JP2007121792A - 液晶装置、液晶装置の製造方法及び電子機器 - Google Patents

液晶装置、液晶装置の製造方法及び電子機器 Download PDF

Info

Publication number
JP2007121792A
JP2007121792A JP2005315727A JP2005315727A JP2007121792A JP 2007121792 A JP2007121792 A JP 2007121792A JP 2005315727 A JP2005315727 A JP 2005315727A JP 2005315727 A JP2005315727 A JP 2005315727A JP 2007121792 A JP2007121792 A JP 2007121792A
Authority
JP
Japan
Prior art keywords
liquid crystal
conductive pattern
substrate
crystal device
alignment film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005315727A
Other languages
English (en)
Inventor
Nagako Harada
長子 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epson Imaging Devices Corp
Original Assignee
Epson Imaging Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epson Imaging Devices Corp filed Critical Epson Imaging Devices Corp
Priority to JP2005315727A priority Critical patent/JP2007121792A/ja
Publication of JP2007121792A publication Critical patent/JP2007121792A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

【課題】導電パターンが表面に露出した配向膜非形成領域上を、ラビング部材が通過した場合であっても、ラビング部材が滑らかに導電パターン上を通過することができ、ラビングすじの発生の少なくすることができる液晶装置、液晶装置の製造方法及び電子機器を提供する。
【解決手段】基板上に配向膜及び導電パターンを備える液晶装置において、基板にはそれぞれ所定方向からラビング処理が施してあり、基板における配向膜が形成されていない配向膜非形成領域に存在する導電パターンが、基板表面に埋設してある。
【選択図】図3

Description

本発明は、液晶装置、液晶装置の製造方法及び電子機器に関する。特に、ラビングすじの発生を少なくすることができる液晶装置、液晶装置の製造方法及びそのような液晶装置を備えた電子機器に関する。
従来、電気光学装置の一態様である液晶装置は、それぞれ電極を備えた一対の基板を対向配置するとともに、当該一対の基板間に液晶材料を配置して構成されている。この液晶装置は、対向する電極に電圧を印加して液晶材料を配向させ、通過する光を偏向させることにより、画像表示させるものである。
このような液晶装置を動作させるにあたり、その基板上には、電極と駆動用ICとを電気的に接続するための配線パターンが形成されている。この配線パターンは、導電性材料により形成された導電層をパターニングすることにより、所定箇所に配置することができる。
しかしながら、このように配線パターンを形成した場合、配線パターンの厚みに起因して、基板上には凹凸の段差が形成される。この段差は、例えば、画像表示領域内であれば、液晶材料の配向方向に変化を与えてしまい、画像特性を低下させる要因となり得る。また、画像表示領域外であれば、ラビング処理する際に、ラビング部材の表面を歪ませて、ラビングすじと呼ばれる表示ムラを発生させる要因となり得る。
そこで、このような問題を解決するために、ガラス基板上に、所定のエッチング成分からなるエッチング液を用いて溝を形成することで、ガラス基板の白濁化を防止しつつ、当該溝部に所定材料を堆積させて、埋め込み構造を形成する基板の製造方法が開示されている。(例えば、特許文献1参照)
より具体的には、図15(a)〜(b)に示すように、フッ酸と、フッ化アンモニウムと、塩酸又は臭酸と、を含むエッチング液を用いて、ガラス基体401をエッチングし形成した溝402と、この溝402内にスパッタ法によりアルミニウムを堆積させ形成したゲート線403と、このゲート線403上に酸化処理等により形成したゲート絶縁膜404と、導電性材料を堆積させ形成したソース線405と、を含むアクティブマトリックス基板400である。
また、このような埋め込み構造に関連して、ガラス基板上に溝を形成する際に、基板両面から溝を形成することで、ガラス基板両面に配置された配線パターンを電気的に接続するガラス基板及びその製造方法が開示されている。(例えば、特許文献2参照)
より具体的には、図16に示すように、ガラス板511と、このガラス板511表面に形成された溝512と、この溝512を埋めるように形成された配線パターン514a及び514bと、これらの配線パターンを電気的に接続している接続部516と、からなるガラス基板500である。
特開2003−66864号公報(特許請求の範囲、図2) 特開2001−251039公報(特許請求の範囲、図1)
しかしながら、特許文献1に記載された製造方法は、ガラス基板の白濁化を防止することを主目的としていることから、特に、画像表示領域内において用いられる方法であり、画像表示領域外に適用した場合について十分考慮されていなかった。すなわち、画像表示領域外である配向膜非形成領域における、配線パターンとラビング部材との接触については考慮されていなかった。
また、特許文献2に記載された製造方法は、ガラス基板の両面に配線パターンを備えた半導体装置を対象としたものであって、特許文献1と同様に、画像表示領域外である配向膜非形成領域における、配線パターンとラビング部材との接触については考慮されていなかった。
そこで、本発明の発明者は鋭意努力し、基板上に形成してある導電パターンにおいて、配向膜の形成されない配向膜非形成領域に存在する導電パターンを、基板表面に埋設することで、ラビング部材と導電パターンとの接触時の衝撃を和らげ、ラビング部材の表面の歪みを緩和してラビングすじの発生が抑えられることを見出し、本発明を完成させたものである。
すなわち本発明は、導電パターンを基板に埋設して、基板表面を平坦化にすることで、
導電パターンが表面に露出した配向膜非形成領域上を、ラビング部材が通過した場合であっても、ラビング部材が滑らかに導電パターン上を通過することができ、ラビングすじの発生の少なくすることができる液晶装置、液晶装置の製造方法及び電子機器を提供することを目的とする。
本発明によれば、基板上に配向膜及び導電パターンを備える液晶装置において、基板にはそれぞれ所定方向からラビング処理が施してあり、基板における配向膜が形成されていない配向膜非形成領域に存在する導電パターンが、基板表面に埋設してあることを特徴とする液晶装置が提供され、上述した問題を解決することができる。
すなわち、配向膜非形成領域にある導電パターンを基板に埋設することにより、基板表面の凹凸を少なくして、ラビング部材と導電パターンとの接触時における衝撃を和らげることにより、ラビングすじの発生を少なくすることができる。
また、本発明の液晶装置を構成するにあたり、基板には溝部が形成してあり、導電パターンの一部又は全部が溝部に埋設してあることが好ましい。
このように構成することにより、導電パターンを埋め込みパターンとすることができ、平坦度の高い基板を容易に形成することができる。
また、溝部の深さを変更することにより、導電パターンの断面積を広げることができ、配線ピッチの縮小に伴う配線抵抗の増大を緩和させることができる。
また、本発明の液晶装置を構成するにあたり、溝部の深さをd(μm)とし、導電パターンの高さをh(μm)とした場合に、|d−h|で表される値を0.2以下とすることが好ましい。
このように構成することにより、基板表面の凹凸、すなわち平坦度を所定範囲内に制御することができ、ラビングすじの発生を効果的に抑制することができる。
また、本発明の液晶装置を構成するにあたり、配向膜が形成されていない配向膜非形成領域に存在する導電パターンと、配向膜の形成してある配向膜形成領域に存在する導電パターンと、がその接続部分において傾斜面を有していることが好ましい。
このように構成することにより、双方の導電パターンを連続的に電気接続することができ、接続部分における接触抵抗の増大を防止することができる。
また、本発明の液晶装置を構成するにあたり、ラビング処理はラビングローラによるラビング処理であって、ラビングローラの回転軸と、導電パターンの延在方向と、のなす角を0〜60°の範囲内の値とすることが好ましい。
このように構成することにより、導電パターンのうち、特に、ラビングすじの発生に起因している延在方向を有している導電パターンを、埋め込み配線とするができ、ラビングすじの発生が少ない、効果的な配線設計ができる。
また、本発明の別の態様は、基板上に配向膜及び導電パターンを備える液晶装置の製造方法において、基板表面に溝部を形成する工程と、基板表面に導電性材料を積層して導電層を形成する工程と、導電層をパターニングして、溝部に埋設するように導電パターンを形成する工程と、基板表面に対して、それぞれ所定方向からラビング処理を施す工程と、を含むことを特徴とする液晶装置の製造方法である。
また、本発明を実施するにあたり、導電パターンを形成した後に、機械的研磨法により基板表面を平坦化させることが好ましい。
このように実施することにより、導電パターンのパターニング精度が十分でなかった場合であっても、基板表面を平坦化させることができ、効果的にラビングすじの発生を抑えることができる。
また、本発明の更に別の態様は、上述したいずれかの液晶装置を備えた電子機器である。
すなわち、配向膜非形成領域にある導電パターンを埋め込み配線とし、ラビングすじの発生を抑えた液晶装置を備えることにより、表示ムラが少なく、画像表示特性に優れた電子機器を効率的に提供することができる。
以下、図面を参照して、本発明の液晶装置、液晶装置の製造方法、及び液晶装置を含む電子機器に関する実施形態について具体的に説明する。ただし、かかる実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。
[第1実施形態]
本発明の第1実施形態は、基板上に配向膜及び導電パターンを備える液晶装置において、基板にはそれぞれ所定方向からラビング処理が施してあり、基板における配向膜が形成されていない配向膜非形成領域に存在する導電パターンが、基板表面に埋設してあることを特徴とする液晶装置である。
以下、図1〜8を適宜参照しながら、本発明の第1実施形態の液晶装置について、スイッチング素子としてTFT素子(Thin Film Transistor)を備えた素子基板と、カラーフィルタ層を備えた対向基板(カラーフィルタ基板)と、を含む液晶装置を例に採って説明する。ただし、本発明の液晶装置は、TFT素子を備えたアクティブマトリクス型の液晶装置に限定されるものではなく、TFD素子(Thin Film Diode)を備えた液晶装置や、パッシブマトリクス型の液晶装置であっても構わない。
なお、それぞれの図において、同じ符号を付したものは同一の部材を示しており、適宜説明を省略する。
1.液晶装置
(1)基本構成
まず、本実施形態に係る液晶装置について説明する。ここで、図1に液晶装置10の断面図を示す。さらに、図2に、液晶装置10の外観を表す概略斜視図を示す。
これらの図に示されるように、液晶装置10は、対向基板30と素子基板60とが、その周辺部においてシール材を介して貼り合わされ、それによって形成される間隙21a内に液晶材料が配置されている。
(2)対向基板
対向基板30は、ガラス等からなる基体31上に、着色層37r、37g、37bと、対向電極33と、リタデーションを最適化するための層厚調整層41と、配向膜45と、を主として備える基板である。
ここで、対向電極33とは、ITO(インジウムスズ酸化物)等によって表面全域に形成された面状電極である。また、この対向電極33の下層には、素子基板60側の画素電極63に対応するように、R(赤)、G(緑)、B(青)等のカラーフィルタエレメントとしての着色層37r、37g、37bが配置されている。そして、この着色層37r、37g、37bに隣接しており、画素電極63に垂直方向にならない位置に、隣接色間の混色防止領域としてのブラックマトリクスすなわち遮光膜39が設けられている。
(3)素子基板
素子基板60は、ガラス等からなる基体61上に、スイッチング素子としてのTFT素子69と、透明な有機絶縁膜81を挟んでTFT素子69の上層に形成された画素電極63と、を主として備える基板である。
ここで、画素電極63とは、反射領域Rにおいては、反射表示を行うための光反射膜79(63a)を兼ねて形成されるとともに、透過領域Tにおいては、ITOなどにより透明電極63bとして形成されている。また、この画素電極63としての光反射膜79は、例えばAl(アルミニウム)、Ag(銀)等といった光反射性材料によって形成される。更に、この画素電極63の上には、ポリイミド系の高分子樹脂からなる配向膜85が形成されるとともに、この配向膜85に対して、配向処理としてのラビング処理が施されている。
また、対向基板30の外側(すなわち、図1の表面)には、位相差板47が形成され、さらにその上に偏光板49が形成されている。同様に、素子基板60の外側(すなわち、図1の下側)表面には、位相差板87が形成され、さらにその下に偏光板89が形成されている。さらに、素子基板60の下方にはバックライトユニット(図示せず)が配置される。
また、TFT素子69は、素子基板60上に形成されたゲート電極71と、このゲート電極71の上で素子基板60の全域に形成されたゲート絶縁膜72と、このゲート絶縁膜72を挟んでゲート電極71の上方位置に形成された半導体層70と、その半導体層70の一方の側にコンタクト電極77を介して形成されたソース電極73と、さらに半導体層70の他方の側にコンタクト電極77を介して形成されたドレイン電極66とを有する。
また、ゲート電極71はゲートバス配線(図示せず)から延びており、ソース電極73はソースバス配線(図示せず)から延びている。また、ゲートバス配線は素子基板60の横方向に延びていて縦方向へ等間隔で平行に複数本形成されるとともに、ソースバス配線はゲート絶縁膜72を挟んでゲートバス配線と交差するように縦方向へ延びていて横方向へ等間隔で平行に複数本形成される。
かかるゲートバス配線は液晶駆動用IC(図示せず)に接続されて、例えば走査線として作用し、他方、ソースバス配線は他の駆動用IC(図示せず)に接続されて、例えば信号線として作用する。
また、画素電極63は、互いに交差するゲートバス配線とソースバス配線とによって区画される方形領域のうちTFT素子69に対応する部分を除いた領域に形成されている。
また、有機絶縁膜81は、ゲートバス配線、ソースバス配線及びTFT素子を覆って素子基板60上の全域に形成されている。但し、有機絶縁膜81のドレイン電極66に対応する部分にはコンタクトホール83が形成され、このコンタクトホール83を介して画素電極63とTFT素子69のドレイン電極66との導通がなされている。
また、かかる有機絶縁膜81には、反射領域Rに対応する領域に、散乱形状として、山部と谷部との規則的な又は不規則的な繰り返しパターンから成る凹凸パターンを有する樹脂膜が形成されている。この結果、有機絶縁膜81の上に積層される光反射膜79(63a)も同様にして凹凸パターンから成る光反射パターンを有することになる。但し、この凹凸パターンは、光透過量を低下させてしまうため、透過領域Tには形成されていない。
2.導電パターン構造
(1)基本的構成
次いで、配向膜非形成領域に存在する導電パターンの構造について説明する。
本発明における液晶装置10は、図3(a)〜(b)に示すように、基板60上に配置してある導電パターン99のうち、配向膜が形成されていない配向膜非形成領域(A)に存在する導電パターン97が、基体61に埋設してあることを特徴とする。
これらの導電パターンは、図3(a)に示すように、TFT素子69と、ドライバIC91と、を電気的に接続する電気配線であって、導電膜に所定のパターニング処理を施すことにより、基板面内に格子状に配置することができる。すなわち、これらの導電パターンは、TFT素子の各電極と接続される、ゲート線、ソース線、あるいは引き回し配線等に相当する。
また、図3(a)のEE断面図として示される図3(b)において、基板60に埋設された配向膜非形成領域(A)に存在する導電パターン97と、配向膜形成領域(B)に存在する導電パターン98と、は接続領域(C)において電気的に接続されている。
(2)断面形状
次いで、配向膜非形成領域(A)にある導電パターン97の断面形状について説明する。
かかる導電パターン97は、その一部又は全部を、基体61上に形成された溝部95に埋設するように形成されており、用途に合わせて様々な断面形状を採用することができる。
より具体的には、図4(a)に示すように、溝部95aの断面形状及び導電パターン97aの断面形状を、共に台形形状とすることが好ましい。
この理由は、基体61上に溝部95aを形成する手法として、ウェットエッチングを用いたような場合には、開口部の広い形状が比較的容易に形成することができ、作業を簡素化することができるためである。また、開口部側が広い形状であれば、導電パターンをスパッタリング法等により形成する場合であっても、溝部95a内部に空隙が形成されにくく、導電パターンを安定的に形成することができるためである。
なお、ここで示される断面形状は、導電パターンの延在方向と直交する面で切断した際の断面形状に相当する。
また、図4(b)に示すように、溝部95bの断面形状及び導電パターン97bの断面形状を、共に半円形状とすることが好ましい。
この理由は、溝部の内側側面を連続的な曲面とすることで、導電パターンをスパッタリング法等により形成する場合に、溝部95b内部に空隙が形成されにくく、導電パターンを安定的に形成することができるためである。また、矩形形状とした場合と比較して、角部分が存在しないことから、基板との密着性の高い導電パターンとすることができる。
また、図4(c)に示すように、導電パターンの一部が基体61に埋設してある構成とする場合に、溝部の深さをd(μm)とし、導電パターンの高さをh(μm)とした場合に、|d−h|で表される値を0.2以下とすることが好ましい。
この理由は、かかる値が0.2以上となった場合には、ラビング部材の形状や材質にもよるが、導電パターン97c上を通過した際に、その段差の影響が顕著となるためである。
また、本発明の目的から、|d−h|は0であることが好ましいが、パターニング精度や、膜厚精度等の加工精度の問題から、実質的には、0.01〜0.18の範囲内の値とすることが好ましく、0.01〜0.1の範囲内の値とすることがより好ましい。
また、本発明において、導電パターンの一部が埋設しているとは、図4(c)に示すように、導電パターン97を延在方向に対して直交する面で切断した断面において、その下側部分の一部が基板61内に埋まっていることを意味している。
また、導電パターンの全部が埋設しているとは、導電パターン97を延在方向に対して直交する面で切断した断面において、その断面が完全に基板61内に埋まっている状態を意味している。言い換えれば、導電パターンの一部が埋設しているとは、(d−h)が負の値の場合に相当し、導電パターンの全部が埋設しているとは、(d−h)が0以上の値の場合に相当している。
また、上述したような埋め込みパターンは、基板に溝部を形成し、当該溝部に対して導電性材料を堆積させる方法を用いることが、製造工程の簡易化の点から好ましいが、他の方法としては、例えば、基体の上に導電パターンを形成し、当該導電パターンの周囲を絶縁性材料で埋めることにより、同様の埋め込みパターンを形成することも好ましい。
より具体的には、図4(d)において、基体61上に、厚さhの導電パターン97c´を形成するとともに、当該導電パターン97c´の周囲に、絶縁性材料からなる絶縁層61´を厚さdまで堆積させることで、図4(c)と同様の埋め込みパターンとすることができる。
ここで用いられる絶縁性材料としては、隣接する導電パターン間の電流リークを防止するものであれば特に限定されるものではないが、例えば、アクリル樹脂、エポキシ樹脂、イミド樹脂、フッ素樹脂等を用いることができる。
また、図5(a)に示すように、導電パターンの一部が基板に埋設してあるとともに、埋設部分の幅(L1)を、非埋設部の幅(L2)よりも小さくしてあることが好ましい。
この理由は、埋設部分を備えることにより、断面積が広げることができ、導電パターンの配線抵抗の増大を抑制することができるためである。また、埋設部分よりも幅の広い非埋設部分を備えることにより、基板との密着性を維持することができるためである。
したがって、配線抵抗を維持しつつ、パターニング処理する際に発生する剥離等の不具合を防止することができる。
すなわち、埋設部分の幅(L1)と、非埋設部分の幅(L2)と、の比(L1/L2)×100(%)の値を、10〜90(%)の範囲内の値とすることにより、配線抵抗の抑制と、基板との密着性と、をバランス良く維持することができる。
しかしながら、(L1/L2)×100(%)で表される値が過度に大きくなりすぎた場合、基板との密着性が維持しきれずに剥離等の問題が生じる場合がある。また、逆にかかる値が過度に小さすぎる場合には、埋設部分による配線抵抗の増大を十分抑制できず、表示特性に悪影響を与える場合がある。
したがって、(L1/L2)×100(%)で表される値を、20〜80(%)の範囲内の値とすることが好ましく、30〜70(%)の範囲内の値とすることがより好ましい。
また、この埋設部分の深さ(d1)を0.01〜2(μm)の範囲内の値とすることが好ましい。
この理由は、埋設部分の深さ(d1)を所定範囲内に制御することにより、配線抵抗の値を調整することができ、表示特性の向上に資することができるためである。
しかしながら、埋設部分の深さ(d1)が、過度に大きすぎる場合には、深さ方向の加工精度が著しく低下し、所定形状の溝部を形成することが困難となる。また、逆に小さすぎる場合には、配線抵抗の調整が困難となる。したがって、かかる埋設部分の深さ(d1)は、0.05〜0.5(μm)の範囲内の値とすることが好ましく、0.1〜0.3(μm)の範囲内の値とすることがより好ましい。
また、非埋設部分の高さ(d2)を0.01〜2(μm)の範囲内の値とすることが好ましい。
この理由は、非埋設部分の高さ(d2)を制御することにより、基板との密着性を維持しつつ、ラビング部材への衝撃を緩和することができるためである。
しかしながら、非埋設部分の高さ(d2)が、過度に薄すぎる場合には、密着性を維持することができなくなる。また、逆に過度に厚すぎる場合には、ラビング部材への衝撃を緩和しきれずにラビングすじの発生原因となる場合がある。
したがって、かかる高さ(d2)は、0.05〜0.5(μm)の範囲内の値とすることが好ましく、0.1〜0.3(μm)の範囲内の値とすることがより好ましい。
また、図5(b)に示すように、導電パターンの一部が基板に埋設してあるとともに、埋設部分の幅(L3)を、非埋設部の幅(L4)よりも大きくしてあることが好ましい。
この理由は、埋設部分を備えることにより、断面積が広げることができ、導電パターンの配線抵抗の増大を抑制することができるためである。また、埋設部分よりも幅の狭い非埋設部分を備えることにより、ラビング部材への衝撃を緩和しつつ、配向膜形成領域に存在する導電パターンとの接続領域において、段差を形成することなく、平面的かつ連続的に接続することができ、接続不良の発生を防止することができるためである。
すなわち、埋設部分の幅(L3)と、非埋設部分の幅(L4)と、の比(L3/L4)×100(%)の値を110〜300(%)の範囲内の値とすることにより、配線抵抗の抑制と、接続不良の防止と、をバランス良く維持することができる。しかしながら、(L3/L4)×100(%)で表される値が過度に大きくなりすぎた場合、配向膜形成領域にある導電パターンとの接続が不安定になり、接続不良が発生する場合がある。また、逆にかかる値が過度に小さすぎる場合には、ラビング部材への衝撃を緩和しきれずにラビングすじが発生してしまう場合がある。
したがって、(L3/L4)×100(%)で表される値を、150〜250(%)の範囲内の値とすることが好ましく、180〜220(%)の範囲内の値とすることがより好ましい。
また、この埋設部分の深さ(d3)を0.01〜2(μm)の範囲内の値とすることが好ましい。
この理由は、この深さ(d3)を制御することにより、配線抵抗を調整することができ、表示特性の向上に資することができるためである。
しかしながら、埋設部分の深さ(d3)が、過度に大きすぎる場合には、深さ方向の加工精度が著しく低下し、所定形状の溝部を形成することが困難となる。また、逆に小さすぎる場合には、配線抵抗の調整が困難となる。したがって、かかる埋設部分の深さ(d31)は、0.05〜0.5(μm)の範囲内の値とすることが好ましく、0.1〜0.3(μm)の範囲内の値とすることがより好ましい。
また、非埋設部分の高さ(d4)を0.01〜2(μm)の範囲内の値とすることが好ましい。
この理由は、非埋設部分の高さ(d4)を制御することにより、接続領域における接続不良の発生を防止しつつ、ラビング部材への衝撃を緩和することができるためである。
しかしながら、非埋設部分の高さ(d4)が、過度に薄すぎる場合には、配向膜形成領域にある導電パターンとの、安定的な接続を維持することができなくなる。また、逆に過度に厚すぎる場合には、ラビング部材への衝撃を緩和しきれずにラビングすじの発生原因となる場合がある。
したがって、かかる高さ(d4)は、0.05〜0.5(μm)の範囲内の値とすることが好ましく、0.1〜0.3(μm)の範囲内の値とすることがより好ましい。
(3)平面構造
次いで、図6(a)〜(b)において、配向膜非形成領域(A)に存在する導電パターンの平面構造について説明する。
ここで、図6(a)〜(b)は、ラビングローラと基板との位置関係を示す平面概略図であって、ラビングローラの回転方向を(M)、回転軸を(Z)、基板のラビングローラに対する進行方向を(L)として表している。
また、図6(a)に示すように、導電パターン99fのうち、ラビングローラ190の回転軸(Z)と、配向膜非形成領域に存在する導電パターンの延在方向と、のなす角が0〜60°の範囲内の値にある導電パターンを、選択的に埋め込みパターンとすることが好ましい。
すなわち、図6(a)における導電パターン99fのうち、角度(θ)が0〜60°の範囲内にある導電パターン97fを埋め込みパターンとし、それ以外の導電パターン97f´を、基板平面上に形成する従来の導電パターン97f´とすることが好ましい。
この理由は、特定の延在方向を有する導電パターンを選択的に埋め込みパターンとすることで、埋め込みパターンを形成するための作業を簡素化するとともに、ラビングローラへの衝撃を効率的に抑えることができるためである。
また、図6(b)に示すように、配向膜非形成領域(A)に存在する導電パターンを、交互に埋め込みパターンとすることが好ましい。
すなわち、図6(b)における導電パターン99gのうち、埋め込みパターンとしての導電パターン97gと、それ以外の導電パターン97g´と、を交互に配置することが好ましい。
この理由は、導電パターンの配線設計が微細化し、配線ピッチを狭小化させる必要が生じた場合であっても、隣接配線間の配線間距離を広げることができ、電流リークが発生しにくくなるためである。
(4)接続領域
次いで、図3(b)に示した、配向膜非形成領域(A)に存在する導電パターン97と、配向膜形成領域(B)に存在する導電パターン98と、の接続領域(C)は、その使用用途に合わせて様々な構造を採用することができる。
より具体的には、図7(a)に示す接続領域(C)の拡大断面図において、かかる接続領域(C)は、傾斜角(φ)の斜面を有していることが好ましい。
この理由は、導電パターンをスパッタリング法等の方法により形成する際に、一度の蒸着作業で、配向膜非形成領域(A)に存在する導電パターン97hと、配向膜形成領域(B)に存在する導電パターン98hと、を同時に形成することができるためである。
このとき、傾斜角(φ)を10〜80°の範囲内の値とすることにより、安定的に接続領域を形成することができる。しかしながら、かかる傾斜角(φ)が大きくなりすぎる場合には、蒸着方向に対する射影面積が小さくなりすぎるため、断線する場合がある。
また、逆に小さすぎる場合には、段差Δhを一定として考えた場合に、接続領域の表面積が過度に広がりすぎ、配線設計の縮小化を阻害する場合がある。したがって、かかる傾斜角(φ)の値としては、20〜70°の範囲内の値とすることが好ましく、30〜60°の範囲内の値とすることがより好ましい。
また、図7(b)に示すように、配向膜形成領域(B)に存在する導電パターン98iと、配向膜非形成領域(A)に存在する導電パターン97iと、が上下に重なるように配置した接続領域(C)とすることが好ましい。
より具体的には、配向膜非形成領域(A)と配向膜形成領域(B)が、幅(L)だけ上下に重なるように配置した接続領域(C)とすることが好ましい。
この理由は、接続領域における導電パターンの断面積を、幅(L)の値を変更することにより変化させることができ、導電パターンの配線抵抗を調整することができるためである。
つまり、幅(L)の値を大きくした場合には、かかる接続領域における配線抵抗が下がり、優れた表示特性を得ることができるが、大きすぎる場合には、接続領域の表面積が過度に広がりすぎ、配線設計の縮小化を阻害する場合がある。したがって、かかる幅(L)の値としては、0.01〜1(μm)の範囲内の値とすることが好ましく、0.05〜0.5(μm)の範囲内の値とすることがより好ましい。
(5)ドライバICとの接続
次いで、図3(b)における、配向膜非形成領域(A)に存在する導電パターン97と、ドライバIC91との接続部(D)について説明する。
かかる接続部(D)は、導電パターン97の形状及びドライバICの端子部の形状に合わせて、様々な構成を採ることができる。
より具体的には、図8(a)に示すように、配向膜非形成領域(A)であって、ドライバIC91とTFT素子69とを電気接続するための導電パターン97jと、ドライバIC91とフレキシブル基板93とを電気接続するための導電パターン97j´と、を共に埋め込みパターンとすることが好ましい。
この理由は、配向膜非形成領域(A)内に存在する導電パターンのほぼ全体を埋め込みパターンとすることができ、ラビングすじの発生を効果的に抑制することができるためである。
また、図8(b)に示すように、ドライバIC91とTFT素子69とを電気接続するための導電パターン97kと、ドライバIC91とフレキシブル基板93とを電気接続するための導電パターン97k´とを、その接続部分において、部分的に非埋め込みパターンとすることが好ましい。
この理由は、ドライバIC91における端子部分の構造を、従来通りの構造とすることができ、設計変更することなく、埋め込みパターンに対応させることができるためである。
また、図8(c)に示すように、配向膜非形成領域(A)であって、ドライバIC91とTFT素子69とを電気接続するための導電パターン97mと、ドライバIC91とフレキシブル基板93とを電気接続するための導電パターン97m´と、のいずれか一方を埋め込みパターンとし、他方を非埋め込みパターンとすることが好ましい。
この理由は、配向膜非形成領域(A)において、埋め込みパターンの範囲を広くすることができるとともに、ドライバIC91の端子部の設計変更も少なくすることができ、ラビングすじの抑制と、ドライバICの製造容易性と、をバランス良く発揮することができるためである。
[第2実施形態]
第2実施形態は、基板上に配向膜及び導電パターンを備える液晶装置の製造方法において、基板表面に溝部を形成する工程と、基板表面に導電性材料を積層して導電層を形成する工程と、導電層をパターニングして、溝部に埋設するように導電パターンを形成する工程と、基板表面に対して、それぞれ所定方向からラビング処理を施す工程と、を含むことを特徴とする液晶装置の製造方法である。
以下、図9〜図13を適宜参照しながら、第2実施形態について詳細に説明する。また、本実施形態における液晶装置は、スイッチング素子としてTFT素子を用いたアクティブマトリックス構造を有する素子基板と、カラーフィルタを備えた対向基板とから構成してある場合を例に採って説明する。
1.素子基板の製造工程
(1)溝部の形成工程
まず、図9中S1として示される溝部の形成工程を実施する。かかる溝部の形成工程は、図10〜図11に示すように、ガラス等の透明性材料から形成される基体61上に、ウェットエッチング法またはドライエッチング法を用いて、所定形状の溝部を形成する工程である。
より具体的には、感光性樹脂材料を基体61上に塗布して樹脂層を形成する塗布工程と、この樹脂層に対してパターン露光する露光工程と、この樹脂層に現像液を適用してエッチングマスクとしての樹脂膜を形成する現像工程と、この樹脂膜の開口部分を選択的にエッチングして、所定形状の溝部を形成するエッチング工程と、から構成される。
(1)−1 塗布工程
まず、塗布工程を実施する。塗布工程は、図10(a)に示すように、所定の顔料を分散させた感光性樹脂材料を、基体61上に塗布し、樹脂層125Xを形成する工程である。このとき、用いる感光性樹脂材料の種類としては、感光した部分が現像液に対して可溶化するポジ型と、感光した部分が不溶化するネガ型と、のいずれも好適に用いることができるが、本実施形態においては、ポジ型を用いた場合を例に採って説明する。
また、樹脂層125Xの厚さとしては、露光条件に応じて変更することができ、特に限定されるものではないが、過度に薄い場合には、基体表面が部分的に露出して、パターン不良を発生させる場合がある。また、逆に厚い場合には、後述する現像工程において作業性を低下させる場合がある。したがって、かかる樹脂層の厚さとしては、0.1〜10(μm)の範囲内の値とすることが好ましく、1〜5(μm)の範囲内の値とすることがより好ましい。
(1)−2 露光工程
次いで、露光工程を実施する。かかる露光工程は、図10(b)に示すように、基体61の上方に配置されたフォトマスク111を介して、i線等のエネルギー線Lを照射することにより、樹脂層125Xを部分的に感光させ、パターン露光する工程である。
このとき、フォトマスク111として、部分的に光透過率を異ならせたハーフトーンマスクを用いたり、エネルギー線Lの照射強度を変更しながら、複数回露光を行う多段階露光を行うことが好ましい。
この理由は、樹脂層125Xの深さ方向に対して露光量に差をつけることができ、溝部の底面形状を所望の形状とすることができるためである。
(1)−3 現像工程
次いで、現像工程を実施する。かかる現像工程は、図10(c)に示すように、潜像形成された樹脂層に対して、所定の現像液Dを適用してパターン形成し、所定形状の樹脂膜125を形成する工程である。このとき、現像液Dは、図10(c)に示すように、スリット状のノズル42を、基板平面と平行して移動させながら滴下しても良く、基板中心部の上方にシャワーノズルを設置し、霧状に滴下しても良い。
(1)−4 エッチング工程
次いで、エッチング工程を実施する。かかるエッチング工程は、図11(a)に示すように、所定パターンのエッチングマスク125を備えた基体61を、弗酸等のエッチング液179に対して浸漬させることにより、基体61上に、エッチングマスク125のパターンに対応する溝部95を、形成する工程である。
このとき、エッチング液としては、ガラスに対する可溶性を備えたものであれば特に限定されるものではないが、形成する溝部の断面形状や、エッチングレートとの関係から、弗酸と弗化アンモニウムとの混合液とすることが好ましい。また、この混合比としては、弗酸:弗化アンモニウムを1:10〜10:1の範囲内の値とすることが好ましく、1:3〜3:1の範囲内の値とすることがより好ましい。
その後、この基体61を濃硫酸等に浸漬させて、残留しているエッチングマスクを除去することで、所定形状の溝部95を備えた基体61とすることができる。
また、このエッチング工程は、ドライエッチング法を用いても同様に実施することができる。
より具体的には、まず、図11(b)に示すように、表面にエッチングマスク125を備えた基体61を、減圧チャンバー171内に載置する。
次いで、減圧チャンバー171内に、SF4、SF6等の反応性ガスを主成分としたエッチングガス174をチャンバー内部に流入させるとともに、基体61表面近傍に配置した電極170と、基体61との間に所定周波数の交流電圧を印加する。このとき、反応性ガスと振動電界との間の相互作用によりフッ素ラジカルからなるプラズマ領域175が形成される。このように生成されたフッ素ラジカルと基体61表面とが繰り返し衝突することにより、露出している基体表面は物理的かつ化学的にエッチングされ、所定形状の溝部を形成することができる。
(2)導電パターンの形成工程
次いで、図9中S2として示される導電パターンの形成工程を実施する。かかる導電パターンの形成工程は、基体61上に形成された溝部95に埋めるように導電性材料を堆積させ、溝部95に対応した導電パターンを形成する工程である。
より具体的には、まず、表面に溝部を備えた基体に対して、スパッタリング法等の方法により、導電性材料からなる導電膜を形成する。次いで、この導電膜に対して、塗布工程と、露光工程と、現像工程と、エッチング工程と、からなるパターン形成処理を順次実施することで、埋め込みパターンを形成する工程である。
(2)−1 導電膜の形成工程
まず、導電膜の形成工程を実施する。かかる導電膜の形成工程は、図12(a)に示すように、基体61上に、スパッタリング法や電子ビーム蒸着法を用いて、クロム、タンタル、モリブデン等の導電性材料からなる導電膜99Xを形成する工程である。
このとき、導電膜99Xの厚さとしては、溝部95の深さと対応させて決定することが好ましい。この理由は、溝部95の形状によっては、その内部が導電膜で埋まりきらずに、内部に空隙が形成されてしまったり、溝部に段差が残ったりしてしまう場合があるためである。したがって、かかる導電膜の厚さとしては、0.01〜2(μm)の範囲内の値とすることが好ましく、0.05〜0.5(μm)の範囲内の値とすることがより好ましい。
(2)−2 塗布工程及び露光工程
次いで、このようにして形成した導電膜に所定パターンを形成するためのパターニング処理を実施する。まず、図12(b)に示すように、導電膜99X上に感光性樹脂材料を塗布するとともに、この感光性樹脂材料に対して、露光処理及び現像処理を実施することにより、所定形状のエッチングマスク126を形成することができる。
このとき、このエッチングマスク126の形状としては、溝部95に対応する位置が被覆してあり、それ以外の部分が開口してある形状とすることができる。
なお、ここで用いられる塗布、露光、現像の各処理条件は、上述した溝部の形成工程において説明した条件と同様とすることができる。
(2)−3 エッチング工程
次いで、この導電膜99Xに対して、エッチング処理を実施する。かかるエッチング処理の条件としては、例えば、導電膜としてCr層を用いた場合、過塩素酸(HClO4)と、硝酸第二セリウムアンモニウム(Ce(NH42(NO36)と、水(H2O)と、からなる混合液を用いてエッチング処理することができる。
また、かかるエッチング液の混合比としては、エッチング液の全体量に対して、過塩素酸を5〜10(重量%)、硝酸第二セリウムアンモニウムを10〜20(重量%)、水を70〜80(重量%)の範囲内の値とすることができる。
なお、このようなエッチング液は、導電膜の材質や形状に合わせて、液組成、混合比等を適宜変更することができる。その結果、図12(c)に示すように、溝部95に導電パターン99が埋設してある基体61を形成することができる。
なお、この導電膜の形成工程は、後述するTFT素子の形成工程における、ゲート電極、ソース電極、ドレイン電極等の電極形成工程と同様の方法とすることができる。すなわち、これら各電極と導電パターンとは同時に形成することができる。
また、このエッチング工程を施した場合であっても、加工条件によっては、基体61表面が十分に平坦とならない場合がある。このような場合には、導電パターンを形成した後に、機械的研磨法により、基板表面を平坦化させることが好ましい。
より具体的には、導電パターン99を形成した基体61表面を、所定の研磨布を当接させて平坦化させたり、特定の段差を選択的に研磨する研磨ブレード等を用いて、局所的に研磨することにより、さらに平坦度の高い基板を形成することができる。
(3)TFT素子の形成工程
次いで、図9中S3として示されるTFT素子の形成工程を実施する。かかるTFT素子の形成工程は、素子基板の基体上に金属膜および絶縁膜を形成し、パターニングすることにより、図13(a)に示すように、TFT素子等のスイッチング素子を形成する工程である。
スイッチング素子を形成するにあたり、基体61上に、ゲート電極71を形成する。このゲート電極71は、例えば、クロム、タンタル、モリブデン等の低抵抗材料から構成されており、スパッタリング法や電子ビーム蒸着法を用いて形成することができる。
次いで、このゲート電極71上に、絶縁層としてのゲート絶縁膜72を形成する。このゲート絶縁膜72は、窒化シリコン(SiNx)、酸化シリコン(SiOx)等の電気絶縁材料を積層させて形成することができる。
次いで、このゲート絶縁膜72上に、a−Si、多結晶シリコン、CdSe等の半導体材料を積層させて半導体層70を形成することができる。さらに、この半導体層70の両端部分に、ドープトa−Si等によりコンタクト電極77を形成することができる。
最後に、このコンタクト電極77と接触するように、ソース電極73及びそれと一体をなすソースバス配線並びにドレイン電極66を形成することができる。このとき、ソース電極73、ソースバス配線(図示せず)及びドレイン電極66は、例えばチタン、モリブデン、アルミニウム等の低抵抗材料を、スパッタリング法や電子ビーム蒸着法を用いることで形成することができる。
このようにTFT素子を形成する場合には、ゲート電極、ソース電極、あるいはドレイン電極は、導電性材料を基板表面に蒸着させることにより形成することができる。すなわち、上述した導電パターンを形成する方法と同一であることから、これらの電極を形成する工程と、導電パターンを形成する工程と、は同一工程として実施することで、工程簡略化に資することができる。
(4)画素電極等の形成工程
次いで、図9中S4として示される画素電極等の形成工程を実施する。かかる画素電極等の形成工程は、主に、TFT素子等を外部衝撃から保護するための保護膜を形成する工程と、この保護層に対して、透明導電膜等を蒸着することにより画素電極を形成する工程と、から構成される。
より具体的には、図13(b)に示すように、表面にTFT素子を備えた基体61に対して、透明性樹脂材料を塗布し、所定のパターニング処理を実施することにより、コンタクトホール83を備えた保護膜81を形成することができる。
次いで、対向電極と相対する位置に、スパッタリング法等により透明導電膜することにより、画素電極63を形成する。
(5)配向膜形成工程
次いで、図9中S5として示される配向膜の形成工程を実施する。かかる配向膜の形成工程は、図13(c)に示すように、ポリイミド樹脂等からなる配向膜85を形成する工程である。かかる配向膜85は、後述するラビング処理を実施することにより、液晶配向の制御機能を備えた配向膜とすることができる。
(6)ラビング処理
次いで、図9中S6として示されるラビング処理工程を実施する。かかるラビング処理は、配向膜85を備えた基板60に対して、図6に示すように、所定方向Mに回転したラビング部材190に対して、矢印Lの方向に基板60を挿入することにより、両者が接触し、かかる配向膜上に凹凸形状を形成するものである。
このとき、配向膜85は、基板全面には形成されず、主に液晶材料が配置される画像表示領域に形成されるため、配向膜形成領域と、配向膜非形成領域と、が基板表面上に混在することとなる。しかしながら、本発明において、配向膜非形成領域に存在する導電パターンを埋め込みパターンとすることにより、かかるラビング処理を実施した場合であっても、ラビング部材と導電パターンとの接触による衝撃を緩和することができ、ラビングむらの発生の少ない液晶装置とすることができる。
2.対向基板の製造工程
(1)遮光膜の形成工程
次に、対向基板30の製造方法について説明する。
図9中S1´として示される遮光膜の形成工程は、図1に示すように、基体31上に、それぞれの画素領域に対応する複数の開口部を備えた遮光膜39を形成する工程であえる。
このような遮光膜39としては、例えば、クロム(Cr)やモリブテン(Mo)等の金属膜を遮光膜39として使用したり、あるいは、R(赤)、G(緑)、B(青)の3色の着色材を共に樹脂その他の基材中に分散させたものや、黒色の顔料や染料等の着色材を樹脂その他の基材中に分散させたものなどを用いたりすることができる。ただし、膜厚が薄い場合であっても遮光性を確保することができるとともに、遮光膜39による段差を小さくすることができることから、クロム等の金属膜を遮光膜として使用することが好ましい。
かかる金属膜を用いて遮光膜39を形成する場合には、例えば、クロム(Cr)等の金属材料を蒸着法等により第1の基体31上に積層した後、所定のパターンに合わせてエッチング処理することにより形成することができる。
(2)カラーフィルタ層等の形成工程
次いで、図9中S2´として示されるカラーフィルタ層等の形成工程は、遮光膜39が形成された基板31上に、カラーフィルタ層37を形成する工程と、リタデーション調整のための層厚調整層41を形成する工程と、から構成される。
かかるカラーフィルタ層37は、例えば、顔料や染料等の着色材を分散させた透明樹脂等からなる感光性樹脂を、遮光膜39が形成された基板31上に、スピンコータやスリットコータを用いて塗布し、これにパターン露光、現像処理を順次施すことによって形成することができる。そして、色毎に上記工程を繰り返すことにより、複数色のカラーフィルタ層37r、37g、37bを配列形成する。
次いで、基板31上に全面的に光硬化性又は熱硬化性の樹脂材料を塗布するとともに、フォトリソグラフィ法を用いてパターニングを施し、少なくとも表示領域に相当する領域に、タデーション調整のための層厚調整層41を形成する。
かかる樹脂材料としては、例えば、などで構成することができる。これらの樹脂は流動性を有する未硬化状態で基板上に塗布され、乾燥、光硬化、熱硬化などの適宜の手段で硬化される。塗布方法としては、スピンコータやスリットコータなどを用いて塗布することができる。
(3)対向電極等の形成工程
次いで、図9中S3´として示される対向電極層の形成工程は、ITO等の透明導電材料からなる対向電極を形成する工程と、液晶を配向制御するための配向膜45を形成する工程と、から構成される。
かかる対向電極は、層厚調整層41上に全面的にITO(インジウムスズ酸化物)等の透明導電体材料からなる透明導電層をスパッタリング法により形成した後、フォトリソグラフィ法を用いてパターニングを施すことにより、対向電極33を形成する。
次いで、素子基板において形成した配向膜85と同様の方法を用いて、対向基板上にも配向膜45を形成する。
(4)ラビング処理
次いで、図9中S4´として示されるラビング処理工程は、素子基板の製造工程におけるS6に示されるラビング処理工程と同様の条件で実施することができる。
3.貼合工程等
次いで、図9中S7として示される貼合工程は、カラーフィルタ基板又は素子基板のいずれか一方において、表示領域を囲むようにしてシール材を積層した後、他方の基板を重ね合わせて、加熱圧着することにより、カラーフィルタ基板及び素子基板を貼り合わせて、セル構造を形成する工程である。
このようにして形成された一対の基板に対して、シール材の一部に設けられた注入口から液晶材料を注入し、封止材25等により封止することにより、間隙内部に液晶材料を備えた液晶パネルを形成することができる。
4.後工程
次いで、図9中S8として示される後工程は、カラーフィルタ基板及び素子基板それぞれの外面に、位相差板(1/4λ板)47、77及び偏光板49、79を配置したり、ドライバを実装する工程である。これらの工程を経て、本発明における液晶装置10を製造することができる。
[第3実施形態]
本発明に係る第3実施形態として、第1実施形態の液晶装置を備えた電子機器について具体的に説明する。
図14は、本発明の電子光学装置を備えた電子機器300の概略構成図である。この電子機器300の例では、液晶装置等の電子光学装置310と、これを制御するための制御手段320と有している。そして、電子光学装置310を、パネル構造体310aと、半導体素子(半導体素子)等で構成される駆動回路310bと、に概念的に分けて描いてある。また、制御手段320は、表示情報出力源331と、表示情報処理回路332と、電源回路333と、タイミングジェネレータ334とから構成してある。
さらに、表示情報出力源331は、ROM(Read Only Memory)やRAM(Random Access Memory)等からなるメモリと、磁気記録ディスクや光記録ディスク等からなるストレージユニットと、デジタル画像信号を同調出力する同調回路とを備え、タイミングジェネレータ334によって生成された各種のクロック信号に基づいて、所定フォーマットの画像信号等の形で表示情報を表示情報処理回路332に供給するように構成されている。
また、表示情報処理回路332は、シリアルーパラレル変換回路、増幅・反転回路、ローテーション回路、ガンマ補正回路、クランプ回路等の周知の各種回路を備え、入力した表示情報の処理を実行して、その画像情報をクロック信号CLKと共に駆動回路310bへ供給するように構成してある。さらに、駆動回路310bは、第1の電極駆動回路、第2の電極駆動回路及び検査回路を含み、電源回路333は、上述の各構成要素にそれぞれ所定の電圧を供給する機能を有している。
よって、本実施形態の電子機器は、配向膜非形成領域に存在する導電パターンを埋め込みパターンとすることにより、ラビングすじの発生を抑えた電気光学装置装置を備えているために、画像表示特性に優れた電子機器とすることができる。
本発明の液晶装置、液晶装置の製造方法及び電子機器によれば、基板上に形成してある導電パターンにおいて、配向膜の形成されない配向膜非形成領域に存在する導電パターンの全部又は一部を、基板に埋設することで、ラビング部材と導電パターンとの接触時の衝撃を和らげ、ラビング部材の表面の歪みを緩和してラビングすじの発生を抑えることができる。
したがって、本発明に係る液晶装置の製造方法によって得られた液晶装置、およびそれを備えた電子機器は、高品位であって、高い経済性を発揮することができる。したがって、電子機器として、例えば、携帯電話機やパーソナルコンピュータ等をはじめとして、液晶テレビ、ビューファインダ型・モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電気泳動装置、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた電子機器に適用することができる。
本発明の液晶装置を示す概略断面図である。 本発明の液晶装置を示す概略斜視図である。 (a)〜(b)は、それぞれ素子基板の平面図及び断面図である。 (a)〜(d)は、本発明に係る導電パターンの一例を示す断面図である。(その1) (a)〜(b)は、本発明に係る導電パターンの一例を示す断面図である。(その2) (a)〜(b)は、ラビング部材と導電パターンとの平面方向の位置関係を説明するために供する図である。 (a)〜(b)は、接続領域(C)の一例を示す断面図である。 (a)〜(c)は、ドライバICとの接続部(D)の一例を示す断面図である。 本発明における液晶装置の製造方法を示すフロー図である。 (a)〜(c)は、本発明における素子基板の製造方法を示す図である。(その1) (a)〜(b)は、本発明における素子基板の製造方法を示す図である。(その2) (a)〜(c)は、本発明における素子基板の製造方法を示す図である。(その3) (a)〜(c)は、本発明における対向基板の製造方法を示す図である。 本発明における電子機器を説明するために供するブロック図である。 従来の液晶装置を説明するために供する図である。(その1) 従来の液晶装置を説明するために供する図である。(その2)
符号の説明
10:液晶装置、23:シール材、23a:注入口、30:対向基板、31:基体、33:対向電極、45:配向膜、60:素子基板、61:基体、63:画素電極、65:データ線、69:TFT素子、85:配向膜、95:溝部、97:導電パターン、111:フォトマスク、125:樹脂層、190:ラビング部材

Claims (8)

  1. 基板上に配向膜及び導電パターンを備える液晶装置において、
    前記基板にはそれぞれ所定方向からラビング処理が施してあり、
    前記基板における前記配向膜が形成されていない配向膜非形成領域に存在する導電パターンが、前記基板表面に埋設してあることを特徴とする液晶装置。
  2. 前記基板には溝部が形成してあり、前記導電パターンの一部又は全部が前記溝部に埋設してあることを特徴とする請求項1に記載の液晶装置。
  3. 前記溝部の深さをd(μm)とし、前記導電パターンの高さをh(μm)とした場合に、|d−h|で表される値を0.2以下とすることを特徴とする請求項2に記載の液晶装置。
  4. 前記配向膜が形成されていない配向膜非形成領域に存在する導電パターンと、前記配向膜の形成してある配向膜形成領域に存在する導電パターンと、がその接続部分において傾斜面を有していることを特徴とする請求項1〜3のいずれか一項に記載の液晶装置。
  5. 前記ラビング処理はラビングローラによるラビング処理であって、前記ラビングローラの回転軸と、前記配向膜非形成領域に存在する導電パターンの延在方向と、のなす角を0〜60°の範囲内の値とすることを特徴とする請求項1〜4のいずれか一項に記載の液晶装置。
  6. 基板上に配向膜及び導電パターンを備える液晶装置の製造方法において、
    前記基板表面に溝部を形成する工程と、
    前記基板表面に導電性材料を積層して導電層を形成する工程と、
    前記導電層をパターニングして、前記溝部に埋設するように前記導電パターンを形成する工程と、
    前記基板表面に対して、それぞれ所定方向からラビング処理を施す工程と、を含むことを特徴とする液晶装置の製造方法。
  7. 前記導電パターンを形成した後に、機械的研磨法により前記基板表面を平坦化させることを特徴とする請求項6に記載の液晶装置の製造方法。
  8. 請求項1〜5のいずれか一項に記載された液晶装置を備えた電子機器。
JP2005315727A 2005-10-31 2005-10-31 液晶装置、液晶装置の製造方法及び電子機器 Withdrawn JP2007121792A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315727A JP2007121792A (ja) 2005-10-31 2005-10-31 液晶装置、液晶装置の製造方法及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315727A JP2007121792A (ja) 2005-10-31 2005-10-31 液晶装置、液晶装置の製造方法及び電子機器

Publications (1)

Publication Number Publication Date
JP2007121792A true JP2007121792A (ja) 2007-05-17

Family

ID=38145690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315727A Withdrawn JP2007121792A (ja) 2005-10-31 2005-10-31 液晶装置、液晶装置の製造方法及び電子機器

Country Status (1)

Country Link
JP (1) JP2007121792A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022036910A1 (zh) * 2020-08-19 2022-02-24 深圳市华星光电半导体显示技术有限公司 一种阵列基板、显示面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022036910A1 (zh) * 2020-08-19 2022-02-24 深圳市华星光电半导体显示技术有限公司 一种阵列基板、显示面板
US11798953B2 (en) 2020-08-19 2023-10-24 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Array substrate and display panel

Similar Documents

Publication Publication Date Title
JP3768367B2 (ja) 液晶表示装置
US7864284B2 (en) Transflective liquid crystal display device with columnar spacers
JP4235576B2 (ja) カラーフィルタ基板及びそれを用いた表示装置
JP2006178404A (ja) 液晶表示パネル及びその製造方法
JP5107596B2 (ja) 液晶表示装置、及びその製造方法
JP2003337338A (ja) 液晶表示装置及びその製造方法
TWI438536B (zh) 液晶顯示器及其製造方法
JP2007003778A (ja) 半透過型液晶表示装置及びその製造方法
KR20080025544A (ko) 액정표시패널 및 이의 제조 방법
JP2002229060A (ja) 反射型表示装置及びその製造方法
KR100677015B1 (ko) 액정 표시 장치, 액정 표시 장치의 제조 방법, 및 전자기기
JP2009139853A (ja) 液晶表示装置
JP2006201218A (ja) 電気光学装置、電気光学装置の製造方法、及び電子機器
JP2007121792A (ja) 液晶装置、液晶装置の製造方法及び電子機器
KR20000001679A (ko) 반사형 액정표시소자 및 그 제조방법
JP2007192969A (ja) 電気光学装置、電気光学装置の製造方法、及び電子機器
JP3929409B2 (ja) 液晶表示装置
JP2004093844A (ja) 液晶装置、液晶装置の製造方法、電子機器
JP4449336B2 (ja) 電気光学装置用基板、電気光学装置及び電子機器並びに電気光学装置の製造方法
JP2007072041A (ja) 液晶装置、液晶装置の製造方法、及び電子機器
JP4609017B2 (ja) 液晶表示装置、液晶表示装置の製造方法、及び電子機器
JP2007072040A (ja) 液晶装置及び液晶装置の製造方法
JP2007155871A (ja) 電気光学装置、電気光学装置の製造方法、及び電子機器
KR101333609B1 (ko) 액정표시장치 및 그 제조 방법
JP4151692B2 (ja) 液晶表示装置、液晶表示装置の製造方法、及び電子機器

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106