WO2022030026A1 - 複合材料及び複合材料の製造方法 - Google Patents
複合材料及び複合材料の製造方法 Download PDFInfo
- Publication number
- WO2022030026A1 WO2022030026A1 PCT/JP2020/035627 JP2020035627W WO2022030026A1 WO 2022030026 A1 WO2022030026 A1 WO 2022030026A1 JP 2020035627 W JP2020035627 W JP 2020035627W WO 2022030026 A1 WO2022030026 A1 WO 2022030026A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite material
- base material
- mass
- component
- parts
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 98
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 62
- 239000012784 inorganic fiber Substances 0.000 claims abstract description 33
- 239000004115 Sodium Silicate Substances 0.000 claims abstract description 16
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052911 sodium silicate Inorganic materials 0.000 claims abstract description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000004568 cement Substances 0.000 claims abstract description 13
- 238000006482 condensation reaction Methods 0.000 claims abstract description 11
- 230000018044 dehydration Effects 0.000 claims abstract description 11
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 11
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 5
- 229910052604 silicate mineral Inorganic materials 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 39
- 239000004744 fabric Substances 0.000 description 9
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 8
- 239000011151 fibre-reinforced plastic Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 229920002748 Basalt fiber Polymers 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000010456 wollastonite Substances 0.000 description 6
- 229910052882 wollastonite Inorganic materials 0.000 description 6
- 230000001174 ascending effect Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000000050 mohair Anatomy 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
- C04B28/26—Silicates of the alkali metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/043—Alkaline-earth metal silicates, e.g. wollastonite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
- C04B14/42—Glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
- C04B14/46—Rock wool ; Ceramic or silicate fibres
- C04B14/4643—Silicates other than zircon
- C04B14/4668—Silicates other than zircon of vulcanic origin
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0016—Granular materials, e.g. microballoons
- C04B20/002—Hollow or porous granular materials
- C04B20/004—Hollow or porous granular materials inorganic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0048—Fibrous materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/006—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/06—Aluminous cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0082—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability making use of a rise in temperature, e.g. caused by an exothermic reaction
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/32—Aluminous cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/28—Fire resistance, i.e. materials resistant to accidental fires or high temperatures
Definitions
- This disclosure relates to composite materials and methods for manufacturing composite materials.
- FRP Fiber Reinforced Plastics
- a composite material that is more nonflammable than FRP is desired.
- One aspect of the present disclosure is a composite material containing a base material and an inorganic fiber.
- the base material contains (a) a dehydration condensation reaction product of sodium silicate and (b) an alumina cement.
- the composite material which is one aspect of the present disclosure, is highly nonflammable.
- Another aspect of the present disclosure is a method of manufacturing a composite material containing a base material and an inorganic fiber.
- the inorganic fiber is impregnated with a solution containing (A) sodium silicate and (B) alumina cement and heated to obtain the component (A). causes a dehydration condensation reaction.
- a highly nonflammable composite material can be produced.
- the composite material of the present disclosure includes a base material and an inorganic fiber.
- the base material is impregnated with inorganic fibers.
- the composite material is reinforced with inorganic fibers.
- the base material contains (a) the dehydration condensation reaction product of sodium silicate and (b) alumina cement.
- the component (a) is a product produced by dehydration condensation reaction of sodium silicate.
- the component (a) is, for example, a compound having a skeleton in which siloxane bonds are connected.
- the component (a) contains, for example, siloxane. As a result of the dehydration condensation reaction, 100 parts by mass of sodium silicate becomes 60 parts by mass of the component (a).
- the mass of the component (a) contained in the base material is larger than the mass of the component (b) contained in the base material.
- the mass of the component (a) is larger than the mass of the component (b), the nonflammability and strength of the composite material are higher.
- the base material preferably contains 5 parts by mass or more and 25 parts by mass or less of the component (b) with respect to 100 parts by mass of the component (a).
- the strength of the composite material is further higher.
- the base material may further contain other components.
- other components include shirasu balloons, silicate minerals and the like.
- silicate mineral include wollastonite and the like.
- the base material preferably contains 5 parts by mass or more and 20 parts by mass or less of a shirasu balloon with respect to 100 parts by mass of the component (a).
- the composite material becomes even lighter.
- the base material preferably contains 5 parts by mass or more and 15 parts by mass or less of a silicate mineral with respect to 100 parts by mass of the component (a).
- the blending amount of the silicate mineral in the base material is within the above range, the heat resistance of the composite material is further higher.
- Examples of the inorganic fiber include glass fiber and basalt fiber.
- the form of the inorganic fiber is preferably cross-shaped.
- Examples of the inorganic fiber include a glass cloth made of glass fiber, a glass cloth made of basalt fiber, and the like.
- glass fiber or basalt fiber is used as the inorganic fiber, the nonflammability of the composite material is higher than that when aluminum fiber or alumina fiber is used.
- basalt fiber is used as the inorganic fiber, the mechanical strength of the composite material is higher. It is presumed that the reason for the high mechanical strength is that the basalt fibers are not easily attacked even when the base material is alkaline.
- the inorganic fiber does not contain a binder made of an organic material.
- smoke and an offensive odor are unlikely to be generated from the composite material even when the composite material is heated to a temperature of 200 ° C. or higher.
- the composite material of the present disclosure can be produced, for example, by basically the same method as the conventional method for producing FRP.
- the conventional method for producing FRP uses a liquid resin composition
- a solution containing (A) sodium silicate and (B) alumina cement hereinafter referred to as. Then, use the solution for the base material).
- the mass of the component (A) contained in the base material solution is larger than the mass of the component (B) contained in the base material solution.
- the mass of the component (A) is larger than the mass of the component (B), the produced composite material is more nonflammable.
- the base material solution preferably contains 5 parts by mass or more and 50 parts by mass or less of the component (B) with respect to 100 parts by mass of the component (A).
- the blending amount of the component (B) in the base material solution is within the above range, the strength of the produced composite material is higher.
- the base material solution may further contain other components.
- other components include shirasu balloons, silicate minerals and the like.
- silicate mineral include wollastonite and the like.
- the base material solution preferably contains 5 parts by mass or more and 20 parts by mass or less of a shirasu balloon with respect to 100 parts by mass of the component (A).
- the composite material becomes even lighter.
- the base material solution preferably contains 5 parts by mass or more and 15 parts by mass or less of a silicate mineral with respect to 100 parts by mass of the component (A).
- the blending amount of the silicate mineral in the base material solution is within the above range, the heat resistance of the composite material is further higher.
- Examples of the method for manufacturing the composite material include a manufacturing method including the following steps (1) to (4) (hereinafter referred to as the first manufacturing method).
- the laminate is placed in a drying oven at 70 to 100 ° C. for 5 hours for each production type. At this time, the solvent of the base material solution is vaporized and the laminate is cured. Further, the sodium (A) sodium silicate contained in the base material solution becomes the component (a) by the dehydration condensation reaction. The component (a) is a dehydration condensation reaction product of sodium silicate. The (B) alumina cement contained in the base material solution functions as a curing accelerator. As a result, the laminate becomes a composite material.
- the composite material includes a base material and an inorganic fiber. The base material is impregnated with inorganic fibers. The composite material is reinforced with inorganic fibers.
- the base material contains the component (a) and the component (b).
- the composite materials of the present disclosure are more nonflammable than conventional FRP. Moreover, the composite material of the present disclosure has high strength.
- Example 1 Production of base material solution
- the base material solutions S1 to S3 having the following compositions were produced.
- the method for producing the base material solutions S1 to S3 is a method of mixing each component.
- composite material S1, S2, and S3 were produced by the above-mentioned first production method using the base material solution S2. Further, a composite material was produced by the above-mentioned first production method using the base material solution S3.
- the composite materials produced by using the base material solutions S1, S2, and S3 will be referred to as composite materials S1, S2, and S3, respectively.
- the inorganic fiber used in the production of the composite materials S1 to S3 was glass cloth (manufactured by Nitto Boseki, product number: WF350-100-BS6). Further, in the composite materials S1 to S3, the number of laminated layers of the inorganic fiber cloth was 11. In the drying and curing step, the temperature in the drying oven was 100 ° C.
- a bending test was performed in accordance with JIS K 7171, and the bending strength and the bending elastic modulus were measured.
- the bending strength of the composite material S1 was 108.3 MPa.
- the flexural modulus of the composite material S1 was 4.430 GPa.
- Each of the composite materials S1 to S3 was subjected to a heat generation test in accordance with ISO-5660. In the exothermic test, the test piece was heated for 20 minutes. The radiation intensity was 50 kW / m 2 .
- the total calorific value was 0.01 MJ / m 2 , which was very small.
- the maximum heat generation rate was 0.33 kW / m 2 , which was very low.
- Each of the composite materials S1 to S3 was subjected to a nonflammability test in accordance with ISO-1182.
- the test method was as follows. A cylindrical electric furnace was prepared. In addition, a test body was prepared. The shape of the test piece was a cylinder having a diameter of 44.6 mm and a height of 47.5 mm. The mass of the test piece before the test was 125.46 g.
- the temperature inside the electric furnace was adjusted to 750 ⁇ 5 ° C. After adjusting the temperature inside the furnace, the power consumption of the electric furnace was kept constant. After adjusting the temperature inside the furnace, the test piece was inserted into the furnace. After inserting the test piece, the temperature inside the furnace, the center temperature of the test piece, and the surface temperature of the test piece were continuously measured. In addition, the mass of the test piece was measured before and after the test. In addition, the shape of the test piece was observed before and after the test. The test was continued until the temperature inside the furnace reached the final equilibrium temperature. The final equilibrium temperature is the temperature inside the furnace when the temperature inside the furnace remains stable for 10 minutes within the range of ⁇ 2 ° C.
- the temperature inside the ascending furnace at the center of the test piece was 2 ° C.
- the ascending furnace temperature is a value obtained by subtracting the final equilibrium temperature from the maximum temperature in the furnace.
- the maximum temperature in the furnace is the maximum temperature in the furnace during the period from the insertion of the test piece to the end of the test.
- the temperature inside the ascending furnace on the surface of the test piece was 2.8 ° C.
- the mass reduction rate WR of the test piece was 12.0%.
- the mass reduction rate WR is a value represented by the following equation (1).
- W1 is the mass of the test piece before the test.
- W2 is the mass of the test piece after the test.
- the temperature inside the ascending furnace at the center of the test piece and the temperature inside the ascending furnace on the surface of the test piece were smaller than the standard 20 ° C. in ISO-1182. Further, in the composite material S1, the mass reduction rate WR was smaller than the standard of 30% in ISO-1182. Further, in the composite material S1, the shape of the test piece after the test did not change significantly as compared with the shape of the test piece before the test. The results of the nonflammability test show that the composite material S1 is highly nonflammable.
- Example 2 Production of base material solution A base material solution S4 having the following composition was produced.
- the method for producing the base material solution S4 is a method of mixing each component.
- the inorganic fiber used in the production of the composite material S4 was basalt fiber (manufactured by Arteplus, product number: AC1919G 102).
- the number of laminated inorganic fibers was 11.
- the temperature in the drying oven was 100 ° C.
- the composite material S4 was subjected to a tensile test in accordance with JIS K 7164, and the tensile strength was measured.
- the tensile strength of the composite material S4 was 34.1 MPa.
- the composite material S4 was subjected to a bending test in accordance with JIS K7171, and the bending strength and flexural modulus were measured.
- the bending strength of the composite material S4 was 57.1 MPa.
- the flexural modulus of the composite material S4 was 20.8 GPa.
- a plurality of functions possessed by one component in the above embodiment may be realized by a plurality of components, or one function possessed by one component may be realized by a plurality of components. May be good. Further, a plurality of functions possessed by the plurality of components may be realized by one component, or one function realized by the plurality of components may be realized by one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above embodiment may be added or replaced with the configuration of the other above embodiment.
- the present disclosure can be realized in various forms such as a system having the composite material as a component.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本開示の複合材料は、母材と、無機繊維とを含む。例えば、母材は無機繊維に含侵している。複合材料は、無機繊維により強化されている。
本開示の複合材料は、例えば、従来のFRPの製造方法と基本的には同様の方法で製造することができる。ただし、従来のFRPの製造方法では液状の樹脂組成物を使用していたのに対し、本開示の複合材料の製造方法では、(A)ケイ酸ナトリウム及び(B)アルミナセメントを含む溶液(以下では母材用溶液とする)を使用する。
(i)生産型の内面に、母材用溶液を均等に塗り付ける。
積層物を、生産型ごと、70~100℃の乾燥炉の中に5時間置く。このとき、母材用溶液の溶媒は気化し、積層物は硬化する。また、母材用溶液に含まれている(A)ケイ酸ナトリウムは、脱水縮合反応により、(a)成分となる。(a)成分とは、ケイ酸ナトリウムの脱水縮合反応生成物である。母材用溶液に含まれている(B)アルミナセメントは、硬化促進剤として機能する。その結果、積層物は複合材料となる。複合材料は、母材と、無機繊維とを含む。母材は、無機繊維に含侵している。複合材料は、無機繊維により強化されている。母材は、(a)成分及び(b)成分を含む。
へら等を用い、生産型と複合材料との間に隙間を作る。その隙間にコンプレッサー等を用いてエアーを吹き込む。次に、生産型から複合材料を取り出す。なお、第1の製造方法で製造された複合材料は成形品である。
複合材料のうち不要な部分を、電動サンダー等を用いて切除する。
本開示の複合材料は、従来のFRPに比べて不燃性が高い。また、本開示の複合材料は、強度が高い。
(4-1)母材用溶液の製造
以下の組成を有する母材用溶液S1~S3を製造した。母材用溶液S1~S3の製造方法は、各成分を混合する方法である。
ケイ酸ナトリウムJIS3号:74.0質量部
シラスバルーン:7.4質量部
ケイ酸塩鉱物(ウオラストナイト):7.4質量部
アルミナセメント:11.2質量部
(母材用溶液S2)
ケイ酸ナトリウムJIS3号:69.0質量部
シラスバルーン:6.9質量部
ケイ酸塩鉱物(ウオラストナイト):6.9質量部
アルミナセメント:17.2質量部
(母材用溶液S3)
ケイ酸ナトリウムJIS3号:62.4質量部
シラスバルーン:6.3質量部
ケイ酸塩鉱物(ウオラストナイト):6.3質量部
アルミナセメント:25.0質量部
(4-2)複合材料の製造
母材用溶液S1を用い、上述した第1の製造方法により複合材料を製造した。また、母材用溶液S2を用い、上述した第1の製造方法により複合材料を製造した。また、母材用溶液S3を用い、上述した第1の製造方法により複合材料を製造した。以下では、母材用溶液S1、S2、S3を用いて製造した複合材料を、それぞれ、複合材料S1、S2、S3とする。
複合材料S1~S3のそれぞれについて、JIS K 7164に準拠し、引張試験を行い、引張強さを測定した。複合材料S1の引張強さは50.4MPaであった。
式(1)において、W1は試験前における試験体の質量である。W2は試験後における試験体の質量である。
(5-1)母材用溶液の製造
以下の組成を有する母材用溶液S4を製造した。母材用溶液S4の製造方法は、各成分を混合する方法である。
ケイ酸ナトリウムJIS3号:74.0質量部
シラスバルーン:7.4質量部
ケイ酸塩鉱物(ウオラストナイト):7.4質量部
アルミナセメント:7.4質量部
(5-2)複合材料の製造
母材用溶液S4を用い、上述した第1の製造方法により複合材料を製造した。以下では、母材用溶液S4を用いて製造した複合材料を、複合材料S4とする。
複合材料S4について、JIS K 7164に準拠し、引張試験を行い、引張強さを測定した。複合材料S4の引張強さは34.1MPaであった。
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
Claims (6)
- 母材と、無機繊維とを含む複合材料であって、
前記母材は、(a)ケイ酸ナトリウムの脱水縮合反応生成物及び(b)アルミナセメントを含む複合材料。 - 請求項1に記載の複合材料であって、
前記母材に含まれる前記(a)成分の質量は、前記母材に含まれる前記(b)成分の質量より大きい複合材料。 - 請求項1又は2に記載の複合材料であって、
前記母材は、シラスバルーン、及びケイ酸塩鉱物から成る群から選択される1以上をさらに含む複合材料。 - 母材と、無機繊維とを含む複合材料の製造方法であって、
前記無機繊維に、(A)ケイ酸ナトリウム及び(B)アルミナセメントを含む溶液を浸み込ませ、
加熱することで前記(A)成分に脱水縮合反応を生じさせる複合材料の製造方法。 - 請求項4に記載の複合材料の製造方法であって、
前記溶液に含まれる前記(A)成分の質量は、前記溶液に含まれる前記(B)成分の質量より大きい複合材料の製造方法。 - 請求項4又は5に記載の複合材料の製造方法であって、
前記溶液は、シラスバルーン、及びケイ酸塩鉱物から成る群から選択される1以上をさらに含む複合材料の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20948450.0A EP4190761A4 (en) | 2020-08-03 | 2020-09-18 | COMPOSITE MATERIAL AND METHOD FOR PRODUCING A COMPOSITE MATERIAL |
JP2022541102A JPWO2022030026A1 (ja) | 2020-08-03 | 2020-09-18 | |
CN202080104156.8A CN116134000A (zh) | 2020-08-03 | 2020-09-18 | 复合材料及其制造方法 |
US18/019,103 US20240034681A1 (en) | 2020-08-03 | 2020-09-18 | Composite material and method for producing composite material |
KR1020237006728A KR20230045036A (ko) | 2020-08-03 | 2020-09-18 | 복합 재료 및 복합 재료의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020131656 | 2020-08-03 | ||
JP2020-131656 | 2020-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022030026A1 true WO2022030026A1 (ja) | 2022-02-10 |
Family
ID=80117190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/035627 WO2022030026A1 (ja) | 2020-08-03 | 2020-09-18 | 複合材料及び複合材料の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240034681A1 (ja) |
EP (1) | EP4190761A4 (ja) |
JP (1) | JPWO2022030026A1 (ja) |
KR (1) | KR20230045036A (ja) |
CN (1) | CN116134000A (ja) |
TW (1) | TW202206400A (ja) |
WO (1) | WO2022030026A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61251554A (ja) * | 1985-04-26 | 1986-11-08 | ニチアス株式会社 | 撥水性ケイ酸カルシウム成形体の製造法 |
JPS62246880A (ja) * | 1986-04-15 | 1987-10-28 | 品川白煉瓦株式会社 | 耐火断熱ボ−ド |
JP2000281424A (ja) * | 1999-03-30 | 2000-10-10 | Rivall:Kk | 軽量不焼成タイル |
JP2000318071A (ja) | 1999-05-10 | 2000-11-21 | Toray Ind Inc | Frp材とその製造方法 |
JP2003165763A (ja) * | 2001-11-28 | 2003-06-10 | Teihyu Corp | 繊維補強耐酸性コンクリート |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5515933A (en) * | 1978-07-15 | 1980-02-04 | Shikoku Kaken Kogyo Kk | Inorganic fiber plate and production thereof |
JPH05330889A (ja) * | 1992-06-02 | 1993-12-14 | Futsutowaaku Composite Kk | 繊維強化珪酸化合物複合材及びその製造方法 |
JPH09156972A (ja) * | 1995-12-04 | 1997-06-17 | Futsutowaaku Composite Kk | 珪酸化合物硬化体及びその製造方法、並びに繊維強化珪酸化合物複合材及びその製造方法 |
KR100582660B1 (ko) * | 2003-03-07 | 2006-05-24 | (주)조연테크 | 유리섬유강화시멘트의 제조방법 |
JP4685591B2 (ja) * | 2005-10-26 | 2011-05-18 | ニチアス株式会社 | 耐火組成物、不定形耐火物および吹き付け施工方法 |
JP2016065408A (ja) * | 2014-09-25 | 2016-04-28 | 双和化学産業株式会社 | 繊維強化樹脂組成物の製造方法、繊維強化樹脂組成物用の材料、及び、防水構造体 |
CN110510981A (zh) * | 2019-09-12 | 2019-11-29 | 格尚穆阳新材料(深圳)有限责任公司 | 墙体保温浆料及其制备方法 |
-
2020
- 2020-09-18 US US18/019,103 patent/US20240034681A1/en active Pending
- 2020-09-18 WO PCT/JP2020/035627 patent/WO2022030026A1/ja active Application Filing
- 2020-09-18 KR KR1020237006728A patent/KR20230045036A/ko unknown
- 2020-09-18 TW TW109132383A patent/TW202206400A/zh unknown
- 2020-09-18 JP JP2022541102A patent/JPWO2022030026A1/ja active Pending
- 2020-09-18 CN CN202080104156.8A patent/CN116134000A/zh active Pending
- 2020-09-18 EP EP20948450.0A patent/EP4190761A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61251554A (ja) * | 1985-04-26 | 1986-11-08 | ニチアス株式会社 | 撥水性ケイ酸カルシウム成形体の製造法 |
JPS62246880A (ja) * | 1986-04-15 | 1987-10-28 | 品川白煉瓦株式会社 | 耐火断熱ボ−ド |
JP2000281424A (ja) * | 1999-03-30 | 2000-10-10 | Rivall:Kk | 軽量不焼成タイル |
JP2000318071A (ja) | 1999-05-10 | 2000-11-21 | Toray Ind Inc | Frp材とその製造方法 |
JP2003165763A (ja) * | 2001-11-28 | 2003-06-10 | Teihyu Corp | 繊維補強耐酸性コンクリート |
Non-Patent Citations (1)
Title |
---|
See also references of EP4190761A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4190761A4 (en) | 2024-08-28 |
CN116134000A (zh) | 2023-05-16 |
TW202206400A (zh) | 2022-02-16 |
KR20230045036A (ko) | 2023-04-04 |
US20240034681A1 (en) | 2024-02-01 |
EP4190761A1 (en) | 2023-06-07 |
JPWO2022030026A1 (ja) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
IL157790A (en) | Preparations containing an inorganic matrix, composites and a process for their preparation | |
CN110216930B (zh) | 一种高强度可陶瓷化树脂复合材料及其制备方法 | |
CN109456074A (zh) | 一种纤维增强陶瓷基透波材料及制备方法 | |
KR20010014653A (ko) | 무기질계 성형품의 제조방법 | |
US7771686B2 (en) | Hybrid inorganic polymer systems | |
CN108116011A (zh) | 一种表面经过防护处理的夹层结构热防护材料及其制备方法 | |
Song et al. | Aramid fiber coated with aramid nanofiber coating to improve its interfacial properties with polycarbonate | |
WO2022030026A1 (ja) | 複合材料及び複合材料の製造方法 | |
JPS6319474B2 (ja) | ||
JP4065668B2 (ja) | 断熱材及びその製造方法 | |
JP2001047548A (ja) | 化粧無機質系成形品の製造方法 | |
CN111807808B (zh) | 一种耐高温隔热复合材料的制备方法 | |
CN110903683B (zh) | 一种复合材料表面修复方法 | |
CN106700102A (zh) | 一种聚苯硫醚增强复合材料及其制备方法 | |
CN111995840A (zh) | 一种新型环氧树脂的制备方法 | |
JP2001233680A (ja) | 断熱材の製造方法 | |
KR102254810B1 (ko) | 구조물 보강용 패널 및 이를 이용한 구조물 보강방법 | |
JP7572898B2 (ja) | 繊維強化樹脂成形体およびその製造方法 | |
JP7572884B2 (ja) | 繊維強化樹脂成形体およびその製造方法 | |
CN118063133B (zh) | 一种含人造石树脂的耐高温建筑材料及其制备方法 | |
KR102368368B1 (ko) | 실리콘 잉곳 성장로 Spill Tray용 내화단열재 | |
KR102073894B1 (ko) | 고강도 열경화성 수지를 바인더로 하여 복합섬유 소재를 인발성형한 난연재료인 frp 패널조성물 및 이를 이용한 콘크리트 구조물 보수보강공법 | |
TW202235535A (zh) | 利用纖維素奈米纖維改質的樹脂複合材料及其製造方式 | |
JP2756068B2 (ja) | セメント補強用炭素繊維及びセメント複合体 | |
CN116854447A (zh) | 一种轻质高强度隔热材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20948450 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18019103 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022541102 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237006728 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202337013103 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020948450 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020948450 Country of ref document: EP Effective date: 20230303 |