的显示面板中,所述浮置金属线包括多段式的浮置金属块,所述浮置金属块沿所述第一金属走线和/或所述第二金属走线的布线方向间隔分布。
在本申请的显示面板中,相邻两所述浮置金属块之间形成的间隙的方向垂直于所述第二金属走线与所述第一金属走线的布线方向。
有益效果
本申请的有益效果为:本申请提供了一种阵列基板、显示面板,该阵列基板包括至少对应显示区一侧的扇出区,位于显示区同侧的相邻两个扇出区之间形成倒三角区,本申请通过在倒三角区的非布线处设置浮置金属线,即在第一金属走线与第二金属走线之间设置浮置金属线,以改善倒三角区的地形,从而削弱倒三角区的第二金属走线形成的“挡墙”效应,进而解决由于配向膜表面地形不均一而导致的显示区亮度不均的现象。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请提供的阵列基板的结构示意图;
图2为本申请实施例一提供的第一种阵列基板的局部结构示意图;
图3为本申请实施例一提供的第二种阵列基板的局部结构示意图;
图4为本申请实施例二提供的第一种阵列基板的局部结构示意图;
图5为本申请实施例二提供的第二种阵列基板的局部结构示意图;
图6为本申请实施例三提供的第一种阵列基板的局部结构示意图;
图7为本申请实施例三提供的第二种阵列基板的局部结构示意图;
图8为本申请提供的阵列基板的截面示意图;
图9为本申请提供的阵列基板的非显示区的截面示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“纵向”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。在本申请中,“/”表示“或者”的意思。
本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
为了实现显示面板的窄边框设计,通常会将显示面板显示区的信号线通过多个扇出区的金属走线连接至多个驱动芯片上,如此可大大降低扇出区的金属走线在垂直于相应边框方向上的布线宽度,从而实现窄边框设计。
为了进一步实现显示面板的窄边框设计,通常会将显示面板非显示区的信号线设置于相邻两个扇出区之间形成的倒三角区内,如此,能够最大程度的利用空间,但是为了避免不同信号线间的信号串扰等问题,倒三角区内的信号线与扇出区内的金属走线之间会存在一定距离,在该距离范围内由于无布线设计,这就使得倒三角区内的信号线容易形成类似“挡墙”设计,在后续膜层制备的过程中,容易在倒三角区内的信号线与扇出区内的金属走线之间形成“沟壑”,在配向膜制备的过程中,配向膜材料容易在“沟壑”处形成堆积,此处的配向膜相较于其他地方的配向膜的厚度较厚,影响配向膜表面地形的均一性。
本申请的目的在于提供一种阵列基板及显示面板,能够改善倒三角区的地形,提升配向膜厚度的均匀性,从而解决由于配向膜表面地形不均一而导致的显示区亮度不均的现象。
以下请结合具体实施例对本申请的阵列基板进行详细描述。
实施例一
如图1所示,为本申请提供的阵列基板的结构示意图。所述阵列基板包括显示区101与非显示区102,其中,所述非显示区102包括至少对应所述显示区101一侧的扇出区103。本实施例中,以所述显示区101一侧设置有多个所述扇出区103为例进行说明。其中,位于所述显示区101同侧的相邻两所述扇出区103之间形成倒三角区104。所述阵列基板包括金属走线200和浮置金属线300,所述金属走线200包括第一金属走线201和第二金属走线202,所述第一金属走线201呈扇形布线于所述扇出区103内,所述第二金属走线202对应所述倒三角区104设置。
其中,至少两条所述第一金属走线201在靠近所述显示区101的一端呈发散式分布,在远离所述显示区101的一端呈集中式分布。所述第一金属走线201的一端与所述阵列基板的所述显示区101内的信号线(如数据信号线)相连,所述第一金属走线201的另一端与阵列基板边缘的端子焊盘连接,一所述扇出区103内的所述第一金属走线201对应电连接一驱动芯片(如数据驱动芯片)。其中,所述信号线包括显示区内的数据信号线和栅极信号线等用于传导电流电压的走线。每个所述扇出区103内的所述第一金属走线201在所述扇出区103的中心线位置对称设置。
在本实施例中,所述浮置金属线300包括位于所述倒三角区104的第一浮置金属线301,所述第一浮置金属线301位于所述第一金属走线201与所述第二金属走线202之间。
在本申请中,所述第二金属走线202为公共电极线(COM线),但不以此为限。所述第二金属走线202的形状可以为直线、曲线、折线中的一种或一种以上的组合。
在本申请中,所述浮置金属线300与所述金属走线200绝缘设置,所述金属走线200在所述阵列基板上的正投影与所述浮置金属线300在所述阵列基板上的正投影非重叠。
结合图2和图3所示,在本实施例中,所述第二金属走线202包括沿相邻两所述扇出区103之间的中心线(即倒三角区的中心线)对称设置的第一部分2021和第二部分2022,所述第一部分2021与位于该中心线同侧邻近的所述第一金属走线201的布线方向一致,所述第二部分2022与位于该中心线同侧邻近的所述第一金属走线201的布线方向一致。采用此设计,由于所述第二金属走线202与所述第一金属走线201的布线方向一致,因此,可以节省空间,提高所述倒三角区104的空间利用率。
需要说明的是,本申请中所述浮置金属线300无实际电学功能,只是用作改善所述扇出区103/所述倒三角区104的地形。
如图2所示,为本申请实施例一提供的第一种阵列基板的局部结构示意图。在本实施例中,所述第一浮置金属线301可以为线状,沿所述第一金属走线201和/或所述第二金属走线202的布线方向设置。由于所述第一浮置金属线301填补了所述倒三角区104内的所述第二金属走线202与所述扇出区103内的所述第一金属走线201之间形成的“沟壑”,因此,使得后续的配向膜材料能够形成在相对平整的基底上,使得所述配向膜材料能够顺利扩散至所述倒三角区104内的所述第二金属走线202上,有利于所述配向膜材料的扩散,避免所述配向膜材料在该“沟壑”区域堆积,从而保证配向膜的膜厚均匀性。
如图3所示,为本申请实施例一提供的第二种阵列基板的局部结构示意图。在本实施例中,所述第一浮置金属线也可以包括多段式的浮置金属块301a,所述浮置金属块301a沿所述第一金属走线201和/或所述第二金属走线202的布线方向间隔分布。由于所述浮置金属块301a大部分填补了所述倒三角区104内的所述第二金属走线202与所述扇出区103内的所述第一金属走线201之间形成的“沟壑”,因此大大减少了配向膜材料在该“沟壑”区域堆积的量。另外,由于相邻两所述浮置金属块301a之间的间隙设置,还可以将所述第一金属走线201一侧的配向膜材料向所述第二金属走线202一侧引导,类似于“引流”的作用,有利于所述配向膜材料的扩散,从而保证配向膜的膜厚均匀性。
具体地,相邻两所述浮置金属块301a之间形成的间隙的方向垂直于所述第二金属走线202与所述第一金属走线201的布线方向,也就是说,所述间隙的方向由所述扇出区103一侧朝向所述倒三角区104一侧。由于对应相邻两所述浮置金属块301a之间的位置会形成“沟槽”,配向膜材料可以依靠该沟槽地势沿图中箭头所示方向流动,相邻两所述浮置金属块301a之间形成的沟槽具有导流作用,可以引导配向膜材料能沿所述扇出区103朝向所述倒三角区104一侧的方向流动。在所述沟槽的引导作用下,上述堆积的配向膜材料将跨过所述第一金属走线201以及所述第二金属走线202顺利的流向所述倒三角区104内,从而提升配向膜边缘厚度的均匀性,进而解决由于配向膜表面地形不均一而导致的显示区亮度不均的现象。
其中,相邻两所述浮置金属块301a之间的距离为1微米至10微米。从而可以使相邻两所述浮置金属块301a之间的地势(间隙)形成类似“毛细血管”的现象,有利于“引流”的作用。
在本申请中,所述浮置金属块301a的形状包括但不限于三角形,圆形,长方形,平行四边形,菱形等结构。
在本实施例中,所述金属走线200与所述浮置金属线300位于同一层,且所述浮置金属线300与所述金属走线200之间的距离大于8微米。如此,不会因为制程工艺等原因造成相邻金属走线间的短路。
具体地,结合图8所示,所述阵列基板包括层叠设置的基板400、第一金属层500、第一绝缘层600第二金属层700、第二绝缘层800以及配向膜900,所述第一金属层500包括但不限于栅极、栅极信号线,所述第二金属层700包括但不限于源极、漏极、数据信号线。所述金属走线200和所述浮置金属线300可以与所述第一金属层500同层同材料制成,或者所述金属走线200和所述浮置金属线300可以与所述第二金属层700同层同材料制成。
在另一实施例中,所述第一金属走线201和所述第二金属走线202异层设置,所述浮置金属线300包括与所述第一金属走线201同层设置的第一层浮置金属线以及与所述第二金属走线202同层设置的第二层浮置金属线,所述第一层浮置金属线在所述阵列基板上的正投影与所述第二层浮置金属线在所述阵列基板上的正投影非重叠。
由于所述浮置金属线300可以与所述第一金属层和/或所述第二金属层一同曝光显影后制成,因此不需要额外的光罩,同时因为所述浮置金属线300是浮置金属结构,对面板本身的电性不会产生任何影响。
结合图9所示,由于所述第一浮置金属线301填补了所述倒三角区104内的所述第二金属走线202与所述扇出区103内的所述第一金属走线201之间形成的“沟壑”,因此,使得后续的配向膜材料能够形成在相对平整的基底上,使得所述配向膜材料能够顺利扩散至所述倒三角区104内的所述第二金属走线202上,有利于所述配向膜材料的扩散,避免所述配向膜材料在该“沟壑”区域堆积,从而保证配向膜的膜厚均匀性。
实施例二
如图4和图5所示,本实施例与上述实施例一中的阵列基板的结构相同/相似,区别在于:至少两条所述第二金属走线202距所述显示区101由近及远依次间隔排布;所述浮置金属线300还包括位于所述倒三角区104的第二浮置金属线302,所述第二浮置金属线302位于相邻两所述第二金属走线202之间。
在本实施例中,所述金属走线200在所述阵列基板上的正投影与所述浮置金属线300在所述阵列基板上的正投影非重叠。
在本实施例中,所述第二浮置金属线302与所述第一浮置金属线301的结构设计一致。如图4所示,为本申请实施例二提供的第一种阵列基板的局部结构示意图。所述第二浮置金属线302可以为线状,沿所述第二金属走线202的布线方向设置。由于所述第二浮置金属线302填补了所述倒三角区104内的相邻两所述第二金属走线202之间形成的“沟壑”,因此,使得后续的配向膜材料能够形成在相对平整的基底上,使得所述配向膜材料能够进一步向所述阵列基板边界一侧的所述第二金属走线202上扩散,避免所述配向膜材料在相邻两所述第二金属走线202之间的“沟壑”区域堆积,从而保证配向膜的膜厚均匀性。
如图5所示,为本申请实施例二提供的第二种阵列基板的局部结构示意图。在一种实施例中,所述第二浮置金属线也可以包括多段式的浮置金属块302a,所述浮置金属块302a沿所述第二金属走线202的布线方向间隔分布。由于所述浮置金属块302a大部分填补了所述倒三角区104内的相邻两所述第二金属走线202之间形成的“沟壑”,因此大大减少了配向膜材料在相邻两所述第二金属走线202之间的“沟壑”区域堆积的量。另外,由于相邻两所述浮置金属块302a之间的间隙设置,能够起到类似于“引流”的作用,有利于所述配向膜材料的扩散,从而保证配向膜的膜厚均匀性。
其中,相邻两所述浮置金属块302a之间的距离为1微米至10微米。
在本申请中,所述浮置金属块302a的形状包括但不限于三角形,圆形,长方形,平行四边形,菱形等结构。
实施例三
如图6和图7所示,本实施例与上述实施例二中的阵列基板的结构相同/相似,区别在于:所述浮置金属线300还包括位于所述扇出区103的第三浮置金属线303,所述第三浮置金属线303位于相邻两所述第一金属走线201之间。
在本实施例中,所述金属走线200在所述阵列基板上的正投影与所述浮置金属线300在所述阵列基板上的正投影非重叠。
在本实施例中,所述第三浮置金属线303可以与所述第二浮置金属线302以及所述第一浮置金属线301的结构设计一致。
具体地,如图6所示,为本申请实施例三提供的第一种阵列基板的局部结构示意图。所述第三浮置金属线303可以为线状,沿所述第一金属走线201的布线方向设置。由于所述第三浮置金属线303填补了所述扇出区103内的相邻两所述第一金属走线201之间形成的“沟壑”,因此,使得后续的配向膜材料能够形成在相对平整的基底上,使得所述配向膜材料能够均匀的在所述扇出区103内扩散,避免所述配向膜材料在相邻两所述第一金属走线201之间的“沟壑”区域堆积,从而保证配向膜的膜厚均匀性。
如图7所示,为本申请实施例三提供的第二种阵列基板的局部结构示意图。在一种实施例中,所述第三浮置金属线也可以包括多段式的浮置金属块303a,所述浮置金属块303a沿所述第一金属走线201的布线方向间隔分布。由于所述浮置金属块303a大部分填补了相邻两所述第一金属走线201之间形成的“沟壑”,因此大大减少了配向膜材料在相邻两所述第一金属走线201之间的“沟壑”区域堆积的量。另外,由于相邻两所述浮置金属块303a之间的间隙设置,能够起到类似于“引流”的作用,有利于所述配向膜材料的扩散,从而保证配向膜的膜厚均匀性。
其中,相邻两所述浮置金属块303a之间的距离为1微米至10微米。
在本申请中,所述浮置金属块303a的形状包括但不限于三角形,圆形,长方形,平行四边形,菱形等结构。
本申请还提供一种显示面板,包括如上所述的阵列基板、彩膜基板以及液晶层。
本申请提供的阵列基板及显示面板,通过在倒三角区和/或扇出区的非布线处设置浮置金属线,得以改善倒三角区和/或扇出区的地形,从而削弱扇出区的第一金属走线以及倒三角区的第二金属走线形成的“挡墙”效应,进而改善配向膜的膜厚的均一性,解决了由于配向膜表面地形不均一而导致的显示区亮度不均的现象。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种阵列基板,其包括显示区和非显示区,所述非显示区设置有至少两个与驱动芯片连接的扇出区,位于所述显示区同侧的相邻两所述扇出区之间形成有倒三角区;
    所述阵列基板包括金属走线和浮置金属线,所述金属走线包括第一金属走线和第二金属走线,所述第一金属走线呈扇形布线于所述扇出区内,所述第二金属走线对应所述倒三角区设置;
    所述浮置金属线包括位于所述倒三角区的第一浮置金属线,所述第一浮置金属线位于所述第一金属走线与所述第二金属走线之间;
    所述阵列基板还包括配向膜,所述配向膜设置于所述金属走线和所述浮置金属线上。
  2. 根据权利要求1所述的阵列基板,其中,所述金属走线在所述阵列基板上的正投影与所述浮置金属线在所述阵列基板上的正投影非重叠。
  3. 根据权利要求1所述的阵列基板,其中,至少两条所述第一金属走线靠近所述显示区的一端呈发散式分布,在远离所述显示区的一端呈集中式分布,至少两条所述第二金属走线距所述显示区由近及远依次间隔排布。
  4. 根据权利要求3所述的阵列基板,其中,所述浮置金属线还包括位于所述倒三角区的第二浮置金属线,所述第二浮置金属线位于相邻两所述第二金属走线之间。
  5. 根据权利要求4所述的阵列基板,其中,所述浮置金属线还包括位于所述扇出区的第三浮置金属线,所述第三浮置金属线位于相邻两所述第一金属走线之间。
  6. 根据权利要求1所述的阵列基板,其中,所述第二金属走线包括沿相邻两所述扇出区之间的中心线对称设置的第一部分和第二部分,所述第一部分与位于所述中心线同侧邻近的所述第一金属走线的布线方向一致,所述第二部分与位于所述中心线同侧邻近的所述第一金属走线的布线方向一致。
  7. 根据权利要求1所述的阵列基板,其中,所述第一金属走线和所述第二金属走线异层设置,所述浮置金属线包括与所述第一金属走线同层设置的第一层浮置金属线以及与所述第二金属走线同层设置的第二层浮置金属线,所述第一层浮置金属线在所述阵列基板上的正投影与所述第二层浮置金属线在所述阵列基板上的正投影非重叠。
  8. 根据权利要求1所述的阵列基板,其中,所述金属走线与所述浮置金属线位于同一层,且所述浮置金属线与所述金属走线之间的距离大于8微米。
  9. 根据权利要求1所述的阵列基板,其中,所述浮置金属线包括多段式的浮置金属块,所述浮置金属块沿所述第一金属走线和/或所述第二金属走线的布线方向间隔分布。
  10. 根据权利要求9所述的阵列基板,其中,相邻两所述浮置金属块之间形成的间隙的方向垂直于所述第二金属走线与所述第一金属走线的布线方向。
  11. 一种显示面板,包括阵列基板,其中,所述阵列基板包括显示区和非显示区,所述非显示区设置有至少两个与驱动芯片连接的扇出区,位于所述显示区同侧的相邻两所述扇出区之间形成有倒三角区;
    所述阵列基板包括金属走线和浮置金属线,所述金属走线包括第一金属走线和第二金属走线,所述第一金属走线呈扇形布线于所述扇出区内,所述第二金属走线对应所述倒三角区设置;
    所述浮置金属线包括位于所述倒三角区的第一浮置金属线,所述第一浮置金属线位于所述第一金属走线与所述第二金属走线之间;
    所述阵列基板还包括配向膜,所述配向膜设置于所述金属走线和所述浮置金属线上。
  12. 根据权利要求11所述的显示面板,其中,所述金属走线在所述阵列基板上的正投影与所述浮置金属线在所述阵列基板上的正投影非重叠。
  13. 根据权利要求11所述的显示面板,其中,至少两条所述第一金属走线靠近所述显示区的一端呈发散式分布,在远离所述显示区的一端呈集中式分布,至少两条所述第二金属走线距所述显示区由近及远依次间隔排布。
  14. 根据权利要求13所述的显示面板,其中,所述浮置金属线还包括位于所述倒三角区的第二浮置金属线,所述第二浮置金属线位于相邻两所述第二金属走线之间。
  15. 根据权利要求14所述的显示面板,其中,所述浮置金属线还包括位于所述扇出区的第三浮置金属线,所述第三浮置金属线位于相邻两所述第一金属走线之间。
  16. 根据权利要求11所述的显示面板,其中,所述第二金属走线包括沿相邻两所述扇出区之间的中心线对称设置的第一部分和第二部分,所述第一部分与位于所述中心线同侧邻近的所述第一金属走线的布线方向一致,所述第二部分与位于所述中心线同侧邻近的所述第一金属走线的布线方向一致。
  17. 根据权利要求11所述的显示面板,其中,所述第一金属走线和所述第二金属走线异层设置,所述浮置金属线包括与所述第一金属走线同层设置的第一层浮置金属线以及与所述第二金属走线同层设置的第二层浮置金属线,所述第一层浮置金属线在所述阵列基板上的正投影与所述第二层浮置金属线在所述阵列基板上的正投影非重叠。
  18. 根据权利要求11所述的显示面板,其中,所述金属走线与所述浮置金属线位于同一层,且所述浮置金属线与所述金属走线之间的距离大于8微米。
  19. 根据权利要求11所述的显示面板,其中,所述浮置金属线包括多段式的浮置金属块,所述浮置金属块沿所述第一金属走线和/或所述第二金属走线的布线方向间隔分布。
  20. 根据权利要求19所述的显示面板,其中,相邻两所述浮置金属块之间形成的间隙的方向垂直于所述第二金属走线与所述第一金属走线的布线方向。
PCT/CN2020/131123 2020-08-19 2020-11-24 一种阵列基板、显示面板 WO2022036910A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/973,014 US11798953B2 (en) 2020-08-19 2020-11-24 Array substrate and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021732982.0U CN211554586U (zh) 2020-08-19 2020-08-19 一种阵列基板、显示面板
CN202021732982.0 2020-08-19

Publications (1)

Publication Number Publication Date
WO2022036910A1 true WO2022036910A1 (zh) 2022-02-24

Family

ID=72499236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131123 WO2022036910A1 (zh) 2020-08-19 2020-11-24 一种阵列基板、显示面板

Country Status (3)

Country Link
US (1) US11798953B2 (zh)
CN (1) CN211554586U (zh)
WO (1) WO2022036910A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211554586U (zh) 2020-08-19 2020-09-22 深圳市华星光电半导体显示技术有限公司 一种阵列基板、显示面板
CN113156712B (zh) * 2021-04-06 2022-11-08 Tcl华星光电技术有限公司 液晶显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121792A (ja) * 2005-10-31 2007-05-17 Epson Imaging Devices Corp 液晶装置、液晶装置の製造方法及び電子機器
CN107329313A (zh) * 2017-08-17 2017-11-07 惠科股份有限公司 一种显示面板和显示装置
CN110045554A (zh) * 2019-04-30 2019-07-23 深圳市华星光电技术有限公司 阵列基板及显示面板
CN110061012A (zh) * 2019-04-09 2019-07-26 深圳市华星光电技术有限公司 一种阵列基板及其制作方法、以及显示面板
CN209496223U (zh) * 2018-11-09 2019-10-15 惠科股份有限公司 一种显示面板和显示装置
CN211554586U (zh) * 2020-08-19 2020-09-22 深圳市华星光电半导体显示技术有限公司 一种阵列基板、显示面板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921658B2 (en) * 2019-04-30 2021-02-16 Shenzhen China Star Optoelectronics Technology Co., Ltd. Array substrate and display panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121792A (ja) * 2005-10-31 2007-05-17 Epson Imaging Devices Corp 液晶装置、液晶装置の製造方法及び電子機器
CN107329313A (zh) * 2017-08-17 2017-11-07 惠科股份有限公司 一种显示面板和显示装置
CN209496223U (zh) * 2018-11-09 2019-10-15 惠科股份有限公司 一种显示面板和显示装置
CN110061012A (zh) * 2019-04-09 2019-07-26 深圳市华星光电技术有限公司 一种阵列基板及其制作方法、以及显示面板
CN110045554A (zh) * 2019-04-30 2019-07-23 深圳市华星光电技术有限公司 阵列基板及显示面板
CN211554586U (zh) * 2020-08-19 2020-09-22 深圳市华星光电半导体显示技术有限公司 一种阵列基板、显示面板

Also Published As

Publication number Publication date
CN211554586U (zh) 2020-09-22
US11798953B2 (en) 2023-10-24
US20220199649A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
JP4287609B2 (ja) 液晶表示装置及びその製造方法
WO2022036910A1 (zh) 一种阵列基板、显示面板
US20180040643A1 (en) Array substrate and display device
JP2020532755A (ja) アレイ基板、ディスプレイパネル、ディスプレイデバイス
KR20170020641A (ko) 어레이 기판
KR20110064248A (ko) 액정표시장치 제조방법
CN107123384B (zh) 一种显示基板的测试方法及应用于显示设备的基板
CN109560086A (zh) 显示面板
JP5936839B2 (ja) アレイ基板およびその製造方法、並びに液晶ディスプレー
US10879277B2 (en) Display panel and manufacturing method thereof and display device
KR100483405B1 (ko) 평면 구동 방식의 액정 표시 장치
KR20070059668A (ko) 액정표시장치
KR100468032B1 (ko) 서로 교차하는 배선층 및 반도체층을 가지는액정디스플레이장치
WO2017166895A1 (zh) 阵列基板、显示面板和显示装置
KR100719922B1 (ko) 프린지 필드 스위칭 모드 액정표시장치
US20200411562A1 (en) Array substrate and fabrication method thereof, display panel and display module
JP2007322474A (ja) 液晶表示装置
KR100288771B1 (ko) 평면구동방식의액정표시장치
CN106125991A (zh) 一种触控显示面板及触控显示装置
WO2016201820A1 (zh) 显示基板及其制作方法以及显示装置
WO2020093474A1 (zh) 显示面板和显示装置
CN212433551U (zh) 一种显示基板及显示装置
KR100299682B1 (ko) 평면구동방식의액정표시장치
WO2021212563A1 (zh) 像素单元及液晶显示装置
JPH11327465A (ja) 表示装置用アレイ基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950113

Country of ref document: EP

Kind code of ref document: A1