WO2022032768A1 - 一种微量润滑连续供液系统及方法 - Google Patents

一种微量润滑连续供液系统及方法 Download PDF

Info

Publication number
WO2022032768A1
WO2022032768A1 PCT/CN2020/113601 CN2020113601W WO2022032768A1 WO 2022032768 A1 WO2022032768 A1 WO 2022032768A1 CN 2020113601 W CN2020113601 W CN 2020113601W WO 2022032768 A1 WO2022032768 A1 WO 2022032768A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
piston
air
nozzle
gas
Prior art date
Application number
PCT/CN2020/113601
Other languages
English (en)
French (fr)
Inventor
王德祥
肖畅
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2022032768A1 publication Critical patent/WO2022032768A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1076Arrangements for cooling or lubricating tools or work with a cutting liquid nozzle specially adaptable to different kinds of machining operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to the technical field of cooling and lubricating equipment for cutting, in particular to a continuous liquid supply system and method for micro-lubrication.
  • the traditional method of machining lubrication is the method of spraying a large amount of cutting fluid. Due to the waste of cutting fluid, high waste liquid treatment costs, serious environmental pollution, and harm to workers' health, etc., it is gradually eliminated in the field of modern machining. Compressed air mixed with a small amount of lubricating fluid is vaporized and sprayed to the processing area for effective lubrication.
  • a lubrication method suitable for cutting processing-minimum quantity lubrication technology is gradually emerging. Relying on the characteristics of simple structure, small volume, less cutting fluid consumption, low cost, environmental protection and no pollution, it has become one of the current research hotspots.
  • a piston-push type oil pump is used as a micro-lubrication liquid supply device, which mainly pushes oil and supplies oil through the reciprocating motion of the piston.
  • the inventor found that during the working process, when the piston-push type oil pump supplies oil, due to the stroke of the piston , it will cause the problem of discontinuous fuel supply.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a micro-lubrication continuous liquid supply system, which can realize the continuous liquid supply of lubricating oil and has a good lubricating effect.
  • the present invention adopts the following technical solutions:
  • the embodiments of the present invention provide a continuous liquid supply system for minimum quantity lubrication, including an air supply mechanism, the air supply mechanism is connected to a plurality of piston oil pumps through a plurality of control valves, and the control valves can control the piston oil pump.
  • the piston oil pump is connected with the oil supply mechanism, and the control valve is connected with the signal generator.
  • the signal generator can control the operation of the control valve, so that at least one piston oil pump is in the oil supply state.
  • the piston oil pump is provided with joints and joints. The parts are respectively connected with the nozzle through the oil pipe and the gas pipe, and the gas pipe is connected with the air supply mechanism.
  • the embodiment of the present invention provides a working method of a continuous liquid supply system for micro-lubrication: the control valve accepts the instruction of the signal generator to work, and controls the conduction and closing of the air path between the piston oil pump and the air supply mechanism , so that at least one of the multiple piston oil pumps is in the oil supply state, the piston oil pump in the oil supply state drives the lubricating oil to enter the nozzle through the oil pipe connected at the joint, and the gas supply mechanism drives the gas through the joint.
  • the connected air pipe enters the nozzle, and the lubricating oil entering the nozzle is mixed with the gas and then sprayed out through the nozzle.
  • the micro-lubrication continuous liquid supply system of the present invention has multiple piston oil pumps, and each piston oil pump can be controlled by a control valve and a signal generator. By controlling the signal generator, multiple piston oil pumps can be controlled. At least one piston oil pump is in the state of supplying oil, realizing continuous oil supply, good cooling and lubricating effect, meeting most basic lubricating liquid supply requirements, and suitable for various machining occasions.
  • the nozzle is connected to the joint through the oil pipe and the gas pipe, and the gas and lubricating oil can be mixed and sprayed in the nozzle, realizing the method of aerosol lubrication, which can be deeply machined on the surface and ensure the cooling and lubrication. Stability and improved processing quality.
  • Embodiment 1 is a schematic diagram of the overall structure of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the connection between the oil supply mechanism and the piston oil pump in Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a piston oil pump in Embodiment 1 of the present invention.
  • First piston oil pump 2. Second piston oil pump, 3. Air storage tank, 4. Air compressor, 5. Air filter, 6. Ball valve, 7. Pressure gauge, 8. First control valve, 9. second control valve, 10. first signal generator, 11. second signal generator, 12. nozzle, 13. first air circuit, 14. second air circuit, 15. oil pump cavity, 16 .Reverse thread joint, 17. Box, 18. Diverter, 19. Pipe joint, 20. Oil cup, 21. First sealing bolt, 22. Set bolt, 23. Second sealing bolt, 24. Piston, 24 -1. Ring boss, 25. Spring, 26. First push-in connector, 27. Oil adjusting knob, 28. First O-ring, 29. Pagoda connector, 30. Second push-in connector, 31. Section Two O-rings, 32. Positioning sleeve.
  • the existing piston oil pump for minimal quantity lubrication cannot form a continuous liquid supply due to the piston stroke, and the cooling and lubricating effect is not good.
  • the present application proposes a minimal quantity lubrication continuous liquid supply system .
  • a continuous liquid supply system for minimum quantity lubrication includes an air supply mechanism, and the air supply mechanism is connected to the first piston oil pump 1 and the second
  • the two-piston oil pump 2 is connected to supply air to the first piston oil pump and the second piston oil pump to control their work.
  • the first piston oil pump and the second piston oil pump are connected to the oil supply mechanism, and the oil supply mechanism can Provide lubricating oil to the first piston oil pump and the second piston oil pump.
  • the air supply mechanism includes an air storage tank 3, and the air inlet of the air storage tank is connected to an air compressor 4 through a pipeline, and the air compressor can inject compressed air into the air storage tank, and the outlet of the air storage tank is The air port is connected to the air filter 5, which can filter the gas flowing out of the air tank.
  • the outlet of the air filter is connected to one end of the main air circuit, and the main air circuit is provided with an on-off valve and a pressure gauge. On and off, the pressure gauge 7 is used to display the gas pressure in the total gas circuit.
  • the other end of the general air circuit is connected to the first piston type oil pump and the second piston type oil pump respectively through the two second air passages 14, and the two second air passages can be respectively connected to the first piston type oil pump and the second piston type oil pump. Oil pump air supply.
  • the two second gas paths are respectively provided with a first control valve 8 and a second control valve 9.
  • the first control valve and the second control valve are two-position three-way solenoid valves, two two-position three-way solenoid valves.
  • the solenoid valves are connected to the first signal generator 10 and the second signal generator 11 respectively, and the signal generators can send signals to the two-position three-way solenoid valve to control the operation of the two-position three-way solenoid valve.
  • the outlet of the first piston type oil pump and the second piston type oil pump is provided with a joint piece, and the joint piece is connected with the nozzle 12 through an oil pipe, the first piston type oil pump and the second piston type oil pump can send lubricating oil into the oil pipe, and then Into the nozzle to spray.
  • the other end of the general air passage is also connected to the joints at the outlet of the first piston oil pump and the second piston oil pump through two first air passages 13 respectively, and the joints are connected to the nozzle through the gas pipe.
  • the air supply mechanism can inject compressed air into the nozzle through the joint piece and the air pipe.
  • the oil supply mechanism sends lubricating oil into the first piston oil pump and the second piston oil pump, and the air supply mechanism can supply air to the first piston oil pump and the second piston oil pump through the second air path, and the first piston oil pump and the second piston oil pump.
  • the two-piston oil pump works to send lubricating oil into the oil pipe connected to the joint piece and inject it into the nozzle.
  • the air supply mechanism can supply air to the joint piece through the first gas path, and send the gas into the nozzle through the gas pipe. After the lubricating oil injected into the nozzle is mixed, it is sprayed out from the nozzle to cool and lubricate the cutting process.
  • the aerosol cooling and lubricating method can be used to deeply machine the surface, ensure the stability of cooling and lubrication, and improve the processing quality of the workpiece.
  • the first piston oil pump and the second piston oil pump have the same structure, and both include an oil pump cavity 15.
  • the oil pump cavity is provided with a vertically arranged oil injection channel, and both sides of the oil injection channel are provided with an oil outlet channel and Piston passage, oil outlet passage and piston passage are set horizontally.
  • a reverse threaded joint 16 is threadedly connected to the top of the oil filling channel, and the oil filling channel is connected to the oil supply mechanism through the reverse threaded joint.
  • the oil supply mechanism includes a box body 17, and the box body is connected with a shunt piece through fixing bolts 22.
  • the flow shunt piece adopts the existing shunt 18, and the shunt is connected with the oil cup 20 through the pipe joint 19,
  • the reverse threaded joints connected to the oil injection channels of the first piston oil pump and the second piston oil pump are connected to the shunt, the shunt is used for transition and shunt of the lubricating oil, the shunt is provided with a shunt channel, and the shunt channel The end is sealed with the first sealing bolt 21 .
  • the bottom end of the oil injection channel is threadedly connected with a second sealing bolt 23 for sealing the oil injection channel.
  • the piston passage includes a first passage part and a second passage part, the diameter of the second passage part is larger than that of the first passage part, and the first passage part is communicated with the oil injection passage.
  • the outer shaft surface of the piston in the first channel part is closely attached to the inner surface of the first channel part
  • the piston in the second channel part is integrally provided with an annular boss 24-1, and the ring
  • the outer axial surface of the shaped boss is in contact with the inner surface of the second channel portion, and the piston is elastically connected to the oil pump cavity through the annular boss.
  • the annular boss is connected to one end of the spring 25, and the spring The other end of the spring is connected to the stepped surface of the oil pump cavity formed by the first channel part and the second channel part to realize the elastic connection between the piston and the oil pump cavity, and the spring is sleeved on the outer circumference of the piston.
  • the oil pump cavity is provided with a first air passage, the first air passage communicates with the piston passage, a first quick-plug joint 26 is installed at the first air passage, and the first air passage is connected to the second through the first quick-inserted joint.
  • the air path is connected.
  • the annular boss on the piston separates the second passage into a first space and a second space
  • the spring is arranged in the first space
  • the first air passage communicates with the second space
  • the second The branch of the air circuit can inject gas into the second space through the first air channel, drive the piston to move, compress the spring
  • the piston pushes the lubricating oil in the oil injection channel into the oil outlet channel, and flows out from the oil outlet channel, and the piston moves to set the distance
  • the second air passage stops supplying air to the first air passage, and the piston is reset under the action of the spring.
  • the oil pump cavity is also threadedly connected by an adjusting member, and the adjusting member adopts an oil adjusting knob 27.
  • the oil adjusting knob extends into the second channel portion and contacts the piston. When the oil adjusting knob is rotated, the oil adjusting knob can move along its own axis. Then, the initial position of the piston is adjusted, and the movement stroke of the piston is further adjusted.
  • the oil adjusting knob is provided with a first O-ring 28 between the inner surface of the second channel portion, which is used to seal the oil adjusting knob and the inner surface of the second channel portion to ensure the air tightness of the oil adjusting knob when it is rotated. .
  • the oil outlet channel is connected with a joint piece, and the joint piece adopts a pagoda joint 29.
  • the pagoda joint is threadedly connected with the oil pump cavity.
  • One end of the oil pipe can be extended into the pagoda joint, and the other end of the oil pipe is connected with the nozzle.
  • the oil pump cavity The body is also provided with a second air passage, the second air passage communicates with the space between the pagoda joint and the oil pipe.
  • the gas supply mechanism can inject gas through the first gas path and the space between the pagoda joint and the oil pipe
  • the pagoda joint is also provided with a second O-ring 31 and a positioning sleeve 32 on one side, the end of the pagoda joint and the positioning The sleeve is in contact, and the positioning sleeve is used for axial positioning of the pagoda joint and can be pressed by the pagoda joint.
  • One end face of the positioning sleeve is in contact with the end face of the pagoda joint, and the other side section is in contact with the second O-ring.
  • the second O-ring and the positioning sleeve are connected with the oil pipe and can seal and fix the end of the oil pipe.
  • the pagoda joint is also connected with one end of the gas pipe, the gas pipe is sleeved on the pagoda joint and the outer periphery of the oil pipe, and the other end of the gas pipe is connected with the nozzle.
  • the nozzle includes a lubricating oil nozzle part and a gas nozzle part sleeved on the outer periphery of the lubricating oil nozzle part. It is located in the inside of the gas nozzle part, and the inside of the nozzle has a space where the gas and the lubricating oil are mixed.
  • the piston type oil pump of the invention has the advantages of simple structure, good stability and convenient installation and maintenance.
  • Embodiment 1 discloses the working method of the continuous liquid supply system of minimal quantity lubrication described in Embodiment 1:
  • the air enters the air storage tank through the air compressor and then enters the air filter. After the pressure regulation and filtration are completed, the ball valve is opened.
  • the first air path supplies air to the space between the pagoda joint and the oil pipe through the second quick-connect joint, and the gas flows into the nozzle through the air pipe.
  • the compressed air enters the second gas path, and the two signal generators control the two two-position three-way solenoid valves respectively to realize the on-off of the two second gas paths.
  • the two-position three-way solenoid valve is opened, the airflow After entering the second channel through the second air path, push the piston to compress the spring, hydraulic pressure into the oil pipe, and enter the lubricating oil nozzle part of the nozzle through the oil pipe.
  • the oil adjustment knob adjusts the single pulse oil supply by limiting the stroke of the piston
  • the lubricating oil in the lubricating oil nozzle and the gas in the gas nozzle are mixed in the nozzle to form a high-pressure oil mist that is ejected from the nozzle, realizing aerosol lubrication
  • the surface can be deeply machined, the stability of cooling and lubrication can be ensured, and the processing quality can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

一种微量润滑连续供液系统及方法,包括供气机构,所述供气机构分别通过多个控制阀(8,9)与多个活塞式油泵(1,2)连接,控制阀(8,9)能够控制活塞式油泵(1,2)的工作,活塞式油泵(1,2)与供油机构连接,控制阀(8,9)与信号发生器(10,11)连接,信号发生器(10,11)能够控制控制阀(8,9)工作,使得至少一个活塞式油泵(1,2)处于供油状态,活塞式油泵(1,2)的出口设有接头件(29),接头件(29)分别通过油管和气管与喷嘴(12)连接,气管与供气机构连接,所述供液系统能够实现连续性供液,冷却润滑效果好。

Description

一种微量润滑连续供液系统及方法 技术领域
本发明涉及切削加工的冷却润滑设备技术领域,具体涉及一种微量润滑连续供液系统及方法。
背景技术
这里的陈述仅提供与本发明相关的背景技术,而不必然地构成现有技术。
传统机械加工的润滑形式为大量切削液喷淋的方法,由于切削液浪费,废液处理费用高,环境污染严重,危害工人健康等问题,在现代机械加工领域中逐渐淘汰,一种将冷却后的压缩空气与微量的润滑液混合汽化喷射到加工区进行有效润滑的适用于切削加工的润滑方法—微量润滑技术逐渐兴起。依靠其装置结构简单,体积小,切削液用量少,成本低,环保无污染的特点,成为当下研究热点之一。
目前出现了采用活塞推油式油泵作为微量润滑供液装置,主要通过活塞的往复运动来推油供油,但发明人发现,其工作过程中,活塞推油式油泵进行供油时,由于活塞的行程原因,会产生供油不连续的问题。
发明内容
本发明的目的是为克服现有技术的不足,提供一种微量润滑连续供液系统,能够实现润滑油的连续供液,润滑效果好。
为实现上述目的,本发明采用如下技术方案:
第一方面,本发明的实施例提供了一种微量润滑连续供液系统,包括供气机构,所述供气机构分别通过多个控制阀与多个活塞式油泵连接,控制阀能够控制 活塞式油泵的工作,活塞式油泵与供油机构连接,控制阀与信号发生器连接,信号发生器能够控制控制阀工作,使得至少一个活塞式油泵处于供油状态,活塞式油泵设有接头件,接头件分别通过油管和气管与喷嘴连接,气管与供气机构连接。
第二方面,本发明的实施例提供了一种微量润滑连续供液系统的工作方法:控制阀接受信号发生器的指令工作,控制活塞式油泵与供气机构之间气路的导通和关闭,使得多个活塞式油泵中至少有一个活塞式油泵处于供油状态,处于供油状态的活塞式油泵驱动润滑油经过接头件处连接的油管进入喷嘴,同时供气机构驱动气体经过接头件处连接的气管进入喷嘴,进入喷嘴的润滑油与气体混合后经过喷嘴喷出。
本发明的有益效果:
1.本发明的微量润滑连续供液系统,具有多个活塞式油泵,且每个活塞式油泵均能够通过控制阀和信号发生器进行控制,通过控制信号发生器,能够使得多个活塞式油泵中至少有一个活塞式油泵处于供油状态,实现了连续型供油,冷却润滑效果好,满足了大多数基础的润滑供液需求,适用于多种机加工场合。
2.本发明的微量润滑连续供液系统,喷嘴通过油管和气管与接头件连接,气体和润滑油能够在喷嘴内混合喷出,实现了气雾润滑方式,可以深入加工表面,保证冷却润滑的稳定性,提高了加工质量。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的限定。
图1为本发明实施例1整体结构示意图;
图2为本发明实施例1供油机构与活塞式油泵连接示意图;
图3为本发明实施例1活塞式油泵结构示意图;
其中,1.第一活塞式油泵,2.第二活塞式油泵,3.储气罐,4.空气压缩机,5.空气过滤器,6.球阀,7.压力表,8.第一控制阀,9.第二控制阀,10.第一信号发生器,11.第二信号发生器,12.喷嘴,13.第一气路,14.第二气路,15.油泵腔体,16.反螺纹接头,17.箱体,18.分流器,19.管接头,20.油杯,21.第一密封螺栓,22.紧定螺栓,23.第二密封螺栓,24.活塞,24-1.环状凸台,25.弹簧,26.第一快插接头,27.调油旋钮,28.第一O型圈,29.宝塔接头,30.第二快插接头,31.第二O型圈,32.定位套筒。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
为了方便叙述,本发明中如果出现“上”、“下”、“左”“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用,仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
正如背景技术所介绍的,现有的微量润滑用活塞式油泵由于活塞行程原因, 不能形成连续式供液,冷却润滑效果不好,针对上述问题,本申请提出了一种微量润滑连续供液系统。
本申请的一种典型实施方式实施例1中,如图1-图3所示,一种微量润滑连续供液系统,包括供气机构,所述供气机构与第一活塞式油泵1和第二活塞式油泵2连接,能够对第一活塞式油泵和第二活塞式油泵供气,控制其工作,所述第一活塞式油泵和第二活塞式油泵与供油机构连接,供油机构能够为第一活塞式油泵和第二活塞式油泵提供润滑油。
所述供气机构包括储气罐3,所述储气罐的进气口通过管路与空气压缩机4连接,空气压缩机能够向储气罐内注入压缩空气,所述储气罐的出气口与空气过滤器5连接,能够对储气罐流出的气体进行过滤。
所述空气过滤器的出口与总气路的一端连接,所述总气路上设置有开关阀和压力表,本实施例中,所述开关阀采用球阀6,所述球阀能够控制总气路的导通和关闭,所述压力表7用于显示总气路内的气体压力。
所述总气路的另一端通过两个第二气路14分别与第一活塞式油泵和第二活塞式油泵连接,两个第二气路能够分别向第一活塞式油泵和第二活塞式油泵供气。
两个第二气路上分别设置有第一控制阀8和第二控制阀9,本实施例中,所述第一控制阀和第二控制阀采用二位三通电磁阀,两个二位三通电磁阀均分别与第一信号发生器10和第二信号发生器11连接,信号发生器能够向二位三通电磁阀发送信号,控制二位三通电磁阀的工作。
所述第一活塞式油泵和第二活塞式油泵的出口处设有接头件,接头件通过油管与喷嘴12连接,第一活塞式油泵和第二活塞式油泵能够将润滑油送入油管, 进而进入喷嘴喷出。
所述总气路的另一端还通过两个第一气路13分别与第一活塞式油泵和第二活塞式油泵出口处的接头件连接,接头件通过气管与喷嘴连接。供气机构能够通过接头件及气管向喷嘴内注入压缩空气。
供油机构将润滑油送入第一活塞式油泵和第二活塞式油泵,供气机构能够通过第二气路向第一活塞式油泵和第二活塞式油泵供气,第一活塞式油泵和第二活塞式油泵工作,将润滑油送入接头件连接的油管中,并注入喷嘴中,供气机构能够通过第一气路能够向接头件供气,并通过气管将气体送入喷嘴中,与注入喷嘴的润滑油混合后,由喷嘴喷射出,对切削加工进行冷却润滑,采用气雾式冷却润滑的方式,可以深入加工表面,保证冷却润滑的稳定性,提高工件的加工质量。
所述第一活塞式油泵和第二活塞式油泵结构相同,均包括油泵腔体15,所述油泵腔体内设置有竖向设置的注油通道,注油通道两侧设有与其连通的出油通道和活塞通道,出油通道和活塞通道水平设置。
所述注油通道顶端螺纹连接有反螺纹接头16,注油通道通过反螺纹接头与供油机构连接。
所述供油机构包括箱体17,所述箱体通过紧定螺栓22连接有分流件,所述分流件采用现有的分流器18,所述分流器通过管接头19与油杯20连接,第一活塞式油泵和第二活塞式油泵的注油通道连接的反螺纹接头与分流器连接,所述分流器用于对润滑油液进行过渡和分流,分流器内设有分流通道,所述分流通道的端部利用第一密封螺栓21进行密封。
所述注油通道的底端螺纹连接有第二密封螺栓23,用于对注油通道进行密封。
所述活塞通道包括第一通道部和第二通道部,所述第二通道部的直径大于第一通道部的直径,所述第一通道部与注油通道相连通。
所述活塞通道内设有活塞24,第一通道部内的活塞外轴面与第一通道部内侧面紧密贴合,所述第二通道部内的活塞一体式设有环状凸台24-1,环状凸台外轴面与第二通道部的内侧面贴合接触,所述活塞通过环状凸台与油泵腔体弹性连接,具体的,所述环状凸台与弹簧25的一端连接,弹簧的另一端与第一通道部和第二通道部形成的油泵腔体的台阶面连接,实现活塞与油泵腔体的弹性连接,所述弹簧套在活塞的外周。
所述油泵腔体设有第一气道,所述第一气道与活塞通道连通,第一气道处安装有第一快插接头26,第一气道通过第一快插接头与第二气路相连通。
本实施例中,活塞上的环状凸台将第二通道部分隔为第一空间和第二空间,所述弹簧设置在第一空间内,第一气道与第二空间相连通,第二气路的支路能够通过第一气道向第二空间内注入气体,带动活塞运动,压缩弹簧,活塞推动注油通道内的润滑油进入出油通道,由出油通道流出,活塞运动设定距离后,第二气路停止向第一气道供气,在弹簧的作用下,活塞复位。
所述油泵腔体还螺纹连接由调节件,所述调节件采用调油旋钮27,调油旋钮伸入第二通道部内并于活塞接触,转动调油旋钮,调油旋钮能够沿自身轴线运动,进而调节活塞的初始位置,进而调节活塞的运动行程。
所述调油旋钮于第二通道部的内侧面之间设有第一O型圈28,用于对调油旋钮和第二通道部内侧面之间进行密封,保证调油旋钮旋转时的气密性。
所述出油通道处连接有接头件,所述接头件采用宝塔接头29,宝塔接头与油泵腔体螺纹连接,宝塔接头内能够伸入油管的一端,油管另一端与喷嘴连接,所 述油泵腔体还设有第二气道,所述第二气道与宝塔接头、油管之间的空间连通,第二气道处安装有第二快插接头30,第二快插接头与第一气路连接,供气机构能够通过第一气路和宝塔接头和油管之间的空间注入气体,所述宝塔接头一侧还设有第二O型圈31和定位套筒32,宝塔接头端部与定位套筒接触,定位套筒用于对宝塔接头进行轴向定位,且能够被宝塔接头压紧,定位套筒一侧端面与宝塔接头端面贴合,另一侧断面与第二O型圈接触,第二O型圈和定位套筒与油管连接,能够对油管端部进行密封固定。
所述宝塔接头还与气管的一端连接,气管套在宝塔接头及油管外周,气管的另一端与喷嘴连接。
本实施例中,所述喷嘴包括润滑油喷嘴部及套在润滑油喷嘴部外周的气体喷嘴部,润滑油喷嘴部及气体喷嘴部的一端分别与油管及气管连接,润滑油喷嘴部的另一端位于气体喷嘴部的内部,使喷嘴内部具有气体和润滑油混合的空间。
本发明的活塞式油泵结构简单,稳定性好,安装维护方便。
实施例2:
本实施例公开了实施例1所述的微量润滑连续供液系统的工作方法:
空气通过空气压缩机进入储气罐后进入空气过滤器完成调压过滤后,打开球阀,第一气路通过第二快插接头向宝塔接头与油管之间的空间供气,气体通过气管流入喷嘴的气体喷嘴部内;压缩空气进入第二气路,两个信号发生器分别控制两个二位三通电磁阀实现两个第二气路的通断,当二位三通电磁阀打开时,气流经过第二气路进入第二通道部推动活塞压缩弹簧,将油液压入油管,并经过油管进入喷嘴的润滑油喷嘴部,当二位三通电磁阀关闭时,气路无气流,活塞被弹簧弹回,若使两路信号发生器均工作,并且发送脉冲信号间隔半个周期,则第一活 塞式油泵和第二活塞式油泵进气路会分时段产生脉冲气流,第一活塞式油泵和第二活塞式油泵的活塞一个进给一个回弹,使得至少有一个活塞式油泵处于供油状态,两个活塞式油泵的输出油液汇入一个油管内,实现连续持续供油。冷却润滑效果好,满足了大多数基础的润滑供液需求,适用于多种机加工场合。(调油旋钮通过限制活塞行程来调整单次脉冲供油量),润滑油喷嘴部内的润滑油和气体喷嘴部内的气体在喷嘴内混合,形成高压油雾由喷嘴喷出,实现了气雾润滑方式,可以深入加工表面,保证冷却润滑的稳定性,提高了加工质量。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种微量润滑连续供液系统,其特征在于,包括供气机构,所述供气机构分别通过多个控制阀与多个活塞式油泵连接,控制阀能够控制活塞式油泵的工作,活塞式油泵与供油机构连接,控制阀与信号发生器连接,信号发生器能够控制控制阀工作,使得至少一个活塞式油泵处于供油状态,活塞式油泵的出口设有接头件,接头件分别通过油管和气管与喷嘴连接,气管与供气机构连接。
  2. 如权利要求1所述的一种微量润滑连续供液系统,其特征在于,所述供气机构包括储气罐,所述储气罐与空气压缩机及空气过滤器连接,空气过滤器与总气路的一端连接,总气路的另一端通过多个第一气路分别与多个接头件连接,通过多个第二气路分别与多个活塞式油泵连接,所述控制阀安装在第二气路上。
  3. 如权利要求2所述的一种微量润滑连续供液系统,其特征在于,所述总气路上设置有压力表和开关阀。
  4. 如权利要求1所述的一种微量润滑连续供液系统,其特征在于,所述供油机构包括固定设置的油杯,所述油杯与分流件连接,分流件的多个出油口分别与多个活塞式油泵连接。
  5. 如权利要求1所述的一种微量润滑连续供液系统,其特征在于,所述活塞式油泵包括油泵腔体,所述油泵腔体内设有连通的注油通道,出油通道及活塞通道,注油通道与供油机构连接,出油通道与喷嘴连接,活塞通道内设有活塞,活塞与油泵腔体弹性连接,活塞通道与供气机构连接,供气机构能够向活塞通道内注入气体,控制活塞的运动。
  6. 如权利要求5所述的一种微量润滑连续供液系统,其特征在于,所述油泵腔体螺纹连接有调节件,所述调节件与活塞端部接触,用于调节活塞的运动行 程。
  7. 如权利要求5所述的一种微量润滑连续供液系统,其特征在于,所述活塞设有环状凸台,所述环状凸台与弹簧的一端连接,弹簧的另一端与油泵腔体连接。
  8. 如权利要求5所述的一种微量润滑连续供液系统,其特征在于,所述接头件固定在出油通道内,接头件内部与油管的一端固定连接,油管的另一端与喷嘴连接,接头件与油管之间的空间与供气机构连接,接头件与气管的一端连接,气管设置在油管外周,气管另一端与喷嘴连接。
  9. 如权利要求8所述的一种微量润滑连续供液系统,其特征在于,所述喷嘴包括润滑油喷嘴部及套在润滑油喷嘴部外周的气体喷嘴部,润滑油喷嘴部及气体喷嘴部的一端分别与油管及气管连接,润滑油喷嘴部的另一端位于气体喷嘴部的内部,使喷嘴内部具有气体和润滑油混合的空间。
  10. 一种权利要求1-9任一项所述的微量润滑连续供液系统的工作方法,其特征在于,控制阀接受信号发生器的指令工作,控制活塞式油泵与供气机构之间气路的导通和关闭,使得多个活塞式油泵中至少有一个活塞式油泵处于供油状态,处于供油状态的活塞式油泵驱动润滑油经过接头件处连接的油管进入喷嘴,同时供气机构驱动气体经过接头件处连接的气管进入喷嘴,进入喷嘴的润滑油与气体混合后经过喷嘴喷出。
PCT/CN2020/113601 2020-08-14 2020-09-04 一种微量润滑连续供液系统及方法 WO2022032768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010817496.7A CN111941142A (zh) 2020-08-14 2020-08-14 一种微量润滑连续供液系统及方法
CN202010817496.7 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022032768A1 true WO2022032768A1 (zh) 2022-02-17

Family

ID=73343205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113601 WO2022032768A1 (zh) 2020-08-14 2020-09-04 一种微量润滑连续供液系统及方法

Country Status (2)

Country Link
CN (1) CN111941142A (zh)
WO (1) WO2022032768A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467892A (en) * 1981-05-08 1984-08-28 Bogert David L Van De Microlubrication control
DE19843695A1 (de) * 1998-09-24 2000-04-06 Unilube Ag Dosierpumpe
DE10144773A1 (de) * 2001-09-11 2003-04-10 Freundeskreis Des Laboratorium Vorrichtung zur Minimalmengenkühlschmierung für Nassbearbeitungsmaschinen mit wechselnden Werkzeugen
DE102010035668A1 (de) * 2010-08-27 2012-03-01 Datron Ag Minimalmengen-Kühlschmiersystem
CN107631158A (zh) * 2017-10-18 2018-01-26 青岛理工大学 一种支持不同润滑工况的连续供给精密微量润滑泵
CN109731705A (zh) * 2018-12-27 2019-05-10 上海工程技术大学 一种微量润滑装置及其使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003184894A (ja) * 2001-12-14 2003-07-03 Ntn Corp エアオイル潤滑複合型軸受装置
FI6408U1 (fi) * 2004-07-05 2004-09-30 Pinifer Ltd Oy Leikkuunestesumuvoitelujärjestelmä
CN100392247C (zh) * 2006-04-25 2008-06-04 甄继 可实现连续出料的混凝土泵送方法及混凝土泵送装置
CN201496219U (zh) * 2009-08-10 2010-06-02 浙江超润润滑元件有限公司 气动柱塞泵
EP2930414B1 (en) * 2014-04-11 2019-10-09 Alfa Laval Corporate AB Lubrication control system
CN104358996B (zh) * 2014-11-03 2016-08-17 上海金兆节能科技有限公司 微量润滑系统精密润滑泵
CN206425128U (zh) * 2016-12-14 2017-08-22 泸州市诚润机械有限公司 一种石墨乳泵送组件
CN206832725U (zh) * 2017-05-17 2018-01-02 青岛理工大学 纳米流体切削液热物理性质参数集成在线测量系统
CN107695785A (zh) * 2017-10-18 2018-02-16 青岛理工大学 一种曲柄连杆驱动的连续供给精密微量润滑泵
CN210648548U (zh) * 2019-05-31 2020-06-02 青岛理工大学 电卡辅助内冷织构车刀及纳米流体微量润滑智能工作系统
CN110449980A (zh) * 2019-07-04 2019-11-15 汇专绿色工具有限公司 一种微量润滑系统及其输出油量控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467892A (en) * 1981-05-08 1984-08-28 Bogert David L Van De Microlubrication control
DE19843695A1 (de) * 1998-09-24 2000-04-06 Unilube Ag Dosierpumpe
DE10144773A1 (de) * 2001-09-11 2003-04-10 Freundeskreis Des Laboratorium Vorrichtung zur Minimalmengenkühlschmierung für Nassbearbeitungsmaschinen mit wechselnden Werkzeugen
DE102010035668A1 (de) * 2010-08-27 2012-03-01 Datron Ag Minimalmengen-Kühlschmiersystem
CN107631158A (zh) * 2017-10-18 2018-01-26 青岛理工大学 一种支持不同润滑工况的连续供给精密微量润滑泵
CN109731705A (zh) * 2018-12-27 2019-05-10 上海工程技术大学 一种微量润滑装置及其使用方法

Also Published As

Publication number Publication date
CN111941142A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
US10969058B2 (en) Continuous supply precision minimum quantity lubrication pump supporting different lubrication conditions
WO2017028537A1 (zh) 一种船用柴油机喷油器
CN210153196U (zh) 一种齿轮自动喷射润滑系统
WO2022032768A1 (zh) 一种微量润滑连续供液系统及方法
CN203109710U (zh) 一种金属准干加工润滑装置
CN204227006U (zh) 微量润滑系统精密润滑泵
CN204502803U (zh) 过滤器组件
CN2883114Y (zh) 油脂喷脂器
CN206763187U (zh) 喉嘴距可调的组装式喷射器
CN104696083A (zh) 汽车双燃料导轨多通阀
CN215138093U (zh) 一种双流体除尘用多喷头雾化器
CN204476570U (zh) 汽车双燃料导轨多通阀
CN210146673U (zh) 一种挤压机清理垫冷却装置
CN220048582U (zh) 一种新型防滴漏二流体喷嘴座
CN216478111U (zh) 一种液压集成块
CN105736186B (zh) 增压电磁与增压压电组合式燃气喷射装置
CN105042090A (zh) 一种微小气体流量调节机构
CN218902271U (zh) 一种管柱丝扣油自动喷涂装置
CN220755359U (zh) 具有雾化功能的一体化冷却集成块
CN213872163U (zh) 一种磨煤机大牙轮喷射装置
CN217017139U (zh) 一种外接式喷油雾机器
CN210600996U (zh) 一种手动可控油气混合块
CN204842298U (zh) 一种高压清洗装置
CN216429919U (zh) 静音插桶式油缸柱塞泵
CN221075380U (zh) 一种油雾流量控制阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949265

Country of ref document: EP

Kind code of ref document: A1