WO2018230474A1 - 光学的距離測定装置及び測定方法 - Google Patents
光学的距離測定装置及び測定方法 Download PDFInfo
- Publication number
- WO2018230474A1 WO2018230474A1 PCT/JP2018/022077 JP2018022077W WO2018230474A1 WO 2018230474 A1 WO2018230474 A1 WO 2018230474A1 JP 2018022077 W JP2018022077 W JP 2018022077W WO 2018230474 A1 WO2018230474 A1 WO 2018230474A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- beat
- light
- signal
- waveform
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
- G01C3/06—Use of electric means to obtain final indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/32—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
Definitions
- the present invention relates to an optical distance measuring device and a measuring method suitable for an environment recognition sensor used for automobiles, autonomous robots, and the like.
- lidar Laser Imaging Detection and Ranging
- the TOF (Time of Flight) lidar measures the distance from the time it takes to irradiate an object with a light pulse, and then returns after reflection, and spatially transmits the light pulse to be irradiated.
- the three-dimensional distance data is generated by scanning.
- the TOF system lidar detects the reflected light from the object by direct detection.
- the FMCW (Frequency Modulated Continuous Wave) method using coherent detection is capable of detecting reflected light with higher sensitivity, and has the feature that it can measure the motion speed from the Doppler shift in addition to the distance to the object.
- the FMCW radar in the millimeter wave region has been put into practical use as an on-vehicle collision prevention sensor. If the FMCW method can be realized in the light wave region, a significant improvement in spatial resolution can be expected.
- the current FMCW lidar has a complicated apparatus configuration and requires a high-coherence laser light source, so the application field is limited.
- the FMCW lidar apparatus of FIG. 12A includes a modulation signal generator 1, an injection current source 2, a semiconductor laser 3, beam splitters 5a and 5b, an optical circulator 6, a reflecting mirror 7, and a photodetector 12. Is provided. Next, the operation principle of the FMCW lidar will be described for the case where the semiconductor laser 3 is used as the light source.
- the output of the modulation signal generator 1 that generates a triangular wave is input to the injection current source 2 to modulate the injection current of the semiconductor laser 3.
- the output light of the semiconductor laser 3 is divided into two parts, one being signal light 9 and the other being reference light 8.
- Reference light refers to light that is in phase with signal light and serves as a reference for optical delay.
- the target light 11 is irradiated with the signal light 9, the reflected light 10 from the target 11 and the reference light 8 are combined, and input to the photodetector 12 to detect a beat signal.
- FIG. 12B shows the waveform of the optical frequency of the semiconductor laser 3.
- the optical frequency of the semiconductor laser 3 periodically repeats up and down chirps corresponding to the triangular wave output from the modulation signal generator 1.
- a time difference is generated between the reference light 8 and the reflected light 10, and a beat signal having a frequency proportional to the time difference is generated at the output of the photodetector 12.
- FIG. 12C shows optical frequencies of signal light and reference light, and beat signal waveforms.
- the optical frequencies of the signal light (dotted line) and the reference light (solid line) are shown in the upper part of FIG. Therefore, by measuring the frequency of the beat signal (hereinafter referred to as the beat frequency), the time difference, that is, the distance to the object 11 can be obtained.
- the reason for using both up and down chirps is to obtain the movement speed from the Doppler shift when the object 11 is moving.
- the beat frequency f B measured by the FMCW lidar can be expressed by the following equation.
- ⁇ / (T m / 2) represents a frequency change per unit time, that is, a chirp rate. In order to calculate the distance from the beat frequency, it is necessary to obtain the chirp rate in advance.
- the distance resolution ⁇ L in the FMCW lidar can be expressed by the following equation.
- the meaning of the resolution in equation (2) is the ability to detect two adjacent reflection points separately. When there is one reflection point, the distance can be measured with higher accuracy. Since the distance resolution ⁇ L is inversely proportional to the chirp bandwidth ⁇ , a large chirp bandwidth is required to obtain high resolution. For example, the chirp bandwidths required to obtain a resolution of 10 cm and 1 cm are 1.5 GHz and 15 GHz, respectively. Even with a single reflection point, the accuracy is inversely proportional to the chirp bandwidth.
- the beat frequency in equation (1) is based on the premise that the optical frequency increases (up chirp) or decreases (down chirp) in proportion to time. When the change in optical frequency changes nonlinearly with respect to time, the beat frequency, which should be a constant value, changes and becomes an error factor in distance calculation.
- Non-Patent Document 1 Semiconductor lasers operating in the eye-safe wavelength range are expected to be small and low-cost light sources for FMCW lidar because the frequency can be directly modulated by injection current modulation.
- the frequency modulation of the semiconductor laser is caused by a thermal effect, and the frequency response characteristic is not flat, so that nonlinear chirp appears remarkably. It has been reported that when frequency modulation is performed using a triangular wave, frequency components not included in the modulation signal appear due to nonlinear chirp (see Non-Patent Document 1).
- An apparatus and method for optically detecting the frequency modulation of the laser and controlling the error from the reference signal by negative feedback to the laser have been reported as follows (see Patent Documents 1 to 3).
- a homodyne or heterodyne interferometer for detecting the frequency modulation of the laser is prepared, the frequency modulated light is input, and the beat frequency is detected from the interferometer output.
- the beat frequency is supposed to be a constant value, but fluctuates when nonlinear chirp exists.
- An error signal is generated by comparing the detected beat frequency with the frequency of the reference signal source, and the nonlinear current component is suppressed by negative feedback control of the laser injection current.
- a method for calculating a distance by monitoring a frequency modulation signal or laser output to control a modulation signal generator and correcting a detected beat signal has been reported as follows (see Patent Document 4). .
- the phase of the laser output light is mathematically modeled, the parameters included in the model are estimated from the monitor results, control and signal processing are performed, and the distance is calculated.
- a device that optically detects a millimeter wave frequency and suppresses the influence of nonlinear chirp by signal processing has been reported as follows (see Patent Document 5).
- a millimeter wave signal to be transmitted is converted into an optical signal, a beat signal is detected by a homodyne interferometer, and converted into a pulse signal.
- Information on nonlinear chirp is included in the pulse signal, and the influence of the nonlinear chirp can be suppressed by performing AD conversion on the beat signal generated by reflection from the object using the pulse signal as a clock.
- Patent Documents 1 to 3 In the above-described method for suppressing or reducing the influence of the nonlinear chirp (see Patent Documents 1 to 3), since the nonlinear chirp is suppressed by the negative feedback control of the laser, it is necessary to generate an error signal in real time. For this reason, it is necessary to provide a homodyne or heterodyne interferometer. Further, in the method of controlling the modulation signal generator and correcting the detection signal (see Patent Document 4), an optical device such as an interferometer is required. Patent Document 5 is a technique related to a millimeter wave radar apparatus, but can also be applied to an FMCW lidar in the optical region. However, a homodyne interferometer is required because the AD converter clock must be generated in real time.
- a device for detecting and controlling frequency modulation is required separately from the interferometer for distance measurement, and the configuration of the device becomes complicated.
- an optical distance measuring device if the device configuration is not complicated and a small and low-priced lidar system can be realized, it can be expected to be developed in the consumer field such as in-vehicle collision prevention and pedestrian detection sensor.
- the present invention is intended to solve the above-mentioned problem in the FMCW lidar, and eliminates the influence of the laser non-linear chirp without using an additional device such as an interferometer, thereby enabling accurate distance measurement. It is an object of the present invention to provide an optical distance measuring device and a measuring method.
- the present invention has the following features in order to achieve the above object.
- a laser having a known frequency modulation waveform, a photodetector, and an output light of the laser are divided into two, one is a reference light, the other is a signal light, and the object is irradiated with the signal light, Reflected light from an object, interferometer that combines the reference light and enters the photodetector, an AD converter that converts a beat signal generated from the photodetector into a digital signal, and the digital signal And a digital signal processing device that calculates a distance to the object by performing a regression analysis on the time waveform of the beat frequency based on the known frequency modulation waveform, and calculating a distance to the object.
- An optical distance measuring device is a known frequency modulation waveform, a photodetector, and an output light of the laser.
- the digital signal processing device obtains an in-phase component I (t) and a quadrature component Q (t) of the beat signal from the digital signal, and an arctangent tan ⁇ 1 ⁇ Q (t) / I (t) ⁇ , The instantaneous phase of the beat signal is calculated, and the beat frequency is obtained from the temporal differentiation of the instantaneous phase.
- the optical distance measuring device according to (1), (3) The optical device according to (1) or (2), wherein the known frequency modulation waveform is obtained by measuring an instantaneous frequency waveform of the laser output and expanding the instantaneous frequency waveform by Fourier series. Distance measuring device.
- the optical distance measuring device according to any one of (1) to (3), wherein the frequency modulation waveform of the laser is a triangular wave.
- the output light of a modulated laser whose frequency modulation waveform is known is divided into two parts, one is used as reference light, the other is used as signal light, and the object is irradiated with the signal light, and reflected light from the object And the reference light is combined and incident on a photodetector, the beat signal generated from the photodetector is converted into a digital signal by an AD converter, and the digital signal processing is used to convert the beat frequency from the digital signal. And calculating a distance to the object by performing a regression analysis on the time waveform of the beat frequency based on the known frequency modulation waveform.
- an in-phase component I (t) and a quadrature component Q (t) of the beat signal are obtained from the digital signal, and an arctangent tan ⁇ 1 ⁇ Q (t) / I (t) ⁇
- the optical phase measurement method according to (5) characterized in that an instantaneous phase of the beat signal is calculated from the time and the beat frequency is obtained from a time derivative of the instantaneous phase.
- the optical according to (5) or (6), wherein the known frequency modulation waveform is obtained by measuring an instantaneous frequency waveform of the laser output and expanding the instantaneous frequency waveform by Fourier series. Distance measurement method.
- the optical distance measuring method according to any one of (5) to (7), wherein the frequency modulation waveform of the laser is a triangular wave.
- the distance is calculated by regression analysis based on the known frequency modulation waveform of the laser and the detected beat frequency waveform. For this reason, an optical system for monitoring the frequency modulation of the laser and an electronic circuit for controlling the frequency modulation are unnecessary. As a result, the apparatus configuration can be greatly simplified, and downsizing and cost reduction can be realized.
- a distance to an object is measured using a device including a laser having a known frequency modulation waveform, an interferometer, a photodetector, an AD converter, and a digital signal processing device.
- FIG. 1 is a diagram for explaining an optical distance measuring apparatus according to the present embodiment.
- 1 includes a modulation signal generator 1, an injection current source 2, a semiconductor laser 3, an interferometer 4, a photodetector 12, an AD converter 13, and a digital signal processing device 14.
- a direct modulation semiconductor laser with a known frequency modulation waveform is shown as an example of a laser with a known frequency modulation waveform.
- the interferometer 4 is mainly composed of a beam splitter 5a, a circulator 6, a beam splitter 5b, and a reflecting mirror 7.
- the output of the modulation signal generator 1 is input to the semiconductor laser 3 via the injection current source 2 to modulate the frequency of the output light.
- the output light of the semiconductor laser 3 is divided into two by the beam splitter 5 a, one of which is the reference light 8 and the other is the signal light 9.
- the object 11 is irradiated with the signal light 9 via the optical circulator 6.
- the reflected light from the object 11 is guided to the beam splitter 5 b through the optical circulator 6, and the reflected light 10 and the reference light 8 are combined and received by the photodetector 12.
- There is a frequency difference between the frequency-modulated reference light 8 and the reflected light 10 because there is a time difference according to the distance to the object 11.
- a beat signal corresponding to the frequency difference is generated at the output of the photodetector 12.
- the output of the photodetector 12 is converted into a digital signal by the AD converter 13 and then input to the digital signal processing device 14.
- a frequency modulation waveform of the semiconductor laser 3 is recorded.
- the digital signal processing device 14 performs regression analysis on the beat signal converted into the digital signal, using the round trip time of the light to the object 11 as an unknown, thereby performing the round trip of the light. Time, that is, the distance to the object 11 is obtained.
- the electric field E S (t) of the reflected light 10 can be expressed by the following equation.
- a R and A S are the amplitude of the electric field
- [nu 0 is center frequency
- ⁇ (t) is the instantaneous phase due to frequency modulation of the semiconductor laser 3
- tau d represents the round-trip time of light to the object 11 .
- ⁇ (t) is related to the instantaneous frequency ⁇ (t) of the semiconductor laser 3 by the following equation.
- the instantaneous frequency ⁇ (t) resulting from frequency modulation is measured in advance and recorded in the digital signal processing device 14.
- a triangular wave or a sawtooth wave is generally used as a frequency modulation signal.
- the instantaneous frequency ⁇ (t) is known, it is not limited to these waveforms. Absent.
- the beat signal V B (t) output from the photodetector 12 can be expressed by the following equation.
- ⁇ is a constant determined by the sensitivity of the photodetector 12 and the like.
- the beat signal expressed by the equation (6) is converted into a digital signal.
- FIG. 2 is a diagram illustrating signal processing performed in the digital signal processing device 14.
- the beat signal input to the digital signal processor 14 is divided into two and input to the mixer 17a and the mixer 17b, respectively.
- the phase shifter 16 gives a phase shift of ⁇ / 2 as the local oscillator signal of the mixer 17a, the output of the local oscillator 15 having a frequency of f C and the output of the local oscillator 15 as the local oscillator signal of the mixer 17b, respectively.
- the output of the mixer 17a and the output of the mixer 17b are input to the low-pass filter 18a and the low-pass filter 18b, respectively, the high-frequency component is removed, and the difference frequency component between the beat signal and the local signal is output.
- the in-phase component 19 (I (t)) of the beat signal expressed by the following equation is output to the output of the low-pass filter 18a.
- a quadrature component 20 (Q (t)) of the beat signal expressed by the following equation is output to the output of the low-pass filter 18b.
- Equation (7) is expressed by the following equation.
- ⁇ (t) is the instantaneous phase of the beat signal.
- the arithmetic processing unit 21 obtains the beat frequency f B (t) from the in-phase component I (t) and the quadrature component Q (t), and performs regression analysis based on the time waveform of the beat frequency and the known frequency modulation waveform.
- the light round-trip time ⁇ d that is, the distance to the object 11 is obtained. This will be specifically described using (Equation 10), (Equation 11), and (Equation 12).
- the arithmetic processing unit 21 calculates ⁇ (t) in Equation (9) using the in-phase component I (t) obtained as described above, the quadrature component Q (t), and the following equation. .
- the beat signal includes a component due to the light intensity modulation, but can be removed by the processing of equation (10).
- the arithmetic processing unit 21 performs an unwrapping process on the phase obtained by the equation (10).
- the unwrapping process is a process in which a phase that is an integer multiple of 2 ⁇ is added to a discontinuous phase change to obtain a continuous phase change.
- the beat frequency f B (t) expressed by the following equation can be obtained by differentiating the unwrapped phase ⁇ (t) with time and adding the frequency f C of the local oscillator 15.
- ⁇ (t) represents an instantaneous frequency resulting from frequency modulation, and is known by prior measurement.
- the arithmetic processing unit 21 by performing regression analysis on the measured beat frequency f B (t) with the round trip time ⁇ d of the light to the object 11 as an unknown, the round trip time ⁇ d of the light, that is, The distance to the object 11 is obtained.
- a triangular wave or a sawtooth wave is generally used as a modulation signal.
- the instantaneous frequency ⁇ (t) is known, the distance can be obtained in the same manner even when other waveforms are used. it can.
- Equation (11) represents the time waveform of the beat frequency, but it is difficult to accurately set the origin of the time axis in actual measurement.
- the waveform of the instantaneous frequency resulting from the frequency modulation of the laser is measured in advance, an additional interferometer or the like for controlling the conventional frequency modulation is used. No optical system or electronic circuit for laser negative feedback control is required. As a result, the FMCW rider apparatus is simplified, and the system can be reduced in size and price.
- FIG. 3 is a diagram for explaining an optical distance measuring apparatus according to the second embodiment.
- 3 includes a modulation signal generator 1, an injection current source 2, a semiconductor laser 3, an optical system corresponding to an interferometer, a balanced photodetector 25, an AD converter 13, and the like. And a digital signal processing device 14.
- the optical system corresponding to the interferometer 4 in FIG. 1 is configured by an optical fiber, and includes optical directional couplers 22a and 22b, a transmission / reception optical system 23, a polarization controller 24, and a circulator 6.
- the output of the modulation signal generator 1 is input to the semiconductor laser 3 via the injection current source 2, and the frequency of the output light is modulated.
- the output light of the semiconductor laser 3 is divided into two by the optical directional coupler 22a, and one of them is used as reference light and guided to the optical directional coupler 22b via the polarization controller 24.
- the other is input as signal light to the optical circulator 6 and irradiates the object 11 via the transmission / reception optical system 23.
- the light reflected by the object 11 is guided to the optical directional coupler 22b via the optical circulator 6 and combined with the reference light, and then received by the balanced photodetector 25 and output as a beat signal.
- the beat signal is converted into a digital signal by the AD converter 13, and the digital signal processing device 14 is used to calculate the beat frequency expressed by the equation (11) and perform the regression analysis based on the equation (12).
- FIG. 4 is a diagram for explaining an apparatus used for accuracy evaluation of the optical distance measuring apparatus of FIG. 3, and details will be described later.
- FIG. 5 is a diagram showing the instantaneous frequency of the semiconductor laser 3 measured using heterodyne interference (see Non-Patent Document 1).
- the semiconductor laser 3 is a discrete mode semiconductor laser having a wavelength of 1552.1 nm and an output of 5 mW.
- a triangular wave having a frequency of 5 kHz is used as the modulation signal, and the modulation current amplitude is 60 mA pp .
- the solid line represents the measured value, and the broken line represents an ideal triangular wave time waveform.
- An ideal triangular wave can be represented by the following Fourier series expansion.
- .DELTA..nu the chirp bandwidth is f m is the modulation frequency.
- equation (13) shows, an ideal triangular wave can be developed by a fundamental wave and odd harmonics.
- the broken line in FIG. 5 is calculated considering the 85th harmonic.
- the measured instantaneous frequency of the semiconductor laser 3 has a chirp bandwidth of 15 GHz, but produces an error from an ideal triangular wave.
- the dashed-dotted line in FIG. 5 represents the difference between them, and the error is ⁇ 0.903 to +0.433 GHz ( ⁇ 6.02 to + 2.89%), which is a large error factor in distance measurement.
- FIG. 6 is a diagram showing a beat frequency waveform expected from the instantaneous frequency waveform shown in FIG. This is a result calculated from the waveform of FIG. 5 with the distance to the object 11 being 16.74 m.
- the broken line corresponds to the case where an ideal triangular wave is used, and becomes a constant value of 17.68 MHz except near the apex of the triangular wave.
- the solid line represents the result when the semiconductor laser 3 is used, and the beat frequency that should be constant varies greatly.
- the cause of such a change is an error from the ideal triangular wave shown in FIG. 5, which is caused by a non-linear chirp with respect to time.
- a half cycle with a large beat frequency change corresponds to an up-chirp portion of a triangular wave, and a relatively small half cycle corresponds to a down-chirp portion.
- Equation (13) an ideal triangular wave can be developed by a fundamental wave and odd harmonics.
- the reason why the beat frequency changes are different between the up-chirp and the down-chirp as shown in FIG. 6 is that even-order harmonic components are included in the instantaneous frequency of the semiconductor laser 3 due to the chirp nonlinearity ( Non-patent document 1).
- the measured instantaneous frequency ⁇ (t) of the semiconductor laser 3 in an analytical form.
- the instantaneous frequency ⁇ (t) is expanded in the Fourier series, and the amplitude and phase of each component including not only the fundamental wave and the odd-order harmonics but also the even-order harmonics are taken into account as follows: More preferred.
- the amplitudes C k and D k and the phases ⁇ k and ⁇ k of the Fourier coefficients in the equation (14) can be obtained by regression analysis of the measured values of the instantaneous frequency shown in FIG. 14 is recorded.
- the beat frequency f B (t) is determined from the beat signal converted into a digital signal by the AD converter, and regression analysis is performed using the equations (12) and (14), so that the round-trip time of light By obtaining ⁇ d , the distance to the object 11 can be calculated.
- FIG. 4 is an apparatus for accuracy evaluation of the optical distance measuring apparatus according to the second embodiment. Therefore, instead of detecting the reflected light from the object 11, the optical circulator 6 is provided with the variable optical delay line 26. , And the light subjected to Fresnel reflection at the output end face of the variable optical delay line 26 is detected.
- the beat signal output from the balance-type photodetector 25 is input to the vector signal analyzer 27 to perform conversion into a digital signal and calculation of the beat frequency f B (t).
- the regression analysis based on the equation (12) is executed by offline processing using the arithmetic processing unit 28.
- FIG. 7 is a diagram showing the measured value of the instantaneous frequency of the semiconductor laser 3 and the waveform of the regression curve based on the Fourier series of equation (14).
- the harmonic order was considered up to 85 for the odd order and up to 35 for the even order.
- the solid line represents the measured value, and the broken line represents the regression curve.
- the one-dot chain line in FIG. 7 represents the difference between them, and the error is ⁇ 1.546 to +3.091 MHz, which corresponds to 0.031% of the frequency shift. From FIG. 7, it can be confirmed that the instantaneous frequency of the semiconductor laser 3 can be faithfully expressed by the equation (14).
- FIG. 8 is a diagram illustrating beat frequencies when the setting of the variable optical delay line is 0 and 80.0 mm. Both appear to overlap.
- (B) is an enlarged view of a part (a part surrounded by a dotted line) of (a). It can be seen that there is a slight difference when enlarged.
- FIG. 9 is a diagram illustrating the relationship between the set value of the variable optical delay line and the measured value of the distance.
- a black circle represents a distance measurement value
- a white circle represents an error from a set value.
- regression analysis was performed using Equation (12) and Equation (14), and the distance was calculated from the difference between the obtained delay times ⁇ d1 and ⁇ d2 .
- the measured value of the distance is 11.150 m, which corresponds to the optical path difference between the optical fiber interferometer and the variable optical delay line 26.
- the measured values in FIG. 9 represent relative changes from zero delay.
- the measurement value can be measured by sufficiently resolving the change in optical path length in units of 8.0 mm, and the error is ⁇ 0.50 to +0.15 mm.
- the resolution calculated from the chirp band of 15 GHz is 1 cm, but in the measurement result of FIG. 9, a resolution of 1 cm or less is obtained. As described above, the resolution is the ability to resolve two adjacent reflection points. When there is one reflection point, it can be measured with higher accuracy.
- FIG. 10 is a diagram showing a change in beat frequency when the optical fiber length is changed from 0 to 10 m in units of 1 m. It can be seen that the beat frequency increases corresponding to the optical fiber length.
- FIG. 11 is a diagram showing the relationship between the optical fiber length and the measured distance value.
- the measured value of the distance is a value converted into the fiber length in consideration of the refractive index (1.467).
- the distance measured when the optical fiber patch cord is not connected is 4.695 m, which corresponds to the optical path difference of the optical fiber interferometer itself.
- the measured values in FIG. 11 represent the exact length of the optical fiber patch cord connected to the interferometer.
- the values at each point (optical fiber length [m], measured value [m]) in FIG. 11 are (1, 1.0399) (2, 2.0707) (3, 3.0701) (4, 4.. 1095) (5, 5.0041) (6, 6.0443) (7, 7.0742) (8, 8.0738) (9, 9.1130) (10, 10.0520).
- the result of FIG. 11 shows linearity, and shows that high-precision distance measurement is possible even with a change in optical path length in units of 1 m.
- the evaluation of the second embodiment was performed under a modulation condition corresponding to a maximum measurement distance of 10 m and a resolution of 1 cm, assuming an environment recognition sensor mounted on an autonomous robot.
- a modulation condition corresponding to a maximum measurement distance of 10 m and a resolution of 1 cm, assuming an environment recognition sensor mounted on an autonomous robot.
- specifications with a maximum measurement distance of 200 m and a resolution of 10 cm are required, but it is possible to optimize the chirp band and the modulation frequency and implement the same.
- the optical distance measuring device and method of the present invention do not require an additional device for controlling the frequency modulation of the laser, and thus are industrially useful as a small, high-precision, low-cost FMCW lidar system. It is intended to increase the applicability to consumer devices, including use as environment recognition sensors for automobiles, autonomous robots, and the like.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
FMCWライダにおいて、レーザの非線形チャープの影響を除去して、正確な距離測定を可能とする光学的距離測定装置及び測定方法を提供する。周波数変調波形が既知のレーザの出力光を2分し、一方を参照光、他方を信号光とし、前記信号光を対象物に照射して、前記対象物からの反射光と、前記参照光を合波して光検出器に入射し、該光検出器から発生するビート信号をAD変換器によりデジタル信号に変換し、デジタル信号処理装置を用いて、前記デジタル信号からビート周波数を求め、該ビート周波数の時間波形に対して、前記既知の周波数変調波形を基に回帰分析を行い、前記対象物までの距離を算出する。
Description
本発明は、自動車や自律ロボット等に用いられる環境認識センサ等に適する光学的距離測定装置、及び測定方法に関する。
自動車や自律ロボットの環境認識センサや、建設・土木現場における形状計測などへの応用を目的として、ライダ(LiDAR:Laser Imaging Detection and Ranging)の開発が進展している。すでに実用化されているTOF(Time of Flight)方式のライダは、対象物に光パルスを照射して、反射して戻ってくるまでの時間から距離を測定し、照射する光パルスを空間的に走査して、3次元距離データを生成するものである。
TOF方式ライダでは、直接検波により対象物からの反射光を検出する。一方、コヒーレント検波を用いるFMCW(Frequency Modulated Continuous Wave)方式は、より高感度の反射光検出が可能であり、対象物までの距離に加えて、ドップラーシフトから運動速度も測定できる特徴を有している。ミリ波領域のFMCWレーダは、車載用の衝突防止センサとして実用化されている。FMCW方式を光波領域で実現できれば、空間分解能の格段の向上が期待できる。現状のFMCWライダは、装置の構成が複雑であり、高コヒーレンスのレーザ光源が要求されるため、応用分野は限定されている。
図12(a)(b)(c)は、FMCWライダの原理を説明する図である。図12(a)のFMCWライダ装置は、変調信号発生器1と、注入電流源2と、半導体レーザ3と、ビームスプリッタ5a、5bと、光サーキュレータ6と、反射鏡7と、光検出器12を備える。次に、光源として半導体レーザ3を用いた場合について、FMCWライダの動作原理を説明する。三角波を発生する変調信号発生器1の出力を、注入電流源2に入力し、半導体レーザ3の注入電流を変調する。半導体レーザ3の出力光を2分し、一方を信号光9、他方を参照光8とする。参照光とは、信号光と位相が同期し、光学的遅延の基準となる光をいう。信号光9を対象物11に照射し、対象物11からの反射光10と参照光8を合波し、光検出器12に入力してビート信号を検出する。図12(b)に半導体レーザ3の光周波数の波形を示す。半導体レーザ3の光周波数は、変調信号発生器1から出力される三角波に対応して、アップ、ダウンチャープを周期的に繰り返す。参照光8と反射光10との間には時間差が発生し、光検出器12の出力には、時間差に比例した周波数を有するビート信号が発生する。図12(c)に、信号光と参照光の光周波数、およびビート信号波形を示す。図12(c)の上部に、信号光(点線)と参照光(実線)の光周波数を、ビート信号と対応させて示す。したがって、ビート信号の周波数(以下、ビート周波数という。)を測定すれば、時間差、すなわち対象物11までの距離を求めることができる。アップ、ダウンチャープの両方を使用するのは、対象物11が運動している場合に、ドップラーシフトから運動速度を求めるためである。ここでは半導体レーザを用いた場合について説明したが、周波数変調機能を有するレーザであれば、同様の測定を行うことができる。
FMCWライダにより測定されるビート周波数fBは、次式により表すことができる。
ここで、Δνはチャープ帯域幅、Tm=1/fmは変調周期、fmは変調周波数、Lは対象物11までの距離、cは光速度である。(数1)式において、Δν/(Tm/2)は単位時間当たりの周波数変化、すなわち、チャープ率を表す。ビート周波数から距離を算出するためには、チャープ率を事前に求めておく必要がある。
FMCWライダにおける距離分解能δLは、次式により表すことができる。
(数2)式における分解能の意味は、近接する2つの反射点を分離して検出する能力である。反射点が1つの場合は、さらに高い精度で距離を測定することができる。距離分解能δLはチャープ帯域幅Δνに反比例するので、高い分解能を得るためには、大きなチャープ帯域幅が必要である。例えば、分解能10cm、1cmを得るのに必要なチャープ帯域幅は、それぞれ1.5GHz、15GHzである。反射点が1つの場合においても、精度はチャープ帯域幅に反比例する。
チャープ帯域幅に加えて、チャープの直線性もFMCWライダの性能を決定する重要な特性である。(数1)式のビート周波数は、光周波数が時間に比例して増加(アップチャープ)、または減少(ダウンチャープ)することを前提にしている。光周波数変化が時間に対して非線形に変化する場合は、一定値であるはずのビート周波数が変化して、距離算出の誤差要因となる。
アイセーフ波長域で動作する半導体レーザは、注入電流変調により周波数を直接変調できることから、小型で低価格のFMCWライダ用の光源として期待されている。ところが、半導体レーザの周波数変調は熱効果に起因し、周波数応答特性が平坦ではないため、非線形チャープが顕著に現れることが知られている。三角波により周波数変調した場合は、非線形チャープに起因して、変調信号に含まれない周波数成分が現れることが報告されている(非特許文献1参照)。
FMCWライダにおいて、このような非線形チャープの影響を抑圧または低減する手法は、2つに大別できる。一つは、半導体レーザの変調を制御して、所望の線形チャープを得る方法である。もう一つは、検出したビート信号を処理して、非線形チャープの影響を除去する方法である。
レーザの周波数変調を光学的に検出して、基準信号との誤差をレーザに負帰還して制御する装置、及び方法が、次のように報告されている(特許文献1乃至3参照)。レーザの周波数変調を検出するためのホモダイン、またはヘテロダイン干渉計を用意し、周波数変調光を入力して、干渉計出力からビート周波数を検出する。ビート周波数は、本来一定値になるはずであるが、非線形チャープが存在する場合は変動する。検出したビート周波数を基準信号源の周波数と比較して誤差信号を生成し、レーザの注入電流を負帰還制御して、非線形成分の抑圧を行う。
周波数変調信号、またはレーザ出力をモニタして、変調信号発生器を制御するとともに、検出したビート信号を補正して、距離を算出する方法が次のように報告されている(特許文献4参照)。レーザ出力光の位相を数学的にモデル化し、モニタ結果からモデルに含まれるパラメータを推定し、制御と信号処理を行い、距離を算出する。
ミリ波FMCWレーダにおいて、光学的にミリ波周波数を検出し、信号処理により、非線形チャープの影響を抑圧する装置が、以下のように報告されている(特許文献5参照)。送出するミリ波信号を光信号に変換し、ホモダイン干渉計によりビート信号を検出して、パルス信号に変換する。パルス信号には非線形チャープの情報が含まれており、このパルス信号をクロックとして、対象物からの反射により生成されるビート信号をAD変換することにより、非線形チャープの影響を抑圧することができる。
H.Tsuchida、"Waveform measurement technique for phase/frequency-modulated lights based on heterdyne interferometry、"Optics Express、vol.25,no.5、pp.4793-4799(2017年3月)
現実のFMCWライダでは、光周波数変化が時間に対して非線形に変化することが原因で、距離算出の誤差要因となる問題がある。
前述した、非線形チャープの影響を抑圧または低減する方法(特許文献1乃至3参照)では、レーザの負帰還制御により非線形チャープを抑圧するため、誤差信号を実時間で生成する必要がある。このため、ホモダイン、またはヘテロダイン干渉計を備える必要がある。また、変調信号発生器の制御と検出信号の補正を行う方法(特許文献4参照)では、干渉計などの光学装置が必要である。また、特許文献5はミリ波レーダ装置に関する技術であるが、光領域のFMCWライダにも適用できる。しかし、AD変換器のクロックを実時間で生成する必要があるため、ホモダイン干渉計が必要である。
このように、従来技術においては、距離測定用の干渉計とは別に、周波数変調を検出して制御するための装置が必要であり、装置の構成が複雑になる。光学的距離測定装置として、装置構成が複雑化せず、小型で低価格のライダシステムが実現できれば、車載用の衝突防止、歩行者検知センサなど、民生分野への展開が期待できる。
本発明は、FMCWライダにおける上述の問題を解決しようとするものであり、干渉計などの付加的な装置を用いることなく、レーザの非線形チャープの影響を除去して、正確な距離測定を可能とする、光学的距離測定装置、及び測定方法を提供することを目的とする。
本発明は、前記目的を達成するために、以下の特徴を有するものである。
(1) 周波数変調波形が既知のレーザと、光検出器と、前記レーザの出力光を2分し、一方を参照光、他方を信号光とし、前記信号光を対象物に照射して、前記対象物からの反射光と、前記参照光を合波して前記光検出器に入射する干渉計と、前記光検出器から発生するビート信号をデジタル信号に変換するAD変換器と、前記デジタル信号からビート周波数を求め、該ビート周波数の時間波形に対して、前記既知の周波数変調波形を基に回帰分析を行い、前記対象物までの距離を算出するデジタル信号処理装置とを、備えることを特徴とする光学的距離測定装置。
(2) 前記デジタル信号処理装置は、前記デジタル信号から前記ビート信号の同相成分I(t)と直交成分Q(t)を求めて、逆正接tan-1{Q(t)/I(t)}から前記ビート信号の瞬時位相を計算し、該瞬時位相の時間微分から前記ビート周波数を求めることを特徴とする、(1)記載の光学的距離測定装置。
(3) 前記既知の周波数変調波形は、前記レーザの出力の瞬時周波数波形を測定し、該瞬時周波数波形をフーリエ級数展開したものであることを特徴とする(1)又は(2)記載の光学的距離測定装置。
(4) 前記レーザの周波数変調波形は三角波であることを特徴とする(1)乃至(3)のいずれか1項記載の光学的距離測定装置。
(5) 周波数変調波形が既知の変調されたレーザの出力光を2分し、一方を参照光、他方を信号光とし、前記信号光を対象物に照射して、前記対象物からの反射光と、前記参照光を合波して光検出器に入射し、該光検出器から発生するビート信号をAD変換器によりデジタル信号に変換し、デジタル信号処理を用いて、前記デジタル信号からビート周波数を求め、該ビート周波数の時間波形に対して、前記既知の周波数変調波形を基に回帰分析を行い、前記対象物までの距離を算出することを特徴とする光学的距離測定方法。
(6) 前記デジタル信号処理は、前記デジタル信号から前記ビート信号の同相成分I(t)と直交成分Q(t)を求めて、逆正接tan-1{Q(t)/I(t)}から前記ビート信号の瞬時位相を計算し、該瞬時位相の時間微分から前記ビート周波数を求めることを特徴とする、(5)記載の光学的距離測定方法。
(7) 前記既知の周波数変調波形は、前記レーザの出力の瞬時周波数波形を測定し、該瞬時周波数波形をフーリエ級数展開したものであることを特徴とする(5)又は(6)記載の光学的距離測定方法。
(8) 前記レーザの周波数変調波形は三角波であることを特徴とする(5)乃至(7)のいずれか1項記載の光学的距離測定方法。
(2) 前記デジタル信号処理装置は、前記デジタル信号から前記ビート信号の同相成分I(t)と直交成分Q(t)を求めて、逆正接tan-1{Q(t)/I(t)}から前記ビート信号の瞬時位相を計算し、該瞬時位相の時間微分から前記ビート周波数を求めることを特徴とする、(1)記載の光学的距離測定装置。
(3) 前記既知の周波数変調波形は、前記レーザの出力の瞬時周波数波形を測定し、該瞬時周波数波形をフーリエ級数展開したものであることを特徴とする(1)又は(2)記載の光学的距離測定装置。
(4) 前記レーザの周波数変調波形は三角波であることを特徴とする(1)乃至(3)のいずれか1項記載の光学的距離測定装置。
(5) 周波数変調波形が既知の変調されたレーザの出力光を2分し、一方を参照光、他方を信号光とし、前記信号光を対象物に照射して、前記対象物からの反射光と、前記参照光を合波して光検出器に入射し、該光検出器から発生するビート信号をAD変換器によりデジタル信号に変換し、デジタル信号処理を用いて、前記デジタル信号からビート周波数を求め、該ビート周波数の時間波形に対して、前記既知の周波数変調波形を基に回帰分析を行い、前記対象物までの距離を算出することを特徴とする光学的距離測定方法。
(6) 前記デジタル信号処理は、前記デジタル信号から前記ビート信号の同相成分I(t)と直交成分Q(t)を求めて、逆正接tan-1{Q(t)/I(t)}から前記ビート信号の瞬時位相を計算し、該瞬時位相の時間微分から前記ビート周波数を求めることを特徴とする、(5)記載の光学的距離測定方法。
(7) 前記既知の周波数変調波形は、前記レーザの出力の瞬時周波数波形を測定し、該瞬時周波数波形をフーリエ級数展開したものであることを特徴とする(5)又は(6)記載の光学的距離測定方法。
(8) 前記レーザの周波数変調波形は三角波であることを特徴とする(5)乃至(7)のいずれか1項記載の光学的距離測定方法。
本発明の光学的距離測定装置および測定方法においては、既知であるレーザの周波数変調波形と、検出したビート周波数波形を基にして、回帰分析により距離を算出する。このため、レーザの周波数変調をモニタする光学系と、周波数変調を制御する電子回路が不要である。その結果、装置構成を格段に簡素化することができて、小型化と低価格化を実現できる。
また、直接周波数変調により、非線形チャープが顕著に発生する半導体レーザを用いる場合は、信号処理だけで非線形チャープの影響を抑制できるため、より小型化で高精度の装置が実現できる。
以下、本発明の実施の形態を詳細に説明する。本発明では、周波数変調波形が既知のレーザと、干渉計と、光検出器と、AD変換器と、デジタル信号処理装置とを具備する装置を用いて、対象物までの距離を測定する。
(第1の実施の形態)
第1の実施の形態を図1と図2を参照して、以下説明する。
第1の実施の形態を図1と図2を参照して、以下説明する。
図1は、本実施の形態に係る光学的距離測定装置を説明する図である。図1の光学的距離測定装置は、変調信号発生器1と、注入電流源2と、半導体レーザ3と、干渉計4と、光検出器12と、AD変換器13と、デジタル信号処理装置14とを備える。図1では、周波数変調波形が既知のレーザとして、周波数変調波形が既知の直接変調半導体レーザを例に示している。干渉計4は、ビームスプリッタ5aとサーキュレータ6とビームスプリッタ5bと反射鏡7とで、主に構成する。図1に示すように、変調信号発生器1の出力を、注入電流源2を介して、半導体レーザ3に入力し、出力光の周波数を変調する。半導体レーザ3の出力光をビームスプリッタ5aにより2分し、一方を参照光8、他方を信号光9とする。信号光9を光サーキュレータ6を介して、対象物11に照射する。対象物11からの反射光を、光サーキュレータ6を介して、ビームスプリッタ5bに導き、該反射光10と参照光8とを合波して、光検出器12により受光する。周波数変調された参照光8と反射光10との間には、対象物11までの距離に応じた時間差が存在するため、周波数差が生じる。光検出器12の出力には、周波数差に対応したビート信号が発生する。光検出器12の出力をAD変換器13によりデジタル信号に変換した後、デジタル信号処理装置14に入力する。デジタル信号処理装置14には、半導体レーザ3の周波数変調波形が記録されている。該周波数変調波形を用いて、デジタル信号処理装置14において、デジタル信号に変換されたビート信号に対して、対象物11までの光の往復時間を未知数として、回帰分析を行うことにより、光の往復時間、すなわち対象物11までの距離を求める。
数式を用いて、以下詳しく説明する。図1において参照光8の電場ER(t)は次式により表すことができる。
一方、反射光10の電場ES(t)は次式により表すことができる。
ここで、ARとASは電場の振幅、ν0は中心周波数、φ(t)は半導体レーザ3の周波数変調に起因する瞬時位相、τdは対象物11までの光の往復時間を表す。φ(t)は、半導体レーザ3の瞬時周波数ν(t)と次式により関係づけられる。
周波数変調に起因する瞬時周波数ν(t)は事前に測定して、デジタル信号処理装置14に記録されているものとする。FMCWライダにおいては、周波数変調信号として、三角波または鋸波を用いることが一般的であるが、後述するように、瞬時周波数ν(t)が既知であれば、これらの波形に限定されるものではない。
光検出器12から出力されるビート信号VB(t)は、次式により表すことができる。
ここで、ηは光検出器12の感度などにより決まる定数である。AD変換器13を用いて、(数6)式により表されるビート信号をデジタル信号に変換する。
図2は、デジタル信号処理装置14において行う信号処理を表す図である。デジタル信号処理装置14に入力したビート信号を2分し、ミキサ17aとミキサ17bにそれぞれ入力する。ミキサ17aの局発信号として、周波数がfCの局部発振器15の出力を、ミキサ17bの局発信号として、局部発振器15の出力を位相シフタ16によりπ/2の位相シフトを与えた後、それぞれ入力する。ミキサ17aの出力と、ミキサ17bの出力を、それぞれローパスフィルタ18aとローパスフィルタ18bに入力し、高周波成分を除去して、ビート信号と局発信号の差周波成分を出力する。ローパスフィルタ18aの出力には、次式で表されるビート信号の同相成分19(I(t))が出力される。
一方、ローパスフィルタ18bの出力には、次式で表されるビート信号の直交成分20(Q(t))が出力される。
(数7)式と(数8)式におけるΦ(t)は次式で表される。Φ(t)はビート信号の瞬時位相である。
演算処理部21において、同相成分I(t)と直交成分Q(t)とからビート周波数fB(t)を求め、ビート周波数の時間波形と既知の周波数変調波形を基に回帰分析を行って、光の往復時間τd、すなわち、対象物11までの距離を求める。(数10)(数11)(数12)を用いて具体的に説明する。
まず、演算処理部21において、上述のようにして求めた同相成分I(t)と、直交成分Q(t)と、次式を用いて、(数9)式のΦ(t)を計算する。
注入電流を変調した半導体レーザでは、周波数だけでなく、光強度も同時に変調される。ビート信号には、光強度変調に起因する成分も含まれるが、(数10)式の処理により除去できる。
次に、演算処理部21において、±πを越える位相変化を検出するため、(数10)式により求めた位相に対して、アンラッピング処理を行う。アンラッピング処理とは、不連続な位相変化に対して、2πの整数倍の位相を付加して、連続的な位相変化にする処理をいう。アンラッピング処理した位相Φ(t)を時間微分して、局部発振器15の周波数fCを加えることにより、次式で表されるビート周波数fB(t)を求めることができる。
(数11)式において、ν(t)は周波数変調に起因する瞬時周波数を表しており、事前の測定により既知である。演算処理部21において、測定したビート周波数fB(t)に対して、対象物11までの光の往復時間τdを未知数として、回帰分析を行うことにより、光の往復時間τd、すなわち、対象物11までの距離を求める。
FMCWライダでは変調信号として三角波、または鋸波を用いることが一般的であるが、瞬時周波数ν(t)が既知であれば、他の波形を用いた場合でも、同様にして距離を求めることができる。
(数11)式はビート周波数の時間波形を表しているが、実際の測定では時間軸の原点を正確に設定することが困難である。この問題は時間軸の原点も未知数として、回帰分析を行うことにより解決できる。すなわち、次式で表される二つの遅延時間τd1とτd2を設定して回帰分析を行い、τd2とτd1の差から、光の往復時間τd=τd2-τd1を求めることができる。
本実施の形態の光学的距離測定装置及び方法では、レーザの周波数変調に起因する瞬時周波数の波形を事前に測定しておくため、従来の周波数変調を制御するための干渉計などの付加的な光学系や、レーザの負帰還制御のための電子回路を必要としない。これにより、FMCWライダ装置が簡素化され、システムの小型化と低価格化を図ることができる。
(第2の実施の形態)
第2の実施の形態では、周波数変調のための変調信号として三角波を用いた場合の距離測定について、図3~図11を参照して説明する。
第2の実施の形態では、周波数変調のための変調信号として三角波を用いた場合の距離測定について、図3~図11を参照して説明する。
図3は、第2の実施の形態に係る光学的距離測定装置を説明する図である。図3の光学的距離測定装置は、変調信号発生器1と、注入電流源2と、半導体レーザ3と、干渉計に対応する光学系と、バランス型光検出器25と、AD変換器13と、デジタル信号処理装置14とを備える。図1の干渉計4に対応する光学系は、光ファイバで構成され、光方向性結合器22a、22bと、送受信光学系23と、偏波コントローラ24と、サーキュレータ6とを備える。変調信号発生器1の出力を、注入電流源2を介して、半導体レーザ3に入力し、出力光の周波数を変調する。半導体レーザ3の出力光を、光方向性結合器22aにより二分し、一方を参照光として、偏波コントローラ24を介して、光方向性結合器22bに導く。もう一方は信号光として、光サーキュレータ6に入力し、送受信光学系23を介して、対象物11に照射する。対象物11で反射した光を、光サーキュレータ6を介して光方向性結合器22bに導き、参照光と合波した後、バランス型光検出器25により受光して、ビート信号として出力する。ビート信号をAD変換器13によりデジタル信号に変換し、デジタル信号処理装置14を用いて、(数11)式により表されるビート周波数の計算と、(数12)式に基づく回帰分析を行う。
図4~11を参照して、本実施の形態に係る装置の精度について以下検討する。図4は、図3の光学的距離測定装置の精度評価に用いた装置を説明する図であり、詳細は後述する。
第1の実施の形態で説明したように、周波数変調に起因する瞬時周波数ν(t)を事前に測定しておく必要がある。図5は、ヘテロダイン干渉(非特許文献1参照)を利用して測定した、半導体レーザ3の瞬時周波数を表す図である。半導体レーザ3は、波長1552.1nm、出力5mWの離散モード半導体レーザである。変調信号として、周波数5kHzの三角波を用い、変調電流振幅は60mAppである。実線は測定値、破線は理想的な三角波の時間波形を表す。理想的な三角波は、次式のフーリエ級数展開で表すことができる。
ここで、Δνはチャープ帯域幅、fmは変調周波数である。(数13)式が示すように、理想的な三角波は、基本波と奇数次の高調波により展開できる。図5の破線は、85次高調波まで考慮して計算したものである。測定した半導体レーザ3の瞬時周波数は、15GHzのチャープ帯域幅を有しているが、理想的な三角波から誤差を生じている。両者を比較すると、三角波の頂点付近だけでなく、チャープ領域でも誤差を生じていることがわかる。図5の一点鎖線は両者の差を表しており、誤差は-0.903~+0.433GHz(-6.02~+2.89%)であり、距離測定における大きな誤差要因となる。
図6は、図5に示した瞬時周波数の波形から予想される、ビート周波数の波形を表す図である。対象物11までの距離を16.74mとして、図5の波形から計算した結果である。破線は理想的な三角波を用いた場合に対応し、三角波の頂点付近以外では、一定値の17.68MHzになる。実線は半導体レーザ3を用いた場合の結果を表し、一定であるはずのビート周波数が大きく変化する。このような変化の原因は、図5に示した理想的な三角波からの誤差であり、時間に対して非線形チャープを生じていることが原因である。図6の右側の縦軸は対応する距離を表しており、距離4mから22mに相当するビート周波数変化を生じている。ビート周波数の変化が大きい半周期は、三角波のアップチャープ部分、比較的小さい半周期はダウンチャープ部分に対応する。
(数13)式が示すように、理想的な三角波は基本波と奇数次の高調波により展開できる。図6に示すようなアップチャープ、ダウンチャープ部分で、ビート周波数変化が異なる原因は、チャープの非線形性により、半導体レーザ3の瞬時周波数に偶数次の高調波成分が含まれているためである(非特許文献1参照)。
(数12)式に基づいて回帰分析を行うためには、測定した半導体レーザ3の瞬時周波数ν(t)を解析的な形で表現することが望ましい。ここでは、瞬時周波数ν(t)をフーリエ級数展開し、基本波と奇数次高調波だけでなく、偶数次高調波も含めて、次式のように各成分の振幅と位相を考慮することがより好ましい。
(数14)式におけるフーリエ係数の振幅Ck、Dkと位相ψk、θkは、図5に示した瞬時周波数の測定値を、回帰分析することにより求めることができ、デジタル信号処理装置14に記録しておく。AD変換器によりデジタル信号に変換したビート信号から、ビート周波数fB(t)を求めて、(数12)式と(数14)式を用いて、回帰分析を行うことにより、光の往復時間τdを求めて、対象物11までの距離を算出することができる。
図4は、第2の実施の形態に係る光学的距離測定装置の精度評価のための装置であるので、対象物11からの反射光を検出する代わりに、光サーキュレータ6に可変光遅延線26を接続し、可変光遅延線26の出力端面でフレネル反射を受けた光を検出するようにした。バランス型光検出器25から出力されるビート信号を、ベクトル信号解析装置27に入力して、デジタル信号への変換と、ビート周波数fB(t)の計算を実行する。(数12)式に基づく回帰分析は、演算処理装置28を用いて、オフライン処理により実行する。
図7は、半導体レーザ3の瞬時周波数の測定値と、(数14)式のフーリエ級数による回帰曲線の波形を表す図である。高調波次数は、奇数次は85まで、偶数次は35まで考慮した。実線は測定値、破線は回帰曲線を表すが、図7のスケールでは、両者は完全に重なって区別できない。図7の一点鎖線は両者の差を表しており、誤差は-1.546~+3.091MHzであり、周波数偏移の0.031%に相当する。図7より、半導体レーザ3の瞬時周波数が、(数14)式により忠実に表現できることが確認できる。
図4の可変光遅延線26として、光路長を精密に設定できる手動式の可変光遅延線を用いて、距離測定の精度評価を行った。可変光遅延線の最小目盛は0.08mmである。距離測定の精度評価においては、光路長を8.0mm単位で変化させて、ビート周波数の測定と距離の算出を行った。図8は、可変光遅延線の設定が0、及び80.0mmの場合のビート周波数を表す図である。両者はほぼ重なっているように見える。(b)は(a)の一部(点線で囲んだ部分)の拡大図である。拡大するとわずかな差を生じていることがわかる。
図9は、可変光遅延線の設定値と、距離の測定値の関係を表す図である。黒丸は距離の測定値、白丸は設定値からの誤差を表す。距離算出には、(数12)式と(数14)式を用いて回帰分析を行い、求めた遅延時間τd1とτd2の差から距離を計算した。可変光遅延線26の遅延を0に設定した場合、距離の測定値は11.150mであり、これは光ファイバ干渉計と可変光遅延線26が有する光路差に相当する。図9の測定値は、遅延0からの相対的な変化を表す。測定値は8.0mm単位の光路長変化を十分に分解して測定できており、誤差は-0.50~+0.15mmである。チャープ帯域15GHzから計算される分解能は1cmであるが、図9の測定結果では、1cm以下の分解能が得られている。上述したように、分解能は近接した2つの反射点を分解する能力であり、反射点が1つの場合は、さらに高い精度で測定できる。
図4の可変光遅延線26として、光ファイバパッチコードを利用して、光路長を0から10mまで1m単位で変化させて、距離測定を行った。長さ1、2、3、5、10mのパッチコードを組み合わせて使用した。パッチコードは、仕様よりも最大で+5cm程度長く製作されている。図10は、光ファイバ長を0から10mまで、1m単位で変化させた場合のビート周波数の変化を表す図である。光ファイバ長に対応して、ビート周波数が増加していることがわかる。
図11は、光ファイバ長と距離の測定値の関係を表す図である。距離の測定値は、屈折率(1.467)を考慮して、ファイバ長に換算した値である。光ファイバパッチコードを接続しない場合の距離の測定値は4.695mであり、光ファイバ干渉計自体が有する光路差に相当する。図11の測定値は、干渉計に接続した光ファイバパッチコードの正確な長さを表している。図11中の各点の値(光ファイバ長[m]、測定値[m])は、(1、1.0399)(2、2.0707)(3、3.0701)(4、4.1095)(5、5.0041)(6、6.0443)(7、7.0742)(8、8.0738)(9、9.1130)(10、10.0520)である。図11の結果は、直線性を示しており、1m単位の光路長変化に対しても、高精度の距離測定が可能であることを示している。
第2の実施の形態の評価は、自律ロボットに搭載する環境認識センサを想定して、最大測定距離10m、分解能1cmに対応する変調条件で行ったものである。車載用センサとして用いる場合は、最大測定距離200m、分解能10cmの仕様が要求されるが、チャープ帯域や変調周波数を最適化して、同様に実施することが可能である。
第1と第2の実施の形態においては、光源として半導体レーザを用いた場合について説明したが、周波数変調機能を有するレーザであれば、同様にして実施できる。
上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。
本発明の光学的距離測定装置および方法は、レーザの周波数変調を制御するための付加的な装置が不要であるので、小型でかつ高精度で低価格のFMCWライダシステムとして産業上有用である。自動車、自律ロボットなどの環境認識センサとして利用を含め、民生機器への利用可能性を大とするものである。
1 変調信号発生器
2 注入電流源
3 半導体レーザ
4 干渉計
5a、5b ビームスプリッタ
6 光サーキュレータ
7 反射鏡
8 参照光
9 信号光
10 反射光
11 対象物
12 光検出器
13 AD変換器
14 デジタル信号処理装置
15 局部発振器
16 位相シフタ
17a、17b ミキサ
18a、18b ローパスフィルタ
19 同相成分
20 直交成分
21 演算処理部
22a、22b 光方向性結合器
23 送受信光学系
24 偏波コントローラ
25 バランス型光検出器
26 可変光遅延線
27 ベクトル信号解析装置
28 演算処理装置
2 注入電流源
3 半導体レーザ
4 干渉計
5a、5b ビームスプリッタ
6 光サーキュレータ
7 反射鏡
8 参照光
9 信号光
10 反射光
11 対象物
12 光検出器
13 AD変換器
14 デジタル信号処理装置
15 局部発振器
16 位相シフタ
17a、17b ミキサ
18a、18b ローパスフィルタ
19 同相成分
20 直交成分
21 演算処理部
22a、22b 光方向性結合器
23 送受信光学系
24 偏波コントローラ
25 バランス型光検出器
26 可変光遅延線
27 ベクトル信号解析装置
28 演算処理装置
Claims (8)
- 周波数変調波形が既知のレーザと、
光検出器と、
前記レーザの出力光を2分し、一方を参照光、他方を信号光とし、前記信号光を対象物に照射して、前記対象物からの反射光と、前記参照光を合波して前記光検出器に入射する干渉計と、
前記光検出器から発生するビート信号をデジタル信号に変換するAD変換器と、
前記デジタル信号からビート周波数を求め、該ビート周波数の時間波形に対して、前記既知の周波数変調波形を基に回帰分析を行い、前記対象物までの距離を算出するデジタル信号処理装置とを、
備えることを特徴とする光学的距離測定装置。 - 前記デジタル信号処理装置は、前記デジタル信号から前記ビート信号の同相成分I(t)と直交成分Q(t)を求めて、逆正接tan-1{Q(t)/I(t)}から前記ビート信号の瞬時位相を計算し、該瞬時位相の時間微分から前記ビート周波数を求めることを特徴とする、請求項1記載の光学的距離測定装置。
- 前記既知の周波数変調波形は、前記レーザの出力の瞬時周波数波形を測定し、該瞬時周波数波形をフーリエ級数展開したものであることを特徴とする請求項1又は2記載の光学的距離測定装置。
- 前記レーザの周波数変調波形は三角波であることを特徴とする請求項1乃至3のいずれか1項記載の光学的距離測定装置。
- 周波数変調波形が既知の変調されたレーザの出力光を2分し、一方を参照光、他方を信号光とし、
前記信号光を対象物に照射して、前記対象物からの反射光と、前記参照光を合波して光検出器に入射し、
該光検出器から発生するビート信号をAD変換器によりデジタル信号に変換し、
デジタル信号処理を用いて、前記デジタル信号からビート周波数を求め、該ビート周波数の時間波形に対して、前記既知の周波数変調波形を基に回帰分析を行い、前記対象物までの距離を算出することを特徴とする光学的距離測定方法。 - 前記デジタル信号処理は、前記デジタル信号から前記ビート信号の同相成分I(t)と直交成分Q(t)を求めて、逆正接tan-1{Q(t)/I(t)}から前記ビート信号の瞬時位相を計算し、該瞬時位相の時間微分から前記ビート周波数を求めることを特徴とする、請求項5記載の光学的距離測定方法。
- 前記既知の周波数変調波形は、前記レーザの出力の瞬時周波数波形を測定し、該瞬時周波数波形をフーリエ級数展開したものであることを特徴とする請求項5又は6記載の光学的距離測定方法。
- 前記レーザの周波数変調波形は三角波であることを特徴とする請求項5乃至7のいずれか1項記載の光学的距離測定方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019525391A JP6806347B2 (ja) | 2017-06-16 | 2018-06-08 | 光学的距離測定装置及び測定方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-118503 | 2017-06-16 | ||
JP2017118503 | 2017-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018230474A1 true WO2018230474A1 (ja) | 2018-12-20 |
Family
ID=64660185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022077 WO2018230474A1 (ja) | 2017-06-16 | 2018-06-08 | 光学的距離測定装置及び測定方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6806347B2 (ja) |
WO (1) | WO2018230474A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111289994A (zh) * | 2020-03-26 | 2020-06-16 | 北京理工大学 | 一种基于双外差混频的调频连续波激光雷达测距方法 |
CN112114325A (zh) * | 2019-06-03 | 2020-12-22 | 株式会社三丰 | 测量装置和测量方法 |
JP2021004800A (ja) * | 2019-06-26 | 2021-01-14 | 国立研究開発法人産業技術総合研究所 | 光学的測定装置及び測定方法 |
JPWO2021131315A1 (ja) * | 2019-12-25 | 2021-07-01 | ||
KR102275387B1 (ko) * | 2020-02-25 | 2021-07-09 | 한화시스템 주식회사 | 소형 표적 검출 장치 및 방법 |
JPWO2020261391A1 (ja) * | 2019-06-25 | 2021-10-28 | 三菱電機株式会社 | 信号処理装置、信号処理方法及びレーダ装置 |
US20210341611A1 (en) * | 2020-05-04 | 2021-11-04 | Silc Technologies, Inc. | Lidar with delayed reference signal |
US11231489B2 (en) * | 2019-12-05 | 2022-01-25 | Aeva, Inc. | Selective subband processing for a LIDAR system |
JPWO2022029904A1 (ja) * | 2020-08-05 | 2022-02-10 | ||
CN114706059A (zh) * | 2022-03-25 | 2022-07-05 | 深圳市速腾聚创科技有限公司 | 光束接收装置及光束接收方法 |
CN115127778A (zh) * | 2022-05-25 | 2022-09-30 | 深圳大学 | 一种简化ofdr系统的方法和装置以及ofdr简化系统、控制装置 |
JP7406833B2 (ja) | 2018-10-15 | 2023-12-28 | ビフレスト コミュニケーションズ アぺーエス | 高性能光受信機を含む光学システム及びその方法 |
US11994630B2 (en) | 2020-09-04 | 2024-05-28 | Aurora Operations, Inc. | LIDAR waveform calibration system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11940566B2 (en) * | 2020-07-07 | 2024-03-26 | Silc Technologies, Inc. | Sequencing of signals in LIDAR systems |
KR102565800B1 (ko) | 2022-03-08 | 2023-08-10 | 람다이노비전 주식회사 | FMCW LiDAR의 레이저 변조 주파수 선형화 제어기 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11508046A (ja) * | 1995-06-20 | 1999-07-13 | ヤン ミヒャエル ムロージク | Fmcw距離測定法 |
JP2001174548A (ja) * | 1999-12-16 | 2001-06-29 | Fujitsu Ltd | Fm−cwレーダの周波数変調特性測定方法及び装置 |
CN103837870A (zh) * | 2014-03-20 | 2014-06-04 | 华侨大学 | 调频连续波激光雷达调频非线性响应系数测量方法和装置 |
CN103928835A (zh) * | 2014-03-20 | 2014-07-16 | 华侨大学 | 一种半导体激光器光源的非线性响应校正方法和装置 |
JP2014202716A (ja) * | 2013-04-09 | 2014-10-27 | 株式会社日立ハイテクノロジーズ | 距離測定装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10718852B2 (en) * | 2015-10-23 | 2020-07-21 | Texas Instruments Incorporated | RF/mm-wave peak detector with high-dynamic range calibration |
-
2018
- 2018-06-08 WO PCT/JP2018/022077 patent/WO2018230474A1/ja active Application Filing
- 2018-06-08 JP JP2019525391A patent/JP6806347B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11508046A (ja) * | 1995-06-20 | 1999-07-13 | ヤン ミヒャエル ムロージク | Fmcw距離測定法 |
JP2001174548A (ja) * | 1999-12-16 | 2001-06-29 | Fujitsu Ltd | Fm−cwレーダの周波数変調特性測定方法及び装置 |
JP2014202716A (ja) * | 2013-04-09 | 2014-10-27 | 株式会社日立ハイテクノロジーズ | 距離測定装置 |
CN103837870A (zh) * | 2014-03-20 | 2014-06-04 | 华侨大学 | 调频连续波激光雷达调频非线性响应系数测量方法和装置 |
CN103928835A (zh) * | 2014-03-20 | 2014-07-16 | 华侨大学 | 一种半导体激光器光源的非线性响应校正方法和装置 |
Non-Patent Citations (1)
Title |
---|
HIDEMI TSUCHIDA: "Waveform measurement technique for phase/frequency-modulated lights based on self-heterodyne interferometry", OPTICS EXPRESS, vol. 25, no. 5, 6 March 2017 (2017-03-06), pages 4793 - 4789, XP055563625, Retrieved from the Internet <URL:https://doi.org/10.1364/OE.25.004793> * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7406833B2 (ja) | 2018-10-15 | 2023-12-28 | ビフレスト コミュニケーションズ アぺーエス | 高性能光受信機を含む光学システム及びその方法 |
CN112114325A (zh) * | 2019-06-03 | 2020-12-22 | 株式会社三丰 | 测量装置和测量方法 |
JP7042975B2 (ja) | 2019-06-25 | 2022-03-28 | 三菱電機株式会社 | 信号処理装置、信号処理方法及びレーダ装置 |
JPWO2020261391A1 (ja) * | 2019-06-25 | 2021-10-28 | 三菱電機株式会社 | 信号処理装置、信号処理方法及びレーダ装置 |
JP2021004800A (ja) * | 2019-06-26 | 2021-01-14 | 国立研究開発法人産業技術総合研究所 | 光学的測定装置及び測定方法 |
JP7291385B2 (ja) | 2019-06-26 | 2023-06-15 | 国立研究開発法人産業技術総合研究所 | 光学的測定装置及び測定方法 |
US11231489B2 (en) * | 2019-12-05 | 2022-01-25 | Aeva, Inc. | Selective subband processing for a LIDAR system |
JPWO2021131315A1 (ja) * | 2019-12-25 | 2021-07-01 | ||
JP7426123B2 (ja) | 2019-12-25 | 2024-02-01 | 国立研究開発法人産業技術総合研究所 | 光学的測定装置及び測定方法 |
WO2021131315A1 (ja) | 2019-12-25 | 2021-07-01 | 国立研究開発法人産業技術総合研究所 | 光学的測定装置及び測定方法 |
KR102275387B1 (ko) * | 2020-02-25 | 2021-07-09 | 한화시스템 주식회사 | 소형 표적 검출 장치 및 방법 |
CN111289994A (zh) * | 2020-03-26 | 2020-06-16 | 北京理工大学 | 一种基于双外差混频的调频连续波激光雷达测距方法 |
US20210341611A1 (en) * | 2020-05-04 | 2021-11-04 | Silc Technologies, Inc. | Lidar with delayed reference signal |
WO2022029904A1 (ja) * | 2020-08-05 | 2022-02-10 | 三菱電機株式会社 | 測距装置、測距方法及びレーダ装置 |
KR20230019262A (ko) * | 2020-08-05 | 2023-02-07 | 미쓰비시덴키 가부시키가이샤 | 측거 장치, 측거 방법 및 레이더 장치 |
KR102524164B1 (ko) * | 2020-08-05 | 2023-04-20 | 미쓰비시덴키 가부시키가이샤 | 측거 장치, 측거 방법 및 레이더 장치 |
JP7138828B2 (ja) | 2020-08-05 | 2022-09-16 | 三菱電機株式会社 | 測距装置、測距方法及びレーダ装置 |
JPWO2022029904A1 (ja) * | 2020-08-05 | 2022-02-10 | ||
US11994630B2 (en) | 2020-09-04 | 2024-05-28 | Aurora Operations, Inc. | LIDAR waveform calibration system |
CN114706059A (zh) * | 2022-03-25 | 2022-07-05 | 深圳市速腾聚创科技有限公司 | 光束接收装置及光束接收方法 |
CN115127778A (zh) * | 2022-05-25 | 2022-09-30 | 深圳大学 | 一种简化ofdr系统的方法和装置以及ofdr简化系统、控制装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018230474A1 (ja) | 2020-03-26 |
JP6806347B2 (ja) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6806347B2 (ja) | 光学的距離測定装置及び測定方法 | |
JP7074311B2 (ja) | 光学的距離測定装置および測定方法 | |
JP7169642B2 (ja) | 光学的測定装置及び測定方法 | |
JP7239975B2 (ja) | 光角度変調測定装置及び測定方法 | |
JP7291385B2 (ja) | 光学的測定装置及び測定方法 | |
Norgia et al. | Self-mixing instrument for simultaneous distance and speed measurement | |
Zhang et al. | Simultaneous measurements of velocity and distance via a dual-path FMCW lidar system | |
CA2723344C (en) | Interferometric distance-measuring method with spectrally separable double chirp and device | |
US20110051146A1 (en) | Interferometric distance-measuring method with delayed chirp signal and such an apparatus | |
JP5043714B2 (ja) | 光ファイバ特性測定装置及び方法 | |
JP2014202716A (ja) | 距離測定装置 | |
JP2018505427A (ja) | マルチビーム距離測定プロセス | |
CN109031340B (zh) | 一种测量物体运动速度的连续调频激光雷达装置 | |
JP7426123B2 (ja) | 光学的測定装置及び測定方法 | |
JP2018059789A (ja) | 距離測定装置及び距離測定方法 | |
CN109031341B (zh) | 一种使用连续调频激光雷达装置的物体运动速度测量方法 | |
Orakzai et al. | Fast and highly accurate phase unwrapping algorithm for displacement retrieval using self-mixing interferometry sensor | |
CN109612590B (zh) | 超快光波长测量系统 | |
CN104111450A (zh) | 一种利用双脉冲探测目标微多普勒特征的方法及系统 | |
EP4336209A1 (en) | Detection device, radar, and terminal | |
CN118401857A (zh) | 电子设备、方法和计算机程序 | |
JP7380382B2 (ja) | 測距計 | |
Zhou et al. | Nonlinear FMCW Laser Ranging System Based on Sinusoidal Frequency Modulation | |
JP2023119469A (ja) | 非接触型測距装置及び方法 | |
JP2023154585A (ja) | 測距装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18817751 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019525391 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18817751 Country of ref document: EP Kind code of ref document: A1 |