WO2021131315A1 - 光学的測定装置及び測定方法 - Google Patents

光学的測定装置及び測定方法 Download PDF

Info

Publication number
WO2021131315A1
WO2021131315A1 PCT/JP2020/040616 JP2020040616W WO2021131315A1 WO 2021131315 A1 WO2021131315 A1 WO 2021131315A1 JP 2020040616 W JP2020040616 W JP 2020040616W WO 2021131315 A1 WO2021131315 A1 WO 2021131315A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
light
optical
difference
Prior art date
Application number
PCT/JP2020/040616
Other languages
English (en)
French (fr)
Inventor
土田 英実
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to EP20907087.9A priority Critical patent/EP4083658A4/en
Priority to US17/788,366 priority patent/US20230052690A1/en
Priority to JP2021566871A priority patent/JP7426123B2/ja
Publication of WO2021131315A1 publication Critical patent/WO2021131315A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4917Receivers superposing optical signals in a photodetector, e.g. optical heterodyne detection

Definitions

  • the present invention relates to an optical measuring device and a measuring method suitable for an environment recognition sensor or the like used in an automobile, an autonomous robot, or the like.
  • lidar Laser Imaging Detection and Ranking
  • the ToF Time of Flight
  • the ToF measures the distance from the time it takes for the light pulse irradiated to the object to be scattered and returned, and by spatially scanning the light pulse, 3 It generates dimensional distance data.
  • the ToF rider is widely used because the measurement principle is simple and the device configuration is relatively simple. However, interference with sunlight and irradiation light from other devices, safety standards for laser light, etc. ( Some problems have been clarified, such as the output power limit related to the eye safety regulations).
  • the FMCW (Frequency Modified Continuous Wave) method using coherent detection has the feature that it can detect scattered light with high sensitivity and can measure not only the distance to the object but also the motion speed from the Doppler shift. doing.
  • the millimeter-wave region FMCW radar has been put into practical use as an in-vehicle collision prevention sensor. If the FMCW rider can be realized in the light wave region, it can be expected that the spatial resolution and the positioning distance will be significantly improved.
  • the FMCW rider has the following problems. It is a problem of non-linear chirp associated with laser frequency modulation.
  • the FMCW rider assumes that the modulated laser frequency increases or decreases in proportion to time (linear chirp) when determining the distance and velocity of an object from a beat signal.
  • linear chirp time
  • the present inventor has reported a device and a method for solving the problem of non-linear chirp related to the FMCW rider of the prior art. For example, the present inventor has proposed a device and a method for correcting a non-linear chirp by regression analysis of a beat signal (see Patent Document 1). Further, the present inventor has proposed a device and a method for accurately calculating a distance from an average value of beat frequencies in the presence of a non-linear chirp (see Patent Document 2).
  • Non-Patent Document 1 a method of reducing non-linear chirp and phase noise by using the negative feedback control of the laser has been reported.
  • the FMCW rider uses coherent detection to mix scattered light from an object with reference light, which is a reference for measurement, to generate a beat signal.
  • the frequency of the laser output light is modulated, but apart from this, the laser output light is accompanied by fluctuations due to the phase noise generated by the laser itself. Therefore, the beat signal contains a mixture of components due to frequency modulation and components due to phase noise.
  • the time delay (delay time) of the scattered light with respect to the reference light increases, and the component due to phase noise becomes relatively large as compared with the component due to frequency modulation. Therefore, the signal-to-noise ratio of the beat signal is lowered, which causes deterioration of measurement accuracy.
  • the coherence length is a measure of the maximum measurement distance.
  • the coherence length is defined as the distance at which the value of the coherence function of the laser output light is 1 / e.
  • the coherence length of a general semiconductor laser for optical communication is 100 m or less.
  • the maximum measurement distance is limited to 50 m or less because the light to be measured reciprocates the distance to the object.
  • the maximum measurement distance can be expanded to 100 m or more, but the laser device is large and the frequency modulation function is limited.
  • Non-Patent Document 1 The method of Non-Patent Document 1 is to prepare an interferometer different from that for sensing, detect the non-linear chirp and phase noise of the laser, and return to the laser or the modulator to control the frequency.
  • This method is a method of simultaneously realizing non-linear chirp reduction and coherence length increase, but it is necessary to provide an interferometer for monitoring and a control circuit, and the performance of phase noise reduction is limited by the control band.
  • Patent Document 3 measures the laser frequency using an interferometer different from that for sensing, and reduces the influence by calculating the beat signal including the influence of phase noise.
  • the present inventor has an apparatus and method using a heterodyne optical system and an arithmetic processing unit for the purpose of eliminating the influence of a non-linear chirp and enabling accurate measurement of distance and velocity (Japanese Patent Application No. 2018-222416). And an apparatus and method (Japanese Patent Application No. 2019-118793) using a homodyne optical system and an arithmetic processing unit have been filed. Since the phase noise of the laser is not taken into consideration in the methods of these applications, the accuracy deterioration due to the phase noise of the laser occurs as in the FMCW rider of the prior art. Therefore, in order to reduce the influence of phase noise, measures to increase the chirp bandwidth or measures to use a low noise laser can be considered. However, in the former countermeasure, a wide band detection / processing circuit is required as the beat frequency increases. In the latter measure, the laser device is expensive and the frequency modulation function is limited.
  • an interferometer for monitoring and a control circuit are required in addition to the interferometer for sensing, which complicates the device configuration.
  • the noise reduction performance is limited by the control band.
  • the method using complicated calculation processing is not suitable for the FMCW rider which requires real-time processing.
  • phase noise can be completely eliminated and a small and inexpensive system can be realized without complicating the device configuration, it will be used for autonomous driving. Expected to expand into consumer fields such as in-vehicle sensors and robot home appliances.
  • the present invention is intended to solve the above-mentioned problems, and one of the objects of the present invention is to provide an optical measuring device and a measuring method that are not subject to measurement distance limitation by laser coherence. Also, an optical measuring device and measurement that completely eliminates the phase noise of the laser and enables accurate measurement of at least one of distance and velocity without using negative feedback control or complicated calculation processing.
  • One of the purposes is to provide a method.
  • a multi-frequency laser that simultaneously generates a fixed-frequency carrier and at least one frequency-modulated sub-carrier, and either the carrier or the sub-carrier of the output light of the multi-frequency laser.
  • One is used as the first measurement light
  • any one of the carrier or the subcarrier having a frequency different from that of the first measurement light is used as the second measurement light
  • the output light of the multi-frequency laser is used as the output light of the multi-frequency laser.
  • An optical branching element that is divided into two parts, one of which is a reference light and the other of which is a probe light, an optical system that irradiates an object with the probe light and outputs scattered light from the object as signal light, and the reference light.
  • the signal light are input, and the first complex beat signal derived from the first measurement light and the second complex beat signal derived from the second measurement light are separated and output as two frequencies.
  • An optical measuring device including an arithmetic processing unit that executes at least one of arithmetic operations for calculating a distance to an object.
  • the difference signal is a phase difference signal between the first complex beat signal and the second complex beat signal, or a growl generated by mixing the first complex beat signal and the second complex beat signal.
  • the optical measuring device characterized in that it is one of a difference frequency signal which is a signal.
  • the multi-frequency laser is a single frequency laser, an optical modulator, a modulation signal generator which is a signal source for applying frequency modulation to a subcarrier, and the single frequency by driving the optical modulator.
  • the optical measuring apparatus comprising: a subcarrier generation signal generator that generates a subcarrier in the output light of the laser.
  • the multi-frequency laser includes a semiconductor laser, a modulation signal generator that is a signal source that applies frequency modulation to the subcarrier, and a subcarrier generation signal generator that modulates the output of the semiconductor laser.
  • the optical measuring device according to (1) or (2) above.
  • the dual-frequency beat signal generation unit includes an optical frequency shifter that gives a frequency shift to the reference light, an optical coupling element that combines the signal light and the frequency-shifted reference light, and the optical coupling element.
  • the first complex that receives the light received from the first optical demultiplexer that separates the output and the component derived from the first measurement light that is separated and output by the first optical demultiplexer.
  • the second complex that receives the light received from the first optical detector that outputs the beat signal and the component derived from the second measurement light that is separated and output by the first optical demultiplexer.
  • the optical frequency shifter may provide an optical frequency shifter to the probe light or the signal light instead of the reference light.
  • the dual frequency beat signal generation unit has a configuration of a homodyne interferometer including a phase diversity detector. apparatus.
  • the dual-frequency beat signal generation unit inputs the reference light and separates the component derived from the first measurement light and the component derived from the second measurement light into a second light component.
  • a wave device, a third optical demultiplexer that inputs the signal light and separates the component derived from the first measurement light and a component derived from the second measurement light, and the second optical demultiplexer.
  • the component derived from the first measurement light separated by the optical demultiplexer and the component derived from the first measurement light separated by the third optical demultiplexer are input to the above.
  • a first phase diversity detector that outputs a first complex beat signal, a component derived from the second measurement light separated by the second optical demultiplexer, and the third optical demultiplexer. It is provided with a second phase diversity detector that inputs a component derived from the second measurement light separated by and outputs the second complex beat signal.
  • the difference signal generation unit inputs the first complex beat signal to demodulate the phase, and inputs the second complex beat signal to demodulate the phase.
  • the optical measuring device according to any one of 6).
  • the difference signal generator of (7) it is desirable that the frequency modulation is a sine wave, and the output of the modulation signal generator of (3) and (4) is preferably a sine wave.
  • the difference signal generator has a frequency mixer that multiplies the first complex beat signal and the second complex beat signal and outputs the sum frequency signal and the difference frequency signal of both signals.
  • the optical measurement according to any one of (1) to (6), wherein the low-pass filter for removing the sum frequency signal and outputting the difference frequency signal as the difference signal is provided. apparatus.
  • the difference signal generator of (8) it is desirable that the frequency modulation is a triangle wave or a sawtooth wave, and the output of the modulation signal generator of the above (3) and (4) is a triangle wave or a sawtooth wave. Is desirable.
  • the light of a multi-frequency laser that simultaneously generates a fixed frequency carrier and at least one frequency-modulated subcarrier is divided into two parts, one of which is a reference light and the other of which is a probe light.
  • the scattered light from the object is used as signal light, and any one of the carrier or the subcarrier of the output light of the multi-frequency laser is used as the first measurement light.
  • the signal light and the reference light are input to obtain the second measurement light.
  • the first and second complex beat signals between the signal light and the reference light are generated, and the first measurement light derived from the first measurement light is generated.
  • a difference signal is generated between the complex beat signal of 1 and the second complex beat signal derived from the second measurement light, and from the difference signal to the velocity of the object or the object.
  • the difference signal is a phase difference signal between the first complex beat signal and the second complex beat signal, or a roar generated by mixing the first complex beat signal and the second complex beat signal.
  • the first complex beat signal and the second complex beat signal are generated by using either a heterodyne interferometer or a homodyne interferometer configuration, according to the above (9) or (10). ) The optical measuring method described.
  • the phase difference signal which is the difference signal, is time-differentiated, converted into a frequency difference signal, the Doppler shift is calculated using the average value of the frequency difference signals, and the speed is calculated using the Doppler shift.
  • the optical measurement method according to any one of (9) to (11) above, which comprises obtaining.
  • the phase difference signal, which is the difference signal, is time-differentiated and converted into a frequency difference signal, the Doppler shift is obtained using the average value of the frequency difference signals, and the Doppler shift component is excluded from the phase difference signal. Any of the above (9) to (11), wherein the average value of the absolute values after the calculation is obtained, and the distance to the object is calculated based on the proportional constant of the distance calculation obtained in advance.
  • the optical measurement method according to item 1. The operation is characterized in that at least one of an operation of calculating the speed of the object and an operation of calculating the distance to the object are executed from the frequency spectrum of the difference frequency signal which is the difference signal.
  • the arithmetic processing unit calculates the spectrum of the difference frequency signal, obtains the peak frequency caused by scattering from the object, and calculates the distance and speed of the object from the peak frequency.
  • the frequency modulation is any one of a sine wave, a triangular wave, and a sawtooth wave.
  • a sine wave is desirable for the frequency modulation.
  • a difference frequency signal is used as the difference signal, it is desirable that the frequency modulation is either a triangular wave or a sawtooth wave.
  • two waves of a multi-frequency laser in which at least one of them is frequency-modulated is used to generate a difference signal between two complex beat signals.
  • the component caused by the phase noise can be completely removed.
  • components caused by frequency modulation and Doppler shift can be selectively detected. As a result, highly accurate distance and velocity measurements can be achieved.
  • the maximum measurement distance is not limited by the coherence length of the laser, the measurement accuracy does not depend on the distance, and accurate measurement can be performed even at a long distance. In addition, there is very little variation in measurement regardless of the size of the distance.
  • a large laser having high spectral purity is not required, and a small device that does not require high-performance parts can be realized.
  • the phase noise of the laser can be removed, a large chirp bandwidth is not required. Therefore, when the distance and speed are obtained by using the phase difference signal as the difference signal, the required signal processing band can be reduced by one digit or more. ..
  • (A) is the result for 10 m
  • (b) is 120 m
  • (c) is the result for the delayed optical fiber of 1 km.
  • (a) is a figure showing the spectrum of the second complex beat signal
  • (b) is the figure showing the spectrum of the difference frequency signal.
  • a multi-frequency laser such as an optical branching element, an optical coupling element, and an optical circulator, a transmission / reception optical system, a dual-frequency beat signal generation unit, a difference signal generation unit, and an arithmetic processing unit.
  • At least one of the distance to the object and the speed of the object is measured using a device including at least.
  • the velocity of the object is a relative velocity in which the direction in which the object moves away is positive when viewed from the optical measuring device of the present invention.
  • the dual-frequency beat signal generation unit refers to a configuration that generates first and second complex beat signals derived from two different frequencies.
  • FIG. 1 is a diagram illustrating a basic configuration of an optical measuring device 100 according to an embodiment of the present invention.
  • the optical measuring device of FIG. 1 includes a multi-frequency laser 1, a beam splitter 2a as an optical branching element, an optical circulator 5, a transmission / reception optical system 6, a dual-frequency beat signal generation unit 9, and a difference signal generation unit 12. And the arithmetic processing unit 14.
  • the multi-frequency laser 1 simultaneously generates a fixed frequency carrier and at least one frequency modulated subcarrier. Of the output light of the multi-frequency laser, either one of the carriers or subcarriers is used as the first measurement light, and any one of the carriers or subcarriers having a frequency different from that of the first measurement light is used as the second measurement light. Let it be light.
  • FIG. 2 is a diagram illustrating a spectrum of output light of the multi-frequency laser 1.
  • the output light of the multifrequency laser 1 is a center frequency [nu 0, a carrier with a fixed frequency (n is a positive integer) is ⁇ 0 ⁇ nf SC center frequency is, and by the subcarrier frequency-modulated It is composed.
  • FIG. 2 shows subcarriers with center frequencies up to ⁇ 0 ⁇ 2f SC. It is assumed that the subcarriers are phase-locked with the carriers and have the same phase noise as the carriers.
  • a combination of a fixed frequency carrier and one frequency-modulated subcarrier, or two frequency-modulated subcarriers are used.
  • FIGS. 3 (a) and 3 (b) are diagrams illustrating an example of the multi-frequency laser 1.
  • FIG. 3A is a diagram illustrating a first example, and includes a single frequency laser 15, an optical modulator 16, a modulation signal generator 17, and a subcarrier generation signal generator 18.
  • the modulation signal generator 17 is a signal source that applies frequency modulation to the subcarriers.
  • the subcarrier generation signal generator 18 drives the light modulator 16 to generate subcarriers in the output light of the single frequency laser 15.
  • the frequency of the subcarrier generation signal generator 18 is set to match the characteristics of the dual frequency beat signal generation unit 9 described later, and has a frequency modulation function by an external input signal.
  • the optical modulator 16 can be used as long as it generates a modulation side band, such as an intensity modulator or a phase modulator. From the viewpoint of light utilization efficiency, a single sideband modulator that generates only one carrier and one subcarrier is desirable.
  • FIG. 3B is a diagram illustrating a second example of the multi-frequency laser 1, which includes a semiconductor laser 19, a modulation signal generator 17, and a subcarrier generation signal generator 18.
  • the operation of the modulation signal generator 17 and the subcarrier generation signal generator 18 is the same as in the case of the first example.
  • the semiconductor laser 19 is, for example, a DFB laser or a semiconductor laser in which a modulator is integrated.
  • the output of the subcarrier generation signal generator 18 is input to the injection current of the DFB laser or the modulator in the semiconductor laser to generate the subcarrier.
  • the carriers are modulated to generate subcarriers, so that the subcarry has a phase noise in phase with the carriers. Further, the phase change accompanying the frequency modulation and the phase noise of the subcarrier generation signal generator 18 are added to the subcarrier. Further, as shown in FIG. 2, with respect to the carrier having a fixed frequency, the phase change accompanying the frequency modulation becomes opposite phase between the subcarrier on the high frequency side and the subcarrier on the low frequency side. It is preferable that the carrier frequency ⁇ 0 and the subcarrier frequency ⁇ 0 ⁇ nf SC are separated to an extent that they can be optically separated. It f SC is a direct modulation can response range of the modulator or laser, is preferred.
  • f SC and ⁇ 0 can be arbitrarily selected, and in principle, there are no particular restrictions. In reality, it is limited by the specifications of the available parts.
  • the minimum value of f SC is a frequency difference (about 1 GHz) that can be separated by an optical filter.
  • the maximum value of f SC largely depends on the modulation performance and is about 100 GHz.
  • the carrier frequency ⁇ 0 can be used at all frequencies in which a single frequency laser exists. For example, all of the ultraviolet to visible to infrared regions are possible.
  • the output light of the multi-frequency laser 1 is split into two by the beam splitter 2a, one of which is the reference light 4 and the other of which is the probe light 3.
  • the probe light 3 is irradiated to the object 7 via the optical circulator 5 and the transmission / reception optical system 6, and the scattered light from the object 7 is output from the optical circulator 5 as signal light 8.
  • the reference light 4 and the signal light 8 are input to the dual-frequency beat signal generation unit 9, and the first complex beat signal 10 derived from the first measurement light and the second complex derived from the second measurement light are obtained.
  • the beat signal 11 is output.
  • the first complex beat signal 10 and the second complex beat signal 11 are input to the difference signal generation unit 12, and either the phase difference signal or the difference frequency signal is output as the difference signal 13.
  • the phase difference signal is a signal corresponding to the difference in instantaneous phase obtained by demodulating two complex beat signals.
  • the difference frequency signal is a beat signal generated by mixing two complex beat signals.
  • a beat signal when an electric signal having a different frequency is generated from two lights having different frequencies, it is called a beat signal.
  • a beat signal when an electric signal having a different frequency is generated from two electric signals having different frequencies, this can also be called a "beat signal", but a complex beat signal output from the dual frequency beat signal generator. In order to distinguish it from the above, it is called a "difference frequency signal”. It is also called a "secondary beat signal”.
  • the phase noise of the multi-frequency laser 1 is canceled out.
  • the difference signal 13 output from the difference signal generation unit 12 is input to the arithmetic processing unit 14, and at least one of the calculation of calculating the speed of the object 7 and the calculation of the distance to the object 7 is executed. To do.
  • phase difference signal When the phase difference signal is output as the difference signal 13, the phase difference signal is time-differentiated to obtain the frequency difference between the two complex beat signals, and the Doppler is obtained from the average value of the frequency difference over one cycle of modulation of the subcarrier. The shift is calculated to obtain the velocity of the object 7. Next, after removing the Doppler shift component from the phase difference signal, the average value of the absolute values over one modulation cycle of the subcarrier (hereinafter, referred to as "phase absolute average value”) is calculated. Furthermore, the distance to the object is calculated using the relational expression between the distance calibrated in advance and the absolute average value of the phase.
  • the spectrum of the difference frequency signal is calculated to obtain the peak caused by scattering from the object, and the velocity of the object and the distance to the object are calculated from the peak frequency. calculate.
  • the method of calculating the speed and the distance is the same as that of the FMCW rider of the prior art.
  • the phase of the first complex beat signal 10 includes the phase noise of the carrier and the Doppler shift caused by the motion of the object 7.
  • the phase of the second complex beat signal 11 includes the phase noise of the subcarrier, the Doppler shift caused by the motion of the object 7, the phase change due to frequency modulation, and the phase noise of the subcarrier generation signal generator 18. Including. In the difference signal 13, the phase noises of the first and second measurement lights are canceled out, the phase change due to the frequency modulation of the subcarrier, the Doppler shift corresponding to the frequency difference between the first and second measurement lights, and the sub. The phase noise of the carrier generation signal generator 18 remains. Therefore, the phase noise of the multi-frequency laser 1 can be completely removed. Even when subcarriers are used as the first and second measurement lights, the phase noise of the multi-frequency laser 1 is canceled out.
  • FIG. 4 is a diagram illustrating a first example of the dual frequency beat signal generation unit 9.
  • the dual-frequency beat signal generation unit 9 of the first example has a heterodyne interferometer configuration, and includes an optical frequency shifter 20, an optical demultiplexer 21a, and photodetectors 22a and 22b. After the reference light 4 is frequency-shifted by the optical frequency shifter 20, it is combined with the signal light 8 by the beam splitter 2b as an optical coupling element and input to the optical demultiplexer 21a.
  • the optical demultiplexer 21a separates and outputs a component derived from the first measurement light and a component derived from the second measurement light. Each of the separated components receives light from the photodetectors 22a and 22b, respectively, and outputs a first complex beat signal 10 and a second complex beat signal 11, respectively.
  • FIG. 5A is a diagram illustrating a second example of the dual frequency beat signal generation unit 9.
  • the dual-frequency beat signal generation unit 9 of the second example has the configuration of a homodyne interferometer, and includes optical duplexers 21b and 21c and phase diversity detectors 27a and 27b.
  • the reference light 4 is input to the optical demultiplexer 21b and the signal light 8 is input to the optical demultiplexer 21c, and the first measurement light component and the second measurement light component are separated and output.
  • the reference light 23 derived from the first measurement light output from the optical demultiplexer 21b and the signal light 25 derived from the first measurement light output from the optical demultiplexer 21c are combined with the phase diversity detector 27a. Is input to to output the first complex beat signal 10.
  • phase of the reference light 24 derived from the second measurement light output from the optical demultiplexer 21b and the signal light 26 derived from the second measurement light output from the optical demultiplexer 21c are arranged. It is input to the diversity detector 27b and outputs the second complex beat signal 11.
  • FIG. 5B is a diagram illustrating the phase diversity detectors 27a and 27b.
  • the phase diversity detectors 27a and 27b include beam splitters 2c, 2d, 2e, 2f, a ⁇ / 2 phase shifter 28, total reflection mirrors 29a, 29b, and balanced photodetectors 30a, 30b.
  • the reference light (reference light 23 derived from the first measurement light and reference light 24 derived from the second measurement light) is divided into two by the beam splitter 2c, one of which is via the total reflection mirror 29a and the beam splitter 2e.
  • the other leads to the balanced photodetector 30b via the ⁇ / 2 phase shifter 28, the total reflection mirror 29b, and the beam splitter 2f.
  • the signal light (signal light 25 derived from the first measurement light, signal light 26 derived from the second measurement light 26) is split into two by the beam splitter 2d, and one is a balanced photodetector via the beam splitter 2e. Lead to 30a. The other leads to the balanced photodetector 30b via the beam splitter 2f.
  • the in-phase component 31 of the complex beat signal is output from the balanced photodetector 30a, and the orthogonal component 32 of the complex beat signal is output from the balanced photodetector 30b.
  • the orthogonal component 32 is input to the imaginary unit multiplier 33 to form an imaginary part, and the adder 34 adds the in-phase component 31 of the real part to generate a complex beat signal 35.
  • FIG. 6 is a diagram illustrating a first example of the difference signal generation unit 12.
  • the difference signal generation unit 12 of the first example includes phase demodulators 36a and 36b and a subtractor 37.
  • the first complex beat signal 10 is input to the phase demodulator 36a
  • the second complex beat signal 11 is input to the phase demodulator 36b
  • the phase is demodulated
  • the phase is demodulated and input to the subtractor 37.
  • the phase difference signal between the complex beat signal 10 and the second complex beat signal 11 is output as the difference signal 13.
  • FIG. 7 is a diagram illustrating a second example of the difference signal generation unit 12.
  • the difference signal generation unit 12 of the second example includes a frequency mixer 38 and a low-pass filter 39.
  • the first complex beat signal 10 and the second complex beat signal 11 are input to the frequency mixer 38.
  • the frequency mixer 38 has a function of multiplying two input signals and outputting a sum frequency signal and a difference frequency signal of both signals.
  • the output of the frequency mixer 38 is input to the low-pass filter 39, the sum frequency signal is removed, and the difference frequency signal between the two complex beat signals is output as the difference signal 13.
  • FIG. 8 is a diagram illustrating a process of calculating the velocity and distance of the object 7 from the first and second complex beat signals by using the phase difference and frequency difference between the two complex beat signals. ..
  • a frequency-fixed carrier is used as the first measurement light
  • a frequency-modulated subcarrier is used as the second measurement light.
  • the superscript "c” is a carrier and the superscript "sc” is a symbol. Represents the physical quantity for the subcarrier.
  • the complex beat signal for the carrier and subcarrier is expressed by the following equation.
  • I n (t) in-phase component of the complex beat signal Q n (t) is the quadrature component.
  • (1) is the complex representation of the beat signal, in the second example of the two-frequency beat signal generating unit 9, and the in-phase component I n (t) is a real part, quadrature component Q n (t is the imaginary part ) Is output.
  • the complex beat signal represented by the following equation is output.
  • f S is a frequency shift given by the optical frequency shifter 18.
  • In-phase components and orthogonal components for carriers and subcarriers can be expressed by the following equations.
  • An represents the net amplitude
  • ⁇ n (t) represents the amplitude modulation
  • ⁇ n (t) represents the phase
  • the phase ⁇ n (t) with respect to the carrier and the subcarrier can be obtained by using the following equation.
  • Unwrap represents phase unwrap processing. Since the inverse tangent in Eq. (4) calculates a value in the range of ⁇ to + ⁇ , the phase exceeding ⁇ ⁇ is a value subtracted by an integral multiple of ⁇ ⁇ . The unwrap process detects the phase subtracted from the discontinuity of the phase change and corrects it to obtain the true phase.
  • phase ⁇ c (t) of the complex beat signal generated from the carrier can be expressed by the following equation.
  • the first term represents a component caused by the phase noise of the multi-frequency laser 1
  • the second term represents a component caused by the Doppler shift
  • the third term represents the phase offset
  • ⁇ N (t) represents the multi-frequency laser 1.
  • Phase noise ⁇ d is the round-trip time of light to the object 7
  • ⁇ 0 is the carrier frequency
  • V is the relative velocity to and from the object 7
  • c is the optical velocity.
  • phase ⁇ sc (t) of the complex beat signal generated from the subcarrier can be expressed by the following equation.
  • the first term is a component caused by the phase noise of the multi-frequency laser 1
  • the second term is a component caused by the Doppler shift
  • the third term is a component caused by the frequency modulation of the subcarrier
  • the fourth term is the subcarrier.
  • the fifth term represents the phase offset.
  • the subcarriers are described assuming that the center frequency is ⁇ 0 + f SC. f sc and ⁇ RF (t) are the frequency and phase noise of the subcarrier generation signal generator 18, respectively.
  • phase difference signal ⁇ D (t) can be obtained as the following equation.
  • the first term of the phase difference signal is a component caused by the Doppler shift
  • the second term is a component caused by the frequency modulation of the subcarrier
  • the third term is a component caused by the phase noise of the subcarrier generation signal generator 18, and the fourth term.
  • the term is the phase offset.
  • the fifth term ⁇ NF (t) represents background noise, which is shot noise and photodetectors 22a and 22b (a part of the first example of the dual frequency beat signal generator), or balanced photodetectors 30a and 30b ( It depends on the noise of a part of the phase diversity detector that constitutes the second example of the dual frequency beat signal generation unit). Shot noise is the quantum mechanical fluctuation of coherent light, and is the ultimate noise that cannot be removed as long as laser light is used.
  • the phase difference signal the component caused by the phase noise of the multi-frequency laser 1 is completely removed.
  • the phase offset of the fourth term is a DC component and can be removed by subtracting the average value over one modulation cycle of the phase difference signal.
  • the component caused by the phase noise of the subcarrier generation signal generator 18 of the third term of the equation (7) and the background noise of the fifth term are excluded.
  • the second term of the equation (7) can be expressed by the following equation.
  • the frequency difference includes a component due to frequency modulation and a component due to Doppler shift, but since the former is an AC signal, the average value over one modulation cycle becomes 0, and only the component due to Doppler shift remains. .. Therefore, the velocity V of the object 7 can be obtained from the average value of the equation (9).
  • phase difference signal ⁇ D (t) The component due to the Doppler shift is removed from the phase difference signal ⁇ D (t), and the phase absolute average value ⁇ D avg is calculated.
  • the delay time ⁇ d is an unknown parameter to be obtained.
  • the frequency modulation ⁇ M (t) of the subcarrier is known.
  • the frequency modulation ⁇ M (t) can be obtained in advance by the measurement method using the heterodyne interferometer described in Patent Document 4.
  • the distance to the object 7 can be obtained by executing the regression analysis of Eq. (10) with the delay time ⁇ d as an unknown parameter, but here, the distance from the phase absolute average value, which requires less calculation, is used. The method of calculating is described.
  • the absolute average value of the phase can also be approximated as shown in the following equation.
  • the integral of Eq. (12) is a constant determined by the frequency modulation of the subcarrier, and can be obtained by using the frequency modulation ⁇ M (t) measured in advance.
  • ⁇ M (t) the frequency modulation ⁇ M (t) measured in advance.
  • is a proportionality constant that relates the distance and the absolute average value of the phase.
  • equation (15) includes the inverse tangent, which is a periodic function, the distance that can be uniquely calculated is limited by the following equation.
  • a triangular wave or a sawtooth wave is used as the frequency modulation signal.
  • the proportional coefficient ⁇ is obtained in advance, any periodic function can be used as a signal without being limited to the triangular wave or the sawtooth wave.
  • the averaging process in the equations (9) and (10) is an integral value over one modulation cycle, but the integration interval may be set to an integral multiple of the modulation cycle.
  • FIG. 9 is a diagram illustrating an apparatus 101 for evaluating the optical measuring apparatus used in this experiment.
  • the device 101 of FIG. 9 includes a DFB laser 40, an optical intensity modulator 41, an optical modulator driver 42, an analog signal generator 43, an optical circulator 5, an optical frequency shifter 20, and a 1 ⁇ 4 optical switch 44a. , 44b, delayed optical fibers 45a, 45b, 45c, Faraday rotating mirrors 46a, 46b, optical amplifier 47, optical bandpass filter 48, optical demultiplexer 21d, optical detectors 22c, 22d, and digital. It includes an optical fiber 49 and an arithmetic processing unit 14. The portion surrounded by the dotted line corresponds to the first example of the dual frequency beat signal generation unit 9.
  • the output light of the DFB laser 40 having a frequency of 139.300 THz is input to the light intensity modulator 41 to generate carriers and subcarriers.
  • the analog signal generator 43 drives the light intensity modulator 41 via the light modulator driver 42.
  • the analog signal generator 43 has a function of integrating the modulation signal generator 17 shown in FIG. 3 and the subcarrier generation signal generator 18, and outputs a frequency-modulated sine wave signal having a frequency of 25 GHz.
  • a fixed frequency carrier and a frequency-modulated subcarrier are generated from the light intensity modulator 41, and a plurality of subcarriers are generated at a frequency separated by an integral multiple of 25 GHz from the carrier frequency of 139.300 THz. ..
  • a sine wave with a frequency of 2.5 kHz is used for frequency modulation of the subcarrier, and the chirp bandwidth is 100 MHz.
  • the carrier having a frequency of 139.300 THz is used as the first measurement light
  • the subcarrier having a frequency of 193.325 THz is used as the second measurement light.
  • the carriers and subcarriers output from the light intensity modulator 41 are input to the optical frequency shifter 20 having a frequency shift of 100 MHz, and the 0th-order diffracted light is used as the probe light and the 1st-order diffracted light is used as the reference light.
  • the reference light is reflected by the Faraday rotating mirror 46b, passes through the optical frequency shifter 20 again, and is output from the optical circulator 5.
  • the probe light passes through any one of the three types of delayed optical fibers 45a, 45b, and 45c via the 1 ⁇ 4 optical switches 44a and 44b, and then is reflected by the Faraday rotating mirror 46a to form the same delayed optical fiber.
  • the frequency difference between the signal light output from the optical circulator 5 and the reference light is 200 MHz.
  • the lengths of the delayed optical fibers 45a, 45b, and 45c are 10 m, 120 m, and 1 km, respectively.
  • the signal light and reference light output from the optical circulator 5 are amplified by the optical amplifier 47, the naturally emitted light of the optical amplifier 47 is removed by the optical bandpass filter 48, and then input to the optical demultiplexer 21d.
  • the optical demultiplexer 21d separates and outputs a carrier having a frequency of 193.300 THz and a subcarrier having a frequency of 193.325 THz.
  • the separated carriers and subcarriers are input to the photodetectors 22c and 22d, respectively, and output a complex beat signal.
  • the first complex beat signal 10 and the second complex beat signal 11 are input to the digital oscilloscope 49 and converted into digital signals, respectively.
  • Demodulation processing of the complex beat signal, generation of the phase difference signal, removal of phase noise, and calculation of the distance and speed of the object 7 are performed by offline processing using the arithmetic processing unit 14. For each of the three types of delayed optical fibers, distance measurement is performed 16 times, and the accuracy is evaluated from statistical variations.
  • FIG. 10 is a diagram showing the degree of coherence of the DFB laser 40, and is the result obtained by measuring the optical frequency noise of the DFB laser 40 and calculating it.
  • the coherence length which is a guideline for the maximum measurement distance, is 70 m, which is 24 m when converted to the reciprocating fiber length.
  • Both the delayed optical fibers 45b and 45c have an optical path length that far exceeds the coherence length.
  • FIG. 11 is a diagram showing an example of the phase of the carrier and the subcarrier and the measurement result of the phase difference signal.
  • 11 (a) shows the results for a delayed optical fiber of 10 m
  • FIG. 11 (b) shows the results for 120 m
  • FIG. 11 (c) shows the results for a 1 km delayed optical fiber.
  • the waveforms represent the results for carriers, subcarriers, and phase difference signals in order from the top.
  • the carrier phase the phase noise of the DFB laser 40 appears, and in the subcarrier phase, in addition to the phase noise of the DFB laser 40, a component due to frequency modulation appears.
  • the phase difference signal the phase noise of the DFB laser 40 is removed, and only the component due to the frequency modulation appears clearly.
  • FIG. 12 is a diagram showing the distribution of distance measured values for 16 measurements.
  • 12 (a) is the result for 10 m, (b) is 120 m, and (c) is the result for the delayed optical fiber of 1 km.
  • White circles represent the results calculated from the subcarrier complex beat signal, and black circles represent the results calculated from the phase difference signal.
  • the calculated distance value represents the optical path length, and includes the optical path length according to the refractive index (1.467) of the optical fiber and the optical path lengths of the 1 ⁇ 4 optical switches 44a and 44b.
  • the distance calculated from the subcarriers varies widely from data to data, and is accompanied by a deviation of 0.3 to 0.4% from the average value of the entire data. Such a large error is due to the phase noise of the DFB laser 40.
  • the distance calculated from the phase difference signal is largely reduced from the influence of the phase noise of the DFB laser 40 for each measurement.
  • the distance calculated from the phase of the difference signal represented by the "phase difference signal” improves the measurement accuracy by removing the influence of the phase noise of the multi-frequency laser.
  • FIG. 13 is a diagram showing the relationship between the distance measurement accuracy and the fiber length.
  • the measurement accuracy on the vertical axis represents the standard deviation of 16 measured values.
  • White circles represent the case calculated from the complex beat signal of the subcarrier, and black circles represent the case calculated from the phase difference signal.
  • the accuracy deteriorates with the fiber length, resulting in an error of 0.3 to 0.4% of the fiber length. This is because the component caused by the phase noise of the DFB laser 40 increases with the fiber length.
  • the accuracy deteriorates with the fiber length, but the accuracy is improved by two orders of magnitude or more compared to the case of the subcarrier, and an accuracy of 1 cm or less is obtained for all fiber lengths.
  • the accuracy deteriorates depending on the fiber length because of the phase noise of the analog signal generator 43 represented by the fourth term of the equation (6).
  • the component caused by the phase noise of the analog signal generator 43 also increases with the fiber length.
  • the equation (7) if the phase noise of the subcarrier generation signal generator is made smaller than the background noise, the accuracy independent of the fiber length can be realized.
  • a chirp bandwidth of 10 GHz or more is required to achieve an accuracy of 1 cm or less. In this embodiment, the same accuracy is achieved even with a chirp bandwidth of 100 MHz. Since the beat frequency measured by the FMCW rider is proportional to the chirp bandwidth, the band of the beat signal can be reduced by reducing the chirp bandwidth, and the band required for signal processing can be suppressed. ..
  • FIG. 14 uses a subcarrier (139.275 THz) located on the low frequency side of the carrier as the first measurement light and a subcarrier (139.325 THz) located on the high frequency side of the carrier as the second measurement light. It is a figure which shows an example of the phase of a subcarrier, and the measurement result of a phase difference signal in the case of having been.
  • the modulation frequency of the subcarrier is 2.5 kHz and the chirp bandwidth is 5 MHz.
  • 14 (a) shows the results for 120 m
  • FIG. 14 (b) shows the results for a 1 km delayed optical fiber.
  • the waveform represents the results for the low frequency side subcarrier, the high frequency side subcarrier, and the phase difference signal in order from the top. It can be seen that the components caused by the phase noise of the DFB laser 40 are in phase and the components caused by frequency modulation are in opposite phase in the subcarriers on the low frequency side and the high frequency side. In the phase difference signal, the phase noise of the DFB laser 40 is canceled out, and the component due to the frequency modulation appears clearly. Further, since both the first and second measurement lights contain components due to frequency modulation, the amplitude of the phase difference signal is doubled as compared with the case of the combination of the carrier and the subcarrier shown in FIG. Become.
  • a frequency-fixed carrier is used as the first measurement light
  • a frequency-modulated subcarrier is used as the second measurement light.
  • the superscript "c" symbol represents a carrier and the superscript "sc” symbol represents a physical quantity for a subcarrier.
  • the component caused by the phase noise of the subcarrier generation signal generator 18 appearing in the equation (6) and the background noise appearing in the equation (7) are excluded. Since these two noise components appear as white noise, there is no problem even if they are excluded when the frequency value is obtained by arithmetic processing in the frequency domain.
  • the frequency of the complex beat signal generated from the first measurement light can be expressed by the following equation.
  • the first term represents a component caused by the phase noise of the multi-frequency laser 1
  • the second term represents a Doppler shift
  • the frequency of the complex beat signal generated from the second measurement light can be expressed by the following equation.
  • the first term represents a component caused by the phase noise of the multi-frequency laser 1
  • the second term represents a Doppler shift
  • the third term represents a component caused by the frequency modulation of the subcarrier.
  • the first term represents the component caused by the Doppler shift and the second term represents the component caused by the frequency modulation of the subcarrier, and the component caused by the phase noise of the multi-frequency laser is completely removed. Further, since the center frequencies of the carrier and the subcarrier are different, a Doppler shift corresponding to f sc, which is the frequency difference between the center frequencies of the two, remains.
  • FIG. 15 is a diagram illustrating frequency modulation of the signal light and the reference light caused by the second measurement light and the frequency of the difference frequency signal.
  • T m represents the modulation period of the triangular wave
  • represents the chirp bandwidth. Due to the frequency modulation by the triangular wave, the reference light and the signal light alternately repeat the up chirp and the down chirp.
  • the frequency of the difference frequency signal can be represented by the following equation.
  • the first term represents the Doppler shift
  • the second term represents the component caused by the frequency modulation of the subcarrier
  • the frequency of the difference frequency signal can be represented by the following equation.
  • the first term represents the Doppler shift
  • the second term represents the component caused by the frequency modulation of the subcarrier
  • the difference frequency signal 13 On the difference signal 13 output from the differential signal generation section 12 (the difference frequency signal), to extract the time zone [Delta] T U and [Delta] T D, the data in each time zone by performing a spectral analysis, the difference frequency signal
  • the line spectrum appears at the position corresponding to the frequency component contained in.
  • the frequency value of the line spectrum will be referred to as the peak frequency. Even when there is scattered light from a plurality of objects having different distances, it is possible to measure a plurality of peak frequencies and detect the objects separately.
  • the velocity and distance of the object 7 can be calculated by the following equation from the frequency of the difference frequency signal with respect to the up chirp and the down chirp obtained from the data of the time domain ⁇ T U and ⁇ T D.
  • FIG. 16 is a diagram illustrating an apparatus 102 for evaluating an optical measuring apparatus used in this experiment.
  • the devices of FIG. 16 include a DFB laser 40, an optical intensity modulator 41, an optical modulator driver 42, an analog signal generator 43, an optical circulator 5, an optical frequency shifter 20, and a 1 ⁇ 4 optical switch 44a. 44b, delayed optical fibers 45a, 45b, 45c, 45d, Faraday rotating mirror 46c, optical amplifier 47, optical bandpass filter 48, optical demultiplexer 21d, optical detectors 22c, 22d, and frequency mixing.
  • a device 38, a low-pass filter 39, and a spectrum analysis device 51 are provided. The portion surrounded by the dotted line corresponds to the first example of the dual frequency beat signal generation unit 9.
  • the output light of the DFB laser 40 having a frequency of 139.300 THz is input to the light intensity modulator 41 to generate carriers and subcarriers.
  • the analog signal generator 43 outputs a sine wave signal having a frequency of 25 GHz and has a frequency modulation function.
  • a fixed frequency carrier and a frequency-modulated subcarrier are generated from the light intensity modulator 41, and a plurality of subcarriers are generated at a frequency separated by an integral multiple of 25 GHz from the carrier frequency of 139.300 THz. ..
  • a triangular wave having a frequency of 250 Hz is used as the modulation frequency of the subcarrier, and the chirp bandwidth is 256 MHz.
  • a carrier having a frequency of 139.300 THz is used as a first measurement light
  • a subcarrier having a frequency of 193.325 THz is used as a second measurement light.
  • the carriers and subcarriers output from the light intensity modulator 41 are input to the optical frequency shifter 20 having a frequency shift of 100 MHz, and the 0th-order diffracted light is used as the probe light and the 1st-order diffracted light is used as the reference light.
  • the reference light is reflected by the Faraday rotating mirror 46c, passes through the optical frequency shifter 20 again, and is output from the optical circulator 5.
  • the probe light passes through any one of the three types of delayed optical fibers 45a, 45b and 45c and the delayed optical fiber 45d via the 1 ⁇ 4 optical switches 44a and 44b.
  • a connection gap 50 of an optical connector is arranged between the output of the 1 ⁇ 4 optical switch 44b and the delayed optical fiber 45d, and the Fresnel reflected light from the output end of the 1 ⁇ 4 optical switch 44b and the output of the delayed optical fiber 45d.
  • the Frisnel reflected light from the edge passes through the same optical path in the opposite direction, passes through the optical frequency shifter 20 again, and is output as signal light from the optical circulator 5. That is, the device of FIG. 16 has two reflection points.
  • the lengths of the delayed optical fibers 45a, 45b, 45c, and 45d are 10 m, 120 m, 1 km, and 2 m, respectively.
  • the frequency difference between the signal light output from the optical circulator 5 and the reference light is 200 MHz.
  • the signal light and reference light output from the optical circulator 5 are amplified by the optical amplifier 47, the naturally emitted light of the optical amplifier 47 is removed by the optical bandpass filter 48, and then input to the optical demultiplexer 21d.
  • the optical demultiplexer 21d separates and outputs a carrier having a frequency of 193.300 THz and a subcarrier having a frequency of 193.325 THz.
  • the separated carriers and subcarriers are input to the photodetectors 22c and 22d, respectively, and output a complex beat signal.
  • the sum frequency signal is removed by the low-pass filter 39, and the obtained difference frequency signal is used as the difference signal 13. Output.
  • the difference frequency signal is input to the spectrum analyzer 51 to calculate the spectrum.
  • FIG. 17A is a diagram showing the spectrum of the second complex beat signal 11.
  • the three spectra shown in FIG. 17A represent the results for delayed optical fiber lengths of 10 m, 120 m, and 1 km from the top.
  • the delayed optical fiber length is 10 m
  • the optical path length is smaller than the coherence length of the DFB laser 40, so that the line spectrum component appears in the center. If the vicinity of the center of the spectrum is magnified and observed, the spectra caused by the two reflection points are observed separately.
  • the line spectrum component disappears and a Lorentz-type spectrum having a full width at half maximum of 3.06 MHz appears.
  • the optical path length of the delayed optical fiber is much larger than the coherence length of the DFB laser 40, a spectral spread corresponding to twice the spectral line width of the DFB laser 40 is generated.
  • the two reflection points cannot be separated because the spectral spread is much larger than the spectrum spacing caused by the two reflection points.
  • FIG. 17B is a diagram showing the spectrum of the difference frequency signal.
  • the three spectra shown in FIG. 17B represent the results for delayed optical fiber lengths of 10 m, 120 m, and 1 km from the top.
  • the two line spectra appear separately, and the interval between the line spectra corresponds to the delayed optical fiber 45d having a length of 2 m. Since the phase noise is removed from the difference frequency signal, a spectrum having the same shape can be observed regardless of the measurement distance.
  • the full width at half maximum of the two line spectra is equal to the resolution bandwidth of the spectrum analyzer 51, indicating that the phase noise of the DFB laser 40 is completely eliminated.
  • the configuration of the heterodyne interferometer of FIG. 4 has been described as the dual frequency beat signal generation unit 9, but the same applies even when the configuration of the homodyne interferometer of FIG. 5 is used.
  • the case where a semiconductor laser and a light intensity modulator are used as a multi-frequency light source has been described, but the same can be applied to a semiconductor laser directly modulated by an injection current or a light source having a modulation function to generate subcarriers. it can.
  • the optical measuring device and method of the present invention can completely remove the phase noise of the laser, the accuracy is high, and complicated equipment and processing for reducing or removing the phase noise of the laser are not required. It is industrially useful as a compact and low-cost FMCW rider system. It can be used for consumer devices, including as an environment recognition sensor for automobiles and autonomous robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

周波数固定のキャリアと、少なくとも一つの、周波数変調したサブキャリアとを、同時に発生する多周波レーザと、光分岐素子と、2周波ビート信号生成部と、差分信号生成部と、演算処理部とを少なくとも備える光学的測定装置である。多周波レーザの出力光のうち、キャリアまたはサブキャリアのうちのいずれか一つを第1の測定光とし、第1の測定光とは異なる周波数のキャリアまたはサブキャリアのうちのいずれか一つを第2の測定光とする。2周波ビート信号生成部では、第1の測定光に由来する第1の複素ビート信号と、第2の測定光に由来する第2の複素ビート信号を、分離して出力する。差分信号生成部では、第1の複素ビート信号と第2の複素ビート信号の差分信号を出力する。

Description

光学的測定装置及び測定方法
 本発明は、自動車や自律ロボット等に用いられる環境認識センサ等に適する、光学的測定装置及び測定方法に関する。
 自動車や自律ロボットに搭載する環境認識センサや、建設・土木現場における形状計測などへの応用を目的として、ライダ(LiDAR:Laser Imaging Detection and Ranging)の開発が進展している。実用化が進んでいるToF(Time of Flight)方式のライダは、対象物に照射した光パルスが、散乱されて戻ってくるまでの時間から距離を測定し、光パルスの空間的走査により、3次元距離データを生成するものである。
 ToFライダは、測定原理が単純であり、装置構成も比較的簡単なことから、広く普及しているが、太陽光や他の装置からの照射光との干渉や、レーザ光の安全基準等(アイセーフティ規定等)に係る出力パワー制限など、いくつかの問題が明らかになっている。これに対して、コヒーレント検波を用いるFMCW(Frequency Modulated Continuous Wave)方式は、高感度の散乱光検出が可能であり、対象物までの距離だけでなく、ドップラーシフトから運動速度も測定できる特徴を有している。ミリ波領域のFMCWレーダは、車載用の衝突防止センサとして実用化されている。光波領域でFMCWライダを実現できれば、空間分解能と測位距離の格段の向上が期待できる。
 FMCWライダは、次の問題を有している。レーザの周波数変調に伴う非線形チャープの問題である。FMCWライダでは、ビート信号から対象物の距離と速度を求める際に、変調したレーザ周波数が時間に比例して増加または減少する(線形チャープ)ことが前提になっている。ところが、注入電流により周波数変調した半導体レーザでは、非線形チャープが顕著であり、著しい精度劣化を引き起こすことが知られている。
 本発明者は、従来技術のFMCWライダに係る、非線形チャープの問題を解決する装置及び方法を報告した。例えば、本発明者は、ビート信号の回帰分析により、非線形チャープを補正する装置及び方法を提案した(特許文献1参照)。また、本発明者は、非線形チャープが存在する下で、ビート周波数の平均値から距離を正確に算出する装置及び方法を提案した(特許文献2参照)。
 また、FMCWライダにおいて、レーザの負帰還制御を利用して、非線形チャープと位相雑音を低減する方法が報告されている(非特許文献1)。
 また、FMCWライダと同様の測定原理を利用して、反射分布の測定を行う、光周波数領域反射測定(OFDR:Optical Frequency Domain Reflectmetry)において、レーザ周波数の測定と計算処理により、位相雑音の影響を低減する方法及び装置が報告されている(特許文献3参照)。
国際公開第2018/230474号 特開2019-045200号 国際公開第2008/105322号 国際公開第2018/070442号
J.Qin, Q.Zhou, W.Xie, Y.Xu, S.Yu, Z.Liu, Y.T.Tong, Y.Dong, W.Hu, "Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop", Optics Letters, vol.40, no.19, pp.4500-4503(2015).
 従来技術のFMCWライダにおける問題の1つは、レーザのコヒーレンスによる最大測定距離の制限である。FMCWライダではコヒーレント検波を利用し、対象物からの散乱光と、測定の基準となる参照光を混合して、ビート信号を生成する。レーザ出力光の周波数は変調を受けているが、これとは別に、レーザ出力光はレーザ自身が発する位相雑音による変動を伴っている。このため、ビート信号には、周波数変調に起因する成分と、位相雑音に起因する成分が混在している。対象物までの距離が増大すると、参照光に対する散乱光の時間遅れ(遅延時間)が増大し、周波数変調に起因する成分と比較して、位相雑音に起因する成分が相対的に大きくなる。このため、ビート信号の信号対雑音比が低下し、測定精度の劣化を引き起こす。
 最大測定距離の目安となる尺度がコヒーレンス長である。コヒーレンス長は、レーザ出力光のコヒーレンス関数の値が、1/eとなる距離として定義される。一般的な光通信用半導体レーザのコヒーレンス長は、100m以下である。FMCWライダでは、被測定光が対象物までの距離を往復するため、最大測定距離は50m以下に制限される。スペクトル純度の高い外部共振器半導体レーザや、ファイバレーザを用いることにより、最大測定距離を100m以上まで拡大できるが、レーザ装置が大型であり、周波数変調機能が制限される。
 非特許文献1の方法は、センシング用とは別の干渉計を用意して、レーザの非線形チャープと位相雑音を検出し、レーザや変調器に帰還して、周波数制御を行うものである。この方法は、非線形チャープ低減と、コヒーレンス長増大を同時に実現する方法ではあるが、モニタリング用の干渉計と制御回路を備える必要があり、位相雑音低減の性能は、制御帯域により制限を受ける。
 特許文献3の方法は、センシング用とは別の干渉計を用いてレーザ周波数を測定し、位相雑音の影響を含むビート信号の計算処理により、影響を低減するものである。この方法は、レーザのコヒーレンス長を越える測定を可能にする方法ではあるが、モニタリング用の干渉計を備える必要があり、複雑な計算処理を必要とするため、実時間処理には不向きである。
 本発明者は、非線形チャープの影響を除去して、距離と速度の正確な測定を可能とすることを目的として、ヘテロダイン光学系と演算処理部を用いる装置、及び方法(特願2018-222416)と、ホモダイン光学系と演算処理部を用いる装置、及び方法(特願2019-118793)とを出願している。これらの出願の方法においては、レーザの位相雑音は考慮されていないので、従来技術のFMCWライダと同様に、レーザの位相雑音に起因する精度劣化が生じる。そこで、位相雑音の影響を低減するには、チャープ帯域幅を増大する対策か、または、低雑音レーザを使用する対策が考えられる。しかしながら、前者の対策においては、ビート周波数の増大に伴い、広帯域の検出・処理回路が必要になる。後者の対策においては、レーザ装置が高価であり、周波数変調機能が制限される。
 以上のように、従来技術においては、センシング用の干渉計とは別に、モニタリング用の干渉計や制御回路が必要であり、装置構成が複雑になる。また、負帰還制御による方法では、制御帯域により雑音低減の性能が制限される。また、複雑な計算処理を用いる方法は、実時間処理を必要とするFMCWライダには不向きである。光学的な距離、速度、または距離と速度の測定装置として、位相雑音の完全な除去が可能であり、装置構成が複雑化することなく、小型で低価格のシステムが実現できれば、自動運転用の車載センサ、ロボット家電など、民生分野への展開も期待できる。
 本発明は、上述した問題を解決しようとするものであり、レーザのコヒーレンスによる、測定距離制限を受けることがない光学的測定装置及び測定方法を提供することを目的の1つとする。また、負帰還制御や複雑な計算処理を用いることなく、レーザの位相雑音を完全に除去して、距離と速度のうちの少なくともいずれかの正確な測定を可能とする、光学的測定装置及び測定方法を提供することを目的の1つとする。
 本発明は、前記目的を達成するために、以下の特徴を有するものである。
(1) 周波数固定のキャリアと、少なくとも一つの、周波数変調したサブキャリアとを、同時に発生する多周波レーザと、前記多周波レーザの出力光のうち、前記キャリアまたは前記サブキャリアのうちのいずれか一つを第1の測定光とし、該第1の測定光とは異なる周波数の前記キャリアまたは前記サブキャリアのうちのいずれか一つを第2の測定光とし、前記多周波レーザの出力光を2分し、一方を参照光、他方をプローブ光とする光分岐素子と、前記プローブ光を対象物に照射し、該対象物からの散乱光を信号光として出力する光学系と、前記参照光と前記信号光を入力して、前記第1の測定光に由来する第1の複素ビート信号と、前記第2の測定光に由来する第2の複素ビート信号を、分離して出力する2周波ビート信号生成部と、前記第1の複素ビート信号と前記第2の複素ビート信号の差分信号を出力する差分信号生成部と、前記差分信号から、前記対象物の速度を算出する演算、または対象物までの距離を算出する演算の、少なくともいずれかを実行する演算処理部と、を備えることを特徴とする光学的測定装置。
(2) 前記差分信号は、前記第1の複素ビート信号と前記第2の複素ビート信号の位相差信号、または前記第1の複素ビート信号と前記第2の複素ビート信号を混合して生じるうなり信号である差周波信号の、いずれかであることを特徴とする、前記(1)記載の光学的測定装置。
(3) 前記多周波レーザは、単一周波数のレーザと、光変調器と、サブキャリアに周波数変調を与える信号源である変調信号発生器と、前記光変調器を駆動して前記単一周波数のレーザの出力光にサブキャリアを生成するサブキャリア生成信号発生器と、を備えることを特徴とする、前記(1)又は(2)記載の光学的測定装置。
(4) 前記多周波レーザは、半導体レーザと、サブキャリアに周波数変調を与える信号源である変調信号発生器と、前記半導体レーザの出力を変調するサブキャリア生成信号発生器と、を備えることを特徴とする、前記(1)又は(2)記載の光学的測定装置。
(5) 前記2周波ビート信号生成部は、ヘテロダイン干渉計の構成を有することを特徴とする、前記(1)乃至(4)のいずれか1項記載の光学的測定装置。例えば、前記2周波ビート信号生成部は、前記参照光に周波数シフトを与える光周波数シフタと、前記信号光と周波数シフトされた前記参照光とを合波する光結合素子と、前記光結合素子の出力を分離する第1の光分波器と、前記第1の光分波器により分離して出力された、前記第1の測定光に由来する成分を、受光して、前記第1の複素ビート信号を出力する第1の光検出器と、前記第1の光分波器により分離して出力された、前記第2の測定光に由来する成分を、受光して、前記第2の複素ビート信号を出力する第2の光検出器と、を備える。また、光周波数シフタは、参照光に替えて、プローブ光又は信号光の方に、光周波数シフタを与えるものであってもよい。
(6) 前記2周波ビート信号生成部は、位相ダイバーシティ検出器を備えたホモダイン干渉計の構成を有することを特徴とする、前記(1)乃至(4)のいずれか1項記載の光学的測定装置。例えば、前記2周波ビート信号生成部は、前記参照光を入力して、前記第1の測定光に由来する成分と、前記第2の測定光に由来する成分に分離する、第2の光分波器と、前記信号光を入力して、前記第1の測定光に由来する成分と、前記第2の測定光に由来する成分に分離する、第3の光分波器と、前記第2の光分波器で分離された前記第1の測定光に由来する成分と、前記第3の光分波器で分離された前記第1の測定光に由来する成分とを入力して、前記第1の複素ビート信号を出力する第1の位相ダイバーシティ検出器と、前記第2の光分波器で分離された前記第2の測定光に由来する成分と、前記第3の光分波器で分離された前記第2の測定光に由来する成分とを入力して、前記第2の複素ビート信号を出力する第2の位相ダイバーシティ検出器とを備える。
(7) 前記差分信号生成部は、前記第1の複素ビート信号を入力して、位相を復調する第1の位相復調器と、前記第2の複素ビート信号を入力して、位相を復調する第2の位相復調器と、前記第1と第2の複素ビート信号との間の位相差信号を、差分信号として出力する減算器とを備えること、を特徴とする、前記(1)乃至(6)のいずれか1項記載の光学的測定装置。前記(7)の差分信号生成部を用いる場合、周波数変調は正弦波であることが望ましく、前記(3)(4)の前記変調信号発生器の出力が正弦波であることが望ましい。
(8) 前記差分信号生成部は、前記第1の複素ビート信号と前記第2の複素ビート信号とに対して乗算を行い、両信号の和周波信号と差周波信号を出力する周波数混合器と、前記和周波信号を除去して前記差周波信号を前記差分信号として出力するローパスフィルタとを備えること、を特徴とする、前記(1)乃至(6)のいずれか1項記載の光学的測定装置。前記(8)の差分信号生成部を用いる場合は、周波数変調は三角形又は鋸波であることが望ましく、前記(3)(4)の前記変調信号発生器の出力が三角波又は鋸波であることが望ましい。
(9) 周波数固定のキャリアと、少なくとも一つの、周波数変調したサブキャリアとを、同時に発生する多周波レーザの光を、2分して、一方を参照光、他方をプローブ光とし、前記プローブ光を対象物に照射して、対象物からの散乱光を信号光とし、前記多周波レーザの出力光のうち、前記キャリアまたは前記サブキャリアのうちの、いずれか一つを第1の測定光とし、該第1の測定光とは異なる周波数の、前記キャリアまたは前記サブキャリアのうちのいずれか一つを第2の測定光とするとき、前記信号光と前記参照光とを入力して、第1の測定光と第2の測定光のそれぞれについて、前記信号光と前記参照光との間の、第1と第2の複素ビート信号を生成し、前記第1の測定光に由来する前記第1の複素ビート信号と、前記第2の測定光に由来する前記第2の複素ビート信号との間の、差分信号を生成し、前記差分信号から、前記対象物の速度または前記対象物までの距離のうちの、少なくともいずれかを求めることを特徴とする、光学的測定方法。
(10) 前記差分信号は、前記第1の複素ビート信号と前記第2の複素ビート信号の位相差信号、または前記第1の複素ビート信号と前記第2の複素ビート信号を混合して生じるうなり信号である差周波信号の、いずれかであることを特徴とする、前記(9)記載の光学的測定方法。
(11) 前記第1の複素ビート信号と前記第2の複素ビート信号は、ヘテロダイン干渉計又はホモダイン干渉計のいずれかの構成を用いて生成することを特徴とする、前記(9)又は(10)記載の光学的測定方法。
(12) 前記差分信号である位相差信号を時間微分して、周波数差信号に変換し、該周波数差信号の平均値を用いて、ドップラーシフトを算出し、該ドップラーシフトを用いて前記速度を求めることを特徴とする、前記(9)乃至(11)のいずれか1項記載の光学的測定方法。
(13) 前記差分信号である位相差信号を時間微分して周波数差信号に変換し、該周波数差信号の平均値を用いてドップラーシフトを求め、前記位相差信号から前記ドップラーシフトの成分を除外した後の絶対値の平均値を求め、事前に求めた距離算出の比例定数を基に、前記対象物までの距離を算出することを特徴とする、前記(9)乃至(11)のいずれか1項記載の光学的測定方法。
(14) 前記差分信号である差周波信号の周波数スペクトルから、前記対象物の速度を算出する演算、または対象物までの距離を算出する演算の少なくともいずれかを実行することを特徴とする、前記(9)乃至(11)のいずれか1項記載の光学的測定方法。例えば、前記演算処理部は、前記差周波信号のスペクトルを計算して、前記対象物からの散乱に起因するピーク周波数を求め、該ピーク周波数から、前記対象物の距離と速度を算出する。
(15) 前記周波数変調は、正弦波、三角波、鋸波のうちのいずれかであることを特徴とする、前記(9)乃至(14)のいずれか1項記載の光学的測定方法。差分信号として位相差信号を用いる場合は、前記周波数変調は、正弦波が望ましい。差分信号として差周波信号を用いる場合は、前記周波数変調は、三角波、鋸波のうちのいずれかであることが望ましい。
 本発明の光学的測定装置及び測定方法では、少なくとも一方を周波数変調させた多周波レーザの2波を用い、2つの複素ビート信号の差分信号を生成するので、FMCWライダにおけるビート信号から、レーザの位相雑音に起因する成分を完全に除去することができる。また、周波数変調とドップラーシフトに起因する成分を選択的に検出することができる。その結果、精度の高い、距離と速度の測定を実現できる。
 また、本発明では、最大測定距離はレーザのコヒーレンス長の制限を受けないので、測定精度が、距離に依存せず、長い距離でも正確に測定できる。また、距離の大小に関わらず、測定のバラツキが非常に少ない。
 また、本発明では、高スペクトル純度の大型レーザが不要となり、高性能の部品を必要としない小型の装置が実現できる。
 また、レーザの位相雑音を除去できるので、大きなチャープ帯域幅を必要としないことから、差分信号として位相差信号を用いて距離や速度を求める場合では、必要な信号処理帯域を1桁以上低減できる。
本発明に係る光学的測定装置の基本構成を説明する図である。 多周波レーザの出力光のスペクトルを説明する図である。 多周波レーザの例を説明する図で、(a)は第1例を、(b)は第2例を説明する図である。 2周波ビート信号生成部の第1例を説明する図である。 (a)は2周波ビート信号生成部の第2例を説明する図である。(b)は(a)の位相ダイバーシティ検出器を説明する図である。 差分信号生成部12の第1例を説明する図である。 差分信号生成部12の第2例を説明する図である。 第1と第2の複素ビート信号から、対象物の速度と距離を計算する過程を説明する図である。 第1の実施形態に係る、光学的測定装置を評価するための装置を説明する図である。 DFBレーザのコヒーレンス度を表す図である。 第1の実施形態に係る、キャリア、サブキャリアの位相と、位相差信号の測定結果の一例を表す図である。(a)は10m、(b)は120m、(c)は1kmの遅延光ファイバに対する結果である。 第1の実施形態に係る、16回の測定に対する距離測定値の分布を表す図である。(a)は10m、(b)は120m、(c)は1kmの遅延光ファイバに対する結果である。 第1の実施形態に係る、距離測定精度とファイバ長の関係を表す図である。 第1と第2の測定光として、いずれも周波数変調したサブキャリアを用いた場合の、サブキャリアの位相と、位相差信号の測定結果の一例を表す図である。 第2の実施形態に係る、第2の測定光に起因する信号光と参照光の周波数変調と、差周波信号の周波数ν(t)を説明する図である。 第2の実施形態に係る、光学的測定装置を評価するための装置を説明する図である。 第2の実施形態に係る図で(a)は第2の複素ビート信号のスペクトルを表す図であり、(b)は差周波信号のスペクトルを表す図である。
 以下、本発明の実施形態を詳細に説明する。本発明の実施形態では、多周波レーザと、光分岐素子や光結合素子や光サーキュレータ等の光学系と、送受信光学系と、2周波ビート信号生成部と、差分信号生成部と、演算処理部とを少なくとも備える装置を用いて、対象物までの距離、または対象物の速度の少なくともいずれか一方を測定する。ここで、対象物の速度とは、本発明の光学的測定装置から見て、対象物が遠ざかる方向を正とする、相対的速度である。2周波ビート信号生成部とは、2つの異なる周波数に由来する第1と第2の複素ビート信号を生成する構成をいう。
 図1は、本発明の実施形態に係る光学的測定装置100の基本構成を説明する図である。図1の光学的測定装置は、多周波レーザ1と、光分岐素子としてのビームスプリッタ2aと、光サーキュレータ5と、送受信光学系6と、2周波ビート信号生成部9と、差分信号生成部12と、演算処理部14とを備える。多周波レーザ1は、周波数固定のキャリアと、少なくとも一つの周波数変調したサブキャリアを同時に発生する。多周波レーザの出力光のうち、キャリアまたはサブキャリアのいずれか一つを第1の測定光とし、第1の測定光とは異なる周波数のキャリアまたはサブキャリアのいずれか一つを第2の測定光とする。
 図2は、多周波レーザ1の出力光のスペクトルを説明する図である。多周波レーザ1の出力光は、中心周波数がνであり、周波数を固定したキャリアと、中心周波数がν±nfSC(nは正の整数)であり、かつ周波数変調したサブキャリアとにより構成される。便宜上、図2は、中心周波数がν±2fSCまでのサブキャリアを表示している。サブキャリアはキャリアと位相同期し、キャリアと等しい位相雑音を有しているものとする。本発明の実施形態では、周波数固定のキャリアと周波数変調した一つのサブキャリアの組合せ、または、周波数変調した二つのサブキャリアを利用する。
 図3(a)(b)は、多周波レーザ1の例を説明する図である。図3(a)は、第1例を説明する図であり、単一周波数レーザ15と、光変調器16と、変調信号発生器17と、サブキャリア生成信号発生器18とを備える。変調信号発生器17は、サブキャリアに周波数変調を与える信号源である。サブキャリア生成信号発生器18は、光変調器16を駆動して、単一周波数レーザ15の出力光にサブキャリアを生成する。サブキャリア生成信号発生器18の周波数は、後述する2周波ビート信号生成部9の特性に合わせたものとし、外部入力信号による周波数変調機能を備える。光変調器16は、強度変調器や、位相変調器など、変調サイドバンドを生成するものであれば、いずれも利用できる。光の利用効率の観点からは、キャリアと一つのサブキャリアのみを発生する単一サイドバンド変調器が望ましい。
 図3(b)は、多周波レーザ1の第2例を説明する図であり、半導体レーザ19と、変調信号発生器17と、サブキャリア生成信号発生器18を備える。変調信号発生器17と、サブキャリア生成信号発生器18の動作は、第1例の場合と同様である。半導体レーザ19は、例えば、DFBレーザ、または変調器を集積化した半導体レーザである。サブキャリア生成信号発生器18の出力を、DFBレーザの注入電流に、または半導体レーザ内の変調器に入力して、サブキャリアを生成する。
 多周波レーザ1では、キャリアを変調して、サブキャリアを生成するので、サブキャリはキャリアと同相の位相雑音を有している。さらにサブキャリアには、周波数変調に伴う位相変化と、サブキャリア生成信号発生器18の位相雑音が付加される。また、図2に示したように、周波数固定のキャリアに対して、高周波側と低周波側のサブキャリアとの間では、周波数変調に伴う位相変化は逆相となる。キャリアの周波数νとサブキャリアの周波数ν±nfSCが光学的に分離できる程度に離れていることが好ましい。また、fSCが変調器またはレーザの直接変調が応答できる範囲であること、が好ましい。fSCとνは、それぞれ任意に選ぶことができ、原理的に制限は特にない。現実的には、利用可能な部品の仕様により、制限される。例えば、fSCの最小値は、光フィルタで分離できる程度の周波数差(1GHz程度)である。また、例えば、fSCの最大値は、変調性能に大きく依存し、100GHz程度である。また、キャリア周波数νは、単一周波数のレーザはが存在するすべての周波数が使用可能である。例えば、紫外域~可視域~赤外域のすべてが可能である。
 本発明の実施形態の光学的測定装置の基本構成を用いた光学的測定方法を、図1を参照して述べる。
 多周波レーザ1の出力光を、ビームスプリッタ2aにより2分し、一方を参照光4、他方をプローブ光3とする。光サーキュレータ5と、送受信光学系6を介して、プローブ光3を対象物7に照射し、対象物7からの散乱光を、光サーキュレータ5から、信号光8として出力する。参照光4と、信号光8を、2周波ビート信号生成部9に入力し、第1の測定光に由来する第1の複素ビート信号10と、第2の測定光に由来する第2の複素ビート信号11を出力する。
 第1の複素ビート信号10と第2の複素ビート信号11を差分信号生成部12に入力し、位相差信号または差周波信号のいずれか一方を、差分信号13として出力する。位相差信号とは、二つの複素ビート信号を、それぞれ復調して求めた瞬時位相の差に相当する信号である。差周波信号とは、二つの複素ビート信号を混合して生じるうなり信号である。一般に、周波数の異なる2つの光から、差の周波数を持つ電気信号を発生する場合は、ビート信号と呼ばれる。本発明では、周波数の異なる2つの電気信号から、差の周波数を持つ電気信号を発生しているので、これも「ビート信号」と呼べるが、2周波ビート信号生成部から出力される複素ビート信号等と区別するため、「差周波信号」と呼ぶ。また、「2次ビート信号」とも呼ぶ。
 差分信号13では、多周波レーザ1の位相雑音は相殺される。
 差分信号生成部12から出力される差分信号13を、演算処理部14に入力して、対象物7の速度を算出する演算、または対象物7までの距離を算出する演算の少なくともいずれかを実行する。
 差分信号13として位相差信号を出力する場合は、位相差信号を時間微分して、二つの複素ビート信号の間の周波数差を求め、サブキャリアの変調1周期にわたる周波数差の平均値から、ドップラーシフトを算出し、対象物7の速度を求める。次いで、位相差信号からドップラーシフトの成分を除去した後、サブキャリアの変調1周期にわたる絶対値の平均値(以下、「位相絶対平均値」と呼ぶ。)を計算する。さらに、事前に校正しておいた距離と位相絶対平均値の関係式を用いて、対象物までの距離を計算する。
 差分信号13として差周波信号を出力する場合は、差周波信号のスペクトルを計算して、対象物からの散乱に起因するピークを求め、ピーク周波数から、対象物の速度と対象物までの距離を算出する。速度と距離の算出方法は、従来技術のFMCWライダと同様である。
 次に、第1の測定光として周波数固定のキャリアを用い、第2の測定光として周波数変調したサブキャリアを用いた場合について、主として、述べる。また、第1、第2の測定光として、いずれも周波数変調したサブキャリアを用いた場合でも、同様にして測定を行うことが可能である。
 第1の複素ビート信号10の位相は、キャリアの位相雑音と、対象物7の運動に起因するドップラーシフトを含む。一方、第2の複素ビート信号11の位相は、サブキャリアの位相雑音と、対象物7の運動に起因するドップラーシフトと、周波数変調による位相変化と、サブキャリア生成信号発生器18の位相雑音を含む。差分信号13においては、第1と第2の測定光の位相雑音は相殺され、サブキャリアの周波数変調による位相変化と、第1と第2の測定光の周波数差に相当するドップラーシフトと、サブキャリア生成信号発生器18の位相雑音が残る。したがって、多周波レーザ1の位相雑音を、完全に除去することができる。第1と第2の測定光として、いずれもサブキャリアを用いた場合でも、多周波レーザ1の位相雑音は相殺される。
 図4は、2周波ビート信号生成部9の第1例を説明する図である。第1例の2周波ビート信号生成部9は、ヘテロダイン干渉計の構成を有し、光周波数シフタ20と、光分波器21aと、光検出器22a、22bとを備える。光周波数シフタ20により、参照光4に周波数シフトを与えた後、光結合素子としてのビームスプリッタ2bにより信号光8と合波し、光分波器21aに入力する。光分波器21aは、第1の測定光に由来する成分と、第2の測定光に由来する成分とに分離して出力する。分離した各成分は、光検出器22a、22bによりそれぞれ受光し、第1の複素ビート信号10と、第2の複素ビート信号11を、それぞれ出力する。
 図5(a)は、2周波ビート信号生成部9の第2例を説明する図である。第2例の2周波ビート信号生成部9は、ホモダイン干渉計の構成を有し、光分波器21b、21cと、位相ダイバーシティ検出器27a、27bを備える。参照光4を光分波器21bに、信号光8を光分波器21cにそれぞれ入力し、第1の測定光の成分と、第2の測定光の成分とに分離して出力する。光分波器21bから出力される第1の測定光に由来する参照光23と、光分波器21cから出力される第1の測定光に由来する信号光25とを、位相ダイバーシティ検出器27aに入力して、第1の複素ビート信号10を出力する。同様にして、光分波器21bから出力される第2の測定光に由来する参照光24と、光分波器21cから出力される第2の測定光に由来する信号光26とを、位相ダイバーシティ検出器27bに入力して、第2の複素ビート信号11を出力する。
 図5(b)は、位相ダイバーシティ検出器27aと27bを説明する図である。位相ダイバーシティ検出器27aと27bは、ビームスプリッタ2c、2d、2e、2fと、π/2位相シフタ28と、全反射鏡29a、29bと、バランス型光検出器30a、30bとを備える。ビームスプリッタ2cにより参照光(第1の測定光に由来する参照光23、第2の測定光に由来する参照光24)を2分し、一方は全反射鏡29aと、ビームスプリッタ2eを介して、バランス型光検出器30aに導く。他方はπ/2位相シフタ28と、全反射鏡29bと、ビームスプリッタ2fを介して、バランス型光検出器30bに導く。ビームスプリッタ2dにより信号光(第1の測定光に由来する信号光25、第2の測定光に由来する信号光26)を2分し、一方はビームスプリッタ2eを介して、バランス型光検出器30aに導く。他方はビームスプリッタ2fを介して、バランス型光検出器30bに導く。バランス型光検出器30aから、複素ビート信号の同相成分31を、バランス型光検出器30bから、複素ビート信号の直交成分32を、それぞれ出力する。直交成分32を虚数単位乗算器33に入力して虚数部とし、加算器34により実数部の同相成分31と足し合わせて、複素ビート信号35が生成される。
 図6は、差分信号生成部12の第1例を説明する図である。第1例の差分信号生成部12は、位相復調器36a、36bと、減算器37を備える。第1の複素ビート信号10を位相復調器36aに、第2の複素ビート信号11を位相復調器36bに、それぞれ入力して、位相を復調した後、減算器37に入力して、第1の複素ビート信号10と第2の複素ビート信号11との間の位相差信号を、差分信号13として出力する。
 図7は、差分信号生成部12の第2例を説明する図である。第2例の差分信号生成部12は、周波数混合器38と、ローパスフィルタ39を備える。第1の複素ビート信号10と第2の複素ビート信号11を周波数混合器38に入力する。周波数混合器38は、二つの入力信号に対して乗算を行い、両信号の和周波信号と差周波信号を出力する機能を有する。周波数混合器38の出力を、ローパスフィルタ39に入力し、和周波信号を除去して、二つの複素ビート信号の間の差周波信号を、差分信号13として出力する。
(第1の実施形態)
 本実施形態においては、差分信号として、第1と第2の複素ビート信号の間の位相差信号を用いて、時間領域の演算処理により、速度と距離を算出する場合について説明する。本実施形態では、図1の光学的測定装置において、2周波ビート信号生成部9(図4または図5(a)参照)と、差分信号生成部12の第1例(図6参照)とを用いる例で説明する。
 図8は、第1と第2の複素ビート信号から、2つの複素ビート信号の間の位相差と周波数差を利用して、対象物7の速度と距離を計算する過程を説明する図である。
 以下、図8を参照して、数式を用いて詳しく説明する。以下の説明においては、第1の測定光として周波数固定のキャリア、第2の測定光として周波数変調したサブキャリアを用い、上付き添字「c」の記号はキャリア、上付き添字「sc」の記号はサブキャリアに対する物理量を表す。
 最初に、図6の差分信号生成部12の第1例の一部を構成する、位相復調器36aと36bにおける、複素ビート信号から位相を求める処理を説明する。キャリアとサブキャリアに対する複素ビート信号を次式により表す。
Figure JPOXMLDOC01-appb-M000001
 ここで、I(t)は、複素ビート信号の同相成分、Q(t)は直交成分である。
 (1)式はビート信号の複素表示であり、2周波ビート信号生成部9の第2例においては、実数部である同相成分I(t)と、虚数部である直交成分Q(t)との和が出力される。一方、2周波ビート信号生成部9の第1例においては、次式により表される複素ビート信号が出力される。
Figure JPOXMLDOC01-appb-M000002
 ここで、fは光周波数シフタ18により与えられる周波数シフトである。(2)式により表される複素ビート信号に対して、周波数fの局部発振信号とのミキシング処理を行うことにより、同相成分I(t)と、直交成分Q(t)を分離して検出できる。
 キャリアとサブキャリアに対する同相成分と直交成分は、次式により表すことができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、Aは正味の振幅、α(t)は振幅変調、Φ(t)は位相を表す。
 (3)式により表される同相成分と直交成分から、次式を用いて、キャリアとサブキャリアに対する位相Φ(t)を求めることができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、Unwrapは位相アンラップ処理を表す。(4)式における逆正接は、-π~+πの範囲の値を算出するので、±πを越える位相は、±πの整数倍だけ差し引かれた値になる。アンラップ処理は、位相変化の不連続点から差し引かれた位相を検出し、補正して真の位相を求めるものである。
 次に、位相差信号における位相雑音の除去について説明する。キャリアから生成される複素ビート信号の位相Φ(t)は、次式により表すことができる。
Figure JPOXMLDOC01-appb-M000005
 ここで、第1項は多周波レーザ1の位相雑音に起因する成分、第2項はドップラーシフトに起因する成分、第3項は位相オフセットを表し、θ(t)は多周波レーザ1の位相雑音、τは対象物7までの光の往復時間、νはキャリアの周波数、Vは対象物7との間の相対速度、cは光速度である。
 サブキャリアから生成される複素ビート信号の位相Φsc(t)は、次式により表すことができる。
Figure JPOXMLDOC01-appb-M000006
 ここで、第1項は多周波レーザ1の位相雑音に起因する成分、第2項はドップラーシフトに起因する成分、第3項はサブキャリアの周波数変調に起因する成分、第4項はサブキャリア生成信号発生器18の位相雑音に起因する成分、第5項は位相オフセットを表す。サブキャリアは、中心周波数がν+fSCとして、説明する。fscとθRF(t)は、それぞれ、サブキャリア生成信号発生器18の周波数と位相雑音である。
 (5)(6)式より、位相差信号Φ(t)は次式のように求めることができる。
Figure JPOXMLDOC01-appb-M000007
 位相差信号の第1項はドップラーシフトに起因する成分、第2項はサブキャリアの周波数変調に起因する成分、第3項はサブキャリア生成信号発生器18の位相雑音に起因する成分、第4項は位相オフセットである。第5項φNF(t)は背景雑音を表し、ショット雑音と、光検出器22aと22b(2周波ビート信号生成部の第1例の一部)、またはバランス型光検出器30aと30b(2周波ビート信号生成部の第2例を構成する位相ダイバーシティ検出器の一部)の雑音に依存する。ショット雑音とは、コヒーレント光が有する量子力学的な揺らぎであり、レーザ光を用いる限り、除去することのできない究極的な雑音である。位相差信号において、多周波レーザ1の位相雑音に起因する成分は、完全に除去されている。第4項の位相オフセットは直流成分であり、位相差信号の変調1周期にわたる平均値を差し引くことにより除去できる。
 次に、(7)式により表される位相差信号Φ(t)から、対象物7の距離と速度を算出する処理を説明する。
 ここでは、説明を容易にするため、(7)式の第3項のサブキャリア生成信号発生器18の位相雑音に起因する成分と、第5項の背景雑音を除外して考える。(7)式の第2項は、次式により表すことができる。
Figure JPOXMLDOC01-appb-M000008
 ここで、ν(t)はサブキャリアの周波数変調を表し、周波数f(周期T=1/f)の周期関数とする。
 (7)式の位相差信号を時間微分して周波数差に変換し、変調1周期にわたる平均値f avgを計算する。
Figure JPOXMLDOC01-appb-M000009
 周波数差は、周波数変調に起因する成分と、ドップラーシフトに起因する成分とを含むが、前者は交流信号であるため、変調1周期にわたる平均値は0となり、ドップラーシフトに起因する成分のみが残る。したがって、(9)式の平均値から、対象物7の速度Vを求めることができる。
 位相差信号Φ(t)からドップラーシフトに起因する成分を除去し、位相絶対平均値φ avgを計算する。
Figure JPOXMLDOC01-appb-M000010
 (10)式において、遅延時間τが求めるべき未知パラメータである。サブキャリアの周波数変調ν(t)は既知である。例えば、特許文献4に記載されているヘテロダイン干渉計を用いた測定法により、周波数変調ν(t)を事前に求めておくことができる。遅延時間τを未知パラメータとして、(10)式の回帰分析を実行することにより、対象物7までの距離を求めることもできるが、ここでは、計算量のより少ない、位相絶対平均値から距離を算出する方法を説明する。
 (10)式において、遅延時間τがサブキャリアの周波数変調周期Tに比べて十分に小さい場合、被積分項は次式のように近似できる。
Figure JPOXMLDOC01-appb-M000011
 位相絶対平均値も次式のように近似できる。
Figure JPOXMLDOC01-appb-M000012
 (12)式の積分は、サブキャリアの周波数変調により決まる定数であり、事前に測定した周波数変調ν(t)を用いて求めることができる。したがって、次式により表される距離と位相絶対平均値φ avgの関係式を用いて、対象物までの距離Lを算出できる。
Figure JPOXMLDOC01-appb-M000013
 ここで、ξは距離と位相絶対平均値を関係づける比例定数である。
 1例として、サブキャリアの周波数変調ν(t)が、次式の正弦波である場合を説明する。
Figure JPOXMLDOC01-appb-M000014
 ここで、Δνはチャープ帯域幅である。(14)式を(10)式に代入すると、近似を用いることなく、距離Lと位相絶対平均値φ avgの関係を求めることができる。
Figure JPOXMLDOC01-appb-M000015
 (15)式は、周期関数である逆正接を含むため、一意的に算出できる距離は、次式により制限される。
Figure JPOXMLDOC01-appb-M000016
 従来技術のFMCWライダにおいては、周波数変調信号として、三角波または鋸波を用いる。一方、本実施形態においては、比例係数ξを事前に求めておけば、三角波または鋸波に限定されることなく、任意の周期関数を信号として用いることができる。また、(9)式と(10)式における平均化処理は、変調1周期にわたる積分値であるが、積分区間を変調周期の整数倍に設定してもよい。
[測定精度の評価]
 第1の実施形態について、距離測定精度を評価する実験を行った。図9は、本実験に使用した光学的測定装置を評価するための装置101を説明する図である。図9の装置101は、DFBレーザ40と、光強度変調器41と、光変調器ドライバ42と、アナログ信号発生器43と、光サーキュレータ5と、光周波数シフタ20と、1×4光スイッチ44a、44bと、遅延光ファイバ45a、45b、45cと、ファラデー回転鏡46a、46bと、光増幅器47と、光バンドパスフィルタ48と、光分波器21dと、光検出器22c、22dと、デジタルオシロスコープ49と、演算処理部14を備える。点線で囲まれた部分が2周波ビート信号生成部9の第1例に対応する。
 周波数139.300THzのDFBレーザ40の出力光を、光強度変調器41に入力して、キャリアとサブキャリアを生成する。アナログ信号発生器43により、光変調器ドライバ42を介して、光強度変調器41を駆動する。アナログ信号発生器43は、図3における変調信号発生器17と、サブキャリア生成信号発生器18を一体化した機能を有し、周波数変調された周波数25GHzの正弦波信号を出力する。光強度変調器41から、周波数固定のキャリアと、周波数変調されたサブキャリアを生成し、キャリアの周波数である139.300THzから、25GHzの整数倍だけ離れた周波数に、複数のサブキャリアを発生する。サブキャリアの周波数変調には、周波数2.5kHzの正弦波を用い、チャープ帯域幅は100MHzである。測定精度評価の実験では、周波数139.300THzのキャリアを第1の測定光、周波数193.325THzのサブキャリアを第2の測定光とする。
 光強度変調器41から出力されるキャリアとサブキャリアを、周波数シフト100MHzの光周波数シフタ20に入力し、0次回折光をプローブ光、1次回折光を参照光とする。参照光はファラデー回転鏡46bにより反射し、光周波数シフタ20を再び通過して、光サーキュレータ5から出力する。プローブ光は1×4光スイッチ44a、44bを介して、3種類の遅延光ファイバ45a、45b、45cのうちのいずれか一つを通過した後、ファラデー回転鏡46aにより反射し、同じ遅延光ファイバを逆方向に通過し、光周波数シフタ20を再び通過して、光サーキュレータ5から信号光として出力する。光サーキュレータ5から出力される信号光と、参照光の周波数差は200MHzである。遅延光ファイバ45a、45b、45cの長さは、それぞれ10m、120m、1kmである。
 光サーキュレータ5から出力される信号光と参照光は、光増幅器47により増幅し、光バンドパスフィルタ48により、光増幅器47の自然放出光を除去した後、光分波器21dに入力する。光分波器21dは、周波数193.300THzのキャリアと、193.325THzのサブキャリアを分離して出力する。分離したキャリアとサブキャリアは、それぞれ光検出器22cと22dに入力し、複素ビート信号を出力する。第1の複素ビート信号10と、第2の複素ビート信号11は、それぞれ、デジタルオシロスコープ49に入力して、デジタル信号に変換する。複素ビート信号の復調処理と、位相差信号の生成、位相雑音の除去、対象物7の距離と速度の算出は、演算処理部14を用いて、オフライン処理により行う。3種類の遅延光ファイバについて、それぞれ16回の距離測定を行い、統計的ばらつきから精度を評価する。
 図10は、DFBレーザ40のコヒーレンス度を表す図であり、DFBレーザ40の光周波数雑音を測定し、計算により求めた結果である。最大測定距離の目安となるコヒーレンス長は70mであり、往復のファイバ長に換算すると24mである。遅延光ファイバ45bと45cは、いずれもコヒーレンス長を遙かに越える光路長を有している。
 図11は、キャリア、サブキャリアの位相と、位相差信号の測定結果の一例を表す図である。図11(a)は10m、(b)は120m、(c)は1kmの遅延光ファイバに対する結果である。いずれの図においても、波形は上から順番に、キャリア、サブキャリア、位相差信号に対する結果を表す。キャリアの位相には、DFBレーザ40の位相雑音が、サブキャリアの位相には、DFBレーザ40の位相雑音に加えて、周波数変調に起因する成分が現れている。位相差信号では、DFBレーザ40の位相雑音が除去され、周波数変調に起因する成分のみが明瞭に現れている。
 図12は、16回の測定に対する距離測定値の分布を表す図である。図12(a)は10m、(b)は120m、(c)は1kmの遅延光ファイバに対する結果である。白丸はサブキャリアの複素ビート信号から、黒丸は位相差信号から算出した結果を表す。算出した距離の値は光路長を表しており、光ファイバの屈折率(1.467)による光路長と、1×4光スイッチ44aと44bの光路長が含まれている。サブキャリアから算出した距離は、データごとのばらつきが大きく、データ全体の平均値から0.3~0.4%の偏差を伴う。このような大きな誤差は、DFBレーザ40の位相雑音によるものである。一方、位相差信号から算出した距離は、DFBレーザ40の位相雑音の影響が除去され、測定ごとのばらつきが大幅に減少している。このように、「位相差信号」に代表される差分信号の位相から算出した距離では、多周波レーザの位相雑音の影響が除去されることにより、測定精度が向上する。
 図13は、距離測定精度とファイバ長の関係を表す図である。縦軸の測定精度は、16個の測定値の標準偏差を表す。白丸はサブキャリアの複素ビート信号から、黒丸は位相差信号から算出した場合を表す。サブキャリアの複素ビート信号から距離を算出した場合、精度はファイバ長とともに劣化し、ファイバ長の0.3~0.4%の誤差を生じる。DFBレーザ40の位相雑音に起因する成分が、ファイバ長とともに増大するためである。一方、位相差信号から算出した場合は、ファイバ長とともに精度は劣化するが、サブキャリアの場合に比べて、精度が2桁以上向上し、すべてのファイバ長に対して、1cm以下の精度が得られている。位相差信号から算出した場合でも、ファイバ長に依存して精度が劣化するのは、(6)式の第4項により表される、アナログ信号発生器43の位相雑音が原因である。DFBレーザ40の位相雑音の場合と同様に、アナログ信号発生器43の位相雑音に起因する成分も、ファイバ長とともに増大する。(7)式に示したように、サブキャリア生成信号発生器の位相雑音を、背景雑音よりも小さくすれば、ファイバ長に依存しない精度を実現できる。
 従来技術のFMCWライダにおいては、1cm以下の精度を実現するには、10GHz以上のチャープ帯域幅が必要である。本実施形態においては、100MHzのチャープ帯域幅でも、同等の精度を実現している。FMCWライダにおいて測定されるビート周波数は、チャープ帯域幅に比例するので、チャープ帯域幅を低減することにより、ビート信号の帯域を小さくすることができて、信号処理に必要な帯域を抑えることができる。
 第1と第2の測定光として、いずれも周波数変調したサブキャリアを用いた場合においても、同様の測定が可能である。図14は、第1の測定光として、キャリアの低周波側に位置するサブキャリア(139.275THz)、第2の測定光として、キャリアの高周波側に位置するサブキャリア(139.325THz)を用いた場合の、サブキャリアの位相と、位相差信号の測定結果の一例を表す図である。サブキャリアの変調周波数は2.5kHz、チャープ帯域幅は5MHzである。図14(a)は120m、(b)は1kmの遅延光ファイバに対する結果である。いずれの図においても、波形は、上から順番に、低周波側サブキャリア、高周波側サブキャリア、位相差信号に対する結果を表す。低周波側と高周波側のサブキャリアでは、DFBレーザ40の位相雑音に起因する成分は同相、周波数変調に起因する成分は逆相であることがわかる。位相差信号においては、DFBレーザ40の位相雑音が相殺され、周波数変調に起因する成分が明瞭に現れている。また、第1と第2の測定光ともに、周波数変調に起因する成分を含んでいるので、図11に示したキャリアとサブキャリアの組合せの場合に比べて、位相差信号の振幅は2倍になる。
(第2の実施形態)
 本実施形態においては、差分信号として、第1と第2の複素ビート信号の間の差周波信号(2次ビート信号)を用いて、周波数領域の演算処理により、速度と距離を算出する場合について説明する。本実施形態では、図1の光学的測定装置において、2周波ビート信号生成部9(図4または図5(a)参照)と、差分信号生成部12の第2例(図7参照)とを用いる例で説明する。差分信号13に対して、演算処理部14において行う処理は、従来技術のFMCWライダに利用される方法を用いることができる。
 数式を用いて、以下詳しく説明する。以下の説明においては、第1の測定光として周波数固定のキャリア、第2の測定光として周波数変調したサブキャリアを用いる。上付き添字「c」の記号はキャリア、上付き添字「sc」の記号はサブキャリアに対する物理量を表す。また、説明を容易にするため、(6)式に現れるサブキャリア生成信号発生器18の位相雑音に起因する成分と、(7)式に現れる背景雑音を除外して考える。これら2つの雑音成分は、白色雑音として現れるため、周波数領域の演算処理により、周波数値を求める場合には、除外して考えても問題無い。
 (5)式より、第1の測定光から生成される複素ビート信号の周波数は、次式により表すことができる。
Figure JPOXMLDOC01-appb-M000017
 ここで、第1項は多周波レーザ1の位相雑音に起因する成分、第2項はドップラーシフトを表す。
 同様にして、(6)式より、第2の測定光から生成される複素ビート信号の周波数は、次式により表すことができる。
Figure JPOXMLDOC01-appb-M000018
 ここで、第1項は多周波レーザ1の位相雑音に起因する成分、第2項はドップラーシフト、第3項はサブキャリアの周波数変調に起因する成分を表す。
 (17)式と(18)式より、第1の測定光から生成される第1の複素ビート信号の周波数と、第2の測定光から生成される第2の複素ビート信号の周波数との差である、差周波信号の周波数ν(t)は、次式により表すことができる。

Figure JPOXMLDOC01-appb-M000019
 ここで、第1項はドップラーシフト、第2項はサブキャリアの周波数変調に起因する成分を表し、多周波レーザの位相雑音に起因する成分は、完全に除去される。また、キャリアとサブキャリアの中心周波数が異なるため、両者の中心周波数の周波数差であるfscに相当するドップラーシフトが残る。
 本実施形態においては、サブキャリアの周波数変調信号として、三角波または鋸波を用いる。ここでは、三角波を用いた場合について説明する。対象物7が静止していて、ドップラーシフトを生じない場合は、鋸波を用いることができる。図15は、第2の測定光に起因する信号光と参照光の周波数変調と、差周波信号の周波数を説明する図である。ここで、Tは三角波の変調周期、Δνはチャープ帯域幅を表す。三角波による周波数変調により、参照光と信号光は、アップチャープとダウンチャープを交互に繰り返す。参照光に対して、信号光には時間遅れが生じるので、差周波数が一定値となる時間域と、正から負、または負から正に転移する時間域が交互に現れる。速度と距離を算出には、差周波数一定値となるΔTとΔTの時間域を利用する。
 アップチャープに対応する時間域ΔTでは、差周波信号の周波数は次式により表すことができる。
Figure JPOXMLDOC01-appb-M000020
 ここで、第1項はドップラーシフト、第2項はサブキャリアの周波数変調に起因する成分を表す。
 ダウンチャープに対応する時間域ΔTでは、差周波信号の周波数は次式により表すことができる。
Figure JPOXMLDOC01-appb-M000021
 ここで、第1項はドップラーシフト、第2項はサブキャリアの周波数変調に起因する成分を表す。
 差分信号生成部12から出力される差分信号13(差周波信号)に対して、時間域ΔTとΔTを抽出し、それぞれの時間域におけるデータについて、スペクトル解析を行うことにより、差周波信号に含まれる周波数成分に対応する位置に線スペクトルが現れる。線スペクトルの周波数値をピーク周波数と呼ぶことにする。距離の異なる複数の対象物からの散乱光がある場合においても、複数のピーク周波数を測定して、対象物を分離して検出することができる。
 時間域ΔTとΔTのデータから求めた、アップチャープとダウンチャープに対する差周波信号の周波数から、対象物7の速度と距離は、次式により算出することができる。
Figure JPOXMLDOC01-appb-M000022
[動作実証実験]
 第2の実施形態について、位相雑音除去の動作を実証する実験を行った。図16は、本実験に使用した、光学的測定装置を評価するための装置102を説明する図である。図16の装置は、DFBレーザ40と、光強度変調器41と、光変調器ドライバ42と、アナログ信号発生器43と、光サーキュレータ5と、光周波数シフタ20と、1×4光スイッチ44a、44bと、遅延光ファイバ45a、45b、45c、45dと、ファラデー回転鏡46cと、光増幅器47と、光バンドパスフィルタ48と、光分波器21dと、光検出器22c、22dと、周波数混合器38と、ローパスフィルタ39と、スペクトル解析装置51を備える。点線で囲まれた部分が2周波ビート信号生成部9の第1例に対応する。
 周波数139.300THzのDFBレーザ40の出力光を、光強度変調器41に入力して、キャリアとサブキャリアを生成する。アナログ信号発生器43は、周波数25GHzの正弦波信号を出力し、周波数変調機能を有する。光強度変調器41から、周波数固定のキャリアと、周波数変調されたサブキャリアを生成し、キャリアの周波数である139.300THzから、25GHzの整数倍だけ離れた周波数に、複数のサブキャリアを発生する。サブキャリアの変調周波数には、周波数250Hzの三角波を用い、チャープ帯域幅は256MHzである。周波数139.300THzのキャリアを第1の測定光、周波数193.325THzのサブキャリアを第2の測定光とする。
 光強度変調器41から出力されるキャリアとサブキャリアを、周波数シフト100MHzの光周波数シフタ20に入力し、0次回折光をプローブ光、1次回折光を参照光とする。参照光は、ファラデー回転鏡46cにより反射し、光周波数シフタ20を再び通過して、光サーキュレータ5から出力する。プローブ光は、1×4光スイッチ44a、44bを介して、3種類の遅延光ファイバ45a、45b、45cのうちのいずれか一つと、遅延光ファイバ45dを通過する。1×4光スイッチ44bの出力と遅延光ファイバ45dとの間に、光コネクタの接続ギャップ50を配置し、1×4光スイッチ44bの出力端からのFresnel反射光と、遅延光ファイバ45dの出力端からのFresnel反射光が、同じ光路を逆方向に通過し、光周波数シフタ20を再び通過して、光サーキュレータ5から信号光として出力される。すなわち、図16の装置には、2つの反射点が存在する。遅延光ファイバ45a、45b、45c、45dの長さは、それぞれ10m、120m、1km、2mである。光サーキュレータ5から出力される信号光と、参照光の周波数差は200MHzである。
 光サーキュレータ5から出力される信号光と参照光は、光増幅器47により増幅し、光バンドパスフィルタ48により、光増幅器47の自然放出光を除去した後、光分波器21dに入力する。光分波器21dは、周波数193.300THzのキャリアと、193.325THzのサブキャリアを分離して出力する。分離したキャリアとサブキャリアは、それぞれ光検出器22cと22dに入力し、複素ビート信号を出力する。第1の複素ビート信号10と、第2の複素ビート信号11を、周波数混合器38に入力した後、ローパスフィルタ39により和周波信号を除去して、得られた差周波信号を差分信号13として出力する。差周波信号をスペクトル解析装置51に入力して、スペクトルを計算する。
 図17(a)は、第2の複素ビート信号11のスペクトルを表す図である。図17(a)に示す3つのスペクトルは、上から遅延光ファイバ長10m、120m、1kmに対する結果を表す。遅延光ファイバ長10mにおいては、光路長がDFBレーザ40のコヒーレンス長よりも小さいため、中心に線スペクトル成分が現れている。スペクトルの中心付近を拡大して観測すれば、2つの反射点に起因するスペクトルが分離して観測される。遅延光ファイバ長120mと1kmにおいては、線スペクトル成分は消失し、半値全幅3.06MHzのLorentz型スペクトルが現れている。遅延光ファイバの光路長は、DFBレーザ40のコヒーレンス長よりも遥かに大きいため、DFBレーザ40のスペクトル線幅の2倍に相当するスペクトル拡がりを生じている。遅延光ファイバ長120mと1kmにおいては、2つの反射点に起因するスペクトルの間隔に比べて、スペクトル拡がりが遥かに大きいため、2つの反射点は分離できない。
 図17(b)は、差周波信号のスペクトルを表す図である。図17(b)に示す3つのスペクトルは、上から遅延光ファイバ長10m、120m、1kmに対する結果を表す。いずれの遅延光ファイバ長においても、2つの線スペクトルが分離して現れており、線スペクトルの間隔は、長さ2mの遅延光ファイバ45dに対応する。差周波信号では位相雑音が除去されているので、測定距離にかかわらず、同じ形状のスペクトルが観測できる。2つの線スペクトルの半値全幅は、スペクトル解析装置51の分解能帯域幅に等しく、DFBレーザ40の位相雑音が、完全に除去されていることを示している。
 第1と第2の実施の形態においては、2周波ビート信号生成部9として、図4のヘテロダイン干渉計の構成について説明したが、図5のホモダイン干渉計の構成を用いた場合でも、同様にして実施できる。また、多周波光源として半導体レーザと光強度変調器を用いた場合について説明したが、注入電流により直接変調した半導体レーザや、サブキャリアを生成する変調機能を備えた光源によっても、同様にして実施できる。
 上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。
 本発明の光学的測定装置及び方法は、レーザの位相雑音を完全に除去できるので、高精度であり、また、レーザの位相雑音を低減または除去するための複雑な装置や処理が不要であるので、小型でかつ低価格のFMCWライダシステムとして産業上有用である。自動車、自律ロボットなどの環境認識センサとしての利用を含め、民生機器等に利用可能である。
 1  多周波レーザ
 2a、2b、2c、2d、2e、2f  ビームスプリッタ
 3  プローブ光
 4  参照光
 5  光サーキュレータ
 6  送受信光学系
 7  対象物
 8  信号光
 9  2周波ビート信号生成部
 10 第1の複素ビート信号
 11 第2の複素ビート信号
 12 差分信号生成部
 13 差分信号
 14 演算処理部
 15 単一周波数レーザ
 16 光変調器
 17 変調信号発生器
 18 サブキャリア生成信号発生器
 19 半導体レーザ
 20 光周波数シフタ
 21a、21b、21c、21d 光分波器
 22a、22b、22c、22d 光検出器
 23 第1の測定光に由来する参照光
 24 第2の測定光に由来する参照光
 25 第1の測定光に由来する信号光
 26 第2の測定光に由来する信号光
 27a、27b 位相ダイバーシティ検出器
 28 π/2位相シフタ
 29a、29b 全反射鏡
 30a、30b バランス型光検出器
 31 複素ビート信号の同相成分
 32 複素ビート信号の直交成分
 33 虚数単位乗算器
 34 加算器
 35 複素ビート信号
 36a、36b 位相復調器
 37 減算器
 38 周波数混合器
 39 ローパスフィルタ
 40 DFBレーザ
 41 光強度変調器
 42 光変調器ドライバ
 43 アナログ信号発生器
 44a、44b 光スイッチ
 45a、45b、45c、45d 遅延光ファイバ
 46a、46b、46c ファラデー回転鏡
 47 光増幅器
 48 光バンドパスフィルタ
 49 デジタルオシロスコープ
 50 接続ギャップ
 51 スペクトル解析装置
 100 光学的測定装置
 101 光学的測定装置を評価するための装置
 102 光学的測定装置を評価するための装置

Claims (15)

  1.  周波数固定のキャリアと、少なくとも一つの、周波数変調したサブキャリアとを、同時に発生する多周波レーザと、
     前記多周波レーザの出力光のうち、前記キャリアまたは前記サブキャリアのうちのいずれか一つを第1の測定光とし、該第1の測定光とは異なる周波数の前記キャリアまたは前記サブキャリアのうちのいずれか一つを第2の測定光とし、
     前記多周波レーザの出力光を2分し、一方を参照光、他方をプローブ光とする光分岐素子と、
     前記プローブ光を対象物に照射し、該対象物からの散乱光を信号光として出力する光学系と、
     前記参照光と前記信号光を入力して、前記第1の測定光に由来する第1の複素ビート信号と、前記第2の測定光に由来する第2の複素ビート信号を、分離して出力する2周波ビート信号生成部と、
     前記第1の複素ビート信号と前記第2の複素ビート信号の差分信号を出力する差分信号生成部と、
     前記差分信号から、前記対象物の速度を算出する演算、または対象物までの距離を算出する演算の、少なくともいずれかを実行する演算処理部と、
     を備えることを特徴とする光学的測定装置。
  2.  前記差分信号は、前記第1の複素ビート信号と前記第2の複素ビート信号の位相差信号、または前記第1の複素ビート信号と前記第2の複素ビート信号を混合して生じるうなり信号である差周波信号の、いずれかであることを特徴とする、請求項1記載の光学的測定装置。
  3.  前記多周波レーザは、単一周波数のレーザと、光変調器と、サブキャリアに周波数変調を与える信号源である変調信号発生器と、前記光変調器を駆動して前記単一周波数のレーザの出力光にサブキャリアを生成するサブキャリア生成信号発生器と、
     を備えることを特徴とする、請求項1又は2記載の光学的測定装置。
  4.  前記多周波レーザは、半導体レーザと、サブキャリアに周波数変調を与える信号源である変調信号発生器と、前記半導体レーザの出力を変調するサブキャリア生成信号発生器と、
     を備えることを特徴とする、請求項1又は2記載の光学的測定装置。
  5.  前記2周波ビート信号生成部は、ヘテロダイン干渉計の構成を有することを特徴とする、請求項1乃至4のいずれか1項記載の光学的測定装置。
  6.  前記2周波ビート信号生成部は、位相ダイバーシティ検出器を備えたホモダイン干渉計の構成を有することを特徴とする、請求項1乃至4のいずれか1項記載の光学的測定装置。
  7.  前記差分信号生成部は、
     前記第1の複素ビート信号を入力して、位相を復調する第1の位相復調器と、
     前記第2の複素ビート信号を入力して、位相を復調する第2の位相復調器と、
     前記第1と第2の複素ビート信号との間の位相差信号を、前記差分信号として出力する減算器とを備えること、
     を特徴とする、請求項1乃至6のいずれか1項記載の光学的測定装置。
  8.  前記差分信号生成部は、
     前記第1の複素ビート信号と前記第2の複素ビート信号とに対して乗算を行い、両信号の和周波信号と差周波信号を出力する周波数混合器と、
     前記和周波信号を除去して前記差周波信号を前記差分信号として出力するローパスフィルタとを備えること、
     を特徴とする、請求項1乃至6のいずれか1項記載の光学的測定装置。
  9.  周波数固定のキャリアと、少なくとも一つの、周波数変調したサブキャリアとを、同時に発生する多周波レーザの光を、2分して、一方を参照光、他方をプローブ光とし、
     前記プローブ光を対象物に照射して、対象物からの散乱光を信号光とし、
     前記多周波レーザの出力光のうち、前記キャリアまたは前記サブキャリアのうちの、いずれか一つを第1の測定光とし、該第1の測定光とは異なる周波数の、前記キャリアまたは前記サブキャリアのうちのいずれか一つを第2の測定光とするとき、
     前記信号光と前記参照光とを入力して、第1の測定光と第2の測定光のそれぞれについて、前記信号光と前記参照光との間の、第1と第2の複素ビート信号を生成し、
     前記第1の測定光に由来する前記第1の複素ビート信号と、前記第2の測定光に由来する前記第2の複素ビート信号との間の、差分信号を生成し、
     前記差分信号から、前記対象物の速度または前記対象物までの距離のうちの、少なくともいずれかを求めることを特徴とする、光学的測定方法。
  10.  前記差分信号は、前記第1の複素ビート信号と前記第2の複素ビート信号の位相差信号、または前記第1の複素ビート信号と前記第2の複素ビート信号を混合して生じるうなり信号である差周波信号の、いずれかであることを特徴とする、請求項9記載の光学的測定方法。
  11.  前記第1の複素ビート信号と前記第2の複素ビート信号は、ヘテロダイン干渉計又はホモダイン干渉計のいずれかの構成を用いて生成することを特徴とする、請求項9又は10記載の光学的測定方法。
  12.  前記差分信号である位相差信号を時間微分して、周波数差信号に変換し、該周波数差信号の平均値を用いて、ドップラーシフトを算出し、該ドップラーシフトを用いて前記速度を求めることを特徴とする、請求項9乃至11のいずれか1項記載の光学的測定方法。
  13.  前記差分信号である位相差信号を時間微分して周波数差信号に変換し、該周波数差信号の平均値を用いてドップラーシフトを求め、前記位相差信号から前記ドップラーシフトの成分を除外した後の絶対値の平均値を求め、事前に求めた距離算出の比例定数を基に、前記対象物までの距離を算出することを特徴とする、請求項9乃至11のいずれか1項記載の光学的測定方法。
  14.  前記差分信号である差周波信号の周波数スペクトルから、前記対象物の速度を算出する演算、または対象物までの距離を算出する演算の少なくともいずれかを実行することを特徴とする、請求項9乃至11のいずれか1項記載の光学的測定方法。
  15.  前記周波数変調は、正弦波、三角波、鋸波のうちのいずれかであることを特徴とする、請求項9乃至14のいずれか1項記載の光学的測定方法。

     
PCT/JP2020/040616 2019-12-25 2020-10-29 光学的測定装置及び測定方法 WO2021131315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20907087.9A EP4083658A4 (en) 2019-12-25 2020-10-29 OPTICAL MEASURING DEVICE AND MEASURING METHOD
US17/788,366 US20230052690A1 (en) 2019-12-25 2020-10-29 Optical measurement device and measurement method
JP2021566871A JP7426123B2 (ja) 2019-12-25 2020-10-29 光学的測定装置及び測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-234644 2019-12-25
JP2019234644 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021131315A1 true WO2021131315A1 (ja) 2021-07-01

Family

ID=76574049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040616 WO2021131315A1 (ja) 2019-12-25 2020-10-29 光学的測定装置及び測定方法

Country Status (4)

Country Link
US (1) US20230052690A1 (ja)
EP (1) EP4083658A4 (ja)
JP (1) JP7426123B2 (ja)
WO (1) WO2021131315A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740870A (zh) * 2021-08-05 2021-12-03 珠海视熙科技有限公司 一种多频融合ToF的测距方法、系统、装置及存储介质
US11385339B2 (en) 2020-09-04 2022-07-12 Ours Technology, Llc LIDAR waveform generation system
WO2023118295A1 (en) * 2021-12-23 2023-06-29 Sony Semiconductor Solutions Corporation Electronic device, method and computer program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105322A1 (ja) 2007-02-28 2008-09-04 Nippon Telegraph And Telephone Corporation 光リフレクトメトリ測定方法および装置
JP2010203884A (ja) * 2009-03-03 2010-09-16 Topcon Corp 距離測定装置
JP2014185956A (ja) * 2013-03-25 2014-10-02 Aisin Seiki Co Ltd 距離測定装置
WO2018070442A1 (ja) 2016-10-12 2018-04-19 国立研究開発法人産業技術総合研究所 光角度変調測定装置及び測定方法
JP2018520346A (ja) * 2015-06-26 2018-07-26 メズメリズ インク. ビート信号帯域幅圧縮方法、装置および適用
WO2018230474A1 (ja) 2017-06-16 2018-12-20 国立研究開発法人産業技術総合研究所 光学的距離測定装置及び測定方法
JP2019045200A (ja) 2017-08-30 2019-03-22 国立研究開発法人産業技術総合研究所 光学的距離測定装置および測定方法
JP2019118793A (ja) 2018-01-04 2019-07-22 キー エンジニアリング カンパニー リミテッド 固体エアロゾル消火装置を備えたモールド変圧器
US20190293794A1 (en) * 2018-03-26 2019-09-26 Huawei Technologies Co., Ltd. Coherent lidar method and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846571A (en) * 1986-11-03 1989-07-11 Raytheon Company AM-FM laser

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105322A1 (ja) 2007-02-28 2008-09-04 Nippon Telegraph And Telephone Corporation 光リフレクトメトリ測定方法および装置
JP2010203884A (ja) * 2009-03-03 2010-09-16 Topcon Corp 距離測定装置
JP2014185956A (ja) * 2013-03-25 2014-10-02 Aisin Seiki Co Ltd 距離測定装置
JP2018520346A (ja) * 2015-06-26 2018-07-26 メズメリズ インク. ビート信号帯域幅圧縮方法、装置および適用
WO2018070442A1 (ja) 2016-10-12 2018-04-19 国立研究開発法人産業技術総合研究所 光角度変調測定装置及び測定方法
WO2018230474A1 (ja) 2017-06-16 2018-12-20 国立研究開発法人産業技術総合研究所 光学的距離測定装置及び測定方法
JP2019045200A (ja) 2017-08-30 2019-03-22 国立研究開発法人産業技術総合研究所 光学的距離測定装置および測定方法
JP2019118793A (ja) 2018-01-04 2019-07-22 キー エンジニアリング カンパニー リミテッド 固体エアロゾル消火装置を備えたモールド変圧器
US20190293794A1 (en) * 2018-03-26 2019-09-26 Huawei Technologies Co., Ltd. Coherent lidar method and apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. QINQ. ZHOUW. XIEY. XUS. YUZ. LIUY. T. TONGY. DONGW. HU: "Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop", OPTICS LETTERS, vol. 40, no. 19, 2015, pages 4500 - 4503
See also references of EP4083658A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11385339B2 (en) 2020-09-04 2022-07-12 Ours Technology, Llc LIDAR waveform generation system
US11635500B2 (en) * 2020-09-04 2023-04-25 Ours Technology, Llc Lidar phase noise cancellation system
US11668805B2 (en) 2020-09-04 2023-06-06 Ours Technology, Llc Multiple target LIDAR system
US11994630B2 (en) 2020-09-04 2024-05-28 Aurora Operations, Inc. LIDAR waveform calibration system
CN113740870A (zh) * 2021-08-05 2021-12-03 珠海视熙科技有限公司 一种多频融合ToF的测距方法、系统、装置及存储介质
WO2023118295A1 (en) * 2021-12-23 2023-06-29 Sony Semiconductor Solutions Corporation Electronic device, method and computer program

Also Published As

Publication number Publication date
EP4083658A1 (en) 2022-11-02
US20230052690A1 (en) 2023-02-16
JPWO2021131315A1 (ja) 2021-07-01
JP7426123B2 (ja) 2024-02-01
EP4083658A4 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP6806347B2 (ja) 光学的距離測定装置及び測定方法
WO2021131315A1 (ja) 光学的測定装置及び測定方法
EP3436845B1 (en) Direct detection lidar system and method with frequency modulation (fm) transmitter and quadrature receiver
JP7169642B2 (ja) 光学的測定装置及び測定方法
JP7074311B2 (ja) 光学的距離測定装置および測定方法
US11125879B2 (en) Method for processing a signal arising from coherent lidar and associated lidar system
US20170350964A1 (en) Coherent lidar system using tunable carrier-suppressed single-sideband modulation
JP7291385B2 (ja) 光学的測定装置及び測定方法
WO2019060122A1 (en) DIRECT DETECTION LIDAR SYSTEM AND SYNTHETIC DOPPLER PROCESSING METHOD
JP7239975B2 (ja) 光角度変調測定装置及び測定方法
JP6935506B2 (ja) 雑音を低減するためにコヒーレントライダーからの信号を処理する方法及び関連するライダーシステム
Xu et al. FMCW lidar using phase-diversity coherent detection to avoid signal aliasing
CN101788671B (zh) 应用于外差探测啁啾调幅激光测距装置的多周期调制方法
CN112262324A (zh) 用于激光雷达系统的运行方法、控制单元、激光雷达系统和设备
Fu et al. Laser distance measurement by triangular-wave amplitude modulation based on the least squares
RU2545498C1 (ru) Способ определения скорости и направления ветра и некогерентный доплеровский лидар
US12000933B2 (en) Operating method for a LIDAR system, control unit, LIDAR system, and device
CN115685152A (zh) 测量系统、测量方法和非暂时性计算机可读存储介质
US20230131584A1 (en) Multi-tone continuous wave detection and ranging
Liu et al. Frequency modulation continuous wave speed-distance synchronous measurement with variable period frequency parameter estimation traced to optical frequency comb
Zastrogin Measurement of the parameters of mechanical oscillations by optical-interferometry methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907087

Country of ref document: EP

Effective date: 20220725