WO2021086159A1 - 면역 관문 분자와 결합 가능한 분자가 융합된 단백질 및 이의 용도 - Google Patents

면역 관문 분자와 결합 가능한 분자가 융합된 단백질 및 이의 용도 Download PDF

Info

Publication number
WO2021086159A1
WO2021086159A1 PCT/KR2020/015165 KR2020015165W WO2021086159A1 WO 2021086159 A1 WO2021086159 A1 WO 2021086159A1 KR 2020015165 W KR2020015165 W KR 2020015165W WO 2021086159 A1 WO2021086159 A1 WO 2021086159A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
protein
huhf
carcinoma
binding
Prior art date
Application number
PCT/KR2020/015165
Other languages
English (en)
French (fr)
Inventor
이지원
이보람
윤철주
Original Assignee
(주)셀레메디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)셀레메디 filed Critical (주)셀레메디
Priority to US17/773,266 priority Critical patent/US20240148898A1/en
Priority to JP2022525447A priority patent/JP2023500293A/ja
Priority to EP20880696.8A priority patent/EP4053153A4/en
Priority claimed from KR1020200144637A external-priority patent/KR20210053252A/ko
Publication of WO2021086159A1 publication Critical patent/WO2021086159A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70521CD28, CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70532B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/79Transferrins, e.g. lactoferrins, ovotransferrins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to a protein in which a molecule capable of binding to an immune checkpoint molecule is fused and a use thereof.
  • cancer is very difficult and complex treatment is required, unlike other disease treatment.
  • the methods used for cancer treatment include surgery, radiation therapy, and chemotherapy. If the cancer does not metastasize to other areas and develops locally, cancer can be treated through cancer removal surgery. However, since cancer metastasis occurs in more than 70% of cancer patients, adjuvant therapy must be combined.
  • auxiliary treatment regimens radiation therapy that kills cancer cells using high energy radiation is performed, and the radiation therapy inhibits the proliferation of cancer cells when irradiating the cancer cells with radiation, so that new cancer cells cannot be generated. Prevents further division.
  • this method has a problem that there is a side effect of affecting not only cancer cells but also normal cells.
  • Chemotherapy is an adjuvant therapy in which a drug is used to kill cancer cells after surgery, and is performed for the purpose of killing invisible cancer cells.
  • the chemotherapy has a problem that side effects such as vomiting, diarrhea, and hair loss follow.
  • Immunotherapy methods have recently emerged to minimize these side effects.
  • Immunotherapy is a method of treating cancer using the patient's immune response, and can even prevent cancer.
  • Cancer immunotherapy is a treatment method that activates cancer-specific immune cells by administering an antigen that causes tumor formation, as in the principle of a vaccine, and then causes the activated immune cells to specifically attack the cancer in the body.
  • the inactivated immune cells are activated as cancer-specific memory immune cells, so that when cancer occurs, cancer cells can be specifically attacked.
  • TAA tumor-associated antigen
  • TSA Tumor-specific antigen
  • TSA tumor-specific antigen
  • neo-antigens which are found in various tumor types such as lung cancer and kidney cancer, but mainly found in melanoma, are antigens that are newly generated by potential gene activity of individuals with cancer or mutations in the DNA part. This antigen is very important in producing a'customized cancer vaccine' based on the patient's individual genetic information.
  • Non-Patent Document 1 Polymers are widely used as carriers of these cancer-specific antigens in the body, and when a cancer antigen is immobilized on the surface of the polymer for transport of the cancer-specific antigen in the body, the cancer-specific antigen must be exposed to the particle surface through chemical binding. .
  • Cancer immunotherapy uses the patient's immune system compared to conventional anti-cancer treatment methods, so the side effects are low, the therapeutic effect can be sustained for a long time due to the formation of immune memory, and the effect on general cells is low due to the principle of tumor antigen-specific recognition. It has the advantage of having few side effects.
  • cancer immunotherapy has been receiving explosive attention enough to be selected by Science as Breakthrough of the year 2013.
  • immune checkpoint PD-1 Programmed cell death protein 1
  • PD-L1 PD1 ligand
  • Cancer immunotherapy is likely to be used in clinical settings as a standard treatment for cancer.
  • immune checkpoints PD1/PD-L1 or CTLA4-specific immune activity blocking antibodies cannot fundamentally enhance the activity of immune cells, and are self-generated due to the long residence time in the body and the Fc domain of the antibody. Side effects such as immune diseases occur, and there is also a disadvantage in terms of economics due to the high cost of antibody treatment due to the high consumption amount as well as the high production cost due to antibody production and purification of the animal cell system.
  • An object of the present invention is to provide a novel protein capable of binding to an immune checkpoint molecule.
  • An object of the present invention is to provide a novel protein capable of killing cancer cells by preventing immune checkpoint molecules from inactivating T cells.
  • An object of the present invention is to provide a pharmaceutical composition for the prevention or treatment of cancer comprising the above novel protein.
  • An object of the present invention is to provide a method for treating cancer comprising the above novel protein.
  • the present invention provides a ferritin protein in which a molecule capable of binding to an immune checkpoint molecule is fused to an outer surface.
  • the protein of the present invention may be a spherical protein formed by self-assembly of 24 ferritin monomers in which a molecule capable of binding to the immune checkpoint molecule is fused.
  • the molecule capable of binding to the immune checkpoint molecule may be fused to at least one of adjacent ⁇ -helixes of the ferritin monomer.
  • the molecule capable of binding to the immune checkpoint molecule may be fused to the N-terminus or C-terminus of the ferritin monomer.
  • the molecule capable of binding to the immune checkpoint molecule may be fused to the A-B loop, B-C loop, C-D loop, or D-E loop of the ferritin monomer.
  • a molecule capable of binding to the immune checkpoint molecule may be fused between the N-terminus and A helix of the ferritin monomer or between the E helix and C-terminus.
  • the protein of the present invention may be mutated so as to decrease the binding ability to the human transferrin receptor.
  • At least one of the ferritin monomers constituting it may be one in which amino acids 14, 15, 22, 81 or 83 in the sequence of SEQ ID NO: 1 are substituted with alanine, glycine, valine, or leucine.
  • the ferritin protein of the present invention may have an avidity (K) for a transferrin receptor satisfying the following Equation 1:
  • K [P][T]/[PT]
  • [P] represents the concentration of ferritin protein in equilibrium of the binding reaction between the ferritin protein and the transferrin receptor
  • [T] is the equilibrium.
  • concentration of the transferrin receptor in the state is indicated
  • [PT] indicates the concentration of the complex of the ferritin protein and the transferrin receptor in the equilibrium state).
  • the binding force to the transferrin receptor may be the binding force to the human transferrin receptor.
  • the immune checkpoint molecule is Her-2/neu, VISTA, 4-1BBL, Galectin-9, Adenosine A2a receptor, CD80, CD86, ICOS, ICOSL, BTLA, OX-40L, CD155, BCL2, MYC, PP2A, BRD1, BRD2, BRD3, BRD4, BRDT, CBP, E2F1, MDM2, MDMX, PPP2CA, PPM1D, STAT3, IDH1, PD1, CTLA4, PD-L1, PD-L2, LAG3, TIM3, TIGIT, BTLA, SLAMF7, 4- 1BB, OX-40, ICOS, GITR, ICAM-1, BAFFR, HVEM, LFA-1, LIGHT, NKG2C, SLAMF7, NKp80, LAIR1, 2B4, CD2, CD3, CD16, CD20, CD27, CD28, CD40L, CD48, It may be any one selected from the group consisting of CD52,
  • the molecule capable of binding to the immune checkpoint molecule may be a ligand, an antibody, or a fragment thereof for the immune checkpoint molecule.
  • ferritin may be a human ferritin heavy chain.
  • the ferritin protein of the present invention may be present in a water-soluble fraction of 40% or more in the E. coli production system.
  • the present invention provides a pharmaceutical composition for the treatment or prevention of cancer comprising the ferritin protein of the present invention.
  • the pharmaceutical composition of the present invention is brain cancer, head and neck cancer, bladder cancer, breast cancer, cervical cancer, colon cancer, colorectal cancer, endometrial cancer, esophageal cancer, leukemia, lung cancer, liver cancer, ovarian cancer, pancreatic cancer, prostate cancer, rectal cancer, kidney cancer, stomach cancer, Testicular cancer, uterine cancer, vascular tumor, squamous cell carcinoma, adenocarcinoma, small cell carcinoma, melanoma, glioma, neuroblastoma, sarcoma, laryngeal cancer, parotid carcinoma, biliary tract cancer, thyroid cancer, actinic keratosis, acute lymphocytic leukemia, acute myeloid leukemia, adenocarcinoma Carcinoma, adenoma, glandular squamous cell carcinoma, anal duct cancer, anal cancer, anal rectal cancer, astrocytoma, large vaginal gland carcinoma, basal cell
  • the pharmaceutical composition of the present invention may further include a protein comprising a ferritin monomer fused to a disease antigen epitope is self-assembled, and a binding force (K) to a transferrin receptor satisfies the following equation (4):
  • K [P][T]/[PT]
  • [P] represents the concentration of the protein in equilibrium state of the binding reaction between the protein and the transferrin receptor
  • [T] is the above
  • the concentration of the transferrin receptor in the equilibrium state is indicated
  • [PT] indicates the concentration of the complex of the protein and the transferrin receptor in the equilibrium state).
  • Disease antigen epitopes in the present invention are gp100, MART-1, Melna-A, MAGE-A3, MAGE-C2, Mammaglobin-A, proteinsase-3, mucin-1, HPV E6, LMP2, PSMA, GD2, hTERT, PAP, ERG, NA17, ALK, GM3, EPhA2, NA17-A, TRP-1, TRP-2, NY-ESO-1, CEA, CA 125, AFP, Survivin, AH1, ras, G17DT, MUC1, Her-2/neu , E75, p53, PSA, HCG, PRAME, WT1, URLC10, VEGFR1, VEGFR2, E7, Tyrosinase peptide, B16F10, EL4 or neoantigen (neoantigen).
  • the pharmaceutical composition of the present invention may be for administration of the two kinds of proteins in combination.
  • the proteins of the species may be administered simultaneously, individually or sequentially.
  • 1A shows a schematic diagram of an expression vector for producing the protein of the present invention in which a tumor antigen is expressed
  • B shows the structure of the produced protein.
  • FIG. 2 is a schematic diagram showing the binding site of the tumor antigen and transferrin receptor (TfR) on the surface of the gp100-huHF nanoparticles prepared according to the present invention.
  • TfR tumor antigen and transferrin receptor
  • FIG. 3 shows the TEM image and DLS results of the gp100-huHF protein of the present invention.
  • Figure 4 is a result of measuring the binding ability of the gp100-huHF protein of the present invention and the transferrin receptor (TfR).
  • FIG. 5 is a schematic diagram of an expression vector for preparing an immune checkpoint inhibitor (huHF-PD1 protein) into which a PD1 domain capable of binding to PD-L1 is inserted; structure of the gp100-huHF protein; TEM image of the gp100-huHF protein of the present invention; Diameter distribution diagram of the gp100-huHF protein of the present invention; And huHF-PD1 protein and PD1 ligand (PD-L1), huHF-TPP1 (AB loop, CD loop), and ⁇ PD-L1 HCDR3 (CD loop, C-terminal).
  • huHF-PD1 protein an immune checkpoint inhibitor
  • Figure 6 shows the results of cellular uptake by dendritic cells of the protein of the present invention.
  • 7A is a result of comparing the targeting efficiency of huHF protein and huHF-PD1 protein to cancer cells CT-26 and B16F10 through fluorescence images;
  • 7B is a comparison of the targeting efficiency of huHF protein and huHF- ⁇ PD-L1 HCDR3 (CD loop, C-terminal) to CT-26 cells through fluorescence images;
  • 7C is a comparison of the targeting efficiency of huHF protein, huHF-TPP1, and huHF-smPD1 to CT-26 cells through fluorescence images.
  • 11A is a result of confirming whether the OVA-huHF protein can increase OVA peptide antigen presentation of antigen-presenting cells through flow cytometry (FACS), and B is a result of confirming the expression level of DC maturation marker of the protein.
  • FACS flow cytometry
  • the results of MHC-II, CD80, CD40, and CD86 are from the left in the bar graph of each group of B.
  • FIG. 12 shows a schematic diagram and experimental results of an experimental method for confirming the ability of gp100-huHF protein to inhibit tumor antigens.
  • FIG. 13 shows a schematic diagram and experimental results of an experimental method for confirming the tumor formation inhibitory effect of huHF-PD1 protein in CT26 (colorectal cancer cells) and B16F10 (melanoma cells) in an animal model.
  • CT26 colonal cancer cells
  • B16F10 melanoma cells
  • 15A is a comparison of the T-cell mediated apoptosis efficiency of PD-L1 antibody and huHF-PD1 protein in cancer cells CT26 and B16F10;
  • B is a comparison of the T-cell activity response of PD-L1 antibody and huHF-PD1 protein in cancer cells CT26 and B16F10;
  • C shows T-cell activating responses to tumor antigens, respectively, by combination treatment of AH1-huHF protein, gp100-huHF protein, and huHF-PD1.
  • CT26 colonrectal cancer cells
  • AH1-huHF protein and/or huHF-PD1 protein show the results of suppression of tumor recurrence in CT26 (colorectal cancer cells) according to treatment with AH1-huHF protein and/or huHF-PD1 protein.
  • the results are PBS, AH1-huHF, ⁇ -PD-L1, PD1-huHF, AH1-huHF + ⁇ -PD-L1, AH1-huHF + PD1-huHF.
  • Figure 19 is NA-gp100-huHF
  • Figure 20 is EC-gp100-huHF
  • Figure 21 is D in -gp100-huHF
  • Figure 22 is Ein0gp100-huHF
  • Figure 23 is a vector schematic diagram for each preparation of msmPD1-huHF and its It confirms the production of the protein.
  • 25 is a schedule for evaluating the tumor inhibitory ability of the huHF-PD-L1-TIGIT dual blocker.
  • 26 and 27 are the results of evaluating the tumor suppression ability of the huHF-PD-L1-TIGIT dual blocker.
  • FIG. 30 is a schematic diagram of a vector of huHF- ⁇ PD-L1 HCDR3, and the production and self-assembly of the protein were confirmed.
  • Fig. 31 is a schematic diagram of a vector of huHF- ⁇ PD1 HCDR3, and the production and self-assembly of the protein are confirmed.
  • FIG. 32 is a schematic diagram of a vector of huHF- ⁇ CTLA4 HCDR3, and production and self-assembly of the protein were confirmed.
  • Fig. 33 is a schematic diagram of a vector of huHF- ⁇ TIGIT HCDR3, and production and self-assembly of the protein are confirmed.
  • Fig. 34 is a schematic diagram of a vector of huHF- ⁇ LAG3 HCDR3, and the production and self-assembly of the protein are confirmed.
  • Fig. 35 is a schematic diagram of a vector of huHF- ⁇ TIM3 HCDR3, and production and self-assembly of the protein are confirmed.
  • FIG. 36 is a schematic diagram of a vector of huHF- ⁇ PD-L1- ⁇ TIGIT, and production and self-assembly of the protein were confirmed.
  • the present invention relates to a ferritin protein (protein A) in which a molecule capable of binding to an immune checkpoint molecule is fused to an outer surface.
  • protein A ferritin protein
  • Ferritin may be ferritin derived from humans, animals and microorganisms.
  • Human ferritin is composed of a heavy chain (21 kDa) and a light chain (19 kDa), and exhibits the property of forming spherical nanoparticles through the self-assembly ability of the monomers constituting the ferritin.
  • Ferritin can form a self-assembly having a spherical three-dimensional structure by gathering 24 monomers.
  • the outer diameter is about 12 nm and the inner diameter is about 8 nm.
  • the structure of the ferritin monomer is a form in which five ⁇ -helix structures, namely A helix, B helix, C helix, D helix, and E helix are sequentially linked, and each ⁇ -helix structure, called a loop, is formed. It includes a linking atypical polypeptide moiety.
  • the loop is a region that is not structurally damaged even if a peptide or a small protein antigen is inserted into ferritin.
  • a peptide-ferritin fusion protein monomer in which a peptide such as an epitope is located on a monomer of ferritin can be prepared.
  • the loop connecting the A helix and the B helix is the AB loop
  • the loop connecting the B helix and the C helix is the BC loop
  • the loop connecting the C helix and the D helix is the CD loop
  • the loop connecting the D helix and the E helix is the DE It is called a loop.
  • Ferritin may be a ferritin heavy chain, specifically, a human ferritin heavy chain.
  • the human ferritin heavy chain may be a protein represented by the amino acid sequence of SEQ ID NO: 1 derived from human, and in the present specification, the ferritin may be used interchangeably with'human ferritin heavy chain' or'huHF'.
  • ferritin In ferritin, several of its monomers are self-assembled to form an organized structure or pattern.
  • the ferritin protein of the present invention is a nano-scale particle.
  • 24 ferritin monomers in which a molecule capable of binding to an immune checkpoint molecule is fused can be self-assembled to form a ferritin protein.
  • the ferritin protein (protein A) of the present invention may be spherical.
  • the particle diameter may be 8 to 50 nm. More specifically, it may be 8nm to 50nm, 8nm to 45nm, 8nm to 40nm, 8nm to 35nm, 8nm to 30nm, 8nm to 25nm, 8nm to 20nm, 8nm to 15nm.
  • the ferritin protein (protein A) of the present invention is a fusion of a molecule capable of binding to an immune checkpoint molecule on an outer surface. As long as the molecule capable of binding to the immune checkpoint molecule is fused to the outer surface of the ferritin protein, it is not necessary that the molecule capable of binding to the immune checkpoint molecule is fused to all ferritin monomers constituting the ferritin protein.
  • a molecule capable of binding to an immune checkpoint molecule is fused to self-assemble to form a ferritin protein (protein A)
  • a molecule capable of binding to an immune checkpoint molecule is fused to at least one ferritin monomer out of 24 ferritin monomers. All you need In order to increase the density of molecules that can bind to the immune checkpoint molecule on the outer surface of the ferritin protein, all 24 ferritin monomers can be fused with the immune checkpoint molecule and bindable molecules.
  • Each ferritin monomer constituting the ferritin protein may be fused with one or more molecules capable of binding to an immune checkpoint molecule.
  • Each ferritin monomer constituting the ferritin protein may be fused with a molecule capable of binding to a different immune checkpoint molecule.
  • Each ferritin monomer constituting the ferritin protein may be a fusion of different molecules capable of binding to the same immune checkpoint molecule.
  • the immune checkpoint molecule binds to T cells and inactivates T cells.
  • These immune checkpoint molecules are, for example, Her-2/neu, VISTA, 4-1BBL, Galectin-9, Adenosine A2a receptor, CD80, CD86, ICOS, ICOSL, BTLA, OX-40L, CD155, BCL2, MYC, PP2A, BRD1, BRD2, BRD3, BRD4, BRDT, CBP, E2F1, MDM2, MDMX, PPP2CA, PPM1D, STAT3, IDH1, PD1, CTLA4, PD-L1, PD-L2, LAG3, TIM3, TIGIT, BTLA, SLAMF7, 4- 1BB, OX-40, ICOS, GITR, ICAM-1, BAFFR, HVEM, LFA-1, LIGHT, NKG2C, SLAMF7, NKp80, LAIR1, 2B4, CD2, CD3, CD16, CD20, CD27, CD28, CD40L
  • Molecules capable of binding the immune checkpoint molecule may be a ligand for the immune checkpoint molecule, an antibody, or a fragment thereof.
  • Molecules capable of binding to the immune checkpoint molecule can be fused to any ferritin monomer as long as it can be exposed to the outer surface of the ferritin protein. Molecules capable of binding to the immune checkpoint molecule are fused to a site that does not interfere with the self-assembly of the ferritin monomer.
  • Molecules that can bind to the immune checkpoint molecule are fused inside the ferritin monomer, which can change the structure of the ferritin protein.
  • the internally embedded part can protrude to the outside by the fusion of the immune checkpoint molecule and the binding molecule.
  • the part protruding to the outside among the constituent parts of the ferritin monomer is the immune checkpoint molecule. It can be incorporated into the inside by fusion of a molecule capable of binding with.
  • the molecule capable of binding to the immune checkpoint molecule is fused to a position where the ferritin protein (protein A) decreases the binding ability with the human transferrin receptor or interferes with the binding ability with the human transferrin receptor.
  • ferritin protein protein A
  • Molecules capable of binding to an immune checkpoint molecule are not limited to a specific range of structures, molecular weights, and amino acid lengths.
  • a molecule capable of binding an immune checkpoint molecule may be, for example, a ligand, antibody, or fragment thereof whose amino acid length is 25aa or less. More specifically, amino acids whose length is 25aa or less, 24aa or less, 23aa or less, 22aa or less, 21aa or less, 20aa or less, 19aa or less, 18aa or less, 17aa or less, 16aa or less, 15aa or less, 14aa or less, 13aa or less, 12aa or less, 11aa Hereinafter, it may be 10aa or less, 9aa or less, 8aa or less, 7aa or less, 6aa or less, 5aa or less.
  • the length of the amino acid may be 3aa or more, 4aa or more, 5aa or more, 6aa or more, 7aa or more, 8aa or more, 9aa or more, 10aa or more.
  • the fusion site of the molecule capable of binding to the immune checkpoint molecule is not limited to a specific position, such as between adjacent ⁇ -helixes of ferritin monomers, N-terminus, C-terminus, AB loop, BC loop, CD loop, DE loop, N -It can be fused between the end and A helix, between the E helix and C-end, inside the helix, etc.
  • ferritin protein (protein A) of the present invention is designed to bind to an immune checkpoint molecule, it is preferable that it does not bind well to the transferrin receptor.
  • the ferritin protein of the present invention satisfies the following equation 1 for the transferrin receptor:
  • K [P][T]/[PT]
  • [P] represents the concentration of ferritin protein in equilibrium of the binding reaction between the ferritin protein and the transferrin receptor
  • [T] is the equilibrium.
  • concentration of the transferrin receptor in the state is indicated
  • [PT] indicates the concentration of the complex of the ferritin protein and the transferrin receptor in the equilibrium state).
  • the avidity may be, for example, a binding force to a human transferrin receptor.
  • the K value in Equation 1 is 100nM or more, 110nM or more, 120nM or more, 125nM or more, 125nM or more, 150nM or more, 200nM or more, 210nM or more, 220nM or more, 230nM or more, 240nM or more, 250nM or more, 260nM or more, 270nM or more, 280nM Or more, 290nM or more, 300nM or more, 350nM or more, 400nM or more, 450nM or more, 500nM or more, 550nM or more, 600nM or more, 700nM or more, 800nM or more, 900nM or more, 1000nM or more.
  • the avidity (K) to the transferrin receptor is measured in an equilibrium state of the binding reaction between the ferritin protein (A) of the present invention and the transferrin receptor.
  • concentration of ferritin protein ([P]), the concentration of the transferrin receptor ([T]), and the concentration of the complex of the protein of the present invention and the transferrin receptor ([PT]) in an equilibrium state can be measured by various known methods. .
  • the binding force (K) to the transferrin receptor can be measured according to, for example, a Microscale Thermophoresis (MST) method.
  • MST Microscale Thermophoresis
  • Monolith NT.115 is an MST measuring device.
  • Equation 1 The concentration of Equation 1 may be obtained by utilizing the following Equations 2 and 3.
  • [PT] 1/2 x (([P 0 ]+[A 0 ]+[P][T]/[PT])-(([P 0 ]+[T 0 ]+ ([P][T ]/[PT]) 2 )-4 x [P 0 ] x [T 0 ]) 1/2 )
  • [PT] is the concentration in the parallel state of reaction of the complex of ferritin protein and transferrin receptor
  • P 0 is the initial concentration of ferritin protein
  • T 0 is the initial concentration of transferrin receptor
  • [P] is the reaction parallel of ferritin protein.
  • the concentration in the state, [T] represents the concentration in the parallel state of the reaction of the transferrin receptor, respectively).
  • [PT] is the concentration in the reaction parallel state of the complex of the ferritin protein and the transferrin receptor
  • P 0 is the initial concentration of the ferritin protein
  • X is the ratio of the protein complexed with the transferrin receptor in the ferritin protein
  • the ferritin protein (protein A) of the present invention can fuse an immune checkpoint molecule and a molecule capable of binding to a site involved in binding to the transferrin receptor in order to lower the binding ability to the transferrin receptor.
  • the molecule may be fused so that a molecule capable of binding to an immune checkpoint molecule is located in the B-C loop and A helix portions of the ferritin protein of the present invention.
  • the ferritin protein (protein A) of the present invention may be produced in a microorganism expressing a sequence encoding the protein.
  • microorganisms known in the art may be used without limitation.
  • it may be E. coli, specifically BL21 (DE3), but is not limited thereto.
  • the obtained protein In the case of producing a protein by a microbial system, the obtained protein must be present in a dissolved state in the cytoplasm to facilitate separation/purification. In many cases, the produced protein exists in an aggregated state as an inclusion body.
  • the ferritin protein of the present invention has a high percentage dissolved in the cytoplasm in the microbial production system. It is easy to separate/purify and use.
  • the ferritin protein (protein A) of the present invention can be prepared, for example, in a state in which the water-soluble fraction ratio of the total protein is 40% or more in the E. coli system for producing the same. Specifically, it may be 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more.
  • the upper limit may be, for example, 100%, 99%, 98%, 97%, 96%, and the like.
  • the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the above ferritin protein (protein A). All of the above descriptions of the ferritin protein apply as it is to the ferritin protein as an active ingredient of the pharmaceutical composition of the present application.
  • the pharmaceutical composition of the present invention may contain a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier refers to a carrier or diluent that does not significantly irritate an organism and does not impair the biological activity and properties of an administered component.
  • the pharmaceutically acceptable carrier in the present invention may be used by mixing one component or one or more of these components, including saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and If necessary, other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added, and formulated in the form of an injection suitable for injection into tissues or organs.
  • a target organ-specific antibody or other ligand may be used in combination with the carrier so that it can specifically act on the target organ.
  • composition of the present invention may further include a filler, an excipient, a disintegrant, a binder or a lubricant.
  • compositions of the present invention may be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.
  • the pharmaceutical composition may be an injection formulation, and may be administered intravenously, but is not limited thereto.
  • the term "effective amount” means an amount necessary to delay the onset or progression of a specific disease to be treated or to entirely enhance it.
  • the composition may be administered in a pharmaceutically effective amount. It is obvious to a person skilled in the art that the appropriate total daily use amount of the pharmaceutical composition can be determined by the treating physician within the range of correct medical judgment.
  • a specific pharmaceutically effective amount for a specific patient is a specific composition, including the type and extent of the reaction to be achieved, whether or not other agents are used in some cases, the patient's age, weight, general health status, and sex. And it is preferable to apply differently according to various factors including diet, administration time, administration route and secretion rate of the composition, treatment period, drugs used with or concurrently with the specific composition, and similar factors well known in the medical field.
  • the pharmaceutical composition may be accompanied by an instruction in connection with the packaging in a form directed by a government agency in charge of the manufacture, use and sale of drugs, if necessary, and the instruction may be in the form of a composition or a human or It represents private interest approval for administration to animals, and may be, for example, a label approved by the US Food and Drug Administration for the prescription of drugs.
  • Cancers include, for example, brain cancer, head and neck cancer, bladder cancer, breast cancer, cervical cancer, colon cancer, colorectal cancer, endometrial cancer, esophageal cancer, leukemia, lung cancer, liver cancer, ovarian cancer, pancreatic cancer, prostate cancer, rectal cancer, kidney cancer, stomach cancer, testicular cancer.
  • Uterine cancer vascular tumor, squamous cell carcinoma, adenocarcinoma, small cell carcinoma, melanoma, glioma, neuroblastoma, sarcoma, laryngeal cancer, parotid adenocarcinoma, biliary tract cancer, thyroid cancer, actinic keratosis, acute lymphocytic leukemia, acute myeloid leukemia, adenocystic carcinoma , Adenoma, glandular squamous cell carcinoma, anal duct cancer, anal cancer, anal rectal cancer, astrocytoma, large vaginal gland cancer, basal cell carcinoma, biliary cancer, bone cancer, bone marrow cancer, bronchial cancer, bronchial carcinoma, carcinoid, cholangiocarcinoma, chronic lymph Constituent leukemia, chronic myelogenous leukemia, clear cell carcinoma, connective tissue cancer, cyst adenoma, digestive system cancer, du
  • the present invention is made by self-assembly of a ferritin monomer to which a disease antigen epitope is fused, and a pharmaceutical for the treatment or prevention of cancer further comprising a protein (protein B) having a binding force (K) to the transferrin receptor satisfies the following equation (4)
  • a protein protein B having a binding force (K) to the transferrin receptor satisfies the following equation (4)
  • the composition is provided:
  • K [P][T]/[PT]
  • [P] represents the concentration of the protein in equilibrium state of the binding reaction between the protein and the transferrin receptor
  • [T] is the above
  • the concentration of the transferrin receptor in the equilibrium state is indicated
  • [PT] indicates the concentration of the complex of the protein and the transferrin receptor in the equilibrium state).
  • the binding force to the transferrin receptor may be the binding force to the human transferrin receptor.
  • the coupling force represented by Equation 4 may be obtained by the same method as the method for obtaining the coupling force represented by Equation 1, but is not limited thereto.
  • the ferritin protein (protein B) to which the disease antigen epitope of the present invention is fused has an avidity (K) of 700 nM or less, 600 nM or less, 500 nM or less, 400 nM or less, 300 nM or less, 200 nM or less, 150 nM or less, 125 nM or less, 100 nM or less.
  • K avidity
  • it may be 50nM or less, 40nM or less, 30nM or less, 20nM or less, 10nM or less.
  • the lower limit may be 0.5nM, 1nM, 1.5nM, 2nM, 2.5nM, 3nM, 3.5nM, 4nM, 4.5nM, 5nM, but is not limited thereto.
  • Disease antigens can be antigens of any disease that can be prevented, treated, alleviated or ameliorated by an immune response.
  • the disease antigen may be a cell surface antigen of a cancer cell, a pathogen cell, or a cell infected with a pathogen.
  • the specific site that determines the antigen specificity of a disease antigen is a disease antigen epitope.
  • the disease is, for example, cancer or an infectious disease.
  • Cancers include, for example, brain cancer, head and neck cancer, bladder cancer, breast cancer, cervical cancer, colon cancer, colorectal cancer, endometrial cancer, esophageal cancer, leukemia, lung cancer, liver cancer, ovarian cancer, pancreatic cancer, prostate cancer, rectal cancer, kidney cancer, stomach cancer, testicular cancer, uterine cancer.
  • Vascular tumor squamous cell carcinoma, adenocarcinoma, small cell carcinoma, melanoma, glioma, neuroblastoma, sarcoma, laryngeal cancer, parotid adenocarcinoma, biliary tract cancer, thyroid cancer, actinic keratosis, acute lymphocytic leukemia, acute myeloid leukemia, adenocyst carcinoma, adenoma , Glandular squamous cell carcinoma, anal duct cancer, anal cancer, anal rectal cancer, astrocytoma, large vaginal esophagus cancer, basal cell carcinoma, biliary cancer, bone cancer, bone marrow cancer, bronchial cancer, bronchial carcinoma, carcinoid, cholangiocarcinoma, chronic lymphocytic leukemia , Chronic myeloid leukemia, clear cell carcinoma, connective tissue cancer, cyst adenoma, digestive system
  • the infectious disease can be, for example, a viral, bacterial, fungal, parasitic or prion infection.
  • Cancer antigen epitopes are gp100, MART-1, Melna-A, MAGE-A3, MAGE-C2, Mammaglobin-A, proteinsase-3, mucin-1, HPV E6, LMP2, PSMA, GD2, hTERT, PAP, ERG, NA17.
  • ALK ALK
  • CEA CA 125, AFP, Survivin, AH1, ras, G17DT, MUC1, Her-2/neu, E75, p53, PSA, HCG, PRAME, WT1, URLC10, VEGFR1, VEGFR2, E7, Tyrosinase peptide, B16F10, EL4 or neoantigen.
  • Neoantigen refers to an immunogenic peptide that is induced and formed by somatic mutations in tumor cells. Neoantigens form complexes with MHC I and migrate to the surface of tumor cells and can be displayed as antigen epitopes. T-cell receptors (TCRs) recognize the neoantigen-MHCI complex to trigger an immune response. To induce.
  • the disease antigen epitope is not limited to a specific length as long as it can be fused to the ferritin monomer.
  • the disease antigen epitope is not limited to a specific length as long as it does not interfere with self-assembly of the ferritin monomer.
  • the disease antigen epitope can be fused to any of the ferritin monomers.
  • the disease antigen epitope is fused to a site that does not interfere with self-assembly of the ferritin monomer.
  • the disease antigen epitope is preferably fused to the ferritin monomer so that it is exposed to the protein surface for binding to the human transferrin receptor.
  • Disease antigen epitopes are, for example, whose amino acid length is 25aa or less, 24aa or less, 23aa or less, 22aa or less, 21aa or less, 20aa or less, 19aa or less, 18aa or less, 17aa or less, 16aa or less, 15aa or less, 14aa or less, 13aa or less, 12aa
  • it may be 11aa or less, 10aa or less, 9aa or less, 8aa or less, 7aa or less, 6aa or less, 5aa or less.
  • the disease antigen epitope may be, for example, the amino acid length of 3aa or more, 4aa or more, 5aa or more, 6aa or more, 7aa or more, 8aa or more, 9aa or more, 10aa or more.
  • the fusion of the disease antigen epitope to the ferritin monomer may improve the binding ability of the self-assembled protein (protein B) of the ferritin monomer to the human transferrin receptor.
  • protein B self-assembled protein
  • a portion incorporated into the inside may protrude outward after binding of the disease antigen epitope.
  • the fusion site of the disease antigen epitope in the perintin monomer is not limited to a specific position, such as between adjacent ⁇ -helixes, N-terminus, C-terminus, AB loop, BC loop, CD loop, DE loop, N-terminus It can be fused between the A and A helix, the E helix and the C-terminal, and the inside of the helix.
  • the disease antigen epitope can be fused to at least one of adjacent ⁇ -helixes.
  • the disease antigen epitope can be fused to the N-terminus or C-terminus of the ferritin monomer.
  • the disease antigen epitope may be fused to the A-B loop, B-C loop, C-D loop or D-E loop of the ferritin monomer.
  • the disease antigen epitope may be fused between the N-terminus and A helix of the ferritin monomer or between the E helix and C-terminus.
  • the disease antigen epitope may be fused to the interior of at least one of each helix of the ferritin monomer.
  • the protein (protein B) of the present invention is a self-assembled ferritin monomer to which a disease antigen epitope is fused.
  • Ferritin is a self-assembled protein that forms an aggregate by forming an organizational structure or pattern on its own when several monomers are collected, and it is possible to form nanoscale proteins without additional manipulation.
  • ferritin monomer to which the disease antigen epitope according to the present invention is fused also forms a self-assembled protein.
  • 24 ferriline monomers can be self-assembled to form spherical particles.
  • the particle diameter may be, for example, 8 to 50 nm. Specifically, it may be 8nm to 50nm, 8nm to 45nm, 8nm to 40nm, 8nm to 35nmm, 8nm to 30nm, 8nm to 25nm, 8nm to 20nm, 8nm to 15nm, etc., but is not limited thereto.
  • the ferritin monomer to which the disease antigen epitope is fused is self-assembled, and the protein that binds to the transferrin receptor (protein B) binds to the transferrin receptor (TfR) present on the surface of dendritic cells, which are antigen-presenting cells. Accordingly, the fused antigen epitope is introduced and presented to the dendritic cells, and the immune system recognizes the antigen so that the immune response can be performed.
  • the protein (protein B) that is formed by self-assembly of the ferritin monomer to which the disease antigen epitope is fused and binds to the transferrin receptor may be a linker peptide further included between the human ferritin heavy chain protein and the disease antigen epitope.
  • the linker peptide is not limited as long as it is a sequence for enhancing the surface expression of a protein by imparting flexibility to the epitope, but may have an amino acid sequence of SEQ ID NO: 36 to SEQ ID NO: 38, for example.
  • the linker peptide may have a length capable of securing an appropriate space between disease antigen epitopes.
  • the linker peptide may be a peptide consisting of 1 to 20, 3 to 18, 4 to 15, and 8 to 12 amino acids. By adjusting the length and/or amino acid composition of the linker peptide, the spacing and orientation between disease antigen epitopes can be controlled.
  • the pharmaceutical composition of the present invention may be administered in combination with the two proteins (proteins A and B).
  • the order of administration at the time of combined administration is not limited, and for example, two types of proteins may be administered simultaneously, or may be administered individually or sequentially.
  • sequential administration a ferritin protein in which a molecule capable of binding to an immune checkpoint molecule is fused to an outer surface may be administered first, or a protein formed by self-assembly of a ferritin monomer to which a disease antigen epitope is fused may be administered first.
  • the present invention provides a method for treating cancer comprising the above ferritin protein (protein A). All of the matters described above with respect to the ferritin protein apply as it is to the ferritin protein as an active ingredient in the cancer treatment method of the present application.
  • the treatment method of the present invention includes the step of administering the ferritin protein (protein A) of the present application to a subject suffering from cancer.
  • the individual suffering from cancer may be an animal suffering from cancer, specifically a mammal suffering from cancer, and more specifically may be a human suffering from cancer.
  • Cancers include, for example, brain cancer, head and neck cancer, bladder cancer, breast cancer, cervical cancer, colon cancer, colorectal cancer, endometrial cancer, esophageal cancer, leukemia, lung cancer, liver cancer, ovarian cancer, pancreatic cancer, prostate cancer, rectal cancer, kidney cancer, stomach cancer, testicular cancer.
  • Uterine cancer vascular tumor, squamous cell carcinoma, adenocarcinoma, small cell carcinoma, melanoma, glioma, neuroblastoma, sarcoma, laryngeal cancer, parotid adenocarcinoma, biliary tract cancer, thyroid cancer, actinic keratosis, acute lymphocytic leukemia, acute myeloid leukemia, adenocystic carcinoma , Adenoma, glandular squamous cell carcinoma, anal duct cancer, anal cancer, anal rectal cancer, astrocytoma, large vaginal gland cancer, basal cell carcinoma, biliary cancer, bone cancer, bone marrow cancer, bronchial cancer, bronchial carcinoma, carcinoid, cholangiocarcinoma, chronic lymph Constituent leukemia, chronic myelogenous leukemia, clear cell carcinoma, connective tissue cancer, cyst adenoma, digestive system cancer, du
  • Protein (Protein A) can be administered in a therapeutically effective amount.
  • the term "administration” means introducing the composition of the present invention to a patient by any suitable method, and the route of administration of the composition of the present invention is through various routes, either oral or parenteral, as long as it can reach the target tissue. Can be administered. Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, intranasal administration, intrapulmonary administration, or rectal administration may be performed, but are not limited thereto.
  • the method of the present invention may further include administering a protein (protein B) formed by self-assembly of a ferritin monomer to which a disease antigen epitope is fused to the individual.
  • protein B protein formed by self-assembly of a ferritin monomer to which a disease antigen epitope is fused
  • the disease antigen epitope may be a cancer antigen epitope, and may be a cancer antigen epitope specifically exemplified above.
  • a protein (protein B) formed by self-assembly of a ferritin monomer to which a disease antigen epitope is fused may be administered simultaneously or sequentially with a ferritin protein to which a molecule capable of binding to an immune checkpoint molecule is fused.
  • the order is not limited, and the protein made by self-assembly of ferritin monomers fused with disease antigen epitopes (Protein B) is the administration of ferritin protein (protein A) in which a molecule capable of binding to an immune checkpoint molecule is fused. It can be administered before or after administration.
  • huHF is a globular protein (12 nm) composed of 24 monomers, and each monomer is composed of a total of 5 ⁇ -helix.
  • the inventors of the present invention is the loop between each ⁇ -helix of the huHF monomer (AB loop among huHF 5T to 176G based on PDB 3AJO sequence; between 45D/46V, BC loop; 92D/93W, CD loop; 126D/127P, DE loop; 162E/163S )
  • gp100 peptide which is one of the actual tumor antigens, was inserted at the N-terminus and C-terminus through gene cloning to obtain a delivery system in which the gp100 peptide was inserted at various positions of huHF (FIGS. 1 and 2 ).
  • the present inventors have selected the surface composition of huHF nanoparticles with the best surveillance lymph node targeting efficiency as cancer-specific antigen delivery nanop
  • the candidate proteins of Table 1 were subjected to PCR according to the vector schematic diagram of Table 2, and proteins huHF, huHF-gp100 (SEQ ID NO: 1; melanoma specific antigen), OVA (SEQ ID NO: 2), AH1 ( SEQ ID NO: 3) (AB; 45D/46V, BC; 92D/93W, CD; 126D/127P, DE; 162E/163S, N-terminal, C-terminal), huHF-PD1 (SEQ ID NO: 4; Active site of PD1 domain), huHF-TPP1 (SEQ ID NO: 5) (AB, CD loop), huHF- ⁇ PD-L1 HCDR3 (SEQ ID NO: 6) (CD loop, C-terminal) and huHF-smPD1 ( SEQ ID NO: 7) Particles were prepared.
  • proteins huHF, huHF-gp100 SEQ ID NO: 1; melanoma specific antigen
  • the OVA was used as an immunospecific antigen
  • AH1 was used as a tumor specific antigen for colorectal cancer cells
  • gp100 was used as a tumor specific antigen for melanoma cells. All the prepared plasmid expression vectors were purified on an agarose gel, and then the sequence was confirmed through complete DNA sequencing.
  • PCR products required for preparation of each expression vector were sequentially inserted into the plasmid pT7-7 vector using the primer set in Table 3 to construct an expression vector capable of expressing each protein.
  • it may further include a linker peptide of Table 4 below.
  • E. coli strain BL21(DE3)[F-ompThsdSB(rB-mB-)] was transformed with the above-prepared expression vector, respectively, and ampicillin-resistant transformants were selected.
  • the transformed E. coli was cultured in a flask (250 mL Erlenmeyer flasks, 37° C., 150 rpm) containing 50 mL of Luria-Bertani (LB) medium (containing 100 mg L-1 ampicillin).
  • LB Luria-Bertani
  • IPTG Isopropyl- ⁇ -Dthiogalactopyranosid
  • the cultured E. coli was centrifuged at 4,500 rpm for 10 minutes to recover the cell precipitate and suspended in 5 ml of a disruption solution (10 mM Tris-HCl buffer, pH 7.5, 10 mM EDTA). Then, it was crushed using an ultrasonic crusher (Branson Ultrasonics Corp., Danbury, CT, USA). After crushing, centrifugation was performed at 13,000 rpm for 10 minutes, and the supernatant and insoluble aggregates were separated. The separated supernatant was used for later experiments.
  • a disruption solution 10 mM Tris-HCl buffer, pH 7.5, 10 mM EDTA.
  • the supernatant obtained in Example 2 was purified through a three-step process. First, 1) Ni2+-NTA affinity chromatography using the combination of histidine and nickel fused to the recombinant protein was performed, 2) the recombinant protein was concentrated and a fluorescent substance was attached through buffer exchange. Sucrose gradient ultracentrifugation was performed to separate only the attached self-assembled protein. Detailed description of each step is as follows.
  • the cultured E. coli was recovered in the same manner as specified above, and the cell pellet was resuspended in 5 mL Lysis buffer (pH 8.0, 50 mM sodium phosphate, 300 mM NaCl, 20 mM imidazole), and an ultrasonic disruptor. Cells were disrupted. The crushed cell solution was centrifuged at 13,000 rpm for 10 minutes to separate only the supernatant, and then each recombinant protein was separated using a Ni2+-NTA column (Qiagen, Hilden, Germany) (washing buffer: pH 8.0, 50 mM sodium phosphate). , 300 mM NaCl, 80 mM imidazole / elution buffer: pH 8.0, 50 mM sodium phosphate, 300 mM NaCl, 200 mM imidazole).
  • Lysis buffer pH 8.0, 50 mM sodium phosphate, 300 mM NaCl, 20 mM imidazole
  • huHF-gp100 particles and huHF-PD1 particles were placed on a column with 5,000 g of 3 ml of recombinant protein eluted through Ni2 +- NTA affinity chromatography in an Ultracentrifugal filter (Amicon Ultra 100K, Millipore, Billerica, MA). Centrifugation was performed at 5,000 g until 1 ml of the solution remained. After that, to attach the NIR fluorescent substance cy5.5 and FITC (fluorescein isothiocyanate), the protein particles were buffered with sodium bicarbonate (0.1 M, pH 8.5) buffer, and the fluorescent substance at room temperature for 12 hours. Was attached.
  • sucrose was added to PBS (2.7 mM KCl, 137 mM NaCl, 2 mM KH2PO4, 10 mM Na2HPO4, pH 7.4) buffer to contain 40%, 35%, 30%, 25%, 20% sucrose.
  • PBS 2.7 mM KCl, 137 mM NaCl, 2 mM KH2PO4, 10 mM Na2HPO4, pH 7.4
  • sucrose solution add 2 ml of sucrose solution at each concentration (45-20%) to the ultra-high-speed centrifugation tube (ultraclear 13.2 ml tube, Beckman), starting with the high-concentration solution, and then in the prepared buffer for self-assembly. After filling 1 ml of the present recombinant protein solution, ultra-high-speed centrifugation was performed at 4° C.
  • TEM Transmission electron microscopy
  • each of the particles formed spherical nanoparticles (FIGS. 3 and 5).
  • each gp100-huHF-loops, huHF-PD1, huHF-TPP1 (AB, CD loops), huHF- ⁇ PD-L1 HCDR3 (CD loop, C-terminal), huHF-smPD1 particles through DLS (dynamic light scattering) measurement The diameter of the field was measured on the solution (Figs. 3 and 5).
  • the present research team determined the binding ability of the purified recombinant protein of each protein (gp100-huHF-loops) produced in Example 3 to the transferrin receptor (TfR) in MST (Microscale Thermophoresis). ) Measured through a machine. As a result, it was confirmed that huHF nanoparticles containing no tumor antigen had the most excellent binding ability with TfR, and the binding ability of CD-loop-gp100 nanoparticles with tumor antigen inserted between CD helix was second. Through this, it was indirectly confirmed that the CD-loop-gp100 particles did not interfere with the binding to TfR most (FIG. 4).
  • PD-1 Programmed cell death protein 1
  • PD-L1 is a protein on the surface of T-cells. It binds to PD-L1, which is expressed on the surface of cancer cells, and induces decrease in T-cell activity. Therefore, when the binding site of PD-1 to bind to PD-L1 expressed on the surface of cancer cells is induced to inhibit the binding of PD-1 and PD-L1 in T cells by using the surface-expressed protein, T-cell activity is suppressed. It can be expected to increase the effectiveness of anticancer immunotherapy through the decrease.
  • the PD-L1 binding site of PD-1 was synthesized in huHF (binding active site 22G-170V in the PD-1 sequence), PD-L1 targeting peptide TPP1, PD-L1 antibody HCDR3 sequence, the binding active site of PD-L1 (small PD1 domain)).
  • the Langmuir equation was used to determine the binding capacity of PD-L1 antibody and huHF-PD1 protein and PD-L1, which are currently used immune antibody treatments. It was calculated using.
  • the Kd value of huHF-PD1 and the recombinant protein PD-L1 was measured to be 327.59 nM, which is higher than 770 nM, which is a literature value of PD1-PDL1 binding affinity, which is similar to 255.10 nM, the Kd value of PD-L1 and PD-L1 antibodies. did. Through this, it was confirmed that the protein made by expressing the PD-1 binding domain on the huHF surface has the ability to bind to PD-L1 (FIG. 5).
  • the binding capacity between the actually synthesized huHF- ⁇ PD-L1 HCDR3 (CD loop, C-terminal) protein and PD-L1 was also measured by ELISA, and the huHF- ⁇ PD-L1 HCDR3 (CD loop) particles were 71.24 nM, huHF- ⁇ PD-L1 HCDR3 (C-terminal) particles were measured to be 38.43 nM, respectively, confirming that these proteins also have a binding ability with PD-L1. (Fig. 5)
  • the binding capacity of the huHF-TPP1 protein produced in Example 3 and PD-L1 was measured through a Microscale Thermophoresis (MST) machine.
  • the Kd value of huHF-TPP1 (AB loop) with PD-L1 is 72.105 nM
  • the Kd value of huHF-TPP1 (CD loop) with PD-L1 is 115.16 nM
  • huHF- ⁇ PD-L1 HCDR3 (CD loop) ) was measured to be 71.24 nM
  • huHF- ⁇ PD-L1 HCDR3 (C-terminal) was measured to be 38.43 nM (Fig. 5).
  • the fluorescence signal was measured through a confocal (LSM 700) machine. It was confirmed that the binding ability of the CD-loop-gp100 protein with the tumor antigen inserted between the CD helix was superior to that of the huHF itself. Through this, it was also indirectly confirmed that the CD-loop-gp100 protein did not interfere with the binding of TfR most (FIG. 6).
  • CT26 colorectal cancer cells and B16F10 melanoma cells were reacted with a protein at a concentration of 300 nM, and then the fluorescence signals were compared to confirm the cell uptake efficiency.
  • huHF-PD1 ( Figure 7a), huHF- ⁇ PD-L1 HCDR3 (CD loops, C-terminal) ( Figure 7b), huHF-TPP1 (AB , CD loops) (Fig. 7c), huHF-smPD1 (Fig. 7c) protein was confirmed to exhibit a fluorescent signal by binding to cancer cells.
  • PD-L1 antibody capable of masking PD-L1 expressed on the surface of cancer cells for 20 minutes
  • huHF protein, huHF-PD1 protein, and huHF- ⁇ PD-L1 HCDR3 protein huHF-smPD1 protein were reacted respectively. When ordered, it was confirmed that neither was combined.
  • the huHF protein and huHF-PD1 protein attached with a cy5.5 fluorescent substance were used in mice grown with CT-26 colorectal cancer cells.
  • the PD-L1 antibody therapeutic agent that has been actually used in clinical practice was used as a control group.
  • the particle targeting pattern in the body was observed with a Cy5.5 bandpass emission filater and a special Cmount lens or an IVIS spectrum imaging system (Caliper Life Sciences, Hopkinton, MA) (Fig. 9; right).
  • the Y-axis represents the retention time in the body).
  • the huHF-PD1 protein had better cancer cell targeting efficiency than the control huHF protein.
  • the actual antibody treatment showed better cancer targeting efficiency and maintenance time in the body than the huHF-PD1 protein, but this is a result of the in vivo maintenance time of the antibody treatment being too long, which is directly related to the problem of immune side effects in the body. Therefore, it was confirmed that the protein according to the present invention has advantages in both side effects and side effects.
  • PBS buffer
  • huHF-gp100 loops protein By making PBS (buffer) and huHF-gp100 loops protein by the method of Examples 1 to 3, boosting the immune response of the immune cells in the lymph nodes by injecting the vaccine into C57BL/6 once a week for a total of 3 weeks, and then , The spleen where the immune cells gathered was excised and pulverized. After that, after extracting CD8+ T-cells in which an immune response was specifically induced by gp100 melanoma-specific antigen in the pulverized spleen, a specific partial antigen peptide of gp100 (KVPRNQDWL), which is known to induce an immune response in vitro.
  • KVPRNQDWL a specific partial antigen peptide of gp100
  • PBS buffer
  • huHF-OVA loops protein By making PBS (buffer) and huHF-OVA loops protein by the method of Examples 1 to 3, boosting the immune response of the immune cells in the lymph nodes by injecting the vaccine into C57BL/6 once a week for a total of 3 weeks, and then , The spleen where the immune cells gathered was excised and pulverized. Then, in the pulverized spleen, the OVA immune peptide was used to identify a protein that best exposes the peptide to the dendritic cell surface by using an antibody that captures the surface-exposed dendritic cells (DC) through MHC-I.
  • DC surface-exposed dendritic cells
  • the nanoparticles containing the OVA peptide in the CD-loop induce the expression of the peptide surface on the MHC-I best, which disprove that it can most effectively activate the cytotoxic T cell activity in immunotherapy. to be.
  • the B16F10 cell line was planted in each mouse and the growth rate of cancer was observed.
  • the size of cancer cells was calculated by the following formula:
  • the present inventors used a mouse Balb/c having a colon cancer tumor (CT26) of a certain size.
  • CT26 colon cancer tumor
  • PBS, PD-L1 antibody, and huHF-PD1 protein were injected intravenously at intervals of 3 days.
  • CT26 colon cancer tumor
  • the cancer-specific antigen epitopes (gp100 and AH1) were inserted into the CD-loop, which showed the best tumor growth inhibitory effect in mice with tumors of a certain size, and huHF-CD loop-gp100 and huHF-CD loop-AH1 ( 10 ⁇ M) protein was injected into mice at 3 days intervals by subcutaneous injection, and at the same time, huHF-PD1 (5 ⁇ M) and control PD-L1 antibody treatment samples were injected intravenously at 3 days intervals.
  • the experiment using the huHF-CD loop-gp100 protein used C57BL/6 mice with B16F10 melanoma, and the experiment using the huHF-CD loop-AH1 protein used Balb/c mice with CT26 colon cancer. Each experiment used 5 mice per experimental group, and the size of cancer cells was calculated by the following formula:
  • the experimental group was 1) no treatment group, 2) the first protein treatment group (AH1-huHF and gp100-huHF), 3) the antibody treatment group ( ⁇ -PD-L1), 4) the second protein Treatment group (huHF-PD1), 5) a group administered with a combination of a first protein and an antibody therapeutic agent (AH1-huHF+ ⁇ -PD-L1 and gp100-huHF+ ⁇ -PD-L1) and 6) a first protein and a second protein
  • the combined administration groups (AH1-huHF+huHF-PD1 and gp100-huHF+huHF-PD1) were used.
  • the present inventors In order to determine whether the huHF-PD1 protein is effective in cancer treatment through immune checkpoint suppression compared to the actual antibody treatment, PDL1 antibody, the present inventors have T-L1 antibody and huHF-PD1 protein react with cancer cells. The activity response of cells and the killing efficiency of cancer cells were compared.
  • experimental group 1 No treat, 2) first protein treatment group (AH1-huHF and gp100-huHF), 3) antibody treatment group ( ⁇ -PD-L1), 4) second protein treatment group (huHF-PD1), 5) the combination administration group of the first protein and the antibody therapeutic agent (AH1-huHF+ ⁇ -PD-L1 and gp100-huHF+ ⁇ -PD-L1) and 6) the combination of the first protein and the second protein
  • the active response of T-cells to the administration group (AH1-huHF+huHF-PD1 and gp100-huHF+huHF-PD1) was also observed, and as a result, experimental group 6 (AH1-huHF+huHF-PD1) with the best tumor growth inhibition result. And gp100-huHF+huHF-PD1), it was also confirmed that the T-cell activity is most excellent (FIG. 15C).
  • huHF-PD1 protein has cancer treatment efficacy through immune checkpoint suppression compared to PDL1 antibody, which is an actual antibody treatment, and at the same time, the degree of induction of immune side effects when injected in vivo is also reduced.
  • the biggest problem with the current antibody therapeutics is the problem of causing immune side effects due to long-term accumulation in the body when protein is injected, and the most representative cytokine that causes this immune side effect is known as IL-17. Accordingly, the present inventors performed an IL-17 detection test using the blood samples of Experimental Groups 1 to 6 described in Example 11.
  • Example 11 As a result of the cancer growth inhibition test in Example 11, it was confirmed whether the first protein (CD loop-huHF) and the second protein (huHF-PD1) actually suppressed tumor growth in vivo and had a synergistic effect during combination treatment. Based on this, an experiment was conducted to see if the cancer recurs even after surgery.
  • the experimental group was the same as in Example 11 1) no treatment group, 2) the first protein treatment group (AH1-huHF), 3) the antibody treatment group ( ⁇ -PD-L1), 4) agent 2 protein-treated group (huHF-PD1), 5) a group administered with a combination of the first protein and an antibody treatment (AH1-huHF+ ⁇ -PD-L1), and 6) a group administered with a combination of the first protein and a second protein (AH1-huHF+) huHF-PD1) was used.
  • Example 11 An experiment was conducted to see whether cancer metastases even after surgery.
  • the experimental group was the same as in Example 11 1) no treatment group, 2) the first protein treatment group (AH1-huHF), 3) the antibody treatment group ( ⁇ -PD-L1), 4) agent 2 protein-treated group (huHF-PD1), 5) a group administered with a combination of the first protein and an antibody treatment (AH1-huHF+ ⁇ -PD-L1), and 6) a group administered with a combination of the first protein and a second protein (AH1-huHF+) huHF-PD1) was used.
  • mice were used.
  • 5 mice were used per experimental group, and cancer metastasis was determined by extracting the lungs of mice used in all of the above experimental groups and counting cancer nodules (FIG. 17).
  • the experimental group (1) no treatment group, 2) the first protein treatment group (AH1-huHF and gp100-huHF), 3) the antibody treatment group ( ⁇ -PD-L1) ), 4) the second protein treatment group (huHF-PD1), 5) the combination administration group of the first protein and antibody therapeutic agent (AH1-huHF+ ⁇ -PD-L1 and gp100-huHF+ ⁇ -PD-L1) and 6)
  • the T-cell activity responses of the groups administered with the first protein and the second protein (AH1-huHF+huHF-PD1 and gp100-huHF+huHF-PD1) were observed.
  • the protein was synthesized according to the method of Example 2, and the soluble and insoluble portions were confirmed according to the method of Example 18, which will be described later, and it was confirmed that the protein was self-assembled according to the method of Example 4.
  • the binding force A of the prepared protein to transferrin was measured according to the following method.
  • the reaction solution of each tube was put into the capillary of a Microscale thermophoresis device to obtain a homogeneous fluorescence intensity F cold without irradiation with a laser.
  • the Microscale thermophoresis device (Monolith NT.115) was set to 40% MST power and the LED power so that the obtained fluorescence intensity value was within the range of 10,000 to 15,000, and irradiated with a laser for 30 seconds for each capillary in a heated state. The fluorescence intensity F hot was obtained.
  • Various expression vectors based on pT7-7 were transformed into BL21 (DE3) competent cells.
  • a single colony was inoculated into LB liquid medium (50 mL) to which 100 mg/L of ampicillin was added, and cultured at 37° C. and 130 rpm in a shaking incubator.
  • the turbidity turbidity/optical density at 600 nm
  • the expression of the target protein was induced through 1 mM IPTG administration.
  • the cells in the culture medium were spun-down through centrifugation (13000 rpm, 10 minutes), and the cell pellet was collected and resuspended in 10 mM Tris-Hcl (pH 7.4) buffer. .
  • Resuspended cells were ruptured using a Branson Sonifier (Branson Ultrasonics Corp., Danbury, CT). After sonication, the supernatant containing the soluble protein and the aggregates containing the insoluble protein were separated by centrifugation (13000 rpm, 10 minutes). The solubility was analyzed through SDS-PAGE analysis of the separated soluble and insoluble protein fractions. That is, the target protein bands stained with Coomassie were scanned with a densitometer (Duoscan T1200, Bio-Rad, Hercules, CA) and then the ratio of the water-soluble fraction was quantified. Specifically, using the scanned SDS-PAGE gel image, the ‘Quantity One’ program ‘Volume Rect. After setting the band thickness and background value with'Tool', the sum of the soluble and insoluble protein fractions was set to 100% using the'Volume Analysis Report' and the solubility was quantified.
  • a Branson Sonifier Branson Ultrasonics Corp.,
  • the protein was synthesized according to the method of Example 2, and the soluble and insoluble portions were confirmed according to the method of Example 19, and it was confirmed that the protein was self-assembled according to the method of Example 4.
  • the binding force of the prepared protein to the transferrin receptor was measured according to the method of Example 17, and the concentration represented by Equation 1 was found to be 44.649 ⁇ 1.34 nM.
  • the tumor inhibitory ability of the protein was evaluated according to the method of Example 11.
  • the experimental group 1) PBS group, 2) antibody treatment group ( ⁇ -PD-L1), 3) first protein treatment group (huHF-PD1), 4) second protein treatment group (huHF-msmPD1) was used. I did.
  • huHF is a substitution of some amino acids at the binding site with transferrin (exists in the BC loop), and a protein in which amino acids 81 and 83 in the sequence of SEQ ID NO: 1 are substituted with alanine was used.
  • the binding force of the prepared protein to h-PD-L1 and m-PD-L1 was measured according to the method of Example 17, and the binding force to h-PD-L1 was 13.417 ⁇ 1.97 nM, to m-PD-L1. The binding force was found to be 177.14 ⁇ 3.32 nM.
  • a protein was prepared in which an immune checkpoint molecule PD-L1 and a molecule binding to TIGIT were fused to ferritin, and its efficacy was confirmed.
  • the HCDR3 sequence of the antibody was used, and the sequence used is shown in Table 10 below.
  • the vector of Table 11 was prepared according to the method of Example 1, and at this time, the primer set of Table 12 was used.
  • the protein was synthesized according to the method of Example 2.
  • the tumor suppressing ability of the protein was determined by subcutaneous inoculation of a colon cancer cell line (CT26) into BALB/c mice and injecting the protein according to the schedule of FIG. 25, according to the method of Example 11. It was evaluated (FIG. 26).
  • the experimental group 1) PBS group, 2) antibody treatment combined treatment group ( ⁇ -PD-L1, ⁇ -TIGIT), 3) protein treatment group (huHF-PD-L1-TIGIT dual blocker) was used.
  • tumor tissues were removed for each treatment group and the weight was measured, and the results are shown in FIG. 27. From this, it is possible to confirm the excellent anticancer efficacy of the protein in which the molecule binding to PD-L1 and TIGIT is fused.
  • a protein in which ⁇ -PD-L1 HCDR3 was fused to different positions of a ferritin monomer was prepared to confirm tumor suppression ability.
  • a protein was prepared in which ⁇ -PD-L1 HCDR3 was fused to the AB loop, BC loop, CD loop, DE loop, and C-terminus (AB loop among huHF 5T to 176G based on PDB 3AJO sequence; between 45D/46V, BC loop; 92D/93W, CD loop; 126D/127P, DE loop; 162E/163S).
  • This was prepared in the same manner as in Examples 1 and 2, except that the sequence of Table 10 was used.
  • CT26 colorectal cancer cells at a concentration of 300 nM After reacting with the protein, the fluorescence signal was compared to confirm the cell uptake efficiency. It was confirmed that the huHF- ⁇ PD-L1 HCDR3 (AB, BC, CD, DE loops, C-terminal) protein bonded to the cancer cells and showed a fluorescent signal than the control huHF protein.
  • Table 13 The sequence of Table 13 was used, and PCR was performed according to the vector schematic diagrams of FIGS. 29 to 36 and Table 14 below, and huHF- ⁇ PD1 HCDR3 (C-terminal), huHF- ⁇ CTLA4 HCDR3 (C-terminal), huHF ⁇ TIGIT HCDR3 (C-terminal), huHF- ⁇ LAG3 HCDR3 (C-terminal), huHF- ⁇ TIM3 HCDR3 (C-terminal), huHF- ⁇ PD-L1 HCDR3 (AB loop)- ⁇ TIGIT HCDR3 (C-terminal) (dual blocker) was prepared I did. All the prepared plasmid expression vectors were purified on an agarose gel, and then the sequence was confirmed through complete DNA sequencing.
  • PCR products required for preparation of each expression vector were sequentially inserted into the plasmid pT7-7 vector using the primer set in Table 15 to construct an expression vector capable of expressing each protein nanoparticle.
  • Insertion site 54 ⁇ _PD-L1_F C-terminal 55 ⁇ _PD-L1_R 56 ⁇ _PD1_F C-terminal 57 ⁇ _PD1_R 58 ⁇ _CTLA4_F C-terminal 59 ⁇ _CTLA4_R 60 ⁇ _LAG3_F C-terminal 61 ⁇ _LAG3-R 62 ⁇ _TIM3_F C-terminal 63 ⁇ _TIM3_R 64 ⁇ _TIGIT_F C-terminal 65 ⁇ _TIGIT_R 66 BC_ ⁇ _PD-L1_F BC loop 67 BC_ ⁇ _PD-L1_R
  • Adhesion to the antigen was measured in the same manner as in Example 6, except that the antigen for each antibody was used.
  • the binding power of the antibody is shown in Table 16, and the binding power of the protein of the example is shown in Tables 17 and 18. Referring to this, it can be seen that the proteins of the examples exhibit excellent binding power to human antigens.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 질환 항원이 융합된 단백질 및 그의 용도에 관한 것이다. 본 발명의 단백질은 질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어진다. 본 발명의 단백질은 인간 트랜스페린 수용체에 대한 우수한 결합력을 나타내므로 다양한 종류 및 길이의 질환 항원 에피토프를 항원 제시 세포에 제공하여 해당 항원에 대한 면역 반응을 유발할 수 있다.

Description

면역 관문 분자와 결합 가능한 분자가 융합된 단백질 및 이의 용도
본 발명은 면역 관문 분자와 결합 가능한 분자가 융합된 단백질 및 이의 용도에 관한 것이다.
현대에 들어 의학 기술이 발달하면서 치료가 불가능한 병은 거의 없어졌지만 암은 다른 질병 치료와는 달리 매우 힘들고 복잡한 치료가 요구되고 있다. 현재 암 치료에 사용되고 있는 방법은 크게 수술, 방사선 치료 및 화학적 치료가 있다. 암이 다른 부위로 전이되지 않고 국소적으로 발병한 경우, 암 제거 수술을 통해 암을 치료할 수 있다. 그러나 암 환자의 70% 이상에서 암 전이가 발생하기 때문에 보조적인 치료 요법이 병행되어야 한다.
상기 보조 치료 요법 중 하나로 고 에너지 방사선을 이용하여 암 세포를 죽이는 방사선 치료가 수행되는데, 상기 방사선 치료법은 암 세포에 방사선을 조사할 때 암 세포의 증식이 억제되어 새로운 암 세포가 생성되지 못하고 암 세포가 더 이상 분열하지 못하게 한다. 그러나 이 방법은 암 세포뿐만 아니라 정상 세포에도 영향을 끼친다는 부작용이 존재하는 문제점이 있다.
화학적 치료 요법은 수술 후에 약물을 사용하여 암 세포를 죽이는 보조 치료법으로 눈에 보이지 않는 암 세포를 죽이기 위한 목적으로 수행된다. 그러나 상기 화학적 치료 요법은 구토, 설사, 탈모 등의 부작용이 뒤따른다는 문제가 있다.
이러한 부작용들을 최소화하고자 최근 면역치료 방법이 대두되고 있다. 면역치료 방법은 환자의 면역 반응을 이용하여 암을 치료하는 방법으로서, 암의 예방까지도 꾀할 수 있다. 암 면역치료는 백신의 원리와 같이 종양 형성의 원인이 되는 항원을 투여하여 암에 특이적인 면역세포들을 활성화시킨 후, 활성화된 면역세포들이 체내에서 암을 특이적으로 공격하게 하는 치료 방법이다. 또한, 암에 걸리지 않았더라도 암에 특이적인 항원을 체내에 투여함으로써 비활성화의 면역세포를 암 특이적 기억 면역세포로 활성화하여 암이 발병되었을 때 암 세포를 특이적으로 공격할 수 있게 한다.
암 면역치료를 위해서는 면역세포들이 밀집되어 있는 림프절로 암 특이적 항원(종양 연관 항원(Tumor-associated antigen; TAA, 종양 특이 항원(Tumor-specific antigen; TSA))을 운반하는 것이 중요하다. 특히 종양 특이 항원 중, 폐암, 신장암과 같은 다양한 종양 타입에서 발견되지만 주로 흑색종에서 발견되는 신생항원(neo-antigen)은 암 환자 개인의 잠재적 유전자 활성 혹은 DNA 부분의 변이에 의해 새롭게 생성되는 항원으로서, 이 항원은 환자 개인의 유전정보를 바탕으로 '맞춤형 암 백신'을 제작하는데 있어 매우 중요하다.
그러나 암 특이적 항원 자체만을 림프절로 운반하려는 종래의 시도는 그다지 효과적이지 못했다. 종양 항원 자체만으로는 종양 항원의 길이가 다소 짧고, 종양 항원 특이 면역세포를 증폭 및 활성화하기 위한 종양 항원 제시 효율이 현저히 낮아 종양 항원 특이 면역 유도 효율도 현저히 낮았기 때문이다 (비특허문헌 1). 이러한 암 특이적 항원의 체내 운반체로서 고분자들이 많이 사용되고 있으며, 암 특이적 항원의 체내 운반을 위해 고분자의 표면에 암 항원을 고정시키는 경우, 입자 표면에 암 특이적 항원을 화학적 결합을 통해 노출시켜야 한다. 그러나, 입자 표면에 암 특이적 항원을 고밀도로 균일하게 노출시키는 부분에 있어서 아직까지 한계가 있는 실정이다.
암 면역 치료는 종래의 항암 치료방법과 비교하여 환자의 면역체계를 이용하기 때문에 부작용이 낮고, 면역 기억 형성으로 치료 효과가 장기간 지속될 수 있으며, 종양 항원 특이적 인식 원리에 의해 일반 세포에는 영향력이 낮아 부작용이 거의 없는 장점이 있다. 또한 최근 재발성 혹은 항암제 저항성을 갖는 암 환자들에 대한 임상 성공사례들로 인해 암 면역치료는 사이언스지(Science)가 Breakthrough of the year 2013으로 선정할 만큼 폭발적인 주목을 받고 있다.
또한, 면역관문인자인 PD-1(Programmed cell death protein 1)/PD-L1(PD1 ligand) 중화 항체 치료제의 경우, 흑색종 및 폐암에서 반응률 20-30% 이상의 임상결과를 도출하고 있어 향후 수년 내에 암 면역 치료는 암의 표준 치료로 임상 현장에 사용될 가능성이 높다. 그러나, 면역관문 인자인 PD1/PD-L1 또는 CTLA4 특이적인 면역 활성 억제 차단 항체들은 면역세포의 활성 자체를 근본적으로 증진시킬 수 없고, 항체의 긴 체내 잔류시간 및 항체의 Fc 도메인 부분 때문에 발생하는 자가면역질환 등의 부작용이 발생하며, 동물세포 시스템의 항체 제작 및 정제로 인한 고가의 생산 비용과 더불어 높은 소모량으로 인해 항체치료 비용이 높아 경제적 측면에서의 단점 또한 존재하는 실정이다.
본 발명은 면역 관문 분자에 결합할 수 있는 신규한 단백질을 제공하는 것을 목적으로 한다.
본 발명은 면역 관문 분자가 T 세포를 불활성화시키지 못하도록 함으로써 T세포가 암세포를 사멸할 수 있도록 하는 신규한 단백질을 제공하는 것을 목적으로 한다.
본 발명은 위의 신규 단백질을 포함하는 암의 예방 또는 치료용 약학 조성물을 제공하는 것을 목적으로 한다.
본 발명은 위의 신규 단백질을 포함하는 암의 치료 방법을 제공하는 것을 목적으로 한다.
본 발명은 외부 표면에 면역 관문 분자와 결합 가능한 분자가 융합된 페리틴 단백질을 제공한다.
본 발명의 단백질은 상기 면역 관문 분자와 결합 가능한 분자가 융합된 페리틴 단량체 24개가 자기 조립되어 이루어진 구형의 단백질일 수 있다.
본 발명에서 상기 면역 관문 분자와 결합 가능한 분자는 페리틴 단량체의 인접한 α-헬릭스들 사이 중 적어도 하나에 융합될 수 있다.
본 발명에서 상기 면역 관문 분자와 결합 가능한 분자는 페리틴 단량체의 N-말단 또는 C-말단에 융합될 수 있다.
본 발명에서 상기 면역 관문 분자와 결합 가능한 분자는 페리틴 단량체의 A-B루프, B-C루프, C-D루프 또는 D-E루프에 융합될 수 있다.
본 발명에서 상기 면역 관문 분자와 결합 가능한 분자는 페리틴 단량체의 N-말단과 A 헬릭스 사이 또는 E 헬릭스와 C-말단 사이에 융합될 수 있다.
본 발명의 단백질은 인간 트랜스페린 수용체에 대한 결합력이 떨어지도록 돌연 변이된 것일 수 있다.
본 발명의 단백질은 이를 구성하는 페리틴 단량체 중 적어도 하나가 서열번호 1의 서열에서 14번, 15번, 22번, 81번 또는 83번 아미노산이 알라닌, 글라이신, 발린 또는 류신으로 치환된 것일 수 있다.
본 발명의 페리틴 단백질은 트랜스페린 수용체에 대한 결합력(K)이 다음 수학식 1을 만족할 수 있다:
[수학식 1]
K ≥ 100 nM
(식 중, K = [P][T]/[PT]이고, 여기서 [P]는 페리틴 단백질과 트랜스페린 수용체와의 결합 반응의 평형 상태에서의 페리틴 단백질의 농도를 나타내고, [T]는 상기 평형 상태에서의 트랜스페린 수용체의 농도를 나타내며, [PT]는 상기 평형 상태에서의 페리틴 단백질과 트랜스페린 수용체의 복합체의 농도를 나타냄).
본 발명에서 상기 트랜스페린 수용체에 대한 결합력은 인간 트랜스페린 수용체에 대한 결합력일 수 있다.
본 발명에서 상기 면역 관문 분자는 Her-2/neu, VISTA, 4-1BBL, Galectin-9, Adenosine A2a receptor, CD80, CD86, ICOS, ICOSL, BTLA, OX-40L, CD155, BCL2, MYC, PP2A, BRD1, BRD2, BRD3, BRD4, BRDT, CBP, E2F1, MDM2, MDMX, PPP2CA, PPM1D, STAT3, IDH1, PD1, CTLA4, PD-L1, PD-L2, LAG3, TIM3, TIGIT, BTLA, SLAMF7, 4-1BB, OX-40, ICOS, GITR, ICAM-1, BAFFR, HVEM, LFA-1, LIGHT, NKG2C, SLAMF7, NKp80, LAIR1, 2B4, CD2, CD3, CD16, CD20, CD27, CD28, CD40L, CD48, CD52, EGFR family, AXL, CSF1R, DDR1, DDR2, EPH receptor family, FGFR family, VEGFR family, IGF1R, LTK, PDGFR family, RET, KIT, KRAS, NTRK1 및 NTRK2으로 이루어진 군에서 선택되는 어느 하나일 수 있다.
본 발명에서 상기 면역 관문 분자와 결합 가능한 분자는 상기 면역 관문 분자에 대한 리간드, 항체 또는 이의 단편일 수 있다.
본 발명에서 페리틴은 인간 페리틴 중쇄일 수 있다.
본 발명의 페리틴 단백질은 대장균 생산 시스템에서 40% 이상이 수용성 분획으로 존재할 수 있다.
본 발명은 본 발명의 페리틴 단백질을 포함하는 암의 치료 또는 예방용 약학 조성물을 제공한다.
본 발명의 약학 조성물은 뇌암, 두경부암, 방광암, 유방암, 자궁경부암, 결장암, 결장직장암, 자궁내막암, 식도암, 백혈병, 폐암, 간암, 난소암, 췌장암, 전립선암, 직장암, 신장암, 위암, 고환암, 자궁암, 혈관 종양, 편평세포암종, 선암종, 소세포 암종, 흑색종, 신경교종, 신경아세포종, 육종, 후두암, 이하선암, 담도암, 갑상선암, 광선각화증, 급성 림프구성 백혈병, 급성 골수 백혈병, 샘낭암종, 선종, 선 평편상피암종, 항문관암, 항문암, 항문직장암, 성상세포종, 큰질어귀샘암, 기저세포 암종, 담즙암, 골암, 골수암, 기관지암, 기관지샘 암종, 카시노이드, 담관암종, 만성 림프구성 백혈병, 만성 골수성 백혈병, 투명세포 암종, 결합조직암, 낭선종, 소화계통암, 십이지장암, 내분비계암, 내배엽동종양, 자궁내막증식증, 자궁내막모양 선암종, 내피세포암, 뇌실막세포, 상피세포암, 안와암, 국소결절성 과증식, 담낭암, 날문방암, 위 기저부 암, 가스트린종, 교모세포종, 글루카곤종, 심장암, 혈관아세포종, 혈관내피종, 혈관종, 간샘종, 간 선종증, 간담도암, 간세포 암종, 호지킨병, 회장암, 인슐린종, 상피내 신생물, 상피내 편평세포 신생물, 간내 담도암, 침윤성 편평세포암종, 공장암, 관절암, 골반암, 거대 세포 암종, 대장암, 림프종, 악성 중피세포 종양, 수아세포종, 수질상피종, 뇌막암, 중피암, 전이성 암종, 구강암, 점막표피모양 암종, 다발성 골수종, 근육암, 비강관암, 신경계암, 비-상피 피부암, 비-호지킨 림프종, 연맥 세포 암종, 핍지교종암, 구강암, 골육종, 유두상 장액성 선암종, 음경암, 인두암, 뇌하수체 종양, 형질세포종, 가육종, 폐 아세포종, 직장암, 신세포 암종, 호흡계 암, 망막아세포종, 장액성 암종, 부비강암, 피부암, 소세포 암종, 소장암, 평활근육암, 연조직암, 소마토스타틴-분비 종양, 척추암, 편평세포암종, 선조 근육암, 중피세포하층암, T 세포 백혈병, 설암, 요관암, 요도암, 자궁경부암, 자궁몸통암, 질암, VIPoma, 외음부암, 고분화 암종 및 윌름 종양으로 이루진 군에서 선택된 어느 하나의 암의 치료 또는 예방에 사용될 수 있다.
본 발명의 약학 조성물은 질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어지고, 트랜스페린 수용체에 대한 결합력(K)이 다음 수학식 4를 만족하는 단백질을 더 포함할 수 있다:
[수학식 4]
K ≤ 700 nM
(식 중, K = [P][T]/[PT]이고, 여기서 [P]는 상기 단백질과 상기 트랜스페린 수용체와의 결합 반응의 평형 상태에서의 상기 단백질의 농도를 나타내고, [T]는 상기 평형 상태에서의 상기 트랜스페린 수용체의 농도를 나타내며, [PT]는 상기 평형 상태에서의 상기 단백질과 상기 트랜스페린 수용체의 복합체의 농도를 나타냄).
본 발명에서 질환 항원 에피토프는 gp100, MART-1, Melna-A, MAGE-A3, MAGE-C2, Mammaglobin-A, proteinsase-3, mucin-1, HPV E6, LMP2, PSMA, GD2, hTERT, PAP, ERG, NA17, ALK, GM3, EPhA2, NA17-A, TRP-1, TRP-2, NY-ESO-1, CEA, CA 125, AFP, Survivin, AH1, ras, G17DT, MUC1, Her-2/neu, E75, p53, PSA, HCG, PRAME, WT1, URLC10, VEGFR1, VEGFR2, E7, Tyrosinase 펩타이드, B16F10, EL4 또는 신생항원(neoantigen)일 수 있다.
본 발명의 약학 조성물은 상기 2종의 단백질이 병용 투기 위한 것일 수 있다.
본 발명의 약학 조성물은 종의 단백질이 동시, 개별 또는 순차적으로 투여되는 것일 수 있다.
도 1의 A는 종양 항원이 발현된 본 발명의 단백질을 제조하기 위한 발현 벡터의 모식도를 나타낸 것이며 B는 제조된 단백질의 구조를 나타낸다.
도 2는 본 발명에 따라 제조된 gp100-huHF 나노입자 표면의 종양 항원과 트랜스페린 수용체(TfR)와의 결합 위치를 표시한 모식도이다.
도 3은 본 발명의 gp100-huHF 단백질의 TEM 이미지와 DLS 결과를 나타낸다.
도 4는 본 발명의 gp100-huHF 단백질과 트랜스페린 수용체(TfR)과의 결합능을 측정한 결과이다.
도 5는 PD-L1과 결합 가능한 PD1 도메인이 삽입된 면역관문억제제 (huHF-PD1 단백질)를 제조하기 위한 발현 벡터의 모식도; gp100-huHF 단백질의 구조; 본 발명의 gp100-huHF 단백질의 TEM 이미지; 본 발명의 gp100-huHF 단백질의 직경 분포도; 및 huHF-PD1 단백질과 PD1 리간드(PD-L1), huHF-TPP1(AB loop, CD loop) 및 αPD-L1 HCDR3(CD loop, C-말단)와의 결합능을 측정한 결과를 나타낸 것이다.
도 6은 본 발명의 단백질의 수지상 세포에 의한 cellular uptake 결과를 나타낸 것이다.
도 7a는 huHF 단백질과 huHF-PD1 단백질의 암 세포 CT-26 및 B16F10에 대한 타겟팅 효율을 형광 이미지를 통해 비교한 결과이고; 도 7b는 huHF 단백질과 huHF-αPD-L1 HCDR3(CD loop, C-말단)의 CT-26 세포에 대한 타겟팅 효율을 형광 이미지를 통해 비교한 것이며; 도 7c는 huHF 단백질과 huHF-TPP1, huHF-smPD1의 CT-26 세포에 대한 타겟팅 효율을 형광 이미지를 통해 비교한 것이다.
도 8은 gp100-huHF의 림프절로의 전달 효율을 확인한 결과이다.
도 9는 huHF, PD-L1 항체 및 huHF-PD1 단백질의 암 세포 CT-26에 대한 암 타겟팅 효율을 비교한 결과이다. 상대 형광 강도의 각 장기에서의 막대 그래프에서 왼쪽부터 huHF, α-PD-L1, PD1-huHF의 결과이다.
도 10은 gp100-huHF 단백질에서 gp100의 삽입 위치에 따른 면역 효율을 비교한 결과이다. 각 그룹의 막대 그래프에서 왼쪽이 without gp100, 오른쪽이 with gp100의 결과이다.
도 11의 A는 OVA-huHF 단백질이 항원 제시 세포의 OVA 펩타이드 항원 제시를 증가시킬 수 있는지를 FACS(flow cytometry)를 통해 확인한 결과이고, B는 상기 단백질의 DC maturation marker 발현 정도를 확인한 결과이다. B의 각 그룹의 막대 그래프에서 왼쪽부터 MHC-II, CD80, CD40, CD86의 결과이다.
도 12는 gp100-huHF 단백질의 종양 항원 억제능을 확인하기 위한 실험 방법의 모식도와 실험 결과를 나타낸 것이다.
도 13은 huHF-PD1 단백질의 CT26(대장암 세포)와 B16F10(흑색종 세포)에서의 종양 형성 억제 효과를 동물 모델에서 확인하기 위한 실험 방법의 모식도와 실험 결과를 나타낸 것이다.
도 14는 huHF-PD1 단백질과 gp100-huHF 및 AH1-huHF 단백질의 병용 치료 효과로 인한 CT26(대장암 세포)와 B16F10(흑색종 세포)에서의 종양 형성 억제 효과를 동물 모델에서 확인하기 위한 실험 방법의 모식도와 실험 결과를 나타낸 것이다.
도 15의 A는 PD-L1 항체와 huHF-PD1 단백질의 암 세포 CT26 및 B16F10에서의 T-세포 매개 세포사멸 효율을 비교한 것이고; B는 PD-L1 항체와 huHF-PD1 단백질의 암 세포 CT26 및 B16F10에서의 T-세포 활성 반응을 비교한 것이며; C는 AH1-huHF 단백질, gp100-huHF 단백질 및 huHF-PD1의 병용 치료에 의해 각각 종양 항원에 대한 T-세포 활성 반응을 나타낸 것이다.
도 16은 기존 항체 치료제와의 면역 부작용 유발을 확인한 결과이다.
도 17은 AH1-huHF 단백질 및/또는 huHF-PD1 단백질의 처리에 따른 CT26(대장암 세포)에서의 종양 재발 억제 결과를 나타낸 것이다.
도 18은 huHF-PD1 단백질의 종양 rechallenge 후 종양 형성 억제 유도를 위한 T 세포 활성을 측정하기 위하여 실험군 쥐들의 체내에서 T 세포들을 추출하여 검증한 결과이다. 왼쪽부터 PBS, AH1-huHF, α-PD-L1, PD1-huHF, AH1-huHF + α-PD-L1, AH1-huHF + PD1-huHF의 결과이다.
도 19는 NA-gp100-huHF, 도 20은 EC-gp100-huHF, 도 21은 D in-gp100-huHF, 도 22는 Ein0gp100-huHF, 도 23은 msmPD1-huHF의 각 제조를 위한 벡터 모식도 및 그 단백질의 제조를 확인한 것이다.
도 24는 PD1-huHF의 종양 억제능을 확인한 것이다.
도 25는 huHF-PD-L1-TIGIT dual blocker의 종양 억제능 평가를 위한 스케쥴이다.
도 26 및 27은 huHF-PD-L1-TIGIT dual blocker의 종양 억제능 평가 결과이다.
도 28 및 29는 huHF-α-PD-L1 HCDR3의 페리틴 단량체의 결합 위치에 따른 타겟팅능을 평가한 것이다.
도 30은 huHF-αPD-L1 HCDR3의 벡터 모식도 및 그 단백질의 제조 및 자가 조립 여부를 확인한 것이다.
도 31은 huHF-αPD1 HCDR3의 벡터 모식도 및 그 단백질의 제조 및 자가 조립 여부를 확인한 것이다.
도 32는 huHF-αCTLA4 HCDR3의 벡터 모식도 및 그 단백질의 제조 및 자가 조립 여부를 확인한 것이다.
도 33은 huHF-αTIGIT HCDR3의 벡터 모식도 및 그 단백질의 제조 및 자가 조립 여부를 확인한 것이다.
도 34는 huHF-αLAG3 HCDR3의 벡터 모식도 및 그 단백질의 제조 및 자가 조립 여부를 확인한 것이다.
도 35는 huHF-αTIM3 HCDR3의 벡터 모식도 및 그 단백질의 제조 및 자가 조립 여부를 확인한 것이다.
도 36은 huHF-αPD-L1-αTIGIT의 벡터 모식도 및 그 단백질의 제조 및 자가 조립 여부를 확인한 것이다.
본 발명은 외부 표면에 면역 관문 분자와 결합 가능한 분자가 융합된 페리틴 단백질(단백질 A)에 관한 것이다.
페리틴(Ferritin)은 인간, 동물 및 미생물 유래의 페리틴일 수 있다.
인간 페리틴은 중쇄(heavy chain, 21 kDa)와 경쇄(light chain, 19 kDa)로 구성되며, 상기 페리틴을 이루고 있는 단량체의 자가조립 능력을 통해 구형의 나노입자를 형성하는 특성을 나타낸다. 페리틴은 24개의 단량체가 모여 구 형상의 입체 구조를 갖는 자기조립체를 형성할 수 있다.
인간 페리틴의 경우 외경은 약 12 nm이고 내경은 약 8 nm이다. 페리틴 단량체의 구조는 5개의 α-헬릭스 구조, 즉 A 헬릭스, B 헬릭스, C 헬릭스, D 헬릭스 및 E 헬릭스가 순차적으로 연결된 형태이며, 루프(loop)라 불리는 각각의 α-헬릭스 구조의 폴리펩타이드를 연결하는 비정형 폴리펩타이드 부분을 포함한다.
루프는 페리틴에 펩타이드 또는 작은 단백질 항원 등이 삽입되더라도 구조적으로 망가지지 않는 지역(region)이다. 여기에 펩타이드를 클로닝을 이용하여 융합시킴으로써 페리틴의 단량체에 에피토프 등의 펩타이드가 위치한 펩타이드-페리틴 융합 단백질 단량체를 제조할 수 있다. A 헬릭스와 B 헬릭스를 연결하는 루프를 A-B루프, B 헬릭스와 C 헬릭스를 연결하는 루프를 B-C루프, C 헬릭스와 D 헬릭스를 연결하는 루프를 C-D루프, D 헬릭스와 E 헬릭스를 연결하는 루프를 D-E루프라 한다.
페리틴의 정보는 NCBI에 공지되어 있다(GenBank Accession No. NM_000146, NM_002032 등).
페리틴은 페리틴 중쇄일 수 있으며, 구체적으로, 인간 페리틴 중쇄일 수 있다. 인간 페리틴 중쇄는 사람으로부터 유래된 서열번호 1의 아미노산 서열로 표시되는 단백질일 수 있으며, 본 명세서에서 상기 페리틴 은 '인간 페리틴 중쇄' 또는 'huHF'와 혼용되어 사용될 수 있다.
페리틴은 그 단량체 수 개가 자기 조립되어 조직적인 구조 또는 패턴을 형성한다. 본 발명의 페리틴 단백질은 나노 스케일의 입자이다. 예컨대 면역 관문 분자와 결합 가능한 분자가 융합된 페리틴 단량체 24개가 자기 조립되어 페리틴 단백질을 형성할 수 있다.
본 발명의 페리틴 단백질(단백질 A)은 구형일 수 있다. 구형인 경우 예컨대 그 입경이 8 내지 50nm일 수 있다. 보다 구체적으로, 8nm 내지 50nm, 8nm 내지 45nm, 8nm 내지 40nm, 8 nm 내지 35nm, 8nm 내지 30nm, 8nm 내지 25nm, 8nm 내지 20nm, 8nm 내지 15nm일 수 있다.
본 발명의 페리틴 단백질(단백질 A)은 외부 표면에 면역 관문 분자와 결합 가능한 분자가 융합된 것이다. 페리틴 단백질의 외부 표면에 면역 관문 분자와 결합 가능한 분자가 융합되어 있기만 하면 페리틴 단백질을 이루는 모든 페리틴 단량체에 면역 관문 분자와 결합 가능한 분자가 융합되어 있을 필요는 없다.
예컨대 면역 관문 분자와 결합 가능한 분자가 융합된 페리틴 단량체 24개가 자기 조립되어 페리틴 단백질(단백질 A)을 형성할 때, 24개의 페리틴 단량체 중 적어도 1개의 페리틴 단량체에 면역 관문 분자와 결합 가능한 분자가 융합되어 있으면 된다. 페리틴 단백질 외부 표면의 면역 관문 분자와 결합 가능한 분자의 밀도를 높이기 위해 24개의 페리틴 단량체 모두에 면역 관문 분자와 결합 가능한 분자를 융합시킬 수 있다.
페리틴 단백질(단백질 A)을 이루는 각 페리틴 단량체에는 면역 관문 분자와 결합 가능한 분자가 1종 또는 2종 이상 융합될 수 있다. 페리틴 단백질을 이루는 각 페리틴 단량체는 서로 다른 면역 관문 분자와 결합 가능한 분자가 융합되어 있을 수 있다. 페리틴 단백질을 이루는 각 페리틴 단량체는 동일 면역 관문 분자와 결합 가능한 서로 다른 분자가 융합되어 있을 수 있다.
면역 관문 분자(Immune checkpoint molecule)는 T세포에 결합하여 T세포를 불활성화시키는 역할을 한다. 이러한 면역 관문 분자는 예를 들면 Her-2/neu, VISTA, 4-1BBL, Galectin-9, Adenosine A2a receptor, CD80, CD86, ICOS, ICOSL, BTLA, OX-40L, CD155, BCL2, MYC, PP2A, BRD1, BRD2, BRD3, BRD4, BRDT, CBP, E2F1, MDM2, MDMX, PPP2CA, PPM1D, STAT3, IDH1, PD1, CTLA4, PD-L1, PD-L2, LAG3, TIM3, TIGIT, BTLA, SLAMF7, 4-1BB, OX-40, ICOS, GITR, ICAM-1, BAFFR, HVEM, LFA-1, LIGHT, NKG2C, SLAMF7, NKp80, LAIR1, 2B4, CD2, CD3, CD16, CD20, CD27, CD28, CD40L, CD48, CD52, EGFR family, AXL, CSF1R, DDR1, DDR2, EPH receptor family, FGFR family, VEGFR family, IGF1R, LTK, PDGFR family, RET, KIT, KRAS, NTRK1, NTRK2 등일 수 있다.
면역 관문 분자와 결합 가능한 분자는 면역 관문 분자에 대한 리간드, 항체 또는 이들의 단편일 수 있다.
면역 관문 분자와 결합 가능한 분자는 페리틴 단백질의 외부 표면에 노출될 수 있다면 페리틴 단량체 어느 곳에 융합되어도 괜찮다. 면역 관문 분자와 결합 가능한 분자는 페리틴 단량체가 자기 조립되는데 방해가 되지 않는 위치에 융합된다.
면역 관문 분자와 결합 가능한 분자가 페리틴 단량체 내부에 융합되어 페리틴 단백질의 구조가 바뀔 수 있다. 페리틴 단량체의 각 구성 부분 중 내부로 함입되어 있는 부분이 면역 관문 분자와 결합 가능한 분자의 융합에 의해 외부로 돌출될 수 있고, 반대로 페리틴 단량체의 각 구성 부분 중 외부로 돌출되어 있던 부분이 면역 관문 분자와 결합 가능한 분자의 융합에 의해 내부로 함입되게 될 수 있다.
면역 관문 분자와 결합 가능한 분자는 페리틴 단백질(단백질 A)이 인간 트랜스페린 수용체와의 결합력을 떨어뜨리거나 인간 트랜스페린 수용체와의 결합력에 방해가 되는 위치에 융합되는 것이 바람직하다.
면역 관문 분자와 결합 가능한 분자는 그 구조, 분자량 및 아미노산 길이가 특정한 범위의 것으로 한정되지 않는다.
면역 관문 분자와 결합 가능한 분자는 예컨대 그 아미노산 길이가 25aa 이하인 리간드, 항체 또는 이들의 단편일 수 있다. 보다 구체적으로 아미노산의 길이가 25aa 이하, 24aa 이하, 23aa 이하, 22aa 이하, 21aa 이하, 20aa 이하, 19aa 이하, 18aa 이하, 17aa 이하, 16aa 이하, 15aa 이하, 14aa 이하, 13aa 이하, 12aa 이하, 11aa 이하, 10aa 이하, 9aa 이하, 8aa 이하, 7aa 이하, 6aa 이하, 5aa 이하일 수 있다. 또한 예컨대 그 아미노산의 길이가 3aa 이상, 4aa 이상, 5aa 이상, 6aa 이상, 7aa 이상, 8aa 이상, 9aa 이상, 10aa 이상일 수 있다.
면역 관문 분자와 결합 가능한 분자의 융합 위치는 특정한 위치로 제한되지 않으며, 예컨대 페리틴 단량체의 인접한 α-헬릭스들 사이, N-말단, C-말단, A-B루프, B-C루프, C-D루프, D-E루프, N-말단과 A 헬릭스 사이, E 헬릭스와 C-말단 사이, 헬릭스 내부 등에 융합될 수 있다.
본 발명의 페리틴 단백질(단백질 A)은 면역 관문 분자와 결합하도록 설계되어 있으므로 트랜스페린 수용체에 대해서는 잘 결합하지 않는 것이 바람직하다. 예컨대 본 발명의 페리틴 단백질은 트랜스페린 수용체에 대하여 다음 수학식 1을 만족한다:
[수학식 1]
K ≥ 100 nM
(식 중, K = [P][T]/[PT]이고, 여기서 [P]는 페리틴 단백질과 트랜스페린 수용체와의 결합 반응의 평형 상태에서의 페리틴 단백질의 농도를 나타내고, [T]는 상기 평형 상태에서의 트랜스페린 수용체의 농도를 나타내며, [PT]는 상기 평형 상태에서의 페리틴 단백질과 트랜스페린 수용체의 복합체의 농도를 나타냄).
상기 결합력은 예를 들면 인간 트랜스페린 수용체에 대한 결합력일 수 있다.
수학식 1의 K 값이 100nM 이상, 110nM 이상, 120nM 이상, 125nM 이상, 125nM 초과, 150nM 이상, 200nM 이상, 210nM 이상, 220nM 이상, 230nM 이상, 240nM 이상, 250nM 이상, 260nM 이상, 270nM 이상, 280nM 이상, 290nM 이상, 300nM 이상, 350nM 이상, 400nM 이상, 450nM 이상, 500nM 이상, 550nM 이상, 600nM 이상, 700nM 이상, 800nM 이상, 900nM 이상, 1000nM 이상이다. 수학식 1의 K값이 클수록 트랜스페린 수용체에 대한 결합력이 떨어지는 것이다.
트랜스페린 수용체에 대한 결합력(K)은 본 발명의 페리틴 단백질(A)과 트랜스페린 수용체와의 결합 반응의 평형 상태에서 측정된다. 평형 상태에서의 페리틴 단백질의 농도([P]), 트랜스페린 수용체의 농도([T]) 및 본 발명의 단백질과 트랜스페린 수용체의 복합체의 농도([PT])는 공지된 다양한 방법으로 측정될 수 있다.
트랜스페린 수용체에 대한 결합력(K)은 예컨대 MST(Microscale Thermophoresis) 방법에 따라 측정될 수 있다. MST 측정 장치로는 Monolith NT.115가 있다.
수학식 1의 농도는 다음 수학식 2 및 3을 활용하여 얻어진 것일 수 있다.
[수학식 2]
[PT]= 1/2 x (([P 0]+[A 0]+[P][T]/[PT])-(([P 0]+[T 0]+ ([P][T]/[PT]) 2)-4 x [P 0] x [T 0]) 1/2)
(식 중, [PT]는 페리틴 단백질과 트랜스페린 수용체의 복합체의 반응 평행 상태에서의 농도, P 0는 페리틴 단백질의 최초 농도, T 0는 트랜스페린 수용체의 최초 농도, [P]는 페리틴 단백질의 반응 평행 상태에서의 농도, [T]는 트랜스페린 수용체의 반응 평행 상태에서의 농도를 각각 나타냄).
[수학식 3]
X= [PT]/[P 0]
(식 중, [PT]는 페리틴 단백질과 트랜스페린 수용체의 복합체의 반응 평행 상태에서의 농도, P 0는 페리틴 단백질의 최초 농도이고, X는 페리틴 단백질 중 트랜스페린 수용체와 복합체를 이룬 단백질의 비율임).
본 발명의 페리틴 단백질(단백질 A)은 트랜스페린 수용체에 대한 결합력을 낮추기 위해 트랜스페린 수용체와의 결합에 관여하는 부위에 면역 관문 분자와 결합 가능한 분자를 융합시킬 수 있다. 예컨대 본 발명의 페리틴 단백질의 B-C루프 및 A 헬릭스 부분에 면역 관문 분자와 결합 가능한 분자가 위치하도록 상기 분자를 융합시킬 수 있다.
본 발명의 페리틴 단백질(단백질 A)은 해당 단백질을 코딩하는 서열을 발현하는 미생물 내에서 제조되는 것일 수 있다.
미생물은 당 분야에 공지된 미생물이 제한 없이 사용될 수 있다. 예를 들면 대장균일 수 있고, 구체적으로는 BL21(DE3)일 수 있으나, 이에 제한되는 것은 아니다.
미생물 시스템으로 단백질을 제조하는 경우에 얻어지는 단백질이 세포질에 용해된 상태로 존재해야 분리/정제가 용이하다. 많은 경우 제조된 단백질이 봉입체(inclusion body) 등으로 응집된 상태로 존재한다. 본 발명의 페리틴 단백질은 미생물 생산 시스템에서 세포질에 용해된 비율이 높게 나타난다. 분리/정제 및 활용이 용이하다.
본 발명의 페리틴 단백질(단백질 A)은 예를 들면 이를 제조하는 대장균 시스템에서 전체 단백질 중 수용성 분획비율이 40% 이상인 상태로 제조될 수 있다. 구체적으로, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 95% 이상일 수 있다. 그 상한은 예를 들면 100%, 99%, 98%, 97%, 96% 등일 수 있다.
본 발명은 이상의 페리틴 단백질(단백질 A)을 포함하는 암의 예방 또는 치료용 약학 조성물을 제공한다. 이상의 페리틴 단백질에 관하여 설명된 사항은 모두 본원의 약학 조성물의 유효성분으로서의 페리틴 단백질에 그대로 적용된다.
본 발명의 약학 조성물은 약학적으로 허용 가능한 담체를 포함할 수 있다. 본 발명에서 용어, “약학적으로 허용 가능한 담체”란 생물체를 상당히 자극하지 않고 투여 성분의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 본 발명에서의 약학적으로 허용 가능한 담체는 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 또는 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액 및 정균제 등 다른 통상의 첨가제를 첨가하여, 조직 또는 장기에 주입하기에 적합한 주사제의 형태로 제형화할 수 있다. 또한, 등장성 멸균 용액, 또는 경우에 따라 멸균수나 생리 식염수를 첨가하여 주사 가능한 용액이 될 수 있는 건조 제제(특히 동결 건조제제)로 제형화할 수도 있다. 또한, 표적 기관에 특이적으로 작용할 수 있도록 표적 기관 특이적 항체 또는 기타 리간드를 상기 담체와 결합시켜 사용할 수 있다.
또한, 본 발명의 조성물은 충진제, 부형제, 붕해제, 결합제 또는 활택제를 추가로 포함할 수 있다. 또한, 본 발명의 조성물은 포유동물에 투여된 후 활성성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다.
한 구체예에서, 상기 약학 조성물은 주사 제형일 수 있으며, 정맥내 투여되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 용어, “유효량”은 목적하는 치료되어야 할 특정 질환의 발병 또는 진행을 지연하거나, 전적으로 증진시키는데 필요한 양을 의미한다.
본 발명에서 조성물은 약학적 유효량으로 투여될 수 있다. 상기 약학 조성물의 적합한 총 1일 사용량은 올바른 의학적 판단범위 내에서 처치의에 의해 결정될 수 있다는 것은 당업자에게 자명한 일이다.
본 발명의 목적상, 특정 환자에 대한 구체적인 약학적 유효량은 달성하고자 하는 반응의 종류와 정도, 경우에 따라 다른 제제가 사용되는지의 여부를 비롯한 구체적인 조성물, 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여시간, 투여 경로 및 조성물의 분비율, 치료 기간, 구체적 조성물과 함께 사용되거나 동시 사용되는 약물을 비롯한 다양한 인자와 의약 분야에 잘 알려진 유사 인자에 따라 다르게 적용하는 것이 바람직하다.
본 발명에 있어서, 상기 약학 조성물은 필요에 따라 약물의 제조, 사용 및 판매를 관장하는 정부 기관에 의해 지시된 형태로 포장과 연계된 지시서가 수반될 수 있으며, 상기 지시서는 조성물의 형태 또는 인간이나 동물 투여에 관하여 사익 기관의 승인을 나타내고 있고, 예를 들어, 약물의 처방에 대하여 미국 식품의약국에서 승인된 표지일 수 있다.
암은 예를 들면 뇌암, 두경부암, 방광암, 유방암, 자궁경부암, 결장암, 결장직장암, 자궁내막암, 식도암, 백혈병, 폐암, 간암, 난소암, 췌장암, 전립선암, 직장암, 신장암, 위암, 고환암, 자궁암, 혈관 종양, 편평세포암종, 선암종, 소세포 암종, 흑색종, 신경교종, 신경아세포종, 육종, 후두암, 이하선암, 담도암, 갑상선암, 광선각화증, 급성 림프구성 백혈병, 급성 골수 백혈병, 샘낭암종, 선종, 선 평편상피암종, 항문관암, 항문암, 항문직장암, 성상세포종, 큰질어귀샘암, 기저세포 암종, 담즙암, 골암, 골수암, 기관지암, 기관지샘 암종, 카시노이드, 담관암종, 만성 림프구성 백혈병, 만성 골수성 백혈병, 투명세포 암종, 결합조직암, 낭선종, 소화계통암, 십이지장암, 내분비계암, 내배엽동종양, 자궁내막증식증, 자궁내막모양 선암종, 내피세포암, 뇌실막세포, 상피세포암, 안와암, 국소결절성 과증식, 담낭암, 날문방암, 위 기저부 암, 가스트린종, 교모세포종, 글루카곤종, 심장암, 혈관아세포종, 혈관내피종, 혈관종, 간샘종, 간 선종증, 간담도암, 간세포 암종, 호지킨병, 회장암, 인슐린종, 상피내 신생물, 상피내 편평세포 신생물, 간내 담도암, 침윤성 편평세포암종, 공장암, 관절암, 골반암, 거대 세포 암종, 대장암, 림프종, 악성 중피세포 종양, 수아세포종, 수질상피종, 뇌막암, 중피암, 전이성 암종, 구강암, 점막표피모양 암종, 다발성 골수종, 근육암, 비강관암, 신경계암, 비-상피 피부암, 비-호지킨 림프종, 연맥 세포 암종, 핍지교종암, 구강암, 골육종, 유두상 장액성 선암종, 음경암, 인두암, 뇌하수체 종양, 형질세포종, 가육종, 폐 아세포종, 직장암, 신세포 암종, 호흡계 암, 망막아세포종, 장액성 암종, 부비강암, 피부암, 소세포 암종, 소장암, 평활근육암, 연조직암, 소마토스타틴-분비 종양, 척추암, 편평세포암종, 선조 근육암, 중피세포하층암, T 세포 백혈병, 설암, 요관암, 요도암, 자궁경부암, 자궁몸통암, 질암, VIPoma, 외음부암, 고분화 암종 및 윌름 종양으로 이루진 군에서 선택된 암일 수 있다.
본 발명은 질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어지고, 트랜스페린 수용체에 대한 결합력(K)이 다음 수학식 4를 만족하는 단백질(단백질 B)을 더 포함하는 암의 치료 또는 예방용 약학 조성물을 제공한다:
[수학식 4]
K ≤ 700 nM
(식 중, K = [P][T]/[PT]이고, 여기서 [P]는 상기 단백질과 상기 트랜스페린 수용체와의 결합 반응의 평형 상태에서의 상기 단백질의 농도를 나타내고, [T]는 상기 평형 상태에서의 상기 트랜스페린 수용체의 농도를 나타내며, [PT]는 상기 평형 상태에서의 상기 단백질과 상기 트랜스페린 수용체의 복합체의 농도를 나타냄).
상기 트랜스페린 수용체에 대한 결합력은 인간 트랜스페린 수용체에 대한 결합력일 수 있다.
상기 수학식 4로 표시되는 결합력은 예를 들면 수학식 1로 표시되는 결합력을 구하는 방법과 동일 방법으로 얻어진 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 질환 항원 에피토프가 융합된 페리틴 단백질(단백질 B)은 트랜스페린 수용체에 대한 결합력(K)이 700nM 이하, 600nM 이하, 500nM 이하, 400nM 이하, 300nM 이하, 200nM 이하, 150nM 이하, 125nM 이하, 100nM 이하, 50nM 이하, 40nM 이하, 30nM 이하, 20nM 이하, 10nM 이하 등일 수 있다. 수학식 4의 농도값이 작을수록 트랜스페린 수용체에 대한 결합력이 높음을 의미한다. 예를 들면 그 하한은 0.5nM, 1nM, 1.5nM, 2nM, 2.5nM, 3nM, 3.5nM, 4nM, 4.5nM, 5nM 등일 수 있으나, 이에 제한되는 것은 아니다.
질환 항원은 면역 반응에 의해 예방, 치료, 완화 또는 개선될 수 있는 모든 질환의 항원일 수 있다. 예를 들면 질환 항원은 암세포, 병원체 세포 또는 병원체에 감염된 세포의 세포 표면 항원일 수 있다. 질환 항원의 항원 특이성을 결정하는 특정 부위가 질환 항원 에피토프이다.
질환은 예컨대 암 또는 감염성 질환이다.
암은 예컨대 뇌암, 두경부암, 방광암, 유방암, 자궁경부암, 결장암, 결장직장암, 자궁내막암, 식도암, 백혈병, 폐암, 간암, 난소암, 췌장암, 전립선암, 직장암, 신장암, 위암, 고환암, 자궁암, 혈관 종양, 편평세포암종, 선암종, 소세포 암종, 흑색종, 신경교종, 신경아세포종, 육종, 후두암, 이하선암, 담도암, 갑상선암, 광선각화증, 급성 림프구성 백혈병, 급성 골수 백혈병, 샘낭암종, 선종, 선 평편상피암종, 항문관암, 항문암, 항문직장암, 성상세포종, 큰질어귀샘암, 기저세포 암종, 담즙암, 골암, 골수암, 기관지암, 기관지샘 암종, 카시노이드, 담관암종, 만성 림프구성 백혈병, 만성 골수성 백혈병, 투명세포 암종, 결합조직암, 낭선종, 소화계통암, 십이지장암, 내분비계암, 내배엽동종양, 자궁내막증식증, 자궁내막모양 선암종, 내피세포암, 뇌실막세포, 상피세포암, 안와암, 국소결절성 과증식, 담낭암, 날문방암, 위 기저부 암, 가스트린종, 교모세포종, 글루카곤종, 심장암, 혈관아세포종, 혈관내피종, 혈관종, 간샘종, 간 선종증, 간담도암, 간세포 암종, 호지킨병, 회장암, 인슐린종, 상피내 신생물, 상피내 편평세포 신생물, 간내 담도암, 침윤성 편평세포암종, 공장암, 관절암, 골반암, 거대 세포 암종, 대장암, 림프종, 악성 중피세포 종양, 수아세포종, 수질상피종, 뇌막암, 중피암, 전이성 암종, 구강암, 점막표피모양 암종, 다발성 골수종, 근육암, 비강관암, 신경계암, 비-상피 피부암, 비-호지킨 림프종, 연맥 세포 암종, 핍지교종암, 구강암, 골육종, 유두상 장액성 선암종, 음경암, 인두암, 뇌하수체 종양, 형질세포종, 가육종, 폐 아세포종, 직장암, 신세포 암종, 호흡계 암, 망막아세포종, 장액성 암종, 부비강암, 피부암, 소세포 암종, 소장암, 평활근육암, 연조직암, 소마토스타틴-분비 종양, 척추암, 편평세포암종, 선조 근육암, 중피세포하층암, T 세포 백혈병, 설암, 요관암, 요도암, 자궁경부암, 자궁몸통암, 질암, VIPoma, 외음부암, 고분화 암종 및 윌름 종양으로 이루진 군에서 선택된 것이다.
감염성 질환은 예를 들면 바이러스, 세균, 진균, 기생충 또는 프리온 감염증일 수 있다.
암 항원 에피토프는 gp100, MART-1, Melna-A, MAGE-A3, MAGE-C2, Mammaglobin-A, proteinsase-3, mucin-1, HPV E6, LMP2, PSMA, GD2, hTERT, PAP, ERG, NA17, ALK, GM3, EPhA2, NA17-A, TRP-1, TRP-2, NY-ESO-1, CEA, CA 125, AFP, Survivin, AH1, ras, G17DT, MUC1, Her-2/neu, E75, p53, PSA, HCG, PRAME, WT1, URLC10, VEGFR1, VEGFR2, E7, Tyrosinase 펩타이드, B16F10, EL4 또는 신생항원(neoantigen)일 수 있다.
신생항원은 종양세포 내의 체성 돌연변이에 의해 유도되어 형성되는 면역원성 펩타이드를 의미한다. 신생항원은 MHC I과 복합체를 형성하고 종양세포의 표면으로 이동하여 항원 에피토프로 표시될 수 있는데, T-세포의 수용기(T-cell receptor, TCR)가 신생항원-MHCI 복합체를 인식하여 면역반응을 유도한다.
질환 항원 에피토프는 페리틴 단량체에 융합될 수 있는 것이면 그 길이가 특정의 것으로 한정되지 않는다.
질환 항원 에피토프는 페리틴 단량체가 자기조립되는데 방해가 되지 않는 것이면 그 길이가 특정의 것으로 한정되지 않는다.
질환 항원 에피토프는 페리틴 단량체 어느 곳에도 융합될 수 있다. 질환 항원 에피토프는 페리틴 단량체가 자기조립되는데 방해가 되지 않는 위치에 융합된다. 질환 항원 에피토프는 인간 트랜스페린 수용체와의 결합을 위해 단백질 표면에 노출되도록 페리틴 단량체에 융합되는 것이 바람직하다.
질환 항원 에피토프는 예컨대 그 아미노산의 길이가 25aa 이하, 24aa 이하, 23aa 이하, 22aa 이하, 21aa 이하, 20aa 이하, 19aa 이하, 18aa 이하, 17aa 이하, 16aa 이하, 15aa 이하, 14aa 이하, 13aa 이하, 12aa 이하, 11aa 이하, 10aa 이하, 9aa 이하, 8aa 이하, 7aa 이하, 6aa 이하, 5aa 이하일 수 있다.
질환 항원 에피토프는 예컨대 그 아미노산의 길이가 3aa 이상, 4aa 이상, 5aa 이상, 6aa 이상, 7aa 이상, 8aa 이상, 9aa 이상, 10aa 이상일 수 있다.
페리틴 단량체에 질환 항원 에피토프가 융합됨으로써 페리틴 단량체가 자기조립된 단백질(단백질 B)의 인간 트랜스페린 수용체와의 결합력이 향상될 수 있다. 페리틴 단량체의 각 구성 부분 중 내부로 함입되어 있는 부분이 질환 항원 에피토프의 결합 후에 외부로 돌출될 수 있다.
질환 항원 에피토프의 페린틴 단량체에서의 융합 위치는 특정한 위치로 제한되지 않으며, 예컨대 인접한 α-헬릭스들 사이, N-말단, C-말단, A-B루프, B-C루프, C-D루프, D-E루프, N-말단과 A 헬릭스 사이, E 헬릭스와 C-말단 사이, 헬릭스 내부 등에 융합될 수 있다.
질환 항원 에피토프는 인접한 α-헬릭스들 사이 중 적어도 하나에 융합될 수 있다. 또한, 질환 항원 에피토프는 페리틴 단량체의 N-말단 또는 C-말단에 융합될 수 있다. 또한, 질환 항원 에피토프는 페리틴 단량체의 A-B루프, B-C루프, C-D루프 또는 D-E루프에 융합될 수 있다. 또한, 질환 항원 에피토프는 페리틴 단량체의 N-말단과 A 헬릭스 사이 또는 E 헬릭스와 C-말단 사이에 융합될 수 있다. 또한, 질환 항원 에피토프는 페리틴 단량체의 각 헬릭스 중 적어도 하나의 내부에 융합될 수 있다.
본 발명의 단백질(단백질 B)은 질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어진 것이다.
페리틴은 그 단량체 수 개가 모였을 때, 이들이 스스로 조직적인 구조 또는 패턴을 형성하여 집합체를 형성하는 자기 조립형 단백질로서 별도의 조작 없이도 나노 스케일의 단백질의 형성이 가능하다.
본 발명에 따른 질환 항원 에피토프가 융합된 페리틴 단량체도 자가 조립된 단백질 형태를 이룬다. 예컨대 24개의 페리린 단량체가 자기조립되어 구형의 입자를 형성할 수 있다.
본 발명의 질환 항원 에피토프가 융합된 단백질이 입자를 이루는 경우, 그 입경은 예를 들면 8 내지 50nm일 수 있다. 구체적으로, 8nm 내지 50nm, 8nm 내지 45nm, 8nm 내지 40nm, 8nm 내지 35nmm, 8nm 내지 30nm, 8nm 내지 25nm, 8nm 내지 20nm, 8nm 내지 15nm 등일 수 있으나, 이에 제한되는 것은 아니다.
질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어지고 트랜스페린 수용체에 결합하는 단백질(단백질 B)은 항원 제시 세포인 수지상 세포의 표면에 존재하는 트랜스페린 수용체(TfR)와 결합한다. 이에 따라 융합된 항원 에피토프가 수지상 세포로 유입 및 제시되고 면역계가 해당 항원을 인식하여 면역 반응을 수행할 수 있도록 한다.
질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어지고 트랜스페린 수용체에 결합하는 단백질(단백질 B)은 인간 페리틴 중쇄 단백질과 질환 항원 에피토프 사이에 링커 펩타이드가 추가로 포함된 것일 수 있다. 상기 링커 펩타이드는 에피토프에 유연성을 부여하여 단백질의 표면 표출성을 높이기 위한 서열이면 제한이 없으나, 예컨대 서열번호 36 내지 서열번호 38의 아미노산 서열을 갖는 것일 수 있다.
상기 링커 펩타이드는 질환 항원 에피토프 간의 적절한 공간을 확보해줄 수 있는 길이를 가질 수 있다. 예컨대, 링커 펩타이드는 1 내지 20개, 3 내지 18개, 4 내지 15개, 8 내지 12개의 아미노산으로 이루어진 펩타이드일 수 있다. 상기 링커 펩타이드의 길이 및/또는 아미노산 조성을 조절하여 질환 항원 에피토프 간의 간격 및 배향을 조절할 수 있다.
본 발명의 약학 조성물은 상기 2종의 단백질(단백질 A, B)이 병용 투여될 수 있다.
병용 투여시의 투여 순서는 제한되지 않으며, 예를 들면 2종의 단백질이 동시에 투여될 수도 있고, 개별적으로 또는 순차적으로 투여될 수 있다. 순차 투여시에는 외부 표면에 면역 관문 분자와 결합 가능한 분자가 융합된 페리틴 단백질이 먼저 투여될 수도 있고, 질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어지는 단백질이 먼저 투여될 수도 있다.
본 발명은 이상의 페리틴 단백질(단백질 A)을 포함하는 암의 치료 방법을 제공한다. 이상의 페리틴 단백질에 관하여 설명된 사항은 모두 본원의 암 치료 방법의 유효성분으로서의 페리틴 단백질에 그대로 적용된다.
본 발명의 치료 방법은 암에 걸린 대상에 본원의 페리틴 단백질(단백질 A)을 투여하는 단계를 포함한다.
암에 걸린 개체는 암에 걸린 동물, 구체적으로 암에 걸린 포유류일 수 있고, 보다 구체적으로는 암에 걸린 인간일 수 있다.
암은 예를 들면 뇌암, 두경부암, 방광암, 유방암, 자궁경부암, 결장암, 결장직장암, 자궁내막암, 식도암, 백혈병, 폐암, 간암, 난소암, 췌장암, 전립선암, 직장암, 신장암, 위암, 고환암, 자궁암, 혈관 종양, 편평세포암종, 선암종, 소세포 암종, 흑색종, 신경교종, 신경아세포종, 육종, 후두암, 이하선암, 담도암, 갑상선암, 광선각화증, 급성 림프구성 백혈병, 급성 골수 백혈병, 샘낭암종, 선종, 선 평편상피암종, 항문관암, 항문암, 항문직장암, 성상세포종, 큰질어귀샘암, 기저세포 암종, 담즙암, 골암, 골수암, 기관지암, 기관지샘 암종, 카시노이드, 담관암종, 만성 림프구성 백혈병, 만성 골수성 백혈병, 투명세포 암종, 결합조직암, 낭선종, 소화계통암, 십이지장암, 내분비계암, 내배엽동종양, 자궁내막증식증, 자궁내막모양 선암종, 내피세포암, 뇌실막세포, 상피세포암, 안와암, 국소결절성 과증식, 담낭암, 날문방암, 위 기저부 암, 가스트린종, 교모세포종, 글루카곤종, 심장암, 혈관아세포종, 혈관내피종, 혈관종, 간샘종, 간 선종증, 간담도암, 간세포 암종, 호지킨병, 회장암, 인슐린종, 상피내 신생물, 상피내 편평세포 신생물, 간내 담도암, 침윤성 편평세포암종, 공장암, 관절암, 골반암, 거대 세포 암종, 대장암, 림프종, 악성 중피세포 종양, 수아세포종, 수질상피종, 뇌막암, 중피암, 전이성 암종, 구강암, 점막표피모양 암종, 다발성 골수종, 근육암, 비강관암, 신경계암, 비-상피 피부암, 비-호지킨 림프종, 연맥 세포 암종, 핍지교종암, 구강암, 골육종, 유두상 장액성 선암종, 음경암, 인두암, 뇌하수체 종양, 형질세포종, 가육종, 폐 아세포종, 직장암, 신세포 암종, 호흡계 암, 망막아세포종, 장액성 암종, 부비강암, 피부암, 소세포 암종, 소장암, 평활근육암, 연조직암, 소마토스타틴-분비 종양, 척추암, 편평세포암종, 선조 근육암, 중피세포하층암, T 세포 백혈병, 설암, 요관암, 요도암, 자궁경부암, 자궁몸통암, 질암, VIPoma, 외음부암, 고분화 암종 및 윌름 종양으로 이루진 군에서 선택된 암일 수 있다.
단백질(단백질 A)은 치료상 유효량으로 투여될 수 있다.
본 발명에서 용어, “투여”는 어떠한 적절한 방법으로 환자에게 본 발명의 조성물을 도입하는 것을 의미하며, 본 발명의 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통해 투여될 수 있다. 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비내 투여, 폐내 투여 또는 직장내 투여될 수 있으나, 이에 제한되지 않는다.
본 발명의 방법은 상기 개체에 질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어진 단백질(단백질 B)을 투여하는 단계를 더 포함할 수 있다.
질환 항원 에피토프는 암 항원 에피토프일 수 있고, 앞서 구체적으로 예시한 암 항원 에피토프일 수 있다.
질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어진 단백질(단백질 B)은 면역 관문 분자와 결합 가능한 분자가 융합된 페리틴 단백질과 동시에 또는 순차적으로 투여될 수 있다.
순차적으로 투여되는 경우에 그 순서는 제한되지 않으며, 질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어진 단백질(단백질 B)은 면역 관문 분자와 결합 가능한 분자가 융합된 페리틴 단백질(단백질 A)의 투여 전 또는 투여 후에 투여될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
실시예
1. 후보 단백질의 합성을 위한 발현 벡터 제조
huHF는 24개의 단량체로 구성된 구형 단백질(12 nm)로서 각 단량체는 총 5개의 α-helix로 구성되어 있다. 본 발명자는 huHF 단량체의 각 α-helix 사이 loop(PDB 3AJO sequence 기준 huHF 5T 내지 176G 중 AB loop; 45D/46V 사이, BC loop; 92D/93W, CD loop; 126D/127P, DE loop; 162E/163S)와 N-말단 및 C-말단에 실제 종양항원 중 하나인 gp100 펩타이드를 유전자 클로닝을 통해 삽입하여 huHF의 다양한 위치에 gp100 펩타이드가 삽입된 전달체를 확보하였다(도 1 및 도 2). 본 발명자는 이전 연구(US 등록특허 10,206,987)를 통해 감시림프절 표적 효율이 가장 좋은 huHF 나노입자의 표면 구성을 암 특이 항원 전달 나노입자로 선정한 바 있다.
이에, 하기 표 1의 후보 단백질을 하기 표 2의 벡터 모식도에 따라 PCR을 수행하여 단백질 huHF, huHF-gp100(SEQ ID NO: 1; melanoma 특이항원), OVA(SEQ ID NO: 2), AH1(SEQ ID NO: 3) (AB; 45D/46V, BC; 92D/93W, CD; 126D/127P, DE; 162E/163S, N-말단, C-말단), huHF-PD1(SEQ ID NO: 4; PD1 도메인 중 활성부위), huHF-TPP1(SEQ ID NO: 5) (AB, CD loop), huHF-αPD-L1 HCDR3(SEQ ID NO: 6) (CD loop, C-말단) 및 huHF-smPD1(SEQ ID NO: 7) 입자를 제작하였다. 이때, 상기 OVA은 면역 특이 항원이며, AH1은 대장암 세포의 종양 특이 항원, gp100은 흑색종 세포의 종양 특이 항원으로 사용하였다. 제작된 모든 플라즈미드 발현 벡터는 아가로스 젤에서 정제한 다음, 완전한 DNA 시퀀싱을 통해 서열을 확인하였다.
구체적으로, 표 3의 프라이머 세트를 이용하여 각각의 발현 벡터 제조에 필요한 PCR 산물을 순차적으로 플라스미드 pT7-7 벡터에 삽입하여 각각의 단백질을 발현할 수 있는 발현 벡터를 구성하였다. 이때 추가로 하기 표 4의 링커 펩타이드를 포함할 수 있다.
서열번호 후보 단백질
2 Gp100
3 Ovalbumin
4 AH1
5 PD1
6 TPP1
7 αPD-L1 HCDR3
8 smPD1 (small PD1 domain)
9 RFP
단백질 발현 벡터
huHF NH2-NdeI-(His)6-huHF-HindIII-COOH
[gp100/AH1/OVA]-huHF loops AB(45D/46V), BC(92D/93W), CD(126D/127P), DE(162E/163S):NH2-NdeI-(His)6-huHF-[gp100(KVPRNQDWL)/OVA(SIINFEKL)/AH1(SPSYVYHQF)]-huHF-HindIII-COOH
N-말단: NH2-NdeI-(His)6-[gp100(KVPRNQDWL)/OVA(SIINFEKL)/AH1(SPSYVYHQF)]-huHF-HindIII-COOH
C-말단: NH2-NdeI-(His)6-huHF-[gp100(KVPRNQDWL)/OVA(SIINFEKL)/AH1(SPSYVYHQF)]-HindIII-COOH
N-말단과 A helix 사이(6S/7Q), D helix 중간(156R/157K), E helix 중간(173H/174T), E helix와 C-말단 사이(178S/179D)
NH2-NdeI-(His)6-[gp100(KVPRNQDWL)]-huHF-HindIII-COOH
huHF-PD1 NH2-NdeI-huHF-PD1(22-170)-HindIII-COOH
huHF-TPP1 (AB, CD loop) NH2-NdeI-huHF-linker-TPP1-linker-HindIII-COOH
huHF-αPD-L1 HCDR3 (CD
loop, C-말단)
NH2-NdeI-huHF-αPD-L1 HCDR3-HindIII-COOH
huHF-smPD1 NH2-NdeI-huHF-smPD1-HindIII-COOH
huHF-RFP NH2-NdeI-(His)6-huHF-Xho1-linker(G3SG3TG3SG3T)-RFP-HindIII-COOH
서열번호 명칭 삽입부위
10 N-gp100_F N-말단
11 N-gp100_R
12 AB-gp100_F AB loop
13 AB-gp100_R
14 BC-gp100_F BC loop
15 BC-gp100_R
16 CD-gp100_F CD loop
17 CD-gp100_R
18 DE-gp100_F DE loop
19 DE-gp100_R1
20 DE-gp100_R2
21 DE-gp100_R3
22 C-gp100_F C-말단
23 C-gp100_R
24 NA-gp100_F_1 N-말단과 A-helix 사이
25 NA-gp100_F_2
26 NA-gp100_F_3
27 NA-gp100_R
28 intD-gp100_F D helix 중간
29 intD-gp100_R_1
30 intD-gp100_R_2
31 intE-gp100_F E helix 중간
32 intE-gp100_R_1
33 intE-gp100_R_2
34 EC-gp100_F E-helix와 C-말단 사이
35 EC-gp100_R
서열번호 명칭
36 Linker1
37 Linker2
38 Linker3
2. 후보 단백질의 생합성
대장균 균주 BL21(DE3)[F-ompThsdSB(rB-mB-)]를 상기 제조된 발현벡터로 각각 형질 전환하고, 앰피실린-저항성 형질 전환체를 선택하였다. 형질 전환된 대장균을 50 mL의 Luria-Bertani (LB) 배지(100 mg L-1앰피실린 함유)를 함유하는 플라스크(250 mL Erlenmeyer flasks, 37 ℃, 150 rpm)에서 배양하였다. 배지 탁도(O.D600)가 약 0.5-0.7에 도달할 때, IPTG (Isopropyl-β-Dthiogalactopyranosid) (1.0 mM)을 주입하여 재조합 유전자의 발현을 유도하였다.
20 ℃에서 16~18 시간 배양한 후, 배양한 대장균을 4,500 rpm으로 10분간 원심 분리하여 균체 침전물을 회수하고 5 ㎖의 파쇄 용액(10 mM Tris-HCl 완충액, pH 7.5, 10 mM EDTA)에 현탁하여 초음파 파쇄기(Branson Ultrasonics Corp., Danbury, CT, USA)를 이용하여 파쇄하였다. 파쇄한 후 13,000 rpm으로 10분간 원심분리한 뒤 상등액과 불용성 응집체를 분리하였다. 분리된 상등액을 추후 실험에 이용하였다.
3. 후보 단백질의 정제 및 형광물질 부착
상기 실시예 2에서 획득한 상등액을 3단계의 과정을 거쳐 정제하였다. 먼저 1) 재조합 단백질에 융합된 히스티딘과 니켈의 결합을 이용한 Ni2+-NTA affinity 크로마토그래피를 진행한 후, 2) 재조합 단백질을 농축하고 버퍼 교환을 통하여 형광물질을 부착하였으며, 3) 마지막으로 형광물질이 부착된 자가 조립된 단백질만을 분리하기 위하여 수크로스 구배 초원심분리(ultracentifugation)를 진행하였다. 각 단계별 상세한 기재는 아래와 같다.
1) Ni 2+-NTA affinity 크로마토그래피
재조합 단백질을 정제하기 위하여 상기 명시된 동일한 방법으로 배양된 대장균을 회수하여 그 세포 펠렛을 5 mL 라이시스 버퍼(pH 8.0, 50 mM sodium phosphate, 300 mM NaCl, 20 mM imidazole)에 재부유하고 초음파 파쇄기를 이용하여 세포를 파쇄하였다. 파쇄된 세포액을 13,000 rpm에서 10분간 원심분리하여 그 상등액만 분리한 후 각 재조합 단백질을 Ni2+-NTA 컬럼(Qiagen, Hilden, Germany)을 사용하여 각각 분리하였다 (세척 버퍼: pH 8.0, 50 mM sodium phosphate, 300 mM NaCl, 80 mM imidazole / 용출 버퍼: pH 8.0, 50 mM sodium phosphate, 300mM NaCl, 200 mM imidazole).
2) 농축과 버퍼교환 및 형광물질 부착과정
이미징을 위하여 huHF-gp100 입자들과 huHF-PD1 입자는 Ni2 +-NTA affinity 크로마토그래피를 거쳐 용출된 3ml의 재조합 단백질을 Ultracentrifugal filter (Amicon Ultra 100K, Millipore, Billerica, MA) 에 담아 5,000 g로 컬럼 위에 1ml 의 용액이 남을 때까지 5,000 g 로 원심 분리를 진행하였다. 그 후에 NIR 형광 물질인 cy5.5및 FITC(플루오레세인이소티오시안산염)를 부착하기 위하여 단백질 입자를 sodium bicarbonate (0.1 M, pH 8.5) 버퍼로 버퍼교환을 해주었고, 상온에서 12시간 형광물질을 부착하였다.
3) 수크로스 구배 초고속 원심 분리
PBS(2.7 mM KCl, 137 mM NaCl, 2 mM KH2PO4, 10mM Na2HPO4, pH7.4) 버퍼에 수크로스를 농도별로 각각 첨가하여 40%, 35%, 30%, 25%, 20%의 수크로스를 포함하는 용액을 각각 준비한 후 초고속 원심 분리용 튜브 (ultraclear 13.2ml tube, Beckman)에 각 농도별 (45~20%) 수크로스 용액을 농도가 높은 용액부터 2 ml씩 담은 다음, 준비된 자가조립용 버퍼에 존재하는 재조합 단백질 용액을 1ml 채운 후 35,000rpm으로 16시간 동안 4℃로 초고속 원심 분리를 시행하였다(Ultracentrifuge L-90k, Beckman). 원심 분리 후 조심스럽게 파이펫을 이용하여 위 층 (20-25% 수크로스 용액 부분)을 2)에 명시된 바와 같이 ultracentrifugal filter와 PBS 버퍼를 이용하여 재조합 단백질의 버퍼를 교체해 주었다.
4. 단백질 입자의 조립 검증
실시예 3에서 제작한 각각의 단백질(gp100-huHF-loops, huHF-PD1, huHF-TPP1, huHF-αPD-L1 HCDR3, huHF-smPD1)의 정제된 재조합 단백질의 구조 분석을 위하여 투과전자현미경 (TEM) 재조합 단백질을 촬영하였다. 먼저 염색하지 않은 정제한 단백질 샘플을 탄소 코팅된 구리 전자 현미경 그리드(grids) 올린 후 자연 건조하였다. 단백질의 염색된 이미지를 얻기 위해, 자연 건조된 샘플을 포함하는 전자 현미경 그리드를 2% (w/v) 수성 우라닐 아세테이트 용액과 함께 10분 동안 실온에서 인큐베이션하고, 증류수로 3-4회 세척하였다. 단백질 이미지를 Philips Technai 120 kV 전자 현미경을 이용하여 관찰한 결과, 각각의 입자들이 구형 나노입자를 형성함을 확인하였다(도 3 및 도 5). 또한 DLS (dynamic light scattering) 측정을 통하여 각 gp100-huHF-loops, huHF-PD1, huHF-TPP1 (AB, CD loops), huHF-αPD-L1 HCDR3 (CD loop, C-말단), huHF-smPD1입자들의 직경을 솔루션상에서 측정하였다(도 3 및 도 5).
5. OVA-huHF-loops 단백질과 TfR과의 결합능 측정 및 huHF-PD1, huHF-TPP1 (AB, CD loops), huHF-αPD-L1 HCDR3 (CD loop, C-말단), huHF-smPD1 단백질과 PD-L1의 결합능 측정
본 연구진은 huHF 전달체의 면역세포 활성증진 효능을 증명하기 위하여 실시예 3에서 제작한 각각의 단백질(gp100-huHF-loops)의 정제된 재조합 단백질과 TfR(transferrin receptor)과의 결합능을 MST(Microscale Thermophoresis) 기계를 통하여 측정하였다. 그 결과 종양항원이 들어있지 않은 huHF 나노입자가 가장 TfR과의 결합능이 뛰어났으며, CD helix 사이에 종양항원이 삽입된 CD-loop-gp100 나노입자의 결합능이 그 다음으로 뛰어남을 확인하였다. 이를 통하여 CD-loop-gp100 입자가 가장 TfR과의 결합을 방해하지 않음을 간접적으로 확인하였다(도 4).
Programmed cell death protein 1 (PD-1)은 T-세포의 표면에 있는 단백질로써, 암 세포의 표면에 발현되는 PD-L1과 결합하여 T-세포의 활성 저하를 유도한다. 따라서 암 세포 표면에 발현되는 PD-L1과 결합할 PD-1의 결합 부위가 표면 표출된 단백질을 이용하여 T 세포의 PD-1과 PD-L1의 결합 억제를 유도할 경우, T-세포 활성 억제 저하를 통해 항암면역 치료 효율 증가를 기대할 수 있다. 본 발명자들이 개발하고자 했던 PD-1, CTLA-4 항체 작용 부위를 단백질 표면에 표출시키는 것보다, PD-L1과 결합하는 PD-1의 결합 부위를 단백질의 표면에 표출시켜 자가조립을 유도하는 것이 단백질 발현량 측면에서 효율적이라고 판단하여 PD-1의 PD-L1 결합 부위를 huHF에 합성하였다(PD-1 sequence 중 결합 활성 부위 22G-170V), PD-L1 타겟팅 능 펩타이드 TPP1, PD-L1 항체의 HCDR3 시퀀스, PD-L1의 결합 활성 부위 (small PD1 도메인)).
나노입자의 유전자 클로닝을 진행한 후 이를 발현하여 단백질 자가조립을 통하여 입자 합성을 유도하였다. 이는 TEM image를 통하여 확인하고, 실제 합성한 huHF-PD1 단백질이 PD-1 ligand (PD-L1)과 실제 결합을 하는지 확인하기 위해 실시예 3에서 제작한 huHF-PD1 단백질과 PD-L1의 결합능(binding affinity; Kd)을 ELISA 기법을 이용하여 측정하였다. 2 ug/ml 농도로 PDL1 재조합 단백질을 96-well plate 에 16-18 시간 동안 바인딩 한 후, 현재 사용되고 있는 면역 항체 치료제인 PD-L1 항체 및 huHF-PD1 단백질과 PD-L1의 결합능을 Langmuir equation을 이용하여 계산하였다.
결합능 측정 결과, huHF-PD1과 재조합 단백질 PD-L1의 Kd값이 PD1-PDL1 결합 affinity 문헌 값인 770 nM 보다 높은 327.59 nM로 측정되었고, 이는 PD-L1과 PD-L1 항체의 Kd값인 255.10 nM과 유사했다. 이를 통하여 PD-1 결합 도메인을 huHF 표면 위에 표출시켜 만든 단백질이 PD-L1과의 결합능을 가짐을 확인하였다(도 5).
추가적으로, 실제 합성한 huHF-αPD-L1 HCDR3 (CD loop, C 말단) 단백질과 PD-L1과의 결합능 또한 ELISA 기법으로 측정하였고, huHF-αPD-L1 HCDR3 (CD loop) 입자는 71.24 nM, huHF-αPD-L1 HCDR3 (C 말단) 입자는 38.43 nM로 각각 측정되어, 이 단백질들 또한 PD-L1과의 결합능을 가짐을 확인하였다. (도 5)
추가적으로, 실제 합성한 huHF-TPP1 (AB, CD loops) 단백질이 PD-1 ligand (PD-L1)과 실제 결합을 하는지 확인하기 위해 실시예 3에서 제작한 huHF-TPP1 단백질과 PD-L1의 결합능(binding affinity; Kd)을 MST(Microscale Thermophoresis) 기계를 통하여 측정하였다.
측정 결과, huHF-TPP1 (AB loop)의 PD-L1과의 Kd값은 72.105 nM, huHF-TPP1 (CD loop)의 PD-L1과의 Kd값은 115.16 nM, huHF-αPD-L1 HCDR3 (CD loop)의 Kd값은 71.24 nM, huHF-αPD-L1 HCDR3 (C-말단)의 Kd 값은 38.43 nM로 측정되었다(도 5).
6. gp100-huHF-loops 단백질의 수지상 세포 uptake 실험과 huHF, huHF-PD1, huHF-TPP1 (AB, CD loops), huHF-αPD-L1 HCDR3 (CD loop, C-말단), huHF-smPD1 PDL1 항체 치료제의 대장암 세포 타겟팅능 검증
실시예 3에서 제작한 형광물질이 부착된 gp100-huHF-loops 각 단백질들과 huHF 단백질의 수지상 세포 uptake 효율을 비교하였다.
각 나노입자를 300 nM로 30분 동안 수지상 세포에 반응시킨 후, 형광 시그널을 confocal (LSM 700) 기계를 통하여 측정하였다. CD helix 사이에 종양항원이 삽입된 CD-loop-gp100 단백질의 결합능이 huHF 자체의 단백질 다음으로 뛰어남을 확인하였다. 이를 통하여 CD-loop-gp100 단백질이 가장 TfR과의 결합을 방해하지 않음을 또한 간접적으로 확인하였다(도 6).
실시예 3에서 제작한 형광물질이 부착된 huHF, huHF-PD1, huHF-TPP1 (AB, CD loops), huHF-αPD-L1 HCDR3 (CD loops, C-말단), huHF-smPD1 단백질의 CT26 대장암 및 B16F10흑색종에 대한 타겟팅 효율을 비교하기 위하여 CT26 대장암 세포 및 B16F10흑색종 세포에 300 nM 농도로 단백질을 반응시킨 후 형광 시그널을 비교하여 cell uptake 효율을 확인하였다. 그 결과, 도 7a 내지 도 7c에서 보는 것과 같이, 대조군인 huHF 단백질보다 huHF-PD1(도 7a), huHF-αPD-L1 HCDR3 (CD loops, C-말단)(도 7b), huHF-TPP1 (AB, CD loops)(도 7c), huHF-smPD1(도 7c) 단백질이 암 세포와 결합하여 형광 시그널을 나타내는 것을 확인하였다. 또한 20분동안 암 세포 표면에 발현된 PD-L1을 마스킹 할 수 있는 PD-L1 항체를 처리한 후 huHF단백질, huHF-PD1단백질, 및 huHF-αPD-L1 HCDR3 단백질, huHF-smPD1단백질을 각각 반응시켰을 때는 둘 다 결합하지 않음을 확인하였다.
7. 제조된 단백질들을 이용한 NIR 이미지 분석
위의 실험 결과들을 토대로, 상기 실시예 3에서 제작한 5가지의 단백질들을 형광도를 맞춘 후 5 주 된 누드 마우스(각 실험군당 n=3)에 주입한 후, gp100 항원 발현 종양을 피하주사법(foot pad injection)으로 주입하고, 일정 기간동안 종양의 성장 정도를 분석하여 huHF-gp100 loop 단백질들이 모두 림프절에 타겟팅 효율이 좋은지 확인하였다. 각각의 입자를 20㎕씩 쥐의 오른쪽 발에 주입을 하여 1시간 동안 실험을 진행하였다.
그 결과, 도 8에서 보는 것과 같이, AB loop, BC loop, CD loop, DE loop, N-말단, C-말단에 암 특이적 항원 펩타이드를 삽입하였을 때 모든 단백질에서 림프절에 대한 나노입자 전달효율이 좋음을 확인하였으며, 암 항원 특이적 면역 세포의 활성을 가장 증진시켰던 gp100-huHF(126 loop) 나노입자를 주입한 그룹에서 종양 성장 억제 효과가 가장 높은 것을 확인하였다.
또한, huHF-PD1 단백질이 실제 종양 세포의 표면에 도출되어 있는 PD-L1과 결합하는지를 확인하기 위해 cy5.5 형광물질을 부착한 huHF 단백질과 huHF-PD1단백질을 CT-26 대장암 세포가 자란 생쥐에 주입하여 암 타겟팅 효율을 비교하였다. 이때, 비교군으로는 실제 임상에서 사용되고 있는 PD-L1 항체 치료제를 사용하였다. 생쥐에 주입한 후 2일 동안 체내에서 입자가 종양에 타겟팅되는 양상을 Cy5.5 bandpass emission filater 및 special Cmount lens 또는 IVIS spectrum imaging system(Caliper Life Sciences, Hopkinton, MA)로 관찰하였다(도 9; 오른쪽 하단 그래프에서 Y축은 체내 유지시간을 나타냄).
그 결과, 도 9에 나타난 것과 같이, 대조군인 huHF 단백질 보다 huHF-PD1단백질이 암 세포 타겟팅 효율이 좋음을 알 수 있었다. 그러나, 상기 결과에서는 실제 항체 치료제가 huHF-PD1 단백질보다 암 타겟팅 효율과 체내 유지시간이 좋게 보였으나, 이는 항체 치료제의 체내 유지시간이 너무 길어 나타나는 결과이며, 이는 체내 면역 부작용 문제와 직결된다. 따라서 본 발명에 따른 단백질이 부작용 효과와 부작용 측면에서 모두 다 장점이 있음을 확인하였다.
8. CD 8+ T cell assay를 통한 특정 사이토카인 분비 확인 실험
실시예 1 내지 3의 방법으로 PBS(버퍼)와 huHF-gp100 loops 단백질을 만들어 C57BL/6에 1주에 1회씩 총 3주간 백신 주입을 통하여 림프절 속 면역 세포의 면역 반응을 부스팅(boosting)한 다음, 그 면역 세포들이 모이는 비장을 적출하여 분쇄하였다. 그 후 분쇄한 비장 안에서 gp100 흑색종 특이적 항원에 의해 특이적으로 면역 반응이 유도된 CD8+ T-세포를 추출해 낸 후, in vitro 상에서 면역 반응을 일으킨다고 알려져 있는 gp100의 특정 부분 항원 펩타이드(KVPRNQDWL)를 이용하여, T-세포와 반응시켜 gp100 특이적인 사이토카인이 분비되는지 여부를 FACS 분석을 통해 확인하였다. 그 결과, 126-gp100-huHF 단백질을 주입한 마우스의 비장에서 추출한 CD8+ T-세포에서 사이토카인이 가장 많이 분비되는 것을 확인하였다(도10).
9. MHC-OVA presentation 확인 및 수지상 세포 표면의 costimulatory effector 발현 검증 실험
실시예 1 내지 3의 방법으로 PBS(버퍼)와 huHF-OVA loops 단백질을 만들어 C57BL/6에 1주에 1회씩 총 3주간 백신 주입을 통하여 림프절 속 면역 세포의 면역 반응을 부스팅(boosting)한 다음, 그 면역 세포들이 모이는 비장을 적출하여 분쇄하였다. 그 후 분쇄한 비장 안에서 OVA 면역 펩타이드가 MHC-I을 통하여 표면 표출된 수지상 세포(DC)를 잡는 항체를 이용하여 가장 수지상 세포 표면에 펩타이드 노출을 잘 시키는 단백질을 확인하였다.
그 결과 CD-loop에 OVA 펩타이드를 넣은 나노입자가 MHC-I위에 펩타이드 표면 표출을 가장 잘 유도하는 것을 확인하였고, 이는 면역 치료를 함에 있어서 cytotoxic T 세포의 활성을 가장 효과적으로 할 수 있음을 반증하는 결과이다.
이 실험은 FACS(flow cytometry)를 통하여 진행하였다(도 11A).
또한, huHF 단백질 자체가 면역반응 효율 증진에 영향을 미치는지 알아보기 위하여 같은 입자들로 수지상 세포 표면에 표출되는 MHC-II, CD40, CD80 및 CD86의 발현율을 비교하였다.
그 결과, CD, DE, C-말단 순으로 공동 자극 작동 인자(costimulatory effector)들이 발현됨을 확인하였다(도 11B).
10. 암 성장 저해 실험 I (Vaccination; 예방)
위의 실험 결과들을 토대로, huHF, huHF-gp100 loops (10 μM) 단백질들과 그리고 PBS 버퍼만 있는 샘플을 각각 C57BL/6 마우스(n=3)에 1주일 간격으로 3번 피하주사법으로 주입한 후, 1주일 동안 면역반응이 일어나도록 시간을 둔 후, 각각의 마우스에 B16F10 세포주를 심고 암의 성장 속도를 관찰하였다.
암 세포의 크기는 하기의 식으로 계산하였다:
[수학식 5]
(tumor volume)=(major axis) X (minor axis) 2 X 0.52
그 결과, huHF-CD-gp100, huHF-DE-gp100, huHF-gp100-C 말단 입자 순서대로 종양 성장 억제 효과가 있음을 확인하였다 (도 12).
11. 암 성장 저해 실험 II (치료)
본 발명자들은 상기 huHF-PD1 단백질이 실제 항체 치료제인 PD-L1 항체에 비하여 면역관문 억제를 통한 암 치료 효능이 있는지 여부를 판단하기 위하여 일정 크기의 대장암 종양(CT26)이 형성된 마우스 Balb/c를 이용하여 3일 간격으로 PBS, PD-L1 항체, huHF-PD1 단백질을 정맥 주사로 주입하였다. 관찰 결과 huHF-PD1 단백질이 항체 치료제와 유사한 종양 치료 효능을 보임을 관찰할 수 있었다(도 13).
다음으로, 제 1 단백질 (CD loop-huHF)와 제 2 단백질 (huHF-PD1)가 생체 내에서 실제 종양 성장 억제 및 병용 치료시 시너지 효과가 있는지 확인하였다. 이에, 일정 크기의 종양이 형성된 마우스에 가장 우수한 종양 성장 억제 효과를 보였던 CD-loop에 해당 암 특이적 항원 에피토프(gp100 및 AH1)가 삽입된 huHF-CD loop-gp100 및 huHF-CD loop-AH1 (10 μM) 단백질을 마우스에 3일 간격으로 피하주입법으로 주입하였고, 그와 동시에 huHF-PD1(5μM)과 대조군인 PD-L1 항체 치료제 샘플은 정맥주사 방식으로 3일 간격으로 주입하였다. huHF-CD loop-gp100 단백질을 사용한 실험은 B16F10 흑색종이 형성된 C57BL/6 마우스를 이용하였고, huHF-CD loop-AH1 단백질을 사용한 실험은 CT26 대장암이 형성된 Balb/c 마우스를 이용하였다. 각 실험들은 실험군당 5마리를 이용하였고, 암 세포의 크기는 하기의 식으로 계산하였다:
[수학식 5]
(tumor volume)=(major axis) X (minor axis) 2 X 0.52
이때, 실험군은 1) 무처리군(No treat), 2) 제 1 단백질 처리군(AH1-huHF 및 gp100-huHF), 3) 항체 치료제 처리군(α-PD-L1), 4) 제 2 단백질 처리군(huHF-PD1), 5) 제 1 단백질과 항체 치료제의 병용 투여군(AH1-huHF+α-PD-L1 및 gp100-huHF+α-PD-L1) 및 6) 제 1 단백질과 제 2 단백질의 병용 투여군(AH1-huHF+huHF-PD1 및 gp100-huHF+huHF-PD1)을 사용하였다.
실험 결과, 본 발명에 따른 제 1단백질(CD-loop-gp100 또는 AH1)와 제 2 단백질(huHF-PD1)를 처리한 실험군 6번의 종양 치료 효과가 가장 뛰어남을 확인하였고, 또한 각 실험군의 생존률 또한 측정하였다(도 14).
12. 암 성장 저해 확인을 위한 in vitro 면역 실험
본 발명자들은 huHF-PD1 단백질이 실제 항체 치료제인 PDL1 항체에 비하여 면역관문 억제를 통한 암 치료 효능이 있는지 여부를 판단하기 위하여, PD-L1 항체와 huHF-PD1 단백질의 암 세포와의 반응시 T-세포의 활성 반응과 암 세포의 사멸 효율을 비교하였다. 대장암 및 흑색종 암 세포에 PDL1 항체와 huHF-PD1 단백질을 처리한 후, in vitro 상에서 T-세포의 반응을 관찰하였을 때, huHF-PD1 단백질을 처리한 실험군에서 PD-L1 항체를 처리한 실험군 보다 CD8+ 세포에서 유도되는 암 세포 사멸가능 특이 사이토카인 IFN-gamma가 더 검출됨을 확인하였고, 추가적으로 암 세포 사멸율도 더 높았음을 확인하였다. 이를 통하여 huHF-PD1 단백질이 PD-L1 항체의 암 세포 치료 효능 보다 좋을 것으로 예측하였다(도 15A, B). 또한 실험군 1) 무처리군(No treat), 2) 제 1 단백질 처리군(AH1-huHF 및 gp100-huHF), 3) 항체 치료제 처리군(α-PD-L1), 4) 제 2 단백질 처리군(huHF-PD1), 5) 제 1 단백질과 항체 치료제의 병용 투여군(AH1-huHF+α-PD-L1 및 gp100-huHF+α-PD-L1) 및 6) 제 1 단백질과 제 2 단백질의 병용 투여군(AH1-huHF+huHF-PD1 및 gp100-huHF+huHF-PD1)에 대한 T-세포의 활성 반응 또한 관찰하였고, 그 결과 종양성장억제 결과가 가장 좋았던 6번 실험군(AH1-huHF+huHF-PD1 및 gp100-huHF+huHF-PD1)에서 가장 T-세포의 활성이 뛰어남을 또한 확인하였다(도15 C).
13. 현재 항체치료제와 본 연구진이 개발한 대체 치료제 huHF-PD1의 면역 부작용 비교 실험
본 발명자들은 huHF-PD1 단백질이 실제 항체 치료제인 PDL1 항체에 비해 면역관문 억제를 통한 암 치료 효능이 있음과 동시에 생체내 주입시 면역 부작용 유발 정도 또한 감소됨을 증명하였다. 현재의 항체 치료제의 가장 큰 문제점은 단백질 투입시 체내 장기 축적으로 인한 면역 부작용 유발 문제이며, 이 면역 부작용을 일으키는 가장 대표적인 사이토카인은 IL-17으로 알려져 있다. 이에, 본 발명자들은 실시예 11에서 설명한 실험군 1 내지 6번의 혈액 샘플을 이용하여 IL-17 검출테스트를 진행하였다.
그 결과 항체 치료제를 사용한 실험군인 3번과 5번에서만 IL-17이 검출됨을 확인하였다. 이를 통하여 본 발명에 따른 단백질은 면역 부작용 유발이 보다 낮음을 확인하였다(도 16).
14. 암 성장 저해 실험 III (수술 후 rechallenge)
실시예 11에서 암 성장 저해실험 결과 제 1 단백질 (CD loop-huHF)와 제 2 단백질 (huHF-PD1)가 생체 내에서 실제 종양 성장 억제 및 병용 치료시 시너지 효과가 있는지 확인하였고, 이에 상기 결과를 바탕으로 수술 후에도 암이 재발하는지 여부를 보기 위하여 실험을 진행하였다. 이때, 실험군은 실시예 11과 동일하게 1) 무처리군(No treat), 2) 제 1 단백질 처리군(AH1-huHF), 3) 항체 치료제 처리군(α-PD-L1), 4) 제 2 단백질 처리군(huHF-PD1), 5) 제 1 단백질과 항체 치료제의 병용 투여군(AH1-huHF+α-PD-L1) 및 6) 제 1 단백질과 제 2 단백질의 병용 투여군(AH1-huHF+huHF-PD1)을 사용하였다. 종양이 자라고 치료가 진행되어 종양 특이적인 면역 세포가 몸에 생성되었다고 판단된 3주 후, 모든 실험군의 종양을 수술로 제거하였다. 그 이후 다시 CT26대장암 세포를 모든 실험군에 처리하여 암이 발생하는지 결과를 관찰하였다.
그 결과 1) 무처리군(No treat)은 지속적으로 암이 성장하는데 반해, 6) 제 1 단백질과 제 2 단백질의 병용 투여군(AH1- huHF+huHF-PD)의 모든 쥐는 암이 자라지 않거나 혹은 자라다가 며칠 만에 사라지는 것을 확인하였다.
본 실험은 Balb/c 마우스를 이용하였다. 각 실험들은 실험군당 5마리를 이용하였고, 암 세포의 크기는 하기의 식으로 계산하였다:
[수학식 5]
(tumor volume)=(major axis) X (minor axis) 2 X 0.52
실험 결과, 본 발명에 따른 제 1단백질(CD-loop-AH1)와 제2 단백질(huHF-PD1)를 처리한 실험군 6번의 종양 치료 효과가 가장 뛰어남을 확인하였다(도 17).
또한, 수술 후에도 암이 전이되는지 여부를 보기 위하여 실험을 진행하였다. 이때, 실험군은 실시예 11과 동일하게 1) 무처리군(No treat), 2) 제 1 단백질 처리군(AH1-huHF), 3) 항체 치료제 처리군(α-PD-L1), 4) 제 2 단백질 처리군(huHF-PD1), 5) 제 1 단백질과 항체 치료제의 병용 투여군(AH1-huHF+α-PD-L1) 및 6) 제 1 단백질과 제 2 단백질의 병용 투여군(AH1-huHF+huHF-PD1)을 사용하였다. 종양이 자라고 치료가 진행되어 종양 특이적인 면역 세포가 몸에 생성되었다고 판단된 3주 후, 모든 실험군의 종양을 수술로 제거하였다. 그 이후 다시 CT26대장암 세포를 모든 실험군에 정맥 주사로 처리하여 암이 발생하는지 결과를 관찰하였다.
그 결과 1) 무처리군(No treat)은 지속적으로 암이 성장하는데 반해, 6) 제 1 단백질과 제 2 단백질의 병용 투여군(AH1- huHF+huHF-PD1)의 모든 쥐는 암이 자라지 않거나 혹은 자라다가 며칠 만에 사라지는 것을 확인하였다.
본 실험은 Balb/c 마우스를 이용하였다. 각 실험들은 실험군당 5마리를 이용하였고, 암 세포의 전이여부는 상기의 모든 실험군에서 사용된 쥐의 폐를 적출하여 암 nodule을 세어 암 전이여부를 판단하였다(도 17).
15. 암 성장 저해 확인을 위한 in vitro 면역 실험 II
상기 실시예 12와 동일한 방법으로 해당 실험군(1) 무처리군(No treat), 2) 제 1 단백질 처리군(AH1-huHF 및 gp100-huHF), 3) 항체 치료제 처리군(α-PD-L1), 4) 제 2 단백질 처리군(huHF-PD1), 5) 제 1 단백질과 항체 치료제의 병용 투여군(AH1-huHF+α-PD-L1 및 gp100-huHF+α-PD-L1) 및 6) 제 1 단백질과 제 2 단백질의 병용 투여군(AH1-huHF+huHF-PD1 및 gp100-huHF+huHF-PD1)들의 T-세포의 활성 반응을 관찰하였다.
그 결과 종양 rechallenge 후에도 상기 실시예 12에서 종양 성장 억제 결과가 가장 좋았던 6번 실험군(AH1-huHF+huHF-PD1 및 gp100-huHF+huHF-PD1)에서 T-세포의 활성이 가장 뛰어남을 다시 한번 확인하였다(도 18).
16. 페리틴 단량체의 다양한 위치에 질환 항원 에피토프가 융합된 단백질 제조
페리틴의 N-터미널과 A 헬릭스 사이에 gp100이 융합된 구조, E 헬릭스와 C-터미널 사이에 gp100이 융합된 구조, D 헬릭스 내부에 gp100이 융합된 구조, E 헬릭스 내부에 gp100이 융합된 구조를 제조하였다.
도 19 내지 도22, 표 2에 기재된 벡터를 실시예 1의 방법에 따라 제조하고, 이때 표 3의 프라이머 세트를 사용하였다.
단백질은 실시예 2의 방법에 따라 합성하였고, 후술할 실시예 18의 방법에 따라 용해성, 불용성 부분을 확인하였고, 실시예 4의 방법에 따라 단백질이 자가조립됨을 확인하였다.
17. 트랜스페린에 대한 결합력 측정
제조된 단백질의 트랜스페린에 대한 결합력 A를 하기 방법에 따라 측정하였다.
먼저, hexa-His tag에 특이적으로 결합하는 염료(RED-tris-NTA 2nd Generation Dye)를 50nM의 농도로 100㎕를 준비하고, 제조된 단백질을 200nM의 농도로 100㎕ 준비하여, 이들을 섞고 상온에서 30분동안 인큐베이션하였다. 이를 원심분리기로 13000rpm으로 4℃에서 10분간 원심분리하여 상층액을 분리하여, 염료 라벨링된 단백질을 얻었다.
그리고, 9.65 μM 트랜스페린 수용체 25㎕를 제1 PCR 튜브에 첨가하고, 제2 내지 제16 PCR 튜브에 PBS-T (PBS + tween20 0.5 %) 버퍼를 10㎕ 첨가하고, 제1 PCR 튜브의 트랜스페린 10㎕를 제2 PCR 튜브에 옮기고, 제2 PCR 튜브에서 10㎕를 다시 제3 PCR 튜브에서 옮기고, 이를 제16 PCR 튜브까지 수행하여, 제2부터 제16 PCR 튜브까지 각각 20㎕가 되도록 1/2 순차희석을 수행하였다.
이후, 각 PCR 튜브에 상기 염료 라벨링된 단백질을 10㎕씩 첨가하여 상온에서 1시간 반응을 수행하였다.
이후 각 튜브의 반응액을 Microscale thermophoresis 장치의 캐필러리에 넣고 레이저를 조사하지 않은 상태에서의 형광 강도(homogeneous fluorescence intensity) F cold를 얻었다. 그리고 Microscale thermophoresis 장치(Monolith NT.115)를 MST 파워 40%, LED 파워는 얻어지는 형광 강도의 값이 10,000 내지 15,000 범위 안에 되도록 세팅하여, 각 캐필러리마다 30초간 레이저를 조사하여 가열된 상태에서의 형광 강도 F hot를 얻었다.
이후 각 캐필러리에서의 normalized fluorescence F norm(‰)(=(F hot/F cold) x 1000)을 얻고 이로부터 반응 평형 상태(steady state)의 캐필러리를 찾아, 수학식 1로 표시되는 농도를 얻었다.
TSA
삽입위치
TfR gp100
N Human 18.484±1.13
Mouse 48.323±2.86
AB Human 29.663±0.71
Mouse 40.787±2.85
BC Human 14.043±3.27
Mouse 48.021±3.37
CD Human 4.8943±2.98
Mouse 15.94±2.52
DE Human 9.7809±1.97
Mouse 30.485±1.11
C Human 5.6533±1.33
Mouse 34.795±0.98
NA Human 152.29±2.68
EC Human 5.6768±1.29
D in Human 29.288±3.71
E in Human 6.276±1.76
TSA
삽입위치
TfR AH1
N Human 84.648±0.83
AB Human 10.933±0.32
BC Human 106.64±0.74
CD Human 3.4503±3.49
DE Human 6.1146±4.11
C Human 5.3748±1.25
TSA
삽입위치
TfR PD1
C Human 265.84±0.98
Mouse 667.51±2.34
샘플 TfR 결합력
모델항원RFP-huHF
(TSA 삽입위치 C)
Human 127.23±0.71
WT huHF Human 2.498±1.77
Mouse 7.59±2.72
18. 단백질의 수용성 분획의 비율 측정
pT7-7 기반 각종 발현 벡터를 BL21 (DE3) competent cell을 형질전환 (transformation)시켰다. 단일 콜로니를 앰피실린 100 mg/L이 첨가된 LB 액체 배지(50 mL)에 접종하여 진탕 배양기 (shaking incubator)에서 37℃, 130 rpm의 조건에서 배양하였다. 탁도(turbidity/optical density at 600 nm)가 0.5에 도달하면, IPTG 1 mM 투여를 통해 타겟 단백질의 발현을 유도하였다. 이후 20℃에서 12~16 시간 배양 후, 배양액 속의 세포들은 원심분리(13000 rpm, 10 분)을 통하여 spun-down되고, 세포 펠릿을 수거하여 10 mM Tris-Hcl (pH 7.4) 버퍼에 재부유시켰다. 재부유된 세포들은 Branson Sonifier (Branson Ultrasonics Corp., Danbury, CT)를 이용하여 파열되었다. 음파처리 후, 용해성 단백질을 포함한 상층액과 불용성 단백질을 포함한 응집체들은 원심분리(13000 rpm, 10 분)로 분리되었다. 분리된 용해성, 불용성 단백질 분획의 SDS-PAGE 분석을 통해 용해도를 분석하였다. 즉, Coomassie로 염색된 타겟 단백질 밴드들은 densitometer (Duoscan T1200, Bio-Rad, Hercules, CA)로 스캔 후 수용성 분획의 비율을 정량화하였다. 구체적으로, 스캔한 SDS-PAGE 겔 이미지를 이용하여 ‘Quantity One’ program ‘Volume Rect. Tool’로 밴드 굵기와 백그라운드 값을 설정한 후, ‘Volume Analysis Report’를 이용하여 용해성, 불용성 단백질 분획의 합을 100 %로 설정하고 용해도를 정량화하였다.
단백질 수용성 분획 비율(%) 단백질 수용성 분획 비율(%)
N-OVA-huHF 89.35 N-gp100-huHF 92.48
AB-OVA-huHF 93.81 AB-gp100-huHF 93.86
BC-OVA-huHF 95.74 BC-gp100-huHF 94.43
CD-OVA-huHF 98.73 CD-gp100-huHF 95.57
DE-OVA-huHF 96.82 DE-gp100-huHF 95.39
C-OVA-huHF 96.62 C-gp100-huHF 96.40
N-AH1-huHF 81.74 NA-gp100-huHF 67.22
AB-AH1-huHF 94.63 EC-gp100-huHF 96.27
BC-AH1-huHF 92.53 D in-gp100-huHF 48.21
CD-AH1-huHF 98.47 E in-gp100-huHF 93.00
DE-AH1-huHF 98.71 PD1-huHF 74.25
C-AH1-huHF 87.90 RFP-huHF 98.31
19. 면역 관문 분자에 결합하는 분자의 사용
(1) huHF의 C-말단에 mouse small PD1(서열번호 8)이 융합된 단백질을 제조하여, 그 효능을 확인하였다(도 23).
단백질은 실시예 2의 방법에 따라 합성하였고, 실시예 19의 방법에 따라 용해성, 불용성 부분을 확인하였고, 실시예 4의 방법에 따라 단백질이 자가조립됨을 확인하였다.
제조되는 단백질의 트랜스페린 수용체에 대한 결합력은 실시예 17의 방법에 따라 측정하였고, 수학식 1로 표시되는 농도는 44.649±1.34 nM로 확인되었다.
단백질의 종양 억제능은 실시예 11의 방법에 따라 평가하였다.
구체적으로, 일정 크기의 대장암 종양(CT26)이 형성된 마우스 Balb/c를 이용하여 3일 간격으로 PBS, PD-L1 항체, huHF-PD1, huHF-msmPD1 단백질을 정맥 주사로 주입하였다. 관찰 결과 huHF-msmPD1 단백질이 항체 치료제와 유사한 종양 치료 효능을 보임을 관찰할 수 있었다. 실험은 실험군당 3마리를 이용하였고, 암 세포의 크기는 하기의 식으로 계산하였다:
[수학식 5]
(tumor volume)=(major axis) X (minor axis) 2 X 0.52
이때, 실험군은 1) PBS군, 2) 항체 치료제 처리군(α-PD-L1), 3) 제 1 단백질 처리군(huHF-PD1), 4) 제 2 단백질 처리군(huHF-msmPD1) 을 사용하였다.
그 결과는 도 24에 나타내었다.
이를 참고하면, 면역 관문 분자에 결합하는 분자가 융합된 페리틴의 사용시의 우수한 항암능을 확인할 수 있다.
(2) huHF의 C-말단에 hsmPD1이 융합된 단백질을 제조하여, 그 효능을 확인하였다.
huHF는 트랜스페린과의 결합 부위(BC loop에 존재)의 일부 아미노산을 치환한 것으로서, 서열번호 1의 서열에서 81, 83번째 아미노산이 알라닌으로 치환된 단백질을 사용하였다.
이는 Q5 Hot Start High-Fidelity 2X Master Mix에 forward primer(서열번호 39), reverse primer(서열번호 40) 10 μM, template DNA인 huHF-hsmPD1를 혼합하여 유전자의 돌연변이를 수행하여 얻었다. 이후 실시예 2의 방법에 따라 단백질을 얻었다.
hsmPD1으로는 서열번호 41의 서열을 사용하였다.
제조된 단백질의 h-PD-L1 및 m-PD-L1에 대한 결합력을 실시예 17의 방법에 따라 측정하였고, h-PD-L1에 대한 결합력은 13.417±1.97 nM, m-PD-L1에 대한 결합력은 177.14±3.32 nM로 확인되었다.
(3) 페리틴에 면역 관문 분자 PD-L1과 TIGIT에 결합하는 분자가 융합된 단백질을 제조하여, 그 효능을 확인하였다.
면역 관문 분자에 결합하는 분자로는 항체의 HCDR3 서열을 사용하였고, 사용한 서열은 하기 표 10과 같다.
서열번호 명칭
42 huHF-αPD-L1*
43 huHF-αTIGIT*
단백질 발현 벡터
huHF-PD-L1-TIGIT dual blocker BC(92D/93W): NH2-NdeI-(His)6-huHF-[αTIGIT HCDR3]-huHF- αPD-L1 HCDR3-HindIII-COOH
서열번호 명칭 삽입부위
44 BC_α_PD-L1_F BC loop
45 BC_α_PD-L1_R
46 C_α_TIGIT_F C-말단
47 C_α_TIGIT_R
표 11의 벡터를 실시예 1의 방법에 따라 제조하고, 이때 표 12의 프라이머 세트를 사용하였다. 단백질은 실시예 2의 방법에 따라 합성하였다.단백질의 종양 억제능은 대장암 세포주(CT26)을 BALB/c 마우스에 피하접종하고 도 25의 스케쥴에 따라 단백질을 주사하여, 실시예 11의 방법에 따라 평가하였다(도 26).
구체적으로, 일정 크기의 대장암 종양(CT26)이 형성된 마우스 Balb/c를 이용하여 3일 간격으로 PBS, PD-L1 항체와 TIGIT 항체, huHF-PD-L1-TIGIT dual blocker 단백질을 정맥 주사로 주입하였다. 관찰 결과 huHF-PD-L1-TIGIT dual blocker 단백질이 항체 치료제와 유사한 종양 치료 효능을 보임을 관찰할 수 있었다. 실험은 실험군당 4마리를 이용하였고, 암 세포의 크기는 하기의 식으로 계산하였다:
[수학식 5]
(tumor volume)=(major axis) X (minor axis) 2 X 0.52
이때, 실험군은 1) PBS군, 2) 항체 치료제 병용 처리군(α-PD-L1, α-TIGIT), 3) 단백질 처리군(huHF-PD-L1-TIGIT dual blocker)을 사용하였다.
또한, 각 처리군별로 종양 조직을 적출하여 무게를 측정하였고, 그 결과는 도 27에 나타내었다. 이로부터 PD-L1과 TIGIT에 결합하는 분자가 융합된 단백질의 우수한 항암 효능을 확인할 수 있다.
(4) 면역 관문 분자에 결합하는 분자의 페리틴 단량체에의 융합 위치에 따른 효율 분석
α-PD-L1 HCDR3가 페리틴 단량체의 서로 다른 위치에 융합된 단백질을 제조하여 종양 억제능을 확인하였다.
α-PD-L1 HCDR3가 AB 루프, BC 루프, CD 루프, DE 루프, C-말단에 융합된 단백질을 제조하였다(PDB 3AJO sequence 기준 huHF 5T 내지 176G 중 AB loop; 45D/46V 사이, BC loop; 92D/93W, CD loop; 126D/127P, DE loop; 162E/163S). 이는 상기 표 10의 서열을 사용한 것을 제외하고는 실시예 1, 2와 동일 방법으로 제조하였다.
제조된 단백질의 대장암 세포 타겟팅능을 실시예 6의 방법으로 확인하였다.
구체적으로, FITC 형광물질이 부착된 huHF-αPD-L1 HCDR3 (AB, BC, CD, DE loops, C-말단) 단백질의 CT26 대장암에 대한 타겟팅 효율을 비교하기 위하여 CT26 대장암 세포에 300 nM 농도로 단백질을 반응시킨 후 형광 시그널을 비교하여 cell uptake 효율을 확인하였다. 대조군인 huHF 단백질보다 huHF-αPD-L1 HCDR3 (AB, BC, CD, DE loops, C-말단) 단백질이 암 세포와 결합하여 형광 시그널을 나타내는 것을 확인하였다.
결과는 도 28, 그 상대적 형광 세기를 도 29에 나타내었다.
확인 결과, 융합 부위에 관계 없이, huHF 단백질에 비해 강한 타겟팅능을 나타내는 것을 확인하였다.
20. 면역 관문 분자에 결합하는 분자로서 항체 CDR의 사용
(1) 단백질 제조용 발현 벡터 구성
하기 표 13의 서열을 사용하였고, 하기 도 29 내지 36, 표 14의 벡터 모식도에 따라 PCR을 수행하여, huHF-αPD1 HCDR3 (C-말단), huHF-αCTLA4 HCDR3 (C-말단), huHF αTIGIT HCDR3 (C-말단), huHF-αLAG3 HCDR3 (C-말단), huHF-αTIM3 HCDR3 (C-말단), huHF-αPD-L1 HCDR3 (AB루프)-αTIGIT HCDR3 (C-말단) (dual blocker)를 제조하였다. 제작된 모든 플라즈미드 발현 벡터는 아가로스 젤에서 정제한 다음, 완전한 DNA 시퀀싱을 통해 서열을 확인하였다.
구체적으로, 표 15의 프라이머 세트를 이용하여 각각의 발현 벡터 제조에 필요한 PCR 산물을 순차적으로 플라스미드 pT7-7 벡터에 삽입하여 각각의 단백질 나노입자를 발현할 수 있는 발현 벡터를 구성하였다.
서열번호 명칭
48 huHF-αPD-L1
49 huHF-αPD1
50 huHF-αCTLA4
51 huHF-αLAG3
52 huHF-αTIM3
53 huHF αTIGIT
단백질 발현 벡터
huHF-αPD-L1 NH2-NdeI-huHF-αPD-L1 HCDR3-HindIII-COOH
huHF-αPD1 NH2-NdeI-huHF-αPD1 HCDR3-HindIII-COOH
huHF-αCTLA4 NH2-NdeI-huHF-αCTLA4 HCDR3-HindIII-COOH
huHF-αLAG3 NH2-NdeI-huHF-αLAG3 HCDR3-HindIII-COOH
huHF-αTIM3 NH2-NdeI-huHF-αTIM3 HCDR3-HindIII-COOH
huHF-αTIGIT NH2-NdeI-huHF-αTIGIT HCDR3-HindIII-COOH
huHF-PD-L1-TIGIT dual blocker BC(92D/93W): NH2-NdeI-(His)6-huHF-[αTIGIT HCDR3]-huHF- αPD-L1 HCDR3-HindIII-COOH
서열번호 명칭 삽입부위
54 α_PD-L1_F C-말단
55 α_PD-L1_R
56 α_PD1_F C-말단
57 α_PD1_R
58 α_CTLA4_F C-말단
59 α_CTLA4_R
60 α_LAG3_F C-말단
61 α_LAG3-R
62 α_TIM3_F C-말단
63 α_TIM3_R
64 α_TIGIT_F C-말단
65 α_TIGIT_R
66 BC_α_PD-L1_F BC loop
67 BC_α_PD-L1_R
(2) 단백질의 합성, 정제 및 조립 검증
실시예 2 내지 4와 동일한 방법으로 단백질의 제조 및 수용성 분획을 확인하고, 실시예 5와 동일한 방법으로 구형의 나노입자 형성 여부를 확인하였다(도 29 내지 36).
(3) 항원에 대한 결합력 측정
각 항체에 대한 항원을 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 항원에 대한 결합력을 측정하였다.
항체의 결합력은 표 16에, 실시예의 단백질의 결합력은 표 17 및 18에 나타내었다. 이를 참조하면, 실시예의 단백질들이 인간 항원에 대한 우수한 결합력을 나타내는 것을 확인할 수 있다.
Human Ab Kd (nM) Catalog #
αPD-L1 5.8227±0.52 10084-MM02
(Sino biological)
αPD1 9.2096±1 MBS154625(Mybiosource)
αCTLA4 3.4228±1.81 11159-MM06(Sino biological)
αTIM3 7.9993±1.01 MBS4156568(Mybiosource)
αTIGIT 10.32±1.27 MBS154627(Mybiosource)
Sample murine IC molecule
(standard)
Kd
(nM)
huHF-αPD-L1 PD-L1 3.1692±2.56
huHF-αPD1 PD1 87.889±2.47
huHF-αCTLA4 CTLA4 17.513±0.462
huHF-αLAG3 LAG3 37.817±1.82
huHF-αTIM3 TIM3 7.0831±1.64
huHF-αTIGIT TIGIT 3.9997±2.29
huHF-α PD-L1-
αTIGIT
PD-L1 4.9956±2.79
TIGIT 4.7343±2.52
Sample human IC molecule
(standard)
Kd
(nM)
huHF-αPD-L1 PD-L1 10.708±4.52
huHF-αPD1 PD1 17.776±4.38
huHF-αCTLA4 CTLA4 10.167±3.11
huHF-αLAG3 LAG3 18.498±3.17
huHF-αTIM3 TIM3 13.03±4.21
huHF-αTIGIT TIGIT 7.1276±2.16
huHF-αPD-L1-αTIGIT PD-L1 3.5605±1.07
TIGIT 6.6423±3.46

Claims (20)

  1. 외부 표면에 면역 관문 분자와 결합 가능한 분자가 융합된 페리틴 단백질.
  2. 청구항 1에 있어서, 상기 면역 관문 분자와 결합 가능한 분자가 융합된 페리틴 단량체 24개가 자기 조립되어 이루어진 구형 단백질.
  3. 청구항 1에 있어서, 상기 면역 관문 분자와 결합 가능한 분자는 페리틴 단량체의 인접한 α-헬릭스들 사이 중 적어도 하나에 융합되는 단백질.
  4. 청구항 1에 있어서, 상기 면역 관문 분자와 결합 가능한 분자는 페리틴 단량체의 N-말단 또는 C-말단에 융합되는 단백질.
  5. 청구항 1에 있어서, 상기 면역 관문 분자와 결합 가능한 분자는 페리틴 단량체의 A-B루프, B-C루프, C-D루프 또는 D-E루프에 융합된 단백질.
  6. 청구항 1에 있어서, 상기 면역 관문 분자와 결합 가능한 분자는 페리틴 단량체의 N-말단과 A 헬릭스 사이 또는 E 헬릭스와 C-말단 사이에 융합된 단백질.
  7. 청구항 1에 있어서, 인간 트랜스페린 수용체에 대한 결합력이 떨어지도록 돌연 변이된 단백질.
  8. 청구항 1에 있어서, 상기 단백질을 구성하는 페리틴 단량체 중 적어도 하나가 서열번호 1의 서열에서 14번, 15번, 22번, 81번 또는 83번 아미노산이 알라닌, 글라이신, 발린 또는 류신으로 치환된 것인 단백질.
  9. 청구항 1에 있어서, 트랜스페린 수용체에 대한 결합력(K)이 다음 수학식 1을 만족하는 단백질:
    [수학식 1]
    K ≤ 700 nM
    (식 중, K = [P][T]/[PT]이고, 여기서 [P]는 상기 단백질과 상기 트랜스페린 수용체와의 결합 반응의 평형 상태에서의 상기 단백질의 농도를 나타내고, [T]는 상기 평형 상태에서의 상기 트랜스페린 수용체의 농도를 나타내며, [PT]는 상기 평형 상태에서의 상기 단백질과 상기 트랜스페린 수용체의 복합체의 농도를 나타냄).
  10. 청구항 9에 있어서, 상기 트랜스페린 수용체는 인간 트랜스페린 수용체인 단백질.
  11. 청구항 1에 있어서, 상기 면역 관문 분자는 Her-2/neu, VISTA, 4-1BBL, Galectin-9, Adenosine A2a receptor, CD80, CD86, ICOS, ICOSL, BTLA, OX-40L, CD155, BCL2, MYC, PP2A, BRD1, BRD2, BRD3, BRD4, BRDT, CBP, E2F1, MDM2, MDMX, PPP2CA, PPM1D, STAT3, IDH1, PD1, CTLA4, PD-L1, PD-L2, LAG3, TIM3, TIGIT, BTLA, SLAMF7, 4-1BB, OX-40, ICOS, GITR, ICAM-1, BAFFR, HVEM, LFA-1, LIGHT, NKG2C, SLAMF7, NKp80, LAIR1, 2B4, CD2, CD3, CD16, CD20, CD27, CD28, CD40L, CD48, CD52, EGFR family, AXL, CSF1R, DDR1, DDR2, EPH receptor family, FGFR family, VEGFR family, IGF1R, LTK, PDGFR family, RET, KIT, KRAS, NTRK1 및 NTRK2으로 이루어진 군에서 선택되는 어느 하나인 단백질.
  12. 청구항 1에 있어서, 상기 면역 관문 분자와 결합 가능한 분자는 상기 면역 관문 분자에 대한 리간드, 항체 또는 이의 단편인 단백질.
  13. 청구항 1에 있어서, 상기 페리틴은 인간 페리틴 중쇄인 단백질.
  14. 청구항 1에 있어서, 상기 단백질은 대장균 생산 시스템에서 수용성 분획 비율이 40% 이상으로 존재하는 단백질.
  15. 청구항 1 내지 14 중 어느 한 항의 단백질을 포함하는 암의 치료 또는 예방용 약학 조성물.
  16. 청구항 15에 있어서, 상기 암은 뇌암, 두경부암, 방광암, 유방암, 자궁경부암, 결장암, 결장직장암, 자궁내막암, 식도암, 백혈병, 폐암, 간암, 난소암, 췌장암, 전립선암, 직장암, 신장암, 위암, 고환암, 자궁암, 혈관 종양, 편평세포암종, 선암종, 소세포 암종, 흑색종, 신경교종, 신경아세포종, 육종, 후두암, 이하선암, 담도암, 갑상선암, 광선각화증, 급성 림프구성 백혈병, 급성 골수 백혈병, 샘낭암종, 선종, 선 평편상피암종, 항문관암, 항문암, 항문직장암, 성상세포종, 큰질어귀샘암, 기저세포 암종, 담즙암, 골암, 골수암, 기관지암, 기관지샘 암종, 카시노이드, 담관암종, 만성 림프구성 백혈병, 만성 골수성 백혈병, 투명세포 암종, 결합조직암, 낭선종, 소화계통암, 십이지장암, 내분비계암, 내배엽동종양, 자궁내막증식증, 자궁내막모양 선암종, 내피세포암, 뇌실막세포, 상피세포암, 안와암, 국소결절성 과증식, 담낭암, 날문방암, 위 기저부 암, 가스트린종, 교모세포종, 글루카곤종, 심장암, 혈관아세포종, 혈관내피종, 혈관종, 간샘종, 간 선종증, 간담도암, 간세포 암종, 호지킨병, 회장암, 인슐린종, 상피내 신생물, 상피내 편평세포 신생물, 간내 담도암, 침윤성 편평세포암종, 공장암, 관절암, 골반암, 거대 세포 암종, 대장암, 림프종, 악성 중피세포 종양, 수아세포종, 수질상피종, 뇌막암, 중피암, 전이성 암종, 구강암, 점막표피모양 암종, 다발성 골수종, 근육암, 비강관암, 신경계암, 비-상피 피부암, 비-호지킨 림프종, 연맥 세포 암종, 핍지교종암, 구강암, 골육종, 유두상 장액성 선암종, 음경암, 인두암, 뇌하수체 종양, 형질세포종, 가육종, 폐 아세포종, 직장암, 신세포 암종, 호흡계 암, 망막아세포종, 장액성 암종, 부비강암, 피부암, 소세포 암종, 소장암, 평활근육암, 연조직암, 소마토스타틴-분비 종양, 척추암, 편평세포암종, 선조 근육암, 중피세포하층암, T 세포 백혈병, 설암, 요관암, 요도암, 자궁경부암, 자궁몸통암, 질암, VIPoma, 외음부암, 고분화 암종 및 윌름 종양으로 이루진 군에서 선택된 것인 암의 치료 또는 예방용 약학 조성물.
  17. 청구항 15에 있어서, 질환 항원 에피토프가 융합된 페리틴 단량체가 자기 조립되어 이루어지고, 트랜스페린 수용체에 대한 결합력(K)이 다음 수학식 4를 만족하는 단백질을 더 포함하는 암의 치료 또는 예방용 약학 조성물:
    [수학식 4]
    K ≤ 700 nM
    (식 중, K = [P][T]/[PT]이고, 여기서 [P]는 상기 단백질과 상기 트랜스페린 수용체와의 결합 반응의 평형 상태에서의 상기 단백질의 농도를 나타내고, [T]는 상기 평형 상태에서의 상기 트랜스페린 수용체의 농도를 나타내며, [PT]는 상기 평형 상태에서의 상기 단백질과 상기 트랜스페린 수용체의 복합체의 농도를 나타냄).
  18. 청구항 15에 있어서, 상기 질환 항원 에피토프는 gp100, MART-1, Melna-A, MAGE-A3, MAGE-C2, Mammaglobin-A, proteinsase-3, mucin-1, HPV E6, LMP2, PSMA, GD2, hTERT, PAP, ERG, NA17, ALK, GM3, EPhA2, NA17-A, TRP-1, TRP-2, NY-ESO-1, CEA, CA 125, AFP, Survivin, AH1, ras, G17DT, MUC1, Her-2/neu, E75, p53, PSA, HCG, PRAME, WT1, URLC10, VEGFR1, VEGFR2, E7, Tyrosinase 펩타이드, B16F10, EL4 또는 신생항원(neoantigen)인 암의 치료 또는 예방용 약학 조성물.
  19. 청구항 17에 있어서, 2종의 단백질이 병용 투여되기 위한 암의 치료 또는 예방용 약학 조성물.
  20. 청구항 17에 있어서, 2종의 단백질이 동시, 개별 또는 순차적으로 투여되는 암의 치료 또는 예방용 약학 조성물.
PCT/KR2020/015165 2019-11-01 2020-11-02 면역 관문 분자와 결합 가능한 분자가 융합된 단백질 및 이의 용도 WO2021086159A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/773,266 US20240148898A1 (en) 2019-11-01 2020-11-02 Protein fused with molecule capable of binding to immune checkpoint molecule and use of same
JP2022525447A JP2023500293A (ja) 2019-11-01 2020-11-02 免疫チェックポイント分子と結合可能な分子が融合したタンパク質およびその用途
EP20880696.8A EP4053153A4 (en) 2019-11-01 2020-11-02 PROTEIN FUSED WITH A MOLECULE CAPABLE OF BINDING AN IMMUNE CHECKPOINT MOLECULE AND USE THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190138580 2019-11-01
KR10-2019-0138580 2019-11-01
KR1020200144637A KR20210053252A (ko) 2019-11-01 2020-11-02 면역 관문 분자와 결합 가능한 분자가 융합된 단백질 및 이의 용도
KR10-2020-0144637 2020-11-02

Publications (1)

Publication Number Publication Date
WO2021086159A1 true WO2021086159A1 (ko) 2021-05-06

Family

ID=75715440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015165 WO2021086159A1 (ko) 2019-11-01 2020-11-02 면역 관문 분자와 결합 가능한 분자가 융합된 단백질 및 이의 용도

Country Status (3)

Country Link
US (1) US20240148898A1 (ko)
JP (1) JP2023500293A (ko)
WO (1) WO2021086159A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150088597A (ko) * 2014-01-24 2015-08-03 국립대학법인 울산과학기술대학교 산학협력단 항원 펩타이드-페리틴 융합단백질 및 이를 포함하는 백신 조성물
KR20170047120A (ko) * 2015-10-22 2017-05-04 고려대학교 산학협력단 암 특이적 에피토프와 연결된 단백질 나노입자 및 이를 포함하는 암 면역치료용 조성물
KR20180008353A (ko) * 2016-07-15 2018-01-24 한국과학기술연구원 신규 나노케이지 및 그의 용도
KR20190115262A (ko) * 2018-04-02 2019-10-11 충남대학교산학협력단 페리틴 자가조립체에 항원 펩타이드 및 면역 증강제가 결합된 나노 입자 및 이의 용도

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123399A1 (ko) * 2013-02-08 2014-08-14 경북대학교 산학협력단 인간 페리틴 유래 융합폴리펩티드
EP3512563A1 (en) * 2016-09-16 2019-07-24 The Johns Hopkins University Protein nanocages with enhanced mucus penetration for targeted tissue and intracellular delivery
KR20200123132A (ko) * 2018-02-21 2020-10-28 아지노모토 가부시키가이샤 융합 단백질

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150088597A (ko) * 2014-01-24 2015-08-03 국립대학법인 울산과학기술대학교 산학협력단 항원 펩타이드-페리틴 융합단백질 및 이를 포함하는 백신 조성물
KR20170047120A (ko) * 2015-10-22 2017-05-04 고려대학교 산학협력단 암 특이적 에피토프와 연결된 단백질 나노입자 및 이를 포함하는 암 면역치료용 조성물
US10206987B2 (en) 2015-10-22 2019-02-19 Korea University Research And Business Foundation Protein nanoparticle linked with cancer specific epitope and composition for cancer immunotherapy comprising the same
KR20180008353A (ko) * 2016-07-15 2018-01-24 한국과학기술연구원 신규 나노케이지 및 그의 용도
KR20190115262A (ko) * 2018-04-02 2019-10-11 충남대학교산학협력단 페리틴 자가조립체에 항원 펩타이드 및 면역 증강제가 결합된 나노 입자 및 이의 용도

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE B.-R. ET AL: "Engineered Human Ferritin Nanoparticles for Direct Delivery of Tumor Antigens to Lymph Node and Cancer Immunotherapy", SCIENTIFIC REPORTS, vol. 6, 11 October 2016 (2016-10-11), pages 1 - 12, XP002792566, DOI: 10.1038/srep35182 *

Also Published As

Publication number Publication date
JP2023500293A (ja) 2023-01-05
US20240148898A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2017023138A1 (ko) 키메라 항원 수용체 및 키메라 항원 수용체가 발현된 t 세포
WO2019129177A1 (zh) 抗体修饰的嵌合抗原受体修饰t细胞及其用途
WO2019050362A2 (ko) 인간 dlk1에 대한 항체 및 이의 용도
WO2014025199A2 (ko) 스테필로코칼 엔테로톡신 유래의 초항원 변이체 및 이에 표적 특이적 폴리펩타이드가 연결된 융합단백질 및 그 용도
WO2017030370A1 (ko) 항-코티닌 항체가 연결된 키메라 항체 수용체 및 이의 용도
WO2014025198A2 (ko) Lfa3 변이체 및 상기 변이체 또는 lfa3 cd2 결합영역과 이에 표적 특이적 폴리펩타이드가 연결된 융합단백질 및 그 용도
WO2018174544A2 (ko) Muc1에 특이적으로 결합하는 항체 및 그의 용도
WO2014126332A1 (ko) 금나노입자-앱타머 결합체를 기반으로 하는 단백질 전달체 및 이의 제조 방법
WO2021107689A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 면역관문 억제제를 포함하는 암 치료용 약학 조성물
WO2018199593A1 (ko) Her3 및 cd3에 결합하는 이중특이적 항체
WO2022025638A1 (ko) 면역시냅스를 안정화시키는 키메라 항원 수용체(car) t 세포
WO2021086159A1 (ko) 면역 관문 분자와 결합 가능한 분자가 융합된 단백질 및 이의 용도
WO2021086158A1 (ko) 질환 항원이 융합된 단백질 및 이의 용도
WO2021158073A1 (ko) 항원 유래 t 세포 항원 에피토프 또는 이를 포함하는 펩타이드를 세포 표면에 제시하기 위한 융합항체, 및 이를 포함하는 조성물
WO2022124866A1 (ko) 항-pd-1 항체 및 이의 용도
WO2022149837A1 (ko) 항-fgfr3 항체 및 이의 용도
WO2018026249A1 (ko) 프로그램화된 세포 사멸 단백질 리간드-1 (pd-l1)에 대한 항체 및 이의 용도
WO2022235059A1 (ko) 폐암의 예방 또는 치료용 약학 조성물
WO2022092974A1 (ko) 항체 유사 단백질 및 그 용도
WO2022035262A1 (ko) 세포내 종양 유발 단백질을 타겟하는 항체 또는 이의 단일가닥 가변 단편과 암세포 투과성 펩타이드의 융합 단백질 및 이의 용도
KR102562878B1 (ko) 질환 항원이 융합된 단백질 및 이의 용도
WO2023195805A2 (ko) Itgb2 매개 약물전달체
WO2019151836A1 (en) Oncolytic vaccinia virus expressing an immune checkpoint protein antagonist to treat cancer
WO2022235061A1 (ko) 신규 단백질
WO2023080695A1 (ko) 리지스틴 특이적 항체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525447

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17773266

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020880696

Country of ref document: EP

Effective date: 20220601