WO2022027347A1 - 金属镓去除装置及金属镓去除方法 - Google Patents

金属镓去除装置及金属镓去除方法 Download PDF

Info

Publication number
WO2022027347A1
WO2022027347A1 PCT/CN2020/107187 CN2020107187W WO2022027347A1 WO 2022027347 A1 WO2022027347 A1 WO 2022027347A1 CN 2020107187 W CN2020107187 W CN 2020107187W WO 2022027347 A1 WO2022027347 A1 WO 2022027347A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
heating
adsorption
metal gallium
substrate
Prior art date
Application number
PCT/CN2020/107187
Other languages
English (en)
French (fr)
Inventor
汪庆
许时渊
范春林
王斌
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2020/107187 priority Critical patent/WO2022027347A1/zh
Publication of WO2022027347A1 publication Critical patent/WO2022027347A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to the technical field of semiconductors, and in particular, to a metal gallium removal device and a metal gallium removal method.
  • Micro LED Micro Light Emitting Diode, micro light-emitting diode
  • LCD Liquid Crystal Display, liquid crystal display
  • OLED Organic Light Emitting Diode, organic light-emitting diode
  • mass transfer is the key point of technological breakthrough.
  • the process mainly includes laser lift-off, mass transfer and detection and repair process. Among them, laser lift-off technology is the key point of mass transfer technology breakthrough.
  • the laser lift-off technology mainly utilizes the band gap difference between the gallium nitride (GaN) epitaxial layer and the sapphire (Al 2 O 3 ) substrate (also known as the growth substrate).
  • Ultraviolet laser radiation causes gallium nitride to thermally decompose at 900°C to 1000°C to form metal gallium and nitrogen, thereby realizing the separation of Micro LED and sapphire substrate.
  • the separated Micro LED will be adhered to the transient substrate through the adhesive layer, and finally the Micro LED will be transferred to the target substrate through the transient substrate.
  • the surface of the Micro LED adhered to the transient substrate after laser lift-off often has a large amount of gallium (Ga) residue.
  • the purpose of the present application is to provide a metal gallium removal device and a metal gallium removal method, aiming to solve the problem that the residual gallium on the surface of the light-emitting device cannot be effectively removed after laser lift-off in the prior art.
  • a metal gallium removal device which includes a rotation unit, an adsorption unit and a heating unit; the adsorption unit is connected with the rotation unit and rotates under the driving of the rotation unit, and the adsorption unit is configured to adsorb a transient substrate; wherein, the transient substrate
  • the light emitting device is adhered to the surface of the side away from the adsorption unit; the heating unit is configured to heat the adsorption unit; wherein, after the heating unit heats the adsorption unit, the temperature of the surface of the light emitting device is greater than or equal to the liquefaction temperature of the metal gallium.
  • the transient substrate When the device is used to process the transient substrate with the light emitting device adhered to after laser peeling, the transient substrate can be adsorbed by the adsorption unit. Because the liquefaction temperature of gallium is low, about 30°C, after the adsorption unit is heated by the heating unit, the residual metal gallium on the surface of the light-emitting device can be easily heated to the liquefaction temperature in the form of thermal conduction and thermal radiation. The rotation unit is then used to drive the adsorption unit to rotate, so that the liquefied residual gallium can be thrown off from the surface of the light-emitting device under the action of the rotating centrifugal force.
  • the above-mentioned metal gallium removal device provided by the present invention can effectively remove the residual gallium on the surface of the light-emitting device after laser lift-off, while avoiding the corrosion of the light-emitting device, and is an efficient, green and safe residual gallium removal device.
  • the present application also provides a metal gallium removal method, which is based on a metal gallium removal device.
  • the device includes a rotation unit, an adsorption unit and a heating unit; the method includes: controlling the adsorption unit to adsorb a A transient substrate; wherein a light-emitting device is adhered to the surface of the transient substrate away from the adsorption unit; the heating unit is controlled to heat the adsorption unit, so that the temperature of the surface of the light-emitting device is greater than or equal to the temperature at which the metal gallium is liquefied; the rotating unit is controlled to drive The adsorption unit rotates, so that the liquefied gallium is separated from the light-emitting device under the action of the rotating centrifugal force.
  • the transient substrate with the light-emitting device attached thereto is first fixed to the adsorption unit, and the temporary substrate is adsorbed in the process, and the light-emitting device is kept away from the adsorption unit.
  • the heating unit heats the adsorption unit
  • the metal gallium remaining on the surface of the light-emitting device can be heated by means of thermal conduction and thermal radiation to liquefy the metal gallium.
  • the adsorption unit is driven to rotate, so that the liquefied gallium can be separated from the surface of the light-emitting device under the action of the rotating centrifugal force, so as to achieve the purpose of removing the residual gallium after laser stripping.
  • the above method can effectively remove the residual gallium on the surface of the light-emitting device after laser lift-off without corroding the light-emitting device.
  • FIG. 1 is a schematic structural diagram of a metal gallium removal device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a temperature control unit in a metal gallium removal device according to an embodiment of the present invention.
  • 331-electric heating part 332-temperature sensor; 333-flow sensor; 334-solenoid valve.
  • a metal gallium removal device which includes a rotation unit 10, an adsorption unit 20 and a heating unit 30; 20 is configured to adsorb a transient substrate; wherein, the side surface of the transient substrate away from the adsorption unit 20 is adhered with a light-emitting device; the heating unit 30 is configured to heat the adsorption unit 20; wherein, the heating unit 30 is to the adsorption unit After 20 heating, the temperature of the surface of the light-emitting device is greater than or equal to the temperature at which the metal gallium liquefies.
  • the temporary substrate can be adsorbed by the adsorption unit 20 .
  • the transient substrate is in contact with the adsorption unit 20 and fixed, and the light-emitting device is away from the adsorption unit 20 .
  • the liquefaction temperature of gallium is low, about 30°C, after heating the adsorption unit 20 by the heating unit 30 , the residual metal gallium on the surface of the light-emitting device can be easily heated to the liquefaction temperature by thermal conduction and thermal radiation.
  • the rotation unit 10 is used to drive the adsorption unit 20 to rotate, so that the liquefied residual gallium can be thrown off from the surface of the light-emitting device under the action of the rotating centrifugal force.
  • the above-mentioned metal gallium removal device provided by the present invention can effectively remove the residual gallium on the surface of the light-emitting device after laser lift-off, while avoiding the corrosion of the light-emitting device, and is an efficient, green and safe residual gallium removal device.
  • the above-mentioned adsorption unit 20 only needs to be able to adsorb and fix the transient substrate, and can rotate under the driving of the rotation unit 10 .
  • the adsorption part 22 is arranged on the surface of the side of the adsorption substrate 21 away from the rotation unit 10 , and the adsorption part 22 is configured to adsorb the transient substrate.
  • the temporary substrate can be stably adsorbed and fixed by the adsorption part 22 , and the adsorption substrate 21 is rotated under the driving of the rotating unit, so that the liquefied gallium is released under the action of centrifugal force.
  • the adsorption substrate 21 after the heating unit 30 heats it, due to its larger area, the residual gallium on the surface of the light-emitting device can be more fully liquefied through more sufficient thermal conduction and thermal radiation, thereby further improving the residual gallium. detachment effect.
  • the above-mentioned adsorption part 22 is a plurality of vacuum adsorption heads, which can adsorb the transient substrate through vacuum adsorption and fix it with the light-emitting device adhered to the surface.
  • the purpose of the above-mentioned rotating unit 10 is to drive the adsorption unit 20 to rotate, so as to provide a rotating centrifugal force for the detachment of the liquefied gallium.
  • the rotating unit 10 includes a rotating shaft 11 and a driving unit 12 , one end of the rotating shaft 11 is fixedly connected to the adsorption substrate 21 , and the other end is connected to the driving unit 12 , and the driving unit 12 is configured to drive the rotation.
  • the shaft 11 rotates.
  • the specific setting method can be adjusted, as long as the purpose of driving the adsorption substrate 21 to rotate can be achieved.
  • the rotating shaft 11 may have an upper end and a lower end, and the adsorption substrate 21 is fixedly connected to the lower end of the rotating shaft 11 .
  • the above-mentioned driving unit 12 includes a power device and a transmission unit.
  • the power device is connected to the rotating shaft 11 through the transmission unit, and is configured to drive the rotating shaft 11 to rotate, thereby driving the rotation of the adsorption substrate 21 accordingly.
  • the specific transmission unit can be a gear transmission device, through which the rotation speed of the rotating shaft 11 and the adsorption substrate 21 is precisely controlled, and centrifugal force is provided to make the liquefied gallium detach from the wafer surface.
  • the transient substrate is adsorbed by the adsorption part 22, and the light-emitting device adhered on the transient substrate faces downward away from the adsorption substrate 21, and the entire wafer is in an inverted state of "the transient substrate is on top and the light-emitting device is on the bottom".
  • the surface of the light-emitting device with gallium remaining is at the bottom. In this way, the residual gallium after being heated and liquefied is more easily thrown out under the action of gravity and rotational centrifugal force, and is separated from the light-emitting device.
  • the heating method of the above-mentioned heating unit 30 includes electrode heating or water bath heating.
  • the electrode heating method or the water bath heating method can conveniently and sufficiently heat the adsorption unit, and then the residual gallium can be liquefied more fully through thermal conduction and thermal radiation.
  • a resistance wire may be arranged on the surface or inside of the adsorption substrate 21, and by conducting the resistance wire with the external power supply, the hot resistance wire can realize the heating of the adsorption substrate 21; in addition, The heating electrode can also be inserted into the adsorption substrate 21 to heat it in various ways, which will not be repeated here.
  • the heating method of the heating unit 30 is water bath heating, which includes a liquid storage unit 31 , a liquid infusion pipeline 32 and a temperature control unit 33; the liquid storage unit 31 is configured to store and provide liquid; one end of the infusion pipeline 32 is communicated with the liquid storage unit 31, and the other end is communicated with the interior of the adsorption unit 20; the temperature control unit 33 is arranged in the infusion pipeline 32 and is configured to control The temperature of the liquid delivered to the adsorption unit 20 via the infusion line 32 .
  • the water is passed into the rotary adsorption unit 20 through the infusion pipeline 32, and the temperature control unit 33 is used to control the temperature of the water during the passing process.
  • the temperature of the liquid is heated and controlled by the temperature control unit 33, and the hot liquid enters the adsorption unit, heats the adsorption unit 20 in the form of heat conduction, and further heats the temporary state of adsorption.
  • the substrate liquefies the residual gallium on the surface of the light-emitting device.
  • the temperature is easier to control, the residual gallium on the surface of the light-emitting device is more fully liquefied, and it is also beneficial to avoid excessive heating temperature.
  • the liquid in the liquid storage unit 31 of the heating unit 30 can be used as a heating liquid medium, such as water, alcohols, esters, etc., or it can be wastewater, waste liquid, etc. in the semiconductor process. As long as the boiling point of its components is higher than the liquefaction temperature of metal gallium.
  • an infusion channel is provided inside the adsorption substrate 21 , and the infusion channel communicates with the infusion pipeline 32 .
  • the liquid in the liquid storage unit 31 can directly enter the infusion channel inside the adsorption substrate 21 after being heated and temperature-controlled, and is configured to be heated in a water bath, and has the advantages of more sufficient, uniform and efficient heating.
  • the residual gallium has a more efficient heating effect.
  • the infusion flow channel includes a plurality of flow sections that communicate with each other, and the distance between two adjacent flow sections is less than 1 mm.
  • a plurality of U-shaped grooves connected in sequence can be opened on the back of the adsorption substrate 21, so as to be distributed on the back of the entire adsorption substrate 21 as much as possible, and pipes are embedded in the grooves to form a plurality of U-shaped grooves.
  • the spacing between adjacent pipelines is less than 1 mm, so that the adsorption substrate 21 can be more fully heated, and the residual gallium can be heated accordingly.
  • the infusion channel can also be of other structures, such as S-shaped, annular, broken-line, etc., which can be understood by those skilled in the art.
  • the rotating shaft 11 is a hollow structure, and the infusion pipeline 32 communicates with the infusion flow channel in the adsorption substrate 21 through the hollow rotating shaft 11 .
  • the rotating shaft 11 drives the adsorption substrate 21 to rotate, it does not drive the entire heating unit 30 to rotate, which can be understood by those skilled in the art.
  • the above-mentioned temperature control unit 33 includes an electric heating part 331 , a temperature sensor 332 , a flow sensor 333 , and a solenoid valve 334 , which are sequentially arranged on the infusion pipeline 32 , wherein the temperature sensor 332 is configured as a monitoring tube.
  • the temperature of the liquid in the pipeline is controlled, and the heating state of the electric heating part 331 is controlled.
  • the flow sensor 333 is configured to monitor the flow of the liquid in the pipeline and control the opening of the solenoid valve 334 to realize the automatic adjustment of the liquid flow and temperature in the pipeline. .
  • the above-mentioned device also includes a liquid circulation power device, which is configured to provide liquid circulation power, such as a circulation pump or the like.
  • the above-mentioned electric heating part 331 is a resistance wire heating part, including a connected resistance wire, an external power source, an electric wire, etc. The resistance wire generates heat after being energized to heat the liquid in the infusion pipeline 32 .
  • the above device further includes an inert gas supply unit and/or a vacuuming unit, the inert gas supplying unit is configured to provide an inert gas, so that the adsorption unit 20 is in an inert gas environment; the vacuuming unit is configured to The adsorption unit 20 is in a vacuum environment.
  • the inert gas supply unit is configured to provide an inert gas, so that the adsorption unit 20 is in an inert gas environment
  • the vacuuming unit is configured to The adsorption unit 20 is in a vacuum environment.
  • the above-mentioned metal gallium removal device further includes a casing 40 , wherein the rotating unit 10 and the adsorption unit 20 are located in the casing.
  • an inert gas supply unit and/or an evacuation unit is located outside the housing 40 and connected to the inner cavity of the housing 40, and is configured to supply or evacuate the inert gas therein.
  • the specific inert gas can be nitrogen gas, argon gas, etc., and the vacuum degree in the casing 40 after vacuuming can be 10 -1 to 10 -3 Pa.
  • the above-mentioned heating unit 30 may be located inside or outside the casing 40 as long as it can heat the adsorption unit 20 .
  • the device includes a rotation unit 10, an adsorption unit 20 and a heating unit 30; the method includes: The adsorption unit 20 is controlled to adsorb a transient substrate; wherein, a light emitting device is adhered to the surface of the transient substrate away from the adsorption unit 20; the heating unit 30 is controlled to heat the adsorption unit 20, so that the surface temperature of the light emitting device is greater than or equal to the metal The temperature at which the gallium is liquefied; the rotation unit 10 is controlled to drive the adsorption unit 20 to rotate, so that the liquefied gallium is separated from the light-emitting device under the action of the rotating centrifugal force.
  • the transient substrate with the light emitting device attached thereto is first fixed to the adsorption unit 20 , the transient substrate is adsorbed in the process, and the light emitting device is kept away from the adsorption unit 20 .
  • the heating unit 30 heats the adsorption unit 20
  • the metal gallium remaining on the surface of the light-emitting device can be heated by means of thermal conduction and thermal radiation to liquefy the metal gallium.
  • the adsorption unit 20 is driven to rotate, so that the liquefied gallium can be separated from the surface of the light-emitting device under the action of the rotating centrifugal force, so as to achieve the purpose of removing the residual gallium after laser stripping.
  • the above method can effectively remove the residual gallium on the surface of the light-emitting device after laser lift-off without corroding the light-emitting device.
  • the heating temperature of the adsorption unit 20 is greater than or equal to 30°C. °C, 40 °C, 45 °C, 50 °C, etc.
  • the residual gallium can be fully liquefied, so that it can be fully separated from the surface of the light-emitting device.
  • the rotation speed of the above-mentioned rotating unit 10 adopts low-speed rotation, and the rotation speed is less than 8000r/min, for example, the rotation speed is 3000-7500r/min, specifically such as 3000r/min, 3500r/min, 4000r/min, 4500r/min, 5000r/min, 5500r/min, 6000r/min, 6500r/min, 7000r/min, etc., in order to make the liquefied gallium more fully separated from the surface of the light-emitting device while rotating stably.
  • the ejection direction of the residual gallium droplets is inclined downward, which also avoids pollution to the adsorption unit 20 .
  • the rotation direction of the rotating unit 10 may be counterclockwise or clockwise.
  • the used transient substrate may be a type commonly used in the field, such as a sapphire substrate, a glass substrate, a quartz substrate, and the like.
  • the above-mentioned light-emitting device may be of a common type in the art.
  • the light-emitting device includes Micro LED, LED (Light Emitting Diode, light-emitting diode), OLED, etc., as long as metal gallium remains on its surface, it can be removed by the above-mentioned device and method.
  • the adsorption unit 20 includes an adsorption substrate 21 and an adsorption part 22
  • the above-mentioned step of controlling the adsorption unit 20 to adsorb a transient substrate includes: using the adsorption part 22 to adsorb and fix the transient substrate to the adsorption part 22 .
  • One side surface of the substrate 21 is rotated under the driving of the rotating unit 10 , so that the liquefied gallium is released under the action of centrifugal force.
  • the adsorption substrate 21 is a plurality of vacuum adsorption heads, which can adsorb the transient substrate through vacuum adsorption and fix it with the light-emitting device adhered to the surface.
  • the rotating unit 10 includes a rotating shaft 11 and a driving unit 12
  • the step of controlling the rotating unit 10 to drive the adsorption unit 20 to rotate includes: fixing one end of the rotating shaft 11 to the adsorption substrate 21 , and the other end to the driving unit 12 . connected, the rotating shaft 11 is driven by the driving unit 12 to rotate, thereby driving the adsorption substrate 21 to rotate.
  • the way of heating the unit 30 includes electrode heating or water bath heating.
  • the electrode heating method or the water bath heating method can conveniently and sufficiently heat the adsorption unit, and then the residual gallium can be liquefied more fully through thermal conduction and thermal radiation.
  • a resistance wire can be provided on the surface or inside of the adsorption substrate 21, and by conducting the resistance wire with an external power supply, the hot resistance wire can heat the adsorption substrate 21; The heating electrode is inserted into the adsorption substrate 21 to heat it in various manners, which will not be repeated here.
  • the heating method of the heating unit 30 is water bath heating, and the heating unit 30 may include a liquid storage unit 31 , a The heating process of the infusion pipeline 32 and a temperature control unit 33 includes: transferring the liquid in the liquid storage unit 31 to the adsorption unit 20 through the infusion pipeline 32, and controlling the temperature of the liquid through the temperature control unit.
  • the temperature of the liquid is heated and controlled by the temperature control unit 33, and the hot liquid enters the adsorption unit 20, heats the adsorption unit 20 in the form of heat conduction, and further heats the temporary adsorption unit 20.
  • the state substrate can liquefy the residual gallium on the surface of the light-emitting device.
  • the temperature is easier to control, the residual gallium on the surface of the light-emitting device is more fully liquefied, and it is also beneficial to avoid the heating temperature from being too high.
  • the liquid in the liquid storage unit 31 of the heating unit 30 can be used as a heating liquid medium, such as water, alcohols, esters, etc., or it can be wastewater, waste liquid, etc. in the semiconductor process. As long as the boiling point of its components is higher than the liquefaction temperature of metal gallium.
  • an infusion channel is provided inside the adsorption substrate 21 , and the infusion channel communicates with the infusion pipeline 32 .
  • the liquid in the liquid storage unit 31 can directly enter the infusion channel inside the adsorption substrate 21 after being heated and temperature-controlled, and is configured to be heated in a water bath, and has the advantages of more sufficient, uniform and efficient heating.
  • the residual gallium has a more efficient heating effect.
  • the rotating shaft 11 is a hollow structure
  • the step of transferring the liquid in the liquid storage unit 31 to the adsorption unit 20 through the liquid infusion pipe 32 includes: passing the liquid infusion pipe 32 through the rotating shaft 11 with the hollow structure and the adsorption substrate 21 . connected to the infusion channel.
  • the rotating shaft 11 drives the adsorption substrate 21 to rotate, it does not drive the entire heating unit 30 to rotate, which can be understood by those skilled in the art.
  • the steps of heating the adsorption unit 20 and controlling the rotation of the adsorption unit 20 are performed in an inert gas and/or vacuum environment. This is beneficial to avoid oxidation of the residual gallium after liquefaction, so that the liquefied gallium can be better separated from the light-emitting device.
  • the specific inert gas can be nitrogen gas, argon gas, etc., and the vacuum degree in the casing 40 after vacuuming can be 10 -1 to 10 -3 Pa.
  • the transient substrate by adsorbing the transient substrate with the light-emitting device adhered, the transient substrate can be adsorbed and fixed on the adsorption unit, and then by the heating of the heating unit, the residual light-emitting device can be removed.
  • the gallium on the device surface is liquefied and finally released from the wafer surface under the action of rotating centrifugal force.
  • the metal gallium remaining on the surface of the light-emitting device after laser lift-off can be more fully removed without corroding the wafer, which makes up for the difficulty of removing residual gallium in the laser lift-off technology in the prior art. defect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

一种金属镓去除装置及金属镓去除方法。金属镓去除装置包括旋转单元(10)、吸附单元(20)以及加热单元(30);吸附单元(20)与旋转单元(10)相连,并在旋转单元(10)带动下进行旋转,吸附单元(20)被配置为吸附一暂态基板;其中,暂态基板背离吸附单元(20)的一侧表面粘附有发光器件;加热单元(30)被配置为对吸附单元(20)进行加热;其中,加热单元(30)对吸附单元(20)加热后,发光器件表面的温度大于或等于金属镓液化的温度。利用金属镓去除装置能够在不腐蚀发光器件的基础上有效去除激光剥离后发光器件表面的残留镓。

Description

金属镓去除装置及金属镓去除方法 技术领域
本发明涉及半导体技术领域,尤其涉及一种金属镓去除装置及金属镓去除方法。
背景技术
Micro LED(Micro Light Emitting Diode,微型发光二极管)作为新一代显示技术,相比于LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light Emitting Diode,有机发光二极管)技术,其亮度更高、发光效率更好、同时具有低功耗和长寿命的性能。在微型发光二极管的制备工艺流程过程中,巨量转移作为技术突破关键点,其流程主要包含激光剥离、巨量转移以及检测修复过程,其中激光剥离技术是巨量转移技术突破的关键点。
激光剥离技术主要是利用氮化镓(GaN)外延层与蓝宝石(Al 2O 3)衬底(又称生长基板)的带隙差异,采用光子能量大于氮化镓带隙、小于蓝宝石带隙的紫外激光辐射,使氮化镓在900℃~1000℃热分解形成金属镓和氮气,从而实现Micro LED与蓝宝石衬底的分离。分离后的Micro LED则会通过胶层粘附在暂态基板上,最终通过暂态基板将Micro LED转移至目标基板。然而,激光剥离后粘附在暂态基板上的Micro LED表面往往存在大量镓(Ga)残留。
对于镓残留,目前采用的最多的清除方式为酸洗,然而利用酸洗去除Micro LED表面的残留镓时对其存在腐蚀作用,同时清除残留镓的效果并不理想。基于该原因,如何在不腐蚀Micro LED的同时更有效地去除其表面的残留镓,成为激光剥离技术的关键一环。
发明内容
鉴于上述现有技术的不足,本申请的目的在于提供一种金属镓去除装置及金属镓去除方法,旨在解决现有技术中激光剥离后发光器件表面的残留镓无法有效去除的问题。
一种金属镓去除装置,其包括旋转单元、吸附单元以及加热单元;吸附单元与旋转单元相连,并在旋转单元带动下进行旋转,吸附单元被配置为吸附一暂态基板;其中,暂态基板背离吸附单元的一侧表面粘附有发光器件;加热单元被配置为对吸附单元进行加热;其中,加热单元对吸附单元加热后,发光器件表面的温度大于或等于金属镓液化的温度。
采用该装置处理激光剥离后粘附有发光器件的暂态基板时,利用吸附单元可以将暂态基板进行吸附,此时暂态基板与吸附单元接触并固定,发光器件则背离吸附单元。因镓的液化温度较低,约30℃,通过加热单元加热吸附单元后,可很容易通过热传导和热辐射的形式将发光器件表面的残留金属镓加热至液化温度。再利用旋转单元带动吸附单元旋转,即可使液化后的残留镓在旋转离心力的作用下从发光器件表面甩脱。
因此,通过本发明提供的上述金属镓去除装置,可有效去除激光剥离后发光器件表面的残留镓,同时避免了对发光器件的腐蚀,是一种高效、绿色、安全的残留镓去除装置。
基于同样的发明构思,本申请还提供一种金属镓去除方法,其是基于一种金属镓去除装置,装置包括一旋转单元,一吸附单元及一加热单元;该方法包括:控制吸附单元吸附一暂态基板;其中,暂态基板背离吸附单元的一侧表面粘附有发光器件;控制加热单元对吸附单元加热,以使发光器件表面的温度大于或等于金属镓液化的温度;控制旋转单元带动吸附单元旋转,以使液化后的镓在旋转离心力的作用下脱离发光器件。
上述方法中,先将粘附有发光器件的暂态基板固定于吸附单元,该过程中吸附的是暂态基板,发光器件则远离吸附单元。其次,在加热单元加热吸附单元后,能够通过热传导及热辐射的方式加热残留在发光器件表面的金属镓,使其液化。最终在旋转单元的带动下促使吸附单元进行旋转,使得液化后的镓能够在旋转离心力的作用下脱离发光器件表面,达到去除激光剥离后残留镓的目的。总之,利用上述方法能够在不腐蚀发光器件的基础上有效去除激光剥离后发光器件表面的残留镓。
附图说明
图1为根据本发明一种实施例中的金属镓去除装置的结构示意图;
图2为根据本发明一种实施例中的金属镓去除装置中控温单元的结构示意图。
附图标记说明:
10-旋转单元;20-吸附单元;30-加热单元;40-壳体
11-旋转轴;12-驱动单元;
21-吸附基板;22-吸附部;
31-储液单元;32-输液管道;33-控温单元;
331-电加热部;332-温度传感器;333-流量传感器;334-电磁阀。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所 使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
正如背景技术部分所描述的,现有技术中激光剥离后LED晶片表面的残留镓无法有效去除。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
如图1所示,提供了一种金属镓去除装置,其包括旋转单元10、吸附单元20以及加热单元30;吸附单元20与旋转单元10相连,并在旋转单元10带动下进行旋转,吸附单元20被配置为吸附一暂态基板;其中,暂态基板背离吸附单元20的一侧表面粘附有发光器件;加热单元30被配置为对吸附单元20进行加热;其中,加热单元30对吸附单元20加热后,发光器件表面的温度大于或等于金属镓液化的温度。
采用该装置处理激光剥离后粘附有发光器件的暂态基板时,利用吸附单元20可以将暂态基板进行吸附,此时暂态基板与吸附单元20接触并固定,发光器件则背离吸附单元20。因镓的液化温度较低,约30℃,通过加热单元30加热吸附单元20后,可很容易通过热传导和热辐射的形式将发光器件表面的残留金属镓加热至液化温度。再利用旋转单元10带动吸附单元20旋转,即可使液化后的残留镓在旋转离心力的作用下从发光器件表面甩脱。
因此,通过本发明提供的上述金属镓去除装置,可有效去除激光剥离后发光器件表面的残留镓,同时避免了对发光器件的腐蚀,是一种高效、绿色、安全的残留镓去除装置。
上述吸附单元20只要能够对暂态基板进行吸附固定,并能够在旋转单元10的带动下进行旋转即可。为了使发光结构表面的残留镓的液化更充分,同时对暂态基板的吸附更加稳固,在一些实施方式中,如图1所示,吸附单元20包括吸附基板21和吸附部22,吸附基板21与旋转单元10固定连接;吸附部22设置于吸附基板21背离旋转单元10的一侧表面,吸附部22 被配置为吸附暂态基板。在实际操作过程中,通过吸附部22可将暂态基板稳定地吸附固定,而吸附基板21在旋转单元的带动下旋转,使液化后的镓在离心力作用下脱离。且利用吸附基板21,当加热单元30对其进行加热后,由于其具有较大的面积,能够通过更充足的热传导和热辐射促使发光器件表面的残留镓更充分地液化,从而进一步提高残留镓的脱离效果。在一些实施方式中,上述吸附部22为多个真空吸附头,其可通过真空吸附作用吸附暂态基板以其与表面粘附的发光器件固定。
上述旋转单元10的目的是带动吸附单元20进行旋转,为液化后的镓的脱离提供旋转离心力。示例性地,如图1所示,旋转单元10包括旋转轴11和驱动单元12,旋转轴11的一端与吸附基板21固定连接,另一端与驱动单元12连接,驱动单元12被配置为驱动旋转轴11进行旋转。具体的设置方式可以进行调整,只要能够实现带动吸附基板21旋转的目的即可。比如,旋转轴11可以具有上端和下端,吸附基板21固定连接在旋转轴11的下端。可以理解地,上述驱动单元12包括动力设备和传动单元,动力设备与旋转轴11通过传动单元连接,被配置为驱动该旋转轴11进行旋转,相应带动吸附基板21的旋转。具体的传动单元可以是齿轮传动装置,通过齿轮传动装置精确控制旋转轴11和吸附基板21的旋转速度,提供离心力以使液化镓脱离晶片表面。另外,为了使残留的金属镓更方便甩出以脱离晶片,在一些实施方式中,如图1所示,吸附基板21固定连接在旋转轴11的下端,吸附部22设置在吸附基板21的下表面。在实际操作过程中,暂态基板被吸附部22吸附,暂态基板上粘附的发光器件则远离吸附基板21朝下,整个晶片处于“暂态基板在上、发光器件在下”的倒立状态,残留有镓的发光器件表面则处于最下端。这样,经加热液化后的残留镓则更容易在重力和旋转离心力的作用下甩出,脱离发光器件。
示例性地,上述加热单元30的加热方式包括电极加热或水浴加热。在实际操作过程中利用电极加热的方式或水浴加热的方式能够方便、较为充 分地加热吸附单元,然后通过热传导和热辐射作用使残留镓更充分地液化。
示例性地,采用电极加热方式进行加热时,可以在吸附基板21的表面或内部设置电阻丝,通过将电阻丝与外部电源导通,热的电阻丝则实现对吸附基板21的加热;另外,也可以将加热电极插入吸附基板21中对其进行加热,方式多样,在此不再赘述。
为了进一步提高加热效率,同时使加热过程更为充分均匀,在一些实施方式中,如图2所示,加热单元30的加热方式为水浴加热,其包括储液单元31、输液管道32及控温单元33;储液单元31被配置为储存并提供液体;输液管道32一端与储液单元31连通,另一端与吸附单元20内部连通;控温单元33设置于输液管道32中,被配置为控制经输液管道32传输至吸附单元20中的液体的温度。在实际操作过程中,将水通过输液管道32通入旋转吸附单元20中,并在通入过程中利用控温单元33控制水的温度。
这样,由储液单元31向输液管道32供液后,通过控温单元33加热并控制液体温度,热的液体进入吸附单元中,以热传导的形式加热吸附单元20,并进一步加热吸附的暂态基板,使发光器件表面的残留镓液化。通过上述水浴加热单元,温度更容易控制,发光器件表面的残留镓液化更充分,也有利于避免加热温度过高。此处需要说明的是,加热单元30的储液单元31中的液体只要能够作为加热液体介质即可,比如水、醇类、酯类等,也可以是半导体制程中的废水、废液等,只要其成分沸点高于金属镓液化温度即可。
示例性地,如图2所示,吸附基板21内部设置有输液流道,输液流道与输液管道32连通。这样,储液单元31的液体经加热控温后可以直接进入吸附基板21内部的输液流道,被配置为对其进行水浴加热,且具有加热更充分均匀、更高效的优势,对于发光器件表面的残留镓具有更高效的加热效果。
为使水浴加热过程更为充分均匀,输液流道包括多条相互连通的流段, 且相邻两条流段之间的距离小于1mm。示例性地,如2所示,可以在吸附基板21背面开设多个依次连通的U字形凹槽,尽量使其分布于整个吸附基板21背面,将管道嵌入该凹槽中,形成多个U字形分布的背侧液体循环管路,相邻管路之间的间距小于1mm,以便更充分地加热吸附基板21,相应加热残留镓。只要尽量使管路充分分布,输液流道也可以为其他结构,比如S形、环形、折线形等,这是本领域技术人员都能够理解的。
示例性地,旋转轴11为中空结构,输液管道32通过中空的旋转轴11与吸附基板21中的输液流道相连通。这样,当旋转轴11带动吸附基板21转动时,并不会带动整个加热单元30的转动,这是本领域技术人员都能够理解的。
示例性地,如图2所示,上述控温单元33包括依次设置在输液管道32上的电加热部331、温度传感器332、流量传感器333、电磁阀334,其中温度传感器332被配置为监测管路中液体的温度,并控制电加热部331的加热状态,流量传感器333被配置为监测管路中液体的流量,并控制电磁阀334的开度,实现管路内液体流量和温度的自动调节。可以理解地,上述装置还包括液体循环动力装置,被配置为提供液体循环动力,比如可以是循环泵等。在一些实施方式中,上述电加热部331为电阻丝加热部,包括相连接的电阻丝、外部电源、电线等,电阻丝通电后发热以对输液管道32中的液体进行加热。
在一些实施方式中,上述装置还包括惰性气体供应单元和/或抽真空单元,惰性气体供应单元被配置为提供惰性气体,以使吸附单元20处于惰性气体环境中;抽真空单元被配置为对吸附单元20出于真空环境。这样,惰性环境和真空环境下,有效避免了加热液化后的残留镓的氧化,以使其更好地脱离发光器件。
为使操作更方便,惰性气体环境和真空环境更充分安全,在一些实施方式中,如图1所示,上述金属镓的去除装置还包括壳体40,其中旋转单 元10和吸附单元20位于壳体40内部,惰性气体供应单元和/或抽真空单元位于壳体40外部,并与壳体40的内腔相连,被配置为向其中供应惰性气体或对其进行抽真空。具体的惰性气体可以是氮气、氩气等,抽真空后壳体40内的真空度可以为10 -1~10 -3Pa。上述加热单元30可以位于壳体40的内部,也可以位于其外部,只要能够对吸附单元20进行加热即可。
另外,还提供了一种金属镓去除方法,其是基于上述属镓去除装置,如图1和2所示,装置包括一旋转单元10,一吸附单元20及一加热单元30;该方法包括:控制吸附单元20吸附一暂态基板;其中,暂态基板背离吸附单元20的一侧表面粘附有发光器件;控制加热单元30对吸附单元20加热,以使发光器件表面的温度大于或等于金属镓液化的温度;控制旋转单元10带动吸附单元20旋转,以使液化后的镓在旋转离心力的作用下脱离发光器件。
上述方法中,先将粘附有发光器件的暂态基板固定于吸附单元20,该过程中吸附的是暂态基板,发光器件则远离吸附单元20。其次,在加热单元30加热吸附单元20后,能够通过热传导及热辐射的方式加热残留在发光器件表面的金属镓,使其液化。最终在旋转单元10的带动下促使吸附单元20进行旋转,使得液化后的镓能够在旋转离心力的作用下脱离发光器件表面,达到去除激光剥离后残留镓的目的。总之,利用上述方法能够在不腐蚀发光器件的基础上有效去除激光剥离后发光器件表面的残留镓。
示例性地,在具体实施过程中,加热单元30对吸附单元20进行加热后,吸附单元20的加热温度≥30℃,比如可以将吸附单元20加热至30~50℃,具体如30℃、35℃、40℃、45℃、50℃等。这样既能够使残留镓充分液化,便于其充分脱离发光器件表面。
示例性地,在具体实施过程中,上述旋转单元10的旋转速度采用低速旋转,转速<8000r/min,比如转速为3000~7500r/min,具体如3000r/min、3500r/min、4000r/min、4500r/min、5000r/min、5500r/min、6000r/min、 6500r/min、7000r/min等,以便于稳定旋转的同时,使液化镓更充分脱离发光器件表面。同时,残留镓液滴的甩出方向斜向下,也避免了对吸附单元20的污染。在一些实施方式中,旋转单元10的旋转方向可以是逆时针旋转,也可以是顺时针旋转。
在实际操作过程中,使用的暂态基板可以为本领域常用类型,比如蓝宝石基板、玻璃基板、石英基板等。上述发光器件可以是本领域的常用类型,比如,发光器件包括Micro LED、LED(Light Emitting Diode,发光二极管)、OLED等,只要其表面残留有金属镓,均可利用上述装置及方法进行去除。
在一些实施方式中,如图1所示,吸附单元20包括吸附基板21和吸附部22,上述控制吸附单元20吸附一暂态基板的步骤包括:通过吸附部22将暂态基板吸附固定于吸附基板21一侧表面。这样,吸附基板21在旋转单元10的带动下旋转,使液化后的镓在离心力作用下脱离。且利用吸附基板21,当加热单元30对其进行加热后,由于其具有较大的面积,能够通过更充足的热传导和热辐射促使发光器件表面的残留镓更充分地液化,从而进一步提高残留镓的脱离效果。在一些实施方式中,上述吸附部22为多个真空吸附头,其可通过真空吸附作用吸附暂态基板以其与表面粘附的发光器件固定。
在一些实施方式中,旋转单元10包括旋转轴11和驱动单元12,控制旋转单元10带动吸附单元20旋转的步骤包括:将旋转轴11的一端与吸附基板21固定连接,另一端与驱动单元12连接,通过驱动单元12驱动旋转轴11进行旋转,从而带动吸附基板21进行旋转。
示例性地,加热单元30的方式包括电极加热或水浴加热。在实际操作过程中利用电极加热的方式或水浴加热的方式能够方便、较为充分地加热吸附单元,然后通过热传导和热辐射作用使残留镓更充分地液化。
示例性地,采用电极加热时,可以在吸附基板21的表面或内部设置电 阻丝,通过将电阻丝与外部电源导通,热的电阻丝则实现对吸附基板21的加热;另外,也可以将加热电极插入吸附基板21中对其进行加热,方式多样,在此不再赘述。
为了进一步提高加热效率,同时使加热过程更为充分均匀,在一些实施方式中,如图2所示,加热单元30的加热方式为水浴加热,该加热单元30可以包括一储液单元31、一输液管道32及一控温单元33,其加热过程包括:通过输液管道32将储液单元31中的液体传输至吸附单元20中,并通过控温单元控制液体的温度。这样,由储液单元31向输液管道32供液后,通过控温单元33加热并控制液体温度,热的液体进入吸附单元20中,以热传导的形式加热吸附单元20,并进一步加热吸附的暂态基板,使发光器件表面的残留镓液化。通过上述加热单元30,温度更容易控制,发光器件表面的残留镓液化更充分,也有利于避免加热温度过高。此处需要说明的是,加热单元30的储液单元31中的液体只要能够作为加热液体介质即可,比如水、醇类、酯类等,也可以是半导体制程中的废水、废液等,只要其成分沸点高于金属镓液化温度即可。
示例性地,如图2所示,吸附基板21内部设置有输液流道,输液流道与输液管道32连通。这样,储液单元31的液体经加热控温后可以直接进入吸附基板21内部的输液流道,被配置为对其进行水浴加热,且具有加热更充分均匀、更高效的优势,对于发光器件表面的残留镓具有更高效的加热效果。
示例性地,旋转轴11为中空结构,通过输液管道32将储液单元31中的液体传输至吸附单元20中的步骤包括:将输液管道32通过具有中空结构的旋转轴11与吸附基板21中的输液流道相连通。这样,当旋转轴11带动吸附基板21转动时,并不会带动整个加热单元30的转动,这是本领域技术人员都能够理解的。
在一些实施方式中,加热吸附单元20以及控制吸附单元20进行旋转 的步骤均在惰性气体和/或真空环境中进行。这样有利于避免液化后的残留镓发生氧化,以便使液化镓更好地脱离发光器件。具体的惰性气体可以是氮气、氩气等,抽真空后壳体40内的真空度可以为10 -1~10 -3Pa。
总之,通过本发明提供的上述装置及方法,通过将粘附有发光器件的暂态基板进行吸附,使暂态基板能够吸附固定在吸附单元上,随后通过加热单元的加热,能够将残留在发光器件表面的镓液化,最后在旋转离心力的作用下脱离晶片表面。总之,利用本发明提供的装置及方法,能够在不腐蚀晶片的前提下更充分地去除激光剥离后残留在发光器件表面的金属镓,弥补了现有技术中激光剥离技术因残留镓难以去除的缺陷。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (16)

  1. 一种金属镓去除装置,包括:
    旋转单元;
    吸附单元,与所述旋转单元相连,并在所述旋转单元带动下进行旋转,所述吸附单元被配置为吸附一暂态基板;
    其中,所述暂态基板背离所述吸附单元的一侧表面粘附有发光器件;以及
    加热单元,被配置为对所述吸附单元进行加热;
    其中,所述加热单元对所述吸附单元加热后,所述发光器件表面的温度大于或等于金属镓液化的温度。
  2. 如权利要求1所述的金属镓去除装置,其中,所述吸附单元包括:
    吸附基板,与所述旋转单元固定连接;
    吸附部,设置于所述吸附基板背离所述旋转单元的一侧表面,所述吸附部被配置为吸附所述暂态基板。
  3. 如权利要求2所述的金属镓去除装置,其中,所述加热单元的加热方式包括电极加热。
  4. 如权利要求2所述的金属镓去除装置,其中,所述加热单元的加热 方式包括水浴加热。
  5. 如权利要求4所述的金属镓去除装置,其中,所述加热单元的加热方式为水浴加热时,其包括:
    储液单元,被配置为储存并提供液体;
    输液管道,一端与所述储液单元连通,另一端与所述吸附单元内部连通;
    控温单元,设置于所述输液管道中,被配置为控制经所述输液管道传输至所述吸附单元中的液体的温度。
  6. 如权利要求5所述的金属镓去除装置,其中,所述吸附基板内部设置有输液流道,所述输液流道与所述输液管道连通。
  7. 如权利要求5所述的金属镓去除装置,其中,所述旋转单元包括:
    旋转轴,其一端与所述吸附基板固定连接;
    驱动单元,与所述旋转轴的另一端连接,被配置为驱动所述旋转轴进行旋转。
  8. 如权利要求7所述的金属镓去除装置,其中,所述旋转轴具有中空结构,所述输液管道穿过具有中空结构的所述旋转轴与所述吸附单元内部连通。
  9. 如权利要求1所述的金属镓去除装置,其中,还包括:
    惰性气体供应单元,被配置为使所述吸附单元处于惰性气体环境。
  10. 如权利要求1所述的金属镓去除装置,其中,还包括:
    抽真空单元,被配置为使所述吸附单元处于真空环境。
  11. 一种金属镓去除方法,基于一种金属镓去除装置,所述装置包括一旋转单元,一吸附单元及一加热单元;所述方法包括:
    控制所述吸附单元吸附一暂态基板;其中,所述暂态基板背离所述吸附单元的一侧表面粘附有发光器件;
    控制所述加热单元对所述吸附单元加热,以使所述发光器件表面的温度大于或等于金属镓液化的温度;以及
    控制所述旋转单元带动所述吸附单元旋转,以使液化后的镓在旋转离心力的作用下脱离所述发光器件。
  12. 如权利要求11所述的金属镓去除方法,其中,所述加热单元的加热方式包括电极加热。
  13. 如权利要求11所述的金属镓去除方法,其中,所述加热单元的加热方式包括水浴加热。
  14. 如权利要求11所述的金属镓去除方法,其中,所述加热单元的加 热方式为水浴加热时,所述加热单元包括一储液单元、一输液管道及一控温单元;
    所述加热过程包括:通过所述输液管道将所述储液单元中的液体传输至所述吸附单元中,并通过所述控温单元控制所述液体的温度。
  15. 如权利要求11所述的金属镓去除方法,其中,加热所述吸附单元以及控制所述吸附单元进行旋转的步骤均在惰性气体中进行。
  16. 如权利要求11所述的金属镓去除方法,其中,加热所述吸附单元以及控制所述吸附单元进行旋转的步骤均在真空环境中进行。
PCT/CN2020/107187 2020-08-05 2020-08-05 金属镓去除装置及金属镓去除方法 WO2022027347A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107187 WO2022027347A1 (zh) 2020-08-05 2020-08-05 金属镓去除装置及金属镓去除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107187 WO2022027347A1 (zh) 2020-08-05 2020-08-05 金属镓去除装置及金属镓去除方法

Publications (1)

Publication Number Publication Date
WO2022027347A1 true WO2022027347A1 (zh) 2022-02-10

Family

ID=80118737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107187 WO2022027347A1 (zh) 2020-08-05 2020-08-05 金属镓去除装置及金属镓去除方法

Country Status (1)

Country Link
WO (1) WO2022027347A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150394A (ja) * 1998-11-17 2000-05-30 Toshiba Corp 基板処理装置及び基板位置合わせ装置
JP2002329700A (ja) * 2001-04-27 2002-11-15 Sony Corp 表面処理方法
CN103456864A (zh) * 2013-08-29 2013-12-18 刘晶 一种发光二极管芯片的制作方法、芯片及发光二极管
CN103668114A (zh) * 2012-09-19 2014-03-26 甘志银 金属有机物化学气相沉积设备喷淋盘的清洁装置及其方法
CN108022860A (zh) * 2016-10-31 2018-05-11 细美事有限公司 用于处理基板的装置和方法
CN110364416A (zh) * 2018-04-10 2019-10-22 细美事有限公司 基板清洗方法及清洗装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150394A (ja) * 1998-11-17 2000-05-30 Toshiba Corp 基板処理装置及び基板位置合わせ装置
JP2002329700A (ja) * 2001-04-27 2002-11-15 Sony Corp 表面処理方法
CN103668114A (zh) * 2012-09-19 2014-03-26 甘志银 金属有机物化学气相沉积设备喷淋盘的清洁装置及其方法
CN103456864A (zh) * 2013-08-29 2013-12-18 刘晶 一种发光二极管芯片的制作方法、芯片及发光二极管
CN108022860A (zh) * 2016-10-31 2018-05-11 细美事有限公司 用于处理基板的装置和方法
CN110364416A (zh) * 2018-04-10 2019-10-22 细美事有限公司 基板清洗方法及清洗装置

Similar Documents

Publication Publication Date Title
KR102384735B1 (ko) 기판 처리 장치 및 기판 처리 방법
US10410887B2 (en) Substrate processing apparatus and substrate processing method
TWI482890B (zh) 半導體結晶製造裝置用排氣通路的清潔裝置及其清潔方法
CN108198915B (zh) 一种led制备工艺
CN1772946A (zh) 陶瓷喷镀部件及其制造方法、执行该方法的程序、存储介质
WO2020232602A1 (zh) 一种用于基板上生长薄膜的承载盘、生长装置和生长方法
WO2022027347A1 (zh) 金属镓去除装置及金属镓去除方法
JPWO2009072254A1 (ja) Iii族窒化物結晶、その結晶成長方法および結晶成長装置
JP2010130006A (ja) 化学気相蒸着装置用サセプタ及び化学気相蒸着装置
TWI570265B (zh) Film forming apparatus, base, and film forming method
JP2014017380A (ja) 伝熱シート貼付装置及び伝熱シート貼付方法
JP2006332198A (ja) 基板処理装置および基板乾燥方法
CN112967948B (zh) 金属镓去除装置及金属镓去除方法
CN116053189A (zh) 一种晶圆清洗用旋转定位设备
JP2000150611A (ja) 試料の処理システム
JP2000150610A (ja) 試料の処理システム
CN104128342A (zh) 用于清洗有机材料的方法和设备
JP2009071210A (ja) サセプタおよびエピタキシャル成長装置
JP2013138075A (ja) 基板処理装置および基板処理方法
CN101760775A (zh) 一种连续液相外延法制备薄膜的方法和装置
JP2009298652A (ja) 黒鉛ルツボ及び該黒鉛ルツボを用いた石英ルツボの変形防止方法
CN115799292A (zh) 半导体结构及其制备方法、微器件的转移方法及显示面板
JP5816544B2 (ja) 基板処理装置および基板処理方法
KR101728072B1 (ko) 기판 처리 장치 및 이를 이용한 박막 형성 방법
KR102632770B1 (ko) 기판 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947914

Country of ref document: EP

Kind code of ref document: A1