WO2020232602A1 - 一种用于基板上生长薄膜的承载盘、生长装置和生长方法 - Google Patents

一种用于基板上生长薄膜的承载盘、生长装置和生长方法 Download PDF

Info

Publication number
WO2020232602A1
WO2020232602A1 PCT/CN2019/087628 CN2019087628W WO2020232602A1 WO 2020232602 A1 WO2020232602 A1 WO 2020232602A1 CN 2019087628 W CN2019087628 W CN 2019087628W WO 2020232602 A1 WO2020232602 A1 WO 2020232602A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier plate
substrate
growing
thin film
side wall
Prior art date
Application number
PCT/CN2019/087628
Other languages
English (en)
French (fr)
Inventor
张中英
张宏铭
罗云明
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Priority to CN201980004724.4A priority Critical patent/CN111183248A/zh
Priority to PCT/CN2019/087628 priority patent/WO2020232602A1/zh
Publication of WO2020232602A1 publication Critical patent/WO2020232602A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate

Definitions

  • carrier plate for growing thin films on the surface of a substrate
  • carrier plate can be applied to MOCVD equipment.
  • MOCVD technology uses organic compounds of group III and group II elements and hydrides of group V and VI elements as crystal growth source materials, and performs vapor phase epitaxy on the substrate by thermal decomposition reaction to obtain the required thin films and grow various III -V main group, II-VI subgroup compound semiconductors and their multiple solid solution thin layer single crystal materials are widely used in the industry of compound semiconductor production equipment, such as blue or ultraviolet or red or infrared LEDs or lasers.
  • the surface reaction generated by the reactive raw material gas on the surface of the substrate is very complicated, and it is very critical to control these parameters in the MOCVD technology to form the required film.
  • the design of the substrate bearing structure is also very critical.
  • Figure 1 provides a MOCVD growth device.
  • the growth device has a growth chamber 100.
  • the top of the chamber 100 includes a suspended susceptor 101.
  • the susceptor 101 can hold several carrier plates 103 for supporting growth substrates.
  • the base 101 includes a rotating disk 102 with gears on the edge.
  • the center of the rotating disk 102 has a groove-like structure or a hole-like structure for installing a support column 104.
  • the support column 104 is used to hang the top of the base in the cavity and support
  • the column 104 is configured to drive the rotating disk 102 to rotate.
  • the edge of the specific rotating disk 102 has gears, which cooperate with the gears of the carrier disk 103 to realize the rotation of the carrier disk 103.
  • the reactive gas circulates to the growth surface of the growth substrate to obtain an epitaxial growth film.
  • the reactive gas is supplied and discharged through the gas inflow pipe 106 and the outflow pipe 107 .
  • the structure of the susceptor 103 is shown in Figs. 3-4.
  • the susceptor 103 includes counterbore holes penetrating both sides, the bottom of the counterbore is installed with a growth substrate 111, and the upper part is installed with a heat exchanger 110.
  • the heat exchanger 110 has a surface opposite to the growth surface of the growth substrate and maintains a small distance to realize uniform heat transfer to the surface of the growth substrate.
  • the step 1031 is used to support the edge of the heat transfer 110.
  • the heat transfer 110 is a "convex" block.
  • the heat transfer 110 can be removed from the upper surface of the carrier plate. Take out the side freely.
  • a number of support blocks 109 are integrally provided on the bottom surface side of the carrier plate 103, usually at least three, four or five, and extend toward the center of the bottom of the counterbore.
  • the support blocks support the edge of the growth surface of the growth substrate. Since there is heat conduction between the support block and the growth substrate, it will affect the heat uniformity of the growth substrate. Therefore, the support block should be designed as small in size as possible, and the contact area with the growth surface should be as small as possible.
  • the carrier plate, the heat transfer device and the supporting block are generally made of graphite, graphite or silicon carbide coated with silicon carbide on the surface.
  • the small-sized supporting block is used to support the growth substrate for a long time, and is in the picking and placing process or the growth process. When subjected to multiple collisions, the support block is prone to fracture, especially silicon carbide, which is easy to be brittle.
  • the carrier plate 103 needs to be replaced frequently, and the service life is short, and the production cost is high.
  • the present invention provides the following carrier plate for growing a thin film on a substrate, which includes:
  • a carrier plate body the body includes an upper surface side and a lower surface side opposite, from the upper surface side through the hole on the lower surface side;
  • a plurality of support blocks for supporting the substrate are supported on the inner side wall, and can be separately detached from the carrier plate body; each support block includes a first part of the protrusion, the first part protrudes from the side wall of the carrier plate body inside the side hole
  • the extension includes a second part of the protrusion, which is inserted into a groove in the side wall and supported by the table in the groove, and includes a third part connecting the first part of the protrusion and the second part of the protrusion.
  • the mesa in the groove extends circumferentially along the inner side wall of the counterbore or extends along the thickness direction of the side wall.
  • the groove extends to the lower surface side of the carrier tray, so that the connecting part of the third part is embedded in the groove.
  • the protrusion and the third part of the second part of the support block fill the space of the groove.
  • the groove is a T-shaped groove or a right-angled groove, and the protrusion of the first part and the protrusion of the second part of the support block extend perpendicular to each other.
  • the protrusions of the first part of the plurality of supporting blocks have an arc-shaped edge.
  • the arc length of the arc-shaped edge is less than 1/4 of the circumference of the inner wall of the counterbore.
  • the protrusions of the first part of each support block are installed in the groove of the side wall at intervals.
  • the hole is a counterbore, and there is a horizontal step on the side wall above the groove, and the position of the horizontal step is closer to the upper surface side of the carrier plate relative to the groove.
  • the present invention also provides the following carrier plate for growing thin films on a substrate, which includes:
  • Carrier plate body the body includes opposite upper and lower surface sides, from the upper surface side through the counterbore on the lower surface side, a plurality of Z-shaped support blocks are supported on the inner side wall, and can be separated from the carrier plate body Disassembly; each support block includes a first part of the protrusion extending from the side wall of the tray body to the counterbore, including a second part of the protrusion, the second part of the protrusion is supported on the step in the counterbore.
  • the protrusion of the second part of the support block is supported on the step.
  • the substrate When the substrate is installed, there is a cover plate above the substrate.
  • the protrusion of the second part of the support block can be clamped between the step and the cover plate. Form support.
  • the second part of the plurality of supporting blocks is supported on the step to form a closed ring.
  • the support block further includes a third part, the third part connects the first part and the second part, and the third part of the plurality of support blocks forms a closed loop on the side wall that fits the side wall.
  • the material of the supporting plate body and the material of the supporting block are the same.
  • the protrusion of the first part of the support block is block-shaped, and the surface of the protrusion of the first part opposite to the growth surface of the support substrate is arranged to be inclined with respect to the lower surface side of the carrier plate.
  • the surface of the protrusion of the first part of the support block opposite to the growth surface of the support substrate has an arc shape or a sharp cone or a cone.
  • the material of the supporting plate body and the supporting block are graphite, silicon carbide or graphite coated with silicon carbide on the surface.
  • a substrate for growing a thin film can be placed from the upper surface side of the susceptor, and the edge of the substrate exposed from the lower surface of the susceptor is protrudingly supported by the first portions of the plurality of supporting blocks.
  • the inner side wall of the counterbore includes a step, and a substrate and a cover plate for growing the film can be placed in sequence from the upper surface side of the carrier plate, and the cover plate can be fixed on the step.
  • the cover plate is a heat transfer block, and the cover plate can be fixed on the step and separated from the base plate by a certain distance.
  • the present invention also provides the following device for growing a thin film on a substrate, which includes a growth chamber.
  • the growth chamber includes the aforementioned carrier plate.
  • the carrier plate is detachably mounted on a base, and the base is suspended on
  • a substrate and a cover plate are installed in the counterbore of the carrier plate, and the substrate has one side exposed on the lower surface side of the carrier plate.
  • the substrate is sapphire or germanium or gallium arsenide or silicon or gallium nitride or there are additional layers on the surface of these substrates.
  • a reactive gas circulation cavity is provided below the base.
  • the device is a MOCVD device.
  • the present invention also provides the following method for growing a thin film on a substrate, which includes using the aforementioned device for growing a thin film on a substrate to grow a thin film.
  • the carrier plate provided by the present invention can detachably support a plurality of supporting blocks, which is convenient for replacement, thereby improving the service life of the carrier plate body and reducing the production cost.
  • each support block is designed to be installed on the countertop of the groove on the inner wall of the counterbore of the bearing tray or hung on the step of the inner wall of the hole, without additional fixing parts, which is convenient for installation and disassembly.
  • the contact area between the support block and the substrate can be reduced.
  • the surface of the support block and the substrate growth surface is relatively inclined or the first part of the support block is convex and the substrate grows.
  • the surface extends relatively obliquely, so as to reduce the influence of the support block on the heat uniformity of the growth surface of the substrate, or at least one protrusion can be designed, and the shape of the protrusion surface is an arc or a cone or a pointed cone or a strip.
  • FIG. 1 is a schematic diagram of the structure of a MOCVD growth device mentioned in the background art.
  • FIG. 2 is a schematic view of the structure viewed from the lower surface side of the susceptor in the growth chamber of the MOCVD growth apparatus in FIG. 1.
  • FIG. 3 is a schematic diagram of the structure of a carrier plate used in the MOCVD growth apparatus of FIG. 1.
  • FIG. 4 is a schematic diagram of the structure in which the growth substrate and the cover plate are installed in the carrier tray shown in FIG. 3.
  • Fig. 5 is a schematic cross-sectional view of Fig. 4.
  • Fig. 6 is a schematic diagram of the structure of the carrier plate in the first embodiment.
  • Fig. 7 is a schematic cross-sectional view of the carrier plate shown in Fig. 6 along the dotted line.
  • Fig. 8 is a schematic cross-sectional view of the carrier plate of the first embodiment.
  • Fig. 9 is a schematic diagram of the structure of the supporting block of the first embodiment.
  • Fig. 10 is a schematic cross-sectional view of the carrier plate of the first embodiment.
  • Fig. 11 is a schematic cross-sectional view of the carrier plate of the second embodiment.
  • Fig. 12 is a schematic diagram of the structure of the supporting block of the second embodiment.
  • Fig. 13 is a schematic diagram of the structure of the carrier plate of the second embodiment.
  • Fig. 14 is a schematic cross-sectional view of the carrier plate of the second embodiment.
  • Fig. 15 is a schematic cross-sectional view of the carrier plate body of the third embodiment.
  • Fig. 16 is a schematic cross-sectional view of the carrier plate of the third embodiment.
  • 17-18 are schematic diagrams of the structure of the supporting block of the third embodiment.
  • Fig. 19 is a schematic cross-sectional view of the carrier plate of the third embodiment.
  • Fig. 20 is a schematic cross-sectional view of the carrier plate of the fourth embodiment.
  • Fig. 21 is a schematic cross-sectional view of the carrier plate of the fifth embodiment.
  • Fig. 22 is a schematic diagram of the structure of the supporting block of the fifth embodiment.
  • Figures 23-24 are schematic cross-sectional views of the support block of the sixth embodiment.
  • Fig. 25 is a schematic cross-sectional view of the carrier plate of the seventh embodiment.
  • FIG. 26 is a schematic diagram of the structure of the supporting block of the seventh embodiment.
  • This embodiment provides a carrier plate for growing a thin film on a substrate, which is more suitable for growing a thin film under high temperature conditions.
  • the high temperature conditions are usually growth conditions above 600°C, which are specific, but not limited to, MOCVD growth equipment for growing gallium nitride based films, aluminum gallium indium phosphorus based films, aluminum gallium arsenide based films, and gallium arsenide based films .
  • the grown thin film can be used for but not limited to the following types of devices, such as LED light-emitting devices or laser devices or solar cell devices.
  • the substrate for growing the thin film is preferably a sapphire or germanium-based or a gallium arsenide-based or a silicon-based or a gallium nitride-based substrate or the surface of these substrates has an additional film layer.
  • the carrier plate for growing a thin film on a substrate.
  • the carrier plate includes a carrier plate body 200 and a plurality of separately detachable support blocks 202.
  • the carrier plate body 200 includes an upper surface side and a lower surface side, and a counterbore penetrates from the upper surface side to the lower surface side.
  • Figure 6 provides a schematic structural view from the upper surface side of the carrier plate 200, and the supporting block 202 is fixed on the side wall in the counterbore.
  • FIG. 7 provides a schematic longitudinal cross-sectional view from the upper surface side to the lower surface of the carrier plate body 200.
  • a substrate 204 and a cover plate 203 are sequentially placed from the upper surface side.
  • the substrate 204 has two sides. One side is opposite to the cover plate, and the other side of the substrate 204 is exposed from the lower surface side of the carrier plate for film growth.
  • the substrate 204 described in this embodiment may specifically be a sapphire substrate.
  • a plurality of separately detachable support blocks 202 contact the edge of the lower surface side of the substrate to achieve support.
  • step 201 there is a step 201 on the side wall in the counterbore, and the step 201 is used to support and limit the cover plate 203.
  • the cover plate 203 may specifically be a column, and the bottom edge of the cover plate is supported on the step 201. Or as shown in Fig. 7, the cover plate is usually integrally formed with two columns with different sizes, and the cover plate forms a step on the outer side wall.
  • the step on the outer side wall of the cover plate is supported on the step 201 on the side wall in the counterbore. The position of the step is closer to the upper surface side of the carrier plate than the groove.
  • the cover plate can be a heat exchanger, which transfers the heat generated by the external heating device to the substrate uniformly, so that the growth surface of the substrate is evenly heated during the film growth process, and the fixed cover plate and the substrate can be heated. There is a certain gap.
  • FIG. 8 is a schematic longitudinal cross-sectional view from the position of the dotted line in FIG. 6 along the upper surface side to the lower surface of the carrier tray.
  • the carrier plate body 200 includes a plurality of grooves 204 on the inner side wall below the step, and the plurality of grooves are used for detachably fixing a plurality of supporting blocks 202 on the side wall.
  • the groove 204 may be T-shaped or right-angled.
  • the groove 204 is a right-angled shape.
  • the right-angle groove 204 includes a first portion 2041 extending to a certain depth along the thickness direction of the side wall and a second portion 2042 extending from the first portion 2041 along the vertical direction of the side wall to the lower surface side of the carrier plate.
  • the depth of the first part 2041 in the side wall along the thickness direction is greater than the depth 2042 of the second part in the horizontal direction, so the first part 2041 forms a mesa in the groove, and the mesa can support the supporting block.
  • FIG. 9 shows a schematic diagram of the structure of the support block 202 and when the support block 202 is installed in the groove 204 shown in FIG. 8, the structure shown in FIG. 10 is obtained.
  • the supporting block 202 is z-shaped and has three parts, the first part 2021, the second part 2022, and the third part 2023. These three parts are integrally formed and cannot be separated.
  • the first part 2021 is used to support the growth surface of the substrate and is a protrusion.
  • the first part of the protrusion extends from the inside of the side wall of the carrier plate body into the lateral hole.
  • the first part 2021 of the support block 202 is set lower than the carrier The lower surface side of the tray 202 or the same horizontal plane as the lower surface side of the carrier tray 202.
  • the first portion 2021 extends a certain length from the third portion 2023 to the center line of the counterbore.
  • the extending directions of the first portion 2021 and the second portion 2022 are parallel to the upper surface side and the lower surface side of the tray body.
  • the second part 2022 is installed in the first part 2041 of the groove 204 and is supported by the table in the first part 2041 of the groove, and is a protrusion.
  • the third part 2023 is used to connect the first part 2021 and the second part 2022, and the third part 2023 is embedded in the second part 2042 of the groove 204 extending in the vertical direction.
  • the carrier plate body 200, the supporting block 202, and the cover plate 204 may be made of the same material, and the material may be graphite or graphite coated with silicon carbide or silicon carbide on the surface. More preferably, the tray body 200, the support block 202 and the cover plate 204 described in this embodiment are made of silicon carbide material.
  • the one support block when the first part of the protrusion of any support block in the carrier tray is damaged, the one support block can be easily removed from the side wall in the counterbore of the carrier tray and replaced with a new one. As a result, the service life of the bearing plate body is prolonged and the use cost of the bearing plate is reduced.
  • Figure 11 provides a schematic longitudinal cross-sectional view from the upper surface side to the lower surface of the carrier plate.
  • the carrier plate body includes a number of grooves 204 on the inner side wall below the step as T-shaped grooves, including along the horizontal
  • the first portion 2041 extending from the first portion 2041 in the vertical direction to the lower surface side of the carrier tray, the first portion 2041 of the groove 204 extends along the circumferential direction of the side wall Having a size D1
  • the second portion 2042 extends along the circumferential direction of the sidewall and has a size D2.
  • the depth of the first portion 2041 of the groove in the horizontal direction is the same as the depth of the second portion 2042 in the horizontal direction.
  • the horizontal cross-section of the counterbore is circular as an example, then D1 and D2 are arc lengths, and the arc length is the average arc length.
  • D1 is greater than D2, so that the first portion 2041 of the T-shaped groove has a mesa for supporting the supporting block.
  • the D1 is less than 1/4 of the circumference of the inner wall of the counterbore. More preferably, the arc length of the arc-shaped edge is 1/5 to 1/10 or 1/10 to 1/20 of the circumferential length of the side wall.
  • the supporting plate body includes a plurality of supporting blocks that can be separately detached and installed.
  • the shape of the support block is shown in FIG. 12.
  • the support block 202 described in this embodiment has a first part 2021, a second part 2022, and a third part 2023. These three parts are integrally formed and cannot be separated.
  • the first part 2021 of the support block 202 is connected to the bottom of the third part 2023, and is a protrusion extending from the third part 2023 to the inside of the hole, and the protrusion is used to support the edge portion of the growth surface of the substrate.
  • the first part 2021 of the supporting block may be set to be lower than the lower surface side of the carrying tray 202 or the same level as the lower surface side of the carrying tray 202.
  • the second part 2022 is a protrusion, is installed in the first part 2041 of the groove shown in FIG. 11, and is supported by the table.
  • the horizontal cross-section of the counterbore is circular as an example, the second part has an arc-shaped edge, and the arc length of the arc-shaped edge is equal to the arc length of the first part of the groove.
  • the third portion 2023 extends along an extension direction perpendicular to the second portion 2022, that is, the second portion 2022 and the third portion 2023 are perpendicular to each other.
  • the second part 2022 and the third part 2023 have horizontal width dimensions D3 and D4, and preferably D3 and D4 are respectively equal to the dimensions D1 and D2 of the first part 2041 and the second part 2042 of the groove 204, so as to realize the second part of the support block.
  • One part and the second part can just match the groove, so that the second part 2022 and the third part 2023 of the support block can basically fill the inside of the groove.
  • the width dimensions D3 and D4 are the average arc lengths.
  • FIG. 13 provides a top view of the substrate 204 placed on the carrier tray. It can be seen from the figure that the first part 2021 of the plurality of support blocks extends from the third part 2023 to the center line of the counterbore and is connected to the lower surface side of the substrate 204 ( The growth surface) supports the substrate 204 in multiple contacts.
  • FIG. 14 is a schematic longitudinal cross-sectional view of the carrier tray shown in FIG. 13 after the substrate 204 and the cover 203 are placed.
  • the base plate 204 is supported by the first part 2021 of the supporting block 202, and the cover plate 203 is supported by the step 201 of the inner side wall.
  • the substrate 204 and the cover are placed in a manner that is not in contact, and a distance of no more than 1 cm can be left.
  • the one support block when the first part of the protrusion of any support block in the carrier tray is damaged, the one support block can be easily removed from the side wall in the counterbore of the carrier tray and replaced with a new one. As a result, the service life of the bearing plate body is prolonged and the use cost of the bearing plate is reduced.
  • a carrier plate 200 for growing a thin film on a substrate includes a carrier plate body 200, the body includes an upper surface side and a lower surface side, from the upper surface side through the lower surface side counterbore .
  • the carrier plate forms a step 201 on the side wall in the counterbore, and the table surface of the step 201 is substantially parallel to the upper surface side and the lower surface side.
  • the carrier tray 200 includes a plurality of separately detachable support blocks 202 as shown in FIG. 16, and the plurality of support blocks 202 have a Z-shaped structure.
  • a plurality of support blocks 202 includes a part that is suspended and supported by a step 201, and the other part extends along the side wall of the carrier body to the lower surface side in the counterbore.
  • the zigzag shape also includes a part of the side from the counterbore. The lower edge of the wall extends to the center line of the counterbore, and this part is used to support the growth surface of the substrate.
  • the number of the plurality of support blocks is specifically at least two, preferably at least four, and the shape and size of the preferred support blocks are consistent.
  • the supporting block has the following three parts, a first part 2021, a second part 2022, and a third part 2023. These three parts are integrally formed and cannot be separated.
  • the first part 2021 is a bump, which is used to support the growth surface of the substrate. When the substrate is installed, the first part 2021 is in contact with the growth surface of the substrate, and the multiple support blocks 202 are in contact with the growth surface of the substrate through multiple first portions 2021. .
  • the first part 2021 extends from the inner side wall of the bearing tray to the inside of the counterbore, and preferably extends a certain length horizontally in the direction of the centerline of the counterbore.
  • the support block 202 has a second part 2022, and the second part 2022 is a protrusion with a horizontal width and a longitudinal thickness.
  • the supporting block 202 is supported by abutting one side of the second portion 2022 with the horizontal plane of the step 201 on the inner side wall of the supporting tray.
  • the support block 202 also has a third part 2023, and the third part 2023 connects the first part 2021 and the second part 2022.
  • the third portion 2023 is attached to the side wall under the step in the counterbore.
  • the second part 2022 has a larger horizontal width than the third part 2023, so as to ensure that the second part has a side that is attached to the step of the carrier plate to form a support.
  • the second part 2022 or the third part 2023 can form a closed ring structure.
  • the second part 2022 and the third part 2023 form a closed ring structure.
  • a plurality of support blocks 202 of the same size are installed together on the steps in the counterbore.
  • FIG. 19 is a schematic cross-sectional view cut along the dotted line shown in FIG. 17, the support block 202 is suspended on the step 201 through the protrusion of the second part 2022, the third part 2023 of the support block is below the counterbore step
  • the sidewalls of the supporting block are attached to each other, and the first part 2021 of the support block is located on the lower surface side of the counterbore in the bearing plate and extends from the edge sidewall side of the lower surface side of the bearing plate to the centerline.
  • the substrate 204 and the cover 203 are installed in the counterbore in the susceptor, the substrate 204 is placed at the bottom of the counterbore, and the surface of the substrate 204 exposed from the lower surface of the susceptor is used for The surface on which the film is grown, and the edge of the film growth surface is supported by the first portions 2021 of the plurality of support blocks.
  • the cover plate 203 is a column with a uniform cross section or a column with a large section and a small section.
  • the cover plate usually used for sapphire surface growth is a column with a large section and a small section.
  • the horizontal section of the column body is large in the upper part and smaller in the lower part to have a step structure on the outer side wall, and the step is formed around the side wall.
  • the step 201 in the counterbore can form a suspended support for the second part 2022 of the support block, and the step on the outer side wall of the cover plate and the step 201 in the counterbore can form a clamping for the second part 2022 of the support block,
  • the support block 202 is fixed.
  • the one support block when the first part of the protrusion of any support block in the carrier tray is damaged, the one support block can be easily removed from the step in the counterbore of the carrier tray and replaced with a new one. A support block, thereby prolonging the service life of the bearing plate body, and reducing the use cost of the bearing plate.
  • the structure diagram of a carrier plate shown in FIG. 20 with a substrate and a cover plate placed thereon this embodiment
  • the first part 2021 of the support block 202 is designed to extend relatively obliquely with respect to the growth surface of the substrate, and the edge of the substrate 204 and the inclined surface of the first part 2021 of the support block 202 are in line contact.
  • the contact area between the substrate 204 and the support block 202 is reduced, and the influence of the support block on the heat uniformity of the growth surface of the substrate 204 is reduced.
  • the first part 2021 of the supporting block 202 of the carrier tray shown in FIGS. 14 and 19 can also be designed to be inclined with respect to the growth surface of the substrate.
  • the surface of the first portion 2021 opposite to the growth surface of the substrate 204 has protrusions 2024, and the protrusions 2024 have arc-shaped surfaces.
  • the protrusion 2024 is in contact with the growth surface of the substrate 204 through the top of the arcuate surface, thereby reducing the contact area between the first portion 2021 and the growth surface of the substrate.
  • the structure of the supporting block 202 of this embodiment is shown in FIG. 22, and the number of the protrusions 2024 is one or more.
  • the support block structure shown in Figs. 23-24, the protrusion 2024 can be strip-shaped, block-shaped or tapered.
  • the first part and the second part of the supporting blocks of the implementations one to three may extend parallel to each other.
  • the first part of the support block is relatively parallel to the growth surface of the substrate.
  • the specific improved structure of this embodiment is shown in FIG. 25.
  • the extending direction of the first part 2021 of the support block 202 is parallel to the lower surface side of the carrier plate, but the first part
  • the surface of 2021 opposite to the growth surface of the substrate 204 is inclined, so that the way in which the support block 202 contacts the edge of the substrate growth surface is line contact.
  • the shape of the supporting block is shown in Figure 27.
  • This embodiment provides a MOCVD device, which includes a growth chamber.
  • the growth chamber includes the carrier plate described in any one of the preceding embodiments.
  • the carrier plate is mounted on a base, and the base is suspended in the growth chamber.
  • a substrate and a cover plate are installed in the counterbore of the susceptor, and the substrate has one side exposed from the lower surface of the susceptor for epitaxial growth of the film.
  • An electric heater is provided above the base to provide a heating source for the substrate.
  • the substrate of this embodiment is a sapphire substrate, and the sapphire substrate is fixed in a susceptor, and the bottom surface of the susceptor is exposed to contact with the reactive gas circulating on the bottom surface of the susceptor to obtain a growth film.
  • the material of the cover plate, the supporting plate body and the supporting block is silicon carbide.
  • the silicon carbide has a heat transfer function and conducts the heat of the heater to the sapphire substrate to realize uniform heating of the sapphire substrate.
  • the sapphire substrate can be used to grow a luminescent material layer of aluminum gallium indium nitrogen, aluminum gallium indium phosphorus or aluminum gallium arsenide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种用于基板上生长薄膜的承载盘,其包括:承载盘本体,本体包括相对的上表面侧和下表面侧,自上表面侧贯穿下表面侧的孔;孔侧的侧壁上具有多个凹槽,凹槽内具有台面;多个用于支撑基板的支撑块支撑在内侧壁上,并且可单独从承载盘本体上拆卸;每一个支撑块包括第一部分凸起,第一部分凸起自承载盘本体的侧壁侧向孔内部延伸,包括第二部分凸起,第二部分凸起插入到侧壁一个凹槽内并靠凹槽内的台面形成支撑,包括连接第一部分凸起和第二部分凸起的第三部分。通过每一个支撑块的一部分设计为安装入承载盘的沉孔内侧壁的凹槽上,无需额外的固定件,方便安装和拆卸,提高承载盘本体的使用寿命,降低生产成本。

Description

一种用于基板上生长薄膜的承载盘、生长装置和生长方法 技术领域
可运用于基板表面生长薄膜用的承载盘,该承载盘可运用于MOCVD设备中。
背景技术
MOCVD技术是以III族、II族元素的有机化合物和V、VI族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延获得所需薄膜,生长各种III-V主族、II-VI副族化合物半导体以及它们的多元固溶体的薄层单晶材料,被广泛应用于化合物半导体生产设备的行业,例如蓝色或紫外或红光或红外LED或激光器。
当通过MOCVD技术形成所需的薄膜时,一方面已知由反应性原料气体在基板表面上产生的表面反应非常复杂,在MOCVD技术中控制这些参数以形成所需的薄膜是非常关键的。另外一方面,为了保证薄膜生长质量,基板的承载结构设计也非常的关键。
图1提供了一种MOCVD的生长装置,生长装置内具有一个生长腔体100,腔体100内的顶部包括悬挂式基座101,基座101上可固定数个承载生长衬底的承载盘103。基座101包括边缘具有齿轮的旋转盘102,旋转盘102中央具有一个槽状结构或孔状结构,用于安装支撑柱104,支撑柱104用于悬挂该基座在腔体内的顶部,并且支撑柱104设置为可带动旋转盘102旋转。如图2所示,具体的旋转盘102的边缘具有齿轮,与承载盘103的齿轮相配合,以实现承载盘103可旋转。腔体的顶部还具有加热装置105,加热装置105为通电加热工作模式。
在腔体100内基座101下方的空间有流通的反应性气体,反应性气体流通至生长衬底的生长面获得外延生长薄膜,反应性气体通过气体流入管道106和流出管道107实现供给以及排出。
承载盘103的结构如图3-4所示,承载盘103包括贯穿两面侧的沉孔,沉孔内的 底部安装生长衬底111,上部安装传热器110。传热器110具有一表面与生长衬底的生长面的相反面相对,并保持一微小的距离,实现传热器对生长衬底的表面进行均匀热传递。沉孔内的侧壁上具有一台阶1031,台阶1031用于支撑传热器110的边缘,传热器110为一“凸”型的块状,该传热器110可以从承载盘的上表面侧自由取出。承载盘103底面侧一体设置有数个支撑块109,通常至少三个或四个或五个,并向沉孔的底部中央延伸,该支撑块支撑在生长衬底的生长面的边缘。由于支撑块与生长衬底之间存在热传导,会影响生长衬底的受热均匀性,因此该支撑块应当设计为尺寸尽量小,且与生长面的接触面积应当尽量小。
承载盘、传热器和支撑块一般为石墨、表面涂有碳化硅的石墨或碳化硅制成,其中小尺寸的支撑块由于长时间用于支撑生长衬底,并且在取放过程或生长过程中经受多次碰撞,支撑块容易发生断裂,特别的是碳化硅,碳化硅易脆,承载盘103需要经常更换,使用周期短,生产成本高。
现有技术中提出了采用螺丝钉将支撑块固定在承载盘的底部,以便于更换,然而螺丝钉属于额外的固定件,更换不方便,且需要选择与承载盘、传热器以及支撑块为同样的材质,同样易损。也有现有技术提出了采用粘接剂,然而MOCVD的生长条件为至少600°以上,难以寻找到性能稳定且粘接性好的粘接剂。
发明概述
技术问题
问题的解决方案
技术解决方案
为解决上述技术问题,本发明提供如下一种用于基板上生长薄膜的承载盘,其包括:
承载盘本体,本体包括相对的上表面侧和下表面侧,自上表面侧贯穿下表面侧的孔;
孔侧的侧壁上具有多个凹槽,凹槽内具有台面;
多个用于支撑基板的支撑块支撑在内侧壁上,并且可单独从承载盘本体上拆卸;每一个支撑块包括第一部分凸起,第一部分凸起自承载盘本体的侧壁侧向孔内部延伸,包括第二部分凸起,第二部分凸起插入到侧壁一个凹槽内并靠凹槽 内的台面形成支撑,包括连接第一部分凸起和第二部分凸起的第三部分。
优选的,所述的凹槽内的台面沿着沉孔内侧壁周向延伸或沿着侧壁厚度方向延伸。
优选的,所述的凹槽延伸至承载盘的下表面侧,以使第三部分连接部分嵌入凹槽内。
优选的,所述的支撑块的第二部分凸起和第三部分充满凹槽的空间。
优选的,所述的凹槽为T字型凹槽或直角型凹槽,所述支撑块的第一部分凸起与第二部分凸起互相垂直延伸。
优选的,所述多个支撑块的第一部分凸起具有一弧形边缘。
优选的,所述的弧形边缘的弧长为小于1/4的沉孔内侧壁的圆周周长。
优选的,每个支撑块的第一部分凸起间隔安装在侧壁的凹槽内。
优选的,所述的孔为沉孔,所述的凹槽上方的侧壁上还有一个水平台阶,水平台阶的位置相对于凹槽更靠近承载盘的上表面侧。
本发明同时提供如下一种用于基板上生长薄膜用的承载盘,其包括:
承载盘本体,本体包括相对的上表面侧和下表面侧,自上表面侧贯穿下表面侧的沉孔,多个Z字型的支撑块支撑在内侧壁上,并可单独从承载盘本体上拆卸;每一个支撑块包括第一部分凸起自承载盘本体的侧壁侧向沉孔内延伸,包括第二部分凸起,第二部分凸起被支撑在沉孔内的台阶上。
优选的,所述支撑块的第二部分凸起被支持在台阶上,安装基板时,基板上方具有一盖板,支撑块的第二部分凸起可被夹持在台阶和盖板之间以形成支撑。
优选的,多个支撑块的第二部分支撑在台阶上形成封闭的环状。
优选的,所述支撑块还包括第三部分,第三部分连接第一部分和第二部分,所述多个支撑块的第三部分在侧壁上形成贴合侧壁的封闭的环状。
优选的,所述的多个支撑块为至少4个。
优选的,所述的承载盘本体的材料和支撑块的材料相同。
优选的,所述支撑块的第一部分凸起为块状,第一部分凸起与支撑基板生长面相对的面被设置成相对承载盘下表面侧倾斜。
优选的,所述支撑块的第一部分凸起与支撑基板生长面相对的面具有弧形或尖 锥形或锥形台。
优选的,所述的承载盘本体的材料和支撑块的材料为石墨、碳化硅或表面涂有碳化硅的石墨。
优选的,自承载盘的上表面侧可放置生长薄膜用的基板,并使基板自承载盘下表面侧暴露的一面的边缘被多个所述的支撑块的第一部分凸起支撑。
优选的,沉孔的内侧壁包括台阶,自承载盘的上表面侧可依次放置生长薄膜用的基板和盖板,盖板可被固定在台阶上。
优选的,所述的盖板为传热块,盖板可被固定在台阶上,并与基板间隔一定的距离。
本发明同时提供如下一种用于基板上生长薄膜的装置,其包括生长腔体,生长腔体内包括前述所述的承载盘,承载盘被可拆卸的安装在基座上,基座被悬挂在生长腔体内的顶部,承载盘的沉孔内安装有基板和盖板,基板具有一面侧在承载盘的下表面侧被暴露。
优选的,所述的基板为蓝宝石或锗或砷化镓或硅或氮化镓或者是这些基板的表面已经有额外的膜层。
优选的,所述的基座下方具有反应气体流通腔体。
优选的,所述的装置为MOCVD装置。
本发明同时提供如下一种用于基板上生长薄膜的方法,其包括使用前述的用于基板上生长薄膜的装置生长薄膜。
发明的有益效果
有益效果
(1)由于传统的支撑块与承载盘是一体连接,支撑块用于支撑基板的支撑块经过反复的磕碰、撞击容易被损坏,导致承载盘的更换周期短,使用成本高。本发明提供的承载盘能够对多个支撑块可拆卸式的支撑,方便更换,由此提高承载盘本体的使用寿命,降低生产成本。
(2)通过每一个支撑块的一部分设计为安装入承载盘的沉孔内侧壁的凹槽内台面上或悬挂至孔内侧壁的台阶上,无需额外的固定件,方便安装和拆卸。
(3)为了降低支撑块对基板的受热均匀性影响,可减少支撑块与基板接触的 面积,如支撑块与基板生长面相对的面为相对倾斜的或支撑块的第一部分凸起与基板生长面相对倾斜的延伸,从而降低支撑块对基板生长面的受热均匀性的影响或者可以设计至少一个凸起,凸起的表面形状为弧形或锥形台或尖锥或条状等。
对附图的简要说明
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1是背景技术中提到的一种MOCVD生长装置结构示意图。
图2是从图1中MOCVD生长装置的生长腔体内基座的下表面侧观察的结构示意图。
图3是图1的一种MOCVD生长装置中使用的承载盘结构示意图。
图4是图3所示的承载盘内安装有生长基板和盖板的结构示意图。
图5是图4的剖面示意图。
图6是实施例一的承载盘结构示意图。
图7是图6所示的承载盘沿虚线位置的剖面示意图。
图8是实施例一的承载盘的剖面示意图。
图9是实施例一的支撑块的结构示意图。
图10是实施例一的承载盘的截面示意图。
图11是实施例二的承载盘的剖面示意图。
图12是实施例二的支撑块的结构示意图。
图13是实施例二的承载盘的结构示意图。
图14是实施例二的承载盘的截面示意图。
图15是实施例三的承载盘本体的截面示意图。
图16是实施例三的承载盘的截面示意图。
图17-18是实施例三的支撑块的结构示意图。
图19是实施例三的承载盘的截面示意图。
图20是实施例四的承载盘的截面示意图。
图21是实施例五的承载盘的截面示意图。
图22是实施例五的支撑块的结构示意图。
图23-24是实施例六的支撑块的截面示意图。
图25是实施例七的承载盘的截面示意图。
图26是实施例七的支撑块的结构示意图。
发明实施例
本发明的实施方式
下面结合示意图对本发明的承载盘进行详细的描述,在进一步介绍本发明之前,应当理解,由于可以对特定的实施例进行改造,因此,本发明并不限于下述的特定实施例。还应当理解,由于本发明的范围只由所附权利要求限定,因此所采用的实施例只是介绍性的,而不是限制性的。除非另有说明,否则这里所用的所有技术和科学用语与本领域的普通技术人员所普遍理解的意义相同。
在以下的说明内容中,类似或相同的组件将以相同的编号来表示。
实施例一
本实施例提供一种用于基板上生长薄膜的承载盘,更佳的适用于高温条件下生长薄膜。所述的高温条件通常为600℃以上的生长条件,具体的,但不限制用于MOCVD生长装置生长氮化镓基薄膜、铝镓铟磷基薄膜、铝镓砷基薄膜、砷化镓基薄膜。生长的薄膜可以用于但不限于如下类型的器件,如LED发光器件或激光器件或太阳能电池的器件。
所述的生长薄膜用的基板优选为蓝宝石或锗基或砷化镓基或硅基或氮化镓基衬底或者是这些衬底表面已经有额外的膜层。
具体,如图6所示的一种用于基板上生长薄膜的承载盘。承载盘包括承载盘本体200和多个可单独拆卸的支撑块202,所述的承载盘本体200上包括上表面侧和下表面侧,自上表面侧贯穿至下表面侧的沉孔。其中图6所提供的是从承载盘200上表面侧俯视的结构示意图,所述的支撑块202固定在沉孔内的侧壁上。
图7提供了自承载盘本体200的上表面侧至下表面的纵向截面示意图,在承载盘的沉孔中从上表面侧依次放置有基板204和盖板203,所述的基板204具有两面侧 ,一面侧与盖板相对,基板204的另一面侧从承载盘的下表面侧暴露,以用于薄膜生长。本实施例所述的基板204可具体为蓝宝石衬底。
多个可单独拆卸的支撑块202与基板下表面侧的边缘接触实现支撑。
所述的沉孔内的侧壁上具有一台阶201,台阶201用于支撑和限位盖板203。盖板203具体的可以是一个柱状,盖板的底部边缘被支撑在台阶201上。或者如图7所示,盖板通常为两个尺寸不一致的柱状一体成型,盖板在外侧壁上形成一台阶。放置盖板在沉孔中时,盖板的外侧壁上的台阶被支撑在沉孔内的侧壁上的台阶201上。台阶的位置相对凹槽更靠近承载盘的上表面侧。
MOCVD生长装置中,所述的盖板可以为传热器,将外部的加热器件产生的热均匀传递至基板,使得基板在生长薄膜过程中的生长面均匀受热,固定盖板与基板之间可具有一定的间隙。
图8为从图6的虚线位置沿着承载盘的上表面侧至下表面的纵向截面示意图。所述的承载盘本体200在台阶下方的内侧壁上包括数个凹槽204,数个凹槽用于多个支撑块202可单独拆卸的固定在侧壁上。凹槽内至少具有一台面,用于使支撑块的一部分被嵌入凹槽内并被支撑。具体的,所述的凹槽204可以是T字型或直角型。
如图8所示,凹槽204为直角型。直角型凹槽204包括沿着侧壁的厚度方向延伸一定深度的第一部分2041以及自第一部分2041沿着侧壁竖直方向延伸至承载盘的下表面侧的第二部分2042,凹槽204的第一部分2041在侧壁内沿着厚度方向深入的深度大于第二部分在水平方向的深度2042,由此第一部分2041在凹槽内形成一台面,该台面能够对支撑块形成支撑。
图9所示的是支撑块202的结构示意图以及将支撑块202安装至如图8所示的凹槽204内时,获得如图10所示的结构。在本实施例中所述的支撑块202为z字型,具有三个部分,第一部分2021、第二部分2022和第三部分2023,这三部分为一体形成,不可拆分。第一部分2021用于支撑基板的生长面,为一凸起,第一部分凸起自承载盘本体的侧壁侧向孔内部延伸,可选的,支撑块202的第一部分2021被设置成低于承载盘202的下表面侧或与承载盘202的下表面侧同一水平面。具体的,第一部分2021自第三部分2023向沉孔的中心线延伸一定的长度。优选的 ,第一部分2021与第二部分2022延伸的方向平行于承载盘本体的上表面侧与下表面侧。
所述的第二部分2022被安装在凹槽204的第一部分2041中,并被凹槽的第一部分2041内的台面所支撑,为一凸起。
第三部分2023用于连接第一部分2021与第二部分2022,第三部分2023被嵌入凹槽204在竖直方向延伸的第二部分2042中。
所述的承载盘本体200、支撑块202以及盖板204可为同一材质,所述的材质具体可以是石墨或石墨表面涂有碳化硅或碳化硅。更优选的,本实施例所述的承载盘本体200、支撑块202以及盖板204为碳化硅材料制成。
根据本发明的设计,当承载盘内的任意一个支撑块的第一部分凸起被损坏时,所述的一个支撑块可以方便的从承载盘的沉孔内的侧壁上取下,更换成新的一个支撑块,由此承载盘本体的使用寿命延长,承载盘的使用成本降低。
实施例二
在实施例一的基础上本实施例提供一种替代方案,对承载盘本体内侧壁上的凹槽以及支撑块的形状进行改变。图11提供了自承载盘的上表面侧至下表面的纵向剖面示意图,所述的承载盘本体在台阶下方的内侧壁上包括的数个凹槽204为T字型凹槽,包括沿着水平方向的侧壁表面周向延伸的第一部分2041以及自第一部分2041沿着竖直方向延伸至承载盘的下表面侧的第二部分2042,凹槽204的第一部分2041沿着侧壁周向延伸具有尺寸D1,第二部分2042沿着侧壁周向延伸具有尺寸D2。可选的,凹槽的第一部分2041在水平方向的深度与第二部分2042在水平方向的深度一致。本实施例以沉孔的水平截面是圆形为例,则D1和D2为弧长,所述的弧长为平均弧长。本实施例中D1大于D2,由此在T字型凹槽第一部分2041具有台面,以用于对支撑块形成支撑。所述的D1为小于1/4的沉孔内侧壁的圆周周长。更优选的,所述的弧形边缘的弧长为侧壁的圆周周长的1/5~1/10或1/10~1/20。
承载盘本体包括多个可单独拆卸和安装的多个支撑块。支撑块的形状如图12所示,在本实施例中所述的支撑块202具有第一部分2021、第二部分2022和第三部分2023,这三部分为一体形成,不可拆分。支撑块202的第一部分2021连接在第 三部分2023的底部,为相对于自第三部分2023向孔内部延伸的一块凸起,该凸起用于支撑基板的生长面的边缘部分。支撑块的第一部分2021可被设置成低于承载盘202的下表面侧或与承载盘202的下表面侧同一水平面。
第二部分2022为凸起,被安装在图11所示的凹槽的第一部分2041内,并依靠台面被支撑。本实施例以沉孔的水平截面是圆形为例,第二部分具有一弧形边缘,弧形边缘的弧长等于凹槽的第一部分的弧长。
第三部分2023沿着垂直于第二部分2022的延伸方向延伸,即第二部分2022和第三部分2023相互垂直。第二部分2022和第三部分2023具有水平的宽度尺寸D3和D4,优选的D3和D4分别与凹槽204的第一部分2041和第二部分2042的尺寸D1和D2相等,以实现支撑块的第一部分和第二部分能够刚好与凹槽匹配,实现支撑块的第二部分2022和第三部分2023可基本充满凹槽的内部。以沉孔的水平截面是圆形为例,宽度尺寸D3和D4则为平均的弧长。
图13提供了承载盘上放置基板204的俯视图,从图中可以看出,多个支撑块的第一部分2021自第三部分2023向沉孔的中心线延伸,并与基板204的下表面侧(生长面)以多处接触的方式以支撑基板204。
图14是图13所示意的承载盘中放置基板204和盖板203之后纵向截面示意图。其中基板204被支撑块202的第一部分2021所支撑,盖板203被内侧壁的台阶201所支撑。基板204与盖板之间不是接触的方式被放置,可以留有不高于1厘米的距离。
根据本发明的设计,当承载盘内的任意一个支撑块的第一部分凸起被损坏时,所述的一个支撑块可以方便的从承载盘的沉孔内的侧壁上取下,更换成新的一个支撑块,由此承载盘本体的使用寿命延长,承载盘的使用成本降低。
实施例三
不同于实施例一和实施例二,本实施例提供另外一种可拆卸的支撑块的设计。如图15所示,用于基板上生长薄膜的承载盘200,所述的承载盘包括承载盘本体200,本体上包括上表面侧和下表面侧,自上表面侧贯穿下表面侧的沉孔。承载盘在沉孔内的侧壁上形成台阶201,台阶201的台面基本平行于上表面侧和下表面侧。
所述的承载盘200包括如图16所示的多个可单独拆卸的支撑块202,多个支撑块202为Z字型结构。如图17所示,多个支撑块202包括一部分被台阶201悬挂支撑,另一部分沿着承载体的本体侧壁延伸至沉孔内的下表面侧,Z字型还包括一部分自沉孔内的侧壁下边缘向沉孔的中心线延伸,该部分用于支撑基板的生长面。多个支撑块的数量具体是至少两个,优选的是至少四个,优选的支撑块的形状和大小尺寸是一致的。
具体的所述的支撑块具有如下三个部分,第一部分2021、第二部分2022和第三部分2023,这三部分为一体形成,不可拆分。第一部分2021为凸起,用于支撑基板的生长面,基板被安装时,第一部分2021与基板的生长面相接触,多个支撑块202通过多个第一部分2021与基板的生长面形成多处接触。支撑块被安装在沉孔内时,第一部分2021自承载盘内的内侧壁侧向沉孔内部延伸,优选向沉孔的中心线方向水平延伸一定的长度。
支撑块202具有第二部分2022,第二部分2022为一凸起,具有水平的宽度和纵向的厚度。支撑块202通过第二部分2022的一面侧与承载盘内侧壁上的台阶201的水平面贴合实现被支撑。
支撑块202还具有第三部分2023,第三部分2023连接第一部分2021和第二部分2022。支撑块202安装在沉孔内时,第三部分2023与沉孔内的台阶下面的侧壁贴合。所述的第二部分2022相对于第三部分2023具有水平的宽度更大的值,以保证第二部分具有一面与承载盘的台阶贴合形成支撑。
多个相同尺寸的支撑块202组合在一起时,至少第二部分2022或第三部分2023可形成封闭的环状结构。本实施例中,如图18所示的结构示意图,多个相同尺寸的支撑块202组合在一起时第二部分2022和第三部分2023形成封闭的环状结构。多个相同尺寸的支撑块202一起被安装在沉孔内的台阶上。
图19所示的是沿着图17所示的虚线位置切割的剖面示意图,支撑块202通过第二部分2022的凸起被悬挂在台阶201上,支撑块的第三部分2023与沉孔台阶下面的侧壁贴合,支撑块的第一部分2021位于承载盘内沉孔内的下表面侧并从承载盘下表面侧的边缘侧壁侧向中心线延伸。
另外如图19所示,当在承载盘内的沉孔内安装基板204和盖板203时,基板204 被放置在沉孔的底部,基板204从承载盘的下表面侧暴露的一面为用于生长薄膜的面,该薄膜生长面的边缘被多个支撑块的第一部分2021支撑。
所述的盖板203为截面大小一致的柱体或截面为上大下小的柱体,在MOCVD的生长装置中,通常用于蓝宝石表面生长用的盖板为截面为上大下小的柱体,柱体的水平截面为上大下小以在外侧壁上具有一台阶结构,该台阶为环绕侧壁形成。安装盖板203时,盖板203外侧壁的台阶被支撑在支撑块的第二部分2022上。由此,沉孔内的台阶201可对支撑块的第二部分2022形成悬挂式支撑,以及盖板外侧壁的台阶与沉孔内的台阶201对支撑块的第二部分2022可形成夹持,实现对支撑块202的固定。
根据本发明的设计,当承载盘内的任意一个支撑块的第一部分凸起被损坏时,所述的一个支撑块可以方便的从承载盘的沉孔内的台阶上取下,更换成新的一个支撑块,由此承载盘本体的使用寿命延长,承载盘的使用成本降低。
实施例四
作为实施例一至三的任一项实施例的替换方式,相对于如图8所示的承载盘的一种改变,图20所示的一个承载盘放置有基板和盖板的结构示意图,本实施例将支撑块202的第一部分2021设计为相对基板生长面为相对倾斜的延伸,基板204的边缘与支撑块202的第一部分2021的倾斜面为线接触。由此减少基板204与支撑块202之间的接触面积,减少支撑块对基板204的生长面的受热均匀性影响。同样的,图14以及图19所示承载盘的支撑块202的第一部分2021也可以设计为相对于基板生长面为倾斜的方式。
实施例五
作为实施例四的一种改进,如图21所示的承载盘200,第一部分2021与基板204生长面相对的面上具有凸起2024,凸起2024具有弧形面。凸起2024通过弧形面的顶部与基板204的生长面之间接触,由此减少第一部分2021与基板生长面之间的接触面积。本实施例的支撑块202结构如图22所示,凸起2024的数量为一个或多个。
实施例六
作为实施五的支撑块的一种改进,如图23-24所示的支撑块结构,凸起2024可 以是条状或块状或锥形。
实施例七
所述的实施一至三的支撑块的第一部分与第二部分可以是相互平行的延伸。安装时,支撑块的第一部分与基板生长面是相对平行的。作为实施例一至三的任一项实施例的替换方式,本实施例的具体改进结构如图25所示,支撑块202的第一部分2021的延伸方向与承载盘的下表面侧平行,但第一部分2021与基板204生长面相对的面为倾斜的,由此构成支撑块202与基板生长面的边缘接触的方式为线接触。由此减少基板204与支撑块202之间的接触面积,减少支撑块对基板204的生长面的受热均匀性影响。所述的支撑块的形状如图27所示。
实施例八
本实施例提供一种MOCVD装置,其包括生长腔体,生长腔体内包括前述任一项实施例中所述的承载盘,承载盘被安装在基座上,基座被悬挂在生长腔体内的顶部,承载盘的沉孔内安装有基板和盖板,基板具有一面侧自承载盘的下表面侧被暴露用于外延生长薄膜。基座的上方具有一电加热器,提供基板的加热源。基座的下方具有一反应性气体流通空间,腔体内包括气体流入通道和气体流出通道。本实施例的基板为蓝宝石衬底,蓝宝石衬底被固定在承载盘内,并通过承载盘的下表面侧被暴露与基座下表面流通的反应性气体接触获得生长薄膜。盖板、承载盘本体以及支撑块的材料为碳化硅,碳化硅具有传热功能,将加热器的热传导至蓝宝石衬底,实现蓝宝石衬底的均匀受热。作为一种实施方式,蓝宝石衬底上可用于生长铝镓铟氮、铝镓铟磷或铝镓砷的发光材料层。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (26)

  1. 一种用于基板上生长薄膜的承载盘,其包括:
    承载盘本体,本体包括相对的上表面侧和下表面侧,自上表面侧贯穿下表面侧的孔;
    孔内的侧壁上具有多个凹槽,凹槽内具有台面;
    多个用于支撑基板的支撑块支撑在内侧壁上,并且可单独从承载盘本体上拆卸;每一个支撑块包括第一部分凸起,第一部分凸起自承载盘本体孔内的侧壁侧向孔内部延伸,包括第二部分凸起,第二部分凸起插入到侧壁一个凹槽内并靠凹槽内的台面形成支撑,包括连接第一部分凸起和第二部分凸起的第三部分。
  2. 根据权利要求1所述的用于基板上生长薄膜的承载盘,其特征在于:所述的凹槽内的台面沿着沉孔内侧壁周向延伸或沿着侧壁厚度方向延伸。
  3. 根据权利要求1所述的用于基板上生长薄膜的承载盘,其特征在于:所述的凹槽延伸至承载盘的下表面侧,以使第三部分连接部分嵌入凹槽内。
  4. 根据权利要求3所述的用于基板上生长薄膜的承载盘,其特征在于:所述的支撑块的第二部分凸起和第三部分充满凹槽的空间。
  5. 根据权利要求1所述的用于基板上的生长薄膜的承载盘,其特征在于:所述的凹槽为T字型凹槽或直角型凹槽,所述支撑块的第一部分凸起与第二部分凸起互相垂直延伸。
  6. 根据权利要求1所述的用于基板上生长薄膜的承载盘,其特征在于:所述多个支撑块的第一部分凸起具有一弧形边缘。
  7. 根据权利要求1所述的用于基板上生长的薄膜的承载盘,其特征在于:所述的弧形边缘的弧长为小于1/4的沉孔内侧壁的圆周周长。
  8. 根据权利要求1所述的用于基板上生长薄膜的承载盘,其特征在于:每个支撑块的第一部分凸起间隔安装在侧壁的凹槽内。
  9. 根据权利要求1所述的用于基板上的生长薄膜的承载盘,其特征在 于:所述的孔为沉孔,所述的凹槽上方的侧壁上还有一个水平台阶,水平台阶的位置相对于凹槽更靠近承载盘的上表面侧。
  10. 一种用于基板上生长薄膜用的承载盘,其包括:
    承载盘本体,本体包括相对的上表面侧和下表面侧,自上表面侧贯穿下表面侧的沉孔,多个Z字型的支撑块支撑在内侧壁上,并可单独从承载盘本体上拆卸;每一个支撑块包括第一部分凸起自承载盘本体的侧壁侧向沉孔内延伸,包括第二部分凸起,第二部分凸起被支撑在沉孔内的台阶上。
  11. 根据权利要求10所述的用于基板上生长薄膜的承载盘,其特征在于:所述支撑块的第二部分凸起被支持在台阶上,安装基板时,基板上方具有一盖板,支撑块的第二部分凸起可被夹持在台阶和盖板之间以形成支撑。
  12. 根据权利要求10或11所述的用于基板上生长薄膜的承载盘,其特征在于:多个支撑块的第二部分支撑在台阶上形成封闭的环状。
  13. 根据权利要求10所述的用于基板上生长薄膜的承载盘,其特征在于:所述支撑块还包括第三部分,第三部分连接第一部分和第二部分,所述多个支撑块的第三部分在侧壁上形成贴合侧壁的封闭的环状。
  14. 根据权利要求1或10所述的用于基板上生长薄膜的承载盘,其特征在于:所述的多个支撑块为至少4个。
  15. 根据权利要求1或10所述的用于基板上生长薄膜的承载盘,其特征在于:所述的承载盘本体的材料和支撑块的材料相同。
  16. 根据权利要求1或10所述的用于基板上生长薄膜的承载盘,其特征在于:所述支撑块的第一部分凸起为块状,第一部分凸起具有与支撑基板生长面相对的面为相对倾斜。
  17. 根据权利要求16所述的用于基板上生长薄膜的承载盘,其特征在于:所述支撑块的第一部分凸起在与支撑基板生长面相对的面上具有弧形或尖锥形或锥形台。
  18. 根据权利要求1或10所述的用于基板上生长薄膜的承载盘,其特征在于:所述的承载盘本体的材料和支撑块的材料为石墨、碳化硅或表面涂有碳化硅的石墨。
  19. 根据权利要求1或10所述的用于基板上生长薄膜的承载盘,其特征在于:自承载盘的上表面侧可放置生长薄膜用的基板,并使基板自承载盘下表面侧暴露的一面的边缘被多个所述的支撑块的第一部分凸起支撑。
  20. 根据权利要求1或10所述的用于基板上生长薄膜的承载盘,其特征在于:沉孔的内侧壁包括台阶,自承载盘的上表面侧可依次放置生长薄膜用的基板和盖板,盖板可被固定在台阶上。
  21. 根据权利要求20所述的用于基板上生长薄膜的承载盘,其特征在于:所述的盖板为传热块,盖板可被固定在台阶上,并与基板间隔一定的距离。
  22. 一种用于基板上生长薄膜的装置,其包括生长腔体,生长腔体内包括前述权利要求1-21任一项权利要求所述的承载盘,承载盘被可拆卸的安装在基座上,基座被悬挂在生长腔体内的顶部,承载盘的沉孔内安装有基板和盖板,基板具有一面侧在承载盘的下表面侧被暴露。
  23. 根据权利要求22所述的一种用于基板上生长薄膜的装置,其特征在于:所述的基座下方具有反应气体流通腔体。
  24. 根据权利要求22所述的一种用于基板上生长薄膜的装置,其特征在于:所述的基板为蓝宝石或锗或砷化镓或硅或氮化镓或者是这些基板之一的表面已经有额外的膜层。
  25. 根据权利要求22所述的一种用于基板上生长薄膜的装置,其特征在于:所述的装置为MOCVD装置。
  26. 一种用于基板上生长薄膜的方法,其包括使用前述权利要求22~25的装置生长薄膜。
PCT/CN2019/087628 2019-05-20 2019-05-20 一种用于基板上生长薄膜的承载盘、生长装置和生长方法 WO2020232602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980004724.4A CN111183248A (zh) 2019-05-20 2019-05-20 一种用于基板上生长薄膜的承载盘、生长装置和生长方法
PCT/CN2019/087628 WO2020232602A1 (zh) 2019-05-20 2019-05-20 一种用于基板上生长薄膜的承载盘、生长装置和生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087628 WO2020232602A1 (zh) 2019-05-20 2019-05-20 一种用于基板上生长薄膜的承载盘、生长装置和生长方法

Publications (1)

Publication Number Publication Date
WO2020232602A1 true WO2020232602A1 (zh) 2020-11-26

Family

ID=70622042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087628 WO2020232602A1 (zh) 2019-05-20 2019-05-20 一种用于基板上生长薄膜的承载盘、生长装置和生长方法

Country Status (2)

Country Link
CN (1) CN111183248A (zh)
WO (1) WO2020232602A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686857A (zh) * 2020-12-30 2022-07-01 中微半导体设备(上海)股份有限公司 一种基片托盘及其所在的反应器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686858B (zh) * 2020-12-30 2024-03-12 中微半导体设备(上海)股份有限公司 一种薄膜生长系统以及基片托盘和载环组件
CN113088929B (zh) * 2021-03-01 2022-05-20 中山德华芯片技术有限公司 一种mocvd反应室及其应用
CN113846375B (zh) * 2021-09-24 2022-11-04 深圳市中科光芯半导体科技有限公司 子载盘及有机金属气相沉积设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770972A (zh) * 2008-12-29 2010-07-07 中芯国际集成电路制造(上海)有限公司 工艺盘
JP2011018662A (ja) * 2009-07-07 2011-01-27 Panasonic Corp 気相成長装置
CN103811401A (zh) * 2014-03-11 2014-05-21 上海华虹宏力半导体制造有限公司 晶圆托架及包含该晶圆托架的工艺腔室
JP2014212245A (ja) * 2013-04-19 2014-11-13 住友電気工業株式会社 基板固定冶具およびエピタキシャル基板
CN106033738A (zh) * 2015-02-12 2016-10-19 汉民科技股份有限公司 晶圆保持器
CN107658243A (zh) * 2016-07-26 2018-02-02 三星电子株式会社 用于在第一衬底上制造第二衬底且去除第一衬底的设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770972A (zh) * 2008-12-29 2010-07-07 中芯国际集成电路制造(上海)有限公司 工艺盘
JP2011018662A (ja) * 2009-07-07 2011-01-27 Panasonic Corp 気相成長装置
JP2014212245A (ja) * 2013-04-19 2014-11-13 住友電気工業株式会社 基板固定冶具およびエピタキシャル基板
CN103811401A (zh) * 2014-03-11 2014-05-21 上海华虹宏力半导体制造有限公司 晶圆托架及包含该晶圆托架的工艺腔室
CN106033738A (zh) * 2015-02-12 2016-10-19 汉民科技股份有限公司 晶圆保持器
CN107658243A (zh) * 2016-07-26 2018-02-02 三星电子株式会社 用于在第一衬底上制造第二衬底且去除第一衬底的设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686857A (zh) * 2020-12-30 2022-07-01 中微半导体设备(上海)股份有限公司 一种基片托盘及其所在的反应器

Also Published As

Publication number Publication date
CN111183248A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2020232602A1 (zh) 一种用于基板上生长薄膜的承载盘、生长装置和生长方法
TWI590300B (zh) Wafer tray for MOCVD reaction system
KR20160003441U (ko) 31 포켓 구성을 갖는 웨이퍼 캐리어
JP5394188B2 (ja) 化学気相蒸着装置
EP1720200B1 (en) Epitaxially growing equipment
JP6606403B2 (ja) シャワープレート、気相成長装置および気相成長方法
KR20160003442U (ko) 14 포켓 구성을 갖는 웨이퍼 캐리어
CN110129768B (zh) 一种用于金属有机物化学气相沉积的承载盘
CN105845798B (zh) 无翘曲ⅲ族氮化物复合衬底的制备方法和衬底放置装置
JP2010232624A (ja) Iii族窒化物半導体の気相成長装置
US20090194018A1 (en) Apparatus and method for manufacturing epitaxial wafer
KR100956221B1 (ko) 화학 기상 증착 장치용 서셉터
JP2005056984A (ja) 気相成長装置及び気相成長方法
US20150035123A1 (en) Curvature compensated substrate and method of forming same
US8679254B2 (en) Vapor phase epitaxy apparatus of group III nitride semiconductor
TWM597506U (zh) 具有多區域噴射器塊的化學氣相沉積設備
CN105568371A (zh) 一种改善硅基氮化物各圈波长均值的石墨盘
JP3376809B2 (ja) 有機金属気相成長装置
JP2013026358A (ja) シャワープレート及び気相成長装置
CN114540947B (zh) 工艺腔室和半导体工艺设备
CN106801222B (zh) 一种晶片托盘及mocvd系统
KR100835073B1 (ko) 화학 기상 증착 장치용 서셉터
CN218059299U (zh) 一种碳化硅外延生长的高温炉内结构
KR100782740B1 (ko) 화학 기상 증착 장치
KR102203022B1 (ko) 서셉터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930000

Country of ref document: EP

Kind code of ref document: A1