WO2022029904A1 - 測距装置、測距方法及びレーダ装置 - Google Patents

測距装置、測距方法及びレーダ装置 Download PDF

Info

Publication number
WO2022029904A1
WO2022029904A1 PCT/JP2020/029917 JP2020029917W WO2022029904A1 WO 2022029904 A1 WO2022029904 A1 WO 2022029904A1 JP 2020029917 W JP2020029917 W JP 2020029917W WO 2022029904 A1 WO2022029904 A1 WO 2022029904A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
unit
shift
fourier transform
distance measuring
Prior art date
Application number
PCT/JP2020/029917
Other languages
English (en)
French (fr)
Inventor
広樹 後藤
雅 三本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112020007239.8T priority Critical patent/DE112020007239B4/de
Priority to PCT/JP2020/029917 priority patent/WO2022029904A1/ja
Priority to KR1020237001890A priority patent/KR102524164B1/ko
Priority to JP2022541390A priority patent/JP7138828B2/ja
Priority to CN202080104543.1A priority patent/CN116134340A/zh
Priority to TW110100765A priority patent/TW202206846A/zh
Publication of WO2022029904A1 publication Critical patent/WO2022029904A1/ja
Priority to US18/083,934 priority patent/US20230124983A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4917Receivers superposing optical signals in a photodetector, e.g. optical heterodyne detection

Definitions

  • the present disclosure relates to a distance measuring device and a distance measuring method for calculating the distance from the distance measuring device to the object to be measured, and a radar device provided with the distance measuring device.
  • the ranging device In the ranging device, the interference light between the reflected light from the ranging object due to a part of the frequency sweep light irradiating the ranging object and the reference light which is the rest of the frequency sweep light is shown. It is equipped with an FFT converter that Fourier transforms (FFT: Fast Fourier Transform) a digital signal, and calculates the distance from the distance measuring device to the object to be measured based on the signal after FFT by the FFT converter (hereinafter referred to as a distance measuring device). There is a “conventional ranging device”).
  • FFT Fast Fourier Transform
  • a millimeter-wave radar device provided with a zoom FFT converter that zooms FFTs a digital signal (see, for example, Patent Document 1).
  • the zoom FFT converter thins out a part of the digital signal and FFTs the digital signal after the thinning out.
  • the accuracy of distance calculation can be improved as the frequency resolution is increased by increasing the number of sampling points of the FFT in the FFT converter.
  • the zoom FFT converter disclosed in Patent Document 1 is applied to a conventional ranging device, the frequency resolution may be improved even if the number of sampling points is the same.
  • the zoom FFT converter thins out a part of the digital signal, a situation where spurious is generated or a situation where a desired signal is buried in noise may occur. In a situation where spurious is generated or a desired signal is buried in noise, even if the frequency resolution is increased, the distance may not be calculated, so that the above problem cannot be solved.
  • the present disclosure has been made to solve the above-mentioned problems, and even if the number of sampling points is the same, the distance measuring device and the distance measuring device that can improve the calculation accuracy of the distance as compared with the conventional distance measuring device.
  • the purpose is to get a method.
  • the frequency sweep light whose frequency changes with the passage of time is reflected from the ranging object by irradiating the ranging object with a part of the frequency sweep light, and the frequency sweep light.
  • a frequency shift unit that shifts by a different amount of shift
  • a Fourier conversion unit that Fourier-converts each of the N digital signals after frequency shift by the frequency shift unit, and all N signals after Fourier conversion by the Fourier conversion unit.
  • the frequency component related to the object to be measured is specified from the plurality of frequency components included in the frequency shift unit, and the specified frequency component is specified from the plurality of shift amounts used for frequency shift by the frequency shift unit.
  • a distance calculation unit that specifies the shift amount related to the signal after Fourier conversion including, and calculates the distance from the distance measuring device to the distance measuring object from the sum of the frequency of the specified frequency component and the specified shift amount. It is equipped with.
  • the accuracy of distance calculation can be improved as compared with the conventional distance measuring device.
  • FIG. 1 It is a block diagram which shows the radar apparatus which comprises the ranging device 2 which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the inside of an optical transmission / reception part 1. It is explanatory drawing which shows an example of the frequency sweep light.
  • It is a hardware block diagram which shows the hardware of the distance measuring apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the computer when the distance measuring device 2 is realized by software, firmware and the like.
  • It is a flowchart which shows the distance measuring method which is the processing procedure of the distance measuring apparatus 2 which concerns on Embodiment 1.
  • FIG. 1 It is a block diagram which shows the radar apparatus which comprises the ranging device 2 which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the inside of an optical transmission / reception part 1. It is explanatory drawing which shows an example of the frequency sweep light.
  • It is a hardware block diagram which shows the hardware of the distance measuring apparatus 2 which concerns on Embodi
  • FIG. 1 is a configuration diagram showing a radar device including the distance measuring device 2 according to the first embodiment.
  • the radar device shown in FIG. 1 includes an optical transmission / reception unit 1 and a distance measuring device 2.
  • the optical transmission / reception unit 1 irradiates a distance measuring object with a part of the frequency sweep light whose frequency changes with the passage of time, and then receives the reflected light which is the frequency sweep light reflected by the distance measuring object. ..
  • the optical transmission / reception unit 1 outputs a digital signal f (t) indicating interference light between the reflected light and the reference light which is the rest of the frequency sweep light to the distance measuring device 2.
  • t is the time of day.
  • FIG. 2 is a configuration diagram showing the inside of the optical transmission / reception unit 1.
  • the optical transmission / reception unit 1 includes a frequency sweep light source 11, an optical branching unit 12, a sensor head unit 15, an optical interferometer 17, a photodetector 18, and an analog-to-digital converter (hereinafter referred to as “A / D converter”) 19. There is.
  • the frequency sweep light source 11 outputs the frequency sweep light whose frequency changes with the passage of time to the optical branch portion 12.
  • FIG. 3 is an explanatory diagram showing an example of frequency sweep light.
  • the frequency of the frequency sweep light changes from the lowest frequency f min to the highest frequency f max with the passage of time. When the frequency of the frequency sweep light reaches the maximum frequency f max , it once returns to the minimum frequency f min and then changes again from the minimum frequency f min to the maximum frequency f max .
  • the optical branching portion 12 includes an optical coupler 13 and a circulator 14.
  • the optical coupler 13 branches the frequency sweep light output from the frequency sweep light source 11 into irradiation light and reference light.
  • the optical coupler 13 outputs the irradiation light to the circulator 14 and outputs the reference light to the optical interferometer 17.
  • the circulator 14 outputs the irradiation light output from the optical coupler 13 to the condensing optical element 16 of the sensor head unit 15.
  • the circulator 14 outputs the reflected light output from the condensing optical element 16 to the optical interferometer 17.
  • the sensor head unit 15 includes a condensing optical element 16.
  • the condensing optical element 16 is realized by, for example, two aspherical lenses.
  • the condensing optical element 16 condenses the irradiation light output from the circulator 14 on the distance measuring object. That is, of the two aspherical lenses included in the condensing optical element 16, the aspherical lens in the previous stage converts the irradiation light output from the circulator 14 into parallel light.
  • the aspherical lens in the rear stage irradiates the object to be distanced with light by condensing the parallel light converted by the aspherical lens in the front stage. Further, the condensing optical element 16 collects the reflected light from the distance measuring object and outputs the reflected light to the circulator 14.
  • the optical interferometer 17 generates interference light between the reflected light output from the circulator 14 and the reference light output from the optical coupler 13, and outputs the interference light to the light detector 18.
  • the photodetector 18 detects the interference light output from the optical interferometer 17 and converts the interference light into an electric signal.
  • the photodetector 18 outputs an electric signal to the A / D converter 19.
  • the A / D converter 19 converts the electric signal output from the photodetector 18 from the analog signal to the digital signal f (t), and outputs the digital signal f (t) to the ranging device 2.
  • the distance measuring device 2 shown in FIG. 1 includes a signal distribution unit 21, a frequency shift unit 22, a Fourier transform unit 24, and a distance calculation unit 26.
  • FIG. 4 is a hardware configuration diagram showing the hardware of the distance measuring device 2 according to the first embodiment.
  • the signal distribution unit 21 is realized by, for example, the signal distribution circuit 31 shown in FIG.
  • the signal distribution unit 21 distributes the digital signals f (t) output from the optical transmission / reception unit 1 to N pieces.
  • N is an integer of 2 or more.
  • the signal distribution unit 21 outputs N digital signals f (t) to the frequency shift unit 22.
  • the frequency shift unit 22 is realized by, for example, the frequency shift circuit 32 shown in FIG.
  • the frequency shift unit 22 includes N frequency shift processing units 23-1 to 23-N.
  • the frequency shift unit 22 shifts each frequency of the N digital signals after distribution by the signal distribution unit 21 by a shift amount different from each other.
  • the frequency shift unit 22 outputs N digital signals f (t) ⁇ exp (j ⁇ 1 t) to f (t) ⁇ exp (j ⁇ N t) after the frequency shift to the Fourier transform unit 24.
  • the frequency shift processing unit 23-1 shifts the frequency of the digital signal f (t) output from the optical transmission / reception unit 1 by the shift amount ⁇ f 1 , and the digital signal f (t) ⁇ exp (j ⁇ 1 t) after the frequency shift. ) Is output to the Fourier transform processing unit 25-1 of the Fourier transform unit 24.
  • the distance measuring device 2 may not include the frequency shift processing unit 23-1, and the optical transmission / reception unit 1 and the Fourier transform processing unit 24-1 may be directly connected.
  • the frequency shift processing unit 23-2 shifts the frequency of the digital signal f (t) output from the optical transmission / reception unit 1 by the shift amount ⁇ f 2 , and the digital signal f (t) ⁇ exp (j ⁇ 2 t) after the frequency shift. ) Is output to the Fourier transform processing unit 25-2 of the Fourier transform unit 24.
  • ⁇ 2 is an angular frequency obtained by multiplying the shift amount ⁇ f 2 by 2 ⁇ .
  • the frequency shift processing unit 23-3 shifts the frequency of the digital signal f (t) output from the optical transmission / reception unit 1 by the shift amount ⁇ f 3 , and the digital signal f (t) ⁇ exp (j ⁇ 3 t) after the frequency shift. ) Is output to the Fourier transform processing unit 25-3 of the Fourier transform unit 24.
  • ⁇ 3 is an angular frequency obtained by multiplying the shift amount ⁇ f 3 by 2 ⁇ .
  • the frequency shift processing unit 23-N shifts the frequency of the digital signal f (t) output from the optical transmission / reception unit 1 by the shift amount ⁇ f N , and the digital signal f (t) ⁇ exp (j ⁇ N t) after the frequency shift. ) Is output to the Fourier transform processing unit 25-N of the Fourier transform unit 24.
  • ⁇ N is an angular frequency obtained by multiplying the shift amount ⁇ f N by 2 ⁇ . It should be noted that ⁇ f 1 ⁇ f 2 ⁇ f 3 ⁇ ... ⁇ f N.
  • the Fourier transform unit 24 is realized by, for example, the Fourier transform circuit 33 shown in FIG.
  • the Fourier transform unit 24 includes N Fourier transform processing units 25-1 to 25-N.
  • the Fourier transform unit 24 outputs N signals F 1 (f) to F N (f) after the Fourier transform to the distance calculation unit 26.
  • f is a frequency.
  • the Fourier transform processing unit 25-1 Fourier transforms the digital signal f (t) ⁇ exp (j ⁇ 1 t) after the frequency shift by the frequency shift processing unit 23-1.
  • the Fourier transform processing unit 25-1 outputs the signal F 1 (f) after the Fourier transform to the distance calculation unit 26.
  • the Fourier transform processing unit 25-2 Fourier transforms the digital signal f (t) ⁇ exp (j ⁇ 2 t) after the frequency shift by the frequency shift processing unit 23-2.
  • the Fourier transform processing unit 25-2 outputs the signal F 2 (f) after the Fourier transform to the distance calculation unit 26.
  • the Fourier transform processing unit 25-3 Fourier transforms the digital signal f (t) ⁇ exp (j ⁇ 3 t) after the frequency shift by the frequency shift processing unit 23-3.
  • the Fourier transform processing unit 25-3 outputs the signal F 3 (f) after the Fourier transform to the distance calculation unit 26.
  • the Fourier transform processing unit 25-N Fourier transforms the digital signal f (t) ⁇ exp (j ⁇ N t) after the frequency shift by the frequency shift processing unit 23-N.
  • the Fourier transform processing unit 25-N outputs the signal F N (f) after the Fourier transform to the distance calculation unit 26.
  • the distance calculation unit 26 is realized by, for example, the distance calculation circuit 34 shown in FIG.
  • the distance calculation unit 26 includes a frequency component specifying unit 27, a shift amount specifying unit 28, and a distance calculation processing unit 29.
  • the distance calculation unit 26 selects the distance-finding object from among the plurality of frequency components included in all of the N signals F 1 (f) to F N (f) after the Fourier transform by the Fourier transform unit 24.
  • the frequency component FC (f T ) is specified.
  • the distance calculation unit 26 is a signal F after Fourier transform including a specified frequency component FC (f T ) from a plurality of shift quantities ⁇ f 1 to ⁇ f N used for frequency shift by the frequency shift unit 22.
  • the shift amount ⁇ f n related to n (f) is specified.
  • the distance calculation unit 26 calculates the distance L from the distance measuring device 2 to the distance measuring object from the sum of the frequency f T of the specified frequency component FC (f T ) and the specified shift amount ⁇ f n .
  • the frequency component specifying unit 27 is composed of a plurality of frequency components included in all of the signals F 1 (f) to F N (f) after the Fourier transform by the Fourier transform processing units 25-1 to 25-N.
  • the frequency component FC (f T ) related to the object to be measured is specified.
  • the frequency component specifying unit 27 outputs the frequency component FC (f T ) related to the distance measuring object to the shift amount specifying unit 28, and outputs the frequency f T of the specified frequency component FC (f T ) to the distance calculation processing unit 29. Output.
  • the shift amount specifying unit 28 is specified by the frequency component specifying unit 27 from among a plurality of shift amounts ⁇ f 1 to ⁇ f N used for frequency shifting by the frequency shift processing units 23-1 to 23-N.
  • the shift amount ⁇ f n related to the signal F n (f) after the Fourier transform including the frequency component FC (f T ) is specified.
  • the shift amount specifying unit 28 outputs the specified shift amount ⁇ f n to the distance calculation processing unit 29.
  • the distance calculation processing unit 29 calculates the sum of the frequency f T of the frequency component FC (f T ) specified by the frequency component specifying unit 27 and the shift amount ⁇ f n specified by the shift amount specifying unit 28.
  • the distance calculation processing unit 29 calculates the distance L from the distance measuring device 2 to the distance measuring object from the sum f T + ⁇ f n of the frequency f T of the frequency component FC (f T ) and the shift amount ⁇ f n .
  • each of the signal distribution unit 21, the frequency shift unit 22, the Fourier transform unit 24, and the distance calculation unit 26, which are the components of the distance measuring device 2 is realized by dedicated hardware as shown in FIG. I'm assuming something. That is, it is assumed that the distance measuring device 2 is realized by the signal distribution circuit 31, the frequency shift circuit 32, the Fourier transform circuit 33, and the distance calculation circuit 34.
  • Each of the signal distribution circuit 31, frequency shift circuit 32, Fourier conversion circuit 33, and distance calculation circuit 34 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). , FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the components of the distance measuring device 2 are not limited to those realized by dedicated hardware, but the distance measuring device 2 is realized by software, firmware, or a combination of software and firmware. It is also good.
  • the software or firmware is stored as a program in the memory of the computer.
  • a computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a computing device, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
  • FIG. 5 is a hardware configuration diagram of a computer when the distance measuring device 2 is realized by software, firmware, or the like.
  • a program for causing a computer to execute each processing procedure in the signal distribution unit 21, the frequency shift unit 22, the Fourier transform unit 24, and the distance calculation unit 26 is stored in the memory. It is stored in 41. Then, the processor 42 of the computer executes the program stored in the memory 41.
  • FIG. 4 shows an example in which each of the components of the distance measuring device 2 is realized by dedicated hardware
  • FIG. 5 shows an example in which the distance measuring device 2 is realized by software, firmware, or the like. ..
  • this is only an example, and some components of the ranging device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
  • the frequency sweep light source 11 of the optical transmission / reception unit 1 outputs the frequency sweep light whose frequency changes with the passage of time to the optical coupler 13 of the optical branch unit 12.
  • the optical coupler 13 receives the frequency sweep light from the frequency sweep light source 11, the frequency sweep light is branched into the irradiation light and the reference light.
  • the optical coupler 13 outputs the irradiation light to the circulator 14 and outputs the reference light to the optical interferometer 17.
  • the circulator 14 When the circulator 14 receives the irradiation light from the optical coupler 13, the circulator 14 outputs the irradiation light to the condensing optical element 16 of the sensor head unit 15.
  • the condensing optical element 16 receives the irradiation light from the circulator 14, the condensing optical element 16 condenses the irradiation light on the distance measuring object. Further, the condensing optical element 16 collects the reflected light from the distance measuring object and outputs the reflected light to the circulator 14.
  • the circulator 14 receives the reflected light from the condensing optical element 16
  • the circulator 14 outputs the reflected light to the optical interferometer 17.
  • the optical interferometer 17 generates interference light between the reflected light output from the circulator 14 and the reference light output from the optical coupler 13.
  • the optical interferometer 17 outputs the interference light to the photodetector 18.
  • the photodetector 18 detects the interference light output from the optical interferometer 17 and converts the interference light into an electric signal.
  • the photodetector 18 outputs an electric signal to the A / D converter 19.
  • the A / D converter 19 Upon receiving the electric signal from the photodetector 18, the A / D converter 19 converts the electric signal from the analog signal to the digital signal f (t).
  • the A / D converter 19 outputs the digital signal f (t) to the ranging device 2.
  • the distance measuring device 2 calculates the distance L from the distance measuring device 2 to the distance measuring object based on the digital signal f (t) output from the optical transmission / reception unit 1.
  • FIG. 6 is a flowchart showing a distance measuring method which is a processing procedure of the distance measuring device 2 according to the first embodiment. Hereinafter, the operation of the distance measuring device 2 will be specifically described.
  • the signal distribution unit 21 receives the digital signal f (t) from the optical transmission / reception unit 1, the signal distribution unit 21 distributes the digital signal f (t) to N pieces (step ST1 in FIG. 6).
  • the signal distribution unit 21 outputs N digital signals f (t) to the frequency shift unit 22.
  • the frequency shift processing unit 23-n outputs the digital signal f (t) ⁇ exp (j ⁇ n t) after the frequency shift to the Fourier transform processing unit 25-n of the Fourier transform unit 24.
  • the plurality of shift amounts ⁇ f 1 to ⁇ f N may be stored in the internal memory of the frequency shift processing unit 23-n, or may be given from the outside of the distance measuring device 2.
  • ⁇ f 1 , ⁇ f 2 , ⁇ f 3 , ..., ⁇ f N are expressed by, for example, the following equation (1).
  • R is the frequency resolution of the signal F n (f) after the Fourier transform by the Fourier transform processing unit 25-n.
  • f 1, max is the frequency of the maximum frequency component FC 1, max among the plurality of frequency components FC 1 included in the signal F 1 (f) after the Fourier transform by the Fourier transform processing unit 25-1. ..
  • the frequency resolutions of the shift amounts ⁇ f 1 to ⁇ f N are set according to the frequency resolution R of the signal F n (f) after the Fourier transform. That is, the frequency resolution of the shift amounts ⁇ f 1 to ⁇ f N is set according to the distance measurement resolution of the distance measurement object.
  • ⁇ n is an angular frequency obtained by multiplying the shift amount ⁇ f n by 2 ⁇ .
  • the angular frequency ⁇ n needs to be smaller than the ratio between the sampling rate of the digital signal f (t) and the sampling points of the FFT in the Fourier transform processing unit 25-n.
  • the sampling rate is 1 [GSa / s]
  • the number of sampling points of the FFT is 4096
  • N 64
  • the Fourier transform processing unit 25-n has a frequency resolution R of 244.1 [kHz] and a peak described later.
  • the frequency can be calculated.
  • 244.1 [kHz] 1 [GSa / s] / 4096.
  • the Fourier transform processing unit 25-n is the Fourier transform processing unit having an FFT sampling point of 262144.
  • the frequency shift unit 22 shifts the frequency of the digital signal by 3.8 [kHz] with different frequency shift amounts. Then, if the Fourier transform unit 24 described later FFTs each digital signal after the frequency shift, the amplitude value of the frequency component can be obtained with the frequency resolution R of 244.1 [kHz].
  • the amplitude value of the frequency component tends to increase as the value relates to the distance from the distance measuring device 2 to the distance measuring object. Therefore, if the distance calculation unit 26, which will be described later, obtains the frequency shift amount and the peak frequency when the amplitude value of the frequency component becomes maximum, for example, from all the FFT results, the number of FFT sampling points can be obtained.
  • the distance from the distance measuring device 2 to the distance measuring object can be obtained with the same frequency resolution R as that of 262144.
  • the frequency component specifying unit 27 of the distance calculation unit 26 acquires the signals F 1 (f) to F N (f) after the Fourier transform from the Fourier transform processing units 25-1 to 25-N.
  • the frequency component specifying unit 27 compares a plurality of frequency components contained in all of the signals F 1 (f) to F N (f) after the Fourier transform by the Fourier transform processing units 25-1 to 25-N with each other. As a result, the maximum frequency components FC n and max are extracted from the plurality of frequency components (step ST4 in FIG. 6).
  • FC 1, max is the maximum frequency component among the plurality of frequency components FC 1 included in the signal F 1 (f) after the Fourier transform.
  • FC 2, max is the maximum frequency component among the plurality of frequency components FC 2 included in the signal F 2 (f) after the Fourier transform.
  • FC N and max are the largest frequency components among the plurality of frequency components FC N included in the signal F N (f) after the Fourier transform.
  • the maximum frequency component FC n, max of the signal F n (f) having a shift amount ⁇ f n of 50 [kHz] is the largest. It shows a big example. That is, among the maximum frequency components FC 1, max to FC N, max , the maximum frequency component FC 4, max of the signal F 4 (f) after the Fourier transform shows the largest example. In the example of FIG. 7, the peak frequency f T , which is the frequency of the maximum frequency component FC 4, max of the signal F 4 (f) having a shift amount ⁇ f 4 of 50 [kHz], is about 40.45 [MHz]. be.
  • the frequency component specifying unit 27 outputs the extracted maximum frequency component FC n, max to the shift amount specifying unit 28 as the frequency component FC (f T ) related to the distance measuring object. Further, the frequency component specifying unit 27 outputs the peak frequency f T , which is the frequency of the maximum frequency component FC n, max , to the distance calculation processing unit 29. In the radar device shown in FIG. 1, the frequency component specifying unit 27 extracts the maximum frequency component FC n, max from a plurality of frequency components as the frequency component FC (f T ) related to the distance measuring object. There is.
  • the frequency component FC (f T ) related to the distance measuring object is not limited to the maximum frequency component FC n, max , and if there is no practical problem, the frequency component specifying unit 27 may have a plurality of frequency components.
  • the second largest frequency component may be extracted as the frequency component FC ( fT ) related to the distance measuring object.
  • the shift amount specifying unit 28 acquires the frequency component FC (f T ) related to the distance measuring object from the frequency component specifying unit 27.
  • the shift amount specifying unit 28 includes a frequency component FC (f T ) from among a plurality of shift amounts ⁇ f 1 to ⁇ f N used for frequency shifting by the frequency shift processing units 23-1 to 23-N.
  • the shift amount ⁇ f n related to the signal F n (f) after the Fourier transform is specified (step ST5 in FIG. 6).
  • the plurality of shift amounts ⁇ f 1 to ⁇ f N may be stored in the internal memory of the shift amount specifying unit 28, or may be given from the outside of the distance measuring device 2.
  • the shift amount specifying unit 28 outputs the specified shift amount ⁇ f n to the distance calculation processing unit 29.
  • k is a coefficient related to the light sensing condition in the optical transmission / reception unit 1.
  • the coefficient k may be stored in the internal memory of the distance calculation processing unit 29, or may be given from the outside of the distance measuring device 2.
  • the distance calculation processing unit 29 outputs the calculated distance L to the outside.
  • the reflected light from the distance-finding object due to a part of the frequency sweep light whose frequency changes with the passage of time irradiates the distance-finding object, and the rest of the frequency sweep light.
  • the frequency component related to the distance measuring object is specified from the plurality of frequency components included in all of the individual signals, and the frequency shift unit 22 is used to shift the frequency among the plurality of shift amounts. From, the shift amount related to the signal after Fourier conversion including the specified frequency component is specified, and the distance from the distance measuring device 2 to the distance measuring object from the sum of the frequency of the specified frequency component and the specified shift amount.
  • the distance measuring device 2 is configured to include a distance calculating unit 26 for calculating the frequency. Therefore, the distance measuring device 2 can improve the accuracy of distance calculation as compared with the conventional distance measuring device even if the number of sampling points is the same.
  • Embodiment 2 In the second embodiment, the distance measuring device 2 including the computer 51 instead of the signal distribution unit 21, the frequency shift unit 22, and the Fourier transform unit 24 will be described.
  • FIG. 8 is a configuration diagram showing a radar device including the distance measuring device 2 according to the second embodiment.
  • the radar device shown in FIG. 8 includes an optical transmission / reception unit 1 and a distance measuring device 2.
  • the distance measuring device 2 includes a computer 51, a data storage unit 52, and a distance calculation unit 26.
  • FIG. 9 is a hardware configuration diagram showing the hardware of the distance measuring device 2 according to the second embodiment.
  • the computer 51 is realized by, for example, the calculation circuit 61 shown in FIG.
  • the computer 51 acquires a digital signal f (t) indicating interference light from the optical transmission / reception unit 1.
  • the computer 51 Fourier transforms each digital signal f (t) ⁇ exp (j ⁇ n t) after the frequency shift.
  • the computer 51 outputs the signal F n (f) after the Fourier transform to the data storage unit 52.
  • the processing of the computer 51 is shown. That is, "frequency shift” is described as the frequency shift process in the computer 51, and "FFT” is described as the Fourier transform process in the computer 51.
  • the data storage unit 52 is realized by, for example, the data storage circuit 62 shown in FIG.
  • the data storage unit 52 stores the Fourier transformed signals F 1 (f) to F N (f) output from the computer 51.
  • each of the calculator 51, the data storage unit 52, and the distance calculation unit 26, which are the components of the distance measuring device 2 is realized by dedicated hardware as shown in FIG. .. That is, it is assumed that the distance measuring device 2 is realized by the calculation circuit 61, the data storage circuit 62, and the distance calculation circuit 34.
  • the data storage circuit 62 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Memory), etc.
  • Each of the calculation circuit 61 and the distance calculation circuit 34 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the components of the distance measuring device 2 are not limited to those realized by dedicated hardware, but the distance measuring device 2 is realized by software, firmware, or a combination of software and firmware. It is also good.
  • the data storage unit 52 is configured on the memory 41 shown in FIG. Further, a program for causing the computer to execute each processing procedure in the calculator 51 and the distance calculation unit 26 is stored in the memory 41. Then, the processor 42 shown in FIG. 5 executes the program stored in the memory 41.
  • FIG. 9 shows an example in which each of the components of the distance measuring device 2 is realized by dedicated hardware
  • FIG. 5 shows an example in which the distance measuring device 2 is realized by software, firmware, or the like. ..
  • this is only an example, and some components of the ranging device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
  • the computer 51 acquires a digital signal f (t) indicating interference light from the signal distribution unit 21.
  • the N frequency shift processing units 23-1 to 23-N perform frequency shift processing in parallel to control the respective frequencies of the N digital signals f (t).
  • the shift amounts are different from each other by ⁇ f 1 to ⁇ f N. Obtained by the frequency-shifted digital signals f (t) ⁇ exp (j ⁇ 1 t) to f (t) ⁇ exp (j ⁇ N t) obtained by the computer 51 and the frequency shift processing units 23-1 to 23-N.
  • the digital signals f (t) ⁇ exp (j ⁇ 1 t) to f (t) ⁇ exp (j ⁇ N t) after the frequency shift are the same.
  • the computer 51 outputs the signals F 1 (f) to F N (f) after the Fourier transform to the data storage unit 52.
  • the data storage unit 52 stores the Fourier transformed signals F 1 (f) to F N (f) output from the computer 51.
  • the distance calculation unit 26 acquires N signals F 1 (f) to F N (f) after the Fourier transform from the data storage unit 52.
  • the distance calculation unit 26 is the distance L from the distance measuring device 2 to the distance measuring object from the N signals F 1 (f) to F N (f) after the Fourier transform by the method described in the first embodiment. Is calculated.
  • the computer 51 serially performs the frequency shift process N times and the Fourier transform process N times serially.
  • the calculator 51 is provided with the signal distribution unit 21 shown in FIG. 1 to perform frequency shift processing in parallel as in the frequency shift unit 22 shown in FIG. Similar to the Fourier transform unit 24 shown in 1, the Fourier transform process may be performed in parallel.
  • any combination of the embodiments can be freely combined, any component of the embodiment can be modified, or any component can be omitted in each embodiment.
  • the present disclosure is suitable for a distance measuring device and a distance measuring method for measuring a distance measuring object.
  • the present disclosure is suitable for radar devices including distance measuring devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

時間の経過に伴って周波数が変化する周波数掃引光の一部が測距対象物に照射されることによる測距対象物からの反射光と、周波数掃引光の残りである参照光との干渉光を示すデジタル信号をN(Nは、2以上の整数)個に分配する信号分配部(21)と、信号分配部(21)による分配後のN個のデジタル信号におけるそれぞれの周波数を互いに異なるシフト量だけシフトする周波数シフト部(22)と、周波数シフト部(22)による周波数シフト後のN個のデジタル信号のそれぞれをフーリエ変換するフーリエ変換部(24)と、フーリエ変換部(24)によるフーリエ変換後のN個の信号の全てに含まれている複数の周波数成分の中から、測距対象物に係る周波数成分を特定し、周波数シフト部(22)によって、周波数のシフトに用いられている複数のシフト量の中から、特定した周波数成分を含むフーリエ変換後の信号に係るシフト量を特定し、特定した周波数成分の周波数と、特定したシフト量との和から、測距装置(2)から測距対象物までの距離を算出する距離算出部(26)とを備えるように、測距装置(2)を構成した。

Description

測距装置、測距方法及びレーダ装置
 本開示は、測距装置から測距対象物までの距離を算出する測距装置及び測距方法と、測距装置を備えるレーダ装置とに関するものである。
 測距装置の中には、周波数掃引光の一部が測距対象物に照射されることによる測距対象物からの反射光と、周波数掃引光の残りである参照光との干渉光を示すデジタル信号をフーリエ変換(FFT:Fast Fourier Transform)するFFT変換器を備え、FFT変換器によるFFT後の信号に基づいて、測距装置から測距対象物までの距離を算出する測距装置(以下「従来の測距装置」という)がある。
 ところで、デジタル信号をズームFFTするズームFFT変換器を備えるミリ波レーダ装置がある(例えば、特許文献1を参照)。当該ズームFFT変換器は、デジタル信号の一部を間引き、間引き後のデジタル信号をFFTするものである。
特開2003-43139号公報
 従来の測距装置では、FFT変換器におけるFFTのサンプリング点数を増やすことによって、周波数分解能を高めるほど、距離の算出精度を高めることができる。しかし、FFTのサンプリング点数は、無制限に増やすことは困難である。したがって、従来の測距装置では、所望の周波数分解能が得られないため、所望の距離の算出精度が得られないことがあるという課題があった。
 特許文献1に開示されているズームFFT変換器を従来の測距装置に適用すれば、同じサンプリング点数であっても、周波数分解能が高まることがある。しかし、当該ズームFFT変換器がデジタル信号の一部を間引くことによって、スプリアスが発生する状況、又は、所望の信号が雑音に埋もれてしまう状況を生じることがある。スプリアスが発生している状況下、又は、所望の信号が雑音に埋もれてしまう状況下では、周波数分解能が高まっているとしても、距離を算出できないことがあるため、上記課題を解決できない。
 本開示は、上記のような課題を解決するためになされたもので、同じサンプリング点数であっても、従来の測距装置よりも、距離の算出精度を高めることができる測距装置及び測距方法を得ることを目的とする。
 本開示に係る測距装置は、時間の経過に伴って周波数が変化する周波数掃引光の一部が測距対象物に照射されることによる測距対象物からの反射光と、周波数掃引光の残りである参照光との干渉光を示すデジタル信号をN(Nは、2以上の整数)個に分配する信号分配部と、信号分配部による分配後のN個のデジタル信号におけるそれぞれの周波数を互いに異なるシフト量だけシフトする周波数シフト部と、周波数シフト部による周波数シフト後のN個のデジタル信号のそれぞれをフーリエ変換するフーリエ変換部と、フーリエ変換部によるフーリエ変換後のN個の信号の全てに含まれている複数の周波数成分の中から、測距対象物に係る周波数成分を特定し、周波数シフト部によって、周波数のシフトに用いられている複数のシフト量の中から、特定した周波数成分を含むフーリエ変換後の信号に係るシフト量を特定し、特定した周波数成分の周波数と、特定したシフト量との和から、測距装置から測距対象物までの距離を算出する距離算出部とを備えるものである。
 本開示によれば、同じサンプリング点数であっても、従来の測距装置よりも、距離の算出精度を高めることができる。
実施の形態1に係る測距装置2を備えるレーダ装置を示す構成図である。 光送受信部1の内部を示す構成図である。 周波数掃引光の一例を示す説明図である。 実施の形態1に係る測距装置2のハードウェアを示すハードウェア構成図である。 測距装置2が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。 実施の形態1に係る測距装置2の処理手順である測距方法を示すフローチャートである。 フーリエ変換処理部25-n(n=1,・・・,N)によるフーリエ変換後の信号F(f)に含まれている複数の周波数成分FCの中の最大の周波数成分FCn,maxを示す説明図である。 実施の形態2に係る測距装置2を備えるレーダ装置を示す構成図である。 実施の形態2に係る測距装置2のハードウェアを示すハードウェア構成図である。
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る測距装置2を備えるレーダ装置を示す構成図である。
 図1に示すレーダ装置は、光送受信部1及び測距装置2を備えている。
 光送受信部1は、時間の経過に伴って周波数が変化する周波数掃引光の一部を測距対象物に照射したのち、測距対象物によって反射された周波数掃引光である反射光を受信する。
 光送受信部1は、反射光と、周波数掃引光の残りである参照光との干渉光を示すデジタル信号f(t)を測距装置2に出力する。tは、時刻である。
 図2は、光送受信部1の内部を示す構成図である。
 光送受信部1は、周波数掃引光源11、光分岐部12、センサヘッド部15、光干渉計17、光検出器18及びアナログデジタル変換器(以下「A/D変換器」という)19を備えている。
 周波数掃引光源11は、時間の経過に伴って周波数が変化する周波数掃引光を光分岐部12に出力する。
 図3は、周波数掃引光の一例を示す説明図である。
 周波数掃引光の周波数は、時間の経過に伴って、最低周波数fminから最高周波数fmaxまで変化する。周波数掃引光の周波数は、最高周波数fmaxに到達すると、一旦、最低周波数fminに戻ってから、再度、最低周波数fminから最高周波数fmaxまで変化する。
 光分岐部12は、光カプラ13及びサーキュレータ14を備えている。
 光カプラ13は、周波数掃引光源11から出力された周波数掃引光を照射光と参照光とに分岐する。
 光カプラ13は、照射光をサーキュレータ14に出力し、参照光を光干渉計17に出力する。
 サーキュレータ14は、光カプラ13から出力された照射光をセンサヘッド部15の集光光学素子16に出力する。
 サーキュレータ14は、集光光学素子16から出力された反射光を光干渉計17に出力する。
 センサヘッド部15は、集光光学素子16を備えている。
 集光光学素子16は、例えば、2枚の非球面レンズによって実現される。
 集光光学素子16は、サーキュレータ14から出力された照射光を測距対象物に集光させる。
 即ち、集光光学素子16が備えている2枚の非球面レンズのうち、前段の非球面レンズは、サーキュレータ14から出力された照射光を平行光に変換する。
 後段の非球面レンズは、前段の非球面レンズによる変換後の平行光を集光することによって、測距対象物に光を照射させる。
 また、集光光学素子16は、測距対象物からの反射光を集光し、反射光をサーキュレータ14に出力する。
 光干渉計17は、サーキュレータ14から出力された反射光と、光カプラ13から出力された参照光との干渉光を生成し、干渉光を光検出器18に出力する。
 光検出器18は、光干渉計17から出力された干渉光を検出し、干渉光を電気信号に変換する。
 光検出器18は、電気信号をA/D変換器19に出力する。
 A/D変換器19は、光検出器18から出力された電気信号をアナログ信号からデジタル信号f(t)に変換し、デジタル信号f(t)を測距装置2に出力する。
 図1に示す測距装置2は、信号分配部21、周波数シフト部22、フーリエ変換部24及び距離算出部26を備えている。
 図4は、実施の形態1に係る測距装置2のハードウェアを示すハードウェア構成図である。
 信号分配部21は、例えば、図4に示す信号分配回路31によって実現される。
 信号分配部21は、光送受信部1から出力されたデジタル信号f(t)をN個に分配する。Nは、2以上の整数である。
 信号分配部21は、N個のデジタル信号f(t)を周波数シフト部22に出力する。
 周波数シフト部22は、例えば、図4に示す周波数シフト回路32によって実現される。
 周波数シフト部22は、N個の周波数シフト処理部23-1~23-Nを備えている。
 周波数シフト部22は、信号分配部21による分配後のN個のデジタル信号におけるそれぞれの周波数を互いに異なるシフト量だけシフトする。
 周波数シフト部22は、周波数シフト後のN個のデジタル信号f(t)×exp(jωt)~f(t)×exp(jωt)をフーリエ変換部24に出力する。
 周波数シフト処理部23-1は、光送受信部1から出力されたデジタル信号f(t)の周波数をシフト量Δfだけシフトし、周波数シフト後のデジタル信号f(t)×exp(jωt)をフーリエ変換部24のフーリエ変換処理部25-1に出力する。ωは、シフト量Δfに2πが乗算されている角周波数である。
 図1に示す測距装置2では、シフト量Δf=0であり、周波数シフト処理部23-1は、デジタル信号f(t)の周波数をシフトしていない。このため、f(t)=f(t)×exp(jωt)である。
 したがって、測距装置2は、周波数シフト処理部23-1を備えずに、光送受信部1とフーリエ変換処理部24-1とが直接接続されていてもよい。
 ただし、シフト量Δf=0は、一例であり、シフト量Δf≠0であってもよい。シフト量Δf≠0であれば、測距装置2は、周波数シフト処理部23-1を備えている必要がある。
 周波数シフト処理部23-2は、光送受信部1から出力されたデジタル信号f(t)の周波数をシフト量Δfだけシフトし、周波数シフト後のデジタル信号f(t)×exp(jωt)をフーリエ変換部24のフーリエ変換処理部25-2に出力する。ωは、シフト量Δfに2πが乗算されている角周波数である。
 周波数シフト処理部23-3は、光送受信部1から出力されたデジタル信号f(t)の周波数をシフト量Δfだけシフトし、周波数シフト後のデジタル信号f(t)×exp(jωt)をフーリエ変換部24のフーリエ変換処理部25-3に出力する。ωは、シフト量Δfに2πが乗算されている角周波数である。
 周波数シフト処理部23-Nは、光送受信部1から出力されたデジタル信号f(t)の周波数をシフト量Δfだけシフトし、周波数シフト後のデジタル信号f(t)×exp(jωt)をフーリエ変換部24のフーリエ変換処理部25-Nに出力する。ωは、シフト量Δfに2πが乗算されている角周波数である。
 なお、Δf<Δf<Δf<・・・<Δfである。
 フーリエ変換部24は、例えば、図4に示すフーリエ変換回路33によって実現される。
 フーリエ変換部24は、N個のフーリエ変換処理部25-1~25-Nを備えている。
 フーリエ変換部24は、周波数シフト部22による周波数シフト後のN個のデジタル信号f(t)×exp(jωt)(n=1,・・・,N)のそれぞれをフーリエ変換する。
 フーリエ変換部24は、フーリエ変換後のN個の信号F(f)~F(f)を距離算出部26に出力する。fは、周波数である。
 フーリエ変換処理部25-1は、周波数シフト処理部23-1による周波数シフト後のデジタル信号f(t)×exp(jωt)をフーリエ変換する。
 フーリエ変換処理部25-1は、フーリエ変換後の信号F(f)を距離算出部26に出力する。
 フーリエ変換処理部25-2は、周波数シフト処理部23-2による周波数シフト後のデジタル信号f(t)×exp(jωt)をフーリエ変換する。
 フーリエ変換処理部25-2は、フーリエ変換後の信号F(f)を距離算出部26に出力する。
 フーリエ変換処理部25-3は、周波数シフト処理部23-3による周波数シフト後のデジタル信号f(t)×exp(jωt)をフーリエ変換する。
 フーリエ変換処理部25-3は、フーリエ変換後の信号F(f)を距離算出部26に出力する。
 フーリエ変換処理部25-Nは、周波数シフト処理部23-Nによる周波数シフト後のデジタル信号f(t)×exp(jωt)をフーリエ変換する。
 フーリエ変換処理部25-Nは、フーリエ変換後の信号F(f)を距離算出部26に出力する。
 距離算出部26は、例えば、図4に示す距離算出回路34によって実現される。
 距離算出部26は、周波数成分特定部27、シフト量特定部28及び距離算出処理部29を備えている。
 距離算出部26は、フーリエ変換部24によるフーリエ変換後のN個の信号F(f)~F(f)の全てに含まれている複数の周波数成分の中から、測距対象物に係る周波数成分FC(f)を特定する。
 距離算出部26は、周波数シフト部22によって、周波数のシフトに用いられている複数のシフト量Δf~Δfの中から、特定した周波数成分FC(f)を含むフーリエ変換後の信号F(f)に係るシフト量Δfを特定する。
 距離算出部26は、特定した周波数成分FC(f)の周波数fと、特定したシフト量Δfとの和から、測距装置2から測距対象物までの距離Lを算出する。
 周波数成分特定部27は、フーリエ変換処理部25-1~25-Nによるフーリエ変換後の信号F(f)~F(f)の全てに含まれている複数の周波数成分の中から、測距対象物に係る周波数成分FC(f)を特定する。
 周波数成分特定部27は、測距対象物に係る周波数成分FC(f)をシフト量特定部28に出力し、特定した周波数成分FC(f)の周波数fを距離算出処理部29に出力する。
 シフト量特定部28は、周波数シフト処理部23-1~23-Nによって、周波数のシフトに用いられている複数のシフト量Δf~Δfの中から、周波数成分特定部27により特定された周波数成分FC(f)を含むフーリエ変換後の信号F(f)に係るシフト量Δfを特定する。
 シフト量特定部28は、特定したシフト量Δfを距離算出処理部29に出力する。
 距離算出処理部29は、周波数成分特定部27により特定された周波数成分FC(f)の周波数fと、シフト量特定部28により特定されたシフト量Δfとの和を算出する。
 距離算出処理部29は、周波数成分FC(f)の周波数fとシフト量Δfとの和f+Δfから、測距装置2から測距対象物までの距離Lを算出する。
 図1では、測距装置2の構成要素である信号分配部21、周波数シフト部22、フーリエ変換部24及び距離算出部26のそれぞれが、図4に示すような専用のハードウェアによって実現されるものを想定している。即ち、測距装置2が、信号分配回路31、周波数シフト回路32、フーリエ変換回路33及び距離算出回路34によって実現されるものを想定している。
 信号分配回路31、周波数シフト回路32、フーリエ変換回路33及び距離算出回路34のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
 測距装置2の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、測距装置2が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
 図5は、測距装置2が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 測距装置2が、ソフトウェア又はファームウェア等によって実現される場合、信号分配部21、周波数シフト部22、フーリエ変換部24及び距離算出部26におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
 また、図4では、測距装置2の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図5では、測距装置2がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、測距装置2における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。
 次に、図1に示すレーダ装置の動作について説明する。
 まず、光送受信部1の周波数掃引光源11は、図3に示すように、時間の経過に伴って周波数が変化する周波数掃引光を光分岐部12の光カプラ13に出力する。
 光カプラ13は、周波数掃引光源11から周波数掃引光を受けると、周波数掃引光を照射光と参照光とに分岐する。
 光カプラ13は、照射光をサーキュレータ14に出力し、参照光を光干渉計17に出力する。
 サーキュレータ14は、光カプラ13から照射光を受けると、照射光をセンサヘッド部15の集光光学素子16に出力する。
 集光光学素子16は、サーキュレータ14から照射光を受けると、照射光を測距対象物に集光させる。
 また、集光光学素子16は、測距対象物からの反射光を集光し、反射光をサーキュレータ14に出力する。
 サーキュレータ14は、集光光学素子16から反射光を受けると、反射光を光干渉計17に出力する。
 光干渉計17は、サーキュレータ14から出力された反射光と、光カプラ13から出力された参照光との干渉光を生成する。
 光干渉計17は、干渉光を光検出器18に出力する。
 光検出器18は、光干渉計17から出力された干渉光を検出し、干渉光を電気信号に変換する。
 光検出器18は、電気信号をA/D変換器19に出力する。
 A/D変換器19は、光検出器18から電気信号を受けると、電気信号をアナログ信号からデジタル信号f(t)に変換する。
 A/D変換器19は、デジタル信号f(t)を測距装置2に出力する。
 測距装置2は、光送受信部1から出力されたデジタル信号f(t)に基づいて、測距装置2から測距対象物までの距離Lを算出する。
 図6は、実施の形態1に係る測距装置2の処理手順である測距方法を示すフローチャートである。
 以下、測距装置2の動作を具体的に説明する。
 信号分配部21は、光送受信部1からデジタル信号f(t)を受けると、デジタル信号f(t)をN個に分配する(図6のステップST1)。
 信号分配部21は、N個のデジタル信号f(t)を周波数シフト部22に出力する。
 周波数シフト部22は、信号分配部21による分配後のN個のデジタル信号f(t)におけるそれぞれの周波数を互いに異なるシフト量だけシフトする(図6のステップST2)。
 即ち、周波数シフト部22の周波数シフト処理部23-n(n=1,・・・,N)は、光送受信部1からデジタル信号f(t)を受けると、デジタル信号f(t)の周波数をシフト量Δfだけシフトする。Δf<Δf<Δf<・・・<Δfである。
 周波数シフト処理部23-nは、周波数シフト後のデジタル信号f(t)×exp(jωt)をフーリエ変換部24のフーリエ変換処理部25-nに出力する。
 複数のシフト量Δf~Δfは、周波数シフト処理部23-nの内部メモリに格納されていてもよいし、測距装置2の外部から与えられるものであってもよい。
 図1に示す測距装置2では、例えば、シフト量Δf=0であり、周波数シフト処理部23-1は、デジタル信号f(t)の周波数をシフトしていない。このため、f(t)=f(t)×exp(jωt)である。
 Δf、Δf、Δf、・・・、<Δfは、例えば、以下の式(1)のように表される。

Figure JPOXMLDOC01-appb-I000001
 式(1)において、Rは、フーリエ変換処理部25-nによるフーリエ変換後の信号F(f)の周波数分解能である。
 f1,maxは、フーリエ変換処理部25-1によるフーリエ変換後の信号F(f)に含まれている複数の周波数成分FCの中の最大の周波数成分FC1,maxの周波数である。
 シフト量Δf~Δfの周波数分解能は、式(1)に示すように、フーリエ変換後の信号F(f)の周波数分解能Rに応じて設定されている。即ち、シフト量Δf~Δfの周波数分解能は、測距対象物の測距分解能に応じて設定されている。
 ωは、シフト量Δfに2πが乗算されている角周波数である。
 角周波数ωは、デジタル信号f(t)のサンプリングレートと、フーリエ変換処理部25-nにおけるFFTのサンプリング点数との比よりも小さくする必要がある。
 例えば、サンプリングレートが1[GSa/s]、FFTのサンプリング点数が4096、N=64である場合、フーリエ変換処理部25-nは、244.1[kHz]の周波数分解能Rで、後述するピーク周波数を算出することができる。244.1[kHz]=1[GSa/s]/4096である。よって、角周波数をω=(244.1/64)×2π=3.8[kHz]×2πとすれば、フーリエ変換処理部25-nは、FFTのサンプリング点数が262144のフーリエ変換処理部と同等の周波数分解能でピーク周波数を算出することができる。
 なお、FFTのサンプリング点数が262144であれば、周波数分解能Rが3.8[kHz]=1[GSa/s]/262144になる。
 一方、FFTのサンプリング点数が4096であれば、周波数分解能Rが244.1[kHz]=1[GSa/s]/4096になる。
 例えば、FFTのサンプリング点数が4096であるとき、周波数シフト部22が、3.8[kHz]ずつ互いに異なる周波数のシフト量で、デジタル信号の周波数をそれぞれシフトさせる。そして、後述するフーリエ変換部24が、周波数シフト後のそれぞれのデジタル信号をFFTすれば、244.1[kHz]の周波数分解能Rで、周波数成分の振幅値が得られる。周波数成分の振幅値は、測距装置2から測距対象物までの距離に係る値であるほど、大きくなる傾向がある。
 したがって、後述する距離算出部26が、全てのFFTの結果の中から、周波数成分の振幅値が例えば最大になるときの、周波数のシフト量とピーク周波数とを得れば、FFTのサンプリング点数が262144であるときと同等の周波数分解能Rで、測距装置2から測距対象物までの距離を得ることができる。
 フーリエ変換部24は、周波数シフト部22による周波数シフト後のN個のデジタル信号f(t)×exp(jωt)~f(t)×exp(jωt)のそれぞれをフーリエ変換する(図6のステップST3)。
 即ち、フーリエ変換部24のフーリエ変換処理部25-n(n=1,・・・,N)は、周波数シフト処理部23-1による周波数シフト後のデジタル信号f(t)×exp(jωt)をフーリエ変換する。
 フーリエ変換処理部25-nは、フーリエ変換後の信号F(f)を距離算出部26に出力する。
 距離算出部26の周波数成分特定部27は、フーリエ変換処理部25-1~25-Nから、フーリエ変換後の信号F(f)~F(f)を取得する。
 周波数成分特定部27は、フーリエ変換処理部25-1~25-Nによるフーリエ変換後の信号F(f)~F(f)の全てに含まれている複数の周波数成分を互いに比較することによって、複数の周波数成分の中から、最大の周波数成分FCn,maxを抽出する(図6のステップST4)。
 図7は、フーリエ変換処理部25-n(n=1,・・・,N)によるフーリエ変換後の信号F(f)に含まれている複数の周波数成分FCの中の最大の周波数成分FCn,maxを示す説明図である。
 FC1,maxは、フーリエ変換後の信号F(f)に含まれている複数の周波数成分FCの中の最大の周波数成分である。
 FC2,maxは、フーリエ変換後の信号F(f)に含まれている複数の周波数成分FCの中の最大の周波数成分である。
 FCN,maxは、フーリエ変換後の信号F(f)に含まれている複数の周波数成分FCの中の最大の周波数成分である。
 図7では、最大の周波数成分FC1,max~FCN,maxの中で、シフト量Δfが50[kHz]に係る信号F(f)の最大の周波数成分FCn,maxが、最も大きい例を示している。即ち、最大の周波数成分FC1,max~FCN,maxの中で、フーリエ変換後の信号F(f)の最大の周波数成分FC4,maxが、最も大きい例を示している。
 図7の例では、シフト量Δfが50[kHz]に係る信号F(f)の最大の周波数成分FC4,maxの周波数であるピーク周波数fが、約40.45[MHz]である。
 周波数成分特定部27は、抽出した最大の周波数成分FCn,maxを、測距対象物に係る周波数成分FC(f)として、シフト量特定部28に出力する。
 また、周波数成分特定部27は、最大の周波数成分FCn,maxの周波数であるピーク周波数fを距離算出処理部29に出力する。
 図1に示すレーダ装置では、周波数成分特定部27が、複数の周波数成分の中から、最大の周波数成分FCn,maxを、測距対象物に係る周波数成分FC(f)として抽出している。しかし、測距対象物に係る周波数成分FC(f)は、最大の周波数成分FCn,maxに限るものではなく、実用上問題がなければ、周波数成分特定部27が、複数の周波数成分の中から、例えば、2番目に大きな周波数成分を、測距対象物に係る周波数成分FC(f)として抽出するようにしてもよい。
 シフト量特定部28は、周波数成分特定部27から、測距対象物に係る周波数成分FC(f)を取得する。
 シフト量特定部28は、周波数シフト処理部23-1~23-Nによって、周波数のシフトに用いられている複数のシフト量Δf~Δfの中から、周波数成分FC(f)を含むフーリエ変換後の信号F(f)に係るシフト量Δfを特定する(図6のステップST5)。
 複数のシフト量Δf~Δfは、シフト量特定部28の内部メモリに格納されていてもよいし、測距装置2の外部から与えられるものであってもよい。
 シフト量特定部28は、特定したシフト量Δfを距離算出処理部29に出力する。
 距離算出処理部29は、周波数成分特定部27から、最大の周波数成分FCn,maxの周波数であるピーク周波数fを取得し、シフト量特定部28からシフト量Δfを取得する。
 距離算出処理部29は、以下の式(2)に示すように、ピーク周波数fとシフト量Δfとの和Σfを算出する(図6のステップST6)。
Σf=f+Δfn    (2)
 距離算出処理部29は、以下の式(3)に示すように、ピーク周波数fとシフト量Δfとの和Σfから、測距装置2から測距対象物までの距離Lを算出する(図6のステップST7)。
L=Σf×k       (3)
 式(3)において、kは、光送受信部1における光のセンシング条件に係る係数である。係数kは、距離算出処理部29の内部メモリに格納されていてもよいし、測距装置2の外部から与えられるものであってもよい。
 距離算出処理部29は、算出した距離Lを外部に出力する。
 以上の実施の形態1では、時間の経過に伴って周波数が変化する周波数掃引光の一部が測距対象物に照射されることによる測距対象物からの反射光と、周波数掃引光の残りである参照光との干渉光を示すデジタル信号をN(Nは、2以上の整数)個に分配する信号分配部21と、信号分配部21による分配後のN個のデジタル信号におけるそれぞれの周波数を互いに異なるシフト量だけシフトする周波数シフト部22と、周波数シフト部22による周波数シフト後のN個のデジタル信号のそれぞれをフーリエ変換するフーリエ変換部24と、フーリエ変換部24によるフーリエ変換後のN個の信号の全てに含まれている複数の周波数成分の中から、測距対象物に係る周波数成分を特定し、周波数シフト部22によって、周波数のシフトに用いられている複数のシフト量の中から、特定した周波数成分を含むフーリエ変換後の信号に係るシフト量を特定し、特定した周波数成分の周波数と、特定したシフト量との和から、測距装置2から測距対象物までの距離を算出する距離算出部26とを備えるように、測距装置2を構成した。したがって、測距装置2は、同じサンプリング点数であっても、従来の測距装置よりも、距離の算出精度を高めることができる。
実施の形態2.
 実施の形態2では、信号分配部21、周波数シフト部22及びフーリエ変換部24の代わりに、計算器51を備えている測距装置2について説明する。
 図8は、実施の形態2に係る測距装置2を備えるレーダ装置を示す構成図である。
 図8に示すレーダ装置は、光送受信部1及び測距装置2を備えている。
 測距装置2は、計算器51、データ蓄積部52及び距離算出部26を備えている。
 図9は、実施の形態2に係る測距装置2のハードウェアを示すハードウェア構成図である。
 計算器51は、例えば、図9に示す計算回路61によって実現される。
 計算器51は、光送受信部1から、干渉光を示すデジタル信号f(t)を取得する。
 計算器51は、デジタル信号f(t)の周波数を互いに異なるシフト量Δf(n=1,・・・,N)だけN回シフトする。
 計算器51は、周波数シフト後のそれぞれのデジタル信号f(t)×exp(jωt)をフーリエ変換する。
 計算器51は、フーリエ変換後の信号F(f)をデータ蓄積部52に出力する。
 図8に示すレーダ装置では、計算器51の処理が表記されている。即ち、計算器51における周波数のシフト処理として、「周波数シフト」が表記され、計算器51におけるフーリエ変換処理として、「FFT」が表記されている。
 データ蓄積部52は、例えば、図9に示すデータ蓄積回路62によって実現される。
 データ蓄積部52は、計算器51から出力されたフーリエ変換後の信号F(f)~F(f)を記憶する。
 図8では、測距装置2の構成要素である計算器51、データ蓄積部52及び距離算出部26のそれぞれが、図9に示すような専用のハードウェアによって実現されるものを想定している。即ち、測距装置2が、計算回路61、データ蓄積回路62及び距離算出回路34によって実現されるものを想定している。
 ここで、データ蓄積回路62は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいは、DVD(Digital Versatile Disc)が該当する。
 計算回路61及び距離算出回路34のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
 測距装置2の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、測距装置2が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 測距装置2が、ソフトウェア又はファームウェア等によって実現される場合、データ蓄積部52が、図5に示すメモリ41上に構成される。また、計算器51及び距離算出部26におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、図5に示すプロセッサ42がメモリ41に格納されているプログラムを実行する。
 また、図9では、測距装置2の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図5では、測距装置2がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、測距装置2における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。
 次に、図8に示すレーダ装置の動作について説明する。
 計算器51及びデータ蓄積部52以外は、図1に示すレーダ装置と同様であるため、ここでは、計算器51及びデータ蓄積部52の動作のみを説明する。
 計算器51は、信号分配部21から、干渉光を示すデジタル信号f(t)を取得する。
 計算器51は、デジタル信号f(t)の周波数を互いに異なるシフト量Δf(n=1,・・・,N)だけN回シフトする。
 即ち、計算器51は、周波数のシフト処理をシリアルにN回実施することによって、デジタル信号f(t)の周波数を互いに異なるシフト量Δf(n=1,・・・,N)だけシフトしている。
 図1に示すレーダ装置では、N個の周波数シフト処理部23-1~23-Nが、周波数のシフト処理を並列に実施することによって、N個のデジタル信号f(t)におけるそれぞれの周波数を互いに異なるシフト量Δf~Δfだけシフトしている。
 計算器51により得られる周波数シフト後のデジタル信号f(t)×exp(jωt)~f(t)×exp(jωt)と、周波数シフト処理部23-1~23-Nにより得られる周波数シフト後のデジタル信号f(t)×exp(jωt)~f(t)×exp(jωt)とは、同じである。
 計算器51は、周波数シフト後のそれぞれのデジタル信号f(t)×exp(jωt)をフーリエ変換する。
 即ち、計算器51は、フーリエ変換処理をシリアルにN回実施することによって、周波数シフト後のそれぞれのデジタル信号f(t)×exp(jωt)(n=1,・・・,N)をフーリエ変換している。
 図1に示すレーダ装置では、N個のフーリエ変換処理部25-1~25-Nが、フーリエ変換処理を並列に実施することによって、N個の周波数シフト後のデジタル信号f(t)×exp(jωt)(n=1,・・・,N)をフーリエ変換している。
 計算器51により得られるフーリエ変換後の信号F(f)~F(f)と、フーリエ変換処理部25-1~25-Nにより得られるフーリエ変換後の信号F(f)~F(f)とは、同じである。
 計算器51は、フーリエ変換後の信号F(f)~F(f)をデータ蓄積部52に出力する。
 データ蓄積部52は、計算器51から出力されたフーリエ変換後の信号F(f)~F(f)を記憶する。
 距離算出部26は、データ蓄積部52から、フーリエ変換後のN個の信号F(f)~F(f)を取得する。
 距離算出部26は、実施の形態1に記載の方法によって、フーリエ変換後のN個の信号F(f)~F(f)から、測距装置2から測距対象物までの距離Lを算出する。
 図8に示すレーダ装置では、計算器51が、周波数のシフト処理をシリアルにN回実施し、フーリエ変換処理をシリアルにN回実施している。しかし、これは一例に過ぎず、計算器51が、図1に示す信号分配部21を備えることによって、図1に示す周波数シフト部22と同様に、周波数のシフト処理を並列に実施し、図1に示すフーリエ変換部24と同様に、フーリエ変換処理を並列に実施するようにしてもよい。
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本開示は、測距対象物を測距する測距装置及び測距方法に適している。
 本開示は、測距装置を備えるレーダ装置に適している。
 1 光送受信部、2 測距装置、11 周波数掃引光源、12 光分岐部、13 光カプラ、14 サーキュレータ、15 センサヘッド部、16 集光光学素子、17 光干渉計、18 光検出器、19 A/D変換器、21 信号分配部、22 周波数シフト部、23-1~23-N 周波数シフト処理部、24 フーリエ変換部、25-1~25-N フーリエ変換処理部、26 距離算出部、31 信号分配回路、32 周波数シフト回路、33 フーリエ変換回路、34 距離算出回路、41 メモリ、42 プロセッサ、51 計算器、52 データ蓄積部、61 計算回路、62 データ蓄積回路。

Claims (7)

  1.  時間の経過に伴って周波数が変化する周波数掃引光の一部が測距対象物に照射されることによる前記測距対象物からの反射光と、前記周波数掃引光の残りである参照光との干渉光を示すデジタル信号をN(Nは、2以上の整数)個に分配する信号分配部と、
     前記信号分配部による分配後のN個のデジタル信号におけるそれぞれの周波数を互いに異なるシフト量だけシフトする周波数シフト部と、
     前記周波数シフト部による周波数シフト後のN個のデジタル信号のそれぞれをフーリエ変換するフーリエ変換部と、
     前記フーリエ変換部によるフーリエ変換後のN個の信号の全てに含まれている複数の周波数成分の中から、前記測距対象物に係る周波数成分を特定し、前記周波数シフト部によって、周波数のシフトに用いられている複数のシフト量の中から、特定した周波数成分を含むフーリエ変換後の信号に係るシフト量を特定し、特定した周波数成分の周波数と、特定したシフト量との和から、測距装置から前記測距対象物までの距離を算出する距離算出部と
     を備えた測距装置。
  2.  前記周波数シフト部は、前記信号分配部による分配後のN個のデジタル信号のうち、いずれか1つのデジタル信号の周波数をシフトするN個の周波数シフト処理部を備え、
     それぞれの周波数シフト処理部は、他の周波数シフト処理部と異なるデジタル信号の周波数を、他の周波数シフト処理部と異なるシフト量だけシフトすることを特徴とする請求項1記載の測距装置。
  3.  前記フーリエ変換部は、それぞれの周波数シフト処理部による周波数シフト後のデジタル信号をフーリエ変換するN個のフーリエ変換処理部を備えていることを特徴とする請求項2記載の測距装置。
  4.  前記距離算出部は、
     前記N個のフーリエ変換処理部によるフーリエ変換後の信号の全てに含まれている複数の周波数成分の中から、前記測距対象物に係る周波数成分を特定する周波数成分特定部と、
     前記周波数シフト部によって、周波数のシフトに用いられている複数のシフト量の中から、前記周波数成分特定部により特定された周波数成分を含むフーリエ変換後の信号に係るシフト量を特定するシフト量特定部と、
     前記周波数成分特定部により特定された周波数成分の周波数と、前記シフト量特定部により特定されたシフト量との和から、測距装置から前記測距対象物までの距離を算出する距離算出処理部と
     を備えていることを特徴とする請求項3記載の測距装置。
  5.  前記信号分配部、前記周波数シフト部及び前記フーリエ変換部の代わりに、計算器を備え、
     前記計算器は、
     前記干渉光を示すデジタル信号の周波数を互いに異なるシフト量だけN回シフトし、周波数シフト後のそれぞれのデジタル信号をフーリエ変換することを特徴とする請求項1記載の測距装置。
  6.  信号分配部が、時間の経過に伴って周波数が変化する周波数掃引光の一部が測距対象物に照射されることによる前記測距対象物からの反射光と、前記周波数掃引光の残りである参照光との干渉光を示すデジタル信号をN(Nは、2以上の整数)個に分配し、
     周波数シフト部が、前記信号分配部による分配後のN個のデジタル信号におけるそれぞれの周波数を互いに異なるシフト量だけシフトし、
     フーリエ変換部が、前記周波数シフト部による周波数シフト後のN個のデジタル信号のそれぞれをフーリエ変換し、
     距離算出部が、前記フーリエ変換部によるフーリエ変換後のN個の信号の全てに含まれている複数の周波数成分の中から、前記測距対象物に係る周波数成分を特定し、前記周波数シフト部によって、周波数のシフトに用いられている複数のシフト量の中から、特定した周波数成分を含むフーリエ変換後の信号に係るシフト量を特定し、特定した周波数成分の周波数と、特定したシフト量との和から、測距装置から前記測距対象物までの距離を算出する
     測距方法。
  7.  請求項1から請求項5のうちのいずれか1項記載の測距装置と、
     時間の経過に伴って周波数が変化する周波数掃引光の一部を測距対象物に照射したのち、前記測距対象物によって反射された周波数掃引光である反射光を受信し、前記反射光と、前記周波数掃引光の残りである参照光との干渉光を示すデジタル信号を前記測距装置に出力する光送受信部と
     を備えたことを特徴とするレーダ装置。
PCT/JP2020/029917 2020-08-05 2020-08-05 測距装置、測距方法及びレーダ装置 WO2022029904A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE112020007239.8T DE112020007239B4 (de) 2020-08-05 2020-08-05 Distanz-messungseinrichtung, distanz-messungsverfahren und radareinrichtung
PCT/JP2020/029917 WO2022029904A1 (ja) 2020-08-05 2020-08-05 測距装置、測距方法及びレーダ装置
KR1020237001890A KR102524164B1 (ko) 2020-08-05 2020-08-05 측거 장치, 측거 방법 및 레이더 장치
JP2022541390A JP7138828B2 (ja) 2020-08-05 2020-08-05 測距装置、測距方法及びレーダ装置
CN202080104543.1A CN116134340A (zh) 2020-08-05 2020-08-05 测距装置、测距方法和雷达装置
TW110100765A TW202206846A (zh) 2020-08-05 2021-01-08 測距裝置、測距方法以及雷達裝置
US18/083,934 US20230124983A1 (en) 2020-08-05 2022-12-19 Distance measurement device, distance measurement method, and radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029917 WO2022029904A1 (ja) 2020-08-05 2020-08-05 測距装置、測距方法及びレーダ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/083,934 Continuation US20230124983A1 (en) 2020-08-05 2022-12-19 Distance measurement device, distance measurement method, and radar device

Publications (1)

Publication Number Publication Date
WO2022029904A1 true WO2022029904A1 (ja) 2022-02-10

Family

ID=80117906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029917 WO2022029904A1 (ja) 2020-08-05 2020-08-05 測距装置、測距方法及びレーダ装置

Country Status (7)

Country Link
US (1) US20230124983A1 (ja)
JP (1) JP7138828B2 (ja)
KR (1) KR102524164B1 (ja)
CN (1) CN116134340A (ja)
DE (1) DE112020007239B4 (ja)
TW (1) TW202206846A (ja)
WO (1) WO2022029904A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7138828B2 (ja) * 2020-08-05 2022-09-16 三菱電機株式会社 測距装置、測距方法及びレーダ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253750A (ja) * 1997-03-13 1998-09-25 Mitsubishi Electric Corp Fm−cwレーダ装置
JP2003043139A (ja) * 2001-08-02 2003-02-13 Hitachi Ltd ミリ波レーダ装置
JP2006177907A (ja) * 2004-12-24 2006-07-06 Nec Corp 干渉型レーダー
JP2006522341A (ja) * 2003-03-31 2006-09-28 ザ・ジェネラル・ホスピタル・コーポレイション 光路長が変更された異なる角度の光の合成により光学的に干渉する断層撮影におけるスペックルの減少
WO2018230474A1 (ja) * 2017-06-16 2018-12-20 国立研究開発法人産業技術総合研究所 光学的距離測定装置及び測定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150102854A (ko) * 2014-02-28 2015-09-08 한국과학기술원 주파수 변조 및 연속파를 이용한 큐밴드 장거리 레이더 시스템 및 방법
JP2017015547A (ja) 2015-06-30 2017-01-19 キヤノン株式会社 速度計、および物品製造方法
WO2019008670A1 (ja) 2017-07-04 2019-01-10 三菱電機株式会社 レーザレーダ装置
DE102018216636B4 (de) 2018-09-27 2020-06-04 Carl Zeiss Smt Gmbh Vorrichtung zur scannenden Abstandsermittlung eines Objekts
JP7138828B2 (ja) * 2020-08-05 2022-09-16 三菱電機株式会社 測距装置、測距方法及びレーダ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253750A (ja) * 1997-03-13 1998-09-25 Mitsubishi Electric Corp Fm−cwレーダ装置
JP2003043139A (ja) * 2001-08-02 2003-02-13 Hitachi Ltd ミリ波レーダ装置
JP2006522341A (ja) * 2003-03-31 2006-09-28 ザ・ジェネラル・ホスピタル・コーポレイション 光路長が変更された異なる角度の光の合成により光学的に干渉する断層撮影におけるスペックルの減少
JP2006177907A (ja) * 2004-12-24 2006-07-06 Nec Corp 干渉型レーダー
WO2018230474A1 (ja) * 2017-06-16 2018-12-20 国立研究開発法人産業技術総合研究所 光学的距離測定装置及び測定方法

Also Published As

Publication number Publication date
KR20230019262A (ko) 2023-02-07
JPWO2022029904A1 (ja) 2022-02-10
DE112020007239B4 (de) 2024-04-18
DE112020007239T5 (de) 2023-03-23
JP7138828B2 (ja) 2022-09-16
KR102524164B1 (ko) 2023-04-20
CN116134340A (zh) 2023-05-16
TW202206846A (zh) 2022-02-16
US20230124983A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP6277147B2 (ja) 光ファイバ振動測定方法及びシステム
US11543523B2 (en) Multi frequency long range distance detection for amplitude modulated continuous wave time of flight cameras
JP5554681B2 (ja) 物体表面の高さマップを求める方法及びその装置
CN112923960B (zh) 用于校正非线性调谐效应的光纤参数测量装置
CN109964143A (zh) 用于处理由相干激光雷达引起的信号的方法及相关激光雷达系统
CN112051583B (zh) Fmcw距离测量系统中拍频信号非线性校正方法
JP2008516213A (ja) 非理想的チャープ形状の決定による電気光学的距離測定方法
WO2022029904A1 (ja) 測距装置、測距方法及びレーダ装置
JP4044181B2 (ja) フーリエ変換分光用の三重変調実験
CN111538027A (zh) 一种用于高分辨率测量的激光测距装置及方法
CN116324484A (zh) 相干lidar系统中的重影减轻的技术
Zhang et al. A high precision signal processing method for laser Doppler velocimeter
US6509729B2 (en) Multiple simultaneous optical frequency measurement
JP2009180666A (ja) パルスレーダ装置
WO2022000333A1 (zh) 一种雷达探测方法及相关装置
CN112654894A (zh) 一种雷达探测方法及相关装置
JP2023547877A (ja) コヒーレントlidarシステムにおける複数ターゲットのピーク関連付け技術
WO2021112989A1 (en) Selective subband processing for a lidar system
CN112034475A (zh) Fmcw激光雷达扫频光源跳模补偿方法
JPH01320409A (ja) 膜厚測定方法
JP3610244B2 (ja) モアレ測定方法及びそれを用いたモアレ測定装置
CN112099038B (zh) 一种基于fmcw激光雷达的多物体识别方法及装置
JP2005037206A (ja) リモートセンシング装置及びリモートセンシング装置の周波数分析方法
CN113253241B (zh) 扫频干涉测距信号处理方法
Mulye Power spectrum density estimation methods for michelson interferometer wavemeters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541390

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237001890

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20948268

Country of ref document: EP

Kind code of ref document: A1