JP2010232624A - Iii族窒化物半導体の気相成長装置 - Google Patents

Iii族窒化物半導体の気相成長装置 Download PDF

Info

Publication number
JP2010232624A
JP2010232624A JP2009134165A JP2009134165A JP2010232624A JP 2010232624 A JP2010232624 A JP 2010232624A JP 2009134165 A JP2009134165 A JP 2009134165A JP 2009134165 A JP2009134165 A JP 2009134165A JP 2010232624 A JP2010232624 A JP 2010232624A
Authority
JP
Japan
Prior art keywords
susceptor
substrate
vapor phase
phase growth
growth apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009134165A
Other languages
English (en)
Inventor
Kenji Iso
憲司 磯
Yoshiyasu Ishihama
義康 石濱
Ryohei Takagi
亮平 高木
Yuzuru Takahashi
譲 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2009134165A priority Critical patent/JP2010232624A/ja
Priority to CN201010120474A priority patent/CN101818333A/zh
Priority to KR1020100016781A priority patent/KR20100097609A/ko
Priority to US12/713,237 priority patent/US20100229794A1/en
Priority to TW099105553A priority patent/TWI390078B/zh
Publication of JP2010232624A publication Critical patent/JP2010232624A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Abstract

【課題】 基板を保持するためのサセプタ、サセプタの対面、基板を加熱するためのヒータ、サセプタの中心部に設けられた原料ガス導入部、サセプタとサセプタの対面の間隙からなる反応炉等を有するIII族窒化物半導体の気相成長装置であって、大きな直径を有するサセプタに保持された、大口径、多数枚の基板の表面に、結晶成長する場合であっても、基板を1000℃以上の温度で加熱して結晶成長する場合であっても、効率よく高品質の結晶成長が可能なIII族窒化物半導体の気相成長装置を提供する。
【解決手段】 設置される基板とサセプタの対面との距離が非常に狭く、かつサセプタの対面に冷媒を流通する構成を備えてなる気相成長装置とする。さらに、サセプタの対面に、不活性ガスを反応炉内に向かって噴出するための微多孔部、及び不活性ガスを微多孔部に供給するための構成を備えてなる気相成長装置とする。
【選択図】 図1

Description

本発明は、III族窒化物半導体の気相成長装置(MOCVD装置)に関し、さらに詳細には、基板を保持するサセプタ、基板を加熱するためのヒータ、原料ガス導入部、反応炉、及び反応ガス排出部等を備えたIII族窒化物半導体の気相成長装置に関する。
有機金属化合物気相成長法(MOCVD法)は、分子線エピタキシー法(MBE法)と並び窒化物半導体の結晶成長によく用いられる。特に、MOCVD法は、MBE法に比べて結晶成長速度も速く、またMBE法のように高真空装置等も必要ないことから、産業界の化合物半導体量産装置において広く用いられている。近年、青色または紫外LED及び青色または紫外レーザーダイオードの普及にともない、窒化ガリウム、窒化インジウムガリウム、窒化アルミニウムガリウムの量産性を向上させるために、MOCVD法の対象となる基板の大口径化、多数枚化が数多く研究されている。
このような気相成長装置としては、例えば特許文献1〜3に示すように、基板を保持するためのサセプタ、基板を加熱するためのヒータ、サセプタの中心部に設けられた原料ガス導入部、サセプタとサセプタの対面の間隙からなる反応炉、及びサセプタより外周側に設けられた反応ガス排出部を有する気相成長装置を挙げることができる。これらの気相成長装置においては、複数の基板ホルダーがサセプタに設けられており、駆動手段によってサセプタが自転するとともに、基板ホルダーが自公転する構成となっている。
特開2002−175992号公報 特開2007−96280号公報 特開2007−243060号公報 特開2002−246323号公報
しかし、こうした気相成長装置においても、未だ解決されない多くの課題がある。気相成長装置の反応炉においては、各種原料ガスは高温に熱せられた基板表面で分解し、基板表面において結晶化する。しかし、基板の大口径化、多数枚化にともない、反応炉内の原料ガス流路が長くなり、原料ガスが効率的に下流側に行きわたらずに、下流側の基板表面の結晶成長速度が減少するという問題がある。また、有機金属気相成長の対象となる基板の向かい側に設置された対面がヒータにより加熱され、この対面の表面で原料ガスが反応し、結晶化して、成長回数を繰り返すにつれ、結晶が徐々に堆積する。このために、基板上への原料ガスの反応効率は減少し、経済性が落ちるのみならず、高品質の結晶膜を再現性良く得ることも難しくなる。
尚、特許文献4において、MOCVD反応炉のサセプタの対面を冷却し、反応管の他の部分を、石英を以て形成することを特徴としたIII族窒化物半導体用のMOCVD装置を挙げている。この発明においては、対面を水冷することにより、サファイア上のAlN成膜速度が、従来の未水冷の成膜速度の2.4倍に達したことが記載されている。しかしながら、この発明においても未だAlNの成膜速度としては1.2μm/hしか得られていなく、効率的な原料ガスの利用という点において不十分である。工業的に窒化アルミニウム(AlN)や窒化ガリウム(GaN)の成長を行う場合、2.5μm/hの成長速度では、経済的に成り立たなく、4.0μm/h以上の成長速度が求められる。実際に、工業的に現在製造されているGaN膜は約4.0μm/hの成長速度で成長が行われている。また、この発明は、反応炉を構成する材料として、ステンレスと石英を用いているが、ステンレスは温度が700℃以上で劣化することが良く知られているし、石英は熱伝導率が著しく小さいために反応炉を均一の温度に保つことが難しい。
従って、本発明が解決しようとする課題は、前述のような気相成長装置であって、大きな直径を有するサセプタに保持された、大口径、多数枚の基板の表面に、結晶成長する場合であっても、基板を1000℃以上の温度で加熱して結晶成長する場合であっても、4.0μm/h以上の成長速度で高品質の結晶成長が可能なIII族窒化物半導体の気相成長装置を提供することである。
本発明者らは、これらの課題を解決すべく鋭意検討した結果、サセプタとサセプタの対面の間隙を狭くし、さらに、対面の表面で原料ガスが反応して結晶化することを抑制するために、対面の温度を低くコントロールする構成とすることにより、基板上への原料ガスの反応効率が向上するとともに、高品質の結晶膜が再現性良く得られることを見出し、本発明の気相成長装置に到達した。
すなわち本発明は、基板を保持するためのサセプタ、該サセプタの対面、該基板を加熱するためのヒータ、該サセプタの中心部に設けられた原料ガス導入部、該サセプタと該サセプタの対面の間隙からなる反応炉、及び該サセプタより外周側に設けられた反応ガス排出部を有するIII族窒化物半導体の気相成長装置であって、基板とサセプタの対面の間隙が、基板の上流側の位置で8mm以内、かつ基板の下流側の位置で5mm以内であり、該サセプタの対面に冷媒を流通する構成を備えており、反応炉において原料ガスが接触する部分の材料が、カーボン系材料、窒化物系材料、炭化物系材料、モリブデン、銅、アルミナ、またはこれらの複合材料からなることを特徴とするIII族窒化物半導体の気相成長装置である。
本発明の気相成長装置は、サセプタとサセプタの対面の間隙を狭くし、かつ、サセプタの対面に冷媒を流通させて、該対面の表面を冷却することにより、大口径、多数枚の基板の表面に結晶成長しても、基板を1000℃以上の温度で加熱しても、下流側の基板表面の結晶成長速度が減少するという問題を緩和あるいは解消でき、基板上への原料ガスの反応効率が向上し、高品質の結晶膜が再現性良く得られる。
本発明は、基板を保持するためのサセプタ、該サセプタの対面、該基板を加熱するためのヒータ、該サセプタの中心部に設けられた原料ガス導入部、該サセプタと該サセプタの対面の間隙からなる反応炉、及び該サセプタより外周側に設けられた反応ガス排出部を有するIII族窒化物半導体の気相成長装置に適用される。本発明の気相成長装置は、主に、ガリウム、インジウム、アルミニウムから選ばれる1種または2種以上の金属と、窒素との化合物からなる窒化物半導体の結晶成長を行なうための気相成長装置である。本発明においては、特に直径3インチ以上の大きさの基板を複数枚保持する気相成長の場合に、効果を充分に発揮させることができる。
以下、本発明の気相成長装置を、図1〜図5に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。
尚、図1、図2は、本発明の気相成長装置の一例を示す垂直断面図である。(図1は、回転発生部12を回転させることにより、サセプタ2を回転させる機構を有する気相成長装置であり、図2は、サセプタ回転軸13を回転させることにより、サセプタ2を回転させる機構を有する気相成長装置である。)図3、図4は、各々図1、図2における冷媒を流通する構成近辺の拡大断面図である。図5は、本発明の気相成長装置におけるサセプタの形態の例を示す構成図である。
本発明のIII族窒化物半導体の気相成長装置は、図1に示すように、基板1を保持するためのサセプタ2、サセプタの対面3、基板を加熱するためのヒータ4、サセプタの中心部に設けられた原料ガス導入部5、サセプタとサセプタの対面の間隙からなる反応炉6、及びサセプタより外周側に設けられた反応ガス排出部7を有するIII族窒化物半導体の気相成長装置であって、サセプタの対面3に冷媒を流通する構成8を備えてなるIII族窒化物半導体の気相成長装置である。
また、本発明のIII族窒化物半導体の気相成長装置は、図2に示すように、さらに不活性ガスを反応炉内に向かって噴出するための微多孔部9、及び不活性ガスをこの微多孔部に供給するための構成10が、サセプタの対面に設けられた気相成長装置とすることもできる。
本発明においては、どちらの気相成長装置であっても、基板とサセプタの対面の間隙が、基板の上流側の位置で8mm以内、かつ基板の下流側の位置で5mm以内であり、反応炉において原料ガスが接触する部分の材料が、カーボン系材料、窒化物系材料、炭化物系材料、モリブデン、銅、アルミナ、またはこれらの複合材料からなるものである。
尚、本発明におけるサセプタの形態は、例えば図5に示すように、複数枚の基板を保持するための空間を周辺部に有する円盤状のものである。図1に示すような気相成長装置においては、外周に歯車を有する複数個の円盤(サセプタ2を回転させる機構12)が、サセプタの外周の歯車と噛合うように設置されており、外部の回転発生部を通じて円盤2を回転させることにより、サセプタが回転する構成になっている。
本発明の気相成長装置において、原料ガスとなる有機金属化合物(トリメチルガリウム、トリエチルガリウム、トリメチルインジウム、トリエチルインジウム、トリメチルアルミニウム、トリエチルアルミニウム等)、アンモニア、及びキャリヤガス(水素、窒素等の不活性ガス、またはこれらの混合ガス)等は、図1、図2に示すように、外部からの配管11により原料ガス導入部5に供給され、さらに原料ガス導入部5から反応炉6に導入されて、反応後のガスは排出部7から外部に排出される。尚、原料ガス導入部の各ガス噴出口は、図1、図2では2個の上下平行噴出タイプであるが、本発明においては、噴出口数、形態等の条件に限定されることはない。例えば、有機金属化合物、アンモニア、及びキャリヤガスの各噴出口(合計3個の噴出口)を設けてもよい。
基板ホルダー15により保持された有機金属気相成長の対象となる基板1は、図3、図4に示すように、ヒータ4により加熱された均熱板14を通して熱せられる。原料ガスは、熱せられた基板表面付近で分解、反応し、基板上に結晶化する。従来の気相成長装置に関しては、一般的に、基板の対面3は、基板から10mm以上離れた位置に置かれる。なぜなら、対面を基板から10mm以下の距離に近づけて設置した場合、対面もヒータからの輻射熱により熱せられ、対面の表面に窒化物半導体が結晶化するという問題が生じる。
この現象は、窒化物半導体の成長に関して、再現性良く高品質の結晶膜が得られないといった問題に繋がる。また、対面3の表面を基板から10mm以上離れた位置に設置すると、原料ガスは充分に基板表面に近づくことができず、その結果として窒化物半導体の成長速度が低下する。この成長速度の低下は、基板の下流側で特に顕著となり、例えば基板のサイズが3インチ以上になると、下流側の基板表面では原料ガスがほとんど基板表面に届かなくなる虞がある。その結果、基板下流側の表面では全く窒化物半導体の成長ができない可能性が高くなる。
本発明の気相成長装置においては、対面を基板に近づけ、さらに、対面の表面上への窒化物半導体の結晶化を抑制するために、対面(の構成物)に設置した冷媒を流通する構成8に冷媒を流すことにより、対面(の構成物)の温度を低くコントロールした。具体的には、基板の上流側の位置16(図3、図4)で8mm以内、かつ基板の下流側の位置17(図3、図4)で5mm以内としたときに、原料ガスを効率的に下流側の基板表面まで分解せずに供給することが可能となった。また、サセプタとサセプタの対面の間隙は、サセプタの中心部から周辺部に向かって狭くなる構成であることが好ましい。
尚、前記のサセプタ(基板)とサセプタの対面の間隙に関して、例えば、基板と対面の間隙を8mmとし、基板を1050℃に加熱すると、冷媒(水)を流通しない場合、対面の表面温度は800℃前後に達するのに対して、冷媒(水)を流通する場合、対面の表面温度は通常は400℃程度、冷媒の流通条件によっては200℃程度まで低下させることができる。対面の表面温度が800℃前後になると、対面の表面では結晶成長反応が起こり、窒化物半導体の結晶が堆積するが、対面の表面温度が400℃以下では、結晶成長反応は極めて遅く、窒化物半導体の結晶の堆積を極めて少なくすることができる。
本発明の気相成長装置の反応炉において、原料ガスが接触する部分の材料(例えば、図3においては、サセプタ2、サセプタの対面3、サセプタ回転軸12を指し、図4においては、サセプタ2、サセプタの対面3、微多孔部9を指す)は次のものが用いられる。すなわち、カーボン系材料としては、カーボン、パイロリティックグラファイト(PG)、グラッシカーボン(GC)、窒化物系材料としては、窒化アルミニウム(AlN)、ボロンナイトナイド(BN)、窒化ケイ素(Si)、炭化物系材料としては、炭化ケイ素(SiC)、ボロンカーバイト(BC)、その他の材料としては、モリブデン、銅、アルミナが挙げられる。また、前記の材料を2種以上組み合わせた複合材料としては、PGコートカーボン、GCコートカーボン、SiCコートカーボンが挙げられる。ただし、カーボン系材料、窒化物系、炭化物系材料、複合材料は前記の材料に限定されるものではない。また、例えばサセプタの対面(の構成物)の材料にカーボン、サセプタの材料にSiCコートカーボンを用いるように、反応炉において原料ガスが接触する部分の材料は同一のものでなくて良い。
冷媒を流通する構成8としては、通常は配管が対面(の構成物)の内部に設置される。配管は1本であっても複数本であってもよい。また、配管の構成については、特に限定されることはなく、例えば、複数本の配管が対面(の構成物)の中心部から放射状に設置されたもの、あるいは渦巻き状に設置されたもの等を挙げることができる。冷媒の流れる方向は、特に限定されることはない。配管8に通す冷媒としては、任意の高沸点溶媒が用いられ、特に沸点90℃以上の溶媒が好ましい。このような冷媒としては、水、有機溶媒、油等を例示することができる。
また、さらに図2、図4に示すように、サセプタの対面には、冷媒を流通する構成とは別に、不活性ガスを反応炉内に向かって噴出するための微多孔部9、及び不活性ガスを微多孔部に供給するための構成10を設けることができる。微多孔の設置位置は、通常は少なくとも基板の位置に相当する対面の表面に設けられる。また、不活性ガスを微多孔に供給するための構成10としては、通常は配管が用いられる。
本発明においては、不活性ガスを微多孔部から反応炉内に向かって噴出することにより、対面表面上への窒化物半導体の結晶化防止を効果的にすることが可能となる。図1、図3に示すような構造の気相成長装置であっても、対面に冷媒を流さない構造の気相成長装置に比べると、対面表面上への窒化物半導体の結晶化は著しく減少する。しかし、図2、図4に示すように対面の表面に設けた多数の孔から不活性ガスを噴出させることにより、対面の表面上への窒化物半導体の結晶化をより効果的に防止することが可能となる。
次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。
[実施例1]
(気相成長装置の製作)
ステンレス製の反応容器の内部に、円板状のサセプタ(SiCコートカーボン製、直径600mm、厚さ20mm、3インチの基板を5枚保持可能)、冷媒を流通する構成を備えたサセプタの対面(カーボン製)、ヒータ、原料ガスの導入部(カーボン製)、反応ガス排出部等を設けて、図1に示すような気相成長装置を製作した。また、3インチサイズのサファイア(C面)よりなる基板を5枚気相成長装置にセットした。尚、冷媒を流通する構成として、配管1本を中心部から周辺部に向かって渦巻き状に配置した。
(気相成長実験)
このような気相成長装置を用いて、基板の上流側の位置における間隙(図3における符号16)が8.0mm、基板の下流側の位置における間隙(図3における符号17)が3.0mmとなるようにサファイア基板5枚をサセプタに保持し、基板の表面に窒化ガリウム(GaN)の成長を行なった。対面の冷却用配管への冷却水循環(流量:18L/min)を開始した後、水素を流しながら基板の温度を1050℃まで上昇させ、基板のクリーニングを行なった。続いて、基板の温度を510℃まで下げて、原料ガスとしてトリメチルガリウム(TMG)とアンモニア、キャリヤガスとして水素を用いて、サファイア基板上にGaNから成るバッファー層を約20nmの膜厚で成長させた。
バッファー層成長後に、TMGのみ供給を停止し、温度を1050℃まで上昇させた。その後、原料ガスとして、TMG(流量:120cc/min)、アンモニア(流量:50L/min)、キャリヤガスとして、水素(流量:80L/min)、窒素(流量:95L/min)を用いて、アンドープGaNを1時間成長させた。尚、バッファー層を含めた全ての成長は基板を10rpmの速度で自転させながら行なった。このときのサセプタの対面の表面温度は、410℃であった。
以上のように窒化物半導体を成長させた後、温度を下げ、基板を反応容器から取り出して、GaN膜厚を測定した。その結果、GaN膜厚の平均値は4.23μmであった。これは、GaN平均成長速度が、4.23μm/hであったことを示している。また、サセプタの対面の表面には、結晶はほとんど見られなかった。
実施例1におけるGaN成膜の3インチ基板面内膜厚分布を図6に示した。尚、横軸において0点は、基板の中心を示し、その他の値はこの中心からの距離を示すものである。3インチの基板においても、面内の膜厚変動がほとんどなしに(膜厚の変動2%)、基板全体に渡って4.0μm/h以上の成長速度で成膜できていることがわかる。
[実施例2〜6]
実施例1の気相成長装置の製作において、サセプタの対面の材料を、各々窒化物系材料(実施例2)、炭化物系材料(実施例3)、モリブデン(実施例4)、銅(実施例5)、アルミナ(実施例6)に変更したほかは実施例1と同様にして気相成長装置を製作した。
実施例1の気相成長実験と同様にして、基板の表面に窒化ガリウム(GaN)の成長を行なった結果、GaN膜厚の平均値はいずれも4.1〜4.3μmの範囲内であった。
[実施例7]
実施例1の気相成長実験において、気相成長中に基板を自転させなかったほかは実施例1と同様にして気相成長実験を行なった。(気相成長装置、ガスの流量、温度等の条件は全く同一である。)実施例7におけるGaN成膜の3インチ基板面内膜厚成長速度を図7に示した。尚、横軸において0点は、基板の原料ガス上流側基板端を示し、その他の値は、この基板端から基盤中心を通り原料ガス下流側基板端までの距離を示すものである。基板上流側において約5.5μm/h、基板下流側においても3.0μm/h以上の成長速度で成膜できていることがわかる。
[比較例1]
実施例1の気相成長装置の製作において、サセプタの対面の傾斜を変更したほかは実施例1と同様にして気相成長装置を製作した。これにより、サファイア基板5枚をサセプタに保持した際に、基板の上流側の位置における間隙(図3における符号16)が10.7mm、基板の下流側の位置における間隙(図3における符号17)が4.0mmとなった。
実施例1の気相成長実験と同様にして、基板の表面に窒化ガリウム(GaN)の成長を行なった結果、GaN膜厚の平均値は1.70μmであった。これは、GaN平均成長速度が、1.70μm/hであったことを示している。この結果は、対面の冷却のみでは効率的な成長速度を得ることはできないことを示している。比較例1におけるGaN成膜の3インチ基板面内膜厚分布は図6に示す通りである。
[比較例2]
実施例7の気相成長装置の製作において、サセプタの対面の傾斜を変更したほかは実施例7と同様にして気相成長装置を製作した。これにより、サファイア基板5枚をサセプタに保持した際に、基板の上流側の位置における間隙(図3における符号16)が10.7mm、基板の下流側の位置における間隙(図3における符号17)が8.0mmとなった。
実施例7の気相成長実験と同様にして(気相成長中に基板を自転させない)、基板の表面に窒化ガリウム(GaN)の成長を行なった。比較例2におけるGaN成膜の3インチ基板面内膜厚成長速度を図7に示した。基板上流側においては約4.1μm/hで成長が行なわれたが、基板下流側においては、成長速度はほぼゼロであった。
[比較例3]
実施例7の気相成長装置の製作において、サセプタの対面の傾斜を変更したほかは実施例7と同様にして気相成長装置を製作した。これにより、サファイア基板5枚をサセプタに保持した際に、基板の上流側の位置における間隙(図3における符号16)が12.0mm、基板の下流側の位置における間隙(図3における符号17)が12.0mmとなった。
実施例7の気相成長実験と同様にして(気相成長中に基板を自転させない)、基板の表面に窒化ガリウム(GaN)の成長を行なった。比較例3におけるGaN成膜の3インチ基板面内膜厚成長速度を図7に示した。基板上流側においては約1.0μm/hで成長が行なわれたが、基板位置15mmから基板下流側にわたって成長速度はゼロであった。
以上のように、本発明の気相成長装置は、基板表面への気相成長の際に、サセプタの対面表面における結晶化を大幅に抑制することができ、効率よく高品質の結晶膜が得られることがわかった。
本発明の気相成長装置の一例を示す垂直断面図 本発明の図1以外の気相成長装置の一例を示す垂直断面図 図1における冷媒を流通する冷却管近辺の拡大断面図 図2における冷媒を流通する冷却管近辺の拡大断面図 本発明の気相成長装置におけるサセプタの形態の例を示す構成図 実施例1及び比較例1における3インチ基板面内膜厚分布 実施例7、比較例2、及び比較例3における3インチ基板面内膜厚分布
1 基板
2 サセプタ
3 サセプタの対面
4 ヒータ
5 原料ガス導入部
6 反応炉
7 反応ガス排出部
8 冷媒を流通する構成
9 微多孔部
10 不活性ガスを供給するための構成
11 ガス配管
12 回転発生部
13 サセプタ回転軸
14 均熱板
15 基板ホルダー
16 基板の上流側の位置における間隙
17 基板の下流側の位置における間隙

Claims (6)

  1. 基板を保持するためのサセプタ、該サセプタの対面、該基板を加熱するためのヒータ、該サセプタの中心部に設けられた原料ガス導入部、該サセプタと該サセプタの対面の間隙からなる反応炉、及び該サセプタより外周側に設けられた反応ガス排出部を有するIII族窒化物半導体の気相成長装置であって、基板とサセプタの対面の間隙が、基板の上流側の位置で8mm以内、かつ基板の下流側の位置で5mm以内であり、該サセプタの対面に冷媒を流通する構成を備えており、反応炉において原料ガスが接触する部分の材料が、カーボン系材料、窒化物系材料、炭化物系材料、モリブデン、銅、アルミナ、またはこれらの複合材料からなることを特徴とするIII族窒化物半導体の気相成長装置。
  2. サセプタとサセプタの対面の間隙が、サセプタの中心部から周辺部に向かって狭くなる構成である請求項1に記載のIII族窒化物半導体の気相成長装置。
  3. 不活性ガスを反応炉内に向かって噴出するための微多孔部、及び該不活性ガスを該微多孔部に供給するための構成が、サセプタの対面に設けられた請求項1に記載のIII族窒化物半導体の気相成長装置。
  4. 基板の結晶成長面が、下向きになるように設定された請求項1に記載のIII族窒化物半導体の気相成長装置。
  5. サセプタが、直径3インチ以上の大きさの基板を複数枚保持されるように設定された請求項1に記載のIII族窒化物半導体の気相成長装置。
  6. 窒化物半導体が、ガリウム、インジウム、及びアルミニウムから選ばれる1種または2種以上の金属と、窒素との化合物である請求項1に記載のIII族窒化物半導体の気相成長装置。
JP2009134165A 2009-02-26 2009-06-03 Iii族窒化物半導体の気相成長装置 Pending JP2010232624A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009134165A JP2010232624A (ja) 2009-02-26 2009-06-03 Iii族窒化物半導体の気相成長装置
CN201010120474A CN101818333A (zh) 2009-02-26 2010-02-24 Iii族氮化物半导体的气相生长装置
KR1020100016781A KR20100097609A (ko) 2009-02-26 2010-02-24 Ⅲ족 질화물 반도체의 기상 성장 장치
US12/713,237 US20100229794A1 (en) 2009-02-26 2010-02-26 Vapor phase epitaxy apparatus of group iii nitride semiconductor
TW099105553A TWI390078B (zh) 2009-02-26 2010-02-26 Iii族氮化物半導體之氣相成長裝置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009043947 2009-02-26
JP2009052247 2009-03-05
JP2009134165A JP2010232624A (ja) 2009-02-26 2009-06-03 Iii族窒化物半導体の気相成長装置

Publications (1)

Publication Number Publication Date
JP2010232624A true JP2010232624A (ja) 2010-10-14

Family

ID=42653600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134165A Pending JP2010232624A (ja) 2009-02-26 2009-06-03 Iii族窒化物半導体の気相成長装置

Country Status (5)

Country Link
US (1) US20100229794A1 (ja)
JP (1) JP2010232624A (ja)
KR (1) KR20100097609A (ja)
CN (1) CN101818333A (ja)
TW (1) TWI390078B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068188A (ja) * 2014-09-30 2016-05-09 新東工業株式会社 付着物除去方法
TWI675119B (zh) * 2017-02-16 2019-10-21 漢民科技股份有限公司 氣相成膜裝置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102477546A (zh) * 2010-11-25 2012-05-30 绿种子能源科技股份有限公司 具有冷却模块的薄膜沉积装置
CN102766850A (zh) * 2011-05-05 2012-11-07 绿种子能源科技股份有限公司 薄膜沉积装置
US9948214B2 (en) 2012-04-26 2018-04-17 Applied Materials, Inc. High temperature electrostatic chuck with real-time heat zone regulating capability
CN103726103B (zh) * 2012-10-10 2016-04-27 北京北方微电子基地设备工艺研究中心有限责任公司 一种反应腔室
JP6058515B2 (ja) * 2013-10-04 2017-01-11 漢民科技股▲分▼有限公司 気相成膜装置
CN108137411B (zh) * 2015-09-30 2021-03-02 日本碍子株式会社 外延生长用取向氧化铝基板
DE102017100725A1 (de) 2016-09-09 2018-03-15 Aixtron Se CVD-Reaktor und Verfahren zum Reinigen eines CVD-Reaktors
CN112342524B (zh) * 2020-11-06 2022-06-17 辽宁百思特达半导体科技有限公司 一种氮化镓高铝组分的外延生长方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457712A (en) * 1987-08-28 1989-03-06 Sumitomo Metal Ind Vapor growth device
JP2004014535A (ja) * 2002-06-03 2004-01-15 Sony Corp 気相成長装置及び気相成長方法、並びに基体保持用サセプタ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647945A (en) * 1993-08-25 1997-07-15 Tokyo Electron Limited Vacuum processing apparatus
US6090211A (en) * 1996-03-27 2000-07-18 Matsushita Electric Industrial Co., Ltd. Apparatus and method for forming semiconductor thin layer
JP4193883B2 (ja) * 2006-07-05 2008-12-10 住友電気工業株式会社 有機金属気相成長装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457712A (en) * 1987-08-28 1989-03-06 Sumitomo Metal Ind Vapor growth device
JP2004014535A (ja) * 2002-06-03 2004-01-15 Sony Corp 気相成長装置及び気相成長方法、並びに基体保持用サセプタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068188A (ja) * 2014-09-30 2016-05-09 新東工業株式会社 付着物除去方法
TWI675119B (zh) * 2017-02-16 2019-10-21 漢民科技股份有限公司 氣相成膜裝置

Also Published As

Publication number Publication date
US20100229794A1 (en) 2010-09-16
TWI390078B (zh) 2013-03-21
TW201040310A (en) 2010-11-16
KR20100097609A (ko) 2010-09-03
CN101818333A (zh) 2010-09-01

Similar Documents

Publication Publication Date Title
JP2010232624A (ja) Iii族窒化物半導体の気相成長装置
JP5923553B2 (ja) 三塩化ガリウムを製造するための大容量送達方法
JP5451809B2 (ja) 化学気相成長チャンバ用の温度制御されたパージゲート弁を使用した方法、アセンブリ及びシステム
US8491720B2 (en) HVPE precursor source hardware
JP2008028270A (ja) 結晶成長方法及び結晶成長装置
WO2011011532A2 (en) Hollow cathode showerhead
JP5546287B2 (ja) 気相成長装置
JP5409413B2 (ja) Iii族窒化物半導体の気相成長装置
US20100307418A1 (en) Vapor phase epitaxy apparatus of group iii nitride semiconductor
JP6257437B2 (ja) 結晶成長装置
JP2013026358A (ja) シャワープレート及び気相成長装置
JP2014207357A (ja) サセプタ及びそれを用いた気相成長装置
JP6335683B2 (ja) SiCエピタキシャルウェハの製造装置
JP2010219225A (ja) Iii族窒化物半導体の気相成長装置
JP2009029642A (ja) Iii族窒化物製造装置
JP2013048158A (ja) 窒化ガリウムの気相成長方法
JP2013030632A (ja) 窒化ガリウムの気相成長方法
JP2014216590A (ja) 気相成長装置
JP2013093357A (ja) サセプタ及びそれを用いた気相成長装置
JP2021130582A (ja) 気相成長装置及びiii族窒化物単結晶の製造方法
JP2022129261A (ja) 高温用気相成長装置および半導体結晶膜の成長方法
JP2013045941A (ja) 気相成長装置
JP2011035047A (ja) 単結晶体の製造方法
JP2004253413A (ja) 化合物半導体気相成長装置
JPWO2017115750A1 (ja) SiC単結晶成長炉のクリーニング方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130902