WO2022027907A1 - 负极材料、负极、钾离子电池及其制备方法 - Google Patents

负极材料、负极、钾离子电池及其制备方法 Download PDF

Info

Publication number
WO2022027907A1
WO2022027907A1 PCT/CN2020/139649 CN2020139649W WO2022027907A1 WO 2022027907 A1 WO2022027907 A1 WO 2022027907A1 CN 2020139649 W CN2020139649 W CN 2020139649W WO 2022027907 A1 WO2022027907 A1 WO 2022027907A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
potassium
ion battery
electrode material
electrolyte
Prior art date
Application number
PCT/CN2020/139649
Other languages
English (en)
French (fr)
Inventor
海玉龙
钟国华
李萌虎
陆宁
徐海洋
张思远
吕海燕
陆子恒
杨春雷
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2022027907A1 publication Critical patent/WO2022027907A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of battery preparation, in particular to a negative electrode material, a negative electrode, a potassium ion battery and a preparation method thereof.
  • lithium-ion batteries have greatly changed people's lives.
  • portable electronic devices such as smartphones, notebook computers, and digital cameras
  • large-scale energy storage devices such as electric vehicles, drones, and smart grids
  • lithium-ion batteries are greatly limited in the field of large-scale energy storage.
  • Potassium-ion batteries have gradually entered people's field of vision with their unique advantages.
  • the crust of the earth is rich in potassium, which is more than a thousand times that of lithium.
  • the physicochemical properties of potassium are similar to those of lithium.
  • energy storage mechanism whether it is a potassium-ion battery or a lithium-ion battery, energy is stored and released through the reversible insertion or removal of ions in the positive and negative electrode materials of the battery.
  • potassium and aluminum do not alloy at low potentials, so the anode current collector of potassium-ion batteries can be recycled using cheaper aluminum foil.
  • potassium-ion battery As a new type of electrochemical energy storage system, potassium-ion battery has its unique advantages. It is foreseeable that potassium-ion batteries will also be successful in the field of electrochemical energy storage in the future. But at present, the research of potassium-ion battery still has a long way to go. This is mainly due to the large radius of potassium ions, almost twice that of lithium ions. When potassium ions intercalate into the material, it causes volume expansion. At the same time, the diffusion of potassium ions in the material is slower than that of lithium ions. The influence of these factors makes the cycle life of the battery low, and the capacity and rate performance are difficult to guarantee.
  • a negative electrode material includes a negative electrode active material, and the negative electrode active material is polyparaphenylene.
  • the polyparaphenylene is at least one of C 12 H 10 or C 18 H 14 .
  • the negative electrode material further includes a binder and a conductive agent
  • the binder is at least one of sodium carboxymethyl cellulose or polyvinylidene fluoride
  • the conductive agent is conductive carbon At least one of black and acetylene black.
  • the negative electrode active material accounts for 60% to 90%
  • the binder accounts for 3% to 15%
  • the conductive agent accounts for 7% to 90%. 25%.
  • a negative electrode includes a current collector and the negative electrode material, and the negative electrode material is coated on the current collector.
  • the current collector is a metal foil
  • the metal foil includes copper foil or aluminum foil.
  • a preparation method of a described negative electrode comprising the steps:
  • the negative electrode material is coated on the current collector, and sliced by vacuum drying to obtain the negative electrode.
  • a potassium ion battery includes a positive electrode, the negative electrode and an electrolyte, and the positive electrode and the negative electrode are attached to both ends of the electrolyte.
  • the electrolyte includes a potassium salt and a solvent
  • the potassium salt is at least one of potassium hexafluorophosphate, potassium perchlorate, potassium fluoroborate and potassium bis(fluorosulfonyl)imide
  • the solvent is at least one of a carbonate-based solvent or an ether-based solvent.
  • the carbonate-based solvent is at least one of ethylene carbonate, dimethyl carbonate, diethyl carbonate and fluorocarbonate;
  • the ether-based solvent is tetraethylene glycol At least one of dimethyl ether, triethylene glycol dimethyl ether, diglyme and ethylene glycol dimethyl ether.
  • the potassium salt in terms of mass fraction, the potassium salt accounts for 5%-50%, and the solvent accounts for 50%-95%; in the electrolyte , in terms of the amount of substance, the substance concentration of the potassium salt is 0.1 mol/L to 5 mol/L.
  • a preparation method of a described potassium ion battery comprising the following steps:
  • the positive electrode and the negative electrode are respectively attached to both ends of the electrolyte, and heated and polymerized to obtain the lithium battery.
  • the negative electrode material provided by the present invention uses polyparaphenylene as the negative electrode active material, and the interaction between the polyparaphenylene molecules is mainly caused by the interaction of van der Waals forces to produce stacking/aggregation effect, so that it has rich microporous structure and large interlayer spacing, Therefore, it is beneficial to the insertion and extraction of potassium ions with a larger radius, and can also effectively relieve the volume expansion; at the same time, the rotating channel of polyparaphenylene is further conducive to the insertion and extraction of potassium ions.
  • the above-mentioned negative electrode material is applied to the preparation of potassium ion battery, and a potassium ion battery with stable structure can be obtained in combination with the corresponding electrolyte system, and the potassium ion battery has a high specific capacity.
  • FIG. 1 is a schematic structural diagram of a negative electrode provided in an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a potassium ion battery provided by an embodiment of the present invention.
  • Fig. 3 is the crystal structure diagram of polyparaphenylene (C 12 H 10 ) provided in Example 1 of the present invention.
  • Fig. 4 is the crystal structure diagram of K+-inserted poly-p-phenylene (C 12 H 10 ) provided in Example 1 of the present invention
  • Example 6 is a graph showing the relationship between the number of continuous K+ intercalation and the formation energy of polyparaphenylene (C 12 H 10 ) provided in Example 1 of the present invention
  • Example 7 is a graph showing the relationship between the number of continuous K+ intercalation of polyparaphenylene (C 12 H 10 ) and the average open circuit voltage of the negative electrode half-cell provided in Example 1 of the present invention;
  • Example 8 is a schematic diagram of the migration path of potassium ions and the potential barrier of the corresponding process provided in Example 1 of the present invention.
  • Fig. 9 is the crystal structure diagram of polyparaphenylene (C 18 H 14 ) provided in Example 2 of the present invention.
  • Fig. 10 is the crystal structure diagram of K+-inserted poly-p-phenylene (C 18 H 14 ) provided in Example 2 of the present invention.
  • Example 12 is a graph showing the relationship between the number of continuous K+ intercalation and the formation energy of polyparaphenylene (C 18 H 14 ) provided in Example 2 of the present invention
  • Example 13 is a graph showing the relationship between the number of continuous K+ intercalation of polyparaphenylene (C 18 H 14 ) and the average open circuit voltage of the negative electrode half-cell provided in Example 2 of the present invention;
  • Example 14 is a schematic diagram of the migration path of potassium ions and the potential barrier of the corresponding process provided in Example 2 of the present invention.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the negative electrode material provided in an embodiment includes a negative electrode active material, and the negative electrode active material is polyparaphenylene.
  • the polyparaphenylene is at least one of C 12 H 10 or C 18 H 14 .
  • the negative electrode material further includes a binder and a conductive agent
  • the binder is at least one of sodium carboxymethyl cellulose or polyvinylidene fluoride
  • the conductive agent is conductive carbon At least one of black and acetylene black.
  • the binder is at least one of sodium carboxymethyl cellulose or polyvinylidene fluoride, which can enhance the adhesion between different interfaces and increase the safety performance of the battery;
  • the conductive agent is conductive carbon black and at least one of acetylene black, the two materials have good electrical conductivity and enhance the ionic conductivity of the battery.
  • the negative electrode active material accounts for 60% to 90%
  • the binder accounts for 3% to 15%
  • the conductive agent accounts for 7% to 90%. 25%.
  • the active material is the main working material and plays a major role in ionic conductivity
  • the binder and the conductive agent are auxiliary materials.
  • the above mass ratio can reduce the loss of ionic conductivity and increase the conductivity.
  • the above-mentioned negative electrode material adopts poly-p-phenylene as the negative electrode active material.
  • the interaction between the poly-p-phenylene molecules is mainly caused by the interaction of van der Waals forces to produce stacking/aggregation effect, so that it has rich microporous structure and large interlayer spacing, which is conducive to the radius of The intercalation and deintercalation of larger potassium ions can also effectively alleviate the volume expansion; at the same time, the rotating channel of polyparaphenylene is also more conducive to the intercalation and deintercalation of potassium ions.
  • anode materials have the advantages of wide source of raw materials, low price, green environmental protection, flexibility and foldability, etc., which are very suitable for application in potassium ion batteries.
  • FIG. 1 is a schematic structural diagram of a negative electrode provided in an embodiment, including a current collector 110 and a negative electrode material, and the negative electrode material 120 is coated on the current collector 110 .
  • the negative electrode material 120 has been described in detail in the above embodiments, and will not be repeated here.
  • the current collector is a metal foil
  • the metal foil includes copper foil or aluminum foil.
  • the present invention also provides a method for preparing a negative electrode, comprising the following steps:
  • the negative electrode material is coated on the current collector, and sliced by vacuum drying to obtain the negative electrode.
  • the above-mentioned negative electrode includes a negative electrode material, and the negative electrode material adopts polyparaphenylene as the negative electrode active material.
  • the interaction between the polyparaphenylene molecules is mainly caused by the interaction of van der Waals forces to produce stacking/aggregation effect, so that it has a rich microporous structure and a larger layer.
  • the spacing is conducive to the insertion and extraction of potassium ions with a larger radius, and can also effectively alleviate the volume expansion; at the same time, the rotating channel of polyparaphenylene is also more conducive to the insertion and extraction of potassium ions.
  • FIG. 2 is a schematic structural diagram of a potassium ion battery according to an embodiment, including a positive electrode 210 , a negative electrode 220 and an electrolyte 230 , and the positive electrode 210 and the negative electrode 220 are attached to both ends of the electrolyte 230 .
  • the positive electrode 210 is a commonly used positive electrode in the existing potassium ion battery, and the negative electrode 220 has been described in detail in the above embodiments, and will not be repeated here.
  • the potassium salt is at least one of potassium hexafluorophosphate, potassium perchlorate, potassium fluoroborate and potassium bis(fluorosulfonyl)imide
  • the solvent is a carbonate-based solvent or an ether-based solvent at least one of the solvents.
  • the carbonate-based solvent is at least one of ethylene carbonate, dimethyl carbonate, diethyl carbonate and fluorocarbonate;
  • the ether-based solvent is tetraethylene glycol dimethyl ether , at least one of triethylene glycol dimethyl ether, diglyme and ethylene glycol dimethyl ether.
  • the potassium salt in terms of mass fraction, the potassium salt accounts for 5%-50%, and the solvent accounts for 50%-95%; in the electrolyte , in terms of the amount of substance, the substance concentration of the potassium salt is 0.1 mol/L to 5 mol/L.
  • K ion current can be formed, and on the other hand, the solvent is not easily decomposed, which is beneficial to reduce the internal resistance.
  • the present invention also provides a method for preparing the above potassium ion battery, which includes the following steps: attaching the positive electrode and the negative electrode to both ends of the electrolyte respectively, and heating and polymerizing to obtain the lithium battery.
  • the above potassium ion battery uses poly-p-phenylene as the negative electrode active material.
  • the interaction between the poly-p-phenylene molecules is mainly caused by the interaction of van der Waals forces to produce stacking/aggregation effect, which makes it have rich microporous structure and large interlayer spacing. It is beneficial to the insertion and extraction of potassium ions with a larger radius, and can also effectively relieve the volume expansion; at the same time, the rotating channel of polyparaphenylene is further conducive to the insertion and extraction of potassium ions.
  • the above-mentioned negative electrode material is applied to the preparation of potassium ion battery, and a potassium ion battery with stable structure can be obtained in combination with the corresponding electrolyte system, and the potassium ion battery has a high specific capacity.
  • the polyparaphenylene material (C 12 H 10 ), acetylene black and sodium carboxymethyl cellulose were mixed in a mass ratio of 70:20:10 to obtain a negative electrode material.
  • the negative electrode material is coated on the current collector, dried in vacuum and sliced to obtain a negative electrode sheet.
  • Assemble the potassium ion battery In an anhydrous, oxygen-free, argon-filled glove box, assemble the electrode shell, gasket, negative electrode sheet, separator, electrolyte, and counter electrode battery shell in the order to obtain a potassium ion battery.
  • the crystal structure of the polyparaphenylene material (C 12 H 10 ) is shown in Figure 3. It can be seen from the figure that the polyparaphenylene material is a molecular crystal, and the organic molecules are arranged in a herringbone shape, so that there are many hole structures in the crystal. , the space group configuration is P2 1 /c, and the molecules in the solid have larger interlayer spacing.
  • Figure 7 shows that the anode material with C 12 H 10 added has a lower voltage, which is beneficial to the improvement of the full-cell voltage window.
  • a negative electrode material was obtained by mixing polyparaphenylene material (C 18 H 14 ), conductive carbon black and polyvinylidene fluoride in a mass ratio of 70:10:10. According to this composition, a negative electrode slurry was prepared, and the slurry was uniformly coated on a clean Cu foil to prepare a negative electrode sheet.
  • the glass fiber was used as the diaphragm, the metal potassium was used as the counter electrode, and the electrolyte solution was 1 mol/L potassium bisimide dissolved in diglyme.
  • a 2032 type button battery was used and assembled in a glove box filled with high-purity argon gas in the order of electrode shell, gasket, negative electrode sheet, separator, electrolyte, and counter electrode battery shell to obtain a potassium ion battery.
  • the crystal structure of the polyparaphenylene material (C 18 H 14 ) is shown in Figure 9. It can be seen from the figure that the polyparaphenylene material is a molecular crystal, and the organic molecules are arranged in a herringbone shape, so that there are many hole structures in the crystal. , the space group configuration is P2 1 /c, and the molecules in the solid have larger interlayer spacing.
  • Figure 13 shows that the anode material with C 18 H 14 added has a lower voltage, which is beneficial to the improvement of the full-cell voltage window.
  • Figure 14 shows that potassium ions have a small potential barrier in the negative electrode material, which indicates that the negative electrode material with C 18 H 14 added has good rate capability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种负极材料以聚对苯撑作为负极活性物质,聚对苯撑分子间主要由范德华力的相互作用产生堆叠/聚集效果,使其具有丰富的微孔结构、较大的层间距,从而有利于半径较大的钾离子的嵌入和脱出,也可以有效地缓解体积膨胀;同时,聚对苯撑具有的旋转通道进一步有利于钾离子的嵌入和脱出。将上述负极材料应用于钾离子电池制备中,配合对应的电解液体系,可以得到结构稳定的钾离子电池,且钾离子电池具有较高的比容量。

Description

负极材料、负极、钾离子电池及其制备方法 技术领域
本发明涉及电池制备技术领域,特别涉及一种负极材料、负极、钾离子电池及其制备方法。
背景技术
能源是人类文明的重要支柱。锂离子电池作为高性能储能装置的代表,极大地改变了人们的生活。随着智能手机、笔记本电脑、数码相机等便携式电子设备的普及和应用,以及电动汽车、无人机、智能电网等大型储能设备的推广应用,同时,受全球锂资源储量的影响和不均衡分布因素方面,锂离子电池在大规模储能领域受到很大限制。为了克服锂资源短缺对锂离子电池技术发展的阻碍,需要开发一种新的替代技术。钾离子电池以其独特的优势逐渐进入人们的视野。一方面,地壳中钾含量丰富,是锂的千倍以上。另一方面,钾的物理化学性质与锂相似。在储能机理上,无论是钾离子电池还是锂离子电池,都是通过电池正负极材料中离子的可逆插入或移除来储存和释放能量的。与锂离子电池不同,钾和铝在低电位下不会发生合金化反应,因此可以使用更便宜的铝箔回收钾离子电池的阳极集电器。
钾离子电池作为一种新型的电化学储能系统,有其独特的优点。可以预见,未来钾离子电池在电化学储能领域也将取得成功。但目前,钾离子电池的研究还有很长的路要走。这主要是因为钾离子的半径很大,几乎是锂离子半径的两倍。当钾离子嵌入材料中时,会引起体积膨胀。同时,钾离子在材料中的扩散比锂离子慢。这些因素的影响使得电池的循环寿命较低,容量和速率性能难以保证。
因此,开发容量大、循环寿命长、动态性能优良的电极材料对钾离子电池 的发展具有重要意义,而目前钾离子电池中应用的无机材料存在结构稳定性差、倍率性能不高的问题,
发明内容
鉴于此,有必要提供一种安全稳定性高、倍率性能优异的负极材料。
一种负极材料,包括负极活性物质,所述负极活性物质为聚对苯撑。
在其中一些实施例中,所述聚对苯撑为C 12H 10或C 18H 14中的至少一种。
在其中一些实施例中,所述负极材料还包括粘结剂及导电剂,所述粘结剂为羧甲基纤维素钠或聚偏氟乙烯中的至少一种,所述导电剂为导电炭黑和乙炔黑中的至少一种。
在其中一些实施例中,以质量分数计,所述负极活性物质占比为60%~90%,所述粘结剂占比为3%~15%,所述导电剂占比为7%~25%。
一种负极,包括集流体和所述的负极材料,所述负极材料涂覆在所述集流体上。
在其中一些实施例中,所述集流体为金属箔,所述金属箔包括铜箔或铝箔。
一种所述的负极的制备方法,包括下述步骤:
将所述负极材料涂覆于所述集流体上,经真空干燥切片后得到所述负极。
一种钾离子电池,包括正极,还包括所述的负极及电解液,所述正极及所述负极贴合在所述电解液两端。
在其中一些实施例中,所述电解液包括钾盐和溶剂,所述钾盐为六氟磷酸钾、高氯酸钾、氟硼酸钾和双(氟磺酰)亚胺钾中的至少一种,所述溶剂为碳酸酯基溶剂或醚基溶剂中至少一种。
在其中一些实施例中,所述碳酸酯基溶剂为乙烯碳酸酯、二甲基碳酸酯、二乙基碳酸酯和氟代碳酸酯中的至少一种;所述醚基溶剂为四乙二醇二甲醚、 三乙二醇二甲醚、二甘醇二甲醚和乙二醇二甲醚中的至少一种。
在其中一些实施例中,在所述电解液中,以质量分数计,所述钾盐占比为5%~50%,所述溶剂占比为50%~95%;在所述电解液中,以物质的量计,所述钾盐的物质的量浓度为0.1mol/L~5mol/L。
一种所述的钾离子电池的制备方法,包括下述步骤:
将所述正极和所述负极分别贴合在所述电解质两端,并加热聚合,得到所述锂电池。
本发明提供的负极材料以聚对苯撑作为负极活性物质,聚对苯撑分子间主要由范德华力的相互作用产生堆叠/聚集效果,使其具有丰富的微孔结构、较大的层间距,从而有利于半径较大的钾离子的嵌入和脱出,也可以有效地缓解体积膨胀;同时,聚对苯撑具有的旋转通道进一步有利于钾离子的嵌入和脱出。将上述负极材料应用于钾离子电池制备中,配合对应的电解液体系,可以得到结构稳定的钾离子电池,且钾离子电池具有较高的比容量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的负极的结构示意图;
图2为本发明实施例提供的钾离子电池的结构示意图;
图3为本发明实施例1提供的聚对苯撑(C 12H 10)的晶体结构图;
图4为本发明实施例1提供的嵌K+的聚对苯撑(C 12H 10)的晶体结构图;
图5为本发明实施例1提供的嵌K+的聚对苯撑(KXC 12H 10;X=0,1,2, 3,4,5)的电子态密度分布图;
图6为本发明实施例1提供的聚对苯撑(C 12H 10)连续嵌K+数量与形成能的变化关系图;
图7为本发明实施例1提供的聚对苯撑(C 12H 10)连续嵌K+数量与负极半电池的平均开路电压关系图;
图8为本发明实施例1提供的钾离子的迁移路径与对应过程的势垒示意图;
图9为本发明实施例2提供的聚对苯撑(C 18H 14)的晶体结构图;
图10为本发明实施例2提供的嵌K+的聚对苯撑(C 18H 14)的晶体结构图;
图11为本发明实施例2提供的嵌K+的聚对苯撑(KXC 18H 14;X=0,1,2,3,4,5)的电子态密度分布图;
图12为本发明实施例2提供的聚对苯撑(C 18H 14)连续嵌K+数量与形成能的变化关系图;
图13为本发明实施例2提供的聚对苯撑(C 18H 14)连续嵌K+数量与负极半电池的平均开路电压关系图;
图14为本发明实施例2提供的钾离子的迁移路径与对应过程的势垒示意图;
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了 便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
一实施方式提供的负极材料,包括负极活性物质,所述负极活性物质为聚对苯撑。
在其中一些实施例中,所述聚对苯撑为C 12H 10或C 18H 14中的至少一种。
在其中一些实施例中,所述负极材料还包括粘结剂及导电剂,所述粘结剂为羧甲基纤维素钠或聚偏氟乙烯中的至少一种,所述导电剂为导电炭黑和乙炔黑中的至少一种。
可以理解,所述粘结剂为羧甲基纤维素钠或聚偏氟乙烯中的至少一种,可以增强不同界面之间的粘结性,增加电池安全性能;所述导电剂为导电炭黑和乙炔黑中的至少一种,这两种材料导电性能良好,增强电池的离子电导率。
在其中一些实施例中,以质量分数计,所述负极活性物质占比为60%~90%,所述粘结剂占比为3%~15%,所述导电剂占比为7%~25%。
可以理解,活性物质为主要工作物质,在离子电导中起到主要作用,粘结剂与导电剂为辅助物质,采用上述质量比,能够减小离子电导损失,增大电导率。
上述负极材料采用聚对苯撑作为负极活性物质,聚对苯撑分子间主要由范德华力的相互作用产生堆叠/聚集效果,使其具有丰富的微孔结构、较大的层间 距,有利于半径较大的钾离子的嵌入和脱出,也可以有效地缓解体积膨胀;同时,聚对苯撑具有的旋转通道也更有利于钾离子的嵌入和脱出。
此外,上述负极材料原料来源广泛、价格低廉、绿色环保、柔性可折叠等优点,非常适合应用于钾离子电池中。
请参阅图1,为一实施方式提供的负极的结构示意图,包括集流体110和负极材料,所述负极材料120涂覆在所述集流体110上。
其中:负极材料120在上述实施例中已作详细说明,这里不再赘述。
在其中一些实施例中,所述集流体为金属箔,所述金属箔包括铜箔或铝箔。
本发明还提供了一种负极的制备方法,包括如下步骤:
将所述负极材料涂覆于所述集流体上,经真空干燥切片后得到所述负极。
上述负极包括负极材料,负极材料采用聚对苯撑作为负极活性物质,聚对苯撑分子间主要由范德华力的相互作用产生堆叠/聚集效果,使其具有丰富的微孔结构、较大的层间距,有利于半径较大的钾离子的嵌入和脱出,也可以有效地缓解体积膨胀;同时,聚对苯撑具有的旋转通道也更有利于钾离子的嵌入和脱出。
请参阅图2,为一实施方式提供的钾离子电池的结构示意图,包括正极210、负极220及电解液230,所述正极210及所述负极220贴合在所述电解液230两端。
其中,正极210为现有钾离子电池中常用的正极,负极220在上述实施例中已作详细说明,这里不再赘述。
在其中一些实施例中,所述钾盐为六氟磷酸钾、高氯酸钾、氟硼酸钾和双(氟磺酰)亚胺钾中的至少一种,所述溶剂为碳酸酯基溶剂或醚基溶剂中至少一种。
更进一步地,所述碳酸酯基溶剂为乙烯碳酸酯、二甲基碳酸酯、二乙基碳 酸酯和氟代碳酸酯中的至少一种;所述醚基溶剂为四乙二醇二甲醚、三乙二醇二甲醚、二甘醇二甲醚和乙二醇二甲醚中的至少一种。
可以理解,采用碳酸酯基溶剂或醚基溶剂其电化学窗口足够大,保证溶剂的稳定性,不会轻易分解。
在其中一些实施例中,在所述电解液中,以质量分数计,所述钾盐占比为5%~50%,所述溶剂占比为50%~95%;在所述电解液中,以物质的量计,所述钾盐的物质的量浓度为0.1mol/L~5mol/L。
可以理解,采用上述质量关系,一方面能够形成K离子电流,另一方面溶剂不易分解有利于减小内阻。
本发明还提供了上述钾离子电池的制备方法,包括如下步骤:将所述正极和所述负极分别贴合在所述电解质两端,并加热聚合,得到所述锂电池。
上述钾离子电池,以聚对苯撑作为负极活性物质,聚对苯撑分子间主要由范德华力的相互作用产生堆叠/聚集效果,使其具有丰富的微孔结构、较大的层间距,从而有利于半径较大的钾离子的嵌入和脱出,也可以有效地缓解体积膨胀;同时,聚对苯撑具有的旋转通道进一步有利于钾离子的嵌入和脱出。将上述负极材料应用于钾离子电池制备中,配合对应的电解液体系,可以得到结构稳定的钾离子电池,且钾离子电池具有较高的比容量。
以下将结合具体的实施例来说明本发明的上述负极材料、负极、其制备方法及钾离子电池,本领域技术人员所理解的是,下述实施例仅是本发明的上述负极材料、负极、其制备方法及钾离子电池的具体示例,而不用于限制其全部。
实施例1
将聚对苯撑材料(C 12H 10)、乙炔黑和羧甲基纤维素钠按照70:20:10的质量比进行混合,获得负极材料。
将负极材料涂覆在集流体上,经真空干燥、切片后,得到负极电极片。
配置电解液:在充满氩气的手套箱中,将乙烯碳酸酯在磁力加热搅拌器上加热至呈液体状态,作为溶剂;再取无水的六氟磷酸钾溶解在溶剂中配成1.5mol/L的电解液。
组装钾离子电池:在无水无氧、充满氩气的手套箱中,按照电极壳、垫片、负极电极片、隔膜、电解液、对电极电池壳的顺序进行组装,获得钾离子电池。
表征与测试:
聚对苯撑材料(C 12H 10)的晶体结构如图3所示,由图可知,聚对苯撑材料是一种分子晶体,有机分子呈人字形排列,使晶体中存在许多空穴结构,空间群构型为P2 1/c,固体中的分子具有较大的层间距。
测试C 12H 10的电子态密度分布,得到结果如图5所示。
对开始工作的钾离子电池的负极进行检测,得到钾离子(K +)部分嵌入负极材料时的晶体结构如图4所示。由图4可知,C 12H 10的晶面间距较大,有利于K +的嵌入与脱出。
测试钾离子部分嵌入负极材料时的电子态密度分布,得到结果分别如图5所示。由图5可知,嵌K +的负极材料为金属性质,保证了C 12H 10作为负极材料的基础。
通过嵌K +过程形成能的计算,得到连续嵌K +数量与形成能的变化结果如图6所示。形成能的计算公式为:E F=E doped-E pristine-x·μ k(bulk)-x·[μ kk(bulk)]。由图6可知,在一定的化学势范围内,形成能为负值,这一结果说明了嵌K +的稳定性;当X=1,2,3,4,5的时候,K XC 12H 10都有在某个范围内的形成能小于0的情况,只有X=6的时候,不管在哪个范围,K 6C 12H 10的形成能都大于0,说明K 6C 12H 10在正常工作的条件下是不能形成的。这也就说明,C 12H 10的最大嵌钾浓度为K 5C 12H 10,再根据负极的比容量计算公式,可以算得负极材料 具有较高的比容量:5mol×(6.02×10 23)mol -1×1.602×10 -19C×1000÷3600÷154g/mol=870mA·h/g。
测试嵌K +过程与平均开路电压的关系,得到的结果如图7所示。图7显示,有C 12H 10加入的负极材料具有较低的电压,有利于全电池电压窗口的提高。
通过计算钾离子的扩散路径,得到了钾离子的迁移路径以及对应过程的势垒示意图8。图8显示,钾离子在负极材料中具有较小的势垒,这说明有C 12H 10加入的负极材料具有良好的倍率性能。
实施例2
将聚对苯撑材料(C 18H 14)、导电炭黑和聚偏氟乙烯按质量比70:10:10进行混合,获得负极材料。按照该组成,制成负极浆料,并将浆料均匀涂覆于清洁的Cu箔上制成负极电极片。
以玻璃纤维为隔膜,金属钾为对电极,电解液为1mol/L的双亚胺钾溶解在二甘醇二甲醚溶剂中。采用2032型纽扣电池,在充满高纯氩气的手套箱中按照电极壳、垫片、负极电极片、隔膜、电解液、对电极电池壳的顺序进行组装,获得钾离子电池。
表征与测试:
聚对苯撑材料(C 18H 14)的晶体结构如图9所示,由图可知,聚对苯撑材料是一种分子晶体,有机分子呈人字形排列,使晶体中存在许多空穴结构,空间群构型为P2 1/c,固体中的分子具有较大的层间距。
测试C 18H 14的电子态密度分布,得到结果如图11所示。
对开始工作的钾离子电池的负极进行检测,得到钾离子(K +)部分嵌入负极材料时的晶体结构如图10所示。由图10可知,C 12H 10的晶面间距较大,有利于K +的嵌入与脱出。
测试得到钾离子部分嵌入负极材料时的电子态密度分别如图11所示,可知,嵌K +的负极材料由半导体转变成了金属性质,该性质的转变保证了聚对苯撑可以用作钾离子电池负极材料。
通过嵌K +过程形成能的计算,得到连续嵌K +数量与形成能的变化结果如图12所示。形成能的计算公式为:E F=E doped-E pristine-x·μ k(bulk)-x·[μ kk(bulk)]。由图12可知,在一定的化学势范围内,形成能为负值,这一结果说明了嵌K +的稳定性;当X=1,2,3的时候,K XC 18H 14都有在某个范围内的形成能小于0的情况,只有X=4的时候,不管在哪个范围,K 4C 18H 14的形成能都大于0,说明K 4C 18H 14在正常工作的条件下是不能形成的。这也就说明,C 18H 14的最大嵌钾浓度为K 4C 18H 14,再根据负极的比容量计算公式,可以算得负极材料具有较高的比容量:4mol×(6.02×10 23)mol -1×1.602×10 -19C×1000÷3600÷230g/mol=349mA·h/g。
测试嵌K +过程与平均开路电压的关系,得到的结果如图13所示。图13显示,有C 18H 14加入的负极材料具有较低的电压,有利于全电池电压窗口的提高。
通过计算钾离子的扩散路径,得到了钾离子的迁移路径以及对应过程的势垒示意图14。图14显示,钾离子在负极材料中具有较小的势垒,这说明有C 18H 14加入的负极材料具有良好的倍率性能。
综上我们发现各项参数与实施例1中的结果相同,因此可以说明聚对苯撑作为钾离子电池负极具有较好的各项性能。
以上仅为本发明的较佳实施例而已,仅具体描述了本发明的技术原理,这些描述只是为了解释本发明的原理,不能以任何方式解释为对本发明保护范围的限制。基于此处解释,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进,及本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其他具体实施方式,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种负极材料,其特征在于,包括负极活性物质,所述负极活性物质为聚对苯撑。
  2. 如权利要求1所述的负极材料,其特征在于,所述聚对苯撑为C 12H 10或C 18H 14中的至少一种。
  3. 如权利要求2所述的负极材料,其特征在于,所述负极材料还包括粘结剂及导电剂,所述粘结剂为羧甲基纤维素钠或聚偏氟乙烯中的至少一种,所述导电剂为导电炭黑和乙炔黑中的至少一种。
  4. 如权利要求3所述的负极材料,其特征在于,以质量分数计,所述负极活性物质占比为60%~90%,所述粘结剂占比为3%~15%,所述导电剂占比为7%~25%。
  5. 一种负极,其特征在于,包括集流体和权利要求1~4任一项所述的负极材料,所述负极材料涂覆在所述集流体上。
  6. 如权利要求5所述的负极,其特征在于,所述集流体为金属箔,所述金属箔包括铜箔或铝箔。
  7. 一种如权利要求5所述的负极的制备方法,其特征在于,包括下述步骤:
    将所述负极材料涂覆于所述集流体上,经真空干燥切片后得到所述负极。
  8. 一种钾离子电池,包括正极,其特征在于,还包括权利要求5~7任一项所述的负极及电解液,所述正极及所述负极贴合在所述电解液两端。
  9. 如权利要求8所述的钾离子电池,其特征在于,所述电解液包括钾盐和溶剂,所述钾盐为六氟磷酸钾、高氯酸钾、氟硼酸钾和双(氟磺酰)亚胺钾中的至少一种,所述溶剂为碳酸酯基溶剂或醚基溶剂中至少一种。
  10. 如权利要求9所述的钾离子电池,其特征在于,所述碳酸酯基溶剂为 乙烯碳酸酯、二甲基碳酸酯、二乙基碳酸酯和氟代碳酸酯中的至少一种;所述醚基溶剂为四乙二醇二甲醚、三乙二醇二甲醚、二甘醇二甲醚和乙二醇二甲醚中的至少一种。
  11. 如权利要求10所述的钾离子电池,其特征在于,在所述电解液中,以质量分数计,所述钾盐占比为5%~50%,所述溶剂占比为50%~95%;在所述电解液中,以物质的量计,所述钾盐的物质的量浓度为0.1mol/L~5mol/L。
  12. 一种如权利要求8~11任一项所述的钾离子电池的制备方法,其特征在于,包括下述步骤:
    将所述正极和所述负极分别贴合在所述电解质两端,并加热聚合,得到所述锂电池。
PCT/CN2020/139649 2020-08-07 2020-12-25 负极材料、负极、钾离子电池及其制备方法 WO2022027907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010789243.3A CN111816869A (zh) 2020-08-07 2020-08-07 负极材料、负极、钾离子电池及其制备方法
CN202010789243.3 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022027907A1 true WO2022027907A1 (zh) 2022-02-10

Family

ID=72863872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139649 WO2022027907A1 (zh) 2020-08-07 2020-12-25 负极材料、负极、钾离子电池及其制备方法

Country Status (2)

Country Link
CN (1) CN111816869A (zh)
WO (1) WO2022027907A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117039166A (zh) * 2023-09-08 2023-11-10 海南思瑞新能源科技有限公司 一种适用于低温运行的钾离子电池电解液

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816869A (zh) * 2020-08-07 2020-10-23 深圳先进技术研究院 负极材料、负极、钾离子电池及其制备方法
CN113517440B (zh) * 2021-04-23 2022-10-21 深圳先进技术研究院 一种含氮负极材料、负极及钾离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528028A (zh) * 2001-03-27 2004-09-08 ������������ʽ���� 锂聚合物二次电池及其制造方法
CN101140987A (zh) * 2006-09-05 2008-03-12 日本化学工业株式会社 锰酸锂及其制造方法、锂二次电池及其正极活性物质
CN105359301A (zh) * 2013-06-27 2016-02-24 日立麦克赛尔株式会社 非水电解质二次电池用正极以及非水电解质二次电池
CN110121799A (zh) * 2016-12-16 2019-08-13 株式会社日立制作所 二次电池用电极、二次电池、它们的制造方法
CN110506355A (zh) * 2017-06-08 2019-11-26 株式会社日立制作所 半固体电解液、半固体电解质、半固体电解质层、电极和二次电池
CN111816869A (zh) * 2020-08-07 2020-10-23 深圳先进技术研究院 负极材料、负极、钾离子电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336029A (zh) * 2019-06-14 2019-10-15 深圳先进技术研究院 一种负极材料、负极及钾离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528028A (zh) * 2001-03-27 2004-09-08 ������������ʽ���� 锂聚合物二次电池及其制造方法
CN101140987A (zh) * 2006-09-05 2008-03-12 日本化学工业株式会社 锰酸锂及其制造方法、锂二次电池及其正极活性物质
CN105359301A (zh) * 2013-06-27 2016-02-24 日立麦克赛尔株式会社 非水电解质二次电池用正极以及非水电解质二次电池
CN110121799A (zh) * 2016-12-16 2019-08-13 株式会社日立制作所 二次电池用电极、二次电池、它们的制造方法
CN110506355A (zh) * 2017-06-08 2019-11-26 株式会社日立制作所 半固体电解液、半固体电解质、半固体电解质层、电极和二次电池
CN111816869A (zh) * 2020-08-07 2020-10-23 深圳先进技术研究院 负极材料、负极、钾离子电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117039166A (zh) * 2023-09-08 2023-11-10 海南思瑞新能源科技有限公司 一种适用于低温运行的钾离子电池电解液

Also Published As

Publication number Publication date
CN111816869A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
Wu et al. Rocking-chair Na-ion hybrid capacitor: a high energy/power system based on Na 3 V 2 O 2 (PO 4) 2 F@ PEDOT core–shell nanorods
WO2022027907A1 (zh) 负极材料、负极、钾离子电池及其制备方法
Zhang et al. Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery
JP4857073B2 (ja) リチウムイオンキャパシタ
Chen et al. Aluminum− lithium alloy as a stable and reversible anode for lithium batteries
US11551878B2 (en) Electricity storage device
WO2018103129A1 (zh) 一种石墨烯基钠离子电池
WO2022088610A1 (zh) 一种锂离子电容器及其制备方法和用途
TW200805735A (en) Lithium secondary cell using ionic liquid
Jiang et al. Recent advances and perspectives on prelithiation strategies for lithium-ion capacitors
Jin et al. High performance solid-state battery with integrated cathode and electrolyte
JP2009231829A (ja) イオン液体を含む電極膜及び電極、それらの製造方法、並びに蓄電デバイス
CN109671946B (zh) 锌离子电池正极活性材料、正极材料、锌离子电池正极、锌离子电池及其制备方法和应用
CN102509639A (zh) 超级电容器
JP6284198B2 (ja) 蓄電デバイスの製造方法
WO2019080689A1 (zh) 一种混合型超级电容器
US20220246363A1 (en) Supercapacitor
Wang et al. Additives to propylene carbonate-based electrolytes for lithium-ion capacitors
CN112086655A (zh) 一种低温高功率锂锰电池及其制备方法
Peng et al. A high-performance rechargeable Li–O2 battery with quasi-solid-state electrolyte
CN103515581A (zh) LiV3O8/石墨烯复合材料及其制备方法和应用
Yue et al. Perovskite-type RMnO3 (R= La, Nd, Eu) nanofibers with fast Li+ transport properties as anode for lithium-ion batteries
Shen et al. The Structural and Electronic Engineering of Molybdenum Disulfide Nanosheets as Carbon‐Free Sulfur Hosts for Boosting Energy Density and Cycling Life of Lithium–Sulfur Batteries
KR102568421B1 (ko) 막전극접합체 및 이를 포함하는 아연-브롬 슈퍼커패터리
CN207909958U (zh) 一种柔性全固态电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948382

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT 1205A DATED 04/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20948382

Country of ref document: EP

Kind code of ref document: A1