WO2022035262A1 - 세포내 종양 유발 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 암세포 투과성 펩타이드의 융합 단백질 및 이의 용도 - Google Patents

세포내 종양 유발 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 암세포 투과성 펩타이드의 융합 단백질 및 이의 용도 Download PDF

Info

Publication number
WO2022035262A1
WO2022035262A1 PCT/KR2021/010749 KR2021010749W WO2022035262A1 WO 2022035262 A1 WO2022035262 A1 WO 2022035262A1 KR 2021010749 W KR2021010749 W KR 2021010749W WO 2022035262 A1 WO2022035262 A1 WO 2022035262A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
cancer
fusion protein
tumor
antibody
Prior art date
Application number
PCT/KR2021/010749
Other languages
English (en)
French (fr)
Inventor
정종평
박윤정
이주연
김덕일
정의균
Original Assignee
주식회사 나이벡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나이벡 filed Critical 주식회사 나이벡
Priority to US18/006,387 priority Critical patent/US20230279143A1/en
Priority to CN202180055334.7A priority patent/CN116134138A/zh
Priority to EP21856268.4A priority patent/EP4198058A1/en
Priority to JP2023533207A priority patent/JP2023537163A/ja
Publication of WO2022035262A1 publication Critical patent/WO2022035262A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/10Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a fusion protein of an antibody or a single-stranded variable fragment thereof targeting an intracellular tumor-inducing protein and a cancer cell-penetrating peptide, and uses thereof, and more particularly, an antibody targeting a mutation of KRAS, an intracellular tumor-inducing protein Or a fusion protein in which a cancer cell penetrating peptide is linked to a single-stranded variable fragment thereof by a gene expression method or a chemical binding method, and its use for treating tumors.
  • Tumors are caused by alteration of genes in normal cells by activation of tumorigenic pathways or inhibition of tumor suppressor pathways (1).
  • the RAS mutant protein is the most widely known oncogenic factor, and it occurs in about 30% of all cancer patients.
  • the RAS mutant protein binds to GTP and causes proliferation and growth of tumor cells while remaining active.
  • RAS can be divided into three categories: HRAS, NRAS, and KRAS.
  • KRAS mutations are mainly found in non-small-cell-lung carcinoma, colorectal carcinoma, and pancreatic carcinoma. It appears in bladder cancer, kidney cancer, and thyroid carcinoma, and NRAS mutations are mainly found in melanoma, hepatocellular carcinoma, and haematologic malignancies (2).
  • KRAS gene mutation accounts for 86% of cancers induced by RAS mutations, and is known to occur in more than 98% of pancreatic cancer, more than 53% of rectal cancer, and more than 30% of lung adenocarcinoma (3).
  • KRAS mutations are known to be deeply involved in the mechanism of resistance to anti-EGFR therapeutics such as Gefitinib, Erlotinib, and Cetuximab, which target epithelial growth factor receptor (EGFR). Even if EGFR-inhibiting anticancer drugs are used, no effect can be seen at all when KRAS, a sub-concept of EGFR, is continuously activated due to mutation. In fact, in order to administer an anti-EGFR monoclonal therapeutic antibody in colorectal cancer, it is possible to administer it after determining whether the patient does not have a KRAS mutation.
  • Antibody drugs are being studied a lot as a means of anticancer treatment.
  • Trastuzumab is a monoclonal antibody against Her2 protein, which is used as a treatment for breast cancer
  • Rituximab is a monoclonal antibody against CD20. as a treatment for B cell malignant lymphoma (5).
  • the antibody has an excellent inhibitory effect on the target, it is difficult to obtain the inhibitory effect by the antibody when there is an antibody target inside the cell because it cannot pass through the cell membrane due to its high molecular weight.
  • Prostate cancer is the third most common male cancer worldwide, and in the United States, it is the most common male cancer and has the second highest cancer-specific mortality after lung cancer (7).
  • Local prostate cancer can be cured with surgery or radiation therapy, but chemical castration is the standard treatment for advanced or metastatic prostate cancer. After it was proved that prostate cancer is testosterone-dependent cancer, artificial castration was established as the primary treatment for advanced or metastatic prostate cancer, and castration treatment for various types of prostate cancer is being used clinically (8).
  • metastatic prostate cancer castration shows effects such as alleviation of disease progression and accompanying symptoms, but it is known that only 75% of patients consistently respond to treatment if castration is performed for 18 months or longer. Castration shows a relatively good response at the beginning, but over time, prostate cancer cells do not undergo apoptosis due to androgen blockade and no longer respond to hormone treatment (castration-resistant prostate cancer). CRPC) (9).
  • CRPC is a condition in which testosterone in the blood is decreased to testis-free, and even after stopping all drugs that act through androgen receptors, there is no decrease in prostate specific antigen (PSA), and a significant increase in PSA or radiation It is defined as a case of academic progression.
  • PSA prostate specific antigen
  • the average survival period is less than 12 months, and the average survival period of metastatic prostate cancer patients following various treatments is less than 3 years, and in the case of locally invasive disease, the average survival period is only 4.5 years (10). .
  • AR androgen receptor
  • Abiraterone is an inhibitor of androgen synthesis as an FDA-approved treatment for CRPC, and enzalutamide (MDV3100), a second-generation androgen receptor antagonist, completely inhibits androgen binding to androgen receptors, thereby inhibiting androgen receptor movement into the nucleus and binding to target genes. do. Since most prostate cancers that recur after abiraterone or enzalutamide treatment are PSA-positive and androgen receptor reactivated, new androgen receptor inhibitory therapies are needed for CRPC patients who are resistant to abiraterone or enzalutamide (12).
  • the androgen receptor is a ligand-dependent transcription factor that regulates the expression of genes affected by androgens.
  • a transcription factor In order for a transcription factor to access the target gene, it is necessary to enter the nucleus, so if the transcription factor can be maintained only in the cytoplasm, the transcription function can be blocked. Therefore, controlling the movement of androgen receptors into the nucleus is the most important step.
  • Cells sensitive to androgen stay in the cytoplasm without androgen, and move into the nucleus if androgen is present to activate target genes.
  • CRPC cells continue to activate their target genes because androgen receptors remain in the nucleus (13). Therefore, if it can inhibit androgen receptor translocation into the nucleus, it can be used as an effective treatment in CRPC tumors.
  • Oncogenic proteins such as KRAS and androgen receptor are known to play an important role in the development of human cancer, but antibody therapeutics targeting them have not yet been used clinically. The reason is that the antibody against RAS and androgen receptor distributed in the cell cannot pass through the cell membrane because of its high molecular weight.
  • a single-stranded variable fragment scFv
  • scFv single-stranded variable fragment
  • scFv single-stranded variable fragment
  • scFv itself also has a molecular weight of 25 kDa or more, it is difficult to freely pass through the cell membrane like a low molecular weight drug, so it is difficult to obtain a large inhibitory effect as expected.
  • the present inventors have tried to solve the problems of the prior art, and as a result, an antibody against an intracellular tumor-inducing protein or a single-stranded variable fragment thereof was fused with a cancer cell penetrating functional peptide to enable cancer tissue penetration.
  • the fusion method was produced by a gene expression method or a chemical bonding method, and it has been demonstrated that the cell-permeable fusion protein thus produced can effectively inhibit the proliferation and growth of cancer cells in which a lot of tumor-inducing proteins are expressed in vitro and in animals.
  • the present invention was completed by confirming through experiments.
  • Non-Patent Document 1 Zhang J, Chen YH, Lu Q. Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy. Future Oncol. 2010 Apr;6(4):587-603.
  • Non-Patent Document 2 Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 2014; 13: 828 - 51.
  • Non-Patent Document 3 RAS oncogenes: weaving a tumorigenic web. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. Nat Rev Cancer. 2011 Oct 13; 11(11):761-74.
  • Non-Patent Document 4 Trastuzumab (herceptin) for the medical treatment of breast cancer. Bayoudh L, Afrit M, Daldoul O, Zarrad M, Boussen H. Tunis Med. 2012 Jan; 90(1):6-12.
  • Non-Patent Document 5 Evolution of anti-CD20 monoclonal antibody therapeutics in oncology. Oflazoglu E, Audoly LP. MAbs. 2010 Jan-Feb; 2(1):14-9.
  • Non-Patent Document 6 Demarest SJ, Glaser SM. Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Devel. 2008;11(5):675-687.
  • Non-Patent Document 7 Jemal A, Clegg LX, Ward E, Ries LA, Wu X, Jamison PM, et al. Annual report to the nation on the status of cancer, 1975-2001, with a special feature regarding survival. Cancer 2004;101:3-27.
  • Non-Patent Document 8 Yagoda A, Petrylak D. Cytotoxic chemotherapy for advanced hormone-resistant prostate cancer. Cancer 1993;71:1098.
  • Non-Patent Document 9 Rini BI, Small EJ. Hormone-refractory prostate cancer. Curr Treat Opt Oncol 2002;3:437-46.
  • Non-Patent Document 10 Sella A, Yarom N, Zisman A, Kovel S. Paclitaxel, stramustine and carboplatin combination chemotherapy after initial docetaxel-based chemotherapyincastration resistant prostate cancer. Oncology 2009;76:442.
  • Non-Patent Document 11 Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004;10:33-9.
  • Non-Patent Document 12 Boudadi K, Antonarakis ES. Resistance to novel antiandrogen therapies in metastatic castration-resistant prostate cancer. Clin Med Insights Oncol 2016;10:1-9.
  • Non-Patent Document 13 Zhang L, Johnson M, Le KH, Sato M, Ilagan R, Iyer M, et al. Interrogating androgen receptor function in recurrent prostate cancer. Cancer Res 2003;63:4552-60.
  • Non-Patent Document 14 Lars Kober, Christoph Zehe, Juergen Bode, Biotechnology and Bioengineering, Vol. 110, No. 4, April, 2013, Optimized signal peptides for the development of high expressing CHO cell lines
  • An object of the present invention is to provide a fusion protein with significantly improved tumor treatment effect.
  • Another object of the present invention is to provide a pharmaceutical composition for treating tumors comprising the fusion protein as an active ingredient.
  • Another object of the present invention is to provide a method for preventing or treating a tumor comprising administering the fusion protein.
  • Another object of the present invention is to provide a use of the fusion protein for the prevention or treatment of tumors.
  • Another object of the present invention is to provide the use of the fusion protein in the manufacture of a medicament for the treatment of tumors.
  • the present invention provides a fusion protein in which (i) an antibody or a single-stranded variable fragment thereof targeting an intracellular tumor-inducing protein or a tumor-inducing mutant protein and (ii) a cancer cell penetrating functional peptide are linked. .
  • the present invention also provides a nucleic acid encoding the fusion protein.
  • the present invention also provides a recombinant vector into which the nucleic acid is introduced.
  • the present invention also provides a recombinant cell into which the recombinant vector is introduced.
  • the present invention also provides a method for preparing the fusion protein comprising the steps of:
  • the present invention also provides a pharmaceutical composition for treating tumors comprising the fusion protein as an active ingredient.
  • the present invention also provides a method for preventing or treating a tumor comprising administering the fusion protein.
  • the present invention also provides the use of the fusion protein for the prevention or treatment of tumors.
  • the invention also provides for the use of said fusion protein in the manufacture of a medicament for the treatment of a tumor.
  • FIG. 2 shows an expression vector of a KRAS mutant antibody and scFv having cancer cell penetrating ability.
  • 3 is an SDS-PAGE, western blot result of a KRAS mutant antibody and scFv having expressed and purified cancer cell penetrating ability.
  • FIG. 6 is a western blot result of Active KRAS (mutant KRAS) according to SEQ ID NOs: 20-23 linked by a GGGGS linker.
  • FIG. 7 is a western blot result of Active KRAS (mutant KRAS) according to SEQ ID NOs: 90-93 linked by a GGGGSGGGGSGGGGS linker.
  • FIG. 13 is a western blot result of Active KRAS (mutant KRAS) according to SEQ ID NOs: 80-83 prepared by chemical bonding.
  • 16 is a result of evaluating the distribution to cancer tissue in the tumor xenograft animal model.
  • 17 shows the fluorescence intensity in cancer tissue in the tumor xenograft animal model.
  • Figure 18 shows the tumor suppressive effect of SEQ ID NO: 3 and SEQ ID NO: 83.
  • 19 shows a change in the volume of a tumor formed by H358 and a photograph of cancer tissue at the time of sacrifice.
  • a fusion protein linked to a peptide was prepared.
  • a linker was introduced into the N-terminus or C-terminus of an antibody targeting an intracellular tumor-inducing protein or a tumor-inducing mutant protein or a single-stranded variable fragment thereof, and a cancer cell penetrating functional peptide was linked thereto,
  • Such a fusion protein was prepared by two different methods: a gene expression method or a chemical bonding method.
  • the fusion protein into which the cancer cell penetrating functional peptide was introduced was compared to the treatment with an antibody or a single-stranded variable fragment thereof targeting an intracellular tumor-inducing protein or a tumor-inducing mutant protein alone. It was confirmed that the cancer cell-specific, remarkably excellent effect was exhibited.
  • the present invention relates to a fusion protein in which (i) an antibody or a single-stranded variable fragment thereof targeting an intracellular tumor-inducing protein or a tumor-inducing mutant protein and (ii) a cancer cell penetrating functional peptide are linked.
  • the intracellular tumor-inducing protein or tumor-inducing mutant protein may be characterized as KRAS or androgen receptor, but is not limited thereto.
  • the antibody or single-stranded variable fragment thereof may be characterized in that it is selected from the group consisting of SEQ ID NOs: 1 to 3, but is not limited thereto.
  • the single-stranded fragment is a KRAS mutant scFv, and may be represented by SEQ ID NO: 1 below.
  • MAWVWTLLFLMAAAQSIQA is a signal peptide
  • the following amino acid sequence is a Variable heavy chain (V H ) region
  • GGGGSGKGGSGGGGSGGGGS is a linker
  • the following amino acid sequence is a Variable light chain (V L ) region.
  • the signal peptide can be used by replacing it with a known sequence such as MTRLTVLALLAGLLASSRA, MKWVTFISLLFLFSSAYS.
  • the single-stranded fragment is a KRAS mutant scFv, and may be represented by SEQ ID NO: 2 below.
  • MAQVKLQESGPELVRPGTSVKVSCKASGYAFTNYLI is a signal peptide
  • the following amino acid sequence is a Variable heavy chain (V H ) region
  • GGGGSGGGGSGGGGS is a linker
  • the following amino acid sequence is a Variable light chain (V L ) region.
  • the single-stranded fragment may be represented by SEQ ID NO: 3 as a KRAS mutant scFv.
  • SEQ ID NO: 3 is identical to SEQ ID NO: 1, and Cysteine was introduced after V L.
  • the cancer cell penetrating functional peptide may be characterized in that it is selected from the group consisting of CCPP1 (H4K), CCPP2 (H4P), CCPP3 (LMWP) and CCPP4 (hBD3-3), but is not limited thereto.
  • the cancer cell penetrating functional peptide may be characterized in that it is selected from the group consisting of SEQ ID NO: 86 to SEQ ID NO: 89, but is not limited thereto.
  • the cancer cell penetrating functional peptide may be characterized in that it is linked to the N-terminus or C-terminus of the antibody or single-stranded variable fragment thereof via a linker.
  • the linker is to provide a space so that when the cancer cell penetrating functional peptide and the antibody or single-stranded variable fragment thereof are linked, each can form a functional structure, in an appropriate combination of amino acids G and S.
  • a peptide linker by am.
  • the linker and the cancer cell penetrating functional peptide when linked, it may be characterized in that it is represented by the amino acid sequence of SEQ ID NO: 4 to SEQ ID NO: 11, but is not limited thereto.
  • the fusion peptide represented by any one of the amino acid sequences of SEQ ID NOs: 4 to 7 is preferably linked to the C terminus of the single-stranded variable fragment
  • the fusion peptide represented by any one of the amino acid sequences of SEQ ID NOs: 8 to 11 is preferably linked to the N-terminus of the single-stranded variable fragment.
  • the fusion peptide represented by the amino acid sequence of any one of SEQ ID NOs: 4 to 11 may be further bound to a linker connecting the heavy chain and the light chain of the single-stranded fragment of the antibody.
  • the fusion peptide represented by any one of the amino acid sequences of SEQ ID NOs: 4 to 11 is linked to an antibody, it is preferably linked to a sugar structure present in the Fc region.
  • the antibody or single-stranded variable fragment thereof and the cancer cell penetrating functional peptide may be characterized in that they are linked by a chemical bonding method.
  • the fusion protein may be characterized in that it is represented by the amino acid sequence of any one of SEQ ID NOs: 68 to 83, but is not limited thereto.
  • the fusion protein is any one selected from the group consisting of SEQ ID NO: 86 to SEQ ID NO: 89 to the lysine or cysteine residue of any single-stranded variable fragment selected from the group consisting of SEQ ID NOs: 1 to 3 It can be characterized in that the cancer cell penetrating functional peptide is linked through a linker.
  • the linker may be characterized as CGGGGG or CGGGGGSSGGGGG.
  • the antibody or single-stranded variable fragment thereof and the cancer cell penetrating functional peptide may be characterized in that they are expressed in connection with a gene expression method.
  • the fusion protein may be expressed in E. coli, and may be characterized in that it is represented by any one amino acid sequence of SEQ ID NO: 12 to SEQ ID NO: 27, but is not limited thereto.
  • the fusion protein may be expressed in mammalian cells, and may be characterized in that it is represented by any one amino acid sequence of SEQ ID NO: 28 to SEQ ID NO: 59 and SEQ ID NO: 90 to SEQ ID NO: 93, but is not limited thereto. does not
  • a peptide having cancer cell penetrating ability and a linker are connected to the N terminus of the single-stranded variable fragment targeting the KRAS mutation (any one of SEQ ID NOs: 1 to 3), or a peptide having cancer cell penetrating ability at the C terminus It can be used by connecting with a linker.
  • Various embodiments accordingly are specifically described in Tables 2 to 5 of the Examples.
  • the fusion protein may be characterized in that it is represented by any one of the amino acid sequence of SEQ ID NO: 12 to SEQ ID NO: 59, SEQ ID NO: 68 to SEQ ID NO: 83, and SEQ ID NO: 90 to SEQ ID NO: 93.
  • the fusion protein may be prepared by a gene expression method or a chemical bonding method, but the production method is not limited thereto.
  • a vector expressing (i) an antibody or a single-stranded variable fragment thereof targeting an intracellular tumor-inducing protein or a tumor-inducing mutant protein and (ii) a cancer cell penetrating functional peptide may be used. there is. In this case, it can be expressed by additionally including a linker sequence between the antibody or single-stranded variable fragment thereof and the cancer cell penetrating functional peptide.
  • pET vector, pcDNA 3.4, pcDNA3.1, pcDNA3.1-TOPO, pcDNA3.4-TOPO, pSecTag vector, etc. may be used, but is not limited thereto. In the present invention, pET vectors were used for expression in E. coli, and pcDNA3.1-TOPO and pcDNA3.4-TOPO vectors were used for expression in mammalian cells.
  • the present invention in another aspect, relates to a nucleic acid encoding the fusion protein.
  • the present invention also relates to a recombinant vector into which the nucleic acid is introduced.
  • the present invention also relates to a recombinant cell into which the recombinant vector is introduced.
  • the recombinant cell may be characterized as E. coli or mammalian cells, but is not limited thereto.
  • Preferred mammalian cell lines usable in the present invention may include, but are not limited to, Chinese hamsterovarian cell (CHO), human embryonic kidney cells (HEK293), and the like.
  • the present invention also relates to a method for producing the fusion protein, the method comprising the steps of (a) culturing the recombinant cell to express the fusion protein of claim 1; and (b) recovering the expressed fusion protein.
  • an antibody or a single-stranded variable fragment thereof targeting an intracellular tumor-inducing protein or a tumor-inducing mutant protein is expressed and purified in a gene, and then a cancer cell penetrating functional peptide may be introduced thereto by a chemical binding method.
  • the cancer cell penetrating functional peptide may be linked to the antibody or single-stranded variable fragment by a linker and a crosslinker.
  • the linker may be anything that can provide space to form a functional structure.
  • the linker may be a peptidic linker of natural and/or synthetic origin.
  • a peptidic linker of natural and/or synthetic origin may consist of an amino acid chain of 1 to 50 amino acids, and may contain a repetitive amino acid sequence of a naturally occurring polypeptide, such as a polypeptide having a hinge function.
  • the peptidic linker amino acid sequence may be a synthetic linker amino acid sequence designated to be enriched in glycine, glutamine, and/or serine residues.
  • residues may be arranged in small repeat units, for example of up to 5 amino acids, and the small repeat units may be arranged repeatedly to form multimeric units. At the amino- and/or carboxy-terminus of the multimeric unit, up to 6 additional optional naturally occurring amino acids may be added.
  • Other synthetic peptidic linkers may be of a single amino acid structure repeated 10 to 20 times, and may be amino- and/or carboxy-terminally up to 6 additional any naturally occurring amino acids.
  • the linker may be in the form of a chemically modified amino acid, for example, in the form of Fmoc-(9-Fluorenylmethoxycarbonyl) bound to Fmoc-(9-Fluorenylmethoxycarbonyl) as a blocking group. It may be used in the form of, but limited thereto it's not going to be
  • the fusion peptide in which the cancer cell penetrating functional peptide and the linker are combined may be represented by the amino acid sequence of any one of SEQ ID NOs: 60 to 67.
  • the sulfhydryl group of cysteine located at the N-terminus of the cancer cell penetrating functional peptide may be linked to the amine group of lysine in the linker portion of SEQ ID NO: 1 or the amine group of lysine in the exposed portion in the three-dimensional structure.
  • usable crosslinkers are 1,4-bis-maleimidobutane (BMB), 1,11-bis-maleimidotetraethylene glycol (1,11-bis-maleimidotetraethyleneglycol, BM [ PEO]4), 1-ethyl-3-[3-dimethyl aminopropyl] carbodiimide hydrochloride (1-ethyl-3-[3-dimethyl aminopropyl] carbodiimide hydrochloride, EDC), succinimidyl-4-[N -Maleimidomethylcyclohexane-1-carboxy-[6-amidocaproate]](succinimidyl-4-[N-maleimidomethylcyclohexane-1-carboxy-[6-amidocaproate]], SMCC) and its sulfonated salts (sulfo- SMCC), succimidyl 6-[3-(2-pyridyldithio)-ropiona
  • a crosslinker capable of linking with the sulfhydryl of cysteine located at the N-terminus of the fusion peptide represented by any one of the amino acid sequences of SEQ ID NOs: 60 to 67 is tris 2-carboxyethyl phosphine (tris(2-carboxyethyl)phosphine, TCEP), 5,50 dithiobis-(2-nitrobenzoic acid) (5,50-dithiobis-(2-nitrobenzoic acid, DTNB), etc.
  • the present invention is not limited thereto.
  • the method for preparing a fusion protein using the chemical bonding method includes the following steps:
  • step (a) in the method may be a step of reducing the sulfhydryl group of the cysteine residue of an antibody targeting an intracellular tumor-inducing protein or a tumor-inducing mutant protein or a single-stranded variable fragment thereof.
  • the fusion protein produced by the chemical bonding method may be represented by the amino acid sequence of any one of SEQ ID NOs: 68 to 83, but is not limited thereto.
  • the fusion protein is a lysine or cysteine residue of an antibody targeting an intracellular tumor-inducing protein or a tumor-inducing mutant protein or a single-stranded variable fragment thereof and a cancer cell penetrating functional peptide are linked by a cross-linker.
  • a cross-linker can be characterized.
  • the fusion protein is a lysine or cysteine residue of any single-stranded variable fragment selected from the group consisting of SEQ ID NOs: 1 to 3 and any one selected from the group consisting of SEQ ID NOs: 60 to SEQ ID NO: 67 It may be characterized in that the fusion peptide is chemically bound by a cross-linker.
  • the cross-linker is 1,4-bis-maleimidobutane (BMB), 1,11-bis-maleimidotetraethylene glycol (1, 11-bis-maleimidotetraethyleneglycol, BM [PEO] 4), 1-ethyl-3- [3-dimethyl aminopropyl] carbodiimide hydrochloride (1-ethyl-3- [3-dimethyl aminopropyl] carbodiimide hydrochloride, EDC), Succinimidyl-4-[N-maleimidomethylcyclohexane-1-carboxy-[6-amidocaproate]](succinimidyl-4-[N-maleimidomethylcyclohexane-1-carboxy-[6-amidocaproate]], SMCC ) and its sulfonyl salt (sulfo-SMCC), succimidyl 6-[3-(2-pyridyldi
  • BMB 1,4-bis-maleimid
  • the cross-linker is tris 2-carboxyethyl phosphine (tris (2-carboxyethyl) phosphine, TCEP) or 5,50 dithiobis- (2-nitrobenzoic acid) (5 ,50-dithiobis-(2-nitrobenzoic acid, DTNB) may be characterized.
  • the KRAS mutant protein according to the present invention is known as an important factor in tumorigenesis by accelerating the growth of cancer cells, but because it exists inside the cell membrane, the inhibitory effect by the antibody or single-stranded variable fragment targeting the KRAS mutation is not large.
  • the KRAS mutant having the cancer cell penetrating ability was targeted in both in vitro and animal experiments. It was confirmed that the antibody or single-stranded variable fragment to have an effect of remarkably inhibiting the proliferation of tumor cells.
  • the present invention relates to a pharmaceutical composition for treating tumors comprising the fusion protein as an active ingredient.
  • the tumor is selected from the group consisting of non-small cell lung cancer, colorectal cancer, pancreatic cancer, bladder cancer, kidney cancer, thyroid cancer, breast cancer, colon cancer, liver cancer, brain tumor, skin cancer, melanoma, colorectal cancer, prostate cancer and blood cancer It may be characterized as one or more of the following, but is not limited thereto.
  • the pharmaceutical composition is any one selected from the group consisting of injections, preparations for oral administration, aqueous solutions, suspensions, emulsions, etc. (eg, for injection), capsules, granules, tablets, and mucosal administration preparations. It may be characterized in that it is formulated in one dosage form, but is not limited thereto.
  • These formulations can be prepared by conventional methods used for formulation in the art or by methods disclosed in Remington's Pharmaceutical Science (latest edition), Mack Publishing Company, Easton PA, and are formulated into various formulations according to each disease or component. can be
  • the pharmaceutical composition of the present invention may further include one or more pharmaceutically acceptable carriers in addition to the antibody or single-stranded variable fragment targeting the KRAS mutation having the cancer cell penetrating ability.
  • the pharmaceutically acceptable carrier may be used in a mixture of saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these components.
  • the pharmaceutical composition of the present invention may be characterized in that it further contains a pharmaceutically acceptable adjuvant, if necessary.
  • the adjuvant may be one or more selected from the group consisting of excipients, diluents, dispersants, buffers, antibacterial preservatives, bacteriostats, surfactants, binders, lubricants, antioxidants, thickeners and viscosity modifiers, but is not limited thereto.
  • the pharmaceutical composition according to the present invention may be administered orally or parenterally (eg, intravenously, subcutaneously, intraperitoneally or topically) according to a desired method, and the dosage may vary depending on the weight, age, sex of the patient. , health status, diet, administration time, administration method, excretion rate and severity of disease, etc., the scope can be changed and used in various ways according to the opinion of an expert.
  • the single dose of the peptide is 1 ⁇ g/kg to 100 mg/kg, preferably 5 ⁇ g/kg to 50 mg/kg, and is administered once a day or 1-3 times a week, characterized in that
  • the dosage and administration interval are not limited thereto
  • the present invention relates to a method for preventing or treating a tumor comprising administering the fusion protein.
  • the present invention relates to the use of the fusion protein for the prevention or treatment of tumors.
  • the present invention relates to the use of said fusion protein in the manufacture of a medicament for the treatment of a tumor.
  • Example 1 Production by protein expression method of scFv targeting KRAS mutant with cancer cell penetrating ability
  • Example 1-1 Expression of scFv targeting KRAS mutant with cancer cell penetrating ability in E. coli
  • KRAS mutant scFv and KRAS mutant scFv expression vectors into which cancer cell penetrating peptides were introduced were prepared by PCR using specific primers, respectively.
  • the KRAS mutant scFv used in the present invention is any one of SEQ ID NOs: 1 to 3.
  • pET 21a(+) DNA was digested with Nde I and Xho I, and pMX DNA was also digested with Nde I and Xho I, and a 767 bp Kras scFv gene fragment was recovered by agarose electro elution.
  • the gene was amplified through PCR.
  • a forward primer (5'-AAGGAGATATACATATGATGGCATGGGTTTGGAC-3')
  • a reverse primer 5'-AGCCCGAAGGGAATTCATTTGCAGATACAAAGTGTTTTTAGAGTTG-3'
  • Each cleaved vector and insert were mixed at a ratio of 0.5 ⁇ g and 1.0 ⁇ g, and T4 DNA ligase was used in a ligation buffer solution of 500 mM Tris-HCl, 100 mM MgCl2, 200 mM DTT, and 10 mM ATP. , and reacted at 4°C for 16-18 hours.
  • the recombinant DNA solution was transformed into Escherichia coli DH5a, and plated on LB+Amp solid medium to select transformants.
  • a single colony of Escherichia coli Rosetta TM 2(DE3) Singles TM (Novagen) strain transformed with each plasmid was inoculated into 20ml LB containing 10 ⁇ g/ml concentration of ampicillin antibiotic and inoculated at 37°C. Incubated overnight. 1 ml of the culture medium was diluted in 200 ml of fresh LB containing the same concentration of antibiotics. Expression of KRAS scFv was induced by adding IPTG to a final concentration of 1 mM at a cell density of 0.8 at OD600 and culturing for over night.
  • the isolated KRAS scFv was separated and purified by nickel chromatography (HisTrap TM excel Kit, GE Healthcare). Then, a nickel column was pre-wetted with a buffer of [50 mM NaH 2 PO 4 (pH 8.0), 300 mM NaCl] to make it uniform, and then an aqueous protein solution under the same buffer condition was applied. After washing with a gastric buffer containing 20 mM imidazole, proteins were separated using a buffer in which imidazole was gradually increased from 50 mM to 500 mM. The separated proteins were collected and dialyzed using a desalting column (PD-10 Columns, GE Healthcare).
  • linker and cancer cell penetrating functional peptide sequences used in the present invention are shown in Table 1 below.
  • the amino acid sequence of the fusion protein in which the cancer cell penetrating functional peptide expressed in E. coli and the KRAS mutant scFv are linked is shown in Table 2 below.
  • Figure 3 (A) shows the results of SDS-PAGE and western blot of the purified antibody or single-stranded variable fragment targeting the KRAS mutation of SEQ ID NOs: 1, 2, and 3;
  • Example 1-2 Expression of scFv targeting KRAS mutant with cancer cell penetrating ability in animal cells (mammalian cells)
  • KRAS mutant scFv to be used in animal cells and KRAS mutant scFv expression vector into which cancer cell penetrating peptide was introduced were prepared by PCR using specific primers.
  • the amino acid sequence of the fusion protein in which the cancer cell penetrating functional peptide cloned into the pcDNA3.4-TOPO vector for expression in animal cells and the KRAS mutant scFv is linked is shown in Table 3 below.
  • the amino acid sequence of the fusion protein linking the cancer cell penetrating functional peptide cloned into the pcDNA3.1-TOPO vector to the KRAS mutant scFv for expression in animal cells is shown in Table 4 below.
  • the amino acid sequence of the fusion protein in which the cancer cell penetrating functional peptide cloned into the pcDNA3.4-TOPO vector and the KRAS mutant scFv is linked for expression in animal cells is shown in Table 5 below.
  • pcDNA3.1-TOPO or pcDNA3.4-TOPO was digested with EcoRI and BamHI, and a KRAS mutant scFv gene fragment of 900-960 bp was recovered by agarose electro elution.
  • the gene was amplified through PCR, and at the same time, BamHI and EcoRI restriction enzyme sites were synthesized.
  • Each cleaved vector and insert were mixed at a ratio of 4 ⁇ l and 4 ⁇ l, and T4 DNA ligase was used in a ligation buffer solution of 500 mM Tris-HCl, 100 mM MgCl2, 200 mM DTT, and 10 mM ATP. , and reacted at 4°C for 16-18 hours.
  • the present inventors transformed the prepared vector into the Chinese hamster ovary cell line Expi-CHO-S and the human embryonic kidney cell line Expi-293F.
  • the Chinese hamster ovary cell line ExpiCHO-S was provided by Thermo Fisher Scientific (USA) and cultured in ExpiCHO Expression medium (GIBCO, USA).
  • ExpiCHO-S cell line (3X10 8 cells) was spread in 50 mL of culture solution in 250 mL disposable Erlenmeyer flask.
  • ExpiFectamine CHO Reagent Gibco, Cat # A201330
  • Opti-MEM Opti-MEM containing 50 ⁇ g of plasmid
  • the prepared Chinese hamster The ovarian cells were evenly instilled, and incubated in an incubator at 37° C. 8% CO 2 for 18 hours, followed by adding 300 ⁇ L of ExpiCHO enhancer and 12 mL of ExpiCHO Feed, and incubating for 5 days.
  • the human embryonic kidney cell line Expi-293F was provided by Thermo Fisher Scientific (USA) and cultured in Expi293 Expression medium (GIBCO, USA). Then, the Expi-293F cell line (1.50X10 7 cells) was spread in 50 mL of culture solution in a 250 mL disposable Erlenmeyer flask.
  • the culture medium was collected, and purified using FPLC after sterilization.
  • the column was separated and purified using nickel chromatography (HisTrap TM excel, GE healthcare), and the nickel column was pre-wetted with the following [20mM sodium phosphate, 0.5M NaCl, pH7.4] buffer to make it uniform, and then the medium was applied. .
  • the protein was isolated by increasing the imidazole concentration to 125 mM.
  • the separated proteins were collected and stored by desalting to remove imidazole.
  • Figure 3 (B) is pcDNA3.4-TOPO, ((C) is expressed in pcDNA3.1-TOPO purified KRAS mutant targeting cancer cell penetrating ability or single-stranded variable fragment SDS-PAGE and western blot result.
  • Amino acids and reagents for synthesis were purchased from GL biochem and Sigma-Aldirich.
  • Peptides were synthesized from the C-terminus by F-moc solid-phase chemical synthesis using a reaction vessel. That is, it was synthesized using Rink amide MBHA resin (0.678 mmol/g, 100 ⁇ 200 mesh) to which Fmoc-(9-Fluorenylmethoxycarbonyl) was bound as a blocking group, and 1 g of Rink amide MBHA resin was added to the reaction vessel. After filling, the resin was swollen with DMF, and 20% piperidine/DMF solution was used to remove the Fmoc-group.
  • 0.5M amino acid solution (solvent: dimethylformamide, DMF), 1.0M DIPEA (solvent: dimethylformamide&enmethylpyrrolidone, DMF&NMP), 0.5M HBTU (solvent: dimethylformamide, DMF) ) was put in 5, 10, and 5 equivalents, respectively, and reacted for 1 to 2 hours under a nitrogen stream. Each time the deprotection and coupling steps were finished, washing was performed three times with DMF and methanol. Even after the last amino acid was coupled (coupling), deprotection was performed to remove the Fmoc-group.
  • the synthesized peptide was separated and purified by high-performance liquid chromatography (Shimadzu, Japan). Using a C 18 column with a diameter of 4.6 mm, 0.1% TFA / H 2 O and 0.1% TFA / acetonitrile at a flow rate of 1 ml / min were analyzed by flowing for 40 minutes with a change of 5 to 45%. , At this time, the wavelength of the UV detector was 220 nm. Purification was carried out under the same conditions as the solvent and the detection wavelength at a flow rate of 50 ml/min using a column with a diameter of 50 mm. The molecular weight of the purified peptide was confirmed through mass spectrometry.
  • Example 2-2 Chemical binding and purification of a peptide having cancer cell penetrating ability to the linker portion of scFv targeting KRAS mutation
  • sulfo-SMCC succinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate, ThermoFisher, 22322
  • PBS PBS
  • 40uL sulfo-SMCC solution was added to the KRAS scFv solution, and the reaction was repeated 3 times by blocking light for 1 hour.
  • KRAS mutant scFv to which a peptide having the ability to penetrate cancer cells was purified using a heparin column (HiTrap, GE Healthcare) by FPLC (Akta Pure, GE healthcare).
  • scFv of SEQ ID NO: 1 was dissolved in 1 mL PBS buffer (pH 7.4). 2.98 mg Sulfo-SMCC (sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carbocylate, ThermoFisher, catalog 22322) was dissolved in 300 ⁇ L tertiary purified water. 100 ⁇ L of Sulfo-SMCC solution was added to the scFv solution, and the reaction was repeated 3 times by blocking light for 30 minutes.
  • Sulfo-SMCC sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carbocylate, ThermoFisher, catalog 22322
  • 4 is an SDS-PAGE and western blot of an antibody or single-stranded variable fragment targeting a KRAS mutant having cancer cell penetrating ability prepared by a chemical binding method.
  • the molecular weight of the KRAS mutant scFv of SEQ ID NO: 1 was about 30 kDa, and the molecular weight of the KRAS mutant scFv conjugated with the cancer cell penetrating ability peptide was measured to be about 32 kDa.
  • the molecular weight of the band bound to the KRAS antibody in western blot was also measured at 30 kDa for the scFv of SEQ ID NO: 1 and at about 32 kDa when the cancer cell-penetrating peptide was bound, confirming that the peptide was bound to the scFv. .
  • Example 2-3 Chemical binding and purification of cancer cell penetrating peptide to the C-terminal portion of KRAS mutant scFv
  • the KRAS mutant scFv of SEQ ID NO: 3 was reacted with 20 molar equivalents tris(2-carboxyethyl)phosphine (TCEP) at room temperature for 3 hours to form a free thiol group.
  • 100 molar equivalents 5,50-dithiobis-(2-nitrobenzoic acid) (DTNB) was added to the KRAS mutant scFv solution and reacted for 1 hour at room temperature to bind to a free thiol group.
  • Excess DTNB not bound to the KRAS mutant scFv was removed by FPLC (Akta Pure, GE healthcare) using a heparin column (HiTrap, GE Healthcare).
  • KRAS mutant scFv-DTNB conjugates were reacted with 10 molar equivalents of a cancer cell penetrating peptide (SEQ ID NOs: 60-67) at room temperature for 1 hour.
  • KRAS mutant scFv to which cancer cell penetrating ability peptide was bound was purified using heparin column (HiTrap, GE Healthcare) by FPLC (Akta Pure, GE healthcare).
  • Table 7 shows the amino acid sequence of the fusion protein in which the cancer cell penetrating functional peptide and KRAS mutant scFv generated by the chemical bonding method are linked.
  • H358 cancer cell expressing KRAS mutant
  • human dermal fibroblast normal cells
  • RPMI medium 1640 Gibco
  • Each scFv SEQ ID NOs: 1, 28-35
  • Cytotoxicity was measured using CCK-8 (Cell Counting Kit-8, CK04, Dojindo Lab.). The medium was removed 48 hours after each fusion treatment, and 100 ⁇ l of CCK-8 solution was dispensed into fresh RPMI medium 1640. After 1 hour and 30 minutes, absorbance was measured at 450 nm.
  • SEQ ID NOs: 28-31, 68, and 69 showed an IC50 of 100-500nM (a concentration at which 50% of cells died) in H358 cells, and SEQ ID NO: 1 had an IC50 even at a concentration of 5 ⁇ M. could not be calculated.
  • SEQ ID NO: 1 did not show the effect of cancer cell death because it did not penetrate cancer cells, but SEQ ID NOs: 28-31, 68, and 69 are considered to have cytotoxicity because they have cancer cell penetrating functionality. Normal cells, human dermal fibroblasts, showed more than 80% cell viability at all concentrations. This means that the scFv fusion targeting the cancer cell penetrating functional KRAS mutation has cancer cell-specific cytotoxicity.
  • Example 4 Evaluation of the ability to inhibit the expression of active KRAS (mutant KRAS) by an antibody and scFv targeting a KRAS mutant with cancer cell penetrating ability
  • H358 cells (ATCC, CRL-5807) were seeded with 1.0 x 10 6 , cultured in RPMI Medium 1640 (1X) medium (Gibco, 22400-089) for 24 hours, and then starvated for 16 hours again.
  • EGF epi growth factor, R&D Systems. 236-EG
  • 1x lysis buffer (1X Lysis/Binding/Wach buffer, 11524S) was added, mixed and reacted on ice for 5 minutes. The supernatant was separated by centrifugation at 16,000 rpm, 4 degrees, and 15 minutes. Protein concentration was measured by BCA assay (Thermo scientific, 23227). It was washed with 400 ⁇ L of 1x lysis buffer, and centrifugation was performed twice at 6000 x g, 15 seconds.
  • the secondary antibody was diluted 1:3000 in T-TBS and reacted for 1 hour while inverting at room temperature. After washing 3 times for 10 minutes with T-TBS, chemiluminescence was performed with ECL substrate (Thermo, 34580) and confirmed with Amersham Imager 680 (GE). Information on the antibodies used is shown in Table 8 below.
  • the linker between the antibody and scFv targeting the KRAS mutation and the cell penetrating functional peptide is GGGGS, and in SEQ ID NOs: 90-93, the linker is GGGGSGGGGSGGGGS.
  • Example 5 Evaluation of cell penetrating ability of antibody and scFv targeting KRAS mutant with cancer cell penetrating ability
  • H358 cells were aliquoted at 1X10 5 , and after 48 hours, SEQ ID NOs: 20-23 were added at 500 nM, respectively, and cultured for 30 minutes. After fixing with 4% paraformaldehyde, permeabilization with 0.1% Triton-X100 for 10 minutes, and blocking with 2% BSA. KRAS in cells was reacted with an anti-RAS antibody (Origene, cst53270) at a ratio of 1:1000, and a secondary reaction was performed with anti-Rabbit Alexa Fluor 488 (Invitrogen, A27034) at a ratio of 1:2000.
  • an anti-RAS antibody Origene, cst53270
  • anti-Rabbit Alexa Fluor 488 Invitrogen, A27034
  • SEQ ID NOs: 20-23 were reacted with V5-Tag antibody (Origene, cst 13202) at a ratio of 1:1000, and reacted with anti-mouse Alexa Fluor 555 (Invitrogene, A28180) at a ratio of 1:1000.
  • Cell nuclei were stained with 0.1 ⁇ g/mL DAPI (Thermofisher, R37606).
  • SEQ ID NOs: 20-23 permeated into the cells were measured with a confocal differential scanning microscope.
  • SEQ ID NOs: 20-23 As a result, as in FIG. 8, except for SEQ ID NO: 2, it was found that all of SEQ ID NOs: 20-23 were penetrated into cells. In addition, it was found that co-localization with KRAS present in cancer cells. Therefore, it was found that SEQ ID NOs: 20-23 can penetrate into cells and bind to KRAS present in the cells.
  • Example 6 Evaluation of the distribution of antibodies and scFvs targeting KRAS mutations with cancer cell penetrating ability into cancer tissues in tumor xenograft animal models
  • H358 cells 1X10 6 and Matrigel (BD Bioscience, San Diego, CA, USA) 100uL in the thigh of a 5-6 week old female Balb/c nude mouse (5-6 weeks old; Japan SLC Inc, Hamamatsu, Japan) It was transplanted, and a tumor with a size of 100 mm 3 was formed.
  • Cy5.5-labeled SEQ ID NO: 2, SEQ ID NO: 23, and Cy5.5 were each injected intraperitoneally at a dose of 20 ⁇ g per mouse, and fluorescence distribution in each major organ and cancer tissue was observed after 24 hours.
  • SEQ ID NO: 23 was mainly distributed in cancer tissues 24 hours after injection, and it was found that some were excreted by the kidneys.
  • Example 7 Evaluation of tumor suppression in tumor xenograft animal model of antibody and scFv targeting KRAS mutation with cancer cell penetrating ability
  • H358 cells 1X10 6 and Matrigel (BD Bioscience, San Diego, CA, USA) 100uL in the thigh of a 5-6 week old female Balb/c nude mouse (5-6 weeks old; Japan SLC Inc, Hamamatsu, Japan) It was transplanted, and a tumor with a size of 100 mm 3 was formed.
  • SEQ ID NO: 2 and SEQ ID NO: 23 were each injected into the abdominal cavity at a dose of 1 mg/kg twice a week for 30 days. The size of the tumor was measured with a vernier caliper at intervals of 3 to 4 days, and on the 30th day, the mouse was sacrificed and the tumor was excised, and the excised tumor was photographed.
  • SEQ ID NO: 2 did not have a tumor suppressive effect, but SEQ ID NO: 23 had an excellent tumor suppressive effect. This proves that SEQ ID NO: 23 permeated into the cancerous tissue effectively inhibits the proliferation of tumor cells.
  • Example 8 Effect of fusion proteins of SEQ ID NOs: 80-83 prepared by chemical bonding
  • Example 8-1 Evaluation of the ability to inhibit the expression of active KRAS (mutant KRAS) by an antibody and scFv targeting KRAS mutation of cancer cell penetrating ability
  • H358 cells (ATCC, CRL-5807) were seeded with 1.0 x 10 6 , cultured in RPMI Medium 1640 (1X) medium (Gibco, 22400-089) for 24 hours, and then starvated for 16 hours again.
  • EGF epi growth factor, R&D Systems. 236-EG
  • 1x lysis buffer (1X Lysis/Binding/Wach buffer, 11524S) was added, mixed and reacted on ice for 5 minutes. The supernatant was separated by centrifugation at 16,000 rpm, 4 degrees, and 15 minutes. Protein concentration was measured by BCA assay (Thermo scientific, 23227). It was washed with 400 ⁇ L of 1x lysis buffer, and centrifugation was performed twice at 6000 x g, 15 seconds.
  • the secondary antibody was diluted 1:3000 in T-TBS and reacted for 1 hour while inverting at room temperature. After washing 3 times for 10 minutes with T-TBS, chemiluminescence was performed with ECL substrate (Thermo, 34580) and confirmed with Amersham Imager 680 (GE). Information on the antibodies used is shown in the table below.
  • SEQ ID NOs: 80-83 are KRAS mutation-targeting antibodies and scFvs in which a cell-penetrating peptide is chemically linked.
  • active KRAS was decreased compared to when all of SEQ ID NOs: 80-83 were treated with only EGF.
  • pERK1/2 a sub-signal of KRAS, was also reduced by SEQ ID NOs: 80-83.
  • Example 8-2 Antibody and scFv targeting KRAS mutant with cancer cell penetrating ability, confirming inhibitory ability against cancer cells with different KRAS mutant expression levels
  • H358 cancer cell expressing KRAS mutant
  • human dermal fibroblast normal cells
  • RPMI medium 1640 Gibco
  • Each scFv SEQ ID NO: 3, 80-83 was treated at a concentration of 0 to 5 ⁇ M. Cytotoxicity was measured using CCK-8 (Cell Counting Kit-8, CK04, Dojindo Lab.). The medium was removed 48 hours after each fusion treatment, and 100 ⁇ l of CCK-8 solution was dispensed into fresh RPMI medium 1640. After 1 hour and 30 minutes, absorbance was measured at 450 nm.
  • SEQ ID NOs: 80-83 showed an IC50 of 313-1250nM (a concentration at which 50% of cells died) in H358 cells, and SEQ ID NO: 3 could calculate an IC50 even at a concentration of 5 ⁇ M there was no It can be seen that SEQ ID NO: 3 did not show the effect of cancer cell death because it did not penetrate the cancer cells, but SEQ ID NOs: 80-83 showed cytotoxicity because of the cancer cell penetrating function. Normal cells, human dermal fibroblasts, showed more than 80% cell viability at all concentrations. This means that the scFv fusion targeting the cancer cell penetrating functional KRAS mutation has cancer cell-specific cytotoxicity.
  • Example 8-3 Evaluation of cell penetrating ability of antibody and scFv targeting KRAS mutant with cancer cell penetrating ability
  • H358 cells were aliquoted at 1X10 5 , and after 48 hours, SEQ ID NOs: 80-83 were added at 500 nM, respectively, and cultured for 30 minutes. After fixing with 4% paraformaldehyde, permeabilization with 0.1% Triton-X100 for 10 minutes, and blocking with 2% BSA. Intracellular KRAS was reacted with an anti-RAS antibody (Origene, cst53270) at a ratio of 1:1000, and a secondary reaction was performed with anti-Rabbit Alexa Fluor 488 (Invitrogen, A27034) at a ratio of 1:2000.
  • an anti-RAS antibody Origene, cst53270
  • anti-Rabbit Alexa Fluor 488 Invitrogen, A27034
  • SEQ ID NOs: 80-83 were reacted with V5-Tag antibody (Origene, cst 13202) at a ratio of 1:1000, and reacted with anti-mouse Alexa Fluor 555 (Invitrogene, A28180) at a ratio of 1:1000.
  • Cell nuclei were stained with 0.1 ⁇ g/mL DAPI (Thermofisher, R37606).
  • SEQ ID NOs: 80-83 permeated into cells were measured with a confocal differential scanning microscope.
  • SEQ ID NOs: 80-83 As a result, as in FIG. 15, except for SEQ ID NO: 3, it was found that all of SEQ ID NOs: 80-83 were penetrated into cells. In addition, it was found that co-localization with KRAS present in cancer cells. Accordingly, it was found that SEQ ID NOs: 80-83 can penetrate into the cell and bind to KRAS present in the cell.
  • Example 8-4 Evaluation of the distribution of antibodies and scFv targeting KRAS mutations with cancer cell penetrating ability into cancer tissues in tumor xenograft animal models
  • H358 cells 1X10 6 and Matrigel (BD Bioscience, San Diego, CA, USA) 100uL in the thigh of a 5-6 week old female Balb/c nude mouse (5-6 weeks old; Japan SLC Inc, Hamamatsu, Japan) It was transplanted, and a tumor with a size of 100 mm 3 was formed.
  • Cy5.5-labeled SEQ ID NO: 3, SEQ ID NO: 83, and Cy5.5 were each injected intraperitoneally at a dose of 20 ⁇ g per mouse, and fluorescence distribution in each major organ and cancer tissue was observed after 24 hours.
  • SEQ ID NO: 83 was mainly distributed in cancer tissues 24 hours after injection, and it was found that some were excreted by the kidneys.
  • Example 8-5 Tumor suppression evaluation in tumor xenograft animal model of antibody and scFv targeting KRAS mutation with cancer cell penetrating ability
  • H358 cells 1X10 6 and Matrigel (BD Bioscience, San Diego, CA, USA) 100uL in the thigh of a 5-6 week old female Balb/c nude mouse (5-6 weeks old; Japan SLC Inc, Hamamatsu, Japan) It was transplanted, and a tumor with a size of 100 mm3 was formed.
  • SEQ ID NO: 3 and SEQ ID NO: 83 were each injected intraperitoneally at a dose of 1 mg/kg twice a week for 30 days. The size of the tumor was measured with a vernier caliper at intervals of 3 to 4 days, and on the 30th day, the mouse was sacrificed and the tumor was excised, and the excised tumor was photographed.
  • SEQ ID NO: 3 did not have a tumor suppressive effect, but SEQ ID NO: 83 had an excellent tumor suppressive effect. This proves that SEQ ID NO: 83 permeated into the cancerous tissue effectively inhibits the proliferation of tumor cells.
  • an antibody or a single-stranded variable fragment thereof that binds to an intracellular tumor-inducing protein that acts as an important factor in tumor development or a mutant thereof and inhibits the function of the intracellular tumor-inducing protein or a tumor-inducing mutant protein is utilized
  • a cancer cell penetrating functional peptide was linked.
  • the fusion protein prepared in this way has the advantage of maximizing the anti-tumor or anti-cancer effect of an antibody or a single-stranded variable fragment thereof targeting an intracellular tumor-inducing protein or a tumor-inducing mutant protein by effectively penetrating the tumor cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 세포내 종양 유발 단백질인 KRAS의 돌연변이를 타겟으로 하는 항체 또는 이의 단일가닥 가변 단편에 암세포 투과성 펩타이드가 유전자 발현법 또는 화학적 결합법에 의해 연결되어 있는 융합 단백질 및 이의 종양 치료 용도에 관한 것이다. 이와 같이 제작된 융합 단백질은 효과적으로 종양 세포에 침투하여 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질를 타겟하는 항체 또는 이의 단일가닥 가변 단편의 항종양 또는 항암 효과를 극대화할 수 있는 장점이 있다.

Description

세포내 종양 유발 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 암세포 투과성 펩타이드의 융합 단백질 및 이의 용도
본 발명은 세포내 종양 유발 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 암세포 투과성 펩타이드의 융합 단백질 및 이의 용도에 관한 것으로, 더 상세하게는 세포내 종양 유발 단백질인 KRAS의 돌연변이를 타겟으로 하는 항체 또는 이의 단일가닥 가변 단편에 암세포 투과성 펩타이드가 유전자 발현법 또는 화학적 결합법에 의해 연결되어 있는 융합 단백질 및 이의 종양 치료 용도에 관한 것이다.
종양은 종양유발 경로가 활성화 되거나 종양억제 경로가 억제됨에 의해 정상세포의 유전자가 변형됨으로써 발생한다 (1). 다양한 종양유발 인자 중에 RAS 돌연변이 단백질은 가장 널리 알려진 종양유발 인자로 전체 암 환자의 약 30%에서 나타난다. RAS 돌연변이 (mutation) 단백질은 GTP와 결합하여 활성화된 상태로 유지되면서 종양 세포의 증식과 성장을 유발한다. RAS는 HRAS, NRAS, KRAS 세 분류로 나눌 수 있고, KRAS 돌연변이는 비소세포폐암 (non-small-cell-lung carcinoma), 대장암 (colorectal carcinoma), 췌장암 (pancreatic carcinoma)에 주로 나타나고, HRAS 돌연변이는 방광암 (bladder carcinoma), 신장암 (kidney carcinoma), 갑상선암 (thyroid carcinoma)에서 나타나며, NRAS 돌연변이는 흑색종 (melanoma), 간세포성암 (hepatocellular carcinoma), 혈액암 (haematologic malignancies) 에서 주로 나타난다 (2). KRAS 유전자 돌연변이는 RAS 돌연변이에 의해 유발된 암 중 86%를 차지하며, 췌장암의 98% 이상, 직장암의 53% 이상, 폐 선암의 30% 이상에서 발생하는 것으로 알려져 있다 (3).
KRAS 돌연변이는 EGFR (epithelial growth factor receptor)을 타켓으로 하는 이레사 (Gefitinib), 타세바 (Erlotinib), 세툭시맙 (Cetuximab) 등 항 EGFR 치료제의 내성 기전에 깊게 관여하는 것으로 알려져 있다. EGFR억제 항암제를 사용해도 EGFR의 하위 개념인 KRAS가 돌연변이로 인해 계속적 활성화된 상태에서는 전혀 효과를 볼 수 없다. 실제로 대장암에서 항 EGFR 단일클론 (monoclonal) 치료 항체를 투여하기 위해서는 KRAS 돌연변이가 없는 환자인지 판별한 후에 투여가 가능하다.
항암치료의 한 수단으로 항체 약물이 많이 연구되고 있으며, 그 예로 트라스트주맙 (Trastuzumab)은 Her2 단백질에 대한 monoclonal antibody로서 유방암 치료제로 사용되고 있으며, (4) 리툭시맙 (Rituximab)은 CD20에 대한 monoclonal antibody로서 B cell malignant lymphoma 치료제로 사용하고 있다 (5). 항체는 타겟에 대한 저해 효과는 뛰어나지만 분자량이 커서 세포막을 통과할 수 없기 때문에, 세포 내부에 항체의 타겟이 있는 경우에는 항체에 의한 저해효과를 얻기가 어렵다.
전립선암은 전 세계에서 세 번째로 흔한 남성암이며, 미국의 경우 발생률이 가장 높은 남성암으로 폐암에 이어 두 번째로 높은 암 특이 사망률을 보인다 (7). 국소 전립선암의 경우에는 수술 또는 방사선 치료로 완치를 기대할 수 있으나 진행성, 전이성 전립선암의 경우 표준적인 치료법으로 화학적 거세법이 주로 시행되고 있다. 전립선암이 남성호르몬 의존성 암이라는 것이 증명된 이후 인위적인 거세법은 진행성 혹은 전이성 전립선암의 1차 치료로 확립 되었고, 다양한 형태의 전립선암에 대한 거세치료가 임상에서 사용되고 있다 (8). 전이성 전립선암에서 거세법은 질환의 진행 및 이에 동반된 증상의 완화 등의 효과를 보이지만, 거세법을 18개월 이상 시행할 경우 75%의 환자만이 지속적으로 치료에 반응을 보이는 것으로 알려져 있다. 거세법은 초기에는 비교적 좋은 반응을 보이지만 시간이 경과하면서 전립선암 세포들이 남성호르몬 차단에 의해 세포고사 (apoptosis)가 되지 않고, 더이상 호르몬 치료에 반응하지 않는 거세 저항성 전립선암 (castration-resistant prostate cancer, CRPC)으로 전환된다 (9).
CRPC란 혈중 테스토스테론이 무고환치로 감소되어 있는 상태에서, 안드로겐 수용체를 통하여 작용을 나타내는 모든 약제를 중단한 후에도 전립선특이항원(prostate specific antigen, PSA)의 감소를 보이지 않으며, 의미있는 PSA의 상승 또는 방사선학적 진행을 보이는 경우로 정의된다. CRPC를 치료 없이 방치하였을 경우 평균 생존기간은 12개월 미만이며 각종 치료에 따른 전이성 전립선암 환자의 평균 생존 기간은 3년 이내이고, 국소 침윤성 질환의 경우 평균 생존 기간은 4.5년에 불과하다 (10).
CRPC에서 안드로겐 수용체 (androgen receptor, AR)는 AR 과별현, 돌연변이, 과민감성, 종양내에서 안드로겐 합성 등 다양한 메카니즘에 의해 재활성화가 된다고 알려져 있다 (11).
FDA 에서 승인한 CRPC 치료제로 Abiraterone은 안드로겐 합성 저해제이며, 2세대 안드로겐 수용체 길항제인 enzalutamide (MDV3100)은 안드로겐 수용체가 안드로겐과 결합하는 것을 완전히 저해하여 안드로겐 수용체가 핵안으로 이동하여 타겟 유전자와 결합하는 것을 억제한다. Abiraterone 또는 enzalutamide 치료 후 재발되는 대부분의 전립선암들은 PSA가 양성이고, 안드로겐 수용체가 다시 활성화 되기 때문에, abiraterone 또는 enzalutamide에 저항성이 있는 CRPC 환자는 새로운 안드로겐 수용체 저해 치료법이 필요하다 (12). 스테로이드 수용체 수퍼패밀리 중에 하나인 안드로겐 수용체는 리간드 의존적 전사인자 (transcription factor)로서 안드로젠에 의해 영향을 받는 유전자의 발현을 조절한다. 전사인자가 타겟 유전자에 접근하기 위해서 전사인자는 핵 안으로 들어가는 것이 꼭 필요하기 때문에 전사인자를 세포질안에만 유지시킬 수 있으면 전사기능을 막을 수 있다. 따라서, 안드로겐 수용체의 핵내로 이동을 조절하는 것이 가장 중요한 단계이다 안드로겐에 민감한 세포는 안드로겐이 없으면 세포질에 있다가 안드로겐이 있으면 핵 안으로 이동하여 타겟 유전자를 활성화 시킨다. 그러나 CRPC 세포는 안드로겐이 없어도 안드로겐 수용체가 핵 안에 계속 머물러 있기 때문에 타겟 유전자를 계속 활성화 시키게 된다 (13). 따라서, 안드로겐 수용체의 핵 안으로 이동하는 것을 억제할 수 있다면, CRPC 종양에서 효과적인 치료로 사용될 수 있다.
KRAS나 안드로겐 수용체와 같은 종양 유발 단백질은 인간의 암 발생에 중요한 역할을 하는 것으로 알려져 있으나, 이들을 타겟하는 항체 치료제는 아직 임상적으로 사용되고 있지 않다. 그 이유는 세포 내에 분포하는 RAS, androgen receptor에 대한 항체가 분자량이 크기 때문에 세포막을 통과할 수 없기 때문이다. 항체보다 작은 단일가닥 가변 단편 (scFv)은 항체에 비해 분자량이 작고, 면역거부반응을 유발하는 Fc 부분이 없기 때문에, 일반적인 항체에 대한 대안이 될 수 있다고 알려져 있다. 그러나, scFv 자체도 분자량이 25kDa 이상이 되기 때문에, 저분자 약물처럼 세포막을 자유롭게 통과하기 어렵기 때문에, 기대만큼 큰 저해 효과를 얻기가 어렵다.
이에, 본 발명자들은 상기 종래기술의 문제점을 해결하고자 예의 노력한 결과, 세포내 종양 유발 단백질에 대한 항체 또는 이의 단일가닥 가변 단편을 암조직 투과가 가능하도록 암세포 투과 기능성 펩타이드와 융합시키고자 하였다. 융합 방법은 유전자 발현법 또는 화학적 결합법으로 제작하였으며, 이와 같이 제작된 세포투과성의 융합 단백질이 세포 내에서 종양 유발 단백질이 많이 발현되는 암세포의 증식과 성장을 효과적으로 억제할 수 있음을 시험관 내 및 동물 실험을 통해 확인함으로써 본 발명을 완성하였다.
선행기술문헌
비특허문헌
(비특허문헌 1) Zhang J, Chen YH, Lu Q. Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy. Future Oncol. 2010 Apr;6(4):587-603.
(비특허문헌 2) Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 2014; 13: 828 - 51.
(비특허문헌 3) RAS oncogenes: weaving a tumorigenic web. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. Nat Rev Cancer. 2011 Oct 13; 11(11):761-74.
(비특허문헌 4) Trastuzumab (herceptin) for the medical treatment of breast cancer. Bayoudh L, Afrit M, Daldoul O, Zarrad M, Boussen H. Tunis Med. 2012 Jan; 90(1):6-12.
(비특허문헌 5) Evolution of anti-CD20 monoclonal antibody therapeutics in oncology. Oflazoglu E, Audoly LP. MAbs. 2010 Jan-Feb; 2(1):14-9.
(비특허문헌 6) Demarest SJ, Glaser SM. Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Devel. 2008;11(5):675-687.
(비특허문헌 7) Jemal A, Clegg LX, Ward E, Ries LA, Wu X, Jamison PM, et al. Annual report to the nation on the status of cancer, 1975-2001, with a special feature regarding survival. Cancer 2004;101:3-27.
(비특허문헌 8) Yagoda A, Petrylak D. Cytotoxic chemotherapy for advanced hormone-resistantprostatecancer. Cancer 1993;71:1098.
(비특허문헌 9) Rini BI, Small EJ. Hormone-refractory prostate cancer. Curr Treat Opt Oncol 2002;3:437-46.
(비특허문헌 10) Sella A, Yarom N, Zisman A, Kovel S. Paclitaxel, stramustine and carboplatin combination chemotherapy after initial docetaxel-based chemotherapyincastration resistant prostate cancer. Oncology 2009;76:442.
(비특허문헌 11) Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004;10:33-9.
(비특허문헌 12) Boudadi K, Antonarakis ES. Resistance to novel antiandrogen therapies in metastatic castration-resistant prostate cancer. Clin Med Insights Oncol 2016;10:1-9.
(비특허문헌 13) Zhang L, Johnson M, Le KH, Sato M, Ilagan R, Iyer M, et al. Interrogating androgen receptor function in recurrent prostate cancer. Cancer Res 2003;63:4552-60.
(비특허문헌 14) Lars Kober, Christoph Zehe, Juergen Bode, Biotechnology and Bioengineering, Vol. 110, No. 4, April, 2013, Optimized signal peptides for the development of high expressing CHO cell lines
발명의 요약
본 발명은 목적은 종양 치료 효과가 현저히 개선된 융합 단백질을 제공하는 데 있다.
본 발명의 다른 목적은 상기 융합 단백질을 유효성분으로 포함하는 종양 치료용 약학적 조성물을 제공하는 데 있다.
본 발명의 또 다른 목적은 상기 융합 단백질을 투여하는 단계를 포함하는 종양의 예방 또는 치료방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 종양의 예방 또는 치료를 위한 상기 융합 단백질의 용도를 제공하는 데 있다.
본 발명의 또 다른 목적은 종양의 치료를 위한 약제의 제조에 있어 상기 융합 단백질의 사용을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (i) 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 (ii) 암세포 투과 기능성 펩타이드가 연결되어 있는 융합 단백질을 제공한다.
본 발명은 또한, 상기 융합단백질을 암호화하는 핵산을 제공한다.
본 발명은 또한, 상기 핵산이 도입되어 있는 재조합 벡터를 제공한다.
본 발명은 또한, 상기 재조합 벡터가 도입되어 있는 재조합 세포를 제공한다.
본 발명은 또한, 다음 단계를 포함하는 상기 융합 단백질의 제조방법을 제공한다:
(a) 상기 재조합 세포를 배양하여 제1항의 융합 단백질을 발현시키는 단계; 및
(b) 상기 발현된 융합 단백질을 회수하는 단계.
본 발명은 또한, 상기 융합 단백질을 유효성분으로 포함하는 종양 치료용 약학적 조성물을 제공한다.
본 발명은 또한, 상기 융합 단백질을 투여하는 단계를 포함하는 종양의 예방 또는 치료방법을 제공한다.
본 발명은 또한, 종양의 예방 또는 치료를 위한 상기 융합 단백질의 용도를 제공한다.
본 발명은 또한, 종양의 치료를 위한 약제의 제조에 있어 상기 융합 단백질의 사용을 제공한다.
도 1은 본 발명의 개요를 보여주는 모식도이다.
도 2는 암세포 투과능을 가진 KRAS 돌연변이 항체 및 scFv의 발현벡터를 나타낸다.
도 3은 발현 및 정제된 암세포 투과능을 가진 KRAS 돌연변이 항체 및 scFv의 SDS-PAGE, western blot 결과이다.
도 4은 화학적 결합법으로 제작한 암세포 투과능을 가진 KRAS 돌연변이 항체 및 scFv의 SDS-PAGE, western blot 결과이다.
도 5는 암세포 투과능을 가진 KRAS 돌연변이 항체 및 scFv에 의한 암세포 특이적 사멸효과를 확인한 결과이다.
도 6은 GGGGS 링커로 연결된 서열번호 20-23에 의한 Active KRAS (mutant KRAS)의 western blot 결과이다.
도 7은 GGGGSGGGGSGGGGS 링커로 연결된 서열번호 90-93에 의한 Active KRAS (mutant KRAS)의 western blot 결과이다.
도 8은 서열번호 20-23의 암세포 투과능을 확인한 결과이다.
도 9는 Tumor xenograft 동물 모델에서 암조직으로 분포를 평가한 결과이다.
도 10은 Tumor xenograft 동물 모델에서 암조직에서의 형광 강도를 도시한다.
도 11은 서열번호 2 및 서열번호 23의 종양억제 효과를 도시한다.
도 12는 H358에 의해 형성된 종양의 볼륨변화와 희생시 암조직 사진을 도시한다.
도 13은 화학적 결합에 의해 제조된 서열번호 80-83에 의한 Active KRAS (mutant KRAS)의 western blot 결과이다.
도 14는 화학적 결합에 의해 제조된 서열번호 80-83에 의한 암세포 특이적 사멸효과를 확인한 결과이다.
도 15는 화학적 결합법에 의해 제조된 서열번호 80-83의 암세포 투과능을 확인한 결과이다.
도 16은 Tumor xenograft 동물 모델에서 암조직으로 분포를 평가한 결과이다.
도 17은 Tumor xenograft 동물 모델에서 암조직에서의 형광 강도를 도시한다.
도 18은 서열번호 3 및 서열번호 83의 종양억제 효과를 도시한다.
도 19는 H358에 의해 형성된 종양의 볼륨변화와 희생시 암조직 사진을 도시한다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 종양 치료 효과가 있는 세포 내 종양 유발 단백질 또는 이들의 돌연변이를 타겟으로 하는 항체 또는 이의 단일가닥 가변 단편이 암세포에 도달하여도 이들이 종양 세포에 충분히 작용할 수 없다는 점에 착안하여, 암세포 투과 기능성 펩타이드와 연결되어 있는 융합 단백질을 제작하였다. 융합 단백질을 제작하기 위하여, 세포 내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편의 N-말단 또는 C-말단에 링커를 도입하고, 이에 암세포 투과 기능성 펩타이드를 연결하였는데, 이와 같은 융합 단백질은 유전자 발현법 또는 화학적 결합법의 두 가지 상이한 방법으로 제작하였다. 이와 같이 제작한 융합 단백질을 이용하여 암세포 사멸 실험에서 암세포 투과 기능성 펩타이드가 도입된 융합 단백질은 세포 내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편을 단독으로 처리한 것에 비해 암세포 특이적으로 현저히 우수한 효과를 발휘함을 확인하였다.
따라서, 본 발명은 일 관점에서 (i) 세포 내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 (ii) 암세포 투과 기능성 펩타이드가 연결되어 있는 융합 단백질에 관한 것이다.
본 발명에 있어서, 상기 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질은 KRAS 또는 안드로겐 수용체인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 항체 또는 이의 단일가닥 가변 단편은 서열번호 1 내지 서열번호 3으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
일 양태로서, 상기 단일가닥 단편은 KRAS mutant scFv로, 하기 서열번호 1로 표시될 수 있다.
서열번호 1:
Figure PCTKR2021010749-appb-img-000001
여기서, MAWVWTLLFLMAAAQSIQA는 시그널 펩타이드이며, 그 다음 이어지는 아미노산 서열은 Variable heavy chain (VH) region, GGGGSGKGGSGGGGSGGGGS은 linker, 그 다음 이어지는 아미노산 서열은 Variable light chain (VL) region이다. 시그널 펩타이드는 MTRLTVLALLAGLLASSRA, MKWVTFISLLFLFSSAYS 와 같이 공지된 서열로 대체하여 사용할 수 있다.
다른 양태로서, 상기 단일가닥 단편은 KRAS mutant scFv로, 하기 서열번호 2로 표시될 수 있다.
서열번호 2:
Figure PCTKR2021010749-appb-img-000002
여기서, MAQVKLQESGPELVRPGTSVKVSCKASGYAFTNYLI는 시그널 펩타이드이며, 그 다음 이어지는 아미노산 서열은 Variable heavy chain (VH) region, GGGGSGGGGSGGGGS은 linker, 그 다음 이어지는 아미노산 서열은 Variable light chain (VL) region이다.
다른 양태로서, 상기 단일가닥 단편은 KRAS mutant scFv로 하기 서열번호 3로 표시될 수 있다.
서열번호 3:
Figure PCTKR2021010749-appb-img-000003
서열번호 3은 서열번호 1과 동일하며, VL 뒤에 Cysteine을 도입하였다.
본 발명에 있어서, 상기 암세포 투과 기능성 펩타이드는 CCPP1 (H4K), CCPP2 (H4P), CCPP3 (LMWP) 및 CCPP4 (hBD3-3)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다. 상기 암세포 투과 기능성 펩타이드는 서열번호 86 내지 서열번호 89로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 암세포 투과 기능성 펩타이드는 상기 항체 또는 이의 단일가닥 가변 단편의 N-말단 또는 C-말단에 링커를 통해 연결된 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 링커는 상기 암세포 투과 기능성 펩타이드와 상기 항체 또는 이의 단일가닥 가변 단편이 연결될 때, 각각이 기능적 구조를 형성할 수 있도록 공간을 부여하기 위한 것으로, 아미노산 G와 S의 적절할 조합에 의한 펩타이드 링커가 바람직하고, G의 개수는 3개에서 20개까지 S의 개수는 1개에서 5개까지 포함하는 것이 더욱 바람직하나, 이에 한정되는 것은 아니며, 가장 바람직하게는 상기 링커는 GGGGS 또는 GGGGSGGGGSGGGGS이다.
본 발명에 있어서, 상기 링커와 암세포 투과 기능성 펩타이드가 연결되어 있는 경우, 이는 서열번호 4에서 서열번호 11의 아미노산 서열로 표시되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다. 이 경우, 서열번호 4 내지 7 중 어느 하나의 아미노산 서열로 표시되는 융합 펩타이드는 단일가닥 가변 단편의 C 말단에 연결되는 것이 바람직하고, 서열번호 8 내지 11 중 어느 하나의 아미노산 서열로 표시되는 융합 펩타이드는 단일가닥 가변 단편의 N 말단에 연결되는 것이 바람직하다. 다른 양태로서, 상기 서열번호 4 내지 11 중 어느 하나의 아미노산 서열로 표시되는 융합 펩타이드는 항체의 단일가닥 단편의 중쇄와 경쇄를 연결하는 링커에 추가로 결합될 수 있다. 한편, 서열번호 4 내지 11중 어느 하나의 아미노산 서열로 표시되는 융합 펩타이드가 항체에 연결되는 경우, 이는 Fc 영역에 존재하는 당 구조에 연결되는 것이 바람직하다.
본 발명에 있어서, 상기 항체 또는 이의 단일가닥 가변 단편과 암세포 투과 기능성 펩타이드는 화학적 결합법으로 연결되는 것을 특징으로 할 수 있다. 이 경우, 상기 융합 단백질은 서열번호 68 내지 서열번호 83 중 어느 하나의 아미노산 서열로 표시되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 융합 단백질은 서열번호 1 내지 서열번호 3으로 구성된 군에서 선택되는 어느 하나의 단일가닥 가변 단편의 라이신 또는 시스테인 잔기에 서열번호 86 내지 서열번호 89로 구성된 군에서 선택되는 어느 하나의 암세포 투과 기능성 펩타이드가 링커를 통해 연결된 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 링커는 CGGGGG 또는 CGGGGGSSGGGGG인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 항체 또는 이의 단일가닥 가변 단편과 암세포 투과 기능성 펩타이드는 유전자 발현법으로 연결되어 발현되는 것을 특징으로 할 수 있다. 이 경우, 상기 융합 단백질은 대장균에서 발현될 수 있고, 서열번호 12 내지 서열번호 27 중 어느 하나의 아미노산 서열로 표시되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다. 또한, 상기 융합 단백질은 포유동물 세포에서 발현될 수 있고, 서열번호 28 내지 서열번호 59 및 서열번호 90 내지 서열번호 93 중 어느 하나의 아미노산 서열로 표시되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
예컨대, 상기 KRAS 돌연변이를 타겟으로 하는 단일가닥 가변 단편(서열번호 1 내지 서열번호 3 중 어느 하나)의 N 말단에 암세포 투과능을 가진 펩타이드와 링커를 연결하거나, C 말단에 암세포 투과능을 가진 펩타이드와 링커를 연결하여 사용할 수 있다. 이에 따른 다양한 양태가 실시예의 표 2 내지 표 5에 구체적으로 기재되어 있다.
본 발명에 있어서, 상기 융합 단백질은 서열번호 12 내지 서열번호 59, 서열번호 68 내지 서열번호 83 및 서열번호 90 내지 서열번호 93 중 어느 하나의 아미노산 서열로 표시되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 융합 단백질은 유전자 발현법 또는 화학적 결합법으로 제조할 수 있으나, 그 제조방법이 이에 한정되는 것은 아니다.
유전자 발현법으로 융합 단백질을 제조하는 경우, (i) 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 (ii) 암세포 투과 기능성 펩타이드가 함께 발현되는 벡터를 이용할 수 있다. 이 경우, 상기 항체 또는 이의 단일가닥 가변 단편과 상기 암세포 투과 기능성 펩타이드 사이에 링커 서열을 추가로 포함하여 발현되도록 할 수 있다. pET 벡터, pcDNA 3.4, pcDNA3.1, pcDNA3.1-TOPO, pcDNA3.4-TOPO, pSecTag 벡터 등을 이용할 수 있으나, 이에 한정되지는 않는다. 본 발명에서는 대장균에서의 발현을 위해 pET 벡터를, 포유동물 세포에서의 발현을 위해 pcDNA3.1-TOPO, pcDNA3.4-TOPO 벡터를 사용하였다.
따라서, 본 발명은 또 다른 관점에서, 상기 융합 단백질을 암호화하는 핵산에 관한 것이다.
본 발명은 또한, 상기 핵산이 도입되어 있는 재조합 벡터에 관한 것이다.
본 발명은 또한, 상기 재조합 벡터가 도입되어 있는 재조합 세포에 관한 것이다.
본 발명에 있어서, 상기 재조합 세포는 대장균 또는 포유동물 세포인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에서 사용가능한 바람직한 포유동물 세포주는 중국햄스터난소세포주(CHO: Chinese hamsterovarian cell), 인간 태아 신장세포주(HEK293: human embryonic kidney cells) 등을 포함할 수 있으나, 이에 한정되지는 않는다.
본 발명은 또한, 상기 융합 단백질을 제조하는 방법에 관한 것으로, 상기 방법은 (a) 상기 재조합 세포를 배양하여 제1항의 융합 단백질을 발현시키는 단계; 및 (b) 상기 발현된 융합 단백질을 회수하는 단계를 포함한다.
한편, 본 발명에서는 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편을 유전자에서 발현시켜 정제한 후, 이에 화학적 결합법으로 암세포 투과 기능성 펩타이드를 도입할 수도 있다.
암세포 투과 기능성 펩타이드는 링커와 crosslinker에 의해 상기 항체 또는 단일가닥 가변 단편에 연결될 수 있다. 링커는 기능적 구조를 형성할 수 있도록 공간을 부여할 수 있는 것이라면 어떠한 것이라도 사용할 수 있을 것이다. 예를 들어, 상기 링커는 천연 및/또는 합성 기원의 펩타이드성 링커일 수 있다. 천연 및/또는 합성 기원의 펩타이드성 링커는 1 내지 50개의 아미노산으로 이루어진 아미노산 사슬로 이루어질 수 있고, 경첩 기능을 갖는 폴리펩타이드와 같이 천연 발생 폴리펩타이드의 반복적인 아미노산 서열을 포함할 수 있다. 또 다른 양태로서, 상기 펩타이드성 링커 아미노산 서열은 글리신, 글루타민, 및/또는 세린 잔기가 풍부하도록 지정된 합성 링커 아미노산 서열일 수 있다. 이들 잔기는 예를 들어 5개 이하의 아미노산의 작은 반복 단위로 배열될 수 있고 상기 작은 반복 단위는 멀티머 단위를 형성하도록 반복되어 배열될 수 있다. 멀티머 단위의 아미노- 및/또는 카르복시- 말단에서, 6개 이하의 추가의 임의의 천연 발생 아미노산이 첨가될 수 있다. 기타 합성 펩타이드성 링커는 10 내지 20회 반복되는 단일 아미노산 구성일 수 있고, 아미노- 및/또는 카르복시-말단에 6개 이하의 추가 임의의 천연 발생 아미노산일 수 있다. 한편, 상기 링커는 아미노산이 화학적으로 변형된 형태일 수 있으며, 예컨데, 블로킹 그룹(Blocking group)으로 Fmoc-(9-Fluorenylmethoxycarbonyl)이 결합된 Fmoc-6-aminohexanoic acid의 형태로 사용될 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 일부 양태로서, 암세포 투과 기능성 펩타이드와 링커가 결합된 융합 펩타이드는 서열번호 60 내지 서열번호 67 중 어느 하나의 아미노산 서열로 표시될 수 있다. 이 경우, 암세포 투과 기능성 펩타이드의 N 말단에 위치한 cysteine의 sulfhydryl기는 서열번호 1의 링커 부분에 있는 lysine의 아민기 또는 입체 구조에서 노출된 부분에 있는 lysine의 아민기에 연결될 수 있다.
이 경우, 사용가능한 crosslinker는 1,4-비스-말레이미도부탄(1,4-bis-maleimidobutane, BMB), 1,11-비스-말레이미도테트라에틸렌글리콜(1,11-bis-maleimidotetraethyleneglycol, BM[PEO]4), 1-에틸-3-[3-디메틸 아미노프로필] 카보디이미드 하이드로클로라이드(1-ethyl-3-[3-dimethyl aminopropyl] carbodiimide hydrochloride, EDC), 숙시니미딜-4-[N-말레이미도메틸시클로헥산-1-카복시-[6-아미도카프로에이트]](succinimidyl-4-[N-maleimidomethylcyclohexane-1-carboxy-[6-amidocaproate]], SMCC) 및 그의 설폰화염(sulfo-SMCC), 숙시미딜 6-[3-(2-피리딜디티오)-로피오나미도] 헥사노에이트](succimidyl 6-[3-(2-pyridyldithio)-ropionamido] hexanoate, SPDP) 및 그의 설폰화염(sulfo-SPDP), m-말레이미도벤조일-N-하이드로시숙시니미드 에스터(m-maleimidobenzoyl-N-hydroxysuccinimide ester, MBS) 및 그의 설폰화염(sulfo-MBS), 숙시미딜[4-(p-말레이미도페닐) 부틸레이트](succimidyl[4-(p-maleimidophenyl) butyrate], SMPB) 및 그의 설폰화염(sulfo-SMPB)등이 있으나 이에 한정되는 것은 아니다.
한편, 서열번호 3의 C 말단의 cysteine의 sulfhydryl기를 환원시킨 후, 서열번호 60 내지 서열번호 67 중 어느 하나의 아미노산 서열로 표시되는 융합 펩타이드의 N 말단에 위치한 cysteine의 sulfhydryl와 연결할 수 있는 crosslinker는 트리스 2-카복시에틸포스핀 (tris(2-carboxyethyl)phosphine, TCEP), 5,50 디티오비스-(2-니트로벤조익 액시드) (5,50-dithiobis-(2-nitrobenzoic acid, DTNB) 등이 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 화학적 결합법을 이용하여 융합 단백질을 제조하는 방법은 하기 단계를 포함한다:
(a) 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편의 링커 부위 또는 노출된 부분에 존재하는 라이신의 아민기를 crosslinker로 활성화 하는 단계;
(b) 암세포 투과 기능성 펩타이드를 crosslinker로 활성화된 상기 항체 또는 단일가닥 가변 단편에 연결하는 단계; 및
(c) 상기 항체 또는 단일가닥 가변 단편과 암세포 투과 기능성 펩타이드가 연결되어 있는 융합 단백질을 정제하는 단계.
대안적으로, 상기 방법에서 (a)단계는 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편의 시스테인 잔기의 sulfhydryl기를 환원시키는 단계일 수 있다.
상기 화학적 결합법에 의해 생성되는 융합 단백질은 서열번호 68 내지 서열번호 83 중 어느 하나의 아미노산 서열로 표시될 수 있으나, 이에 한정되지는 않는다.
본 발명에 따른 양태로서, 상기 융합 단백질은 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편의 라이신 또는 시스테인 잔기와 암세포 투과 기능성 펩타이드가 크로스-링커에 의해 연결되는 것을 특징으로 할 수 있다.
바람직하게는, 상기 융합 단백질은 서열번호 1 내지 서열번호 3으로 구성된 군에서 선택되는 어느 하나의 단일가닥 가변 단편의 라이신 또는 시스테인 잔기와 서열번호 60 내지 서열번호 67로 구성된 군에서 선택되는 어느 하나의 융합 펩타이드가 크로스-링커에 의해 화학적 결합하는 것을 특징으로 할 수 있다.
이 경우, 상기 잔기가 라이신인 경우, 상기 크로스-링커는 1,4-비스-말레이미도부탄(1,4-bis-maleimidobutane, BMB), 1,11-비스-말레이미도테트라에틸렌글리콜(1,11-bis-maleimidotetraethyleneglycol, BM[PEO]4), 1-에틸-3-[3-디메틸 아미노프로필] 카보디이미드 하이드로클로라이드(1-ethyl-3-[3-dimethyl aminopropyl] carbodiimide hydrochloride, EDC), 숙시니미딜-4-[N-말레이미도메틸시클로헥산-1-카복시-[6-아미도카프로에이트]](succinimidyl-4-[N-maleimidomethylcyclohexane-1-carboxy-[6-amidocaproate]], SMCC) 및 그의 설폰화염(sulfo-SMCC), 숙시미딜 6-[3-(2-피리딜디티오)-로피오나미도] 헥사노에이트](succimidyl 6-[3-(2-pyridyldithio)-ropionamido] hexanoate, SPDP) 및 그의 설폰화염(sulfo-SPDP), m-말레이미도벤조일-N-하이드로시숙시니미드 에스터(m-maleimidobenzoyl-N-hydroxysuccinimide ester, MBS) 및 그의 설폰화염(sulfo-MBS), 숙시미딜[4-(p-말레이미도페닐) 부틸레이트](succimidyl[4-(p-maleimidophenyl) butyrate], SMPB) 및 그의 설폰화염(sulfo-SMPB)로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
한편, 상기 잔기가 시스테인인 경우, 상기 크로스-링커는 트리스 2-카복시에틸포스핀 (tris(2-carboxyethyl)phosphine, TCEP) 또는 5,50 디티오비스-(2-니트로벤조익 액시드) (5,50-dithiobis-(2-nitrobenzoic acid, DTNB)인 것을 특징으로 할 수 있다.
본 발명에 따른 KRAS 돌연변이 단백질은 암세포의 성장을 가속화하여 종양발생의 중요한 인자로 알려져 있으나, 세포막 안쪽에 존재하기 때문에, KRAS 돌연변이를 타겟으로 하는 항체 또는 단일가닥 가변 단편에 의한 저해 효과가 크지 않다. 그러나, 암세포 투과능 펩타이드를 도입한 후 KRAS 돌연변이에 대한 항체 또는 단일가닥 가변 단편에 의한 종양 증식 억제 효과를 확인하였을 때, 시험관 내 실험 및 동물 실험 결과 모두에서 해당 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 또는 단일가닥 가변 단편은 종양 세포의 증식을 현저히 억제하는 효과가 있음을 확인하였다.
따라서, 본 발명은 다른 관점에서, 상기 융합 단백질을 유효성분으로 포함하는 종양 치료용 약학적 조성물에 관한 것이다.
본 발명에 있어서, 상기 종양은 비소세포폐암, 대장암, 췌장암, 방광암, 신장암, 갑상선암, 유방암, 결장암, 간암, 뇌종양, 피부암, 흑색종, 대장암, 전립선 암및 혈액암으로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 약학적 조성물은 주사제, 경구투여용 제제, 수용액, 현탁액, 유탁액 등과 같은 액제 (예를 들어, 주사용), 캡슐, 과립, 정제, 점막투여제제 구성된 군에서 선택되는 어느 하나의 제형으로 제제화되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다. 이들 제제는 당분야에서 제제화에 사용되는 통상의 방법 또는 Remington's Pharmaceutical Science(최근판), Mack Publishing Company, Easton PA 에 개시되어 있는 방법으로 제조될 수 있으며 각 질환에 따라 또는 성분에 따라 다양한 제제로 제제화될 수 있다.
한편, 본 발명의 약학적 조성물은 상기암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 또는 단일가닥 가변 단편 이외에 약제학적으로 허용가능한 담체를 1 종 이상 더 포함할 수 있다. 약제학적으로 허용 가능한 담체는 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1성분 이상을 혼합하여 사용할 수 있다.
본 발명의 약학적 조성물은 필요에 따라 약제학적으로 허용가능한 보조제를 추가로 함유하는 것을 특징으로 할 수 있다. 상기 보조제는 부형제, 희석제, 분산제, 완충제, 항균성 보존제, 정균제, 계면활성제, 결합제, 윤활제, 산화방지제, 증점제 및 점도개질제로 구성된 군에서 선택되는 하나 이상일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 약학적 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여(예를 들어, 정맥 내, 피하, 복강 내 또는 국소에 적용)할 수 있으며, 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 전문가의 소견에 따라 다양하게 변경되어 사용될 수 있다.
본 발명의 일 실시양태로서, 상기 펩타이드의 일회 투여량은 1μg/kg 내지 100 ㎎/㎏, 바람직하게는 5μg/kg 내지 50 ㎎/㎏이고, 일일 일회 또는 주 1-3회 투여하는 것을 특징으로 할 수 있으나, 투여량과 투여간격이 이에 한정되는 것은 아니다
본 발명은 또 다른 관점에서, 상기 융합 단백질을 투여하는 단계를 포함하는 종양의 예방 또는 치료방법에 관한 것이다.
본 발명은 또 다른 관점에서, 종양의 예방 또는 치료를 위한 상기 융합 단백질의 용도에 관한 것이다.
본 발명은 또 다른 관점에서, 종양의 치료를 위한 약제의 제조에 있어 상기 융합 단백질의 사용에 관한 것이다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 scFv의 단백질 발현법에 의한 제작
실시예 1-1: 대장균에서 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 scFv의 발현
KRAS mutant scFv, 암세포 투과능 펩타이드가 도입된 KRAS mutant scFv 발현 백터를 각각 특이적인 프라이머를 이용하여 PCR 방법으로 제작하였다. 본 발명에서 사용된 KRAS mutant scFv는 서열번호 1 내지 서열번호 3 중 어느 하나이다.
KRAS mutant scFv (서열번호 1):
Figure PCTKR2021010749-appb-img-000004
KRAS mutant scFv (서열번호 2):
Figure PCTKR2021010749-appb-img-000005
KRAS mutant scFv (서열번호 3):
Figure PCTKR2021010749-appb-img-000006
pET 21a(+) DNA는 Nde I과 Xho I으로 절단하였으며, pMX DNA도 Nde I과 Xho I으로 절단하여, 767 bp의 Kras scFv 유전자 단편을 아가로스 전기 용출(agarose electro elution) 방법으로 회수하였다. 이를 pET 21a(+) 벡터에 삽입하기 위하여 PCR을 통해 유전자를 증폭시켰다. PCR 프라이머로는 정방향 프라이머(5'-AAGGAGATATACATATGATGGCATGGGTTTGGAC-3') 및 역방향 프라이머(5'-AGCCCGAAGGGAATTCATTTGCAGATACAAAGTGTTTTTAGAGTTG-3')를 이용하였다. 각각의 절단된 벡터와 인서트를 0.5 μg과 1.0 μg의 비율로 혼합하였고, Tris-HCl 500 mM, MgCl2 100 mM, DTT 200 mM, ATP 10 mM 조성의 라이게이션 완충 용액에서 T4 DNA 리가아제를 사용하여, 4℃에서 16-18시간 동안 반응시켰다.
재조합된 DNA 용액을 대장균 DH5a에 형질전환시키고, LB+Amp 고체 배지에 도말하여 형질전환체를 선별하였다.
각각의 플라즈미드로 형질전환된 대장균 RosettaTM 2(DE3) SinglesTM (Novagen) 균주의 단일 콜로니(colony)를 10μg/ml 농도의 엠피실린(ampicillin) 항생제가 포함되어 있는 20ml LB에 접종하여 37℃에서 밤새 배양하였다. 배양액의 1ml을 같은 농도의 항생제가 들어있는 새로운 200ml의 LB에 희석시켰다. KRAS scFv의 발현은 OD600에서의 세포의 밀도 0.8 값에서 IPTG의 최종농도가 1mM이 되도록 넣고 over night 동안 배양시킴으로써 유도되었다. 세포들을 원심분리법을 통하여 수확하였고 10ml lysis buffer(50mM NaH2PO4, 300mM NaCl, pH 8.0)에 섞어서 풀어주었다. 세포의 초음파 분쇄(sonication)후, 4℃조건에서 10분간의 원심분리를 통해 단백질을 total(전체), soluble(수용성), insoluble(불수용성) 부분으로 나누었고 SDS-PAGE를 통해 분석하였다(S.I. Choi et al., Protein solubility and folding enhancement by interaction with RNA, PLoS ONE 3 (2008) e2677).
분리된 KRAS scFv는 니켈 크로마토그래피 (HisTrapTM excel Kit, GE Healthcare)에 의해 분리, 정제되었다. 다음 [50mM NaH2PO4 (pH 8.0), 300mM NaCl] 조건의 버퍼로 니켈 컬럼 (column)을 미리 적셔 균등하게 해준 후 같은 버퍼 조건의 단백질 수용액을 적용시켰다. 20mM의 이미다졸(imidazole)이 포함되어 있는 위 버퍼를 이용하여 세척을 진행한 후 이미다졸을 50mM부터 500mM까지 점진적으로 증가시킨 버퍼를 이용하여 단백질을 분리하였다. 분리된 단백질을 모아서 desalting column(PD-10 Columns, GE Healthcare)을 이용하여 투석하였다.
본 발명에서 사용한 링커와 암세포 투과 기능성 펩타이드 서열은 다음 표 1과 같다.
Figure PCTKR2021010749-appb-img-000007
대장균에서 발현되는 암세포 투과 기능성 펩타이드와 KRAS 돌연변이 scFv가 연결된 융합 단백질의 아미노산 서열은 다음 표 2와 같다.
Figure PCTKR2021010749-appb-img-000008
Figure PCTKR2021010749-appb-img-000009
Figure PCTKR2021010749-appb-img-000010
Figure PCTKR2021010749-appb-img-000011
도 3 (A)은 정제된 서열번호 1, 2, 3의 KRAS 돌연변이를 타겟으로 하는 항체 또는 단일가닥 가변 단편의 SDS-PAGE와 western blot 결과이다.
실시예 1-2: 동물세포(mammalian cell)에서 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 scFv의 발현
동물세포에서 사용할 KRAS mutant scFv, 암세포 투과능 펩타이드가 도입된 KRAS mutant scFv 발현 백터를 각각 특이적인 프라이머를 이용하여 PCR 방법으로 제작하였다.
동물세포 발현을 위해 pcDNA3.4-TOPO 벡터에 클로닝된 암세포 투과 기능성 펩타이드와 KRAS 돌연변이 scFv가 연결된 융합 단백질의 아미노산 서열은 다음 표 3과 같다.
Figure PCTKR2021010749-appb-img-000012
Figure PCTKR2021010749-appb-img-000013
Figure PCTKR2021010749-appb-img-000014
Figure PCTKR2021010749-appb-img-000015
동물세포 발현을 위해 pcDNA3.1-TOPO 벡터에 클로닝된 암세포 투과 기능성 펩타이드와 KRAS 돌연변이 scFv가 연결된 융합 단백질의 아미노산 서열은 다음 표 4와 같다.
Figure PCTKR2021010749-appb-img-000016
Figure PCTKR2021010749-appb-img-000017
Figure PCTKR2021010749-appb-img-000018
Figure PCTKR2021010749-appb-img-000019
동물세포 발현을 위해 pcDNA3.4-TOPO 벡터에 클로닝된 암세포 투과 기능성 펩타이드와 KRAS 돌연변이 scFv가 연결된 융합 단백질의 아미노산 서열은 다음 표 5와 같다.
Figure PCTKR2021010749-appb-img-000020
Figure PCTKR2021010749-appb-img-000021
pcDNA3.1-TOPO 또는 pcDNA3.4-TOPO를 EcoR I과 BamH I으로 절단하여, 900-960 bp의 KRAS mutant scFv 유전자 단편을 아가로스 전기 용출(agarose electro elution) 방법으로 회수하였다. 이를 pcDNA3.1-TOPO 및 pcDNA3.4-TOPO 벡터에 삽입하기 위하여 PCR을 통해 유전자를 증폭시켰으며, 동시에 BamH I과 EcoR I 제한효소 사이트를 합성하였다. 각각의 절단된 벡터와 인서트를 4 μl와 4 μl의 비율로 혼합하였고, Tris-HCl 500 mM, MgCl2 100 mM, DTT 200 mM, ATP 10 mM 조성의 라이게이션 완충 용액에서 T4 DNA 리가아제를 사용하여, 4℃에서 16-18시간 동안 반응시켰다.
본 발명자들은 제조된 벡터를 중국 햄스터 난소 세포주 Expi-CHO-S와 인체 배아 신장세포주 Expi-293F에 형질전환시켰다. 중국 햄스터 난소 세포주 ExpiCHO-S는 Thermo Fisher Scientific (USA)에서 제공받았고, ExpiCHO Expression medium(GIBCO, USA) 배지에서 배양하였다.
이후 ExpiCHO-S 세포주(3X108 cells)를 250 mL disposable Erlenmeyer flask에 50 mL의 배양액에 깔아주었다. 50 μg의 플라스미드가 들어있는 2 mL의 Opti-MEM에 1.84 mL의 Opti-MEM에 희석한 ExpiFectamine CHO Reagent (Gibco, Cat # A20130) 160 μL를 혼합하여 상온에서 5분간 정지 반응시킨 후, 준비된 중국 햄스터 난소 세포에 골고루 점적하고, 18시간 동안 37℃ 8% CO2 항온기에서 배양한 후, ExpiCHO enhancer 300 μL와 ExpiCHO Feed 12 mL을 추가하여 5일동안 배양하였다.
인체 배아 신장세포주 Expi-293F는 Thermo Fisher Scientific (USA)에서 제공받았고, Expi293 Expression medium(GIBCO, USA) 배지에서 배양하였다. 이후 Expi-293F 세포주 (1.50X107 cells)를 250 mL disposable Erlenmeyer flask에 50 mL의 배양액에 깔아주었다. 50 μg의 플라스미드가 들어있는 3 mL의 Opti-MEM에 2.8 mL의 Opti-MEM에 희석한 ExpiFectamine 293 Reagent (Gibco, Cat # A14525) 160 μL를 혼합하여 상온에서 20분간 정지 반응시킨 후, 준비된 인체 배아 신장 세포에 골고루 점적하고, 18시간 동안 37℃ 8% CO2 항온기에서 배양하였다. 이후 ExpiFectamine 293 transfection enhancer 1 300 μL와 ExpiFectamine 293 transfection enhancer 2 3 mL을 추가하여 3일동안 배양하였다.
형질도입(transfection) 이후 6일 후, 배양 배지를 수집하여, 제균 후 FPLC를 사용하여 정제를 하였다. 컬럼은 니켈 크로마토그래피 (HisTrapTM excel, GE healthcare)를 사용하여 분리 정제되었으며 다음 [20mM sodium phosphate, 0.5M NaCl, pH7.4] 조건의 버퍼로 니켈 컬럼을 미리 적셔 균등하게 해준 후 배지를 적용시켰다. 25mM의 이미다졸(imidazole)이 포함되어 있는 위 버퍼를 이용하여 세척을 진행한 후 이미다졸을 125mM로 증가시켜 단백질을 분리하였다. 분리된 단백질을 모아서 desalting을 통해 이미다졸을 제거하여 보관하였다.
도3 (B)는 pcDNA3.4-TOPO, ((C)는 pcDNA3.1-TOPO에서 발현되어 정제된 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 또는 단일가닥 가변 단편의 SDS-PAGE와 western blot 결과이다.
실시예 2: 암세포 투과능 펩타이드와 항KRAS 돌연변이 단일가닥 가변단편 (scFv)의 화학적 결합에 의한 제작
실시예 2-1: 세포투과성 펩타이드의 합성
화학적 결합법에 사용되는 암세포 투과 기능성 펩타이드와 링커의 아미노산 서열은 표 6과 같다.
Figure PCTKR2021010749-appb-img-000022
아미노산 및 합성에 필요한 시약은 GL biochem과 Sigma-Aldirich에서 구입하였다. 펩타이드를 반응용기를 이용하여 C 말단으로부터 F-moc 고체상 화학합성방법으로 합성하였다. 즉, 블로킹 그룹(Blocking group)으로 Fmoc-(9-Fluorenylmethoxycarbonyl)이 결합된 Rink amide MBHA resin (0.678mmol/g, 100 ~ 200 mesh)을 사용하여 합성하였으며, 반응 용기에 1g의 Rink amide MBHA resin을 넣은 뒤 DMF로 resin을 스웰링(swelling) 시킨 후 Fmoc-group의 제거를 위해 20% piperidine/DMF 용액을 사용하였다. C 말단부터 서열대로 0.5M amino acid 용액(용매: 디메틸포름아마이드, DMF), 1.0M DIPEA(용매: 디메틸포름아마이드&엔메틸피롤리돈, DMF&NMP), 0.5M HBTU (용매: 디메틸포름아마이드, DMF)를 각각 5, 10, 5 당량씩 넣어 질소 기류하에서 1~2시간 동안 반응시켰다. 상기 디프로텍션(deprotection)과 커플링(coupling) 단계가 끝날 때마다 DMF와 methanol로 3번 세척하는 과정을 거쳤다. 마지막 아미노산을 커플링(coupling) 시킨 후에도 디프로텍션(deprotection)을 해주어 Fmoc-group을 제거하였다.
합성의 확인은 닌하이드린 테스트(ninhydrin test) 방법을 이용하였고, 테스트를 거치고 합성이 완료된 레진(resin)은 진공건조시킨 후 트리플루오로아세트산 (TFA) cleavage cocktail을 resin 1g 당 10ml의 비율로 넣어 3시간 shaking 시킨 후 필터링을 통해 resin과 펩타이드가 녹아 있는 cocktail을 분리하였다. 필터로 걸러진 용액을 콜드 에테르(cold ether)에 넣어주거나 펩타이드가 녹아있는 TFA cocktail 용액에 직접 콜드 에테르를 과량 넣어주어 펩타이드를 고체상으로 결정화시키고 이를 원심분리하여 분리 하였다. 이때 에테르(ether)로 여러 번 세척과 원심분리 과정을 거쳐 TFA cocktail을 완전히 제거하였다. 이렇게 해서 얻어진 펩타이드를 진공 건조 하였다.
합성된 펩타이드는 고성능 액체크로마토그래피 (Shimadzu, Japan) 에 의해 분리, 정제하였다. 직경 4.6mm의 C18 컬럼을 이용하여 유속 1ml/min으로 0.1% TFA/H2O 와 0.1% TFA/아세토나이트릴 (acetonitrile)를 5~45%의 변화를 주면서 40분간 흘려주는 방법으로 분석하였으며, 이때 자외선 검출기의 파장은 220nm로 하였다. 정제는 직경 50mm의 컬럼을 이용하여 유속 50ml/min으로 용매와 검출 파장을 같은 조건으로 실시하였다. 정제된 펩타이드의 분자량을 Mass spectrometry를 통해 확인하였다.
실시예 2-2: KRAS 돌연변이를 타겟하는 scFv의 linker 부분에 암세포 투과능을 가진 펩타이드의 화학결합 및 정제
서열번호 1의 1.02mg KRAS scFv을 1mL PBS buffer (pH 8.3)에 용해하였다. 2.12mg SPDP (succinimidyl 3-(2-pyridyldithio)propionate, ThermoFisher, 21857)을 120uL DMSO (Dimethyl sulfoxide)에 용해하였다. KRAS scFv 용액에 40uL SPDP 용액을 첨가하고, 1시간 동안 차광시켜 반응하는 것을 3회 반복하였다. 또는 2mg sulfo-SMCC (succinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate, ThermoFisher, 22322)을 PBS에 용해하였다. KRAS scFv 용액에 40uL sulfo-SMCC 용액을 첨가하고, 1시간 동안 차광시켜 반응하는 것을 3회 반복하였다.
반응이 종결되면 PD-10 Desalting Column (GE healthcare)을 사용하여 Desalting을 진행하고, 3.5mL의 pyridyldithiol activated KRAS scFv를 수득하였다. 여기에 3차 정제수 300μL에 2.5mg Cys-G5-H4K (서열번호 60), Cys-G5-H4P (서열번호 61), Cys-G5-LMWP (서열번호 62), Cys-G5-hBD3-3 (서열번호 63), Cys-G5S2G5-H4K(서열번호 64), Cys-G5S2G5-H4P (서열번호 65), Cys-G5S2G5-LMWP (서열번호 66), Cys-G5S2G5-hBD3-3 (서열번호 67) 용액을 각각 혼합하고, 1M tris buffer (pH=9)를 사용하여 pH8.3으로 조정하였다. 차광 후 4℃에서 혼합하면서 overnight 반응시켰다. FPLC (Akta Pure, GE healthcare)로 heparin column (HiTrap, GE Healthcare)을 사용하여 암세포 투과능을 가진 펩타이드가 결합된 KRAS 돌연변이 scFv를 정제하였다.
서열번호 1의 1.02mg scFv을 1mL PBS buffer (pH 7.4)에 용해하였다. 2.98mg Sulfo-SMCC (sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carbocylate, ThermoFisher, catalog 22322)을 300μL 3차 정제수에 용해하였다. scFv 용액에 100μL Sulfo-SMCC 용액을 첨가하고, 30분 동안 차광시켜 반응하는 것을 3회 반복하였다. 반응이 종결되면 PD-10 Desalting Column (GE healthcare, 17-0851-01)을 사용하여 Desalting을 진행하고, 3.5mL의 Maleimide activated scFv를 수득하였다. 여기에 PBS buffer (pH 8.3) 300μL에 2.5mg Cys-G5-H4K (서열번호 60), Cys-G5-H4P (서열번호 61), Cys-G5-LMWP (서열번호 62), Cys-G5-hBD3-3 (서열번호 63), Cys-G5S2G5-H4K (서열번호 64), Cys-G5S2G5-H4P (서열번호 65), Cys-G5S2G5-LMWP (서열번호 66), Cys-G5S2G5-hBD3-3 (서열번호 67) 용액을 각각 혼합하고, pH 7.0~7.5으로 조정하였다. 차광 후 4℃에서 혼합하면서 overnight 반응시켰다. FPLC (Akta Pure, GE healthcare)로 heparin column (HiTrap, GE Healthcare)을 사용하여 암세포 투과능을 가진 펩타이드가 결합된 scFv를 정제하였다.
도 4는 화학적 결합방법으로 제조된 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 또는 단일가닥 가변 단편의 SDS-PAGE와 western blot 이다.
서열번호 1의 KRAS 돌연변이 scFv의 분자량이 약 30kDa이고, 암세포 투과능 펩타이드가 결홥된 KRAS 돌연변이 scFv의 분자량은 약 32kDa 으로 측정되었다. 또한, western blot에서 KRAS antibody와 결합되어 나온 밴드의 분자량 역시 서열번호 1의 scFv의 경우, 30kDa에서, 암세포 투과능 펩타이드가 결합된 경우 약 32kDa에서 측정되어, scFv에 펩타이드가 결합되어 있음을 확인하였다.
실시예 2-3: KRAS 돌연변이 scFv의 C 말단 부분에 암세포 투과능 펩타이드의 화학결합 및 정제
서열번호 3의 KRAS 돌연변이 scFv를 20 molar equivalents tris(2-carboxyethyl)phosphine (TCEP)를 상온에서 3 시간 동안 반응시켜 Free thiol기를 형성시켰다. KRAS 돌연변이 scFv 용액에 100 molar equivalents 5,50-dithiobis-(2-nitrobenzoic acid) (DTNB)를 가하여 상온에서 1시간 동안 반응시켜, free thiol기에 결합시켰다. KRAS 돌연변이 scFv와 결합하지 않은 과량의 DTNB는 FPLC (Akta Pure, GE healthcare)로 heparin column (HiTrap, GE Healthcare)을 사용하여 제거하였다. 그 후, KRAS 돌연변이 scFv-DTNB conjugates은 10 molar equivalents의 암세포 투과능 펩타이드 (서열번호 60-67)와 상온에서 1시간 동안 반응시켰다. FPLC (Akta Pure, GE healthcare)로 heparin column (HiTrap, GE Healthcare)을 사용하여 암세포 투과능 펩타이드가 결합된 KRAS 돌연변이 scFv를 정제하였다.
화학적 결합법에 의해 생성된 암세포 투과 기능성 펩타이드와 KRAS 돌연변이 scFv가 연결된 융합 단백질의 아미노산 서열은 표 7과 같다.
Figure PCTKR2021010749-appb-img-000023
Figure PCTKR2021010749-appb-img-000024
Figure PCTKR2021010749-appb-img-000025
Figure PCTKR2021010749-appb-img-000026
Figure PCTKR2021010749-appb-img-000027
실시예 3: KRAS mutant 발현정도가 다른 암세포에 대한 억제능 확인
본 발명에 따른 암세포 투과능의 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv의 암세포 특이적 증식 억제 정도를 확인하기 위하여, 96-웰(well)에 H358 (cancer cell expressing KRAS mutant), human dermal fibroblast (normal cell)을 5x103 cell/well로 분주한 후, RPMI medium 1640 (Gibco) 배지로 24시간 배양하였다. 각 scFv를 (서열번호 1, 28-35)는 5 μM의 농도로 처리하였다. 세포 독성은 CCK-8(Cell Counting Kit-8, CK04, Dojindo Lab.)을 이용하여 측정하였다. 각각의 융합체 처리 후 48시간 뒤에 배지를 제거하고, 새로운 RPMI medium 1640에 CCK-8 용액을 100 ㎕씩 분주하였다. 1시간 30분 뒤에 450 ㎚에서 흡광도를 측정하였다.
그 결과, 도 5에서와 같이 서열번호 28-31, 68, 69는 H358 세포에서 100-500nM의 IC50 (세포의 50%가 사멸하는 농도)를 보였으며, 서열번호 1은 농도가 5 μM에서도 IC50을 산출할 수 없었다. 이는 서열번호 1은 암세포를 투과하지 못하여 암세포 사멸의 효과를 보이지 않았으나, 서열번호 28-31, 68, 69는 암세포 투과 기능성이 있기 때문에 세포독성을 보인 것으로 사료된다. 정상세포인 human dermal fibroblast에서는 모든 농도에서 80% 이상의 세포생존률을 보였다. 이는 암세포 투과 기능성 KRAS 돌연변이를 타겟하는 scFv 융합체가 암세포 특이적으로 세포독성이 있는 것을 뜻한다.
실시예 4: 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv에 의한 active KRAS (mutant KRAS)의 발현 저해능 평가
H358 세포 (ATCC, CRL-5807) 1.0 x 106 개를 시딩하고, 24시간 동안 RPMI Medium 1640(1X) 배지 (Gibco, 22400-089) 에서 배양한 후, 다시 16 시간 동안 starvation 시켰다. EGF (epithelial growth factor, R&D Systems. 236-EG) 50ng/mL을 10분 처리하고, 각 variant를 1 μM씩 처리하였다. 37도에서 24시간 배양하였다. 24시간 경과 후에 배지를 제거하고, DPBS로 wash한 후, 세포를 수득하여, 1500 rpm으로 3분 동안 원심분리하였다. 1x 용해 버퍼 (1X Lysis/Binding/Wach buffer, 11524S)를 150 μL 가하고, 혼합 후 얼음에서 5분간 반응하였다. 16,000 rpm, 4도, 15분 동안 원심분리하여 상층액을 분리하였다. BCA assay 로 단백질 농도를 측정 (Thermo scientific, 23227)하였다. 1x 용해 버퍼 400 μL 로 wash 하고, 원심분리 6000 xg, 15초로 2회 진행하였다.
Mutant KRAS를 분리하기 위해, Active GTPase Kit (Cell signaling, 11860S)를 사용하여 GST-Raf1-RBD 80 μg 을 넣고 500 μg 단백질을 스핀컵에 분주하였다. 4도에 1시간 반응하고, 6000 xg, 15초 원심분리 후, 새 튜브에 컬럼을 옮기고, 1x 용해 버퍼 400 μL를 가하였다. 6000 xg, 15초 원심분리 후, 새 튜브에 컬럼을 옮기고, 2x SDS buffer(5X SDS Sample loading dye 200ul, Water 300ul 혼합) 50 μL 분주 후 2분 반응하였다. 6000 xg, 2분 원심분리 후, 100도에 7분 가열하였다. 11% SDS-PAGE로 단백질 (단백질 loading volume 20ul/lane)을 전기영동으로 분리하고, nitrocellulose membrane에 transfer 하였다. KRAS의 하위 신호인 ERK1/2 를 측정하기 위해, 단백질은 30 μg 씩 11% SDS-PAGE로 전기영동하고, nitrocellulose membrane에 transfer 하였다. T-TBS에 녹인 5% skim milk로 1시간 블록킹하고, 1차 항체를 T-TBS에 1:1000으로 희석하여 4℃에서 inverting하면서 overnight 반응시켰다. T-TBS로 10분간 3번씩 세척하고, 2차 항체를 T-TBS에 1:3000으로 희석하여 상온에서 inverting하면서 1시간 동안 반응시켰다. T-TBS로 10분간 3번씩 세척한 후, ECL substrate (Thermo, 34580)로 화학발광을 하여 Amersham Imager 680 (GE)로 확인하였다. 사용된 항체의 정보는 아래 표 8과 같다.
Figure PCTKR2021010749-appb-img-000028
서열번호 20-23은 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv와 세포 투과 기능성 펩타이드 사이의 링커가 GGGGS이고, 서열번호 90-93은 링커가 GGGGSGGGGSGGGGS 이다.
그 결과, 도 6에서와 같이, 서열번호 20-23 모두 EGF만 처리하였을 때보다, active KRAS가 감소하였다. 또한, KRAS의 하위신호인 pERK1/2도 서열번호 20-23에 의해 감소한 것을 알 수 있었다.
도 7에서와 같이, 서열번호 90-93 모두 EGF만 처리하였을 때보다, active KRAS가 감소하였다. 또한, KRAS의 하위신호인 pERK1/2은 서열번호 91, 92에 의해 감소한 것을 알 수 있었다.
실시예 5: 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv의 세포 투과능 평가
암세포 투과능을 시험하기 위해, H358 세포를 1X105으로 분주하고, 48시간 후에 서열번호 20-23를 각각 500nM로 가하고, 30분간 배양하였다. 4% paraformaldehyde로 고정하고, 0.1% Triton-X100으로 10분간 permeabilization한 후, 2% BSA로 블록킹하였다. 세포 내에 있는 KRAS는 anti-RAS antibody (Origene, cst53270)으로 1:1000의 비율로 반응하고, anti-Rabbit Alexa Fluor 488 (Invitrogen, A27034)로 1:2000으로 2차 반응하였다. 서열번호 20-23은 V5-Tag antibody (Origene, cst 13202)로 1:1000의 비율로 반응시키고, anti-mouse Alexa Fluor 555 (Invitrogene, A28180)로 1:1000의 비율로 반응시켰다. 세포핵은 0.1㎍/mL DAPI(Thermofisher, R37606)로 염색하였다. 세포 내에 투과된 서열번호 20-23을 공초점시차주사 현미경으로 측정하였다.
그 결과, 도 8에서와 같이, 서열번호 2를 제외하고, 서열번호 20-23은 모두 세포 안으로 투과된 것을 알 수 있었다. 또한, 암세포 내에 존재하는 KRAS와 co-localization 하고 있는 것을 알 수 있었다. 따라서, 서열번호 20-23은 세포 안으로 투과되어 세포 내에 존재하는 KRAS에 결합할 수 있다는 것을 알 수 있었다.
실시예 6: 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv의 Tumor xenograft 동물 모델에서 암조직으로 분포 평가
5-6주령의 암컷 Balb/c nude mouse(5-6 weeks old; Japan SLC Inc, Hamamatsu, Japan) 의 대퇴부에 H358 세포 1X106와 Matrigel (BD Bioscience, San Diego, CA, USA) 100uL에 혼합한 것을 이식하고, 100mm3 크기의 종양이 형성되게 하였다. Cy5.5로 표지한 서열번호 2와 서열번호 23, Cy5.5을 마우스 당 20μg 용량으로 각각 복강에 주사하고, 24시간 후에 각 주요 장기와 암조직에 분포하는 형광을 관찰하였다.
그 결과, 도 9에서와 같이 서열번호 23은 주사 24시간 후에 암조직에 주로 분포하고, 일부는 신장으로 배설되는 것을 알 수 있었다.
또한, 도 10에서와 같이, 형광 강도를 측정하였을 때, 서열번호 23은 암조직에서 형광 강도가 가장 높은 것을 알 수 있었다.
실시예 7: 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv의 Tumor xenograft 동물 모델에서 종양억제 평가
5-6주령의 암컷 Balb/c nude mouse(5-6 weeks old; Japan SLC Inc, Hamamatsu, Japan) 의 대퇴부에 H358 세포 1X106와 Matrigel (BD Bioscience, San Diego, CA, USA) 100uL에 혼합한 것을 이식하고, 100mm3 크기의 종양이 형성되게 하였다. 서열번호 2, 서열번호 23을 1mg/kg의 용량으로 각각 복강에 일주일에 2회씩 30일간 주사하였다. 3~4일 간격으로 종양의 크기를 버니어 캘리퍼로 측정하였고, 30일째에 마우스를 희생시켜 종양을 적출하여 적출된 종양을 사진 관찰하였다.
그 결과, 도 11 및 도 12에서와 같이 서열번호 2는 종양억제 효과가 없었으나, 서열번호 23은 종양억제 효과가 우수하였다. 이는 암조직으로 투과된 서열번호 23이 종양세포의 증식을 효과적으로 억제하는 것을 증명해준다.
실시예 8: 화학적 결합법에 의해 제조된 서열번호 80-83의 융합 단백질의 효과
실시예 8-1: 암세포 투과능의 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv에 의한 active KRAS (mutant KRAS)의 발현 저해능 평가
H358 세포 (ATCC, CRL-5807) 1.0 x 106 개를 시딩하고, 24시간 동안 RPMI Medium 1640(1X) 배지 (Gibco, 22400-089) 에서 배양한 후, 다시 16 시간 동안 starvation 시켰다. EGF (epithelial growth factor, R&D Systems. 236-EG) 50ng/mL을 10분 처리하고, 각 variant를 1 μM씩 처리하였다. 37도에서 24시간 배양하였다. 24시간 경과 후에 배지를 제거하고, DPBS로 wash한 후, 세포를 수득하여, 1500 rpm으로 3분 동안 원심분리하였다. 1x 용해 버퍼 (1X Lysis/Binding/Wach buffer, 11524S)를 150 μL 가하고, 혼합 후 얼음에서 5분간 반응하였다. 16,000 rpm, 4도, 15분 동안 원심분리하여 상층액을 분리하였다. BCA assay 로 단백질 농도를 측정 (Thermo scientific, 23227)하였다. 1x 용해 버퍼 400 μL 로 wash 하고, 원심분리 6000 xg, 15초로 2회 진행하였다.
Mutant KRAS를 분리하기 위해, Active GTPase Kit (Cell signaling, 11860S)를 사용하여 GST-Raf1-RBD 80 μg 을 넣고 500 μg 단백질을 스핀컵에 분주하였다. 4도에 1시간 반응하고, 6000 xg, 15초 원심분리후, 새 튜브에 컬럼을 옮기고, 1x 용해 버퍼 400 μL를 가하였다. 6000 xg, 15초 원심분리 후, 새 튜브에 컬럼을 옮기고, 2x SDS buffer(5X SDS Sample loading dye 200ul, Water 300ul 혼합) 50 μL 분주 후 2분 반응하였다. 6000 xg, 2분 원심분리 후, 100도에 7분 가열하였다. 11% SDS-PAGE로 단백질 (단백질 loading volume 20ul/lane)을 전기영동으로 분리하고, nitrocellulose membrane에 transfer 하였다. KRAS의 하위 신호인 ERK1/2 를 측정하기 위해, 단백질은 30 μg 씩 11% SDS-PAGE로 전기영동하고, nitrocellulose membrane에 transfer 하였다. T-TBS에 녹인 5% skim milk로 1시간 블록킹하고, 1차 항체를 T-TBS에 1:1000으로 희석하여 4℃에서 inverting하면서 overnight 반응시켰다. T-TBS로 10분간 3번씩 세척하고, 2차 항체를 T-TBS에 1:3000으로 희석하여 상온에서 inverting하면서 1시간 동안 반응시켰다. T-TBS로 10분간 3번씩 세척한 후, ECL substrate (Thermo, 34580)로 화학발광을 하여 Amersham Imager 680 (GE)로 확인하였다. 사용된 항체의 정보는 아래 표와 같다.
Figure PCTKR2021010749-appb-img-000029
서열번호 80-83은 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv에 세포투과기능의 펩타이드를 화학적 결합으로 연결한 것이다. 그 결과, 도 13에서와 같이, 서열번호 80-83 모두 EGF만 처리하였을 때보다, active KRAS가 감소하였다. 또한, KRAS의 하위신호인 pERK1/2도 서열번호 80-83에 의해 감소한 것을 알 수 있었다.
실시예 8-2: 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv의 KRAS mutant 발현정도가 다른 암세포에 대한 억제능 확인
본 발명에 따른 암세포 투과능의 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv의 암세포 특이적 증식 억제 정도를 확인하기 위하여, 96-웰(well)에 H358 (cancer cell expressing KRAS mutant), human dermal fibroblast (normal cell)을 5x103 cell/well로 분주한 후, RPMI medium 1640 (Gibco) 배지로 24시간 배양하였다. 각 scFv를 (서열번호 3, 80-83)는 0에서 5 μM의 농도로 처리하였다. 세포 독성은 CCK-8(Cell Counting Kit-8, CK04, Dojindo Lab.)을 이용하여 측정하였다. 각각의 융합체 처리 후 48시간 뒤에 배지를 제거하고, 새로운 RPMI medium 1640에 CCK-8 용액을 100 ㎕씩 분주하였다. 1시간 30분 뒤에 450 ㎚에서 흡광도를 측정하였다.
그 결과, 도 14에서와 같이 서열번호 80-83은 H358 세포에서 313-1250nM의 IC50 (세포의 50%가 사멸하는 농도)를 보였으며, 서열번호 3은 농도가 5 μM에서도 IC50을 산출할 수 없었다. 이는 서열번호 3은 암세포를 투과하지 못하여 암세포 사멸의 효과를 보이지 않았으나, 서열번호 80-83는 암세포 투과 기능성이 있기 때문에 세포독성을 보인 것을 알 수 있다. 정상세포인 human dermal fibroblast에서는 모든 농도에서 80% 이상의 세포생존률을 보였다. 이는 암세포 투과 기능성 KRAS 돌연변이를 타겟하는 scFv 융합체가 암세포 특이적으로 세포독성이 있는 것을 뜻한다.
실시예 8-3: 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv의 세포투과능 평가
암세포투과능을 시험하기 위해, H358 세포를 1X105으로 분주하고, 48시간 후에 서열번호 80-83를 각각 500nM로 가하고, 30분간 배양하였다. 4% paraformaldehyde로 고정하고, 0.1% Triton-X100으로 10분간 permeabilization한 후, 2% BSA로 블록킹하였다. 세포내에 있는 KRAS는 anti-RAS antibody (Origene, cst53270)으로 1:1000의 비율로 반응하고, anti-Rabbit Alexa Fluor 488 (Invitrogen, A27034)로 1:2000으로 2차 반응하였다. 서열번호 80-83은 V5-Tag antibody (Origene, cst 13202)로 1:1000의 비율로 반응시키고, anti-mouse Alexa Fluor 555 (Invitrogene, A28180)로 1:1000의 비율로 반응시켰다. 세포핵은 0.1㎍/mL DAPI(Thermofisher, R37606)로 염색하였다. 세포내에 투과된 서열번호 80-83을 공초점시차주사 현미경으로 측정하였다.
그 결과, 도 15에서와 같이, 서열번호 3를 제외하고, 서열번호 80-83은 모두 세포 안으로 투과된 것을 알 수 있었다. 또한, 암세포내에 존재하는 KRAS와 co-localization 하고 있는 것을 알 수 있었다. 따라서, 서열번호 80-83은 세포안으로 투과되어 세포내에 존재하는 KRAS에 결합할 수 있다는 것을 알 수 있었다.
실시예 8-4: 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv의 Tumor xenograft 동물 모델에서 암조직으로 분포 평가
5-6주령의 암컷 Balb/c nude mouse(5-6 weeks old; Japan SLC Inc, Hamamatsu, Japan) 의 대퇴부에 H358 세포 1X106와 Matrigel (BD Bioscience, San Diego, CA, USA) 100uL에 혼합한 것을 이식하고, 100mm3 크기의 종양이 형성되게 하였다. Cy5.5로 표지한 서열번호 3와 서열번호 83, Cy5.5을 마우스 당 20μg 용량으로 각각 복강에 주사하고, 24시간 후에 각 주요 장기와 암조직에 분포하는 형광을 관찰하였다.
그 결과, 도 16에서와 같이 서열번호 83은 주사 24시간 후에 암조직에 주로 분포하고, 일부는 신장으로 배설되는 것을 알 수 있었다.
또한, 도 17에서와 같이, 형광 강도를 측정하였을 때, 서열번호 83은 암조직에서 형광 강도가 가장 높은 것을 알 수 있었다.
실시예 8-5: 암세포 투과능을 가진 KRAS 돌연변이를 타겟으로 하는 항체 및 scFv의 Tumor xenograft 동물 모델에서 종양억제 평가
5-6주령의 암컷 Balb/c nude mouse(5-6 weeks old; Japan SLC Inc, Hamamatsu, Japan) 의 대퇴부에 H358 세포 1X106와 Matrigel (BD Bioscience, San Diego, CA, USA) 100uL에 혼합한 것을 이식하고, 100mm3 크기의 종양이 형성되게 하였다. 서열번호 3, 서열번호 83을 1mg/kg의 용량으로 각각 복강에 일주일에 2회씩 30일간 주사하였다. 3~4일 간격으로 종양의 크기를 버니어 캘리퍼로 측정하였고, 30일째에 마우스를 희생시켜 종양을 적출하여 적출된 종양을 사진 관찰하였다.
그 결과, 도 18 및 도 19에서와 같이 서열번호 3은 종양억제 효과가 없었으나, 서열번호 83은 종양억제 효과가 우수하였다. 이는 암조직으로 투과된 서열번호 83이 종양세포의 증식을 효과적으로 억제하는 것을 증명해준다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에서는 종양 발병에 중요한 요인으로 작용하는 세포내 종양 유발 단백질 또는 이들의 돌연변이에 결합하여 그 기능을 저해하는 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편을 활용하되, 이의 암세포 접근성을 강화시키고자 암세포 투과 기능성 펩타이드를 연결하였다. 이와 같이 제작된 융합 단백질은 효과적으로 종양 세포에 침투하여 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편의 항종양 또는 항암 효과를 극대화할 수 있는 장점이 있다.
전자파일 첨부하였음.

Claims (16)

  1. (i) 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 (ii) 암세포 투과 기능성 펩타이드가 연결되어 있는 융합 단백질.
  2. 제1항에 있어서, 상기 세포내 종양 유발 단백질 또는 종양 유발 돌연변이 단백질은 KRAS 또는 안드로겐 수용체인, 융합 단백질.
  3. 제1항에 있어서, 상기 항체 또는 이의 단일가닥 가변 단편은 서열번호 1 내지 서열번호 3으로 구성된 군에서 선택되는 융합 단백질.
  4. 제1항에 있어서, 상기 암세포 투과 기능성 펩타이드는 서열번호 86 내지 서열번호 89로 구성된 군에서 선택되는 융합 단백질.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 암세포 투과 기능성 펩타이드는 상기 항체 또는 이의 단일가닥 가변 단편의 N-말단 또는 C-말단에 링커를 통해 연결된 것을 특징으로 하는 융합 단백질.
  6. 제5항에 있어서, 상기 링커는 GGGGS 또는 GGGGSGGGGSGGGGS인 것을 특징으로 하는 융합 단백질.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 융합 단백질은 서열번호 1 내지 서열번호 3으로 구성된 군에서 선택되는 어느 하나의 단일가닥 가변 단편의 라이신 또는 시스테인 잔기에 서열번호 86 내지 서열번호 89로 구성된 군에서 선택되는 어느 하나의 암세포 투과 기능성 펩타이드가 링커를 통해 연결된 것을 특징으로 하는 융합 단백질.
  8. 제7항에 있어서, 상기 링커는 CGGGGG 또는 CGGGGGSSGGGGG인 것을 특징으로 하는 융합 단백질.
  9. 제1항에 있어서, 상기 융합 단백질은 서열번호 12 내지 서열번호 59, 서열번호 68 내지 서열번호 83 및 서열번호 90 내지 서열번호 93 중 어느 하나의 아미노산 서열로 표시되는 것을 특징으로 하는 융합 단백질.
  10. 제1항의 융합 단백질을 암호화하는 핵산.
  11. 제10항의 핵산이 도입되어 있는 재조합 벡터.
  12. 제11항의 재조합 벡터가 도입되어 있는 재조합 세포.
  13. 제12항에 있어서, 상기 재조합 세포는 대장균 또는 포유동물 세포인 것을 특징으로 하는 재조합 세포.
  14. 다음 단계를 포함하는 제1항의 융합 단백질을 제조하는 방법:
    (a) 제12항의 재조합 세포를 배양하여 제1항의 융합 단백질을 발현시키는 단계; 및
    (b) 상기 발현된 융합 단백질을 회수하는 단계.
  15. 제1항 내지 제9항 중 어느 한 항의 융합 단백질을 유효성분으로 포함하는 종양 치료용 약학적 조성물.
  16. 제15항에 있어서, 상기 종양은 비소세포폐암, 대장암, 췌장암, 방광암, 신장암, 갑상선암, 유방암, 결장암, 간암, 뇌종양, 피부암, 흑색종, 대장암, 전립선 암및 혈액암으로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 종양 치료용 약학적 조성물.
PCT/KR2021/010749 2020-08-13 2021-08-12 세포내 종양 유발 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 암세포 투과성 펩타이드의 융합 단백질 및 이의 용도 WO2022035262A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/006,387 US20230279143A1 (en) 2020-08-13 2021-08-12 Protein comprising antibody for targeting oncogenic protein or single chain fragment variable thereof and cancer cell penetrating peptide, and use of the same
CN202180055334.7A CN116134138A (zh) 2020-08-13 2021-08-12 靶向细胞内诱瘤蛋白的抗体、或其单链可变片段与癌细胞穿透肽的融合蛋白、及其用途
EP21856268.4A EP4198058A1 (en) 2020-08-13 2021-08-12 Antibody targeting intracellular tumor-inducing protein, or fusion protein of single strand variable fragment thereof and cancer-cell-penetrating peptide, and use thereof
JP2023533207A JP2023537163A (ja) 2020-08-13 2021-08-12 細胞内の腫瘍誘発タンパク質をターゲットとする抗体又はその単一鎖可変断片と癌細胞透過性ペプチドの融合タンパク質及びその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0101760 2020-08-13
KR20200101760 2020-08-13

Publications (1)

Publication Number Publication Date
WO2022035262A1 true WO2022035262A1 (ko) 2022-02-17

Family

ID=80247205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010749 WO2022035262A1 (ko) 2020-08-13 2021-08-12 세포내 종양 유발 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 암세포 투과성 펩타이드의 융합 단백질 및 이의 용도

Country Status (6)

Country Link
US (1) US20230279143A1 (ko)
EP (1) EP4198058A1 (ko)
JP (1) JP2023537163A (ko)
KR (1) KR20220021430A (ko)
CN (1) CN116134138A (ko)
WO (1) WO2022035262A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140039347A (ko) * 2012-09-18 2014-04-02 서울대학교산학협력단 종양선택적 투과기능성을 가지는 펩타이드 및 그 용도
KR20150034746A (ko) * 2012-07-11 2015-04-03 주식회사 젬백스앤카엘 세포 투과성 펩티드, 그를 포함한 컨쥬게이트 및 그를 포함한 조성물
KR20160064726A (ko) * 2014-11-28 2016-06-08 서울대학교산학협력단 세포 투과 펩타이드-항암제 접합체 및 이를 포함하는 암 치료용 조성물
WO2019126240A1 (en) * 2017-12-19 2019-06-27 Blaze Bioscience, Inc. Tumor homing and cell penetrating peptide-immuno-oncology agent complexes and methods of use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150034746A (ko) * 2012-07-11 2015-04-03 주식회사 젬백스앤카엘 세포 투과성 펩티드, 그를 포함한 컨쥬게이트 및 그를 포함한 조성물
KR20140039347A (ko) * 2012-09-18 2014-04-02 서울대학교산학협력단 종양선택적 투과기능성을 가지는 펩타이드 및 그 용도
KR20160064726A (ko) * 2014-11-28 2016-06-08 서울대학교산학협력단 세포 투과 펩타이드-항암제 접합체 및 이를 포함하는 암 치료용 조성물
WO2019126240A1 (en) * 2017-12-19 2019-06-27 Blaze Bioscience, Inc. Tumor homing and cell penetrating peptide-immuno-oncology agent complexes and methods of use thereof

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
BAYOUDH LAFRIT MDALDOUL OZARRAD MBOUSSEN H: "Trastuzumab (herceptin) for the medical treatment of breast cancer", TUNIS MED, vol. 90, no. 1, January 2012 (2012-01-01), pages 6 - 12
BOUDADI KANTONARAKIS ES: "Resistance to novel antiandrogen therapies in metastatic castration-resistant prostate cancer", CLIN MED INSIGHTS ONCOL, vol. 10, 2016, pages 1 - 9
CHEN CDWELSBIE DSTRAN CBAEK SHCHEN RVESSELLA R ET AL.: "Molecular determinants of resistance to antiandrogen therapy", NAT MED, vol. 10, 2004, pages 33 - 9, XP002452801, DOI: 10.1038/nm972
COX ADFESIK SWKIMMELMAN ACLUO JDER CJ: "Drugging the undruggable RAS: mission possible?", NAT REV DRUG DISCOV, vol. 13, 2014, pages 828 - 51, XP055229151, DOI: 10.1038/nrd4389
DEMAREST SJGLASER SM: "Antibody therapeutics, antibody engineering, and the merits of protein stability", CURR OPIN DRUG DISCOV DEVEL, vol. 11, no. 5, 2008, pages 675 - 687
JEMAL ACLEGG LXWARD ERIES LAWU XJAMISON PM ET AL.: "Annual report to the nation on the status of cancer, 1975-2001, with a special feature regarding survival", CANCER, vol. 101, 2004, pages 3 - 27, XP071126131, DOI: 10.1002/cncr.20288
LARS KOBERCHRISTOPH ZEHEJUERGEN BODE: "Optimized signal peptides for the development of high expressing CHO cell lines", BIOTECHNOLOGY AND BIOENGINEERING, vol. 110, 4 April 2013 (2013-04-04), XP055074908, DOI: 10.1002/bit.24776
LIM, K. J. ET AL.: "A cancer specific cell -penetrating peptide, BR 2, for the efficient delivery of an scFv into cancer cells", PLOS ONE, vol. 8, no. 6, 2013, pages 1 - 11, XP055700393, DOI: 10.1371/journal.pone.0066084 *
OFLAZOGLU EAUDOLY LP: "Evolution of anti-CD20 monoclonal antibody therapeutics in oncology", MABS, vol. 2, no. 1, January 2010 (2010-01-01), pages 14 - 9
PYLAYEVA-GUPTA YGRABOCKA EBAR-SAGI D: "RAS oncogenes: weaving a tumorigenic web", NAT REV CANCER, vol. 11, no. 11, 13 October 2011 (2011-10-13), pages 761 - 74, XP055249072, DOI: 10.1038/nrc3106
RINI BISMALL EJ: "Hormone-refractory prostate cancer", CURR TREAT OPT ONCOL, vol. 3, 2002, pages 437 - 46
S.I. CHOI ET AL.: "Protein solubility and folding enhancement by interaction with RNA", PLOS ONE, vol. 3, 2008, pages e2677
SELLA AYAROM NZISMAN AKOVEL S: "Paclitaxel, estramustine and carboplatin combination chemotherapy after initial docetaxel-based chemotherapy in castration resistant prostate cancer", ONCOLOGY, vol. 76, 2009, pages 442
YAGODA APETRYLAK D: "Cytotoxic chemotherapy for advanced hormone-resistant prostate cancer", CANCER, vol. 71, 1993, pages 1098
ZHANG JCHEN YHLU Q: "Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy", FUTURE ONCOL, vol. 6, no. 4, April 2010 (2010-04-01), pages 587 - 603
ZHANG LJOHNSON MLE KHSATO MILAGAN RIYER M ET AL.: "Interrogating androgen receptor function in recurrent prostate cancer", CANCER RES, vol. 63, 2003, pages 4552 - 60

Also Published As

Publication number Publication date
KR20220021430A (ko) 2022-02-22
CN116134138A (zh) 2023-05-16
US20230279143A1 (en) 2023-09-07
EP4198058A1 (en) 2023-06-21
JP2023537163A (ja) 2023-08-30

Similar Documents

Publication Publication Date Title
KR102455175B1 (ko) 아마니틴 접합체
KR102540419B1 (ko) 글리신아미드 화합물의 제조 방법
KR102674750B1 (ko) 신규한 아마니틴 합성 방법
WO2016080626A2 (en) Prodrugs activated by caspase
WO2015156649A1 (ko) 섬유증 억제 활성을 가지는 펩티드 및 이를 포함하는 조성물
WO2019212324A1 (ko) 멜리틴-기반 세포사멸 유발 펩타이드로 m2 유사 종앙관련 대식세포의 표적화
WO2019004799A1 (ko) Vegf-grab 단백질과 약물의 결합체 및 이의 용도
KR20190038579A (ko) 개선된 물리화학적 특성을 갖는 자기 안정화 링커를 구비한 약물 접합체
WO2019050362A2 (ko) 인간 dlk1에 대한 항체 및 이의 용도
WO2018174544A2 (ko) Muc1에 특이적으로 결합하는 항체 및 그의 용도
WO2014025199A2 (ko) 스테필로코칼 엔테로톡신 유래의 초항원 변이체 및 이에 표적 특이적 폴리펩타이드가 연결된 융합단백질 및 그 용도
WO2019212253A1 (ko) C-met에 특이적으로 결합하는 항체 및 그의 용도
WO2022035262A1 (ko) 세포내 종양 유발 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 암세포 투과성 펩타이드의 융합 단백질 및 이의 용도
WO2021201654A1 (ko) Glp-2 유도체 또는 이의 지속형 결합체를 포함하는 방사선요법, 화학요법, 또는 이들의 조합으로 유발된 점막염의 예방 또는 치료용 약학적 조성물
WO2017171373A2 (ko) Egfr 표적 제제에 대한 저항성을 억제하기 위한 조성물
WO2019132579A2 (ko) 세포질 침투 항체에 융합된 rna 분해효소를 포함하는 면역독소
KR20230133331A (ko) 면역조절 항체-약물 컨쥬게이트
WO2021086159A1 (ko) 면역 관문 분자와 결합 가능한 분자가 융합된 단백질 및 이의 용도
WO2018124851A1 (ko) L1cam 단백질에 특이적으로 결합하는 항체; 및 피리미딘 유사체 및/또는 플라틴계 항암제를 포함하는 암의 예방 또는 치료용 약학적 조성물
WO2021086158A1 (ko) 질환 항원이 융합된 단백질 및 이의 용도
WO2023172036A1 (ko) 두경부암 치료를 위한 삼중 복합약물 투여요법
WO2023249425A1 (ko) 항-cd73 항체 및 il-2를 포함하는 융합단백질 및 이의 용도
WO2024043643A1 (ko) Il2 변이체 및 이를 포함하는 단백질 복합체
WO2023195802A1 (ko) 신규 펩타이드 기반 면역항암제
WO2023121254A1 (ko) 인터류킨-2 융합단백질, 이의 제조방법 및 이를 포함하는 약학 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023533207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021856268

Country of ref document: EP

Effective date: 20230313