WO2022035053A1 - 활물질 회수 장치 및 이를 이용한 활물질 재사용 방법 - Google Patents

활물질 회수 장치 및 이를 이용한 활물질 재사용 방법 Download PDF

Info

Publication number
WO2022035053A1
WO2022035053A1 PCT/KR2021/008377 KR2021008377W WO2022035053A1 WO 2022035053 A1 WO2022035053 A1 WO 2022035053A1 KR 2021008377 W KR2021008377 W KR 2021008377W WO 2022035053 A1 WO2022035053 A1 WO 2022035053A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
heat treatment
lithium
current collector
scrap
Prior art date
Application number
PCT/KR2021/008377
Other languages
English (en)
French (fr)
Inventor
김민서
박세호
양두경
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/912,017 priority Critical patent/US20230139010A1/en
Priority to EP21856060.5A priority patent/EP4120431A4/en
Priority to JP2022561183A priority patent/JP7406006B2/ja
Priority to CN202180017564.4A priority patent/CN115210935A/zh
Publication of WO2022035053A1 publication Critical patent/WO2022035053A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/12Rotary-drum furnaces, i.e. horizontal or slightly inclined tiltable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/14Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/34Arrangements of heating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to an apparatus and method for recycling resources when manufacturing a lithium secondary battery.
  • the present invention particularly relates to an apparatus for recovering an electrode active material from an electrode scrap generated in a lithium secondary battery manufacturing process or a lithium secondary battery discarded after use, and a method for reusing the recovered active material.
  • Lithium secondary batteries that can be repeatedly charged and discharged are in the spotlight as an alternative to fossil energy.
  • Lithium secondary batteries have been mainly used in traditional hand-held devices such as cell phones, video cameras, and power tools.
  • electric vehicles EVs, HEVs, PHEVs
  • ESSs large-capacity power storage devices
  • UPS uninterruptible power supply systems
  • a lithium secondary battery includes an electrode assembly in which unit cells having a structure in which a positive electrode plate and a negative electrode plate coated with an active material are coated on a current collector with a separator interposed therebetween, and a casing for sealing and housing the electrode assembly together with an electrolyte, that is, a battery case to provide
  • the cathode active material of the lithium secondary battery mainly uses a lithium-based oxide, and the anode active material uses a carbon material.
  • the lithium-based oxide contains a metal such as cobalt, nickel, or manganese.
  • cobalt, nickel, and manganese are very expensive precious metals, and among them, cobalt is a strategic metal, and each country in the world has a special interest in supply and demand. is known If there is an imbalance in the supply and demand of raw materials for strategic metals, raw material prices are highly likely to rise.
  • waste batteries lithium secondary batteries
  • resources can be recovered from wastes discarded after the positive electrode plate is punched or from the positive electrode having defects in the process.
  • a positive electrode active material layer 20 when manufacturing a lithium secondary battery, as shown in FIG. 1 , a positive electrode active material layer 20 ) by forming the positive electrode sheet 30, and then punching out the positive electrode plate 40 to a predetermined size. The part remaining after punching is discarded as anode scrap (scrap, 50). If it is possible to recover the cathode active material from the cathode scrap 50 and reuse it, it would be very desirable from an industrial-economic point of view and an environmental point of view.
  • the method of recovering the cathode active material is mostly to dissolve the cathode in hydrochloric acid, sulfuric acid, nitric acid, etc., extract active material elements such as cobalt, nickel, and manganese, and then use it again as a raw material for the cathode active material synthesis.
  • the method of extracting the active material element using an acid has the disadvantage that the process for recovering the pure raw material is not environmentally friendly, and the neutralization process and the wastewater treatment process are required, which increases the process cost.
  • it has a disadvantage that lithium, which is one of the main elements of the cathode active material, cannot be recovered.
  • a method that can be directly reused without dissolving the positive electrode active material and extracting the active material in elemental form is required.
  • An object of the present invention is to provide an active material recovery device capable of easily recovering an electrode active material from an electrode scrap as it is in its intrinsic shape.
  • Another object to be solved by the present invention is to provide a method for reusing a cathode active material using the same.
  • An active material recovery device for solving the above problems is a rotary firing device having a screw-type rod therein, and is arranged in a line along the axis of the rod, and includes a heating zone. a screening wall forming a heat treatment bath and a cooling zone; and an exhaust injection and degassing system, wherein in the heat treatment bath, an electrode scrap including an active material layer on a current collector is heat treated in air while rotating around the axis of the rod to remove the binder and conductive material in the active material layer to remove the collector The whole is separated from the active material layer, and the active material in the active material layer passes through the screening wall and is recovered as an active material in powder form, and the current collector that does not pass through the screening wall is separately recovered.
  • the heat treatment bath may also rotate about an axis of the rod.
  • an angle of the entire active material recovery device may be adjusted so that an axis of the rod is inclined with respect to the ground.
  • the active material recovery device may have a vibration function.
  • the active material recovery device may be one in which the input of new electrode scrap and the recovery of the active material are continuously performed.
  • the heat treatment bath has a tubular shape with both ends open so that electrode scrap is put therein and the separated current collector and active material are transferred to the screening wall, and the tub is an open system through which air enters and exits.
  • the screening wall has a cylindrical shape with both ends open so that the separated current collector and active material are put therein and the current collector is discharged.
  • the heat treatment bath is an open system in which air is added or injected at a rate of 10 mL/min to 100 L/min per 100 g of inputted electrode scrap.
  • Air inlets may be installed in a plurality of places in the heat treatment bath.
  • a method for reusing a cathode active material according to the present invention for solving the above other problem includes: preparing an active material recovery device according to the present invention; inputting a cathode scrap including a lithium composite transition metal oxide cathode active material layer on a current collector to a heat treatment bath; separating the current collector from the active material layer by performing heat treatment in air while rotating the cathode scrap in the heat treatment bath around an axis of a rod to remove a binder and a conductive material in the active material layer; recovering the active material in powder form that has passed through the screening wall; and annealing the active material at 400 to 1000° C. in air to obtain a reusable active material.
  • the heat treatment may be performed at 300 ⁇ 650 °C.
  • the heat treatment may be performed at 550° C. for 30 minutes at a temperature increase rate of 5° C./min.
  • a carbon component generated by carbonization of the binder or the conductive material may not remain on the surface.
  • the method may further include washing the recovered active material with an aqueous lithium compound solution showing basicity in an aqueous solution before the annealing.
  • a lithium precursor to the washed active material before the annealing.
  • the lithium compound aqueous solution is prepared to contain more than 0% and 15% or less of the lithium compound, and preferably LiOH is used.
  • the washing may be performed within 1 hour.
  • the washing may be performed by stirring the recovered active material simultaneously with the impregnation of the lithium compound aqueous solution.
  • the method may further include adding a lithium precursor and obtaining a particle-controlled active material by mixing the washed active material with a lithium precursor solution and spray-drying after the washing step.
  • the method may further include surface coating the annealed active material.
  • the lithium precursor may be any one or more of LiOH, Li 2 CO 3 , LiNO 3 and Li 2 O.
  • the lithium precursor may be added in an amount capable of adding as much as the ratio of lithium lost compared to the ratio of lithium and other metals in the raw material active material used for the active material layer.
  • the lithium precursor may be added in an amount in which lithium is added in a molar ratio of 0.001 to 0.4.
  • the lithium precursor is preferably added in an amount capable of further adding lithium in a molar ratio of 0.0001 to 0.1 molar ratio based on a molar ratio of lithium: other metals of 1:1.
  • the temperature of the annealing step may be a temperature exceeding the melting point of the lithium precursor.
  • the step of coating the surface may be one or more of a metal, an organic metal, and a carbon component, coated on the surface in a solid or liquid manner, and then heat-treated at 100 ⁇ 1200 °C.
  • the reusable active material may be represented by the following formula (1).
  • the reusable active material may have a fluorine (F) content of 100 ppm or less.
  • an active material recovery device capable of increasing the air contact rate through the introduction of the rotary heat treatment bath to facilitate detachment of the electrode active material from the current collector during heat treatment and continuously separate the electrode active material and the current collector.
  • the active material recovery device of the present invention it is possible to recover the positive electrode active material from the positive electrode scrap.
  • This method is eco-friendly by allowing the reuse of a waste positive electrode active material such as positive electrode scrap generated in the lithium secondary battery manufacturing process without using an acid.
  • the method according to the present invention does not require a neutralization process or a wastewater treatment process, so it is possible to alleviate environmental issues and reduce process costs.
  • the present invention it is possible to recover the positive electrode active material without a metal element that cannot be recovered. Since the current collector is not dissolved, the current collector can also be recovered. It is economical because it is a method that can directly reuse the active material recovered in powder form rather than extracting the active material element and using it again as a raw material for synthesizing the cathode active material.
  • the present invention it is safe because it does not use toxic and explosive solvents such as NMP, DMC, acetone, and methanol, and because simple processes such as heat treatment, washing, and annealing are used, process management is easy and suitable for mass production.
  • toxic and explosive solvents such as NMP, DMC, acetone, and methanol
  • the electrochemical performance of the recovered active material is not deteriorated, and excellent resistance characteristics and capacity characteristics can be realized.
  • 1 is a view showing positive electrode scrap discarded after the positive electrode plate is punched from the positive electrode sheet.
  • FIG. 2 is a schematic diagram of an active material recovery device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an active material recovery device according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of an active material reuse method according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of an active material reuse method according to another embodiment of the present invention.
  • Example 14 is a result of cell evaluation using the active materials of Example 5 and Comparative Examples 6 to 9;
  • Example 15 is an XRD pattern of the active materials of Example 5 and Comparative Examples 6, 7, and 9;
  • Example 18 is a particle size distribution graph of the active materials of Example 5 and Comparative Examples 6, 7, and 9;
  • Example 19 is a result of cell evaluation using Example 6 and Comparative Examples 6, 7, and 10 active materials.
  • Example 20 is an XPS pattern of the active materials of Example 6 and Comparative Examples 6 to 8;
  • the present invention is a lithium secondary battery There is a difference in that the active material is also recovered from the cathode scrap generated during the manufacturing process.
  • the present invention relates to a method and apparatus for directly reusing a cathode active material without dissolving it.
  • a method for removing the current collector from the positive electrode is required.
  • To remove the current collector from the positive electrode it is possible to remove the binder through high-temperature heat treatment, to melt the binder using a solvent, to completely melt the current collector, and to select the active material through dry grinding and sieving. Do.
  • the stability of the solvent is important in dissolving the binder using the solvent.
  • NMP is probably the most efficient solvent, but it has the disadvantages of toxicity and high price.
  • a solvent recovery process such as reprocessing the waste solvent is required. Melting the current collector will be cheaper than using a solvent.
  • there is a risk of explosion because it is difficult to remove foreign substances from the surface of the reusable active material and hydrogen gas is generated during the current collector removal process. It is difficult to completely separate the current collector and the active material by dry grinding and sieving. During the pulverization process, the particle size distribution of the active material is changed and it is difficult to remove the binder, so there is a disadvantage in that the characteristics of the reused battery deteriorate.
  • the active material and the current collector are separated using high-temperature heat treatment.
  • the heat treatment is carried out in air and provides an advantageous device for mass production and commercialization. Foreign substances shall not remain on the surface of the reusable active material.
  • even the step of removing foreign substances from the surface of the reusable active material is proposed.
  • the active material recovery device 100 shown in FIG. 2 is a rotary firing device having a screw-type rod 110 therein.
  • the heat treatment bath 120 and the screening wall 130 are arranged in a line along the axis of the rod 110 .
  • the heat treatment bath 120 and the screening wall 130 may have a hollow cylindrical shape having a predetermined space in which the object to be treated can be contained.
  • the rod 110 passes through the center of the heat treatment bath 120 and the screening wall 130 , and the heat treatment bath 120 and the screening wall 130 may be coaxially arranged.
  • the rod 110 may have an elongated shape so as to be connected from one side to the other in the longitudinal direction of the heat treatment bath 120 and the screening wall 130 .
  • the heat treatment bath 120 constitutes a heating zone
  • the screening wall 130 constitutes a cooling zone.
  • the heat treatment bath 120 is installed at the front end of the apparatus along the transfer direction of the object to be treated, and the screening wall 130 is installed at the rear end of the apparatus. By sequentially installing the heat treatment bath 120 and the screening wall 130, the object to be treated in the heat treatment bath 120 is sufficiently heated to cause thermal decomposition and then transferred to the screening wall 130.
  • the active material recovery device 100 also includes an exhaust injection and degassing system 140 .
  • Air or oxygen may be injected into the heat treatment bath 120 using the exhaust injection and degassing system 140 .
  • the exhaust gas after heat treatment may be discharged after being purified using the exhaust injection and degassing system 140 .
  • the rod 110 rotates along its axis.
  • the object to be treated is the electrode scrap 160 .
  • the electrode scrap 160 includes an active material layer on the current collector 150 .
  • Heat treatment can be performed at 300 ⁇ 650 °C, so it can be called high temperature heat treatment.
  • At a temperature of less than 300 °C it is difficult to remove the binder, so the current collector 150 cannot be separated.
  • the current collector 150 melts (Al melting point: 660 °C) to separate the current collector. impossible phenomena occur.
  • the active material layer may be separated from the current collector 150 .
  • the heat treatment bath 120 may also rotate about the axis of the rod 110 . At this time, the rotation direction of the heat treatment bath 120 may be the same as or opposite to the rotation direction of the rod 110 . It is also possible to proceed by changing the direction of rotation at appropriate time intervals.
  • Rotation of rod 110 and/or heat treatment bath 120 rotates electrode scrap 160 .
  • the rod 110 pushes the electrode scrap 160 while stirring the electrode scrap 160 so that the electrode scrap 160 is in good contact with the air, and the active material layer is converted into a powdery active material 170 by the stirring force. It helps to fall off.
  • the electrode scrap 160 containing heavy metal components is not rotated well and there is a high possibility that it is piled up only under the inside of the heat treatment bath 120 . Then there is less oxygen or air contact.
  • the electrode scrap 160 may be stirred by rotating the rod 110 inside the heat treatment bath 120 . Even if the electrode scrap 160 is not put in by fine shredding, it may be split by the rod 110 .
  • the rod 110 By rotating the split electrode scrap 160 by the rod 110, it is possible to sufficiently contact oxygen or air.
  • the rod 110 does not simply rotate, but is a screw type, and thus has a protruding structure such as a pin, a wing, or a rod. This protruding structure maximizes the rotation and mixing of the electrode scrap 160 . Accordingly, incomplete combustion due to the overlapping phenomenon between electrode scraps can be eliminated.
  • the active material layer separated from the current collector 150 through heat treatment in the heat treatment bath 120 may have a structure such as individual particles or flakes in which particles are agglomerated, and since it is not in a continuous film state, in the present invention, it is in powder form. is called In this way, in the heat treatment bath 120 , the active material in powder form can be obtained from the current collector 150 by simple heat treatment in air, and some electrode scrap 160 is only van der Waals on the current collector 150 .
  • the active material layer may be transferred to the screening wall 130 in a state in which the active material layer is attached or some active material layers are removed by force, etc. to become the active material 170 in powder form.
  • the heat treatment bath 120 has a cylindrical shape with both ends open so that the electrode scrap 160 is put therein and the current collector 150 and the active material 170 from which the binder and the conductive material are removed are transferred to the screening wall 130 .
  • the barrel is an open system through which air enters and exits. That is, since the tube does not have a closed structure, oxygen in the outside air may be introduced.
  • the heat treatment bath 120 includes a container for receiving, rotating and mixing the electrode scrap 160 , and a heating unit capable of heat-treating the electrode scrap 160 by adding heat to the container.
  • the container may be made of a metal or ceramic material.
  • a heat source such as a microwave can also be used as the heating unit, so that the types of heat sources that can be used are diversified.
  • the container of the heat treatment bath 120 may be a tube made of a ceramic material, for example, high-purity alumina. And since such a tube further includes flanges connecting in the longitudinal direction at both ends of the tube, it can be manufactured as a heat treatment bath 120 capable of large-capacity processing by connecting two or more tubes to each other and extending the length.
  • a tube made of a ceramic material is very difficult to manufacture over a certain diameter and a certain length due to the characteristics of the material, and the product price is quite high. Accordingly, a plurality of tubes of an appropriate diameter and length made of a ceramic material can be connected to a desired length through the flange.
  • the heating unit may be provided on the outer peripheral surface of the container.
  • the heating unit is a linear heating element, and the heating element has a long bar shape to be connected from one side in the longitudinal direction of the container to the other side, and may be disposed on the outer peripheral surface of the container. Then, it is possible to generate heat at a uniform temperature in the longitudinal direction of the vessel.
  • the heating element may include at least one selected from the group consisting of SiC, graphite, carbon nanotubes, carbon nanofibers and graphene, and may preferably be formed of a SiC material.
  • the heat treatment bath 120 is preferably an open system in which air is added or injected at a rate of 10 mL/min to 100 L/min per 100 g of the input electrode scrap 160 . If the heat treatment bath 120 has a cylindrical shape with both ends open, air addition is smooth. In addition, as shown by the arrow in FIG. 2 , when the air inlet is installed at a plurality of places in the heat treatment bath 120 , the air or oxygen injected through the exhaust injection and degassing system 140 is mixed with the electrode scrap 160 . Since it is smoothly supplied from the heat treatment bath 120, sufficient supply of air and oxygen required for thermal decomposition becomes possible.
  • the air inlet may also be installed on the rod 110 .
  • the binder PVdF polyvinylidene fluoride, polyvinylidene fluoride
  • the conductive material present in the active material layer are decomposed and separated from the current collector during heat treatment.
  • the active material layer cannot be separated from the current collector due to incomplete combustion, but rather is carbonized more strongly and attached to the current collector. In this case, since the recovery rate of the active material is lowered, it is difficult to secure fairness.
  • the heat treatment bath 120 can control the amount of air added and has a structure in which the electrode scrap 160 is in good contact with air during heat treatment.
  • the rod 110 is rotated so that the electrode scrap 160 is in good contact with air, and the heat treatment bath 120 is also rotated to rotate the electrode scrap 160 inside the heat treatment bath 120 .
  • the heat treatment bath 120 is also rotated to rotate the electrode scrap 160 inside the heat treatment bath 120 .
  • the recovery rate of the final desorbed active material can be increased. If air is injected or added at a rate of less than 10 mL/min per 100 g of the electrode scrap 160 to which air is fed, the binder and the conductive material are incompletely burned, thereby reducing the recovery rate of the active material. If more than 100 L/min is injected or added, active material blowing may occur due to excessive addition and temperature control may be difficult.
  • the screening wall 130 may have a mesh structure. The size of the mesh may be appropriately determined in a line that prevents the current collector 150 from passing therethrough.
  • the active material 170 in powder form that has passed through the screening wall 130 may be recovered through the first collector 180 installed under the screening wall 130 .
  • the current collector 150 that did not pass through the screening wall 130 may be recovered through the second collector 190 installed at the end of the screening wall 130 .
  • the active material 170 and the current collector 150 may be recovered, respectively.
  • the active material 170 can be recovered as it is, and the current collector 150 can be recycled without melting or throwing it away.
  • the screening wall 130 preferably has a cylindrical shape with both ends open so that the separated current collector 150 and the active material 170 are put therein and the current collector 150 is discharged.
  • the removal of the active material 170 from the current collector 150 is facilitated through the rotation of the rod 110 .
  • the rod 110 rotates and stirs the current collector 150 so that the active material 170 is removed from the current collector 150 as well as the current collector 150 and the screening wall 130 collide with each other and collect by the impact.
  • the active material 170 is separated from the whole 150 .
  • the screening wall 130 may also rotate about the axis of the rod 110 . If there is no rotating rod 110 or the current collector 150 is in a stopped state because the screening wall 130 does not rotate, it is not easy for the active material 170 to come off from the current collector 150 .
  • the rotation direction of the screening wall 130 may be the same as or opposite to the rotation direction of the rod 110 . It is also possible to proceed by changing the direction of rotation at appropriate time intervals.
  • the screening wall 130 may be the same as the rotation direction of the heat treatment bath (120). When the connection portion of the heat treatment bath 120 and the screening wall 130 is fixed, the heat treatment bath 120 and the screening wall 130 can be rotated together.
  • the heat treatment bath 120 and the screening wall 130 may be configured as a prefabricated or integral type connected to each other.
  • a coupling groove is formed on one side of the heat treatment bath 120 along the main surface, and a coupling protrusion is formed along the main surface on one side of the screening wall 130, and the heat treatment bath corresponding to each other through the coupling groove and the coupling protrusion.
  • the ends of the 120 and the screening wall 130 may be firmly connected.
  • the coupling groove and the coupling protrusion may be coupled through an interference fitting coupling method or a screw coupling method.
  • the coupling groove and the coupling protrusion may be coupled to a hook structure with a locking protrusion.
  • the active material recovery device 100 continuously inserts new electrode scrap and recovers the active material.
  • a cooling section may be achieved by a slow cooling method of natural cooling, and a faster cooling method or temperature-controlled cooling is possible by further providing a cooling means outside the screening wall 130 may make it
  • the active material recovery device 100 also has a vibration function.
  • the vibration may give a physical force so that the active material from which the binder and the conductive material are removed after the heat treatment is detached from the current collector.
  • the active material 170 in the screening wall 130 passes through the screening wall 130 and falls to the first collector 180 below it.
  • the active material recovery device 100 ′ shown in FIG. 3 is characterized in that the angle ⁇ of the entire active material recovery device 100 ′ is adjusted so that the axis of the rod 110 is inclined with respect to the ground.
  • the rear end of the active material recovery device 100 ′ that is, the right side in the drawing may be supported in a slightly inclined state so that it is downward. Supports having different heights may be installed at the front end and lower rear end of the active material recovery device 100 ′, respectively.
  • Adjusting the angle ⁇ gives an inclination to the ground, and the inclination allows them to move downward by the weight of the current collector 150 and the active material 170 .
  • the current collector 150 and the active material 170 slowly move from the left to the right side of the drawing through the heat treatment bath 120 and the screening wall 130, and the active material 170 in the screening wall 130.
  • Silver passes through the screening wall 130 and falls to the first collector 180 below it, and the collector 150 that does not pass through the screening wall 130 is a second collector 190 installed at the end of the screening wall 130 .
  • the angle ⁇ may be maintained throughout the process in a state set before the process, or may be adjusted and changed as needed during the process.
  • the active material recovery apparatuses 100 and 100' described above can process a large amount of electrode scrap, and thus work efficiency and work time can be greatly reduced.
  • it is an open system that does not block oxygen in the outside air, and sufficient air or oxygen can be supplied for complete combustion of the active material layer. Since the electrode scrap can be rotated, air contact is more smooth, so the active material can be recovered with uniform quality and high recovery rate.
  • FIG. 4 is a flowchart of an active material reuse method according to another embodiment of the present invention.
  • discarded cathode scrap is prepared (step s10).
  • the positive electrode scrap may be a portion remaining after manufacturing a positive electrode sheet including a positive electrode active material layer on a current collector and punching out.
  • positive electrode scrap may be prepared by separating the positive electrode from the discarded lithium secondary battery after use.
  • LiCoO 2 such as lithium cobalt oxide active material, or NCM-based active material containing nickel, cobalt and manganese, carbon-based carbon black as a conductive material, and NMP (N-methyl pyrrolidone) in PVdF as a binder
  • LCO lithium cobalt oxide active material
  • NMP N-methyl pyrrolidone
  • a lithium composite transition metal oxide is used as a cathode active material for a lithium secondary battery.
  • lithium cobalt oxide of LiCoO 2 lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 etc.), lithium iron phosphate compound (LiFePO 4 etc.) Or lithium nickel oxide (LiNiO 2 , etc.) is mainly used.
  • a nickel manganese-based lithium composite metal oxide and manganese (Mn) in which a part of nickel (Ni) is substituted with manganese (Mn) having excellent thermal stability ) and an NCM-based lithium composite transition metal oxide substituted with cobalt (Co) is used.
  • the positive electrode scrap has an active material layer on a current collector of a metal foil such as aluminum foil.
  • the active material layer is formed by coating a slurry in which an active material, a conductive material, a binder, a solvent, etc. are mixed, and has a structure in which the binder connects the active material and the conductive material after the solvent is volatilized. Therefore, if the binder is removed, the active material may be separated from the current collector.
  • step s15 these positive electrode scraps are put into the heat treatment bath 120 of the active material recovery apparatuses 100 and 100' according to the present invention.
  • Shredding refers to cutting or shredding the anode scrap into pieces of suitable, easy-to-handle size. After crushing, the anode scrap is cut into small pieces, for example 1 cm x 1 cm.
  • various dry crushing equipment such as hand-mill, pin-mill, disk-mill, cutting-mill, hammer-mill may be used, or a high-speed cutter may be used.
  • Crushing may be performed in consideration of characteristics required in the active material recovery apparatuses 100 and 100 ′ used in the handling of positive electrode scrap and subsequent processes, for example, fluidity. Since the active material recovery devices 100 and 100 ′ are provided with the rod 110 , the positive electrode scrap may be split while the rod 110 is rotated. Therefore, if the anode scrap is not too large, it may be introduced without crushing it.
  • the positive electrode scrap is heat treated in air while rotating around the axis of the rod 110 in the heat treatment bath 120 to remove the binder and the conductive material in the active material layer to separate the current collector from the active material layer (step s30) ).
  • Heat treatment can be performed at 300 ⁇ 650 °C, so it can be called high temperature heat treatment. At a temperature below 300°C, it is difficult to remove the binder, so the current collector cannot be separated. At a temperature of 650°C or higher, the current collector melts (Al melting point: 660°C), so the current collector cannot be separated. , by adjusting the temperature of the heating part of the heat treatment bath 120 to the desired heat treatment temperature.
  • the heat treatment time is maintained so that the binder can be sufficiently thermally decomposed. For example, around 30 minutes. Preferably it is set as 30 minutes or more. The longer the heat treatment time, the longer the time for thermal decomposition of the binder to occur. Preferably, the heat treatment time is 30 minutes or more and less than 5 hours.
  • the heat treatment may be performed at 550° C. for 30 minutes at a temperature increase rate of 5° C./min.
  • the temperature increase rate is, for example, a degree that can be implemented without excessive force through the heating part of the heat treatment bath 120 and can be heated without generating a thermal shock or the like to the anode scrap.
  • 550°C is to allow the thermal decomposition of the binder to occur well while considering the melting point of the Al current collector. At this temperature, heat treatment for less than 10 minutes is insufficient for thermal decomposition, so heat treatment should be carried out for more than 10 minutes, and heat treatment should be performed for more than 30 minutes if possible.
  • the binder and conductive material in the active material layer are thermally decomposed through heat treatment in air, they become CO 2 and H 2 O and are removed. Since the binder is removed, the active material is separated from the current collector, and the active material to be recovered may be selected in powder form. Accordingly, only in step s30, the current collector may be separated from the active material layer and the active material in the active material layer may be recovered.
  • step s30 it is important that the heat treatment of step s30 be performed in air. If the heat treatment is performed in a reducing gas or inert gas atmosphere, the binder and the conductive material are not thermally decomposed but only carbonized. When carbonization is performed, the carbon component remains on the surface of the active material, thereby degrading the performance of the reusable active material. When heat treatment is performed in air, carbon material in the binder or conductive material reacts with oxygen and is burned and removed as CO and CO 2 gas, so that almost all of the binder and conductive material are removed without remaining.
  • the active material recovery devices 100 and 100 ′ are suitable for performing the heat treatment in step s30 because sufficient air contact is possible.
  • the heat treatment time means a time spent at a desired heat treatment temperature in the heat treatment bath 120 . If the heat treatment time is 30 minutes, the anode scrap is heated in the heat treatment bath 120 for 30 minutes and then the process is controlled so that it can be transferred to the next screening wall 130 .
  • the active material in powder form that has passed through the screening wall 130 is recovered (step s35).
  • the active material recovery devices 100 and 100 ′ which are open systems, almost completely remove the binder and the conductive material through smooth air contact in the heat treatment bath 120 as described above, and it is possible to recover the active material in powder form. . Since the positive electrode scrap transferred to the screening wall 130 is in a state in which the binder has been removed from the front, the current collector and the active material may be completely detached through the rotation of the rod 110 . In the active material obtained through the screening wall 130 , carbon components generated by carbonization of the binder or conductive material may not remain on the surface.
  • the use of the active material recovery devices 100 and 100' is ended.
  • the active material can be recovered with a very high recovery rate, and since the recovered active material does not contain a carbon component, a separate treatment for removing the carbon component is not required.
  • the present invention proposes an active material reuse method that may further include steps such as washing, drying, lithium precursor addition, annealing, and surface coating.
  • the recovered active material is washed and dried (step s40).
  • This lithium compound aqueous solution is prepared to contain more than 0% and 15% or less of the lithium compound and preferably uses LiOH.
  • the amount of LiOH is preferably 15% or less.
  • the use of excess LiOH may leave excess LiOH on the surface of the active material even after washing, which may affect future annealing processes. In order to clean the surface of the active material in the pre-annealing step as much as possible, the addition of excess LiOH is not good for the process, so it is limited to 15% or less.
  • Washing may be performed by immersing the recovered active material in the lithium compound aqueous solution. After immersion, washing may be performed within a week, preferably within one day, and still more preferably within one hour. When washing for more than a week, there is a risk of capacity degradation due to excessive lithium elution. Therefore, it is preferable to carry out within 1 hour. Washing includes immersing the active material in an aqueous lithium compound solution showing basicity in an aqueous solution state, stirring the immersion state, and the like. It is best to combine agitation as much as possible. If the lithium compound is immersed in an aqueous solution without stirring, the washing process is slow and may cause lithium leaching.
  • the stirring be performed simultaneously with the impregnation of the lithium compound aqueous solution. Drying may be performed in air in an oven (convection type) after filtration.
  • the reason for washing with an aqueous solution of a lithium compound showing basicity in an aqueous solution is to remove LiF and metal fluoride, which may exist on the surface of the recovered active material, and to perform surface modification.
  • the binder and conductive material in the active material layer are vaporized and removed as they become CO 2 and H 2 O.
  • CO 2 and H 2 O react with lithium on the surface of the active material to form Li 2 CO 3 , LiOH.
  • fluorine (F) present in a binder such as PVdF reacts with a metal element constituting the positive electrode active material to form LiF or metal fluoride. If LiF or metal fluoride remains, battery characteristics deteriorate when the active material is reused.
  • a washing step as in step s40 to remove reactants that may have been generated on the surface of the active material during the heat treatment step (s30), foreign substances are not left on the surface of the active material.
  • step s40 it is important to wash with an aqueous solution of a lithium compound that is basic in an aqueous solution. If an aqueous solution of sulfuric acid or hydrochloric acid is used rather than an aqueous solution of a lithium compound showing basicity in an aqueous solution, it is possible to wash F on the surface of the active material, but it elutes transition metals (Co, Mg) present in the active material, thereby reducing the performance of the reused cathode active material.
  • transition metals Co, Mg
  • the lithium compound aqueous solution showing basicity in the aqueous solution state used in the active material reuse method according to the present invention can not only remove the binder, which may remain in a trace amount even after the thermal decomposition of step s30, but also elute the transition metal, etc. present in the active material. It is very preferable because it can also serve to supplement the amount of lithium that can be eluted during the washing process.
  • step s40 in the present invention, it is possible to adjust the LiF content on the surface of the recovered active material to less than 500 ppm, and through this, the capacity improvement effect can be seen.
  • the F content may be 100 ppm or less. More preferably, the F content may be 30 ppm or less.
  • a lithium precursor is added to the washed active material and annealed (step s50).
  • Loss of lithium in the active material may occur during the preceding steps s30 and s40. In step s50, such lithium loss is compensated.
  • step s50 the crystal structure of the active material is restored through annealing to restore or improve the properties of the reused active material to the level of a fresh active material that has never been used.
  • a deformed structure may appear on the surface of the active material.
  • the active material which is an NCM-based lithium composite transition metal oxide
  • Ni is rock salted by moisture [NiCO 3 ⁇ 2Ni(OH) 2 )H 2 0] to form a spinel structure.
  • the crystal structure is restored through step s50.
  • the active material which is an NCM-based lithium composite transition metal oxide, is restored to a hexagonal structure. Accordingly, it is possible to restore or improve the initial properties to a level similar to that of the fresh active material.
  • the lithium precursor of step s50 may be any one or more of LiOH, Li 2 CO 3 , LiNO 3 and Li 2 O.
  • the lithium precursor is added in an amount capable of adding as much as the ratio of lithium lost compared to the ratio of lithium and other metals in the raw material active material (ie, fresh active material) used in the active material layer before heat treatment.
  • a lithium precursor in an amount capable of adding lithium in a molar ratio of 0.001 to 0.4 may be added.
  • lithium in a molar ratio of 0.01 to 0.2 is added.
  • the lithium precursor is preferably added in an amount capable of further adding lithium in a molar ratio of 0.0001 to 0.1 based on a molar ratio of lithium: other metals of 1:1.
  • the reason for adding the excess lithium as described above is to form a surface protection layer by surface coating on the active material, which will be further described below. In the case of manufacturing a secondary battery using such an active material, it is possible to maintain lifespan characteristics while suppressing a side reaction caused by an electrolyte.
  • the annealing of step s50 is performed at 400 ⁇ 1000 °C, in air.
  • the annealing temperature may be 600-900°C. This temperature should be changed within a limited range depending on the type of the lithium precursor. It is preferable to set the annealing time to 1 hour or more. Preferably, it is about 5 hours. If the annealing time is long, the crystal structure can be sufficiently recovered, but even if it is used for a long time, the performance is not significantly affected. Annealing time is made into 15 hours or less, for example.
  • the annealing temperature is preferably between 700 and 900° C., more preferably between 710 and 780° C. This is because the melting point of Li 2 CO 3 is 723°C. Most preferably, it is carried out at 750°C.
  • the annealing temperature is preferably 400 to 600° C., more preferably 450 to 480° C. This is because the melting point of LiOH is 462°C.
  • the annealing temperature is preferably a temperature exceeding the melting point of the lithium precursor. However, at a temperature exceeding 1000°C, thermal decomposition of the positive electrode active material occurs and the performance of the active material is deteriorated, so it should not exceed 1000°C.
  • a reusable active material By performing up to step s50, a reusable active material can be obtained.
  • Reusable means that it is in a state that can be directly put into slurry production like a fresh active material without any additional additives or additional processing for adjusting the ingredients.
  • step s60 may be further performed.
  • a surface coating is applied to the active material annealed in step s50.
  • the step of coating the surface may be one or more of a metal, an organic metal, and a carbon component, coated on the surface in a solid or liquid manner, and then heat-treated at 100 to 1200°C.
  • a metal, an organic metal, and a carbon component coated on the surface in a solid or liquid manner, and then heat-treated at 100 to 1200°C.
  • the heat treatment is performed at a temperature exceeding 1200° C., there is a risk that performance may be deteriorated due to thermal decomposition of the positive electrode active material.
  • coating on the surface in a solid or liquid manner may use methods such as mixing, milling, spray drying, and grinding.
  • a surface protection layer is formed by a dissimilar metal through the surface coating.
  • the molar ratio of lithium: other metals in the positive active material is 1:1, lithium in the active material reacts with the surface coating material and the lithium: other metal in the positive active material decreases to less than 1:1, the capacity expression can be reduced by 100%. can't Therefore, by adding the insufficient lithium in the previous step s50, the molar ratio of lithium to other metals in the positive electrode active material is 1: 1, and an excess is added so that 0.0001 to 0.1 molar ratio of lithium is more contained in the positive active material compared to other metals in the positive electrode active material. . Then, when the surface is coated, the molar ratio of lithium: other metals in the positive electrode active material becomes 1:1, and a surface protective layer can be formed.
  • a metal oxide such as B, W, B-W is coated on an active material and then heat treated, a lithium borooxide layer can be formed on the surface of the active material, which serves as a surface protective layer.
  • step s50 more lithium added in a molar ratio of 0.0001 to 0.1 reacts with metal oxides such as B, W, and BW in step s60, and the lithium: other metal molar ratio in the positive electrode active material does not decrease to less than 1:1, so that the capacity degradation is not none.
  • the reusable active material obtained by the above-described method may be represented by the following formula (1).
  • the reusable active material may have an F content of 100 ppm or less. According to the present invention, since it is possible to recover an active material having a reduced F content, if it is reused as an active material, excellent resistance characteristics and capacity characteristics can be realized.
  • the active material through simple heat treatment (s30).
  • LiF or metal fluoride is removed in step s40 of washing.
  • the washing and drying steps using a lithium compound aqueous solution showing basicity in aqueous solution are safe and inexpensive, and can remove LiF or metal fluoride without loss of other elements, prevent elution of transition metals, etc. It has the advantage of compensating for lithium losses.
  • the annealing step of s50 is also safe and inexpensive, and has the advantage of recovering the battery characteristics of the reused active material by improving crystal structure recovery, that is, crystallinity.
  • the reusable active material obtained according to the present invention may have a particle size distribution similar to that of the fresh active material, and thus a separate treatment for controlling the particle size distribution may not be required.
  • a separate treatment for controlling the particle size distribution may not be required.
  • the active material recovery devices 100 and 100 ′ suitable for heat treatment carbon components generated by carbonization of the binder or conductive material do not remain on the surface, so a step for removing such carbon components is not required. Accordingly, the active material obtained through the method of FIG. 4 may be reused as it is without additional treatment and used to manufacture the positive electrode.
  • FIG. 5 is a flowchart of an active material reuse method according to another embodiment of the present invention.
  • the same reference numerals are assigned to the same steps as in FIG. 4, and repeated descriptions are omitted.
  • steps s10 to s35 described with reference to FIG. 4 are performed in the same manner. Then, the recovered active material is washed (step s40'). The washing method and the solution used for washing are the same as in step s40 in FIG. 4 .
  • the washed active material is directly mixed with the lithium precursor solution without drying and spray-dried (step s45).
  • Loss of lithium in the active material may occur during the preceding steps s30 and s40'. In step s45, such lithium loss is more simply and reliably compensated.
  • the lithium precursor solution uses a lithium compound soluble in an aqueous solution or an organic solvent, and particularly preferably, the lithium precursor in step s45 may be any one or more of LiOH, Li 2 CO 3 , LiNO 3 and Li 2 O.
  • the temperature of the spray drying step is 80° C. or more, because when it is 80° C. or less, a problem that the solution is not completely dried may occur. More preferably, the temperature of the spray drying step may be 100 ⁇ 300 °C.
  • the active material particles may agglomerate to form a lump.
  • the lithium precursor and these agglomerated particles it may be necessary to grind the agglomerate, and to mix the solid lithium precursor, powder mixing or milling process is required when mixing the materials. In that case, the process is complicated and Continuous process is difficult.
  • the positive electrode active material eats moisture and agglomeration occurs severely.
  • the active material is mixed and dispersed in the lithium precursor solution without drying after washing in step s40', followed by spray drying. Then, particle aggregation due to drying and the hassle of mixing the solid lithium precursor can be eliminated. That is, it may have the advantage of being produced in the form of a powder rather than a lump by spray drying.
  • the lithium precursor component is coated or contacted on the surface of the active material as the lithium precursor solution is dried immediately after spraying.
  • the particles on the surface may be pressed and cracked or broken by the rolling process.
  • the NCM-based active material has a larger particle split by rolling during electrode formation, and the recovered active material contains a lot of small particles compared to the fresh active material, so there is a problem of non-uniform particles.
  • an NCM-based active material contains primary particles having a size of several tens to hundreds of nm gathered and formed into secondary particles.
  • secondary particles are split to form primary particles or smaller particles that are larger in size but smaller than large particles. Since the specific surface area of the active material increases as the number of particles broken by rolling increases, in the case of a reusable active material obtained from a rolled electrode, there may be problems that may affect slurry properties, electrode adhesion, and electrode performance when reused.
  • the particle size distribution should not be different from that of the fresh active material.
  • the spray drying proposed in this embodiment can be made to be close to the initial characteristics of the fresh active material in terms of particle size and resolving particle non-uniformity because small particles generated during rolling can be aggregated to recover large particles.
  • the effect is excellent in the NCM-based active material, which has severe particle breakage in the rolling process in the previous process. Therefore, it can be expected that the battery characteristics using the active material recovered by the method according to the present invention will be at a level similar to those of the battery using the fresh active material.
  • the lithium precursor is coated on the surface of the active material, and the active material is obtained by controlling the particles. Since the lithium precursor addition, granulation, and drying are performed in one step, there is an effect of simplification of the process.
  • spray drying is special in that it is not a means for simply obtaining an active material, but a means for re-granulating particles that have already been used and broken by rolling or the like.
  • step s45 proceeds, so the washing in step s40' and spray drying in step s45 can be a continuous process.
  • the active material reuse method according to the present embodiment there is a continuity of the process, and there is an advantage that the lithium precursor coating, drying, and particleization (particle readjustment) are simultaneously performed in one step.
  • the lithium precursor is added in an amount that can be added by the amount of the lithium precursor that is lost compared to the ratio of lithium and other metals in the fresh active material by the amount added in step s50 described with reference to FIG. 4 .
  • step s50' the spray-dried active material is annealed. Since a lithium precursor is added to the active material in step s45, annealing may be performed immediately after spray drying without adding an additional lithium precursor in this step.
  • the annealing effect of step s50' is the same as in step s50 described with reference to FIG. 4 .
  • the surface coating of step s60 may be further performed.
  • the heat treatment time of step s30 described with reference to FIG. 3 is set to within 1 hour, preferably within 30 minutes.
  • the longer the heat treatment time the longer the time for thermal decomposition of the binder to occur.
  • it exceeds a certain period of time there is no difference in the thermal decomposition effect, and on the contrary, a lot of reaction products such as LiF, which are harmful to the battery performance, are generated, which is not good. Therefore, it is possible to limit the heat treatment time to 1 hour or less, preferably to 30 minutes or less, thereby minimizing the generation of unwanted foreign substances that may adversely affect battery performance.
  • steps s50 and s60 may be directly performed without step s40 after step s35 of FIG. 3 is performed. That is, as a result of shortening the heat treatment, the washing step can be omitted.
  • a reusable active material can be obtained with only two steps: heat treatment in air (step s30) and annealing after addition of a lithium precursor (step s40).
  • the heat treatment is carried out for a very short time, preferably within 30 minutes, reaction products that adversely affect battery characteristics are suppressed, and an additional step such as washing with water to remove the reaction products is not required.
  • step s40 described with reference to FIG. 3 is shortened to within 1 hour, preferably within 10 minutes. If washing is performed for a long time, there is a risk that the capacity may decrease due to excessive lithium elution. Therefore, a method of minimizing the elution of lithium by limiting the washing time and performing it very short is possible.
  • step s40 only the lithium precursor aqueous solution used as the washing liquid in step s40 is sufficient to compensate for the loss of lithium. Therefore, annealing can be performed without adding an additional lithium precursor to the washed active material. That is, if the washing time of step s40 of FIG. 3 is very short, the annealing as in step s50' of FIG. 5 can be immediately performed.
  • Samples 1 and 2 were set in the following way, and the positive electrode scrap was heat-treated by each method, and then the recovery rate of the active material was evaluated.
  • the anode scrap was simply laminated in a furnace and then heat treated. This is the case where the anode scrap is placed as a fixed type in the furnace.
  • Figure 6 (a) is a photograph of the positive electrode scrap positioned on the surface of the stacked positive electrode scrap.
  • the active material was separated from the current collector as the binder and the conductive material were thermally decomposed upon contact with air due to exposure to the outside. It was also observed that the active material layer was not separated from the current collector but was carbonized rather strongly and adhered to the current collector.
  • FIG. 6 (b) is a photograph of the positive electrode scrap positioned inside the stacked positive electrode scrap.
  • this anode scrap it is evaluated that the contact with air was insufficient because it was in contact with other anode scraps at the top and bottom. Much less thermal decomposition and carbonization and adhesion to the current collector were observed.
  • the anode scrap was placed in a furnace to have more air contact than Sample 1, and then heat-treated. This is a case where the anode scrap is placed as a fixed type in the furnace, but the surface in contact with air is maximized by securing a distance between the anode scraps.
  • Figure 7 (a) is a photograph of a state in which the shredded anode scrap is erected in a crucible and loaded.
  • 7 (b) is a photograph showing the state after putting such anode scrap in a furnace and heat-treating it at 550° C. in air for 30 minutes.
  • 7 (c) is a photograph after the heat-treated anode scrap is taken out from the crucible.
  • a state in which the active material in powder form is recovered from the surface of the positive electrode scrap is (d) of FIG. 7 .
  • the active material recovery device of the present invention is a mobile type that rotates the cathode scrap and has more smooth contact with air, so that the recovery rate is much higher than 95%.
  • Each positive electrode active material was prepared in the same manner as in Examples and Comparative Examples below, and electrochemical performance was evaluated.
  • the reused active material was collected according to the active material reuse method of the present invention as described above with reference to FIG. 4 .
  • the positive electrode scrap to be discarded after punching the NCM-based lithium composite transition metal oxide with the active material was prepared, and the heat treatment in step s30 was performed at 550° C. for 30 minutes.
  • the washing of step s40 was performed for 10 minutes using LiOH.
  • step s50 based on the molar ratio of lithium and other metals in the raw material active material (ICP analysis), a lithium precursor (Li 2 CO 3 ) in an amount that can further add lithium at a molar ratio of 0.09 during the process is added and at 750° C. Annealed for 15 hours.
  • lithium: other metal molar ratio is 1:1, but the average error of the ICP active material recovery device, which is an active material recovery device that confirms this, is about ⁇ 0.05, preferably ⁇ 0.02, so the lithium of the raw material active material through ICP measurement : Other metal molar ratios may be 1 ⁇ 0.05:1.
  • a lithium precursor was added based on the analysis ratio through ICP analysis.
  • Example 2 In addition to Example 1, the active material surface protective layer recovery process of the optional step s60 of FIG. 4 was also performed.
  • step s30 was performed under the same conditions as in Example 1.
  • the surface modification of step s40, the crystal structure recovery of step s50, and the surface coating process of step s60 were not performed.
  • the active material was collected by carrying out the surface modification of step s40 of the active material reuse method of the present invention as described above. That is, the surface modification was performed, but the crystal structure recovery of step s50 and the surface coating process of step s60 of the active material reuse method of the present invention were not performed. Step s40 was performed under the same conditions as in Example 1.
  • step s40 of the active material reuse method of the present invention was carried out only to the recovery of the crystal structure of step s50, and the NCM-based lithium composite transition metal oxide active material was collected.
  • a lithium precursor was not added.
  • ICP analysis was performed on the positive active materials recovered or prepared in Examples and Comparative Examples, respectively, to analyze the amount of remaining LiF, the ratio of lithium and other metals in the active material, and the amount of specific elements such as B or W.
  • ND means measured 30 ppm or less.
  • Comparative Example 2 is about 0.2 to 0.5 compared to Comparative Example 1
  • Comparative Example 3 is about 0.2 to 0.5 compared to Comparative Example 2 while washing and drying S40. It can be seen that the ratio of /other metals decreases.
  • the NCM-based lithium composite transition metal oxide has a relatively large particle specific surface area and appears to have a large decrease in the lithium ratio compared to other metals due to the change to the spinel structure. Therefore, it can be seen that the insufficient lithium must be supplemented.
  • Table 2 shows the values measured by the ICP analysis, and as mentioned above, the ICP analysis has an error value of about ⁇ 0.02. Therefore, even in Comparative Example 1, which is a fresh active material, the ratio between lithium and other metals may be less than 1. Therefore, the amount of lithium precursor added to compensate for the loss of lithium is the amount of lithium that is reduced based on the ratio of lithium to other metals (molar ratio analyzed by ICP) in the raw material active material (ie, fresh active material) used in the active material layer. Let the content be added.
  • the active material recovery device used for evaluation is a general charge/discharge testing device that is well used in laboratories. There is no deviation depending on the measuring device or method.
  • the horizontal axis indicates the number of cycles and the vertical axis indicates capacity.
  • the voltage was set to 3 ⁇ 4.3V, and initial formation charge and discharge was performed at 0.1C/0.1C.
  • Example 1 compared to Comparative Example 5 a lithium precursor was added during annealing. It can be seen that by adding the lithium precursor in this way, the capacity is improved by supplementing the lithium lost in the previous steps.
  • the loss of lithium through heat treatment and washing has been described with reference to Table 2.
  • the active material can be recovered from the cathode scrap to a level that can be directly reused. It is safe because it does not use toxic and explosive solvents such as NMP, DMC, acetone, and methanol, and it is suitable for mass production because it uses simple and safe methods such as heat treatment, washing and drying, and annealing.
  • toxic and explosive solvents such as NMP, DMC, acetone, and methanol
  • SEM 10 and 11 are scanning electron microscope (SEM) photographs of the active materials of Example 1 and Comparative Examples 1 to 3 and 5;
  • SEM picture was taken with a general SEM device that is well used in the laboratory. For example, you can take pictures using HITACHI's s-4200. However, there is no deviation depending on the measuring device or method.
  • Figure 10 (e) is an SEM photograph of Comparative Example 2
  • (f) is an enlarged photograph of (e).
  • no binder or conductive material is observed in the recovered active material. That is, it can be confirmed that they are removed during the high-temperature heat treatment process. Therefore, it can be seen that the active material is separated from the current collector only by heat treatment in air, and almost no binder or conductive material remains on the surface of the active material.
  • FIG. 11 (a) is an SEM photograph of Comparative Example 3, and (b) is an enlarged photograph of (a). Comparing it with (c) and (d) of FIG. 10 , which is a photograph of the anode scrap, it can be seen that the particles are released through the process.
  • the fresh active material used in this experiment further contained B and W.
  • B and W the content of B and W decreased during the heat treatment, and looking at the remaining results, it can be seen that almost all of B is removed in subsequent processes.
  • W it can be seen that a large amount is removed during the surface modification process through washing as in Comparative Example 3.
  • the annealing step as in Example 1
  • the surface coating step is to coat B and W in the case of this experimental example.
  • the surface coating may act as a surface protective layer of the positive electrode active material.
  • Surface coating can also be a process that replenishes a certain element that is lacking while at the same time rebuilds the surface protective layer in the fresh active material.
  • the surface protective layer is made of BW, and the amount of lithium loss during the process is not 1:1 with the lithium of the active material itself compared to other metals (Lithium of the active material + lithium with surface protective layer): different Its meaning is interpreted in terms of metal proportions. Therefore, in the above experiment, the 0.09 molar ratio lost as in Comparative Example 3 can be interpreted as the amount of lithium combined with lithium in the positive active material and lithium for forming a surface protective layer, and in Examples, the amount of lithium that can be supplemented A lithium precursor is added.
  • the surface coating step is subjected to a heat treatment process after the solid or liquid phase reaction.
  • M in formula (1) is supplemented through this surface coating.
  • the surface coating heat treatment may be performed at a temperature of 200 to 500 ° C, and other components are also metal components at a temperature within 100 to 1200 ° C. , it can be coated with carbon components and organometallic components.
  • the cathode scrap can be reused using a simple, eco-friendly, and economical method, and even if a lithium secondary battery is manufactured by reusing the NCM-based lithium composite transition metal oxide cathode active material prepared in this way as it is, the battery There is no problem with the performance of
  • each positive active material was further prepared, and electrochemical performance was evaluated.
  • Example 1 The same as in Example 1. However, the annealing time was set to 5 hours shorter than the 15 hours in Example 1.
  • Example 4 is a reused active material prepared according to the method described with reference to FIG. 5 .
  • steps s40', s45 and s50' were performed.
  • Step s50' was carried out at 750° C. for 5 hours as in Example 3.
  • the washing electrode and 0.1 mol LiOH mixed aqueous solution were stirred to prevent electrode precipitation, and the atmospheric temperature (input temperature) when spraying with a heating vessel using a spray nozzle in the spray drying equipment was 180 ° C.
  • Atmospheric temperature (output temperature) when coming out from the container to the collection container was adjusted to maintain 100 °C or more.
  • FIG. 12 is a particle size distribution graph of the active materials of Examples 3 and 4 and Comparative Examples 1 and 2;
  • the particle size distribution can be obtained with a general particle size analyzer well used in the laboratory. For example, it can be measured using a Horiba LA 950V2 particle size analyzer. However, there is no deviation depending on the measuring device or method.
  • the horizontal axis represents particle size (um) and the vertical axis represents volume %.
  • Comparative Example 2 In the case of Comparative Example 2, the active materials of Comparative Example 1 were split into sub-micron particles (less than 1 micrometer) and pulverized by pressure in the electrode process. As such, Comparative Example 2 has a very different particle size distribution from Comparative Example 1.
  • Example 3 and Example 4 proceeded to annealing, during annealing, the previously added lithium precursor melted and agglomeration of particles was induced. .
  • Example 4 according to the present invention compared to Example 3, small particles decrease and large particles slightly increase, but there is no significant difference in particle size distribution. Compared to 3, Example 4 can be said to be more similar to the particle size distribution of Comparative Example 1.
  • Example 4 when using the spray drying proposed in another embodiment of the present invention (Example 4), the particle size distribution is more similar to that of the fresh active material (Comparative Example 1) compared to the case of mixing the lithium precursor in a solid phase (Example 3). In particular, it was confirmed that the washing step before spray drying and the continuous process can have sufficient advantages.
  • both the electrodes using Examples 3 and 4 showed similar results to the electrodes using Comparative Example 1.
  • the initial formation capacity is high in Comparative Example 1 and the c-rate capacity is slightly higher in Examples 3 and 4, but it is determined that they are at a similar level to each other.
  • a reused active material having a level similar to that of the fresh active material (Comparative Example 1) can be obtained.
  • each positive active material was further prepared, and electrochemical performance was evaluated.
  • the reused active material was collected according to another active material reuse method of the present invention as described above.
  • the heat treatment in step s30 was performed at 600°C in air at a temperature of 5°C/min for 30 minutes at a temperature increase rate of 5°C/min by preparing the LCO positive electrode scrap to be discarded after the positive electrode plate was punched.
  • Step s50 was performed without washing as in step s40 or s40'.
  • a lithium precursor (Li 2 CO 3 ) in an excess of 2 mol% lithium relative to the lithium amount in the reused LCO was added and annealed at 750° C. in air for 15 hours.
  • Comparative Example 6 Fresh LCO was used instead of a reused active material.
  • Comparative Example 7 Only the heat treatment of step s30 of the active material reuse method of the present invention as described above was performed to remove the binder, the conductive material, and the Al current collector, and the LCO active material was collected. Step s30 was performed under the same conditions as in Example 5.
  • Comparative Example 8 The LCO active material was collected in the same manner as in Comparative Example 7, except that the heat treatment time was 1 hour.
  • Comparative Example 9 An LCO active material was collected in the same manner as in Comparative Example 8, except that the heat treatment time was set to 5 hours.
  • Example 14 is a result of cell evaluation using the active materials of Example 5 and Comparative Examples 6 to 9;
  • the lowest rate performance can be confirmed in Comparative Example 9, in which the heat treatment time is the longest at 5 hours. This is because if the high-temperature heat treatment process as in step s30 is carried out for a long time, the binder and the conductive material are removed as CO 2 and H 2 O, reacting with lithium on the surface of the positive electrode active material to form Li 2 CO 3 , and reacting with F present in the binder to form LiF because it is formed. In addition, it is judged to show low battery characteristics due to Co 3 O 4 generated by thermal decomposition on the LCO surface.
  • Comparative Example 8 the heat treatment time was 1 hour, which was shorter than Comparative Example 9, and the rate performance was better than that of Comparative Example 9 until about the initial cycle 3, but as the number of cycles increased, the rate performance deteriorated.
  • Comparative Example 7 had a heat treatment time of 30 minutes, which was shorter than Comparative Examples 8 and 9. In the case of Comparative Example 7, the rate performance was superior to those of Comparative Examples 8 and 9. Therefore, it can be confirmed that the heat treatment time is preferably within 30 minutes in terms of rate performance, because the generation of reaction products such as LiF is minimized.
  • Example 5 compared to Comparative Example 7, annealing was performed by adding a lithium precursor.
  • Li 2 CO 3 was added and annealed.
  • the active material can be recovered from the cathode scrap to a level that can be directly reused.
  • Example 15 is an XRD pattern of the active materials of Example 5 and Comparative Examples 6, 7, and 9;
  • the horizontal axis is 2 ⁇ (Theta) (degrees), and the vertical axis is intensity.
  • the XRD pattern was obtained using a general X-ray diffraction apparatus well used in the laboratory. For example, it can be analyzed using an X-ray diffractometer XG-2100 manufactured by Rigaku. However, there is no deviation depending on the device or method.
  • Fig. 15 (a) is an XRD pattern of Comparative Example 6, that is, fresh LCO. (b) is the XRD pattern of the active material of Comparative Example 7, (c) is the XRD pattern of the active material of Comparative Example 9. Comparing (b) and (c) with (a), the Co 3 O 4 phase is confirmed. That is, it can be confirmed that Co 3 O 4 is generated on the surface of the LCO in the heat treatment of step s30.
  • Figure 16 (a) is a SEM photograph of the fresh LCO of Comparative Example 6, (b) is a SEM photograph of the reused active material of Example 5. It can be seen that the recovered LCO of Example 5 also exhibits the same shape as compared with the fresh LCO. In addition, since only LCO was observed, it was confirmed that the binder and the conductive material were removed during the high-temperature heat treatment process. Therefore, it can be seen that the active material is separated from the current collector only by heat treatment in air, and almost no binder or conductive material remains on the surface of the active material. As described above, according to the present invention, it is possible to separate the current collector from the active material without using a complicated method or harmful substances, so that the active material can be recovered in an environmentally friendly manner. Since it can be reused without using acid, there is no need for a neutralization process or wastewater treatment process, thereby alleviating environmental issues and reducing process costs.
  • the 17 is an X-Ray Photoelectron Spectroscopy (XPS) pattern of the active materials of Comparative Examples 6, 7, and 9;
  • XPS X-Ray Photoelectron Spectroscopy
  • the horizontal axis is the binding energy (unit: eV).
  • the XPS pattern can be obtained using a general XPS measuring device that is well used in the laboratory. For example, it can be analyzed using K-Alpha from Thermo Fisher Scientific.
  • F present in the binder may react with Li of the active material during the heat treatment to form LiF.
  • a peak near 684 eV is indicated by LiF, and the higher the intensity according to the sample, the greater the amount of LiF present on the surface of the positive electrode active material. Since the XPS pattern of Comparative Example 6 was measured using fresh LCO, the presence of LiF was not measured. In Comparative Example 9, a large amount of LiF was generated on the surface of the active material due to a long heat treatment of 5 hours, and as a result, the LiF peak intensity of XPS was significantly higher than that of Comparative Example 6.
  • Comparative Example 7 in which the heat treatment time is reduced from 5 hours to 30 minutes, it can be seen that the formation of F due to binder decomposition is relatively small, and the amount of LiF present on the surface of the active material is relatively small. LiF should be as low as possible because it can cause deterioration of electrode properties. From the results of Comparative Examples 9 and 7, it can be seen that the reduction of the heat treatment time can reduce the amount of LiF on the surface of the regenerated active material and is effective in improving the performance of the regenerated active material.
  • Example 5 will have a level of LiF similar to that of Comparative Example 7, but as shown in the results of FIG.
  • Example 5 After annealing, a level higher than the fresh active material can be secured, so the amount of LiF remaining in Example 5 is It can be seen that the battery performance is not much of a problem. Therefore, if the heat treatment time is optimized as in another embodiment of the present invention, a separate process such as washing with water for removing LiF and the like is not required.
  • Example 18 is a particle size distribution graph of the active materials of Example 5 and Comparative Examples 6, 7, and 9;
  • Example 5 and Comparative Examples 7 and 9 had similar particle size distributions compared to the fresh LCO of Comparative Example 6. It is defined that the particle size distribution is similar when the volume % of particles having the same particle size differs only within +/- 2%. As described above, according to the present invention, the particle size distribution of the active material does not change, so that the initial characteristics are almost maintained, and it can be expected that the characteristics of the reused battery will be at a level similar to those of the battery using the fresh active material.
  • Each positive electrode active material was prepared in the same manner as in Examples and Comparative Examples below, and electrochemical performance was evaluated.
  • Example 6 A reused active material was collected according to another active material reuse method of the present invention as described above.
  • the heat treatment in step s30 was performed at 600° C. for 30 minutes by preparing the LCO anode scrap to be discarded after the positive electrode plate was punched.
  • the washing of step s40 was performed for 10 minutes using LiOH.
  • annealing was performed at 750° C. in air for 15 hours without additional lithium precursor addition.
  • Comparative Example 10 Further to Comparative Example 7, the surface modification of step s40 of the active material reuse method of the present invention as described above was performed to collect the LCO active material. That is, the surface modification was performed, but the crystal structure recovery of steps s50 or s50' in the active material reuse method of the present invention was not performed. Step s40 was performed under the same conditions as in Example 6.
  • Example 6 the F content in the recovered positive active material was significantly lowered in Example 6 as compared to Comparative Example 7. That is, it can be confirmed that LiF is completely dissolved in the lithium compound aqueous solution by washing and removed to the extent that it cannot be detected by ICP. Therefore, it can be seen that the LiF removal is excellent by step s40.
  • Comparative Example 6 the fresh active material used in this experiment further contained Al.
  • Comparative Example 7 it can be seen that the Al content does not change even after heat treatment, and the Al content is maintained in Comparative Examples 10 and 6 further including subsequent process steps.
  • LiF or metal fluoride can be removed without loss of other elements such as Al, and elution of transition metals can be prevented.
  • Example 19 is a result of cell evaluation using Example 6 and Comparative Examples 6, 7, and 10 active materials.
  • Comparative Example 7 although it is a reusable active material, the lowest rate performance can be confirmed in Comparative Example 7 in which surface modification and crystal structure recovery according to the present invention were not performed.
  • the high-temperature heat treatment process such as step s30, as the binder and the conductive material are removed as CO 2 and H 2 O, it reacts with lithium on the surface of the positive electrode active material to form Li 2 CO 3 , LiOH, and also reacts with F present in the binder. This is because LiF or metal fluoride is formed on the surface of the reusable active material.
  • it is judged to show low battery characteristics due to Co 3 O 4 generated by thermal decomposition on the LCO surface.
  • Comparative Example 10 was a surface modification compared to Comparative Example 7. Comparative Example 10 is evaluated to be able to obtain better results than Comparative Example 7 because the reactants generated on the surface were removed through washing.
  • Example 6 was performed until annealing compared to Comparative Example 10. It is confirmed that the modified structure and Co 3 O 4 that may appear on the surface of the active material during regeneration are reduced back to the LCO crystal structure, showing improved results compared to the initial properties of the fresh LCO active material of Comparative Example 6. As described above, according to the present invention, the active material can be recovered from the cathode scrap to a level that can be directly reused.
  • Example 20 is an XPS pattern of the active materials of Example 6 and Comparative Examples 6 to 8; Since the XPS pattern of Comparative Example 6 was measured using fresh LCO, the presence of LiF was not measured. However, in Comparative Example 7, the presence of LiF formed on the surface of the active material during the heat treatment process can be confirmed. In Comparative Example 8, since the heat treatment time was increased to 5 hours, the generation of F was increased compared to Comparative Example 7, and the amount of LiF generated on the surface of the active material was increased. Therefore, the LiF peak intensity of XPS was measured higher than that of Comparative Example 7. do. Since the amount of LiF present on the surface of the active material causes deterioration of electrode properties, it is necessary to remove LiF. In Example 6, compared to Comparative Example 7, LiF was removed through washing, and it can be confirmed that the peak of LiF does not appear in the XPS result.
  • Example 6 of the present invention is restored to the level of the fresh active material of Comparative Example 6.
  • the active material can be recovered from the cathode scrap to a level that can be directly reused without adding a lithium precursor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

전극 스크랩으로부터 전극 활물질을 고유한 형상 그대로 쉽게 회수할 수 있는 활물질 회수 장치 및 이를 이용한 양극 활물질 재사용 방법을 제공하는 것이다. 본 발명에 따른 활물질 회수 장치는, 스크류(screw) 타입의 봉을 내부에 구비한 회전형 소성 장치로서, 상기 봉의 축을 따라 일렬 배치되어 있는 것으로, 가열 구역(heating zone)을 이루는 열처리 배쓰 및 냉각 구역(cooling zone)을 이루는 스크리닝 벽체; 및 배기 주입 및 탈기 시스템을 포함하고 있으며, 상기 열처리 배쓰에서는 집전체 상에 활물질층을 포함하는 전극 스크랩을 상기 봉의 축 둘레로 회전시키면서 공기 중 열처리하여 상기 활물질층 안의 바인더와 도전재를 제거해 상기 집전체를 상기 활물질층으로부터 분리하고, 상기 활물질층 안의 활물질은 상기 스크리닝 벽체를 통과하여 분말 형태의 활물질로 회수되고 상기 스크리닝 벽체를 통과하지 못한 집전체는 따로 회수되는 것을 특징으로 한다.

Description

활물질 회수 장치 및 이를 이용한 활물질 재사용 방법
본 발명은 리튬 이차전지 제조시 자원을 재활용하기 위한 장치 및 방법에 관한 것이다. 본 발명은 특히 리튬 이차전지 제조 공정에서 발생하는 전극 스크랩 혹은 사용 후에 폐기되는 리튬 이차전지로부터 전극 활물질을 회수하는 장치 및 회수된 활물질을 재사용하는 방법에 관한 것이다. 본 출원은 2020년 8월 13일자로 출원된 한국 특허출원번호 제10-2020-0101962호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
반복적인 충전과 방전이 가능한 리튬 이차전지가 화석 에너지의 대체 수단으로서 각광을 받고 있다. 리튬 이차전지는 휴대폰, 비디오 카메라, 전동 공구와 같은 전통적인 핸드 헬드 디바이스에 주로 사용되었다. 하지만, 최근에는 전기로 구동되는 자동차(EV, HEV, PHEV), 대용량의 전력 저장 장치(ESS), 무정전 전원 공급 시스템(UPS) 등으로 그 응용 분야가 점차 증가하는 추세이다.
리튬 이차전지는, 활물질이 집전체에 코팅된 양극판과 음극판이 분리막을 사이에 두고 배치된 구조를 가진 단위 셀을 집합시킨 전극 조립체와, 이 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다. 리튬 이차전지의 양극 활물질은 주로 리튬계 산화물을 사용하고 음극 활물질은 탄소재를 사용한다. 리튬계 산화물에는 코발트, 니켈, 또는 망간과 같은 금속이 함유되어 있다. 특히 코발트, 니켈, 망간은 매우 고가인 유가금속이고, 그 중에서도 코발트는 전략금속에 속하는 것으로서, 세계 각국별로 수급에 각별한 관심을 갖고 있으며, 코발트 생산국의 수가 한정되어 있어 세계적으로 그 수급이 불안정한 금속으로 알려져 있다. 전략금속의 원자재 수급 불균형이 초래되면 원자재 가격 상승 가능성이 크다.
기존에는 사용 후 수명이 완료되어 폐기되는 리튬 이차전지(폐전지)로부터 이러한 유가금속을 회수해 재활용(recycle)하는 연구가 주로 진행되어 왔다. 폐전지 이외에도 양극판 타발 후 버려지는 폐기물 또는 공정 중 불량이 발생한 양극으로부터 자원을 회수할 수 있으면 더 바람직하다.
현재 리튬 이차전지 제조 시에는 도 1과 같이 알루미늄(Al) 포일과 같은 긴 시트형 양극 집전체(10)에 양극 활물질, 도전재, 바인더, 용매 등을 믹싱한 양극 슬러리를 코팅해 양극 활물질층(20)을 형성함으로써 양극 시트(30)를 제조한 다음, 일정한 사이즈로 양극판(40)을 타발하고 있다. 타발 후 남은 부분은 양극 스크랩(scrap, 50)으로서 폐기되고 있다. 양극 스크랩(50)으로부터 양극 활물질을 회수해 다시 사용(reuse)할 수 있게 된다면 산업-경제적 측면 및 환경적 측면에서 매우 바람직할 것이다.
기존에 양극 활물질을 회수하는 방법은 양극을 염산, 황산, 질산 등으로 용해 후 코발트, 니켈, 망간 등 활물질 원소를 추출하여 다시 양극 활물질 합성을 위한 원료로 사용하는 경우가 대부분이다. 하지만 산을 이용한 활물질 원소의 추출법은 순수한 원료를 회수하기 위한 공정이 친환경적이지 못할 뿐만 아니라 중화 공정과 폐수 처리 공정이 필요하여 공정비가 상승하게 되는 단점을 가지고 있다. 또한, 양극 활물질 원소 중 주요 원소 중 하나인 리튬을 회수할 수 없는 단점을 가지고 있다. 이러한 단점을 해소하려면 양극 활물질을 용해시키지 않고 활물질을 원소 형태로 추출하지 않아 직접 재사용할 수 있는 방법이 필요하다.
본 발명이 해결하고자 하는 과제는 전극 스크랩으로부터 전극 활물질을 고유한 형상 그대로 쉽게 회수할 수 있는 활물질 회수 장치를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 이를 이용한 양극 활물질 재사용 방법을 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명에 따른 활물질 회수 장치는, 스크류(screw) 타입의 봉을 내부에 구비한 회전형 소성 장치로서, 상기 봉의 축을 따라 일렬 배치되어 있는 것으로, 가열 구역(heating zone)을 이루는 열처리 배쓰 및 냉각 구역(cooling zone)을 이루는 스크리닝 벽체; 및 배기 주입 및 탈기 시스템을 포함하고 있으며, 상기 열처리 배쓰에서는 집전체 상에 활물질층을 포함하는 전극 스크랩을 상기 봉의 축 둘레로 회전시키면서 공기 중 열처리하여 상기 활물질층 안의 바인더와 도전재를 제거해 상기 집전체를 상기 활물질층으로부터 분리하고, 상기 활물질층 안의 활물질은 상기 스크리닝 벽체를 통과하여 분말 형태의 활물질로 회수되고 상기 스크리닝 벽체를 통과하지 못한 집전체는 따로 회수되는 것을 특징으로 한다.
상기 열처리 배쓰도 상기 봉의 축 둘레로 회전하는 것일 수 있다.
상기 활물질 회수 장치는 지면에 대하여 상기 봉의 축이 기울어지게 전체 활물질 회수 장치가 각도 조절되는 것일 수 있다.
상기 활물질 회수 장치는 진동 기능이 있는 것일 수 있다.
상기 활물질 회수 장치는 새로운 전극 스크랩의 투입과 활물질의 회수가 연속적으로 이루어지는 것일 수 있다.
바람직하기로, 상기 열처리 배쓰는 전극 스크랩이 내부에 투입되고 분리된 집전체와 활물질이 상기 스크리닝 벽체로 이송되도록 양단이 개방된 통 형상이며 상기 통은 공기가 드나드는 개방형 시스템이다.
바람직하기로, 상기 스크리닝 벽체는 분리된 집전체와 활물질이 내부에 투입되고 상기 집전체를 배출하도록 양단이 개방된 통 형상이다.
상기 열처리 배쓰는 투입되는 전극 스크랩 100g당 10 mL/min ~ 100 L/min으로 공기가 첨가 또는 주입되는 개방형 시스템인 것이 바람직하다.
상기 열처리 배쓰에 공기 주입구가 복수 개소에 설치될 수 있다.
상기 다른 과제를 해결하기 위한 본 발명에 따른 양극 활물질 재사용 방법은, 본 발명에 따른 활물질 회수 장치를 준비하는 단계; 열처리 배쓰에 집전체 상에 리튬 복합 전이금속 산화물 양극 활물질층을 포함하는 양극 스크랩을 투입하는 단계; 상기 열처리 배쓰에서 상기 양극 스크랩을 봉의 축 둘레로 회전시키면서 공기 중 열처리하여 상기 활물질층 안의 바인더와 도전재를 제거해 상기 집전체를 상기 활물질층으로부터 분리하는 단계; 스크리닝 벽체를 통과한 분말 형태의 활물질을 회수하는 단계; 및 상기 활물질을 400 ~ 1000℃ 공기 중에서 어닐링하여 재사용 가능한 활물질을 얻는 단계를 포함한다.
이 때, 상기 열처리는 300 ~ 650℃에서 수행할 수 있다. 상기 열처리는 온도 상승 속도 5℃/min로, 550℃에서 30분간 수행할 수 있다.
상기 회수된 활물질에는 상기 바인더나 도전재의 탄화로 생기는 탄소 성분이 표면에 남아 있지 않을 수 있다.
상기 어닐링하기 전에 상기 회수된 활물질을 수용액 상태에서 염기성을 보이는 리튬 화합물 수용액으로 세척하는 단계를 더 포함할 수도 있다. 그러한 경우, 상기 어닐링하기 전에 세척된 활물질에 리튬 전구체를 첨가하는 것이 바람직하다. 상기 리튬 화합물 수용액은 0% 초과 15% 이하의 리튬 화합물을 함유하도록 제조되고 바람직하게는 LiOH를 사용한다. 상기 세척은 1 시간 이내로 수행할 수 있다. 상기 세척은 상기 회수된 활물질을 상기 리튬 화합물 수용액 함침과 동시에 교반하여 수행하는 것일 수 있다.
다른 예로, 상기 세척하는 단계 이후 세척한 활물질을 리튬 전구체 용액에 혼합하고 분무 건조함으로써 리튬 전구체가 첨가되고 입자 조절된 활물질을 얻는 단계를 더 포함할 수도 있다.
상기 어닐링된 활물질에 표면 코팅하는 단계를 더 포함할 수도 있다.
상기 리튬 전구체는 LiOH, Li2CO3, LiNO3 및 Li2O 중 어느 하나 이상일 수 있다.
상기 리튬 전구체는 상기 활물질층에 사용된 원재료 활물질 안의 리튬과 다른 금속의 비율 대비해서 손실된 리튬 비율 만큼을 첨가할 수 있는 양으로 첨가하는 것일 수 있다. 예를 들어 상기 리튬 전구체는 리튬을 0.001 ~ 0.4 몰 비로 첨가하는 양을 첨가하는 것일 수 있다. 나아가, 상기 리튬 전구체는 리튬 : 다른 금속 몰 비 1 : 1을 기준으로 하여 리튬을 0.0001 ~ 0.1 몰 비 더 첨가할 수 있는 양으로 첨가하는 것이 바람직하다. 상기 어닐링하는 단계의 온도는 상기 리튬 전구체의 녹는점을 초과하는 온도일 수 있다.
상기 표면 코팅하는 단계는 금속, 유기 금속 및 탄소성분 중 1종 이상을 고상 또는 액상 방식으로 표면에 코팅 후 100 ~ 1200℃에서 열처리하는 것일 수 있다.
상기 재사용 가능한 활물질은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
LiaNixMnyCozMwO2+δ
(상기 화학식 1에서, M은 B, W, Al, Ti 및 Mg로 이루어진 군에서 선택되는 1종 이상을 포함하고, 1<a≤1.1, 0≤x<0.95, 0≤y<0.8, 0≤z<1.0, 0≤w≤0.1, -0.02≤δ≤0.02, x+y+z+w=1이다.)
상기 재사용 가능한 활물질은 플루오린(F)의 함량이 100ppm 이하일 수 있다.
본 발명에 따르면, 회전식 열처리 배쓰 도입을 통해 공기 접촉율을 높여 열처리 시 집전체로부터 전극 활물질의 탈리가 용이하고, 연속적으로 전극 활물질과 집전체를 분리할 수 있는 활물질 회수 장치를 제공할 수 있다.
본 발명의 활물질 회수 장치를 이용하면 양극 스크랩으로부터 양극 활물질을 회수할 수 있다. 이 방법은, 리튬 이차전지 제조 공정상 발생되는 양극 스크랩과 같은 폐 양극 활물질을 산을 이용하지 않고도 재사용할 수 있도록 하여 친환경적이다. 본 발명에 따른 방법은 중화 공정이나 폐수 처리 공정이 필요하지 않아 환경 이슈(issue)를 완화하고 공정비를 절감할 수 있다.
본 발명에 따르면, 회수하지 못하는 금속 원소 없이 양극 활물질을 회수할 수 있다. 집전체를 용해하지 않으므로 집전체도 회수할 수 있다. 활물질 원소를 추출하여 다시 양극 활물질 합성을 위한 원료로 사용하는 것이 아니고 분말 형태로 회수한 활물질을 직접 재사용할 수 있는 방법이기 때문에 경제적이다.
본 발명에 따르면, NMP, DMC, 아세톤, 메탄올과 같은 유독 및 폭발 위험의 용매를 사용하지 않아 안전하고, 열처리와 세척, 어닐링 등 단순한 공정을 이용하기 때문에 공정 관리가 쉽고 대량 생산에 적합하다.
본 발명에 따르면, 회수한 활물질의 전기화학적 성능이 저하되지 않고, 우수한 저항 특성 및 용량 특성을 구현할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 실시예를 예시하는 것이며, 후술하는 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면들에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 양극 시트에서 양극판 타발 후 폐기되는 양극 스크랩을 보여주는 도면이다.
도 2는 본 발명의 일 실시예에 따른 활물질 회수 장치의 개략도이다.
도 3은 본 발명의 다른 실시예에 따른 활물질 회수 장치의 개략도이다.
도 4는 본 발명의 또 다른 실시예에 따른 활물질 재사용 방법의 순서도이다.
도 5는 본 발명의 또 다른 실시예에 따른 활물질 재사용 방법의 순서도이다.
도 6은 샘플 1에서 양극 스크랩의 위치에 따른 열처리 결과 차이를 보여주는 사진이다.
도 7은 샘플 2에서 실험 과정에 따른 시간별 상태를 나타내는 사진이다.
도 8과 도 9는 실시예 1, 2 및 비교예 1 내지 5 활물질들을 사용하여 셀 평가를 진행한 결과이다.
도 10 및 도 11은 실시예 1 및 비교예 1 내지 3, 5 활물질들의 SEM(Scanning Electron Microscope) 사진들이다.
도 12는 실시예 3, 4 및 비교예 1, 2 활물질의 입도 분포 그래프이다.
도 13은 실시예 3, 4 및 비교예 1 활물질을 사용하여 셀 평가를 진행한 결과이고, 표 4는 결과값을 정리한 것이다.
도 14는 실시예 5 및 비교예 6 내지 9 활물질들을 사용하여 셀 평가를 진행한 결과이다.
도 15는 실시예 5 및 비교예 6, 7, 9 활물질들의 XRD 패턴이다.
도 16은 실시예 5 및 비교예 6 활물질의 SEM 사진이다.
도 17은 비교예 6, 7, 9 활물질들의 XPS(X-Ray Photoelectron Spectroscopy) 패턴이다.
도 18은 실시예 5 및 비교예 6, 7, 9 활물질들의 입도 분포 그래프이다.
도 19는 실시예 6 및 비교예 6, 7, 10 활물질들을 사용하여 셀 평가를 진행한 결과이다.
도 20은 실시예 6 및 비교예 6 내지 8 활물질들의 XPS 패턴이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 출원을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 발명시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
후술하는 설명에서, 본원의 일부를 형성하는 첨부 도면들을 참조한다. 상세한 설명에 기술된 구현예들, 도면들, 및 청구항들은 제한하려는 의도가 없다. 여기에 개시된 주제물의 정신과 범위를 벗어나지 않으면서 다른 실시예들이 활용될 수 있으며, 다른 변경들도 이루어질 수 있다. 여기에 일반적으로 기술되고 도면들로 설명된 바와 같은, 본 발명의 양상들은, 다양한 다른 구성들로 배열, 대체, 조합, 분리, 및 디자인될 수 있으며, 그 모든 것들이 여기에서 분명히 고려되었다는 것을 즉각 이해할 수 있을 것이다.
다르게 정의되어 있지 않다면, 여기에 사용된 모든 기술적 과학적 용어들은 일반적으로 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자(이하, 당업자)에게 공통적으로 이해되는 바와 같은 의미를 가진다.
본 발명은 본원에 설명된 특정 실시예들에 관하여 한정되는 것은 아니다. 당업자에게 명백한 바와 같이, 본 발명의 정신과 범위를 벗어나지 않으면서, 많은 변경과 수정이 이루어질 수 있다. 여기에 열거한 것들에 추가하여, 본원의 범위 안에서 기능적으로 균등한 방법들이 앞서의 설명들로부터 당업자에게 명백할 것이다. 그러한 변경과 수정은 첨부한 청구항들의 범위 내에 놓여지게 된다. 그러한 청구항들이 자격을 주는 균등물의 전체 범위와 함께, 본 발명은 청구항들에 의해서만 한정되어질 것이다. 본 발명이, 물론, 변화될 수 있는, 특정한 방법들에 한정되는 것이 아니라는 점이 이해되어야 한다. 여기에 사용된 전문용어는 특정 실시예들을 설명하기 위한 목적으로만 사용된 것이지 제한하려는 의도는 없다는 것도 이해되어야 한다.
종래의 활물질 재활용 공정의 경우, 사용 후 성능이 퇴화된 리튬 이차전지 활물질 내에 유가금속(니켈, 코발트, 망간 등)을 원소로 추출하여 활물질을 재합성하는 것이 주된 것이었다면, 본 발명은 리튬 이차전지 제조 공정 중에서 발생하는 양극 스크랩으로부터도 활물질을 회수한다는 점에서 차별성이 있다.
뿐만 아니라, 기존에 알려진 활물질 재활용 공정의 경우, 산/염기 용해 또는 환원/첨가제를 이용한 용융을 통해 유가금속을 추출하고, 이를 금속(직접환원법) 또는 재합성한 활물질로 제조하는 등의 화학적 방법이 추가되어 공정의 복잡성 및 경제적 비용이 추가 발생한다. 그러나 본 발명은 양극 활물질을 용해시키지 않고 직접 재사용하는 방법 및 장치에 관한 것이다.
양극 활물질을 직접 재사용하려면, 양극에서 집전체를 제거하기 위한 방법이 필요하다. 양극에서 집전체를 제거하는 데에는 고온 열처리를 통해 바인더를 제거하는 것, 용매를 이용해 바인더를 녹여내는 것, 집전체를 아예 녹여버리는 것, 건식분쇄와 체가름을 통해 활물질을 선별하는 것 등이 가능하다.
용매를 이용해 바인더를 녹여내는 데에는 용매의 안정성이 중요하다. NMP가 가장 효율적인 용매이겠으나 독성 및 높은 가격이라는 단점이 있다. 그리고, 폐용매를 재처리한다든가 하는 용매 회수 공정이 필요한 단점도 있다. 집전체를 녹여버리는 것은 용매를 이용하는 것보다는 공정비가 저렴할 것이다. 하지만 재사용 활물질 표면의 이물질 제거가 어렵고 집전체 제거 과정에서 수소 가스가 발생되기 때문에 폭발 위험이 있다. 건식분쇄와 체가름으로는 집전체와 활물질을 완벽하게 분리하기가 어렵다. 분쇄 과정에서 활물질의 입도 분포가 달라지며 바인더 제거가 어렵기 때문에 이를 재사용한 전지 특성이 퇴화되는 단점이 있다.
본 발명에서는 고온 열처리를 이용하여 활물질과 집전체를 분리한다. 특히 열처리를 공기 중에서 실시하며 대량 생산 및 상업화에 유리한 장치를 제공하다. 재사용 활물질 표면에 이물질이 잔류해서는 안 된다. 본 발명에서는 재사용 활물질 표면의 이물질 제거 단계까지도 제안한다.
이하에서는 도 2 및 도 3을 참조해 본 발명의 실시예들에 따른 활물질 회수 장치를 설명한다.
먼저 도 2에 도시한 활물질 회수 장치(100)는, 스크류(screw) 타입의 봉(110)을 내부에 구비한 회전형 소성 장치이다.
봉(110)의 축을 따라 열처리 배쓰(120)와 스크리닝 벽체(130)가 일렬 배치되어 있다. 열처리 배쓰(120)와 스크리닝 벽체(130)는 내부에 피처리물이 담길 수 있는 소정 공간을 가지는 중공이 형성된 통 형상을 가질 수 있다. 이 때, 봉(110)은 열처리 배쓰(120)와 스크리닝 벽체(130)의 중심부를 지나며, 열처리 배쓰(120)와 스크리닝 벽체(130)는 동축 배열일 수 있다. 봉(110)은 열처리 배쓰(120)와 스크리닝 벽체(130)의 길이 방향 일측에서 타측까지 연결되도록 긴 형태를 가질 수 있다.
열처리 배쓰(120)는 가열 구역(heating zone)을 이루고, 스크리닝 벽체(130)는 냉각 구역(cooling zone)을 이룬다. 열처리 배쓰(120)는 피처리물의 이송 방향을 따라 장치 전단에, 스크리닝 벽체(130)는 장치 후단에 설치한다. 열처리 배쓰(120)와 스크리닝 벽체(130)를 순차 설치함으로써, 열처리 배쓰(120)에서 피처리물이 충분히 가열되어 열분해가 일어나도록 한 이후에 스크리닝 벽체(130)에 이송될 수 있도록 한다.
활물질 회수 장치(100)는 배기 주입 및 탈기 시스템(140)도 포함하고 있다. 열처리 배쓰(120)에는 배기 주입 및 탈기 시스템(140)을 이용해 공기 또는 산소가 주입될 수 있다. 열처리 후의 배기 가스는 배기 주입 및 탈기 시스템(140)을 이용해 정화된 후 배출될 수 있다.
봉(110)은 그 축을 따라 회전한다. 피처리물은 전극 스크랩(160)이다. 바람직하게는 양극 스크랩이다. 전극 스크랩(160)은 집전체(150) 상에 활물질층을 포함하고 있다. 열처리 배쓰(120)에서는 전극 스크랩(160)을 봉(110)의 축 둘레로 회전시키면서 공기 중 열처리하여 상기 활물질층 안의 바인더와 도전재를 제거한다. 열처리는 300 ~ 650℃에서 수행할 수 있어 고온 열처리라고도 부를 수 있다. 300℃ 미만의 온도에서는 바인더의 제거가 어려워 집전체(150)를 분리해 낼 수 없는 문제가 생기며 650℃ 이상의 온도에서는 집전체(150)가 녹아 (Al 녹는점 : 660℃) 집전체를 분리할 수 없는 현상이 생긴다. 열분해가 충분히 일어나서 바인더가 제거되면 상기 활물질층은 집전체(150)로부터 분리될 수 있다. 열처리 배쓰(120)도 봉(110)의 축 둘레로 회전하게 할 수 있다. 이 때 열처리 배쓰(120)의 회전 방향은 봉(110)의 회전 방향과 동일하거나 반대일 수 있다. 적절한 시간 간격을 두고 회전 방향을 바꾸어 가며 진행할 수도 있다.
봉(110) 및/또는 열처리 배쓰(120)의 회전은 전극 스크랩(160)을 회전시킨다. 특히 봉(110)은 전극 스크랩(160)을 휘저으면서 전극 스크랩(160)을 밀어주기 때문에 전극 스크랩(160)이 공기와 잘 접촉되도록 하며 휘젓는 힘에 의해 활물질층이 분말 형태의 활물질(170)로 떨어지도록 하는 데에 도움을 준다. 열처리 배쓰(120)만 회전시키는 경우, 무거운 금속 성분들을 포함하는 전극 스크랩(160)은 잘 회전되지 않고 열처리 배쓰(120) 내부 아래에서만 켜켜이 쌓여 존재할 가능성이 크다. 그러면 산소 또는 공기 접촉이 덜하다. 본 발명에서는 열처리 배쓰(120) 내부의 봉(110)을 회전시켜 전극 스크랩(160)을 휘저어줄 수 있다. 전극 스크랩(160)을 잘게 슈레딩(shredding)하여 투입하지 않더라도 봉(110)에 의해 쪼갤 수도 있다. 쪼개진 전극 스크랩(160)이 봉(110)에 의해 회전을 함으로써 충분히 산소 또는 공기와 접촉할 수 있게 된다. 봉(110)은 단순 회전을 일으키는 것이 아니라 스크류 타입이어서 핀 혹은 날개 혹은 막대와 같은 돌출 구조가 구비된 것이다. 이러한 돌출 구조는 전극 스크랩(160)의 회전 및 혼합을 극대화한다. 이로 인하여 전극 스크랩간 겹침 현상으로 인한 불완전 연소를 해소할 수 있다.
열처리 배쓰(120)에서의 열처리를 통해서 집전체(150)로부터 분리되는 활물질층은 개별적인 입자 혹은 입자들이 조각조각 뭉쳐있는 플레이크 등의 구조를 가질 수 있으며 연속적인 막 상태가 아니기 때문에 본 발명에서는 분말 형태라고 지칭한다. 이와 같이 열처리 배쓰(120)에서는 단순 공기 중 열처리에 의해 분말 형태의 활물질을 집전체(150)로부터 얻어낼 수 있는 상태가 되고, 일부 전극 스크랩(160)은 집전체(150) 위에 단지 반데르발스 힘 등에 의해 활물질층이 붙어 있는 상태 혹은 일부 활물질층이 탈락하여 분말 형태의 활물질(170)이 된 상태로 스크리닝 벽체(130)로 이송이 될 수 있다.
열처리 배쓰(120)는 전극 스크랩(160)이 내부에 투입되고 바인더와 도전재가 제거된 집전체(150)와 활물질(170)이 스크리닝 벽체(130)로 이송되도록 양단이 개방된 통 형상임이 바람직하다. 그리고, 상기 통은 공기가 드나드는 개방형 시스템임이 바람직하다. 즉, 상기 통은 밀폐 구조를 갖지 아니하여 외기 중의 산소가 유입될 수 있다.
열처리 배쓰(120)는 전극 스크랩(160)을 수용하고 회전시켜서 혼합하는 용기와, 이러한 용기에 열을 부가하여 전극 스크랩(160)을 열처리할 수 있는 가열부를 포함하게 된다. 용기는 금속 또는 세라믹 재질일 수 있다. 특히 세라믹 재질로 하면 활물질과 반응으로 인한 부식을 방지할 수 있고, 용기로부터 야기되는 금속 이온에 의한 활물질 오염도 방지할 수 있다. 또한, 마이크로웨이브 등과 같은 열원도 가열부로 사용할 수 있어 사용가능한 열원 종류가 다양해진다.
예를 들어, 열처리 배쓰(120)의 용기는 세라믹 재질, 예컨대 고순도 알루미나로 이루어진 튜브일 수 있다. 그리고 이러한 튜브는 길이 방향으로 연결하는 플랜지가 튜브의 양단에 더 포함되어 있어, 둘 이상의 튜브를 서로 연결해 길이 연장함으로써 대용량 처리가 가능한 열처리 배쓰(120)로 제조할 수 있다. 일반적으로 세라믹 재질로 이루어진 튜브는 소재의 특성상 일정 구경 및 일정 길이 이상 제조가 매우 어렵고, 제품 가격이 상당히 고가이다. 이에 따라 플랜지를 통해 세라믹 소재로 이루어진 적절한 구경 및 길이의 튜브 복수개를 원하는 길이만큼 연결할 수 있고, 예컨대 수백 mm 또는 수천 mm 이상의 길이로 제조해 대용량 처리가 가능하다.
가열부는 이러한 용기 외주면에 마련될 수 있다. 예를 들어, 가열부는 선형 발열체이고, 이 발열체는 용기의 길이방향 일측에서 타측까지 연결되도록 긴 바(bar) 형태를 가지며, 이를 용기 외주면에 배치할 수 있다. 그러면 용기의 길이방향으로 균일한 온도의 열을 발생시킬 수 있다. 발열체는 SiC, 흑연, 탄소나노튜브, 탄소나노파이버 및 그래핀으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 바람직하게는 SiC 소재로 형성될 수 있다.
열처리 배쓰(120)는 투입되는 전극 스크랩(160) 100g당 10 mL/min ~ 100 L/min으로 공기가 첨가 또는 주입되는 개방형 시스템인 것이 바람직하다. 열처리 배쓰(120)가 양단이 개방된 통 형상이면 공기 첨가가 원활하다. 또한, 도 2에 화살표로 도시한 바와 같이, 열처리 배쓰(120)에서 공기 주입구를 복수 개소에 설치하면 배기 주입 및 탈기 시스템(140)을 통하여 주입되는 공기 또는 산소가 전극 스크랩(160)이 섞이는 부분에서 원활하게 공급이 되므로 열처리 배쓰(120) 내로 열분해에 필요한 공기와 산소의 충분한 공급이 가능해진다. 공기 주입구는 봉(110)에도 설치될 수 있다.
전극 스크랩(160)은 열처리시 활물질층 내 존재하는 바인더인 PVdF(폴리비닐리덴 플루오라이드, polyvinylidene fluoride) 및 도전재가 분해되어 집전체로부터 탈리하게 된다. 그러나 충분한 공기 및 산소가 공급되지 못하면 불완전 연소로 인하여 활물질층이 집전체로부터 분리되지 못하고 오히려 더 강하게 탄화되어 집전체에 부착되어 버리게 된다. 이 경우 활물질 회수율이 떨어지게 되어 공정성을 확보하기 어렵다. 열처리 배쓰(120)는 공기 첨가량을 제어할 수 있고 열처리 시 전극 스크랩(160)이 공기 접촉이 잘 되는 구조이다. 특히 많은 양의 활물질을 회수하기 위해서 전극 스크랩(160)이 공기 접촉이 잘 되도록 봉(110)이 회전하고 열처리 배쓰(120)도 회전하게끔 하여 열처리 배쓰(120) 내부에서 전극 스크랩(160)이 돌아다니면서 골고루 가열되고 공기 접촉이 최대화될 수 있다. 활물질층 구성 원소의 불완전 연소를 억제할 수 있으므로 최종 탈리된 활물질의 회수율을 증가시킬 수 있다. 만약 공기가 투입되는 전극 스크랩(160) 100g당 10 mL/min 미만으로 주입 또는 첨가될 경우 바인더와 도전재가 불완전 연소되어 활물질 회수율이 감소하게 된다. 100 L/min보다 많이 주입 또는 첨가되면 과량 첨가로 인해 활물질 날림이 발생하고 온도 제어가 어려울 수 있다.
스크리닝 벽체(130)는 메시(mesh) 구조를 가질 수 있다. 메시의 크기는 집전체(150)가 통과하지 못하도록 하는 선에서 적절히 정할 수 있다. 스크리닝 벽체(130)를 통과한 분말 형태의 활물질(170)은 스크리닝 벽체(130) 하부에 설치한 제1 수집기(180)를 통해 회수할 수 있다. 스크리닝 벽체(130)를 통과하지 못한 집전체(150)는 스크리닝 벽체(130) 단부에 설치한 제2 수집기(190)를 통해 회수할 수 있다. 이와 같이 활물질 회수 장치(100)를 이용하면 활물질(170)과 집전체(150)를 각각 회수할 수 있다. 이와 같이 본 발명의 활물질 회수 장치(100)에 의하면 활물질(170)을 고유한 형상 그대로 회수할 수 있으면서도 집전체(150)도 녹이거나 버리지 않고 재활용할 수 있게 된다.
스크리닝 벽체(130)는 분리된 집전체(150)와 활물질(170)이 내부에 투입되고 상기 집전체(150)를 배출하도록 양단이 개방된 통 형상인 것이 바람직하다. 봉(110)의 회전을 통해 집전체(150)로부터 활물질(170)의 탈락이 원활해진다. 봉(110)은 집전체(150)를 회전시키고 휘저어 집전체(150)로부터 활물질(170)이 탈락되도록 할 뿐 아니라 집전체(150)와 스크리닝 벽체(130)가 서로 부딪치면서 그 충격에 의해 집전체(150)로부터 활물질(170)이 떨어져 나오게 된다. 스크리닝 벽체(130)도 봉(110)의 축 둘레로 회전하게 할 수 있다. 회전하는 봉(110)이 없거나 스크리닝 벽체(130)가 회전하지 않아 집전체(150)가 정지된 상태이면 집전체(150)로부터 활물질(170)이 떨어져 나오기가 용이하지 않다.
스크리닝 벽체(130)의 회전 방향은 봉(110)의 회전 방향과 동일하거나 반대일 수 있다. 적절한 시간 간격을 두고 회전 방향을 바꾸어 가며 진행할 수도 있다. 또한, 스크리닝 벽체(130)는 열처리 배쓰(120)의 회전 방향과 동일할 수 있다. 열처리 배쓰(120)와 스크리닝 벽체(130)의 연결 부위를 고정하면 열처리 배쓰(120)와 스크리닝 벽체(130)가 함께 회전하도록 할 수 있다. 열처리 배쓰(120)와 스크리닝 벽체(130)는 서로 연결되는 조립식 또는 일체형으로 구성할 수 있다.
예를 들어 열처리 배쓰(120)의 일측에 주면을 따라 결합홈을 형성하고, 스크리닝 벽체(130)의 일측에 주면을 따라 결합돌기를 형성하여, 상기 결합홈과 결합돌기를 통해 상호 대응하는 열처리 배쓰(120)와 스크리닝 벽체(130)의 단부들을 견고하게 연결할 수 있다. 상기 결합홈과 상기 결합돌기는 억지끼움 결합방식 또는 나사 결합방식을 통해 결합될 수 있다. 상기 결합홈과 상기 결합돌기는 걸림턱과 후크 구조로 결합될 수도 있다.
상기와 같이 열처리 배쓰(120)와 스크리닝 벽체(130)를 동축 배열의 통 형상으로 하면, 상기 활물질 회수 장치(100)는 새로운 전극 스크랩의 투입과 활물질의 회수가 연속적으로 이루어지게 되어 바람직하다.
스크리닝 벽체(130)는 단지 가열부를 구비하지 않기 때문에 자연 냉각의 서냉 방식으로 냉각 구간을 이룰 수도 있고, 스크리닝 벽체(130) 외부에 냉각 수단을 더 구비하여 보다 빠른 급냉 방식 혹은 온도 제어된 냉각을 가능하게 할 수도 있다.
활물질 회수 장치(100)는 또한 진동 기능이 있는 것이 바람직하다. 진동은 열처리 후 바인더 및 도전재가 제거된 활물질이 집전체로부터 탈리되어 떨어져 나올 수 있도록 물리적인 힘을 줄 수 있다. 진동을 가해주면 스크리닝 벽체(130) 안의 활물질(170)은 스크리닝 벽체(130)를 통과하여 그 아래의 제1 수집기(180)로 떨어지게 된다.
다음으로 도 3에 도시한 활물질 회수 장치(100')는 지면에 대하여 봉(110)의 축이 기울어지게 전체 활물질 회수 장치(100')가 각도(θ) 조절되는 것을 특징으로 한다. 도시한 바와 같이 활물질 회수 장치(100')의 후단, 즉 도면상 우측이 아래가 되도록 조금 경사진 상태로 지지될 수 있다. 서로 높이가 다른 지지대가 활물질 회수 장치(100')의 전단과 후단 하부에 각각 설치될 수 있다.
각도(θ) 조절은 지면에 대한 경사를 부여하고, 경사는 집전체(150)와 활물질(170)의 자중에 의해 이들이 하방으로 이동할 수 있게 한다. 도시한 바와 같이 경사를 주면 열처리 배쓰(120)와 스크리닝 벽체(130)를 거쳐 집전체(150)와 활물질(170)이 도면의 좌측에서 우측으로 서서히 이동하며 스크리닝 벽체(130) 안의 활물질(170)은 스크리닝 벽체(130)를 통과하여 그 아래의 제1 수집기(180)로 떨어지고, 스크리닝 벽체(130)를 통과하지 못한 집전체(150)는 스크리닝 벽체(130) 단부에 설치한 제2 수집기(190)로 떨어지게 된다. 각도(θ)는 공정 전에 세팅한 상태로 공정 내내 유지되거나 공정 중간 필요에 따라 조절 및 변경될 수도 있다.
이상 설명한 활물질 회수 장치(100, 100')는 전극 스크랩을 대량으로 처리할 수 있고, 그에 따라 작업효율성과 작업시간을 크게 단축할 수 있다. 특히 외기 공기 중 산소를 막지를 않는 개방형 시스템이고, 활물질층의 완전 연소를 위해 충분한 공기 또는 산소의 공급이 가능하다. 전극 스크랩을 회전시킬 수 있어 공기 접촉이 더욱 원활하므로 균일한 품질과 높은 회수율로 활물질을 회수할 수 있다.
이하에서는 도 4 및 도 5를 참조해 본 발명의 실시예들에 따른 활물질 재사용 방법을 설명한다. 먼저 도 4는 본 발명의 또 다른 실시예에 따른 활물질 재사용 방법의 순서도이다.
도 4를 참조하면, 먼저, 버려지는 양극 스크랩을 준비한다(단계 s10).
양극 스크랩은 앞의 도 1을 참조하여 설명한 바와 같이, 집전체 상에 양극 활물질층을 포함하는 양극 시트를 제조해 타발 후 남은 부분일 수 있다. 뿐만 아니라 공정 중 불량이 발생한 양극을 모아 양극 스크랩을 마련할 수 있다. 또한, 사용 후 폐기된 리튬 이차전지로부터 양극을 분리하여 양극 스크랩을 마련할 수도 있다.
예를 들어, LiCoO2(LCO) 같은 리튬 코발트 산화물인 활물질, 또는 니켈, 코발트 및 망간을 포함하는 NCM계 활물질, 도전재로서 탄소계인 카본블랙, 및 바인더인 PVdF에 NMP(N-methyl pyrrolidone)를 첨가해 믹싱 제조한 슬러리를 알루미늄 포일로 된 시트형 집전체 상에 코팅한 다음, 120℃ 정도의 진공오븐에서 건조하여 양극 시트를 제조하고 나서, 일정 크기의 양극판을 타발하고 남은 양극 스크랩을 준비하는 경우일 수 있다.
리튬 이차전지의 양극 활물질로는 리튬 복합 전이금속 산화물이 이용되고 있으며, 이중에서도 LiCoO2의 리튬 코발트 산화물, 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 산화물(LiNiO2 등) 등이 주로 사용되고 있다. 또한, LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 열적 안정성이 뛰어난 망간(Mn)으로 치환한 니켈 망간계 리튬 복합금속 산화물 및 망간(Mn)과 코발트(Co)로 치환한 NCM계 리튬 복합 전이금속 산화물이 사용되고 있다.
이와 같이 양극 스크랩은 알루미늄 포일과 같은 금속박의 집전체 위에 활물질층을 갖고 있다. 활물질층은 활물질, 도전재, 바인더, 용매 등을 믹싱한 슬러리를 코팅해 형성한 것이어서 용매 휘발 후 활물질과 도전재를 바인더가 연결해주는 구조로 되어 있다. 따라서, 바인더를 제거한다면 집전체로부터 활물질이 분리가 될 수 있다.
다음, 이러한 양극 스크랩을 본 발명에 따른 활물질 회수 장치(100, 100')의 열처리 배쓰(120)에 투입한다(단계 s15).
투입하기 전에 양극 스크랩을 적당한 크기로 파쇄하는 단계를 더 포함할 수도 있다. 파쇄는 양극 스크랩이 적당히 취급 용이한 크기로 조각이 나도록 절단 혹은 슈레딩하는 것을 가리킨다. 파쇄하고 나면 양극 스크랩은 예를 들어 1cm x 1cm의 크기로 잘게 잘라진다. 파쇄에는 핸드-밀, 핀-밀, 디스크-밀, 커팅-밀, 해머-밀과 같은 다양한 건식 분쇄 장비를 이용할 수도 있고 고속절단기를 이용할 수도 있다. 파쇄는 양극 스크랩의 취급과 이후 공정들에서 이용하게 되는 활물질 회수 장치(100, 100') 안에서 요구되는 특성, 예컨대 유동성을 고려하여 실시할 수 있다. 활물질 회수 장치(100, 100')는 봉(110)을 구비하고 있기 때문에 봉(110)이 회전하면서 양극 스크랩이 쪼개어질 수도 있다. 그러므로, 너무 크지 않은 양극 스크랩이라면 파쇄하지 않고 투입하여도 된다.
다음으로, 열처리 배쓰(120)에서 상기 양극 스크랩을 봉(110)의 축 둘레로 회전시키면서 공기 중 열처리하여 상기 활물질층 안의 바인더와 도전재를 제거해 상기 집전체를 상기 활물질층으로부터 분리한다(단계 s30). 열처리는 300 ~ 650℃에서 수행할 수 있어 고온 열처리라고도 부를 수 있다. 300℃ 미만의 온도에서는 바인더의 제거가 어려워 집전체를 분리해 낼 수 없는 문제가 생기며 650℃ 이상의 온도에서는 집전체가 녹아 (Al 녹는점 : 660℃) 집전체를 분리할 수 없는 현상이 생기므로, 열처리 배쓰(120)의 가열부 온도를 조절하여 원하는 열처리 온도가 되도록 한다.
열처리 시간은 바인더가 충분히 열분해될 수 있을 정도로 유지한다. 예를 들어 30분 전후로 한다. 바람직하게는 30분 이상으로 한다. 열처리 시간이 길어질수록 바인더의 열분해가 일어나는 시간이 길어지겠으나, 일정 시간 이상이 되면 열분해 효과에 차이가 없다. 바람직하게 열처리 시간은 30분 이상 5시간 이내로 한다.
예를 들어, 열처리는 온도 상승 속도 5℃/min로, 550℃에서 30분간 수행할 수 있다. 상기 온도 상승 속도는 예를 들어 열처리 배쓰(120)의 가열부를 통해 무리하지 않게 구현할 수 있는 것이면서 양극 스크랩에 열충격 등을 발생시키지 않고 가열할 수 있는 정도이다. 550℃는 Al 집전체의 녹는점을 고려한 것이면서도 바인더의 열분해가 잘 일어날 수 있도록 하는 것이다. 이 온도에서는 10분 미만으로 열처리하면 열분해가 불충분하므로 10분 이상 열처리가 진행되어야 하며 되도록이면 30분 이상 열처리를 한다.
공기 중 열처리를 통해 활물질층 안의 바인더와 도전재가 열분해되면서 CO2와 H2O가 되어 제거가 된다. 바인더가 제거되기 때문에 집전체로부터 활물질이 분리되고, 회수하고자 하는 활물질은 분말 형태로 선별될 수 있다. 따라서, 단계 s30만으로도 집전체를 활물질층으로부터 분리하고 활물질층 안의 활물질을 회수할 수가 있다.
단계 s30의 열처리는 공기 중에서 수행하는 것이 중요하다. 환원기체 혹은 비활성기체 분위기에서 열처리를 수행하면 바인더와 도전재가 열분해되지 않고 탄화만 된다. 탄화만 되면 탄소 성분이 활물질 표면에 남게 되어 재사용 활물질의 성능을 저하시키게 된다. 공기 중에서 열처리를 하면 바인더나 도전재 중의 탄소 물질은 산소와 반응하여 CO, CO2 가스로 연소 제거되기 때문에 바인더와 도전재 잔류 없이 거의 모두 제거된다. 활물질 회수 장치(100, 100')는 충분한 공기 접촉이 가능하므로 단계 s30의 열처리 수행에 적합하다.
열처리 시간은 곧 열처리 배쓰(120) 안에서 원하는 열처리 온도에서 머무는 시간을 의미한다. 열처리 시간이 30분이라면, 양극 스크랩이 열처리 배쓰(120) 안에서 30분간 가열이 되도록 한 후에 다음 스크리닝 벽체(130)로 이송이 될 수 있도록 공정 관리를 한다.
이제 스크리닝 벽체(130)를 통과한 분말 형태의 활물질을 회수한다(단계 s35). 개방형 시스템인 활물질 회수 장치(100, 100')는 앞서 설명한 바와 같이 열처리 배쓰(120) 안에서의 원활한 공기 접촉을 통해 바인더와 도전재의 제거가 거의 완벽하게 일어나며, 분말 형태의 활물질을 회수할 수 있게 한다. 스크리닝 벽체(130)로 이송된 양극 스크랩은 앞에서 바인더가 제거된 상태이므로 봉(110)의 회전을 통해 집전체와 활물질의 탈리가 완벽히 이루어질 수 있다. 스크리닝 벽체(130)를 통과해 얻는 활물질은 바인더나 도전재의 탄화로 생기는 탄소 성분이 표면에 남아 있지 않을 수 있다.
이렇게 하여 활물질 회수 장치(100, 100')의 이용이 종료된다. 활물질 회수 장치(100, 100')를 이용해 열처리를 수행함으로써 매우 높은 회수율로 활물질을 회수할 수 있게 되고, 회수된 활물질에는 탄소 성분이 없기 때문에 이러한 탄소 성분 제거를 위한 별도의 처리가 필요하지 않다.
회수된 활물질을 그대로 재사용한다면 전극 물성에 좋지 않은 결과를 낼 수 있다. 이에 후속 공정으로 본 발명에서는 세척, 건조, 리튬 전구체 첨가, 어닐링, 표면 코팅 등의 단계를 더 포함할 수 있는 활물질 재사용 방법을 제안하는 것이다.
다음으로, 회수된 활물질을 세척하고 건조한다(단계 s40). 세척시 수용액 상태에서 염기성을 보이는 리튬 화합물 수용액으로 세척하는 것이 중요하다. 이러한 리튬 화합물 수용액은 0% 초과 15% 이하의 리튬 화합물을 함유하도록 제조되고 바람직하게는 LiOH를 사용한다 LiOH의 양은 15% 이하로 함이 바람직하다. 과량의 LiOH의 사용은 세척 이후에도 활물질 표면에 과량의 LiOH가 남겨져 있을 수 있어 향후 어닐링 공정에 영향을 끼칠 수 있다. 최대한 어닐링 전 단계에서의 활물질 표면을 깨끗하게 하기 위해 과량의 LiOH 첨가는 공정상 좋지 않으므로 15% 이하로 제한한다.
세척은 이러한 리튬 화합물 수용액에 회수된 활물질을 침지하여 두는 것으로 실시할 수 있다. 침지 후 일주일, 바람직하게는 하루 이내 더더욱 바람직하게는 1시간 이내로 세척을 실시할 수 있다. 일주일 이상 세척시 리튬 과다 용출로 인해 용량 저하가 발생할 우려가 있다. 따라서, 1 시간 이내로 수행함이 바람직하다. 세척은 수용액 상태에서 염기성을 보이는 리튬 화합물 수용액에 활물질을 침지해 두는 것, 침지한 상태에서 교반하는 것 등을 포함한다. 가급적 교반을 병행하는 것이 좋다. 리튬 화합물 수용액에서 교반을 하지 않고 침지만 한다면 세척 공정이 느리게 이뤄지고 리튬 용출의 원인이 될 수 있다. 교반을 병행하면 공정 시간을 최소화해 줄 수 있기 때문에 교반은 리튬 화합물 수용액 함침과 동시에 진행하는 것이 바람직하다. 건조는 여과 후 오븐(convection type)에서 공기 중 실시할 수 있다.
수용액 상태에서 염기성을 보이는 리튬 화합물 수용액으로 세척하는 이유는 회수된 활물질의 표면에 존재할 수도 있는 LiF와 금속 불화물(metal fluoride)을 제거하고 표면 개질을 하기 위해서이다. 단계 s30의 열처리 동안에는 활물질층 안의 바인더와 도전재가 CO2와 H2O가 되면서 기화되어 제거되는데 이 과정에서 CO2와 H2O가 활물질 표면의 리튬과 반응하여 Li2CO3, LiOH가 형성되기도 하고, PVdF와 같은 바인더에 존재하던 플루오린(F)이 양극 활물질을 구성하는 금속 원소와 반응하여 LiF 혹은 금속 불화물이 형성되기도 한다. LiF 혹은 금속 불화물이 남아 있으면, 활물질 재사용시 전지 특성이 열화된다. 본 발명에서는 단계 s40과 같이 세척하는 단계를 추가하여, 열처리 단계(s30) 중 활물질 표면에 생성되어 있을 수 있는 반응물을 제거함으로써, 활물질 표면에 이물질이 남지 않도록 한다.
강조하지만, 단계 s40에서는 수용액 상태에서 염기성을 보이는 리튬 화합물 수용액으로 세척하는 것이 중요하다. 수용액 상태에서 염기성을 보이는 리튬 화합물 수용액이 아닌 황산이나 염산 수용액을 사용한다면 활물질 표면의 F를 세척할 수는 있겠지만 활물질에 존재하는 전이금속(Co, Mg) 등을 용출시켜 재사용 양극 활물질의 성능을 저하시킨다. 본 발명에 따른 활물질 재사용 방법에서 사용하는 수용액 상태에서 염기성을 보이는 리튬 화합물 수용액은, 단계 s30의 열분해 후에도 혹시 미량 남겨져 있을 수도 있는 바인더를 제거할 수 있을 뿐만 아니라 활물질에 존재하는 전이금속 등을 용출시키기 않고, 세척 과정에서 용출될 수 있는 리튬의 양을 보충할 수 있는 역할도 병행할 수 있어 매우 바람직하다.
단계 s40을 통해, 본 발명에서는 회수된 활물질 표면에 LiF 함량을 500ppm 미만으로 조절해 줄 수 있고, 이를 통해 용량 개선 효과를 볼 수 있다. 바람직하게는 F 함량을 100ppm 이하로 할 수 있다. 더욱 바람직하게는 F 함량을 30ppm 이하로 할 수 있다.
다음으로, 세척된 활물질에 리튬 전구체를 첨가하고 어닐링한다(단계 s50).
앞의 단계 s30, s40을 거치는 동안 활물질 안의 리튬 손실이 발생할 수 있다. 단계 s50에서는 그러한 리튬 손실량을 보충해 준다.
뿐만 아니라, 단계 s50에서는 어닐링을 통해 활물질의 결정 구조를 회복해 재사용 활물질의 특성을 한 번도 사용하지 않은 프레시한(fresh) 활물질 수준으로 회복하거나 개선한다.
앞의 단계 s30, s40을 거치는 동안 활물질 표면에 변형구조가 나타날 수 있다. 예를 들어 NCM계 리튬 복합 전이금속 산화물인 활물질은 단계 s40에서 Ni이 수분에 의해 암염(rock salt)화[NiCO3·2Ni(OH)2)H20]되어 스피넬 구조가 형성되어 있을 수 있다. 이대로 전지 제조를 한다면 용량 감소 등 전지 특성이 나빠질 수 있다. 본 발명에서는 단계 s50을 통해 결정 구조를 회복시킨다. 예를 들어 NCM계 리튬 복합 전이금속 산화물인 활물질을 다시 육방정 구조로 회복시킨다. 이에 따라 프레시한 활물질과 유사한 수준으로 초기 특성을 회복하거나 개선할 수 있다.
단계 s50의 리튬 전구체는 LiOH, Li2CO3, LiNO3 및 Li2O 중 어느 하나 이상일 수 있다.
리튬 전구체는 열처리 전의 상기 활물질층에 사용된 원재료 활물질(즉, 프레시한 활물질) 안의 리튬과 다른 금속의 비율 대비해서 손실된 리튬 비율 만큼을 첨가할 수 있는 양으로 첨가하는 것이다. 예를 들어, 프레시한 활물질 내 리튬과 다른 금속의 비율이 1일 경우 0.001 ~ 0.4 몰 비로 리튬을 첨가할 수 있는 양의 리튬 전구체를 첨가할 수 있다. 적절하게는 0.01 ~ 0.2 몰 비의 리튬을 첨가하도록 하는 것이 좋다. 세척 등을 통해 손실된 리튬 양 이외의 과량의 리튬 전구체 첨가는 미반응 리튬 전구체를 재사용 활물질에 남기게 되고 이는 활물질 재사용 과정에서 저항을 증가시키는 역할을 하게 되어 적절한 양의 리튬 전구체 투여가 필요하다.
또한, 리튬 전구체는 리튬 : 다른 금속 몰 비 1 : 1을 기준으로 하여 리튬을 0.0001 ~ 0.1 몰 비 더 첨가할 수 있는 양으로 첨가하는 것이 바람직하다. 이와 같이 과량 리튬을 첨가하는 이유는 활물질에 표면 코팅에 의한 표면 보호층을 형성해 주기 위해서이고, 이에 대해서는 아래에 더 설명한다. 이러한 활물질을 가지고 이차전지를 제조하는 경우 전해액에 의한 부반응을 억제하면서도 수명 특성을 유지할 수 있다.
단계 s50의 어닐링은 400 ~ 1000℃, 공기 중에서 수행한다. 어닐링 온도는 600 ~ 900℃일 수도 있다. 이 온도는 리튬 전구체의 종류에 따라 제한된 범위 내에서 변화하여야 한다. 어닐링 시간은 1시간 이상으로 하는 것이 좋다. 바람직하게는 5시간 전후이다. 어닐링 시간이 길면 결정 구조 회복이 충분히 이루어질 수 있겠으나 장시간을 한다고 해도 성능에 큰 영향을 주지 않는다. 어닐링 시간은 예를 들어 15시간 이내로 한다.
예를 들어 리튬 전구체로써 Li2CO3를 사용하는 경우 어닐링 온도는 700 ~ 900℃가 적절하며, 더 적절하게는 710 ~ 780℃ 사이가 적절하다. 이는 Li2CO3의 녹는점이 723℃이기 때문이다. 가장 바람직하게는 750℃에서 수행한다. 리튬 전구체로써 LiOH를 사용하는 경우 어닐링 온도는 400 ~ 600℃가 적절하며, 더 적절하게는 450 ~ 480℃가 적절하다. 이는 LiOH의 녹는점이 462℃이기 때문이다.
어닐링 온도는 리튬 전구체의 녹는점을 초과하는 온도임이 바람직하다. 다만 1000℃를 초과하는 온도에서는 양극 활물질의 열분해가 발생하여 활물질의 성능 저하가 발생하기 때문에 1000℃를 넘지 않도록 한다.
이러한 단계 s50까지 수행하면 재사용 가능한 활물질을 얻을 수 있다. 재사용 가능하다는 것은 더 이상 성분 조정을 위한 추가의 첨가물이나 추가의 처리없이 프레시한 활물질처럼 곧바로 슬러리 제조에 투입될 수 있는 상태임을 의미한다.
다음에 선택적인 단계로서, 단계 s60을 더 수행할 수도 있다. 단계 s60에서는 단계 s50에서 어닐링된 활물질에 표면 코팅을 실시한다.
표면 코팅하는 단계는 금속, 유기 금속 및 탄소성분 중 1종 이상을 고상 또는 액상 방식으로 표면에 코팅 후 100 ~ 1200℃에서 열처리하는 것일 수 있다. 1200℃를 넘는 온도로 열처리할 경우 양극 활물질의 열분해로 인하여 성능 저하 발생될 우려가 있다. 표면 코팅에서 고상 또는 액상 방식으로 표면에 코팅하는 것은 혼합(mixing), 밀링(milling), 분무 건조(spray drying), 그라인딩(grinding) 등의 방법을 사용할 수 있다.
표면 코팅을 통하여 이종 금속에 의한 표면 보호층이 형성된다. 리튬 : 양극 활물질 내 다른 금속 몰 비가 1 : 1이 되도록 하였을 경우, 활물질 내 리튬이 표면 코팅 물질과 반응하여 리튬 : 양극 활물질 내 다른 금속 몰 비가 1 : 1 미만으로 감소하게 되면 용량 발현을 100% 할 수 없다. 그러므로 앞선 단계 s50에서 부족해진 리튬을 첨가해 리튬 : 양극 활물질 내 다른 금속 몰 비가 1 : 1이 되도록 할 뿐 아니라 양극 활물질 내 다른 금속 대비 리튬이 0.0001 ~ 0.1 몰 비 더 많이 포함되도록 과량을 첨가하는 것이다. 그러면 표면 코팅시 리튬 : 양극 활물질 내 다른 금속 몰 비가 1 : 1이 되면서도 표면 보호층을 형성할 수가 있게 된다.
구체적으로 B, W, B-W 등의 금속 산화물을 활물질에 코팅 후 열처리하면 활물질 표면에 리튬보로옥사이드층을 형성할 수 있고, 이것은 표면 보호층 역할을 한다. 단계 s50에서 0.0001 ~ 0.1 몰 비로 더 많이 첨가한 리튬이 단계 s60에서 B, W, B-W 등의 금속 산화물과 반응하고, 리튬 : 양극 활물질 내 다른 금속 몰 비가 1 : 1 미만으로 감소하지 않아 용량 저하가 없다.
이상 설명한 방법으로 얻게 되는 재사용 가능한 활물질은 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
LiaNixMnyCozMwO2+δ
(상기 화학식 1에서, M은 B, W, Al, Ti 및 Mg로 이루어진 군에서 선택되는 1종 이상을 포함하고, 1<a≤1.1, 0≤x<0.95, 0≤y<0.8, 0≤z<1.0, 0≤w≤0.1, -0.02≤δ≤0.02, x+y+z+w=1이다.)
재사용 가능한 활물질은 F의 함량이 100ppm 이하일 수 있다. 본 발명에 따르면 F의 함량이 감소된 활물질을 회수할 수 있게 되므로, 이를 활물질로 재사용하게 되면 우수한 저항 특성 및 용량 특성을 구현할 수 있다.
이와 같이 본 발명에 따르면, 단순 열처리를 통해 활물질 회수가 가능하다(s30). LiF 혹은 금속 불화물은 세척을 하는 단계 s40에서 제거가 된다. 수용액 상태에서 염기성을 보이는 리튬 화합물 수용액을 사용한 세척 및 건조 단계는 안전하고 저렴하면서도 다른 원소의 손실없이 LiF 혹은 금속 불화물을 제거할 수가 있고, 전이금속 등의 용출을 방지할 뿐 아니라, 공정 중 발생하는 리튬 손실을 보충할 수 있는 장점이 있다. s50의 어닐링 단계도 안전하고 저렴하면서도 결정 구조 회복, 즉 결정성을 개선하여 재사용 활물질의 전지 특성을 회복할 수 있는 장점이 있다.
본 발명에 따라 얻어지는 재사용 가능한 활물질은 프레시한 활물질과 유사한 입도 분포를 가질 수 있어, 입도 분포 조절을 위한 별도의 처리가 필요없을 수 있다. 특히 열처리에 적합한 활물질 회수 장치(100, 100') 사용을 통해, 바인더나 도전재의 탄화로 생기는 탄소 성분이 표면에 남아있지 않기 때문에, 이러한 탄소 성분을 제거하기 위한 단계 등이 필요하지 않다. 따라서, 이상의 도 4의 방법을 통해 얻어진 활물질은 별도의 처리없이 그대로 재사용되어 양극 제조에 이용될 수 있다.
재사용 활물질을 조성 조절없이 그대로 100% 사용하거나 프레시한 활물질에 혼합해서 도전재와 바인더, 용매에 혼합해 슬러리로 제조, 사용할 수도 있다.
다음으로 도 5는 본 발명의 또 다른 실시예에 따른 활물질 재사용 방법의 순서도이다. 도 5에서 도 4와 동일한 단계에는 동일한 참조번호를 부여하고, 반복되는 설명은 생략한다.
도 5를 참조하면, 도 4를 참조하여 설명한 단계 s10부터 단계 s35까지는 동일하게 수행한다. 그런 다음, 회수된 활물질을 세척한다(단계 s40'). 세척하는 방법, 세척시 사용하는 용액 등은 도 4에서의 단계 s40과 동일하다.
여기에서는, 세척한 활물질을 건조하지 않고 바로 리튬 전구체 용액에 혼합하고 분무 건조(spray dry)한다(단계 s45).
앞의 단계 s30, s40'을 거치는 동안 활물질 안의 리튬 손실이 발생할 수 있다. 단계 s45에서는 그러한 리튬 손실량을 보다 간단하고 확실하게 보충해 준다.
리튬 전구체 용액은 수용액 또는 유기 용매에 용해가 가능한 리튬 화합물을 사용하며, 특히 바람직하게 단계 s45의 리튬 전구체는 LiOH, Li2CO3, LiNO3 및 Li2O 중 어느 하나 이상일 수 있다.
분무 건조하는 단계의 온도는 80℃ 이상임이 바람직한데, 80℃ 이하일 경우 용액이 완전히 건조되지 않는 문제가 발생할 수 있기 때문이다. 더 바람직하게, 분무 건조하는 단계의 온도는 100 ~ 300℃로 할 수 있다.
단계 s40'에서의 세척에 의한 표면 개질 공정 후 오븐 등에서 바로 건조를 하게 되면, 활물질 입자들이 뭉쳐 덩어리가 될 수 있다. 이렇게 뭉친 입자들에 리튬 전구체를 혼합하려면 덩어리에 대한 그라인딩이 필요할 수 있고, 고상의 리튬 전구체를 혼합하려 하면 물질 혼합 시 분말 혼합(powder mixing) 또는 밀링 공정을 해야 하는데, 그러할 경우에는 공정이 복잡하고 연속 공정이 어렵다. 또한 NCM계 양극 활물질의 경우에는 수분이 있는 상태에서 리튬 전구체와 분말 혼합, 밀링 등을 진행하면 양극 활물질이 수분을 먹어 뭉침 현상이 심하게 발생한다. 따라서, 본 실시예에서는 단계 s40'에서의 세척 후 건조 없이 활물질을 리튬 전구체 용액에 혼합하고 분산시켜 분무 건조할 것을 제안한다. 그러면 건조로 인한 입자 뭉침, 고상 리튬 전구체를 혼합하는 번거로움을 해소할 수 있다. 즉, 분무 건조에 의해서는 덩어리가 아닌 분말 형태로 생산되는 장점을 가질 수 있다.
분무 건조시, 분무 직후 리튬 전구체 용액이 건조되면서 리튬 전구체 성분이 활물질 표면에 코팅 또는 접촉되는데, 이 때 용매인 리튬 전구체 용액 건조시 모세관 힘(capillary force)에 의해 입자들이 뭉쳐 입자 조절된다는 장점도 가진다. 전극으로 만들어진 양극 스크랩의 경우 압연 공정에 의해 표면의 입자들이 눌리고 금이 가거나 깨질 수가 있다. 특히 LCO에 비하여 NCM계 활물질은 전극 형성시 압연에 의한 입자 쪼개짐이 커, 프레시한 활물질에 비하여 회수한 활물질 안에서는 작은 입자들을 많이 포함하고 있게 되어 입자가 불균일한 문제가 있다.
특히 NCM계 활물질은 수십~수백 nm 크기를 가지는 1차 입자들이 모여 2차 입자화된 대립자를 포함하는 것을 사용하고 있는데, 이러한 활물질로 제조한 양극은 전극내 기공도(porosity)를 조절하기 위해 압연하는 과정에서 2차 입자들이 쪼개져 1차 입자화 또는 그보다는 크기가 크지만 대립자보다는 작은 소립자화되기도 한다. 압연에 의해 깨진 입자들이 많을수록 활물질의 비표면적이 증가하기 때문에, 압연된 전극으로부터 얻게 되는 재사용 활물질의 경우에는 재사용시 슬러리 물성 및 전극 접착력, 전극 성능에 영향을 줄 수 있는 문제가 발생 가능하다.
활물질이 재사용 가능한 수준이 되려면 그 입도 분포도 프레시한 활물질과 달라지지 않아야 바람직하다. 본 실시예에서 제안하는 분무 건조는 압연시에 쪼개져서 생긴 작은 입자들을 뭉쳐 큰 입자들로 회복시킬 수 있기 때문에 입자 불균일을 해소하고 입도에 있어서도 프레시한 활물질의 초기 특성에 가깝게 되도록 만들 수 있다. 특히 이전 공정의 압연에서 입자 깨짐이 심한 NCM계 활물질에서 그 효과가 탁월하다. 그러므로, 본 발명에 따른 방법으로 회수하는 활물질을 재사용한 전지 특성이 프레시한 활물질을 사용한 전지 특성과 유사한 수준이 될 것으로 기대할 수 있다.
이상 설명한 바와 같이, 분무 건조 단계(s45)를 통하여, 활물질 표면에 리튬 전구체가 코팅이 되며 활물질은 입자 조절되어 얻어진다. 리튬 전구체 첨가와 입자화 그리고 건조가 하나의 단계에서 이루어지므로 공정 단순화의 효과가 있다. 또한 분무 건조가 활물질을 단순 수득하기 위한 수단이 아니라, 이미 앞서 사용되어 압연 등으로 깨진 입자들을 다시 입자화하기 위한 수단이라는 점에서 특별함이 있다.
또한, 일정 농도의 리튬 전구체 용액에 단계 s40'에서 세척된 활물질 입자들을 혼합해 분산만 시켜주면 단계 s45가 진행되므로 단계 s40'의 세척과 단계 s45의 분무 건조는 연속 공정이 가능한 이점도 있다. 이와 같이 본 실시예에 따른 활물질 재사용 방법에서는 공정의 연속성이 있으며 리튬 전구체 코팅, 건조 및 입자화(입자 재조절)가 하나의 단계에서 동시에 진행되는 장점이 있다.
여기서도 리튬 전구체는 도 4를 참조하여 설명한 단계 s50에서 첨가하는 양만큼, 프레시한 활물질 안의 리튬과 다른 금속의 비율 대비해서 손실된 리튬 비율 만큼을 첨가할 수 있는 양으로 첨가하도록 한다.
다음으로, 분무 건조한 활물질을 어닐링한다(단계 s50'). 단계 s45에서 활물질에 리튬 전구체가 추가되므로 본 단계에서는 추가적인 리튬 전구체 첨가없이 분무 건조 후 어닐링을 바로 실시할 수 있다. 단계 s50'의 어닐링 효과는 도 4를 참조하여 설명한 단계 s50에서와 동일하다. 이후, 필요에 따라 단계 s60의 표면 코팅을 더 수행할 수 있다.
한편, 활물질 회수 장치(100, 100')를 이용한 다른 양극 활물질 재사용 방법도 가능하다. 예를 들어, 도 3을 참조하여 설명한 단계 s30의 열처리 시간을 1시간 이내, 바람직하게는 30분 이내로 하는 것이다. 열처리 시간이 길어질수록 바인더의 열분해가 일어나는 시간이 길어지겠으나, 일정 시간 이상이 되면 열분해 효과에 차이가 없고, 오히려 전지 성능에 유해한 LiF와 같은 반응생성물이 많이 생성되어 좋지 않다. 그러므로 열처리 시간을 1시간 이내로, 바람직하게는 30분 이내로 제한하여, 전지 성능에 악영향을 미칠 수 있는 원치 않는 이물질의 발생을 최소로 하는 방법이 가능하다.
이렇게 하는 경우에는 단계 s30 이후 도 3의 단계 s35 수행 후 단계 s40없이 바로 단계 s50과 s60을 수행할 수 있다. 즉, 열처리를 짧게 한 결과, 세척 단계를 생략할 수 있다. 이와 같이 본 발명의 또 다른 실시예에 따르면, 공기 중에서의 열처리(단계 s30)와 리튬 전구체 첨가 후 어닐링(단계 s40)이라는 두 단계만으로도 재사용 가능한 활물질을 얻을 수 있다. 특히 열처리는 매우 짧은 시간, 바람직하게 30분 이내로 실시하기 때문에 전지 특성에 악영향을 끼치는 반응생성물을 억제하여, 반응생성물 제거를 위한 수세와 같은 추가적인 단계를 필요로 하지 않는다는 것이 장점이다.
다른 한편, 활물질 회수 장치(100, 100')를 이용한 또 다른 양극 활물질 재사용 방법도 가능하다. 예를 들어, 도 3을 참조하여 설명한 단계 s40의 세척 시간을 1시간 이내, 바람직하게는 10분 이내로 짧게 하는 것이다. 세척이 길게 진행되면 리튬 과다 용출로 인해 용량 저하가 발생할 우려가 있다. 그러므로 세척 시간을 제한하여 매우 짧게 수행하여 리튬의 용출을 최소화하도록 하는 방법이 가능하다.
이렇게 하는 경우에는 단계 s40에서 세척액으로 사용하는 리튬 전구체 수용액만으로도 리튬 손실 보충이 충분하다. 그러므로, 세척된 활물질에 추가적인 리튬 전구체 첨가없이 어닐링을 할 수 있다. 즉, 도 3의 단계 s40의 세척 시간을 매우 짧게 하면 도 5의 단계 s50'와 같은 어닐링을 바로 수행할 수 있는 것이다.
이와 같이 본 발명에 따르면, 양극 활물질을 재사용 가능하게 얻는 다양한 방법들이 가능하며, 집전체와 활물질층 분리에 최적화된 본 발명의 활물질 회수 장치를 이용함으로써 더욱 효율적으로 이러한 방법이 수행될 수 있다.
이하에서는 본 발명의 실험예에 관해 상세히 설명한다.
<실험예 1>
아래 방법으로 샘플 1, 2를 설정해, 각기 방법으로 양극 스크랩을 열처리한 다음 활물질 회수율을 평가하였다.
샘플 1:
양극 스크랩을 퍼니스 안에 단순히 적층한 후 열처리하였다. 양극 스크랩을 퍼니스 안에서 고정형으로 둔 경우이다.
도 6은 샘플 1에서 양극 스크랩의 위치에 따른 열처리 결과 차이를 보여주는 사진이다.
도 6의 (a)는 적층된 양극 스크랩 중 표면에 위치했던 양극 스크랩의 사진이다. 이 양극 스크랩의 경우에는 외부에 노출이 됨으로써 공기와의 접촉으로 바인더 및 도전재가 열분해되어 집전체에서 활물질이 분리됨을 관찰하였지만 열분해가 덜 된 곳, 즉 충분한 공기 및 산소가 공급되지 못한 불완전 연소로 인하여 활물질층이 집전체로부터 분리되지 못하고 오히려 더 강하게 탄화되어 집전체에 부착되어 있는 곳도 관찰이 되었다.
도 6의 (b)는 적층된 양극 스크랩 중 내부에 위치했던 양극 스크랩의 사진이다. 이 양극 스크랩의 경우에는 위 아래에 다른 양극 스크랩과 닿아 있어서 공기와의 접촉이 부족했던 것으로 평가된다. 열분해가 덜 되고 탄화되어 집전체에 부착되어 있는 곳이 훨씬 많이 관찰이 되었다.
이와 같이, 스택 형태로 양극 스크랩을 쌓아 고정형으로 열처리를 할 경우에는 불완전 연소로 인하여 활물질이 집전체에서 떨어지지 않아 회수율이 매우 좋지 않음을 확인하였다. 100g 양극 스크랩 열처리시 40g 정도는 미회수되는 결과를 얻었다.
샘플 2:
양극 스크랩을 퍼니스 안에 세워 샘플 1보다는 공기 접촉이 더 되도록 배치한 후 열처리하였다. 양극 스크랩을 퍼니스 안에서 고정형으로 둔 경우이지만 양극 스크랩간에 거리를 확보하여 공기와 접촉되는 면을 최대로 한 경우이다.
도 7은 샘플 2에서 실험 과정에 따른 시간별 상태를 나타내는 사진이다.
도 7의 (a)는 슈레딩된 양극 스크랩을 도가니 안에 세워서 적재한 상태의 사진이다. 도 7의 (b)는 이러한 양극 스크랩을 퍼니스 안에 넣어 공기 중 550℃에서 30분간 열처리한 후의 상태를 나타내는 사진이다. 도 7의 (c)는 열처리된 양극 스크랩을 도가니로부터 꺼낸 후의 사진이다. 이러한 양극 스크랩 표면에서 분말 형태의 활물질을 회수한 상태가 도 7의 (d)이다.
샘플 2는 샘플 1과 달리, 집전체로부터 활물질이 대부분 탈리되어 회수되는 결과를 얻었다. 회수율은 95% 이상이었다. 이를 통해, 산이나 NMP를 이용하지 않고 공기 중 열처리만으로도 활물질을 의미있는 양으로 회수할 수 있음을 확인하였다. 특히, 공기와의 접촉 면적을 더 증가시킬 수 있다면 집전체에 일부(5%) 남아 있는 활물질까지 탈리시킬 수 있어 활물질의 회수율을 더욱 증가시킬 수 있음에 착안하여 본 발명의 활물질 회수 장치를 창안하게 되었다. 본 발명의 활물질 회수 장치는 비교예 2에 비하여 양극 스크랩을 회전시키는 이동형이면서 공기와의 접촉이 더욱 원활해지므로 회수율은 95%보다 훨씬 높아진다.
<실험예 2>
아래 실시예 및 비교예와 같은 방법으로 각기 양극 활물질을 준비해, 전기화학 성능을 평가하였다.
실시예 1:
도 4를 참조하여 상술한 바와 같은 본 발명의 활물질 재사용 방법에 따라 재사용 활물질을 수거하였다. NCM계 리튬 복합 전이금속 산화물을 활물질을 갖는 양극판 타발 후 버려지는 양극 스크랩을 준비하여 단계 s30의 열처리는 550℃에서 30분간 실시하였다. 단계 s40의 세척은 LiOH를 이용해 10분간 실시하였다. 단계 s50에서는 원재료 활물질 안의 리튬과 다른 금속의 몰 비(ICP 분석)를 기준으로 하여, 공정 중 리튬을 0.09 몰 비로 더 첨가할 수 있는 양의 리튬 전구체(Li2CO3)를 투입하여 750℃에서 15시간동안 어닐링하였다. 이론상 프레시한 활물질의 경우 리튬 : 다른 금속 몰 비가 1 : 1이지만 이를 확인하는 활물질 회수 장치인 ICP 활물질 회수 장치의 평균 오차가 ±0.05, 바람직하게는 ±0.02 정도이기 때문에 ICP 측정을 통한 원재료 활물질의 리튬 : 다른 금속 몰 비가 1 ± 0.05 : 1일 수 있다. 본 실험에서는 ICP 분석을 통해 그 분석 비율을 기준으로 리튬 전구체를 첨가하였다.
실시예 2:
실시예 1에 추가하여, 도 4의 선택적인 단계 s60의 활물질 표면 보호층 회복 공정도 진행하였다.
비교예 1:
재사용 활물질이 아닌 프레시한 NCM계 리튬 복합 전이금속 산화물을 사용하였다.
비교예 2:
상술한 바와 같은 본 발명의 활물질 재사용 방법 중 단계 s30의 열처리만 실시해 바인더, 도전재 제거 및 Al 집전체를 분리하고 NCM계 리튬 복합 전이금속 산화물 활물질을 수거하였다. 단계 s30은 실시예 1에서와 동일한 조건으로 실시하였다. 본 발명의 활물질 재사용 방법 중 단계 s40의 표면 개질과 단계 s50의 결정구조 회복 및 단계 s60의 표면 코팅 공정은 실시하지 않았다.
비교예 3:
비교예 2에서 더 나아가 상술한 바와 같은 본 발명의 활물질 재사용 방법 중 단계 s40의 표면개질까지는 실시해 활물질을 수거하였다. 즉, 표면개질은 하되 본 발명의 활물질 재사용 방법 중 단계 s50의 결정구조 회복과 단계 s60의 표면 코팅 공정은 실시하지 않았다. 단계 s40은 실시예 1에서와 동일한 조건으로 실시하였다.
비교예 4:
비교예 2에서 더 나아가 상술한 바와 같은 본 발명의 활물질 재사용 방법 중 단계 s40의 표면개질은 실시하지 않고 단계 s50의 결정구조 회복까지만 실시해 NCM계 리튬 복합 전이금속 산화물 활물질을 수거하였다. 결정구조 회복을 위한 어닐링에서는 실시예 1에서와 달리 리튬 전구체를 첨가하지 않고 실시하였다.
비교예 5:
실시예 1과 동일하게 단계 s30, s40 및 s50까지만 진행하였다. 단, 결정구조 회복을 위한 어닐링에서는 실시예 1에와 달리 리튬 전구체를 첨가하지 않고 실시하였다.
상기 실시예 및 비교예들에서 각각 회수하거나 준비한 양극 활물질에 대해 ICP 분석을 실시하여, LiF 잔존량, 활물질 내 리튬과 다른 금속의 비율, 및 B나 W와 같은 특정 원소의 양도 분석하였다.
그리고, 상기 실시예 1, 2 및 비교예 1 내지 5에서 각각 회수하거나 준비한 양극 활물질을 96.25wt%, 도전재인 카본블랙은 1.5wt%, 바인더인 PVdF는 2.25wt%로 칭량하고 NMP에 혼합해 슬러리를 만들어 양극을 제조한 후 셀(Coin Half Cell, CHC)을 제조하고 전기화학 성능을 평가하였다.
비교예 2와 비교예 3에서 회수된 활물질 내 LiF 잔존량을 알기 위하여 ICP로 F를 검출하여 분석하였다. 그 결과를 하기 표 1에 나타내었다.
[표 1]
Figure PCTKR2021008377-appb-img-000001
ND는 30 ppm 이하 측정된 것을 의미한다. 상기 표 1을 참조하면, 회수된 양극 활물질 내 F 함량이 비교예 2에 비하여 비교예 3에서 현저히 저하된 것을 확인할 수 있다. 즉, 세척에 의해 LiF가 리튬 화합물 수용액에 완전히 녹아, ICP로 검출이 되지 않을 정도로까지 제거된 것을 확인할 수 있다. 따라서, 단계 s40에 의해 LiF 제거가 탁월하다는 것을 알 수 있다.
본 발명의 단계 s30, s40을 거치는 동안 양극 활물질 내 리튬 성분의 변화가 있는지를 보기 위하여 ICP로 활물질 내 리튬/다른 금속의 비율을 분석하였다. 그 결과를 하기 표 2에 나타내었다.
[표 2]
Figure PCTKR2021008377-appb-img-000002
표 2를 참조하면, s30의 열처리를 거치면서 비교예 2는 비교예 1에 비해 대략 0.2~0.5 정도, S40의 세척과 건조를 거치면서 비교예 3은 비교예 2에 비해 대략 0.2~0.5 정도로 리튬/다른 금속의 비율이 감소함을 확인할 수 있다. NCM계 리튬 복합 전이금속 산화물은 비교적 입자 비표면적이 크고 스피넬 구조로의 변화로 인해 다른 금속 대비 리튬 비율의 감소폭이 큰 것으로 보인다. 따라서, 부족해지는 리튬을 보충해야만 한다는 것을 알 수 있다.
표 2는 ICP 분석으로 측정한 값으로서, 앞서 언급한 바와 같이 ICP 분석은 ±0.02 정도의 오차값을 가진다. 그러므로 프레시한 활물질인 비교예 1에서도 리튬과 다른 금속간 비율이 1보다 작을 수 있다. 따라서, 손실된 리튬을 보충하기 위해 첨가하는 리튬 전구체의 양은 활물질층에 사용된 원재료 활물질(즉, 프레시한 활물질) 안의 리튬과 다른 금속의 비율(ICP 분석한 몰 비) 기준으로 감소된 만큼의 리튬 함량을 첨가해 주도록 한다.
도 8과 도 9는 실시예 1, 2 및 비교예 1 내지 5 활물질들을 사용하여 셀 평가를 진행한 결과이다. 서로 다른 전류에서, 사이클 반복 횟수에 따른 용량을 평가해 레이트 성능(rate performance)을 살펴 보았다. 평가에 사용한 활물질 회수 장치는 실험실에서 잘 사용하는 일반적인 충방전 실험장치이다. 측정 장치나 방법에 따른 편차는 없다. 도 8 및 도 9의 그래프에서 가로축은 사이클(cycle) 횟수이고 세로축은 용량(capacity)이다.
전압은 3~4.3V 조건으로 하였고, 초기 포메이션(formation) 충방전은 0.1C/0.1C 진행하였다. 셀을 구성하는 전해액은 카보네이트(carbonate)계로 Ethylene carbonate(EC):Ethyl methyl carbonate(EMC)=3:7이면서 첨가제가 일부 들어가 있는 것을 사용하였다.
먼저 도 8을 참조하면, 탈리를 위한 1차 열처리(550℃/30분)를 한 후 표면 개질 전 비교예 2와 표면 개질 후 비교예 3을 보면 표면 개질을 해 준 비교예 3에서 전극 용량이 급격히 감소되는 결과를 보인다. 이는 앞서 언급한 바와 같이 NCM계 리튬 복합 전이금속 산화물 내의 Ni이 수분에 의해 암염화되어 용량이 감소되었기 때문이다.
그러나, 표면 개질을 하지 않고 어닐링(750℃/15 시간)을 할 경우, 이는 비교예 4에 해당하는데, 비교예 2와 비교시 용량 개선 효과가 거의 없다. 이것은 표면 개질을 하지 않을 경우 활물질 표면에 남아 있는 LiF 때문이다. 이것은 앞선 표 1에서 세척을 실시해야 LiF가 만족할만한 수준으로 제거된다는 것으로 보여준 바 있다.
1차 열처리 후 표면 개질도 하고 어닐링도 하게 되면, 비교예 5에서 보는 바와 같이 용량이 증가된다. 이것은 비록 표면 개질 단계 후에는 비교예 3에서와 같이 용량이 감소가 되나, 표면 개질로 LiF가 제거된 후에 어닐링을 통해 Ni 암염이 감소되고 그 구조가 육방정으로 회복되기 때문이다.
다음으로 도 9를 참조하면, 비교예 5에 비해서 실시예 1의 용량 개선이 확인된다. 실시예 1은 비교예 5 대비 어닐링시 리튬 전구체를 첨가한 것이다. 이와 같이 리튬 전구체를 첨가해 줌으로써 앞선 단계들에서 손실된 리튬을 보충해 용량이 개선됨을 알 수 있다. 열처리와 세척을 거치면서 리튬이 손실됨은 표 2를 참조하여 설명한 바 있다.
리튬 화합물은 ICP 분석(표 2) 결과를 토대로 기존 양극 활물질 내 리튬 함량 대비 손실된 비율 만큼을 첨가하여 주었으며 그 결과 0.09~0.1 몰 비를 첨가할 경우 비교예 1과 동등 수준의 용량 개선 효과를 보인다는 것을 추가 실험으로 확인하였다.
이와 같이 본 발명에 따르면 직접 재사용할 수 있는 수준으로 양극 스크랩으로부터 활물질을 회수할 수 있다. NMP, DMC, 아세톤, 메탄올과 같은 유독 및 폭발 위험의 용매를 사용하지도 않아 안전하고, 열처리, 세척 및 건조, 어닐링 등 간단한고 안전한 방법을 이용하므로 대량 생산에도 적합하다.
도 10 및 도 11은 실시예 1 및 비교예 1 내지 3, 5 활물질들의 SEM(Scanning Electron Microscope) 사진들이다. SEM 사진은 실험실에서 잘 사용하는 일반적인 SEM 장치로 촬영하였다. 예를 들어 HITACHI사의 s-4200을 사용하여 촬영할 수 있다. 하지만 측정 장치나 방법에 따른 편차가 없다.
도 10의 (a)는 비교예 1의 프레시한 활물질의 SEM 사진이고, (b)는 (a)의 확대 사진이다. (c)는 이러한 프레시한 활물질을 가지고 제조한 양극 스크랩의 표면이고 (d)는 (c)의 확대 사진이다. 프레시한 활물질의 경우 입자 깨짐 현상이 없으나, 전극으로 만들어진 양극 스크랩의 경우 압연 공정에 의해 표면의 입자들이 눌리고 깨지는 현상 발생함을 보여준다.
도 10의 (e)는 비교예 2의 SEM 사진이고 (f)는 (e)의 확대 사진이다. (e), (f) 참조시 회수한 활물질에서 바인더나 도전재가 관찰되지 않는다. 즉, 고온 열처리 과정에서 이들이 제거되었음을 확인할 수 있다. 따라서, 공기 중에서의 열처리만으로도 집전체로부터 활물질이 분리되고 활물질 표면에 바인더나 도전재가 거의 남아있지 않다는 것을 알 수 있다.
도 11의 (a)는 비교예 3의 SEM 사진이고 (b)는 (a)의 확대 사진이다. 양극 스크랩의 사진인 도 10의 (c), (d)와 비교해 보면, 공정을 거치면서 입자들이 풀어진 것을 볼 수 있다.
도 11의 (c)는 비교예 5의 SEM 사진이고 (d)는 (c)의 확대 사진이다. (e)는 실시예 1의 SEM 사진이고 (f)는 (e)의 확대 사진이다. 앞선 단계에서 풀어져 있던 입자들이 어닐링을 통해 뭉치는 것을 볼 수 있다. 그리고, 도 11의 (f)와 도 10의 (a)를 비교하면, 실시예 1의 재사용 활물질이 프레시한 활물질과 동일한 형상을 보이고 있음을 확인할 수 있다.
상기 실시예 및 비교예들에서 각각 회수하거나 준비한 양극 활물질에 대해 ICP 분석을 실시하여, 특정 원소의 양도 분석하였다. 그 결과를 하기 표 3에 나타내었다.
[표 3]
Figure PCTKR2021008377-appb-img-000003
본 실험에 사용한 프레시한 활물질은 비교예 1에서 보는 바와 같이 B와 W를 더 포함하고 있는 것이었다. 비교예 2를 보면, 열처리를 거치면서 B와 W 함량이 감소하고, 나머지 결과들을 보면 이후 공정들에서 B는 거의 모두 제거가 됨을 알 수 있다. W의 경우에는 비교예 3과 같이 세척을 통한 표면 개질 과정에서 많은 양이 제거되는 것을 알 수 있다.
그러므로, 최초에 사용한 활물질의 종류에 따라서는 공정 중 일부 특정 원소가 손실이 될 수 있고, 특히 세척을 통한 표면 개질 과정에서 완전히 제거되거나 소량만 남는 경우가 생길 수도 있기 때문에 실시예 1과 같이 어닐링 단계까지만 수행해서는 완전한 특성 회복이 어려운 경우도 존재할 수 있다. 그러한 경우에는 본 발명에서 제안하는 바와 같이 추가의 표면 코팅 단계를 실시하는 것이 바람직하다. 표면 코팅 단계는 본 실험예의 경우 B와 W를 코팅하는 것이 된다. 표면 코팅은 양극 활물질의 표면 보호층으로 작용할 수 있다. 표면 코팅은 부족해진 특정 원소를 보충해주는 동시에, 프레시한 활물질에 있던 표면 보호층을 재건해주는 공정이 될 수도 있다. 본 실험에 사용한 프레시한 활물질의 경우 표면 보호층이 B-W로 되어 있는 것으로, 공정 중 리튬 손실량은 활물질 자체의 리튬 대비 다른 금속 비율 1 : 1이 아닌 (활물질 자체 리튬 + 표면 보호층 형성 리튬) : 다른 금속 비율로 그 의미가 해석되어진다. 그러므로 위 실험에서 비교예 3에서와 같이 손실된 0.09 몰비는 양극 활물질 내 리튬과 표면 보호층 형성용 리튬이 합쳐진 리튬 양으로 해석될 수 있고, 실시예들에서는 그 만큼의 리튬을 보충해 줄 수 있는 리튬 전구체를 추가한 것이다.
표면 코팅 단계는 고상 또는 액상 반응 후 열처리 공정을 거치게 된다. 재사용 가능한 활물질이 앞서 언급한 화학식 1로 표시되는 경우, 화학식 1에서의 M이 이러한 표면 코팅을 통해 보충이 되는 것으로 생각할 수 있다.
표면 코팅층이 B, B-W, B-Ti, B-W-Ti를 포함하게 하는 경우, 표면 코팅 열처리는 200~500℃의 온도에서 이루어질 수 있으며, 그 외 성분들 또한 100 ~ 1200℃ 이내의 온도에서 금속 성분, 탄소 성분, 유기금속 성분들을 가지고 코팅할 수 있다.
이와 같이 본 발명에 의하면, 단순하고, 친환경적이고, 경제적인 방법을 이용하여 양극 스크랩을 재사용할 수 있고, 이렇게 제조된 NCM계 리튬 복합 전이금속 산화물 양극 활물질을 그대로 재사용하여 리튬 이차전지를 제조하더라도 전지의 성능에 문제가 없다.
<실험예 3>
아래 실시예 및 비교예와 같은 방법으로 각기 양극 활물질을 더 준비해, 전기화학 성능을 평가하였다.
실시예 3:
실시예 1과 동일하다. 단 어닐링 시간은 실시예 1의 15시간보다 짧은 5시간으로 하였다.
실시예 4:
실시예 4는 도 5를 참조하여 설명한 방법에 따라 제조한 재사용 활물질이다. 실시예 1과 같은 단계 s30까지 수행한 후 단계 s40', s45 및 s50'을 수행하였다. 단계 s40'에서 세척 후 건조 없이 (수세 전극을) 0.1mol LiOH 분말과 함께 수용액(분말 : 수용액 = 1 : 50 비율로 혼합)에 혼합하여 분무 건조 장비로 입자화해 단계 s45를 수행하였다. 단계 s50'은 실시예 3처럼 750℃에서 5시간 실시하였다.
단계 s45 수행시, 수세 전극과 0.1mol LiOH 혼합 수용액은 전극 침전을 막기 위해 교반을 해 주었고 분무 건조 장비에서 분무 노즐을 이용해 가열 용기로 분무를 할 때의 분위기 온도(input 온도)는 180℃, 가열 용기로부터 채집 용기로 나올 때의 분위기 온도(output 온도)는 100℃ 이상을 유지하도록 조절하였다.
도 12는 실시예 3, 4 및 비교예 1, 2 활물질의 입도 분포 그래프이다. 입도 분포는 실험실에서 잘 사용하는 일반적인 입도 분석기로 얻을 수 있다. 예를 들어 Horiba LA 950V2 입도분석기를 이용하여 측정할 수 있다. 하지만 측정 장치나 방법에 따른 편차가 없다. 도 12에서 가로축은 입자의 크기(particle size, um)이고 세로축은 부피(volume) %이다.
비교예 2의 경우 전극 공정에서 가압에 의하여 비교예 1의 활물질들이 서브-마이크론 크기(1 마이크로미터 미만)의 입자들로 쪼개지고 미분화되는 결과를 보여주고 있다. 이와 같이 비교예 2는 비교예 1과 입도 분포가 매우 상이하다.
실시예 3과 실시예 4는 어닐링까지 진행하였기 때문에 어닐링시에는 앞서 추가한 리튬 전구체가 녹으면서 입자들끼리의 뭉침 현상이 유도되는 바, 비교예 2에서 보이는 미분화된 입자들이 많이 없어진 것을 볼 수 있다. 특히 본 발명에 따른 실시예 4의 경우 실시예 3에 비하여 작은 입자들이 감소하고 큰 입자들이 약간 증가하는 경향을 보이나 입도 분포에서 큰 차이를 보이지 않고 있으며, 작은 크기의 입자가 더 적은 것으로부터는 실시예 3에 비해 실시예 4가 더 비교예 1의 입도 분포와 유사하다고 할 수 있다.
이와 같이 본 발명의 다른 실시예에서 제안하는 분무 건조 이용시(실시예 4), 고상으로 리튬 전구체를 혼합하는 경우(실시예 3)에 비해 입도 분포가 프레시한 활물질(비교예 1)에 더 유사해지며 특히 분무 건조 이전의 세척 단계와 연속 공정이 가능한 장점을 충분히 가질 수 있음을 확인하였다.
도 13은 실시예 3, 4 및 비교예 1 활물질을 사용하여 셀 평가를 진행한 결과이고, 표 4는 결과값을 정리한 것이다.
[표 4]
Figure PCTKR2021008377-appb-img-000004
도 13 및 표 4 참조시, 실시예 3과 실시예 4를 이용한 전극 모두 비교예 1을 이용한 전극과 유사 수준의 결과를 보였다. 초기 포메이션 용량은 비교예 1이 높고 씨-레이트(c-rate) 용량에서는 실시예 3 및 실시예 4가 약간 높은 결과를 보이지만 서로 유사한 수준이라고 판단된다. 이와 같이 본 발명 실시예들에 따르면, 프레시한 활물질(비교예 1)과 유사한 수준의 재사용 활물질을 얻을 수 있다.
<실험예 4>
아래 실시예 및 비교예와 같은 방법으로 각기 양극 활물질을 더 준비해, 전기화학 성능을 평가하였다.
실시예 5:
상술한 바와 같은 본 발명의 또 다른 활물질 재사용 방법에 따라 재사용 활물질을 수거하였다. 양극판 타발 후 버려지는 LCO 양극 스크랩을 준비하여 단계 s30의 열처리는 온도 상승 속도 5℃/min로 공기 중 600℃에서 30분간 실시하였다. 단계 s40이나 s40'와 같은 세척없이 단계 s50을 수행하였다. 재사용 LCO의 리튬 양 대비 과량 2 mol% 리튬 양의 리튬 전구체(Li2CO3)를 투입하여 공기 중 750℃에서 15시간동안 어닐링하였다.
비교예 6: 재사용 활물질이 아닌 프레시한 LCO를 사용하였다.
비교예 7: 상술한 바와 같은 본 발명의 활물질 재사용 방법 중 단계 s30의 열처리만 실시해 바인더, 도전재 제거 및 Al 집전체를 분리하고 LCO 활물질을 수거하였다. 단계 s30은 실시예 5에서와 동일한 조건으로 실시하였다.
비교예 8: 열처리 시간을 1시간으로 한 것만 제외하고는 상기 비교예 7과동일한 방법으로 LCO 활물질을 수거하였다.
비교예 9: 열처리 시간을 5시간으로 한 것만 제외하고는 상기 비교예 8과 동일한 방법으로 LCO 활물질을 수거하였다.
도 14는 실시예 5 및 비교예 6 내지 9 활물질들을 사용하여 셀 평가를 진행한 결과이다.
도 14를 참조하면, 열처리 시간이 5시간으로 가장 긴 비교예 9에서 가장 낮은 레이트 성능을 확인할 수 있다. 이는 단계 s30과 같은 고온 열처리 과정을 장시간으로 하면 바인더와 도전재가 CO2와 H2O로 제거되면서 양극 활물질 표면의 리튬과 반응하여 Li2CO3가 형성되고 바인더에 존재하던 F와 반응하여 LiF가 형성되기 때문이다. 뿐만 아니라 LCO 표면에서 열분해로 생성되는 Co3O4로 인해 낮은 전지 특성을 보이는 것으로 판단된다.
비교예 8은 열처리 시간이 1시간으로 비교예 9보다 짧아 초기 사이클 3 정도까지는 레이트 성능이 비교예 9보다는 좋지만 사이클 수가 커지면서는 레이트 성능이 나빠지는 것을 볼 수 있다.
비교예 7은 열처리 시간이 30분으로, 비교예 8 및 9에 비해서 짧다. 비교예 7의 경우 비교예 8 및 9보다는 레이트 성능이 우수하다. 따라서, 열처리 시간이 30분 이내인 것이 레이트 성능면에서 바람직함을 확인할 수 있고, 이는 LiF와 같은 반응생성물의 발생을 최소로 하였기 때문이다.
실시예 5는 비교예 7에 비해 리튬 전구체를 첨가하여 어닐링까지 실시한 것으로, 활물질을 회수하는 과정 중에서 손실된 리튬을 보충하고 결정성을 회복하기 위하여 Li2CO3를 첨가하여 어닐링한 것이다. 실시예 5에 따르면, 공정 중 발생하는 리튬의 부족량을 보충할 수 있을 뿐만 아니라 재생 중에 활물질 표면에 나타날 수 있는 변형구조 및 Co3O4를 다시 LCO 결정구조로 환원시켜, 비교예 6의 프레시한 LCO 활물질 초기 특성보다 개선된 결과를 보이는 것으로 확인된다. 이와 같이 본 발명에 따르면 직접 재사용할 수 있는 수준으로 양극 스크랩으로부터 활물질을 회수할 수 있다.
도 15는 실시예 5 및 비교예 6, 7, 9 활물질들의 XRD 패턴이다. XRD 패턴에서 가로축은 2θ(Theta)(degree, 도)이고, 세로축은 세기(intensity)이다. XRD 패턴은 실험실에서 잘 사용하는 일반적인 X선 회절 장치를 이용해 얻을 수 있었다. 예를 들어 Rigaku사의 X-선 회절분석기 XG-2100를 사용하여 분석할 수 있다. 하지만 장치나 방법에 따른 편차가 없다.
도 15의 (a)는 비교예 6, 즉 프레시한 LCO의 XRD 패턴이다. (b)는 비교예 7 활물질, (c)는 비교예 9 활물질의 XRD 패턴이다. (b), (c)를 (a)와 비교해 보면, Co3O4 상이 확인된다. 즉, 단계 s30의 열처리에서 LCO의 표면에 Co3O4가 생성이 된다는 것을 확인할 수 있다.
도 15의 (d)는 실시예 5 활물질의 XRD 패턴이다. (b), (c)와 (d)를 비교하면, 단계 s50의 어닐링을 통해 Co3O4 상은 없어지고 결정구조가 LCO로 회복되었음을 알 수 있다. XRD 패턴에서 회절 피크의 위치를 보면 (d)의 결정구조는 (a)의 결정구조와 유사하다. 따라서, 본 발명의 실시예가 비교예 6의 프레시한 활물질 수준으로 회복된 것을 확인할 수 있다. 이와 같이 본 발명에 따르면 열처리 과정에서 생성된 Co3O4를 어닐링 과정에서 제거할 수 있고, 직접 재사용할 수 있는 수준으로 양극 스크랩으로부터 활물질을 회수할 수 있다.
도 16은 실시예 5 및 비교예 6 활물질의 SEM 사진이다.
도 16의 (a)는 비교예 6의 프레시한 LCO의 SEM 사진이고, (b)는 실시예 5의 재사용 활물질의 SEM 사진이다. 프레시한 LCO와 비교했을 때 실시예 5의 회수된 LCO도 동일한 형상을 보이고 있음을 확인할 수 있다. 뿐만 아니라, LCO만 관찰이 되고 있으므로 바인더 및 도전재가 고온 열처리 과정에서 제거되었음이 확인된다. 따라서, 공기 중에서의 열처리만으로도 집전체로부터 활물질이 분리되고 활물질 표면에 바인더나 도전재가 거의 남아있지 않다는 것을 알 수 있다. 이와 같이 본 발명에 따르면 복잡한 방법이나 유해한 물질을 사용하지 않고도 집전체와 활물질 분리가 가능해져 활물질을 환경친화적으로 회수할 수 있다. 산을 이용하지 않고도 재사용할 수 있어 중화 공정이나 폐수 처리 공정이 필요하지 않아 환경 이슈를 완화하고 공정비를 절감할 수 있다.
도 17은 비교예 6, 7, 9 활물질들의 XPS(X-Ray Photoelectron Spectroscopy) 패턴이다. XPS 패턴에서 가로축은 Binding energy(단위: eV)이다. XPS 패턴은 실험실에서 잘 활용하는 일반적인 XPS 측정 장치를 이용해 얻을 수 있다. 예를 들어 Thermo Fisher Scientific사의 K-Alpha를 사용하여 분석할 수 있다. 앞서 언급한 바와 같이, 바인더에 존재하는 F가 열처리 과정에서 활물질의 Li과 반응하여 LiF를 형성할 수가 있다.
도 17에서 684 eV 근처에서의 피크는 LiF에 의해 나타나며 시료에 따른 세기(intensity)가 높을수록 더 많은 양의 LiF가 양극 활물질 표면에 존재하는 것을 나타낸다. 비교예 6의 XPS 패턴은 프레시한 LCO를 사용하여 측정하였기 때문에 LiF의 존재가 측정되지 않았다. 비교예 9에서는 5시간이라는 장시간의 열처리로 인해 활물질 표면에 다량의 LiF가 생성된 결과 XPS의 LiF 피크 세기가 비교예 6에 비해 월등히 높게 측정된다. 하지만 열처리 시간을 5시간에서 30분으로 줄인 비교예 7의 경우 바인더 분해로 인한 F의 형성이 상대적으로 적게 되고 활물질 표면에 존재하는 LiF의 양은 상대적으로 적어지는 것을 알 수 있다. LiF는 전극 특성 열화의 원인이 될 수 있기 때문에 LiF가 되도록이면 적게 있어야 한다. 비교예 9와 비교예 7의 결과를 통해, 열처리 시간의 감소가 재생 활물질 표면에서의 LiF의 양을 감소시킬 수 있고 재생 활물질의 성능 개선에 효과적임을 알 수 있다. 실시예 5는 비교예 7과 유사한 수준의 LiF를 가질 것이나, 앞서 도 14의 결과에서 보듯이 어닐링까지 실시하고 난 후에 프레시한 활물질 이상의 수준을 확보할 수 있으므로, 실시예 5에 잔류하는 LiF의 양은 전지 성능에 그다지 문제가 되지 않는다는 것을 알 수 있다. 따라서, 본 발명의 또 다른 실시예에서처럼 열처리 시간을 최적화한다면 LiF 등의 제거를 위한 별도의 수세와 같은 과정이 필요치 않다.
도 18은 실시예 5 및 비교예 6, 7, 9 활물질들의 입도 분포 그래프이다.
실시예 5 및 비교예 7, 9에서 회수된 활물질 모두 비교예 6의 프레시한 LCO 대비 입도 분포가 유사하다. 동일한 입자의 크기를 가진 입자의 부피%가 +/- 2% 이내의 범위에서만 차이를 가지는 경우에 입도 분포가 유사하다고 정의한다. 이와 같이, 본 발명에 따르면, 활물질의 입도 분포가 달라지지 않아 초기 특성이 거의 그대로 유지가 되며 이를 재사용한 전지 특성이 프레시한 활물질을 사용한 전지 특성과 유사한 수준이 될 것으로 기대할 수 있다.
<실험예 5>
아래 실시예 및 비교예들과 같은 방법으로 각기 양극 활물질을 준비해, 전기화학 성능을 평가하였다.
실시예 6: 상술한 바와 같은 본 발명의 또 다른 활물질 재사용 방법에 따라 재사용 활물질을 수거하였다. 양극판 타발 후 버려지는 LCO 양극 스크랩을 준비하여 단계 s30의 열처리는 600℃에서 30분간 실시하였다. 단계 s40의 세척은 LiOH를 이용해 10분간 실시하였다. 단계 s50'과 같이 추가적인 리튬 전구체 첨가없이 750℃ 공기 중에서 15시간동안 어닐링하였다.
비교예 10: 비교예 7에서 더 나아가 상술한 바와 같은 본 발명의 활물질 재사용 방법 중 단계 s40의 표면개질을 실시해 LCO 활물질을 수거하였다. 즉, 표면개질은 하되 본 발명의 활물질 재사용 방법 중 단계 s50이나 s50'의 결정구조 회복은 실시하지 않았다. 단계 s40은 실시예 6에서와 동일한 조건으로 실시하였다.
실시예 6과 비교예 7에서 회수된 활물질 내 LiF 잔존량을 알기 위하여 ICP로 F를 검출하여 분석하였다. 그 결과를 하기 표 5에 나타내었다.
[표 5]
Figure PCTKR2021008377-appb-img-000005
상기 표 5를 참조하면, 회수된 양극 활물질 내 F 함량이 비교예 7에 비하여 실시예 6에서 현저히 저하된 것을 확인할 수 있다. 즉, 세척에 의해 LiF가 리튬 화합물 수용액에 완전히 녹아, ICP로 검출이 되지 않을 정도로까지 제거된 것을 확인할 수 있다. 따라서, 단계 s40에 의해 LiF 제거가 탁월하다는 것을 알 수 있다.
상기 실시예 및 비교예들에서 각각 회수하거나 준비한 양극 활물질에 대해 ICP 분석을 실시하여, 특정 원소의 양도 분석하였다. 그 결과를 하기 표 6에 나타내었다.
[표 6]
Figure PCTKR2021008377-appb-img-000006
본 실험에 사용한 프레시한 활물질은 비교예 6에서 보는 바와 같이 Al을 더 포함하고 있는 것이었다. 비교예 7을 보면, 열처리를 거쳐도 Al 함량이 변화하지 않으며, 이후의 공정 단계를 더 포함하는 비교예 10 및 실시예 6에서도 Al 함량이 유지됨을 알 수 있다. 이와 같이 본 발명에 따르면, Al과 같은 다른 원소의 손실없이 LiF 혹은 금속 불화물을 제거할 수가 있고, 전이금속 등의 용출을 방지할 수 있다는 것을 알 수 있다.
도 19는 실시예 6 및 비교예 6, 7, 10 활물질들을 사용하여 셀 평가를 진행한 결과이다.
도 19를 참조하면, 재사용 활물질이지만 본 발명에 따른 표면개질과 결정구조 회복을 실시하지 않은 비교예 7에서 가장 낮은 레이트 성능을 확인할 수 있다. 이는 단계 s30과 같은 고온 열처리 과정에서 바인더와 도전재가 CO2와 H2O로 제거되면서 양극 활물질 표면의 리튬과 반응하여 Li2CO3, LiOH가 형성될 뿐만 아니라, 바인더에 존재하던 F와 반응하여 LiF 혹은 금속 불화물이 재사용 활물질 표면에 형성되었기 때문이다. 뿐만 아니라 LCO 표면에서 열분해로 생성되는 Co3O4로 인해 낮은 전지 특성을 보이는 것으로 판단된다.
비교예 10은 비교예 7에 비해 표면개질은 실시한 것이다. 비교예 10은 표면에 생성된 반응물들을 세척을 통해 제거하였기 때문에 비교예 7에 비해 더 좋은 결과를 얻을 수 있었던 것으로 평가된다.
실시예 6은 비교예 10에 비해 어닐링까지 실시한 것이다. 재생 중에 활물질 표면에 나타날 수 있는 변형구조 및 Co3O4를 다시 LCO 결정구조로 환원시켜, 비교예 6의 프레시한 LCO 활물질 초기 특성보다 개선된 결과를 보이는 것으로 확인된다. 이와 같이 본 발명에 따르면 직접 재사용할 수 있는 수준으로 양극 스크랩으로부터 활물질을 회수할 수 있다.
도 20은 실시예 6 및 비교예 6 내지 8 활물질들의 XPS 패턴이다. 비교예 6의 XPS 패턴은 프레시한 LCO를 사용하여 측정하였기 때문에 LiF의 존재가 측정되지 않았다. 하지만 비교예 7에서는 열처리 과정에서 활물질 표면에 형성된 LiF의 존재를 확인할 수 있다. 비교예 8에서는 열처리 시간을 5시간으로 늘렸기 때문에 F의 생성이 비교예 7에 비해 늘어나게 되고 활물질 표면에 생성되는 LiF의 양이 많아지게 되었기 때문에 XPS의 LiF 피크 세기가 비교예 7에 비해 높게 측정된다. 활물질 표면에 존재하는 LiF의 양은 전극 특성 열화의 원인이 되기 때문에 LiF의 제거가 필요하다. 실시예 6은 비교예 7에 비해 세척을 통해 LiF를 제거하였으며, XPS 결과에서도 LiF의 피크가 나타나지 않음을 확인할 수 있다.
이상의 XPS 분석을 통해 실시예 6의 결과가 비교예 6의 결과와 유사함을 확인할 수 있었다. 따라서, 본 발명의 실시예 6이 비교예 6의 프레시한 활물질 수준으로 회복된 것을 확인할 수 있다. 이와 같이 본 발명에 따르면 세척 시간을 짧게 할 경우 리튬 전구체 첨가없이도 직접 재사용할 수 있는 수준으로 양극 스크랩으로부터 활물질을 회수할 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 당업자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (15)

  1. 스크류(screw) 타입의 봉을 내부에 구비한 회전형 소성 장치로서,
    상기 봉의 축을 따라 일렬 배치되어 있는 것으로, 가열 구역(heating zone)을 이루는 열처리 배쓰 및 냉각 구역(cooling zone)을 이루는 스크리닝 벽체; 및
    배기 주입 및 탈기 시스템을 포함하고 있으며,
    상기 열처리 배쓰에서는 집전체 상에 활물질층을 포함하는 전극 스크랩을 상기 봉의 축 둘레로 회전시키면서 공기 중 열처리하여 상기 활물질층 안의 바인더와 도전재를 제거해 상기 집전체를 상기 활물질층으로부터 분리하고,
    상기 활물질층 안의 활물질은 상기 스크리닝 벽체를 통과하여 분말 형태의 활물질로 회수되고 상기 스크리닝 벽체를 통과하지 못한 집전체는 따로 회수되는 것을 특징으로 하는 활물질 회수 장치.
  2. 제1항에 있어서, 상기 열처리 배쓰도 상기 봉의 축 둘레로 회전하는 것을 특징으로 하는 활물질 회수 장치.
  3. 제1항에 있어서, 상기 활물질 회수 장치는 지면에 대하여 상기 봉의 축이 기울어지게 전체 활물질 회수 장치가 각도 조절되는 것을 특징으로 하는 활물질 회수 장치.
  4. 제1항에 있어서, 상기 활물질 회수 장치는 진동 기능이 있는 것을 특징으로 하는 활물질 회수 장치.
  5. 제1항에 있어서, 상기 활물질 회수 장치는 새로운 전극 스크랩의 투입과 활물질의 회수가 연속적으로 이루어지는 것을 특징으로 하는 활물질 회수 장치.
  6. 제1항에 있어서, 상기 열처리 배쓰는 전극 스크랩이 내부에 투입되고 분리된 집전체와 활물질이 상기 스크리닝 벽체로 이송되도록 양단이 개방된 통 형상이며 상기 통은 공기가 드나드는 개방형 시스템인 것을 특징으로 하는 활물질 회수 장치.
  7. 제6항에 있어서, 상기 스크리닝 벽체는 분리된 집전체와 활물질이 내부에 투입되고 상기 집전체를 배출하도록 양단이 개방된 통 형상인 것을 특징으로 하는 활물질 회수 장치.
  8. 제1항에 있어서, 상기 열처리 배쓰는 투입되는 전극 스크랩 100g당 10 mL/min ~ 100 L/min으로 공기가 첨가 또는 주입되는 개방형 시스템인 것을 특징으로 하는 활물질 회수 장치.
  9. 제1항에 있어서, 상기 열처리 배쓰에 공기 주입구가 복수 개소에 설치된 것을 특징으로 하는 활물질 회수 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 활물질 회수 장치를 준비하는 단계;
    열처리 배쓰에 집전체 상에 리튬 복합 전이금속 산화물 양극 활물질층을 포함하는 양극 스크랩을 투입하는 단계;
    상기 열처리 배쓰에서 상기 양극 스크랩을 봉의 축 둘레로 회전시키면서 공기 중 열처리하여 상기 활물질층 안의 바인더와 도전재를 제거해 상기 집전체를 상기 활물질층으로부터 분리하는 단계;
    스크리닝 벽체를 통과한 분말 형태의 활물질을 회수하는 단계; 및
    상기 활물질을 400 ~ 1000℃ 공기 중에서 어닐링하여 재사용 가능한 활물질을 얻는 단계를 포함하는 양극 활물질 재사용 방법.
  11. 제10항에 있어서, 상기 열처리는 300 ~ 650℃에서 수행하는 것을 특징으로 하는 양극 활물질 재사용 방법.
  12. 제10항에 있어서, 상기 어닐링하기 전에 상기 회수된 활물질을 수용액 상태에서 염기성을 보이는 리튬 화합물 수용액으로 세척하는 단계를 더 포함하는 것을 특징으로 하는 양극 활물질 재사용 방법.
  13. 제12항에 있어서, 상기 어닐링하기 전에 세척된 활물질에 리튬 전구체를 첨가하는 것을 특징으로 하는 양극 활물질 재사용 방법.
  14. 제12항에 있어서, 상기 세척하는 단계 이후 세척한 활물질을 리튬 전구체 용액에 혼합하고 분무 건조함으로써 리튬 전구체가 첨가되고 입자 조절된 활물질을 얻는 단계를 더 포함하는 것을 특징으로 하는 양극 활물질 재사용 방법.
  15. 제10항에 있어서, 상기 어닐링된 활물질에 표면 코팅하는 단계를 더 포함하는 것을 특징으로 하는 양극 활물질 재사용 방법.
PCT/KR2021/008377 2020-08-13 2021-07-01 활물질 회수 장치 및 이를 이용한 활물질 재사용 방법 WO2022035053A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/912,017 US20230139010A1 (en) 2020-08-13 2021-07-01 Apparatus for recovering active material and method for reusing active material by using same
EP21856060.5A EP4120431A4 (en) 2020-08-13 2021-07-01 ACTIVE MATERIAL RECOVERY APPARATUS AND METHOD FOR REUSING ACTIVE MATERIAL USING SAME
JP2022561183A JP7406006B2 (ja) 2020-08-13 2021-07-01 活物質回収装置およびこれを用いた活物質の再使用方法
CN202180017564.4A CN115210935A (zh) 2020-08-13 2021-07-01 用于回收活性材料的设备和使用该设备再利用活性材料的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0101962 2020-08-13
KR1020200101962A KR20220021287A (ko) 2020-08-13 2020-08-13 활물질 회수 장치 및 이를 이용한 활물질 재사용 방법

Publications (1)

Publication Number Publication Date
WO2022035053A1 true WO2022035053A1 (ko) 2022-02-17

Family

ID=80247105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008377 WO2022035053A1 (ko) 2020-08-13 2021-07-01 활물질 회수 장치 및 이를 이용한 활물질 재사용 방법

Country Status (6)

Country Link
US (1) US20230139010A1 (ko)
EP (1) EP4120431A4 (ko)
JP (1) JP7406006B2 (ko)
KR (1) KR20220021287A (ko)
CN (1) CN115210935A (ko)
WO (1) WO2022035053A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349643B1 (ja) * 2023-03-13 2023-09-25 永信商事株式会社 バッテリ材料の回収装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646632B (zh) * 2023-05-15 2023-11-14 山东恒泰利华环境科技有限公司 一种连续式废旧锂电池黑粉回收处理装置及处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170033787A (ko) * 2015-09-17 2017-03-27 주식회사 에코프로비엠 폐양극활물질을 재활용한 양극활물질 전구체의 제조 방법, 이에 의하여 제조된 양극활물질 전구체, 및 이를 이용한 양극활물질의 제조 방법, 이에 의하여 제조된 양극활물질
KR101803859B1 (ko) * 2017-08-09 2017-12-04 주식회사 현대특수로 배터리 재료 회수용 처리장치
KR20180042641A (ko) * 2016-10-18 2018-04-26 한국전기연구원 리튬이차전지용 양극활물질 연속 회수 장치 및 이를 이용한 회수 방법
KR101912202B1 (ko) * 2016-08-02 2018-10-26 주식회사 에코프로비엠 리튬 이차전지용 리튬복합 산화물 및 이의 제조 방법
KR20190142443A (ko) * 2016-07-07 2019-12-26 쥐알에스티 인터내셔널 리미티드 리튬이온전지의 재활용 방법
KR20200101962A (ko) 2018-03-09 2020-08-28 레이던 컴퍼니 임계값 검출을 사용한 위상 변조 신호의 복조

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE699448C (de) * 1938-02-03 1940-11-29 Hermann Possekel Vorrichtung zur Gewinnung von Metallen oder Metalloiden
JP5427993B2 (ja) * 2009-03-26 2014-02-26 日本電工株式会社 マンガン系リチウムイオン二次電池の有価資源回収方法その装置
JP5247877B2 (ja) * 2011-12-28 2013-07-24 Jx日鉱日石金属株式会社 リチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法
JP5269228B1 (ja) * 2012-03-30 2013-08-21 Jx日鉱日石金属株式会社 リチウムイオン電池用正極材から正極活物質を分離回収する方法
JP5657730B2 (ja) * 2013-03-29 2015-01-21 Jx日鉱日石金属株式会社 リチウムイオン電池からの有価物の回収方法
US8616475B1 (en) * 2013-06-18 2013-12-31 Retriev Technologies Incorporated Recovery of lithium ion batteries
PL3279979T3 (pl) * 2016-08-02 2021-12-20 Ecopro Bm Co., Ltd. Złożony tlenek litu dla dodatniego materiału aktywnego baterii wtórnej i sposób jego wytwarzania

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170033787A (ko) * 2015-09-17 2017-03-27 주식회사 에코프로비엠 폐양극활물질을 재활용한 양극활물질 전구체의 제조 방법, 이에 의하여 제조된 양극활물질 전구체, 및 이를 이용한 양극활물질의 제조 방법, 이에 의하여 제조된 양극활물질
KR20190142443A (ko) * 2016-07-07 2019-12-26 쥐알에스티 인터내셔널 리미티드 리튬이온전지의 재활용 방법
KR101912202B1 (ko) * 2016-08-02 2018-10-26 주식회사 에코프로비엠 리튬 이차전지용 리튬복합 산화물 및 이의 제조 방법
KR20180042641A (ko) * 2016-10-18 2018-04-26 한국전기연구원 리튬이차전지용 양극활물질 연속 회수 장치 및 이를 이용한 회수 방법
KR101803859B1 (ko) * 2017-08-09 2017-12-04 주식회사 현대특수로 배터리 재료 회수용 처리장치
KR20200101962A (ko) 2018-03-09 2020-08-28 레이던 컴퍼니 임계값 검출을 사용한 위상 변조 신호의 복조

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120431A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349643B1 (ja) * 2023-03-13 2023-09-25 永信商事株式会社 バッテリ材料の回収装置

Also Published As

Publication number Publication date
EP4120431A4 (en) 2023-09-27
EP4120431A1 (en) 2023-01-18
US20230139010A1 (en) 2023-05-04
CN115210935A (zh) 2022-10-18
JP2023521735A (ja) 2023-05-25
JP7406006B2 (ja) 2023-12-26
KR20220021287A (ko) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2022045559A1 (ko) 활물질 회수 장치 및 이를 이용한 활물질 재사용 방법
WO2021246606A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2022035053A1 (ko) 활물질 회수 장치 및 이를 이용한 활물질 재사용 방법
WO2022010161A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2021261697A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2022080657A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2017074081A1 (ko) Siox-플러렌 복합체, 이의 제조방법, 제조장치 및 용도
WO2020040586A1 (ko) 실리콘계 복합체, 이를 포함하는 음극, 및 리튬 이차전지
WO2017074084A1 (ko) Siox의 포집장치 및 포집방법
WO2021241817A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2020130443A1 (ko) 리튬 이차전지용 음극 활물질의 제조방법
WO2023043071A1 (ko) 양극 활물질의 재생 방법 및 이로부터 재생된 양극 활물질
WO2018164477A1 (ko) 칼륨 이차 전지용 양극 활물질, 이를 포함하는 칼륨 이차 전지
WO2021241818A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2021241819A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2021241835A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2022139116A1 (ko) 폐-양극 활물질을 이용한 리튬 이차전지용 양극 활물질의 제조 방법
WO2023027436A1 (ko) 양극 활물질 재사용 방법
WO2022025600A1 (ko) 폐전극으로부터 알루미늄을 선택적으로 제거하는 방법 및 이를 이용하여 폐전극으로부터 금속 성분을 회수하는 방법
WO2022004981A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2023038283A1 (ko) 양극 활물질의 재생 방법 및 이로부터 재생된 양극 활물질
WO2023068525A1 (ko) 양극 활물질의 재생 방법 및 이로부터 재생된 양극 활물질
WO2024106752A1 (ko) 재생 양극 활물질, 이의 재생 방법 및 이를 포함하는 이차 전지
WO2024112059A1 (ko) 양극 활물질의 재생 방법 및 이로부터 재생된 양극 활물질
WO2022045557A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561183

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217057128

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021856060

Country of ref document: EP

Effective date: 20221011

NENP Non-entry into the national phase

Ref country code: DE