WO2022025177A1 - ポリプロピレン系樹脂組成物、水添ブロック共重合体、成型品、及び自動車用内外装材料 - Google Patents

ポリプロピレン系樹脂組成物、水添ブロック共重合体、成型品、及び自動車用内外装材料 Download PDF

Info

Publication number
WO2022025177A1
WO2022025177A1 PCT/JP2021/028090 JP2021028090W WO2022025177A1 WO 2022025177 A1 WO2022025177 A1 WO 2022025177A1 JP 2021028090 W JP2021028090 W JP 2021028090W WO 2022025177 A1 WO2022025177 A1 WO 2022025177A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
copolymer
block copolymer
polymer
resin composition
Prior art date
Application number
PCT/JP2021/028090
Other languages
English (en)
French (fr)
Inventor
卓宏 関口
泰史 千田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2022539559A priority Critical patent/JPWO2022025177A1/ja
Priority to CN202180059273.1A priority patent/CN116157435A/zh
Priority to US18/018,134 priority patent/US20230265271A1/en
Priority to EP21849162.9A priority patent/EP4190831A1/en
Publication of WO2022025177A1 publication Critical patent/WO2022025177A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE

Definitions

  • the present invention relates to a polypropylene-based resin composition, a hydrogenated block copolymer, a molded product, and an interior / exterior material for an automobile, and in particular, the polypropylene-based resin composition and the hydrogenated block co-weight contained in the polypropylene-based resin composition.
  • the present invention relates to a coalesced product, a molded product containing the polypropylene-based resin composition, and an interior / exterior material for an automobile containing the molded product.
  • Polypropylene resin compositions are generally excellent in chemical resistance and mechanical properties, and are therefore widely used as materials for various products such as mechanical parts and automobile parts.
  • Patent Document 1 discloses a propylene-based resin composition comprising a polypropylene-based resin, a rubber-like polymer, and a hydrogenated block copolymer.
  • Patent Document 2 comprises two vinyl aromatic hydrocarbon compound polymer blocks A and one hydrogenated butadiene polymer block B, and an olefin in the butadiene polymer block before hydrogenation.
  • a polypropylene-based resin composition containing a hydrogenated block copolymer in which 90% or more of the sex-unsaturated double bonds are hydrogenated is disclosed.
  • Patent Document 3 describes polypropylene polymer (A) 50 to 90% by mass, ethylene- ⁇ -olefin copolymer (B) 5 to 50% by mass, vinyl aromatic monomer unit and alkylene monomer.
  • an object of the present invention is a polypropylene-based resin composition having excellent impact resistance, particularly impact resistance at low temperatures, a hydrogenated block copolymer contained in the polypropylene-based resin composition, and the polypropylene-based resin composition. It is an object of the present invention to provide a molded product containing the above, and an interior / exterior material for an automobile containing the molded product.
  • the present inventors have included a polypropylene-based polymer (A), an ethylene- ⁇ -olefin copolymer rubber (B), and an aromatic vinyl compound unit. It is possible to solve the above-mentioned problems by including the hydrogenated block copolymer (C) having an amount of less than 30% by mass and a vinyl bond amount of the polymer block (C-2) of 20% or less. Find out and complete the present invention. That is, the present invention is as follows.
  • the added block copolymer (C) has at least one polymer block (C-1) mainly composed of an aromatic vinyl compound unit, and is mainly composed of a butadiene (Bd) unit and an isoprene (Ip) unit. It is a hydrogenated product of a block polymer having at least one coalesced block (C-2), and the content of the aromatic vinyl compound unit in the hydrogenated block copolymer (C) is less than 30% by mass.
  • the content of the ethylene- ⁇ -olefin copolymer rubber (B) is 1 to 50 parts by mass with respect to 100 parts by mass of the polypropylene-based polymer (A), and the weight of the hydrogenated block is common.
  • MFR melt flow rate value
  • the polypropylene-based polymer (A) has a melt flow rate value (MFR) of 1 to 200 g / 10 minutes obtained under the conditions of a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210.
  • MFR melt flow rate value
  • the polypropylene-based resin composition according to any one of [1] to [3].
  • the ethylene- ⁇ -olefin copolymer rubber (B) has a melt flow rate value (MFR) of 0.1 to 50 g obtained under the conditions of a temperature of 230 ° C.
  • the polypropylene-based resin composition according to any one of the above [1] to [4], which is / 10 minutes.
  • the ethylene- ⁇ -olefin copolymer rubber (B) is at least one selected from the group consisting of an ethylene-propylene copolymer, an ethylene-butene copolymer and an ethylene-octene copolymer.
  • the hydrogenated block copolymer (C) has a melt flow rate value (MFR) of 0.1 to 50 g / 10 minutes obtained under the conditions of a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210.
  • MFR melt flow rate value
  • the hydrogenated block copolymer (C) may be a triblock copolymer of polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene or a diblock of a polystyrene-hydrogenated butadiene / isoprene copolymer.
  • the polypropylene-based resin composition according to any one of the above [1] to [9], which is a polymer.
  • a polymer block (C-1) mainly composed of aromatic vinyl compound units
  • a polymer block (C-2) mainly composed of butadiene (Bd) units and isoprene (Ip) units, and isoprene (Ip).
  • Hydrogenic block co-weight which is a hydrogenated additive of a block polymer having a polymer block (C-3) mainly composed of structural units derived from the unit (excluding the polymer block (C-2)).
  • the bonding form is the coalescence (C).
  • a hydrogenated block copolymer (C) which is a tetrablock copolymer represented by ABC.
  • the ratio of the polymer block (C-3) in the hydrogenated block copolymer (C) is 40% by mass or less of the total amount of the hydrogenated block copolymer (C), as described in [11].
  • the content of the structural unit derived from isoprene (Ip) in the polymer block (C-3) is 70% by mass or more based on the total mass of the polymer block (C-3).
  • the polypropylene-based resin composition having excellent impact resistance, particularly impact resistance at low temperatures, the hydrogenated block copolymer contained in the polypropylene-based resin composition, and the polypropylene-based resin composition are included. It is possible to provide a molded product and an interior / exterior material for an automobile including the molded product.
  • the preferable provisions can be arbitrarily adopted, and it can be said that the combination of preferable ones is more preferable.
  • the description of "XX to YY” means “XX or more and YY or less”.
  • the lower limit value and the upper limit value described stepwise may be independently combined with respect to a preferable numerical range (for example, a range such as content). For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the "favorable lower limit value (10)" and the “more preferable upper limit value (60)” are combined to form “10 to 60". You can also do it.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • “-unit” (where “-” indicates a monomer) means “structural unit derived from”, and for example, "aromatic vinyl compound unit” means “fragrance”. It means "a structural unit derived from a group vinyl compound”.
  • the weight average molecular weight is the weight average molecular weight in terms of standard polystyrene obtained by gel permeation chromatography (GPC) measurement as in the examples, and the number average molecular weight is gel permeation chromatography (GPC). ) It is a number average molecular weight in terms of standard polystyrene obtained by measurement.
  • “high density polyethylene” means polyethylene having a density of 0.94 g / cm 3 or more.
  • the present invention is a polypropylene-based resin composition containing a polypropylene-based polymer (A), an ethylene- ⁇ -olefin copolymer rubber (B), and a hydrogenated block copolymer (C).
  • the hydrogenated block copolymer (C) has at least one polymer block (C-1) mainly composed of an aromatic vinyl compound unit, and mainly contains a butadiene (Bd) unit and an isoprene (Ip) unit. It is a hydrogenated product of a block copolymer having at least one polymer block (C-2), and the content of the aromatic vinyl compound unit in the hydrogenated block copolymer is less than 30% by mass, and the polymer.
  • polypropylene resin composition having a block (C-2) having a vinyl bond amount of 20% or less.
  • polypropylene resin composition means the thing which contains the polypropylene polymer (A) in an amount of 40% by mass or more.
  • the “content of aromatic vinyl compound unit” is a value measured by 1 H-NMR as in the examples described later.
  • the melt flow rate value (MFR) of the polypropylene-based resin composition is not particularly limited, and a preferable value can be selected according to the shape of the target molded product and the molding method of the molded product.
  • the MFR of the polypropylene-based resin composition is preferably 3 to 200 g / 10 minutes, more preferably 3 to 150 g / 10 minutes, and particularly preferably 5 to. 125 g / 10 minutes. If the melt flow rate value (MFR) of the polypropylene-based resin composition is equal to or higher than the lower limit, the flow distance required for injection molding can be obtained, and the appearance of the molded product can be obtained even when thin-wall molding is performed.
  • the MFR of the polypropylene-based resin composition of the present invention is preferably 0.05 to 10 g / 10 minutes, more preferably 0.1 to 5 g / 10 minutes. Particularly preferably, it is 0.2 to 1.5 g / 10 minutes. It is preferable that the MFR is within the above range from the viewpoint of parison stability during pipe extrusion.
  • the MFR of the polypropylene-based resin composition when the polypropylene-based resin composition of the present invention is molded by extrusion blow molding is preferably 0.05 to 10 g / 10 minutes, more preferably 0.1 to 5 g / 10. Minutes, particularly preferably 0.2-1.5 g / 10 minutes. It is preferable that the MFR is in the above range.
  • the MFR of the polypropylene-based resin composition is at least the above lower limit value, it becomes easy to mold a large and complicated blow-molded article.
  • the MFR is not more than the upper limit value, the drawdown resistance of the parison and the impact resistance of the blow molded product tend to be good.
  • the "melt flow rate value (MFR)" is a value measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kgf in accordance with JIS K7210, as in the examples described later.
  • polypropylene-based polymer (A), the ethylene- ⁇ -olefin copolymer rubber (B), the hydrogenated block copolymer (C), and, if necessary, contained in the polypropylene-based resin composition are contained.
  • Other components that may be present will be described in detail in order.
  • the polypropylene-based polymer (A) may be homopolypropylene (homoPP) or a copolymer of propylene and another monomer, but the composition of the present invention has higher rigidity. Homopolypropylene is preferred for the required applications.
  • the steric regularity (tacticity) of the polypropylene-based polymer (A) is not particularly limited, and may be any of an isotactic polypropylene resin, a syndiotactic polypropylene resin, and an atactic polypropylene resin.
  • an isotactic polypropylene resin it is preferable to use an isotactic polypropylene resin as the polypropylene-based polymer (A).
  • the molecular structure of the polypropylene-based polymer (A) is not particularly limited, and examples thereof include a linear structure, a branched structure, and a graft structure using a modified product.
  • the copolymer of propylene and other monomers is not particularly limited, but from the viewpoint of the balance between high impact resistance and rigidity, a propylene-ethylene random copolymer, a propylene-butene random copolymer, etc.
  • a random copolymer (random PP) of propylene such as a copolymer and an ⁇ -olefin comonomer is preferable.
  • a propylene-ethylene random copolymer is preferable from the viewpoint of transparency.
  • the content of the propylene unit in the polypropylene-based polymer (A) is not particularly limited, but is preferably 75 mol% or more, more preferably 80 mol% or more.
  • the content of the propylene unit in the polypropylene-based polymer (A) is at least the above lower limit value, the balance between the rigidity and the impact resistance of the molded product obtained by molding the polypropylene-based resin composition of the present invention is good. It tends to be.
  • the dispersion form of the polypropylene-based polymer (A) is not limited, and for example, one kind of polypropylene-based polymer exists as a continuous phase, and another polypropylene-based polymer forms a dispersed phase or the like. May be.
  • the polypropylene-based polymer (A) is a mixture of two or more types of polypropylene-based polymers, for example, an isotactic polypropylene resin (homo PP) and a propylene-ethylene random copolymer (random PP) are used. It may be polymerized in different processes to form separate solid pellets or the like.
  • the method for preparing the polypropylene-based polymer (A) is not particularly limited, and examples thereof include a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, and a solution polymerization method.
  • various processes such as one-step or multi-step may be adopted.
  • the catalyst used for the preparation of the polypropylene-based polymer (A) is not particularly limited, and examples thereof include a metallocene catalyst and a Ziegler-Natta catalyst.
  • the melt flow rate value (MFR) of the polypropylene-based polymer (A) is not particularly limited, but is preferably 1 to 200 g / 10 minutes, more preferably 5 to 140 g / 10 minutes, and particularly preferably 10 to 80 g /. It is 10 minutes.
  • MFR melt flow rate value
  • the content of the polypropylene-based polymer (A) in the polypropylene-based resin composition is not particularly limited, but is preferably 50 to 90% by mass, more preferably 53 to 85% by mass, and further preferably 55 to 80% by mass. %, Especially preferably 57 to 75% by mass.
  • the content of the polypropylene-based polymer (A) is at least the lower limit value, the rigidity tends to be good, and when it is at least the upper limit value, the impact resistance and the tensile elongation at break tend to be good. be.
  • the ethylene- ⁇ -olefin copolymer rubber (B) is a copolymer of ethylene and ⁇ -olefin.
  • the ⁇ -olefin constituting the ethylene- ⁇ -olefin copolymer rubber (B) is not particularly limited, and examples thereof include ⁇ -olefins of C3 to C20.
  • the ⁇ -olefin of C3 to C20 may have either a linear structure or a branched structure, and for example, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-.
  • C4-C8 ⁇ -olefin comonomer is preferable from the viewpoint of impact resistance and tensile elongation at break, and is composed of propylene, 1-butene, 1-hexene, 4-methyl-1-pentane, and 1-octene. At least one selected from the group is more preferable, and from the viewpoint of impact resistance, at least one selected from the group consisting of propylene, 1-butene, and 1-octene is further preferable, and 1-octene is particularly preferable. ..
  • At least one selected from the group consisting of propylene, 1-butene, and 1-octene is more preferable, and propylene is particularly preferable.
  • the ⁇ -olefin constituting the ethylene- ⁇ -olefin copolymer rubber (B) is propylene
  • the content of ⁇ -olefin in the ethylene- ⁇ -olefin copolymer rubber (B) is not particularly limited, but is preferably 5 to 50% by mass, and more preferably 20 to 45% by mass.
  • the content of ⁇ -olefin in the ethylene- ⁇ -olefin copolymer rubber (B) is at least the above lower limit value, the low temperature curability and flexibility tend to be good, and at the above upper limit value or less. If so, the rigidity tends to be good.
  • ethylene- ⁇ -olefin copolymer rubber (B) two or more kinds of ethylene- ⁇ -olefin copolymer rubbers may be used.
  • two or more kinds of ethylene- ⁇ -olefin copolymer rubbers having different densities may be used in combination.
  • the melt flow rate value (MFR) of the ethylene- ⁇ -olefin copolymer rubber (B) is not particularly limited, but is preferably 0.1 to 50 g / 10 minutes, and more preferably 0.3 to 35 g / 10. Minutes. If the melt flow rate value (MFR) of the ethylene- ⁇ -olefin copolymer rubber (B) is at least the lower limit value, the workability tends to be good, and if it is at least the upper limit value, the mechanical properties Tends to be good.
  • the molecular weight distribution of the ethylene- ⁇ -olefin copolymer rubber (B) (Mw / Mn; Mw is a weight average molecular weight and Mn is a number average molecular weight) is not particularly limited, but is preferably 1.3 to 5.0. Is preferable.
  • the density of the ethylene- ⁇ -olefin copolymer rubber (B) is not particularly limited, but is preferably 0.850 to 0.910 g / cm 3 , more preferably 0.855 to 0.885 g / cm 3 . be.
  • the density of the ethylene- ⁇ -olefin copolymer rubber (B) is at least the lower limit value, the rigidity tends to be good, and when it is at least the upper limit value, the impact resistance and the tensile elongation at break are good. It tends to be.
  • the catalyst used for the preparation of the ethylene- ⁇ -olefin copolymer rubber (B) is not particularly limited, and for example, an ⁇ -olefin copolymer having a high molecular weight under processing conditions can be easily obtained.
  • Examples include catalysts (eg, catalysts based on ethylene, metallocene, or vanadium), and the like. These may be used alone or in combination of two or more. Among these, a metallocene catalyst and titanium chloride are preferable from the viewpoint of structural control stability.
  • the polymerization form of the ethylene- ⁇ -olefin copolymer rubber (B) is not particularly limited, and is a random copolymer of ethylene and ⁇ -olefin, a block copolymer of ethylene and ⁇ -olefin, and the like. Can be used. Specific examples include “TAFMER (registered trademark)” manufactured by Mitsui Chemicals, Inc. as a random copolymer rubber of ethylene and 1-butene, and "Dow Co., Ltd.” as a random copolymer rubber of ethylene and 1-octene. Examples include, but are not limited to, "ENGAGE (registered trademark)” and "INFUSE (registered trademark)” manufactured by Dow Co., Ltd. as a block copolymer rubber of ethylene and 1-octene.
  • the content of the ethylene- ⁇ -olefin copolymer rubber (B) in the polypropylene-based resin composition is not particularly limited, but is preferably 1 to 50 with respect to 100 parts by mass of the polypropylene-based polymer (A). It is by mass, more preferably 10 to 50 parts by mass, still more preferably 15 to 45 parts by mass, and particularly preferably 15 to 35 parts by mass.
  • the content of the ethylene- ⁇ -olefin copolymer rubber (B) is at least the above lower limit value, the impact resistance and the tensile elongation at break tend to be good, and when it is at least the above upper limit value, the rigidity is high. It tends to be good.
  • the hydrogenated block copolymer (C) has at least one polymer block (C-1) mainly composed of an aromatic vinyl compound unit, and mainly contains a butadiene (Bd) unit and an isoprene (Ip) unit. It is a hydrogenated additive of a block copolymer having at least one polymer block (C-2).
  • the polymer block (C-1) and the polymer block (C-2) will be described in order.
  • the polymer block (C-1) is mainly composed of a structural unit derived from an aromatic vinyl compound.
  • the term "mainly” as used herein means that the structural unit derived from the aromatic vinyl compound is contained in an amount of 50% by mass or more based on the total mass of the polymer block (C-1).
  • the content of the structural unit derived from the aromatic vinyl compound in the polymer block (C-1) is based on the total mass of the polymer block (C-1) from the viewpoint of the mechanical properties of the polypropylene-based resin composition. It is more preferably 70% by mass or more, and further preferably 90% by mass or more.
  • the aromatic vinyl compound is not particularly limited, and is, for example, styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, 2,6-dimethylstyrene, 2 , 4-dimethylstyrene, ⁇ -methyl-o-methylstyrene, ⁇ -methyl-m-methylstyrene, ⁇ -methyl-p-methylstyrene, ⁇ -methyl-o-methylstyrene, ⁇ -methyl-m-methylstyrene , ⁇ -Methyl-p-methylstyrene, 2,4,6-trimethylstyrene, ⁇ -methyl-2,6-dimethylstyrene, ⁇ -methyl-2,4-dimethylstyrene, ⁇ -methyl-2,6-dimethyl Styrene, ⁇ -methyl-2,4
  • the polymer block (C-1) may contain an unsaturated monomer other than the aromatic vinyl compound as long as it does not interfere with the object and effect of the present invention.
  • the other unsaturated monomer is not particularly limited, and is, for example, butadiene, isoprene, 2,3-dimethylbutadiene, 1,3-pentadiene, 1,3-hexadiene, isobutylene, methyl methacrylate, methyl vinyl ether, and the like. Examples thereof include N-vinylcarbazole, ⁇ -pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrachloride, and the like.
  • the bonding form is not particularly limited and may be random or tapered.
  • the content of the aromatic vinyl compound unit in the hydrogenated block copolymer (C) is not particularly limited as long as it is less than 30% by mass, but is preferably 4 from the viewpoint of obtaining particularly excellent impact resistance. It is ⁇ 28% by mass, more preferably 8 to 25% by mass, and particularly preferably 12 to 22% by mass.
  • the polymer block (C-2) is mainly composed of structural units derived from butadiene (Bd) units and isoprene (Ip) units.
  • the term "mainly” as used herein means that the structural unit derived from butadiene (Bd) and the structural unit derived from isoprene (Ip) are 50% by mass or more based on the total mass of the polymer block (C-2). It means to include.
  • the content of the structural unit derived from butadiene (Bd) and the structural unit derived from isoprene (Ip) in the polymer block (C-2) is based on the total mass of the polymer block (C-2).
  • the conjugated diene compound constituting the polymer block (C-2) is mainly composed of a butadiene (Bd) unit and an isoprene (Ip) unit, and further, for example, 2,3-dimethylbutadiene, 1,3-pentadiene, 1 , 3-Hexadiene and the like may be included.
  • the content ratio (butadiene unit / isoprene unit) (molar ratio) of the butadiene (Bd) unit and the isoprene (Ip) unit is not particularly limited, but is preferably 10/90 to 90/10 from the viewpoint of improving performance and the like.
  • the polymer block (C-2) is not particularly limited in its bonding form, and may consist of random, tapered, completely alternating, partially blocked, blocked, or a combination of two or more thereof. , Preferably random.
  • the bonding form of butadiene (Bd) and isoprene (Ip) constituting the polymer block (C-2) is not particularly limited.
  • 1,2-bonding and 1,4-bonding are not particularly limited.
  • 1,2-bond, 3,4-bond, and 1,4-bond can be taken.
  • the 1,2-bonding amount is referred to as the vinyl bond amount
  • the 1,2-bonding amount and the 3,4-bonding amount are referred to.
  • the total amount is called the vinyl bond amount, and the content of the vinyl bond amount in the fully bonded form of the polymer block is called “vinyl bond amount (%) of the polymer block", and vinyl in the entire hydrogenated block copolymer.
  • the content of the binding amount is referred to as "the degree of vinylization (%) of the hydrogenated block copolymer (C)".
  • the 1,2-bonding amount and the 3,4-bonding amount can be calculated by 1 1 H-NMR measurement as in the examples.
  • the vinyl bond amount of the polymer block (C-2) is not particularly limited as long as it is 20% or less, preferably 2 to 15%, more preferably 5 to 10%, and particularly preferably 6 to 8. %.
  • the vinyl bond amount of the polymer block (C-2) is within the above range, more excellent impact resistance, particularly impact resistance at low temperature, tends to be obtained.
  • the carbon-carbon double bond of the polymer block (C-2) in the hydrogenated block copolymer (C) is the polypropylene-based polymer (A) and / or the ethylene- ⁇ -olefin copolymer rubber ( From the viewpoint of affinity with B), hydrogenated (hereinafter, may be abbreviated as "hydrogenation") polymer is preferable.
  • the hydrogenation rate (hydrogenation rate) of the polymer block (C-2) in the hydrogenated block copolymer (C) is not particularly limited, but is preferably 80 mol% or more, more preferably 85 mol% or more. Particularly preferably 90 to 100 mol%.
  • the hydrogenation rate of the polymer block (C-2) in the hydrogenated block copolymer (C) is within the above range, the hydrogenated block copolymer (C) becomes the polypropylene-based polymer (A) and ethylene. It shows good affinity with the - ⁇ -olefin copolymer rubber (B), and as a result, the impact resistance of the polypropylene-based resin composition of the present invention tends to be more excellent.
  • the "hydrogenation rate (hydrogenation rate)" is a value measured in the same manner as in Examples described later.
  • the polymer block (C-2) is a structural unit derived from a polymerizable monomer other than the butadiene (Bd) unit and the isoprene (Ip) unit, as long as it does not interfere with the object and effect of the present invention. May be contained.
  • the other polymerizable monomer include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, and the like.
  • polymer block (C-2) contains a structural unit derived from a monomer of a polymer other than the butadiene (Bd) unit and the isoprene (Ip) unit, the content thereof is the polymer block ( Based on the total mass of C-2), it is usually 30% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the bonding form thereof is not particularly limited. It may be either random or tapered.
  • the bonding form of the hydrogenated block copolymer (C) is not particularly limited as long as the polymer block (C-1) and the polymer block (C-2) are bonded, and is, for example, linear. , Branched, radial, etc. These may be used alone or in combination of two or more. Among these, it is preferable that it is linear.
  • the linear bonding form when the polymer block (C-1) is represented by A and the polymer block (C-2) is represented by B, the diblocks represented by AB are used.
  • polymers triblock copolymers represented by ABA, tetrablock copolymers represented by ABAB, pentablock copolymers represented by ABABA.
  • (AB) nX-type copolymer (X represents a coupling agent residue, n represents an integer of 3 or more), and the like.
  • ABA triblock copolymer
  • ABAB tetrablock copolymer
  • diblock At least one selected from the group consisting of the copolymer (AB) is preferable, and the triblock copolymer (ABA) and / or the tetrablock copolymer (ABAB) is used. More preferred.
  • the entire bonded polymer block is treated as one polymer block.
  • the polymer block which should be strictly described as Y-XY (where X represents a coupling residue) needs to be particularly distinguished from the single polymer block Y. Except for the case, it is displayed as Y as a whole.
  • this kind of polymer block containing a coupling agent residue is treated as described above, for example, it contains a coupling agent residue, and strictly speaking, ABXXBA (The block copolymer to be described as (X represents a coupling agent residue) is described as ABA and is treated as an example of a triblock copolymer.
  • the hydrogenated block copolymer (C) includes other polymerizable monomers other than the polymer block (C-1) and the polymer block (C-2) as long as the object of the present invention is not impaired.
  • a polymer block (C-3) composed of a polymer may be present.
  • the polymer block (C-3) is not particularly limited, but in a preferred embodiment, the polymer block (C-3) is mainly composed of a structural unit derived from an isoprene (Ip) unit.
  • Ip isoprene
  • the content of the structural unit derived from isoprene (Ip) in the polymer block (C-3) is more preferably 70% by mass or more based on the total mass of the polymer block (C-3). , 90% by mass or more is more preferable.
  • the conjugated diene compound constituting the polymer block (C-3) is mainly composed of isoprene (Ip) units, and further, for example, from 2,3-dimethylbutadiene, 1,3-pentadiene, 1,3-hexadiene and the like. It may contain at least one selected.
  • the vinyl bond amount thereof is not particularly limited, but is preferably 20% or less, more preferably 20% or less. It is 2 to 15%, particularly preferably 5 to 10%.
  • the vinyl bond amount of the polymer block (C-3) is in the above range, more excellent impact resistance, particularly impact resistance at low temperature, tends to be obtained.
  • the polymer block (C-3) contains both butadiene (Bd) units and isoprene (Ip) units, the content ratio of butadiene (Bd) units and isoprene (Ip) units (butadiene unit / isoprene unit).
  • the (molar ratio) is not particularly limited, but is preferably 10/90 to 90/10, more preferably 30/70 to 70/30, and particularly preferably 40/60 to 60/30 from the viewpoint of improving performance. It is 40.
  • the vinyl bond amount thereof is Although not particularly limited, it is preferably 25% or more, more preferably 40 to 80%, still more preferably 45 to 75%, and particularly preferably 50 to 70%.
  • the vinyl bond amount is in the above range, more excellent impact resistance, particularly impact resistance at low temperature, tends to be obtained.
  • the carbon-carbon double bond possessed by the polymer block (C-3) is a polypropylene-based polymer (A) and / or an ethylene- ⁇ -olefin copolymer, similarly to the polymer block (C-2). From the viewpoint of affinity with the rubber (B), hydrogenated ones are preferable.
  • the hydrogenation rate (hydrogenation rate) of the polymer block (C-3) in the hydrogenated block copolymer (C) is not particularly limited, but is preferably 80 mol% or more, more preferably 85 mol% or more. Particularly preferably 90 to 100 mol%.
  • the hydrogenated block copolymer (C) becomes the polypropylene-based polymer (A) and ethylene. It exhibits good affinity with the - ⁇ -olefin copolymer rubber (B), and as a result, the impact resistance of the composition tends to be better.
  • the structure of the block copolymer is A.
  • examples thereof include a triblock copolymer represented by —C, a tetrablock copolymer represented by ABCA, a tetrablock copolymer represented by ABC, and the like.
  • the tetrablock copolymer represented by ABC is preferable.
  • the bonding form of the hydrogenated block copolymer (C) is represented by ABAB.
  • tetrablock copolymer or a tetrablock copolymer represented by ABC that is, a tetrablock copolymer having a polymer block represented by B or C at the terminal block.
  • the ratio of the terminal blocks B or C in the subblock copolymer (C) is not particularly limited. From the viewpoint of obtaining a balance between better rigidity and impact resistance at low temperature, the ratio of the terminal blocks B or C is preferably 40% by mass or less of the total amount of the hydrogenated block copolymer (C). It is more preferably 1 to 35% by mass, further preferably 4 to 30% by mass, and particularly preferably 12 to 30% by mass.
  • polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene which is presumed to have a structure represented by the following general formula (1) from the viewpoint of impact resistance.
  • Triblock copolymer (hereinafter sometimes referred to as "SEEPS") is preferable.
  • SEEPS triblock copolymer
  • i, k, l, m and n each represent an integer of 1 or more.
  • the order of the isoprene unit and the butadiene unit is in no particular order.
  • the melt flow rate value (MFR) of the hydrogenated block copolymer (C) is not particularly limited, but is preferably 0.1 to 50 g / 10 minutes, more preferably 0.2 to 40 g / 10 minutes, and particularly. It is preferably 0.3 to 30 g / 10 minutes.
  • MFR melt flow rate value
  • the weight average molecular weight (Mw) of the hydrogenated block copolymer (C) is not particularly limited, but is preferably 10,000 to 200,000, more preferably 20,000 to 180,000, and even more preferably 30. It is 000 to 160,000, more preferably 50,000 to 160,000, and particularly preferably 70,000 to 150,000.
  • the weight average molecular weight (Mw) of the hydrogenated block copolymer (C) is at least the lower limit value, the impact resistance tends to be good, and when it is at least the upper limit value, the polypropylene-based polymer ( The compatibility with A) tends to be good.
  • the content of the hydrogenated block copolymer (C) is not particularly limited, but is preferably 1 to 50 parts by mass, more preferably 5 to 45 parts by mass with respect to 100 parts by mass of the polypropylene-based polymer (A). It is more preferably 7 to 40 parts by mass, still more preferably 10 to 40 parts by mass, and particularly preferably 10 to 35 parts by mass. If the content of the hydrogenated block copolymer (C) is at least the lower limit value, the impact resistance tends to be good, and if it is at least the upper limit value, the cost can be reduced while maintaining the rigidity. There is a tendency.
  • Examples of the method for producing the hydrogenated block copolymer (C) include a solution polymerization method, an emulsion polymerization method, and a solid phase polymerization method.
  • a solution polymerization method is preferable, and a known method such as an ionic polymerization method such as anionic polymerization or cationic polymerization; a radical polymerization method; can be applied.
  • the anion polymerization method is preferable.
  • a mixture of an aromatic vinyl compound, butadiene (Bd) and isoprene (Ip) is sequentially added in the presence of a solvent, an anionic polymerization initiator and, if necessary, a Lewis base to obtain a block copolymer.
  • the hydrogenated block copolymer (C) can be obtained by hydrogenating the obtained block copolymer and then hydrogenating the block copolymer.
  • Examples of the organic lithium compound used as the polymerization initiator in the above method include monolithium compounds such as methyllithium, ethyllithium, pentyllithium, n-butyllithium, sec-butyllithium and tert-butyllithium; tetraethylenedilithium. Etc., such as dilithium compounds; and the like.
  • the solvent is not particularly limited as long as it does not adversely affect the polymerization reaction.
  • aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane and n-pentane; aromatic hydrocarbons such as benzene, toluene and xylene. ; And so on.
  • the polymerization reaction is usually carried out at 0 to 100 ° C. for 0.5 to 50 hours.
  • an active hydrogen compound such as alcohols, carboxylic acids and water is added to terminate the polymerization reaction, and a hydrogenation catalyst is used in an inert organic solvent according to a known method. It can be hydrogenated to form a hydrogenated additive.
  • the hydrogenation reaction can be carried out in the presence of a hydrogenation catalyst under the conditions of a reaction temperature of 20 to 100 ° C. and a hydrogen pressure of 0.1 to 10 MPa.
  • Examples of the hydrogenated catalyst include lane nickel; a heterogeneous catalyst in which a metal such as Pt, Pd, Ru, Rh, and Ni is supported on a single substance such as carbon, alumina, and diatomaceous soil; a transition metal compound, an alkylaluminum compound, and an alkyllithium.
  • Examples thereof include a Chigler-based catalyst composed of a combination with a compound and the like; a metallocene-based catalyst; and the like.
  • the hydrogenated block copolymer (C) thus obtained is solidified by pouring the polymerization reaction solution into methanol or the like and then heated or dried under reduced pressure, or the polymerization reaction solution is placed in hot water together with steam. It can be obtained by pouring, subjecting so-called steam stripping to remove the solvent by co-boiling, and then heating or drying under reduced pressure. Further, regarding the method for producing the hydrogenated block copolymer (C), for example, it can be produced according to the description in JP-A No. 10-67894 and International Publication No. 2009/031625.
  • Examples of other components that are optional components include other polymers (D), inorganic fillers (E), and other additives (F).
  • the other polymer (D) is a polymer other than the above-mentioned polypropylene-based polymer (A), ethylene- ⁇ -olefin copolymer rubber (B), and hydrogenated block copolymer (C).
  • the other polymer (D) is not particularly limited, and is, for example, polyethylene such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), and high density polyethylene (HDPE); Polystyrene such as otakutic polystyrene; polycyclohexylethane; polyester such as polyethylene terephthalate; ethylene / styrene interpolymer; and the like can be mentioned.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • MDPE medium density polyethylene
  • HDPE high density polyethylene
  • Polystyrene such as otakutic polystyrene
  • polycyclohexylethane polyester such as polyethylene
  • polyethylene such as medium-density polyethylene (MDPE) and high-density polyethylene (HDPE) is preferable from the viewpoint of obtaining higher rigidity while maintaining the impact resistance of the polypropylene-based resin composition of the present invention.
  • High density polyethylene (HDPE) is particularly preferable.
  • the polypropylene-based resin composition of the present invention comprises the above-mentioned polypropylene-based polymer (A), ethylene- ⁇ -olefin copolymer rubber (B), hydrogenated block copolymer (C), and other polymer (D). It is also one of the preferred embodiments that the resin composition is composed of substantially only the resin component. In the case of such a composition, since the resin composition does not contain an inorganic component, even when the molded product obtained by molding the resin composition is incinerated, a residue derived from the inorganic component may be generated in the incinerator. No.
  • polypropylene-based resin compositions are often used with an inorganic filler added in order to balance rigidity and impact resistance, but the resin composition of the present invention is used when an inorganic filler is not added. It is also excellent in that it has an excellent balance between rigidity and impact resistance. It is also preferable that the polypropylene-based resin composition of the present invention comprises only the polypropylene-based polymer (A), the ethylene- ⁇ -olefin copolymer rubber (B), and the hydrogenated block copolymer (C). It is one. In a different preferred embodiment, the polypropylene-based resin composition of the present invention further comprises another polymer (D).
  • the content of the other polymer (D) in the resin component of the polypropylene-based resin composition of the present invention is not particularly limited, but impact resistance, tensile elongation at break, and so on. And from the viewpoint of rigidity, it is preferably 30% by mass or less, more preferably 25% by mass or less, further preferably 20% by mass or less, particularly preferably 15% by mass or less, and preferably 1% by mass. The above is more preferably 3% by mass or more, further preferably 5% by mass or more, and particularly preferably 7% by mass or more.
  • the inorganic filler (E) is not particularly limited, and for example, silica, calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, calcium sulfate, barium sulfate, carbon black, glass fiber, glass beads, glass balloon, and the like. Glass flakes, graphite, titanium oxide, potassium titanate whiskers, carbon fiber, alumina, kaolin clay, silicic acid, calcium silicate, quartz, mica, talc, clay, zirconia, potassium titanate, alumina, metal particles, etc. Be done. These may be used alone or in combination of two or more.
  • the shape of the inorganic filler (E) is not particularly limited, and examples thereof include scaly, spherical, granular, powdery, and indefinite shapes. These may be used alone or in combination of two or more.
  • the polypropylene-based resin composition of the present invention can further contain an inorganic filler (E) when used in an application that requires rigidity in particular.
  • the content of the inorganic filler (E) in the polypropylene-based resin composition is not particularly limited, but the total of the resin components in the polypropylene-based resin composition (polypropylene-based).
  • the total of the polymer (A), the ethylene- ⁇ -olefin copolymer rubber (B), the hydrogenated block copolymer (C), and the other polymer (D)) is preferably 5 to 100 parts by mass. It is 30 parts by mass, more preferably 10 to 25 parts by mass, and particularly preferably 15 to 23 parts by mass.
  • the rigidity and impact resistance tend to be good
  • the content is at least the upper limit value
  • the impact resistance and tensile elongation at break tend to be good. It is in.
  • the other additive (F) is not particularly limited, and for example, release of flame retardant, stabilizer, colorant, pigment, antioxidant, antistatic agent, dispersant, flow enhancer, stearic acid metal salt and the like.
  • examples thereof include molds, silicone oils, mineral oil-based softeners, synthetic resin-based softeners, copper damage inhibitors, cross-linking agents, and nucleating agents. These may be used alone or in combination of two or more.
  • the content of the other additive (F) in the polypropylene-based resin composition is not particularly limited, but the total of the resin components in the polypropylene-based resin composition ( A total of 100 parts by mass of the polypropylene-based polymer (A), the ethylene- ⁇ -olefin copolymer rubber (B), the hydrogenated block copolymer (C), and the other polymer (D)) is preferable. It is less than 20 parts by mass, more preferably less than 10 parts by mass, and particularly preferably less than 5 parts by mass.
  • the polypropylene-based resin composition of the present invention can be prepared by a known blending or mixing means, and a suitable method can be appropriately selected.
  • the components to be mixed are preferably blended with each other by a one-step process or a multi-step process.
  • the polypropylene-based resin composition may be prepared by a dry blend of individual components and subsequent melt mixing, and may be prepared directly in an extrusion molding machine for producing a molded product (for example, a finished product such as an automobile part). It may be done or premixed in a separate extruder (eg, Banbury mixer).
  • the dry blend of the polypropylene-based resin composition of the present invention may be directly injection-molded without pre-melt mixing.
  • the mixing device is not particularly limited, and examples thereof include a Banbury mixer; a lab plast mill; an extruder such as a single-screw extruder or a twin-screw extruder. These may be used alone or in combination of two or more. Among these, an extruder is preferable from the viewpoint of productivity and good kneading property. Some of the ingredients to be mixed may be blended in different steps for better performance.
  • the present invention also provides a hydrogenated block copolymer (C).
  • the hydrogenated block copolymer (C) of the present invention is a polymer block (C-1) mainly composed of an aromatic vinyl compound unit, and a polymer mainly composed of a butadiene (Bd) unit and an isoprene (Ip) unit.
  • the polymer block (C-1) is A
  • the polymer block (C-2) is B
  • Is represented by C the binding form is a tetrablock copolymer represented by ABC.
  • the vinyl bond amount of the polymer block (C-2) in the hydrogenated block copolymer (C) of the present invention is not particularly limited, but is preferably 20% or less, more preferably 2 to 15%, and even more. It is preferably 5 to 10%, and particularly preferably 6 to 8%. When the vinyl bond amount of the polymer block (C-2) is within the above range, more excellent impact resistance, particularly impact resistance at low temperature, tends to be obtained.
  • the ratio of the polymer block (C-3) in the hydrogenated block copolymer (C) of the present invention is not particularly limited, but is 40% by mass or less of the total amount of the hydrogenated block copolymer (C). It is preferably 1 to 35% by mass, more preferably 4 to 30% by mass, and particularly preferably 12 to 30% by mass.
  • the content of the structural unit derived from isoprene (Ip) in the polymer block (C-3) in the hydrogenated block copolymer (C) of the present invention is not particularly limited, but is not particularly limited. Based on the total mass of 3), it is preferably 70% by mass or more, further preferably 90% by mass or more, and particularly preferably 100% by mass.
  • the polymer block (C-3) contains both butadiene (Bd) units and isoprene (Ip) units
  • the content ratio of butadiene (Bd) units and isoprene (Ip) units butadiene unit / isoprene unit).
  • the (molar ratio) is not particularly limited, but is preferably 10/90 to 90/10, more preferably 30/70 to 70/30, and particularly preferably 40/60 to 60/30 from the viewpoint of improving performance. It is 40.
  • the vinyl bond amount of the polymer block (C-3) in the hydrogenated block copolymer (C) of the present invention is not particularly limited, but is derived from isoprene (Ip) in the polymer block (C-3).
  • the content of the structural unit is more than 90% by mass, it is preferably 20% or less, more preferably 2 to 15%, still more preferably 5 to 10%, and particularly preferably 6 to 8%.
  • the polymer block (C-3) contains both butadiene (Bd) units and isoprene (Ip) units and its molar ratio is 10/90 to 90/10
  • the vinyl bond amount thereof is Although not particularly limited, it is preferably 25% or more, more preferably 40 to 80%, still more preferably 45 to 75%, and particularly preferably 50 to 70%.
  • the vinyl bond amount is in the above range, more excellent impact resistance, particularly impact resistance at low temperature, tends to be obtained.
  • the hydrogenation rate (hydrogenation rate) of the polymer block (C-3) in the hydrogenated block copolymer (C) of the present invention is not particularly limited, but is preferably 80 mol% or more, more preferably 85. It is mol% or more, particularly preferably 90 to 100 mol%.
  • the weight average molecular weight (Mw) of the hydrogenated block copolymer (C) of the present invention is not particularly limited, but the weight average molecular weight (Mw) of the hydrogenated block copolymer (C) is not particularly limited. Not, but preferably 10,000 to 200,000, more preferably 20,000 to 180,000, even more preferably 30,000 to 160,000, even more preferably 50,000 to 160,000, particularly preferably. It is 70,000 to 150,000.
  • the molecular weight distribution (Mw / Mn) of the hydrogenated block copolymer (C) of the present invention is not particularly limited, but is preferably 1.50 or less, more preferably 1.30 or less, and particularly preferably 1.10. It is as follows.
  • the content of the aromatic vinyl compound unit in the hydrogenated block copolymer (C) of the present invention is not particularly limited as long as it is less than 30% by mass, but from the viewpoint of obtaining particularly excellent impact resistance, there is no particular limitation. It is preferably 4 to 28% by mass, more preferably 8 to 25% by mass, and particularly preferably 12 to 22% by mass.
  • the weight average molecular weight (Mw) of the polymer block (C-1) in the hydrogenated block copolymer (C) of the present invention is not particularly limited, but is preferably 1,000 to 20,000, more preferably 1,000 to 20,000. It is 2,000 to 10,000, more preferably 3,000 to 9,000, and particularly preferably 4,000 to 8,000.
  • a polystyrene-hydrogenated butadiene / isoprene copolymer presumed to have a structure represented by the following general formula (2) from the viewpoint of impact resistance.
  • a tetrablock copolymer of coalesced-polystyrene-hydrogenated polyisoprene is preferred.
  • another preferred embodiment includes a tetrablock copolymer of polystyrene-hydrogenated butadiene / isoprene copolymer 1-polystyrene-hydrogenated butadiene / isoprene copolymer 2.
  • the vinyl bond amounts of the hydrogenated butadiene / isoprene copolymer 1 block and the hydrogenated butadiene / isoprene copolymer 2 blocks may be the same or different.
  • o, p, q, r, s and t each represent an integer of 1 or more.
  • the order of the isoprene unit and the butadiene unit is in no particular order.
  • the present invention also provides a molded product containing at least the polypropylene-based resin composition of the present invention.
  • the molded product of the present invention can be obtained, for example, by molding the polypropylene-based resin composition of the present invention by softening or melting it with heat.
  • the molding technique is not particularly limited, and for example, compression molding, injection molding, gas assisted injection molding, hollow molding, sheet molding, rotary molding, laminate molding, calendar, vacuum forming, thermoforming, heat molding, extrusion, etc. Can be mentioned. These may be used alone or in combination of two or more. Among these, injection molding is preferable from the viewpoint of productivity.
  • the use of the molded product of the present invention is not particularly limited, and for example, interior / exterior materials for automobiles such as bumper beams, bumper plates, pillars, and instrument panels; housings and covers of electrical equipment; freezer containers; garden furniture; Building and building sheets; etc. These may be used alone or in combination of two or more. Among these, interior / exterior materials for automobiles are preferable from the viewpoint of impact resistance.
  • composition components polypropylene polymer (A), ethylene- ⁇ -olefin copolymer rubber (B), hydrogenated block copolymer (C) used in the composition preparation of each example and each example.
  • the rate, impact resistance (Carpy impact strength), bending strength, and bending elasticity of the molded product obtained in each example were evaluated according to the following evaluation methods.
  • melt flow rate (MFR)
  • the composition components (polypropylene polymer (A), ethylene- ⁇ -olefin copolymer rubber (B), hydrogenated block copolymer (C)) used in the composition preparation of each example and each example were obtained.
  • the melt flow rate (MFR) of the polypropylene-based resin composition was evaluated according to ISO1133: 1997 (unit: g / 10 minutes, 230 ° C., 2.16 kgf).
  • the vinyl bond amount (total of the contents of 3,4-bonding unit and 1,2-bonding unit) was calculated.
  • the hydrogenated block copolymer (C) is a triblock copolymer composed of a polymer block (C-1) -polymer block (C-2) -polymer block (C-1), it is a polymer.
  • the vinyl bond amount of the block (C-2) was defined as the degree of vinylization of the hydrogenated block copolymer (C).
  • the hydrogenated block copolymer (C) is a tetra composed of a polymer block (C-1) -polymer block (C-2) -polymer block (C-1) -polymer block (C-3).
  • a polymerization solution is obtained at the stage where a triblock polymer composed of a polymer block (C-1) -polymer block (C-2) -polymer block (C-1) is polymerized.
  • the vinyl bond amount of the polymer block (C-2) was measured by sampling a part of the polymer block (C-2) using the above-mentioned method.
  • the polymer is polymerized.
  • the overall degree of vinylization was measured by the method described above.
  • the Ziegler-based catalyst is removed by washing with water and vacuum-dried to obtain a hydrogenated product of a polystyrene-poly (isoprene / butadiene) -polystyrene triblock copolymer ().
  • hydrogenated block copolymer 1 is a polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene triblock copolymer (SEEPS), has a styrene content of 20% by mass, and has a "polymer block”.
  • the "vinyl bond amount of (C-2)" (that is, the degree of vinylization of the hydrogenated block copolymer 1) is 6.3%, the weight average molecular weight is 98,000, and the polymer block (C-2). ), The hydrogenation rate was 98.7%, and the melt flow rate (MFR) was 1.0 g / 10 minutes (230 ° C., 2.16 kgf).
  • styrene (1) After raising the temperature inside the pressure-resistant container to 50 ° C, 3000 g of fully dehydrated styrene (1) is added, polymerized at 50 ° C for 60 minutes, and then a mixture of 8400 g of isoprene and 5600 g of butadiene prepared in advance is added and 60 at 50 ° C. Polymerization is carried out for a minute, then 3000 g of styrene (2) is further added to polymerize at 50 ° C. for 60 minutes, and methanol is added to terminate the reaction.
  • a styrene-isoprene / butadiene-styrene type block copolymer (hereinafter referred to as a block copolymer) (Abbreviated as 2) was prepared as a cyclohexane solution.
  • the obtained block copolymer 2 cyclohexane solution was subjected to a hydrogenation reaction under the same conditions as described in Production Example 1 to obtain a polystyrene-poly (isoprene / butadiene) -polystyrene triblock copolymer.
  • a hydrogenated product (hereinafter, abbreviated as hydrogenated block copolymer 2) was obtained.
  • the obtained hydrogenated block copolymer 2 is a polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene triblock copolymer (SEEPS), has a styrene content of 30% by mass, and has a "polymer block”.
  • SEEPS polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene triblock copolymer
  • the “vinyl bond amount of (C-2)" that is, "degree of vinylization of the hydrogenated block copolymer 2"
  • the hydrogenation rate in -2) was 98.7%.
  • the melt flow rate (MFR) was measured, but it did not flow under the condition of "230 ° C., 2.16 kgf".
  • block copolymer 3 After raising the temperature inside the pressure-resistant container to 50 ° C, 3400 g of fully dehydrated styrene (1) was added, polymerized at 50 ° C for 60 minutes, 90 g of tetrahydrofuran was added, and then 14000 g of butadiene was added and polymerized at 60 ° C for 60 minutes. Further, 3400 g of styrene (2) was added and polymerized at 50 ° C. for 60 minutes, and methanol was added to terminate the reaction, and a styrene-butadiene-styrene type block copolymer (hereinafter abbreviated as block copolymer 3). ) was prepared as a cyclohexane solution.
  • a hydrogenation reaction was carried out on the obtained cyclohexane solution of block copolymer 3 under the same conditions as described in Production Example 1, and a hydrogenated product of a polystyrene-polybutadiene-polystyrene triblock copolymer (hereinafter referred to as “2”) was carried out.
  • Hydrocarbon Block Copolymer 3 Abbreviated as Hydrocarbon Block Copolymer 3).
  • the obtained hydrogenated block copolymer 3 is a polystyrene-hydrogenated polybutadiene-polystyrene triblock copolymer (SEBS), has a styrene content of 33% by mass, and has a "polymer block (C-2)".
  • “Vinyl bond amount” (that is, “degree of vinylization of the hydrogenated block copolymer 3") is 38.3%, the weight average molecular weight is 290,000, and hydrogen in the polymer block (C-2). The addition rate was 99.5%. Further, the melt flow rate (MFR) was measured, but it did not flow under the condition of "230 ° C., 2.16 kgf".
  • a hydrogenated product of the copolymer (hereinafter, abbreviated as hydrogenated block copolymer 4) was obtained.
  • the obtained hydrogenated block copolymer 4 is a polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene triblock copolymer (SEEPS), which has a styrene content of 30% by mass and a weight average molecular weight of 30% by mass. It is 90,000, the hydrogenation rate in the polymer block (C-2) is 98.2%, and the melt flow rate (MFR) is less than 0.1 g / 10 minutes (230 ° C., 2.16 kgf). rice field.
  • SEEPS polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene triblock copolymer
  • block copolymer 5 a styrene-isoprene type block copolymer (hereinafter abbreviated as block copolymer 5) was prepared as a cyclohexane solution.
  • the obtained block copolymer 5 was subjected to a hydrogenation reaction under the same conditions as described in Production Example 1 with respect to the cyclohexane solution of the block copolymer 5, and a hydrogenated product of a polystyrene-polyisoprene diblock copolymer (hereinafter referred to as “1”) was carried out.
  • Hydrocarbon Block Copolymer 5 was obtained.
  • the obtained hydrogenated block copolymer 5 is a polystyrene-hydrogenated polyisoprene diblock copolymer (SEP) having a styrene content of 36% by mass and a weight average molecular weight of 90,000.
  • SEP polystyrene-hydrogenated polyisoprene diblock copolymer
  • the hydrogenation rate in the polymer block (C-2) was 98.2%.
  • the melt flow rate (MFR) was measured, but it did not flow under the condition of "230 ° C., 2.16 kgf".
  • block copolymer 6 styrene-isoprene / A butadiene-styrene-isoprene type block copolymer (hereinafter abbreviated as block copolymer 6) was prepared as a cyclohexane solution.
  • block copolymer 6 styrene-isoprene / A butadiene-styrene-isoprene type block copolymer
  • the obtained hydrogenated block copolymer 6 is a polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene-hydrogenated isoprene tetrablock copolymer (SEEPSEP), and has a styrene content of 18% by mass.
  • SEEPSEP polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene-hydrogenated isoprene tetrablock copolymer
  • the content of the structural unit derived from isoprene (Ip) in the polymer block (C-3) was 100% by mass. Further, the hydrogenated block copolymer 6 has a weight average molecular weight of 132,000, the hydrogenation rate of the polymer blocks (C-2) and (C-3) is 99.2%, and the melt flow rate. (MFR) was 0.7 g / 10 minutes (230 ° C., 2.16 kgf).
  • styrene (1) After raising the temperature inside the pressure-resistant container to 50 ° C, 1100 g of sufficiently dehydrated styrene (1) is added, polymerized at 50 ° C for 60 minutes, and then a mixture of 4150 g of isoprene and 3400 g of butadiene prepared in advance is added and 60 at 50 ° C. Polymerization is carried out for a minute, and then 1100 g of styrene (2) is added and polymerized at 50 ° C. for 60 minutes. Further, a mixture of 1350 g of isoprene and 1100 g of butadiene prepared in advance and 300 g of tetrahydrofuran are added and polymerized at 50 ° C. for 60 minutes.
  • block copolymer 6 a styrene-isoprene / butadiene-styrene-isoprene type block copolymer (hereinafter abbreviated as block copolymer 6) was prepared as a cyclohexane solution. After raising the temperature of the reaction solution to 50 ° C., the pressure is increased to a hydrogen pressure of 1 MPa, then a Cheegler catalyst (hydrogenation catalyst) formed of nickel octylate and trimethylaluminum is added under a hydrogen atmosphere, and the reaction heat is applied to 80 ° C.
  • a Cheegler catalyst hydroogenation catalyst formed of nickel octylate and trimethylaluminum
  • the temperature was raised to the maximum and the reaction was carried out until the absorption of hydrogen disappeared, and the hydrogenation reaction of the polymer blocks (C-2) and (C-3) was carried out.
  • the Ziegler-based catalyst is removed by washing with water and vacuum-dried to obtain a polystyrene-poly (isoprene / butadiene) -polystyrene-poly (isoprene / butadiene) tetrablock.
  • a hydrogenated polymer hereinafter abbreviated as hydrogenated block copolymer 7 was obtained.
  • the obtained hydrogenated block copolymer 7 is a polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene-hydrogenated poly (isoprene / butadiene) tetrablock copolymer (SEEPSEEP) having a styrene content of 18. It was mass%, the "vinyl bond amount of the polymer block (C-2)" was 6.5%, and the "vinylization degree of the hydrogenated block copolymer 7" was 20.7%. The ratio of the polymer block (C-3) in the hydrogenated block copolymer 7 is 20% by mass, and the calculated "vinyl bond amount of the polymer block (C-3)" is 60.2%.
  • SEEPSEEP polystyrene-hydrogenated butadiene / isoprene copolymer-polystyrene-hydrogenated poly (isoprene / butadiene) tetrablock copoly
  • the content of the structural unit derived from butadiene (Bd) in the polymer block (C-3) was 44% by mass, and the content of the structural unit derived from isoprene (Ip) was 56% by mass. ..
  • the hydrogenated block copolymer 7 has a weight average molecular weight of 120,000, the hydrogenation rate of the polymer blocks (C-2) and (C-3) is 98.2%, and the melt flow rate. (MFR) was 2.5 g / 10 minutes (230 ° C., 2.16 kgf).
  • the melt flow rate (MFR) of the obtained polypropylene-based resin composition was evaluated, and the impact resistance (Charpy impact strength) of the obtained molded product of the polypropylene-based resin composition was evaluated, and the obtained polypropylene-based resin was obtained.
  • the bending elasticity (strain 0.05-0.25%) of the molded product of the composition was evaluated. The results are shown in Table 1.
  • SEEPS Polystyrene block copolymer 4 (containing styrene) obtained in Production Example 4. Amount 30% by mass)
  • Example 1 From Table 1, the molded product produced in Example 1 was excellent in impact resistance, especially at low temperatures (-20 ° C and -40 ° C). On the other hand, the molded products produced in Comparative Examples 1 to 6 did not have good impact resistance, especially at low temperatures (-20 ° C and -40 ° C).
  • the hydrogenated block copolymer (C) having a styrene content of 4% by mass, 15% by mass, and 25% by mass was produced by the same method as in Production Example 1, respectively, and a polypropylene-based resin composition was produced in the same manner as in Example 1.
  • the effect of the present invention can be expected from the molded product produced by preparing the above.
  • the effect of the present invention can be expected for a molded product containing 5 parts by mass, 10 parts by mass, and 45 parts by mass of the hydrogenated block copolymer (C) with respect to 100 parts by mass.
  • the melt flow rate (MFR) of the obtained polypropylene-based resin composition was evaluated, and the impact resistance (Charpy impact strength) of the obtained molded product of the polypropylene-based resin composition was evaluated, and the obtained polypropylene-based resin was obtained.
  • the bending elasticity (strain 0.05-0.25%) and the specified bending strength (strain 3.5%) of the molded product of the composition were evaluated. The results are shown in Table 2.
  • the polypropylene-based resin composition of the present invention is a polypropylene-based resin composition having good impact resistance, particularly impact resistance at low temperatures
  • the polypropylene resin composition containing the hydrogenated block copolymer of the present invention is also included. Since the product has the above-mentioned good properties, it is useful as a material for various products such as mechanical parts and automobile parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

耐衝撃性、特に低温での耐衝撃性に優れたポリプロピレン系樹脂組成物、該ポリプロピレン系樹脂組成物に含まれる水添ブロック共重合体、前記ポリプロピレン系樹脂組成物を含む成型品、及び該成型品を含む自動車用内外装材料を提供する。ポリプロピレン系重合体(A)と、エチレン-α-オレフィン共重合体ゴム(B)と、水添ブロック共重合体(C)と、を含むポリプロピレン系樹脂組成物であって、前記水添ブロック共重合体(C)は、芳香族ビニル化合物単位を主体とする重合体ブロック(C-1)を少なくとも1個有すると共に、ブタジエン(Bd)単位及びイソプレン(Ip)単位を主体とする重合体ブロック(C-2)を少なくとも1個有するブロック共重合体の水素添加物であり、前記水添ブロック共重合体における芳香族ビニル化合物単位の含有量が30質量%未満であり、前記重合体ブロック(C-2)のビニル結合量が20%以下である、ポリプロピレン系樹脂組成物。

Description

ポリプロピレン系樹脂組成物、水添ブロック共重合体、成型品、及び自動車用内外装材料
 本発明は、ポリプロピレン系樹脂組成物、水添ブロック共重合体、成型品、及び自動車用内外装材料に関し、特に、ポリプロピレン系樹脂組成物、該ポリプロピレン系樹脂組成物に含まれる水添ブロック共重合体、前記ポリプロピレン系樹脂組成物を含む成型品、及び該成型品を含む自動車用内外装材料に関する。
 ポリプロピレン系樹脂組成物は、一般に、耐薬品性や機械的特性に優れているため、機械部品や自動車部品等の各種製品の材料として広範に使用されている。
 特許文献1には、ポリプロピレン系樹脂、ゴム状重合体、及び水素添加ブロック共重合体からなるプロピレン系樹脂組成物が開示されている。
 特許文献2には、2個のビニル芳香族炭化水素化合物重合体ブロックAと、1個の水添されたブタジエン重合体ブロックBから構成され、水添される前のブタジエン重合体ブロック中のオレフィン性不飽和二重結合のうち90%以上が水添された水添ブロック共重合体を含むポリプロピレン系樹脂組成物が開示されている。
 特許文献3には、ポリプロピレン系重合体(A)50~90質量%と、エチレン-α-オレフィン共重合体(B)5~50質量%と、ビニル芳香族単量体単位及びアルキレン単量体単位を主体とし、全アルキレン単量体中のα―オレフィン単量体単位の含有量が45mol%以上である共重合体0.1~5質量%と、を含有する、ポリプロピレン系樹脂組成物が開示されている。
特開2001-106844号公報 国際公開第99/64489号 国際公開第2010/104174号
 しかしながら、近年の各種製品の機能性や経済性の追求から、製品の薄肉化が進み、耐衝撃性、特に低温での耐衝撃性に優れたポリプロピレン系樹脂組成物が要望されているものの、従来品には、耐衝撃性、特に低温での耐衝撃性についてさらなる改善の余地があった。
 そこで、本発明の目的は、耐衝撃性、特に低温での耐衝撃性に優れたポリプロピレン系樹脂組成物、該ポリプロピレン系樹脂組成物に含まれる水添ブロック共重合体、前記ポリプロピレン系樹脂組成物を含む成型品、及び該成型品を含む自動車用内外装材料を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、ポリプロピレン系重合体(A)と、エチレン-α-オレフィン共重合体ゴム(B)と、芳香族ビニル化合物単位の含有量が30質量%未満であり、重合体ブロック(C-2)のビニル結合量が20%以下である水添ブロック共重合体(C)とを含むことによって、前記課題を解決し得ることを見出し、本発明を完成させた。
 すなわち、本発明は下記の通りである。
 〔1〕ポリプロピレン系重合体(A)と、エチレン-α-オレフィン共重合体ゴム(B)と、水添ブロック共重合体(C)と、を含むポリプロピレン系樹脂組成物であって、前記水添ブロック共重合体(C)は、芳香族ビニル化合物単位を主体とする重合体ブロック(C-1)を少なくとも1個有すると共に、ブタジエン(Bd)単位及びイソプレン(Ip)単位を主体とする重合体ブロック(C-2)を少なくとも1個有するブロック共重合体の水素添加物であり、前記水添ブロック共重合体(C)における前記芳香族ビニル化合物単位の含有量が30質量%未満であり、前記重合体ブロック(C-2)のビニル結合量が20%以下である、ポリプロピレン系樹脂組成物。
 〔2〕前記エチレン-α-オレフィン共重合体ゴム(B)の含有量は、前記ポリプロピレン系重合体(A)100質量部に対して、1~50質量部であり、前記水添ブロック共重合体(C)の含有量は、前記ポリプロピレン系重合体(A)100質量部に対して、1~50質量部である、上記〔1〕に記載のポリプロピレン系樹脂組成物。
 〔3〕JIS K7210に準拠して温度230℃、荷重2.16kgfの条件で求めたメルトフローレート値(MFR)が3~200g/10分間である、上記〔1〕又は〔2〕に記載のポリプロピレン系樹脂組成物。
 〔4〕前記ポリプロピレン系重合体(A)は、JIS K7210に準拠して温度230℃、荷重2.16kgfの条件で求めたメルトフローレート値(MFR)が1~200g/10分間である、上記〔1〕~〔3〕のいずれかに記載のポリプロピレン系樹脂組成物。
 〔5〕前記エチレン-α-オレフィン共重合体ゴム(B)は、JIS K7210に準拠して温度230℃、荷重2.16kgfの条件で求めたメルトフローレート値(MFR)が0.1~50g/10分間である、上記〔1〕~〔4〕のいずれかに記載のポリプロピレン系樹脂組成物。
 〔6〕前記エチレン-α-オレフィン共重合体ゴム(B)は、エチレン-プロピレン共重合体、エチレン-ブテン共重合体及びエチレン-オクテン共重合体からなる群より選ばれる少なくとも1種である、上記〔1〕~〔5〕のいずれかに記載のポリプロピレン系樹脂組成物。
 〔7〕前記エチレン-α-オレフィン共重合体ゴム(B)は、エチレン-オクテン共重合体である、上記〔6〕に記載のポリプロピレン系樹脂組成物。
 〔8〕高密度ポリエチレンをさらに含む、上記〔1〕~〔6〕のいずれかに記載のポリプロピレン系樹脂組成物。
 〔9〕前記水添ブロック共重合体(C)は、JIS K7210に準拠して温度230℃、荷重2.16kgfの条件で求めたメルトフローレート値(MFR)が0.1~50g/10分間である、上記〔1〕~〔8〕のいずれかに記載のポリプロピレン系樹脂組成物。
 〔10〕前記水添ブロック共重合体(C)は、ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレンのトリブロック共重合体、又は、ポリスチレン-水添ブタジエン/イソプレン共重合体のジブロック共重合体である、上記〔1〕~〔9〕のいずれかに記載のポリプロピレン系樹脂組成物。
 〔11〕芳香族ビニル化合物単位を主体とする重合体ブロック(C-1)と、ブタジエン(Bd)単位及びイソプレン(Ip)単位を主体とする重合体ブロック(C-2)と、イソプレン(Ip)単位由来の構造単位を主体とする重合体ブロック(C-3)(ただし、重合体ブロック(C-2)を除く)とを有するブロック共重合体の水素添加物である水添ブロック共重合体(C)であって、重合体ブロック(C-1)をAで、重合体ブロック(C-2)をBで、重合体ブロック(C-3)をCで表したとき、結合形式がA-B-A-Cで示されるテトラブロック共重合体である、水添ブロック共重合体(C)。
 〔12〕前記重合体ブロック(C-2)のビニル結合量が20%以下である、上記〔11〕に記載の水添ブロック共重合体(C)。
 〔13〕前記水添ブロック共重合体(C)中の前記重合体ブロック(C-3)の比率が、前記水添ブロック共重合体(C)全体の40質量%以下である、上記〔11〕又は〔12〕に記載の水添ブロック共重合体(C)。
 〔14〕前記重合体ブロック(C-3)のビニル結合量が20%以下である、上記〔11〕~〔13〕のいずれかに記載の水添ブロック共重合体(C)。
 〔15〕前記重合体ブロック(C-3)中のイソプレン(Ip)に由来する構造単位の含有量は、前記重合体ブロック(C-3)の合計質量に基づいて、70質量%以上である、上記〔11〕~〔14〕のいずれかに記載の水添ブロック共重合体(C)。
 〔16〕前記水添ブロック共重合体(C)における前記重合体ブロック(C-3)の水素添加率(水添率)が80モル%以上である、上記〔11〕~〔15〕のいずれかに記載の水添ブロック共重合体(C)。
 〔17〕上記〔1〕~〔10〕のいずれかに記載のポリプロピレン系樹脂組成物を含む成型品。
 〔18〕上記〔17〕に記載の成型品を含む自動車用内外装材料。
 本発明によれば、耐衝撃性、特に低温での耐衝撃性に優れたポリプロピレン系樹脂組成物、該ポリプロピレン系樹脂組成物に含まれる水添ブロック共重合体、前記ポリプロピレン系樹脂組成物を含む成型品、及び該成型品を含む自動車用内外装材料を提供することができる。
 以下、本発明について詳細に説明する。
 本明細書において、好ましいとされている規定は任意に採用でき、好ましいもの同士の組み合わせはより好ましいといえる。
 また、本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 また、本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせ得る。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書において、「~単位」(ここで「~」は単量体を示す)とは「~に由来する構造単位」を意味し、例えば「芳香族ビニル化合物単位」とは「芳香族ビニル化合物に由来する構造単位」を意味する。
 また、本明細書において、重量平均分子量は、実施例と同様に、ゲル浸透クロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算の重量平均分子量であり、数平均分子量は、ゲル浸透クロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算の数平均分子量である。
 さらに、本明細書において、「高密度ポリエチレン」は、密度0.94g/cm以上のポリエチレンを意味する。
〔ポリプロピレン系樹脂組成物〕
 本発明は、ポリプロピレン系重合体(A)と、エチレン-α-オレフィン共重合体ゴム(B)と、水添ブロック共重合体(C)と、を含むポリプロピレン系樹脂組成物であって、前記水添ブロック共重合体(C)は、芳香族ビニル化合物単位を主体とする重合体ブロック(C-1)を少なくとも1個有すると共に、ブタジエン(Bd)単位及びイソプレン(Ip)単位を主体とする重合体ブロック(C-2)を少なくとも1個有するブロック共重合体の水素添加物であり、前記水添ブロック共重合体における芳香族ビニル化合物単位の含有量が30質量%未満であり、重合体ブロック(C-2)のビニル結合量が20%以下であるポリプロピレン系樹脂組成物である。
 なお、本明細書において、「ポリプロピレン系樹脂組成物」は、ポリプロピレン系重合体(A)を40質量%以上含有するものを言う。
 なお、本明細書において、「芳香族ビニル化合物単位の含有量」は、後述する実施例と同様に、H-NMRで測定した値である。
 ポリプロピレン系樹脂組成物のメルトフローレート値(MFR)としては、特に制限はなく、目的とする成型品の形状及び成型品の成型方法に応じて、好ましい値を選択することができる。本発明のポリプロピレン系樹脂組成物を射出成型により成型する場合におけるポリプロピレン系樹脂組成物のMFRとしては、好ましくは3~200g/10分間、より好ましくは3~150g/10分間、特に好ましくは5~125g/10分間である。ポリプロピレン系樹脂組成物のメルトフローレート値(MFR)が、前記下限値以上であれば、射出成型の際に必要な流動距離が得られ、薄肉成型を行った場合においても、成型品の外観が優れる傾向がある。一方、MFRが前記上限値以下であれば、耐衝撃性が良好となる傾向にある。
 本発明のポリプロピレン系樹脂組成物を押出パイプ成型により成型する場合におけるポリプロピレン系樹脂組成物のMFRとしては、好ましくは0.05~10g/10分間、より好ましくは0.1~5g/10分間、特に好ましくは0.2~1.5g/10分間である。MFRが上述の範囲内にあることが、パイプ押出成型時のパリソン安定性の観点から好ましい。
 また、本発明のポリプロピレン系樹脂組成物を押出ブロー成型により成型する場合におけるポリプロピレン系樹脂組成物のMFRとしては、好ましくは0.05~10g/10分間、より好ましくは0.1~5g/10分間、特に好ましくは0.2~1.5g/10分間である。MFRが上述の範囲にあることが好ましい。ポリプロピレン系樹脂組成物のMFRが前記下限値以上であれば、大型で複雑な形状のブロー成形体を成型しやすくなる。一方、MFRが前記上限値以下であれば、パリソンの耐ドローダウン性及びブロー成型品の耐衝撃性が良好となる傾向にある。
 なお、本明細書において、「メルトフローレート値(MFR)」は、後述する実施例と同様に、JIS K7210に準拠して温度230℃、荷重2.16kgfの条件で測定した値である。
 以下、ポリプロピレン系樹脂組成物中に含まれる、ポリプロピレン系重合体(A)、エチレン-α-オレフィン共重合体ゴム(B)、水添ブロック共重合体(C)、及び必要に応じて含有していてもよいその他の成分について、順に詳述する。
(ポリプロピレン系重合体(A))
 ポリプロピレン系重合体(A)は、ホモポリプロピレン(ホモPP)であってもよく、プロピレンと他の単量体との共重合体であってもよいが、本発明の組成物がより高い剛性を求められる用途では、ホモポリプロピレンが好ましい。
 ポリプロピレン系重合体(A)の立体規則性(タクチシチー)としては、特に制限はなく、アイソタクチックポリプロピレン樹脂、シンジオタクチックポリプロピレン樹脂、アタクチックポリプロピレン樹脂、のいずれであってもよい。本発明のポリプロピレン系樹脂組成物がより高い剛性及び/又は耐熱性を求められる用途では、ポリプロピレン系重合体(A)としてアイソタクチックポリプロピレン樹脂を用いることが好ましい。
 また、ポリプロピレン系重合体(A)の分子構造としては、特に制限はなく、例えば、直鎖構造、分岐構造、変性体によるグラフト構造、などが挙げられる。
<プロピレンと他の単量体との共重合体>
 プロピレンと他の単量体との共重合体としては、特に制限はないが、高い耐衝撃性及び剛性とのバランスの観点で、プロピレン-エチレンランダム共重合体、プロピレン-ブテンランダム共重合体、プロピレン-エチレン-ブテンランダム共重合体、プロピレン-ペンテンランダム共重合体、プロピレン-ヘキセンランダム共重合体、プロピレン-オクテンランダム共重合体、プロピレン-エチレン-ペンテンランダム共重合体、プロピレン-エチレン-ヘキセンランダム共重合体等のプロピレンとα-オレフィンコモノマーとのランダム共重合体(ランダムPP)が好ましい。これらの中でも、本発明のポリプロピレン系樹脂組成物を透明性が要求される用途に用いる場合などは、透明性の観点から、プロピレン-エチレンランダム共重合体が好ましい。
 ポリプロピレン系重合体(A)中におけるプロピレン単位の含有量としては、特に制限はないが、好ましくは75mol%以上、より好ましくは80mol%以上である。ポリプロピレン系重合体(A)中におけるプロピレン単位の含有量が、前記下限値以上であれば、本発明のポリプロピレン系樹脂組成物を成型して得られる成型品の剛性及び耐衝撃性のバランスが良好となる傾向にある。
 また、ポリプロピレン系重合体(A)の分散形態等は限定されず、例えば、1種類のポリプロピレン系重合体が連続相として存在し、他のポリプロピレン系重合体が分散相を形成する形態等であってもよい。また、ポリプロピレン系重合体(A)が2種類以上のポリプロピレン系重合体の混合物である場合、例えば、アイソタクチックポリプロピレン樹脂(ホモPP)と、プロピレン-エチレンランダム共重合体(ランダムPP)とを別々のプロセスで重合し、別々の固形状ペレット等にしたものを用いてもよい。
 ポリプロピレン系重合体(A)の調製方法としては、特に制限はなく、例えば、スラリー重合法、気相重合法、バルク重合法、溶液重合法、などが挙げられる。
 ポリプロピレン系重合体(A)の調製方法において、一段又は多段といった様々なプロセスを採用してもよい。
 ポリプロピレン系重合体(A)の調製に用いる触媒としては、特に制限はなく、例えば、メタロセン触媒、チーグラー・ナッタ触媒、などが挙げられる。
 ポリプロピレン系重合体(A)のメルトフローレート値(MFR)としては、特に制限はないが、好ましくは1~200g/10分間、より好ましくは5~140g/10分間、特に好ましくは10~80g/10分間である。ポリプロピレン系重合体(A)のメルトフローレート値(MFR)が、前記下限値以上であれば、加工性が良好となる傾向にあり、前記上限値以下であれば、剛性が良好となる傾向にある。
 ポリプロピレン系樹脂組成物中におけるポリプロピレン系重合体(A)の含有量としては、特に制限はないが、好ましくは50~90質量%、より好ましくは53~85質量%、さらに好ましくは55~80質量%、特に好ましくは57~75質量%である。ポリプロピレン系重合体(A)の含有量が、前記下限値以上であれば、剛性が良好となる傾向にあり、前記上限値以下であれば、耐衝撃性及び引張り破断伸びが良好となる傾向にある。
(エチレン-α-オレフィン共重合体ゴム(B))
 エチレン-α-オレフィン共重合体ゴム(B)は、エチレンとα-オレフィンとの共重合体である。
<<α-オレフィン>>
 エチレン-α-オレフィン共重合体ゴム(B)を構成するα-オレフィンとしては、特に制限はなく、例えば、C3~C20のα-オレフィンが挙げられる。C3~C20のα-オレフィンとしては、直鎖構造及び分岐構造のいずれであってもよく、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサドデセン、4-メチル-1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、3,3-ジメチル-1-ブテン、ジエチル-1-ブテン、トリメチル-1-ブテン、3-メチル-1-ペンテン、エチル-1-ペンテン、プロピル-1-ペンテン、ジメチル-1-ペンテン、メチルエチル-1-ペンテン、ジエチル-1-ヘキセン、トリメチル-1-ペンテン、3-メチル-1-ヘキセン、ジメチル-1-ヘキセン、3,5,5-トリメチル-1-ヘキセン、メチルエチル-1-ヘプテン、トリメチル-1-ヘプテン、ジメチルオクテン、エチル-1-オクテン、メチル-1-ノネン、ビニルシクロペンテン、ビニルシクロヘキセン、ビニルノルボルネン、などが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。これらの中でも、耐衝撃性及び引張り破断伸びの観点で、C4~C8のα-オレフィンコモノマーが好ましく、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンタン、及び1-オクテンからなる群から選択される少なくとも1種がより好ましく、耐衝撃性の観点からは、プロピレン、1-ブテン、及び1-オクテンからなる群から選択される少なくとも1種がさらに好ましく、1-オクテンが特に好ましい。一方、成型性の観点からは、プロピレン、1-ブテン、及び1-オクテンからなる群から選択される少なくとも1種がさらに好ましく、プロピレンが特に好ましい。エチレン-α-オレフィン共重合体ゴム(B)を構成するα-オレフィンがプロピレンの場合は、ポリプロピレン系重合体(A)の調製の際に多段の重合を用いて調製することも好ましい実施態様である。より詳細には、重合の前段で、アイソタクチックポリプロピレン樹脂を重合し、後段で、エチレン-プロピレン共重合体を重合した後、これらを混合することも、本発明の好ましい実施態様の一つである。
 エチレン-α-オレフィン共重合体ゴム(B)中におけるα-オレフィンの含有量としては、特に制限はないが、好ましくは5~50質量%、より好ましくは20~45質量%である。エチレン-α-オレフィン共重合体ゴム(B)中におけるα-オレフィンの含有量が、前記下限値以上であれば、耐低温硬化性や柔軟性が良好となる傾向にあり、前記上限値以下であれば、剛性が良好となる傾向にある。
 エチレン-α-オレフィン共重合体ゴム(B)として、2種以上のエチレン-α-オレフィン共重合体ゴムを用いてもよい。この場合、耐衝撃性、引張り破断伸び、及び剛性をさらに向上させる観点から、例えば、密度が異なる2種以上のエチレン-α-オレフィン共重合体ゴムを併用してもよい。
 エチレン-α-オレフィン共重合体ゴム(B)のメルトフローレート値(MFR)としては、特に制限はないが、好ましくは0.1~50g/10分間、より好ましくは0.3~35g/10分間である。エチレン-α-オレフィン共重合体ゴム(B)のメルトフローレート値(MFR)が、前記下限値以上であれば、加工性が良好となる傾向にあり、前記上限値以下であれば、機械物性が良好となる傾向にある。
 エチレン-α-オレフィン共重合体ゴム(B)の分子量分布(Mw/Mn;Mwは重量平均分子量、Mnは数平均分子量)としては、特に制限はないが、好ましくは1.3~5.0が好ましい。
 エチレン-α-オレフィン共重合体ゴム(B)の密度としては、特に制限はないが、好ましくは0.850~0.910g/cm、より好ましくは0.855~0.885g/cmである。エチレン-α-オレフィン共重合体ゴム(B)の密度が、前記下限値以上であれば、剛性が良好となる傾向にあり、前記上限値以下であれば、耐衝撃性及び引張り破断伸びが良好となる傾向にある。
 エチレン-α-オレフィン共重合体ゴム(B)の調製に用いられる触媒としては、特に制限はなく、例えば、加工条件下で高分子量化されたα-オレフィン共重合体を容易に得ることができる触媒(例えば、チタニウム、メタロセン、又はバナジウムをベースとする触媒)、などが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。これらの中でも、構造制御の安定性の観点で、メタロセン触媒、塩化チタンが好ましい。
 エチレン-α-オレフィン共重合体ゴム(B)の重合形態としては、特に制限はなく、エチレンとα-オレフィンとのランダム共重合体、並びに、エチレンとα-オレフィンとのブロック共重合体、などが使用できる。具体的な例示としては、エチレンと1-ブテンとのランダム共重合体ゴムとしての三井化学製「TAFMER(登録商標)」、エチレンと1-オクテンとのランダム共重合体ゴムとしてのダウ社製「ENGAGE(登録商標)」、エチレンと1-オクテンとのブロック共重合体ゴムとしてのダウ社製「INFUSE(登録商標)」、などが挙げられるが、これらに限定されない。
 ポリプロピレン系樹脂組成物中におけるエチレン-α-オレフィン共重合体ゴム(B)の含有量としては、特に制限はないが、ポリプロピレン系重合体(A)100質量部に対して、好ましくは1~50質量部、より好ましくは10~50質量部、さらに好ましくは15~45重量部、特に好ましくは15~35質量部である。エチレン-α-オレフィン共重合体ゴム(B)の含有量が、前記下限値以上であれば、耐衝撃性及び引張り破断伸びが良好となる傾向にあり、前記上限値以下であれば、剛性が良好となる傾向にある。
(水添ブロック共重合体(C))
 水添ブロック共重合体(C)は、芳香族ビニル化合物単位を主体とする重合体ブロック(C-1)を少なくとも1個有すると共に、ブタジエン(Bd)単位及びイソプレン(Ip)単位を主体とする重合体ブロック(C-2)を少なくとも1個有するブロック共重合体の水素添加物である。
 以下、重合体ブロック(C-1)および重合体ブロック(C-2)について順に説明する。
<重合体ブロック(C-1)>
 重合体ブロック(C-1)は、芳香族ビニル化合物由来の構造単位を主体とする。ここで言う「主体とする」とは、重合体ブロック(C-1)の合計質量に基づいて芳香族ビニル化合物由来の構造単位を50質量%以上含むことをいう。該重合体ブロック(C-1)中の芳香族ビニル化合物由来の構造単位の含有量は、ポリプロピレン系樹脂組成物の機械的特性の観点から、重合体ブロック(C-1)の合計質量に基づいて、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 上記芳香族ビニル化合物としては、特に制限はなく、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、β-メチルスチレン、2,6-ジメチルスチレン、2,4-ジメチルスチレン、α-メチル-o-メチルスチレン、α-メチル-m-メチルスチレン、α-メチル-p-メチルスチレン、β-メチル-o-メチルスチレン、β-メチル-m-メチルスチレン、β-メチル-p-メチルスチレン、2,4,6-トリメチルスチレン、α-メチル-2,6-ジメチルスチレン、α-メチル-2,4-ジメチルスチレン、β-メチル-2,6-ジメチルスチレン、β-メチル-2,4-ジメチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、2,6-ジクロロスチレン、2,4-ジクロロスチレン、α-クロロ-o-クロロスチレン、α-クロロ-m-クロロスチレン、α-クロロ-p-クロロスチレン、β-クロロ-o-クロロスチレン、β-クロロ-m-クロロスチレン、β-クロロ-p-クロロスチレン、2,4,6-トリクロロスチレン、α-クロロ-2,6-ジクロロスチレン、α-クロロ-2,4-ジクロロスチレン、β-クロロ-2,6-ジクロロスチレン、β-クロロ-2,4-ジクロロスチレン、o-t-ブチルスチレン、m-t-ブチルスチレン、p-t-ブチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-クロロメチルスチレン、m-クロロメチルスチレン、p-クロロメチルスチレン、o-、m-又はp-ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビニルナフタレン、などが挙げられる。
 これらの中でも、製造コストと物性バランスの観点から、スチレン、α-メチルスチレン、及びこれらの混合物が好ましく、スチレンがより好ましい。
 但し、本発明の目的及び効果の妨げにならない限り、重合体ブロック(C-1)は芳香族ビニル化合物以外の他の不飽和単量体を含有していてもよい。該他の不飽和単量体としては、特に制限はなく、例えば、ブタジエン、イソプレン、2,3-ジメチルブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、イソブチレン、メタクリル酸メチル、メチルビニルエーテル、N-ビニルカルバゾール、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン、などが挙げられる。重合体ブロック(C-1)が該他の不飽和単量体単位を含有する場合の結合形態は特に制限はなく、ランダム、テーパー状のいずれでもよい。
 水添ブロック共重合体(C)における芳香族ビニル化合物単位の含有量としては、30質量%未満である限り、特に制限はないが、特に優れた耐衝撃性を得る観点からは、好ましくは4~28質量%、より好ましくは8~25質量%、特に好ましくは12~22質量%である。
<重合体ブロック(C-2)>
 重合体ブロック(C-2)は、ブタジエン(Bd)単位及びイソプレン(Ip)単位由来の構造単位を主体とする。ここで言う「主体とする」とは、重合体ブロック(C-2)の合計質量に基づいて、ブタジエン(Bd)に由来する構造単位及びイソプレン(Ip)に由来する構造単位を50質量%以上含むことをいう。該重合体ブロック(C-2)中のブタジエン(Bd)に由来する構造単位及びイソプレン(Ip)に由来する構造単位の含有量は、重合体ブロック(C-2)の合計質量に基づいて、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 重合体ブロック(C-2)を構成する共役ジエン化合物としては、ブタジエン(Bd)単位及びイソプレン(Ip)単位を主体とし、さらに、例えば、2,3-ジメチルブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等から選択される少なくとも1種を含んでもよい。
 ブタジエン(Bd)単位及びイソプレン(Ip)単位の含有割合(ブタジエン単位/イソプレン単位)(モル比)としては、特に制限はないが、性能向上等の観点から、好ましくは10/90~90/10、より好ましくは30/70~70/30、特に好ましくは40/60~60/40である。また、重合体ブロック(C-2)は、それらの結合形態は特に制限はなく、ランダム、テーパー、完全交互、一部ブロック状、ブロック、又はそれらの2種以上の組合せからなることができるが、好ましくはランダムである。
 重合体ブロック(C-2)を構成するブタジエン(Bd)及びイソプレン(Ip)の結合形態としては、特に制限はなく、例えば、ブタジエンの場合には、1,2-結合、1,4-結合を、イソプレンの場合には、1,2-結合、3,4-結合、1,4-結合をとることができる。
 なお、本明細書では、重合体ブロックにおけるブタジエン単位においては、1,2-結合量をビニル結合量といい、重合体ブロックにおけるイソプレン単位においては、1,2-結合量及び3,4-結合量の合計量をビニル結合量といい、重合体ブロックの全結合形態におけるビニル結合量の含有量を「重合体ブロックのビニル結合量(%)」と称し、水添ブロック共重合体全体におけるビニル結合量の含有量を「水添ブロック共重合体(C)のビニル化度(%)」と称する。1,2-結合量及び3,4-結合量は、実施例と同様に、H-NMR測定によって算出できる。
 重合体ブロック(C-2)のビニル結合量としては、20%以下である限り、特に制限はなく、好ましくは2~15%、より好ましくは5~10%であり、特に好ましくは6~8%である。重合体ブロック(C-2)のビニル結合量が上述の範囲内にあることで、より優れた耐衝撃性、特に低温での耐衝撃性が得られる傾向にある。
 また、水添ブロック共重合体(C)における重合体ブロック(C-2)が有する炭素-炭素二重結合は、ポリプロピレン系重合体(A)及び/又はエチレン-α-オレフィン共重合体ゴム(B)との親和性の観点から、水素添加(以下、「水添」と略称することがある。)されているものが好ましい。水添ブロック共重合体(C)における重合体ブロック(C-2)の水素添加率(水添率)としては、特に制限はないが、好ましくは80モル%以上、より好ましくは85モル%以上、特に好ましくは90~100モル%である。水添ブロック共重合体(C)における重合体ブロック(C-2)の水素添加率が上述の範囲にあることで、水添ブロック共重合体(C)がポリプロピレン系重合体(A)及びエチレン-α-オレフィン共重合体ゴム(B)との間に良好な親和性を示し、その結果、本発明のポリプロピレン系樹脂組成物の耐衝撃性がより優れたものとなる傾向がある。
 なお、本明細書において、「水素添加率(水添率)」は、後述する実施例と同様に測定した値である。
 さらに、重合体ブロック(C-2)は、本発明の目的及び効果の妨げにならない限り、ブタジエン(Bd)単位及びイソプレン(Ip)単位以外の他の重合性の単量体に由来する構造単位を含有していてもよい。該他の重合性の単量体としては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、2,4-ジメチルスチレン、ビニルナフタレン、ビニルアントラセン、メタクリル酸メチル、メチルビニルエーテル、N-ビニルカルバゾール、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン、などが挙げられる。
 重合体ブロック(C-2)がブタジエン(Bd)単位及びイソプレン(Ip)単位以外の他の重合体の単量体に由来する構造単位を含有する場合、その含有量としては、重合体ブロック(C-2)の合計質量に基づいて、通常は30質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは2質量%以下である。
 重合体ブロック(C-2)がブタジエン(Bd)単位及びイソプレン(Ip)単位以外の他の重合体の単量体に由来する構造単位を含有する場合、その結合形態は、特に制限はなく、ランダム、テーパー状のいずれでもよい。
<重合体ブロック(C-1)と重合体ブロック(C-2)の結合形式>
 水添ブロック共重合体(C)の結合形式としては、重合体ブロック(C-1)と重合体ブロック(C-2)とが結合している限り、特に制限はなく、例えば、直鎖状、分岐状、放射状、などが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。これらの中でも、直鎖状であることが好ましい。
 直鎖状の結合形式の具体例としては、重合体ブロック(C-1)をAで、また重合体ブロック(C-2)をBで表したときに、A-Bで示されるジブロック共重合体、A-B-Aで示されるトリブロック共重合体、A-B-A-Bで示されるテトラブロック共重合体、A-B-A-B-Aで示されるペンタブロック共重合体、(A-B)nX型共重合体(Xはカップリング剤残基を表し、nは3以上の整数を表す)、などが挙げられる。これらの中でも、本発明のポリプロピレン系樹脂組成物の耐衝撃性の観点から、トリブロック共重合体(A-B-A)、テトラブロック共重合体(A-B-A-B)及びジブロック共重合体(A-B)からなる群より選ばれる少なくとも1種が好ましく、トリブロック共重合体(A-B-A)及び/又はテトラブロック共重合体(A-B-A-B)がより好ましい。
 ここで、本明細書においては、同種の重合体ブロックが二官能のカップリング剤等を介して直線状に結合している場合、結合している重合体ブロック全体は一つの重合体ブロックとして取り扱われる。これに従い、上記例示も含め、本来厳密にはY-X-Y(Xはカップリング残基を表す)と表記されるべき重合体ブロックは、特に単独の重合体ブロックYと区別する必要がある場合を除き、全体としてYと表示される。本明細書においては、カップリング剤残基を含むこの種の重合体ブロックを上記のように取り扱うので、例えば、カップリング剤残基を含み、厳密にはA-B-X-B-A(Xはカップリング剤残基を表す)と表記されるべきブロック共重合体はA-B-Aと表記され、トリブロック共重合体の一例として取り扱われる。
 また、水添ブロック共重合体(C)には、本発明の目的を損なわない範囲内で、重合体ブロック(C-1)及び重合体ブロック(C-2)以外の、他の重合性単量体からなる重合体ブロック(C-3)が存在していてもよい。重合体ブロック(C-3)としては、特に制限はないが、好ましい実施態様では、重合体ブロック(C-3)はイソプレン(Ip)単位由来の構造単位を主体とする。ここで言う「主体とする」とは、重合体ブロック(C-3)の合計質量に基づいて、イソプレン(Ip)に由来する構造単位を50質量%以上含むことをいう。該重合体ブロック(C-3)中のイソプレン(Ip)に由来する構造単位の含有量は、重合体ブロック(C-3)の合計質量に基づいて、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 重合体ブロック(C-3)を構成する共役ジエン化合物としては、イソプレン(Ip)単位を主体とし、さらに、例えば、2,3-ジメチルブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等から選択される少なくとも1種を含んでもよい。
 重合体ブロック(C-3)がイソプレン(Ip)単位由来の構造単位を90質量%超含有する場合は、そのビニル結合量としては、特に制限はないが、好ましくは20%以下、より好ましくは2~15%、特に好ましくは5~10%である。重合体ブロック(C-3)のビニル結合量が上述の範囲にあることで、より優れた耐衝撃性、特に低温での耐衝撃性が得られる傾向にある。一方、重合体ブロック(C-3)がブタジエン(Bd)単位及びイソプレン(Ip)単位の両方を含む場合は、ブタジエン(Bd)単位及びイソプレン(Ip)単位の含有割合(ブタジエン単位/イソプレン単位)(モル比)としては、特に制限はないが、性能向上等の観点から、好ましくは10/90~90/10、より好ましくは30/70~70/30、特に好ましくは40/60~60/40である。また、重合体ブロック(C-3)がブタジエン(Bd)単位及びイソプレン(Ip)単位の両方を含み、そのモル比が10/90~90/10である場合は、そのビニル結合量としては、特に制限はないが、好ましくは25%以上であり、より好ましくは40~80%、さらに好ましくは45~75%、特に好ましくは50~70%である。ビニル結合量が上述の範囲にあることで、より優れた耐衝撃性、特に低温での耐衝撃性が得られる傾向にある。
 また、重合体ブロック(C-3)が有する炭素-炭素二重結合は、重合体ブロック(C-2)と同様に、ポリプロピレン系重合体(A)及び/又はエチレン-α-オレフィン共重合体ゴム(B)との親和性の観点から、水素添加されているものが好ましい。水添ブロック共重合体(C)における重合体ブロック(C-3)の水素添加率(水添率)としては、特に制限はないが、好ましくは80モル%以上、より好ましくは85モル%以上、特に好ましくは90~100モル%である。水添ブロック共重合体(C)における重合体ブロック(C-3)の水素添加率が上述の範囲にあることで、水添ブロック共重合体(C)がポリプロピレン系重合体(A)及びエチレン-α-オレフィン共重合体ゴム(B)との間に良好な親和性を示し、その結果、組成物の耐衝撃性がより優れたものとなる傾向がある。
 重合体ブロック(C-1)をAで、重合体ブロック(C-2)をBで、そして重合体ブロック(C-3)をCで表したとき、ブロック共重合体の構造としては、A-B-Cで示されるトリブロック共重合体、A-B-C-Aで示されるテトラブロック共重合体、A-B-A-Cで示されるテトラブロック共重合体、などが挙げられる。この中でも、本発明の組成物の耐衝撃性の観点から、A-B-A-Cで示されるテトラブロック共重合体であることが好ましい。本発明の組成物において、特に剛性と低温での耐衝撃性とのバランスを重視する場合は、水添ブロック共重合体(C)の結合形式としては、A-B-A-Bで示されるテトラブロック共重合体又はA-B-A-Cで示されるテトラブロック共重合体、すなわち、末端ブロックにB又はCで表される重合体ブロックを有するテトラブロック共重合体であることが好ましい。水添ブロック共重合体(C)が、A-B-A-Bで示されるテトラブロック共重合体又はA-B-A-Cで示されるテトラブロック共重合体の構造を有する場合の、水添ブロック共重合体(C)中の末端ブロックB又はCの比率は特に限定されない。より優れた剛性と低温での耐衝撃性とのバランスが得られる観点からは、末端ブロックB又はCの比率は、水添ブロック共重合体(C)全体の40質量%以下であることが好ましく、1~35質量%であることがより好ましく、4~30質量%であることがさらに好ましく、12~30質量%であることが特に好ましい。
 水添ブロック共重合体(C)の具体例としては、耐衝撃性の観点で、下記一般式(1)で示される構造であると推察されるポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレンのトリブロック共重合体(以下「SEEPS」ということがある)が好ましい。
Figure JPOXMLDOC01-appb-C000001

 上記式(1)において、i、k、l、m及びnは、それぞれ1以上の整数を示す。なお、上記式(1)において、イソプレン単位とブタジエン単位の順番は順不同である。
 水添ブロック共重合体(C)のメルトフローレート値(MFR)としては、特に制限はないが、好ましくは0.1~50g/10分間、より好ましくは0.2~40g/10分間、特に好ましくは0.3~30g/10分間である。水添ブロック共重合体(C)のメルトフローレート値(MFR)が、前記下限値以上であれば、加工性が良好となる傾向にあり、前記上限値以下であれば、機械物性が良好となる傾向にある。
 水添ブロック共重合体(C)の重量平均分子量(Mw)としては、特に制限はないが、好ましくは10,000~200,000、より好ましくは20,000~180,000、さらに好ましくは30,000~160,000、よりさらに好ましくは50,000~160,000、特に好ましくは70,000~150,000である。水添ブロック共重合体(C)の重量平均分子量(Mw)が、前記下限値以上であれば、耐衝撃性が良好となる傾向にあり、前記上限値以下であれば、ポリプロピレン系重合体(A)との相溶性が良好となる傾向にある。
 水添ブロック共重合体(C)の含有量は、特に制限はないが、ポリプロピレン系重合体(A)100質量部に対して、好ましくは1~50質量部、より好ましくは5~45質量部、さらに好ましくは7~40質量部、よりさらに好ましくは10~40質量部、特に好ましくは10~35質量部である。水添ブロック共重合体(C)の含有量が、前記下限値以上であれば、耐衝撃性が良好となる傾向にあり、前記上限値以下であれば、剛性を維持しつつコストを低減できる傾向にある。
<水添ブロック共重合体(C)の製造方法>
 水添ブロック共重合体(C)の製造方法としては、例えば、溶液重合法、乳化重合法、固相重合法、などが挙げられる。これらの中でも、溶液重合法が好ましく、アニオン重合、カチオン重合等のイオン重合法;ラジカル重合法;などの公知の方法を適用できる。これらの中でも、アニオン重合法が好ましい。アニオン重合法では、溶媒、アニオン重合開始剤、及び必要に応じてルイス塩基の存在下、芳香族ビニル化合物、ブタジエン(Bd)及びイソプレン(Ip)の混合物を逐次添加して、ブロック共重合体を得、次いでブロック共重合体を水素添加することにより、水添ブロック共重合体(C)を得ることができる。
 上記方法において重合開始剤として用いられる有機リチウム化合物としては、例えば、メチルリチウム、エチルリチウム、ペンチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム等のモノリチウム化合物;テトラエチレンジリチウム等のジリチウム化合物;などが挙げられる。
 溶媒としては、重合反応に悪影響を及ぼさない限り、特に制限はなく、例えば、シクロヘキサン、メチルシクロヘキサン、n-ヘキサン、n-ペンタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。また、重合反応は、通常、0~100℃で0.5~50時間行う。
 上記した方法により重合を行なった後、アルコール類、カルボン酸類、水等の活性水素化合物を添加して重合反応を停止させ、公知の方法にしたがって不活性有機溶媒中で水添触媒の存在下に水添して、水素添加物とすることができる。水添反応は、水添触媒の存在下に、反応温度20~100℃、水素圧力0.1~10MPaの条件下で行うことができる。
 水添触媒としては、例えば、ラネーニッケル;Pt、Pd、Ru、Rh、Ni等の金属をカーボン、アルミナ、珪藻土等の単体に担持させた不均一系触媒;遷移金属化合物とアルキルアルミニウム化合物、アルキルリチウム化合物等との組み合わせからなるチーグラー系触媒;メタロセン系触媒;などが挙げられる。
 このようにして得られた水添ブロック共重合体(C)は、重合反応液をメタノールなどに注ぐことにより凝固させた後、加熱又は減圧乾燥させるか、重合反応液をスチームと共に熱水中に注ぎ、溶媒を共沸させて除去するいわゆるスチームストリッピングを施した後、加熱又は減圧乾燥することにより取得することができる。
 また、水添ブロック共重合体(C)の製造方法については、例えば、特開平10-67894号公報、国際公開第2009/031625号の記載に準じて製造することができる。
(その他の成分)
 任意成分であるその他の成分としては、例えば、他のポリマー(D)、無機充填材(E)、その他の添加剤(F)、などが挙げられる。
<他のポリマー(D)>
 他のポリマー(D)は、上述のポリプロピレン系重合体(A)、エチレン-α-オレフィン共重合体ゴム(B)、及び水添ブロック共重合体(C)以外のポリマーである。他のポリマー(D)としては、特に制限はなく、例えば、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;シンジオタクチックポリスチレン等のポリスチレン;ポリシクロヘキシルエタン;ポリエチレンテレフタレート等のポリエステル;エチレン/スチレンインターポリマー;などが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。これらの中でも、本発明のポリプロピレン系樹脂組成物が有する耐衝撃性を維持しつつ、より高い剛性が得られる観点から、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)等のポリエチレンが好ましく、特に高密度ポリエチレン(HDPE)が好ましい。
 本発明のポリプロピレン系樹脂組成物は、上述のポリプロピレン系重合体(A)、エチレン-α-オレフィン共重合体ゴム(B)、水添ブロック共重合体(C)、及び他のポリマー(D)からなる、実質的に樹脂成分のみからなる樹脂組成物であることも、好ましい実施態様の一つである。かかる組成物の場合、樹脂組成物中に無機成分が含まれていないため、樹脂組成物を成型して得られる成型品を焼却した場合でも、焼却炉に無機成分由来の残渣が発生することがない。一般に、ポリプロピレン系樹脂組成物は剛性と耐衝撃性とのバランスを取るために無機充填材を添加して使用されることが多いが、本発明の樹脂組成物は、無機充填材を添加しない場合においても剛性と耐衝撃性とのバランスに優れる点で優れている。
 本発明のポリプロピレン系樹脂組成物が、ポリプロピレン系重合体(A)、エチレン-α-オレフィン共重合体ゴム(B)、及び水添ブロック共重合体(C)のみからなることも好ましい実施態様の一つである。異なる好ましい実施態様では、本発明のポリプロピレン系樹脂組成物は、他のポリマー(D)をさらに含む。他のポリマー(D)をさらに含有する場合、本発明のポリプロピレン系樹脂組成物の樹脂成分中における他のポリマー(D)の含有量としては特に制限はないが、耐衝撃性、引張り破断伸び、及び剛性の観点から、好ましくは30質量%以下であり、より好ましくは25質量%以下であり、さらに好ましくは20質量%以下であり、特に好ましくは15質量%以下であり、好ましくは1質量%以上であり、より好ましくは3質量%以上であり、さらに好ましくは5質量%以上であり、特に好ましくは7質量%以上である。
<無機充填材(E)>
 無機充填材(E)としては、特に制限はなく、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、硫酸カルシウム、硫酸バリウム、カーボンブラック、ガラス繊維、ガラスビーズ、ガラスバルーン、ガラスフレーク、グラファイト、酸化チタン、チタン酸カリウムウイスカー、カーボンファイバー、アルミナ、カオリンクレー、ケイ酸、ケイ酸カルシウム、石英、マイカ、タルク、クレー、ジルコニア、チタン酸カリウム、アルミナ、金属粒子、などが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。これらの中でも、剛性及び耐衝撃性の観点から、タルク、炭酸カルシウムが好ましく、タルクがより好ましい。
 無機充填材(E)の形状としては、特に制限はなく、例えば、鱗片状、球状、粒状、粉体状、不定形状、などが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。
 本発明のポリプロピレン系樹脂組成物は、特に剛性を必要とする用途に使用される場合に、無機充填材(E)をさらに含有することができる。無機充填材(E)を含有する場合、ポリプロピレン系樹脂組成物中における無機充填材(E)の含有量としては、特に制限はないが、ポリプロピレン系樹脂組成物中の樹脂成分の合計(ポリプロピレン系重合体(A)、エチレン-α-オレフィン共重合体ゴム(B)、水添ブロック共重合体(C)、及び他のポリマー(D)の合計)100質量部に対して、好ましくは5~30質量部、より好ましくは10~25質量部、特に好ましくは15~23質量部である。無機充填材(E)の含有量が、前記下限値以上であれば、剛性及び衝撃性が良好となる傾向にあり、前記上限値以下であれば、衝撃性及び引張り破断伸びが良好となる傾向にある。
<その他の添加剤(F)>
 その他の添加剤(F)としては、特に制限はなく、例えば、難燃剤、安定剤、着色剤、顔料、酸化防止剤、帯電防止剤、分散剤、流れ増強剤、ステアリン酸金属塩等の離型剤、シリコーンオイル、鉱物油系軟化剤、合成樹脂系軟化剤、銅害防止剤、架橋剤、核剤、などが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。
 その他の添加剤(F)を含有する場合、ポリプロピレン系樹脂組成物中におけるその他の添加剤(F)の含有量としては、特に制限はないが、ポリプロピレン系樹脂組成物中の樹脂成分の合計(ポリプロピレン系重合体(A)、エチレン-α-オレフィン共重合体ゴム(B)、水添ブロック共重合体(C)、及び他のポリマー(D)の合計)100質量部に対して、好ましくは20質量部未満、より好ましくは10質量部未満、特に好ましくは5質量部未満である。
 本発明のポリプロピレン系樹脂組成物の調製は、公知のブレンド又は混合手段により行うことができ、適宜好適な手法を選択することができる。混合する成分は、一段階のプロセス、又は多段階プロセスによって互いにブレンドすることが好ましい。さらに、ポリプロピレン系樹脂組成物は、個々の成分の乾式ブレンドと、引き続いての溶融混合よって調製してもよく、成型品(例えば、自動車部品等の完成製品)を製造する押出し成型機中で直接行ってもよいし、別個の押出し成型機(例えば、バンバリーミキサ)中で予備混合してもよい。本発明のポリプロピレン系樹脂組成物の乾式ブレンド物は、予備溶融混合せずに直接射出成型してもよい。
 混合装置としては、特に制限はなく、例えば、バンバリーミキサー;ラボプラストミル;単軸押出機や2軸押出機等の押出機;などが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。これらの中でも、生産性及び良混練性の観点で、押出機が好ましい。より優れたパフォーマンスを得るために、混合する成分の一部を異なるステップでブレンドしてもよい。
[水添ブロック共重合体(C)]
 本発明は、水添ブロック共重合体(C)も提供する。
 本発明の水添ブロック共重合体(C)は、芳香族ビニル化合物単位を主体とする重合体ブロック(C-1)と、ブタジエン(Bd)単位及びイソプレン(Ip)単位を主体とする重合体ブロック(C-2)と、イソプレン(Ip)単位由来の構造単位を主体とする重合体ブロック(C-3)(ただし、重合体ブロック(C-2)を除く)とを有するブロック共重合体の水素添加物である水添ブロック共重合体(C)であって、重合体ブロック(C-1)をAで、重合体ブロック(C-2)をBで、重合体ブロック(C-3)をCで表したとき、結合形式がA-B-A-Cで示されるテトラブロック共重合体である。
 本発明の水添ブロック共重合体(C)における重合体ブロック(C-2)のビニル結合量としては、特に制限はないが、好ましくは20%以下、より好ましくは2~15%、さらにより好ましくは5~10%であり、特に好ましくは6~8%である。重合体ブロック(C-2)のビニル結合量が上述の範囲内にあることで、より優れた耐衝撃性、特に低温での耐衝撃性が得られる傾向にある。
 本発明の水添ブロック共重合体(C)中の重合体ブロック(C-3)の比率としては、特に制限はないが、水添ブロック共重合体(C)全体の40質量%以下であることが好ましく、1~35質量%であることがより好ましく、4~30質量%であることがさらに好ましく、12~30質量%であることが特に好ましい。
 本発明の水添ブロック共重合体(C)における重合体ブロック(C-3)中のイソプレン(Ip)に由来する構造単位の含有量としては、特に制限はないが、重合体ブロック(C-3)の合計質量に基づいて、70質量%以上であることが好ましく、90質量%以上であることがさらにより好ましく、100質量%であることが特に好ましい。一方、重合体ブロック(C-3)がブタジエン(Bd)単位及びイソプレン(Ip)単位の両方を含む場合は、ブタジエン(Bd)単位及びイソプレン(Ip)単位の含有割合(ブタジエン単位/イソプレン単位)(モル比)としては、特に制限はないが、性能向上等の観点から、好ましくは10/90~90/10、より好ましくは30/70~70/30、特に好ましくは40/60~60/40である。
 本発明の水添ブロック共重合体(C)における重合体ブロック(C-3)のビニル結合量としては、特に制限はないが、重合体ブロック(C-3)中のイソプレン(Ip)に由来する構造単位の含有量が90質量%超の場合は、好ましくは20%以下、より好ましくは2~15%、さらにより好ましくは5~10%であり、特に好ましくは6~8%である。また、重合体ブロック(C-3)がブタジエン(Bd)単位及びイソプレン(Ip)単位の両方を含み、そのモル比が10/90~90/10である場合は、そのビニル結合量としては、特に制限はないが、好ましくは25%以上であり、より好ましくは40~80%、さらに好ましくは45~75%、特に好ましくは50~70%である。ビニル結合量が上述の範囲にあることで、より優れた耐衝撃性、特に低温での耐衝撃性が得られる傾向にある。
 本発明の水添ブロック共重合体(C)における重合体ブロック(C-3)の水素添加率(水添率)としては、特に制限はないが、好ましくは80モル%以上、より好ましくは85モル%以上、特に好ましくは90~100モル%である。
 本発明の水添ブロック共重合体(C)の重量平均分子量(Mw)としては、特に制限はないが、水添ブロック共重合体(C)の重量平均分子量(Mw)としては、特に制限はないが、好ましくは10,000~200,000、より好ましくは20,000~180,000、さらに好ましくは30,000~160,000、よりさらに好ましくは50,000~160,000、特に好ましくは70,000~150,000である。
 本発明の水添ブロック共重合体(C)の分子量分布(Mw/Mn)としては、特に制限はないが、好ましくは1.50以下、より好ましくは1.30以下、特に好ましくは1.10以下である。
 本発明の水添ブロック共重合体(C)における芳香族ビニル化合物単位の含有量としては、30質量%未満である限り、特に制限はないが、特に優れた耐衝撃性を得る観点からは、好ましくは4~28質量%、より好ましくは8~25質量%、特に好ましくは12~22質量%である。
 本発明の水添ブロック共重合体(C)における重合体ブロック(C-1)の重量平均分子量(Mw)としては、特に制限はないが、好ましくは1,000~20,000、より好ましくは2,000~10,000、さらに好ましくは3,000~9,000、特に好ましくは4,000~8,000である。
 本発明の水添ブロック共重合体(C)の具体例としては、耐衝撃性の観点で、下記一般式(2)で示される構造であると推察されるポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレン-水添ポリイソプレンのテトラブロック共重合体が好ましい。また、他の好ましい実施態様としては、ポリスチレン-水添ブタジエン/イソプレン共重合体1-ポリスチレン-水添ブタジエン/イソプレン共重合体2のテトラブロック共重合体が挙げられる。この場合、水添ブタジエン/イソプレン共重合体1ブロック及び水添ブタジエン/イソプレン共重合体2ブロックのビニル結合量は同じであってもよく、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000002

 上記式(2)において、o、p、q、r、s及びtは、それぞれ1以上の整数を示す。なお、上記式(2)において、イソプレン単位とブタジエン単位の順番は順不同である。
[成型品、自動車用内外装材料]
 本発明は、少なくとも本発明のポリプロピレン系樹脂組成物を含有する成型品も提供する。
 本発明の成型品は、例えば、本発明のポリプロピレン系樹脂組成物を熱により軟化又は溶融させることで成型することで得られる。
 成型技法としては、特に制限はなく、例えば、圧縮成型、射出成型、ガスアシスト射出成型、中空成型、シート成型、回転成型、ラミネート成型、カレンダ、真空成型、熱成型、加熱成型、押出し、などが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。これらの中でも、生産性の観点で、射出成型が好ましい。
 本発明の成型品の用途としては、特に制限はなく、例えば、バンパービーム、バンパー板、ピラー、計器パネル等の自動車用内外装材料;電気機器のハウジング及びカバー;フリーザー容器;ガーデンファーニチャー;建物用及び建築用シート;などが挙げられる。これらは、1種単独で用いてもよく、2種以上用いてもよい。これらの中でも、耐衝撃性の観点から、自動車用内外装材料が好ましい。
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに何ら限定されるものではない。
 なお、各例の組成物調製で用いた組成物成分(ポリプロピレン系重合体(A)、エチレン-α-オレフィン共重合体ゴム(B)、水添ブロック共重合体(C))及び各例で得られたポリプロピレン系樹脂組成物のメルトフローレート(MFR)、各製造例で製造した水添ブロック共重合体1~7(SEEPS、SEBS、SEP、SEEPSEP、SEEPSEEP)における芳香族ビニル化合物単位の含有量(スチレン含有量)、各製造例で製造した水添ブロック共重合体1~7(SEEPS、SEBS、SEP、SEEPSEP、SEEPSEEP)についての水添ブロック共重合体(C)における「重合体ブロック(C-2)のビニル結合量」、製造例6及び7で製造した水添ブロック共重合体6及び7における「重合体ブロック(C-3)のビニル結合量」、各製造例で製造した水添ブロック共重合体1~7(SEEPS、SEBS、SEP、SEEPSEP、SEEPSEEP)についての水添ブロック共重合体(C)の重合体ブロック(C-2)(及び(C-3))における水素添加率、並びに、各例で得られた成型品の耐衝撃性(Charpy衝撃強さ)、曲げ強度、曲げ弾性率について、下記評価方法に従って評価した。
(1.メルトフローレート(MFR)の評価方法)
 各例の組成物調製で用いた組成物成分(ポリプロピレン系重合体(A)、エチレン-α-オレフィン共重合体ゴム(B)、水添ブロック共重合体(C))及び各例で得られたポリプロピレン系樹脂組成物について、ISO1133:1997に準拠して、メルトフローレート(MFR)を評価した(単位:g/10分間、230℃、2.16kgf)。
(2.水添ブロック共重合体(C)における芳香族ビニル化合物単位の含有量(スチレン含有量)の評価方法)
 各製造例で製造した水添ブロック共重合体1~7(SEEPS、SEBS、SEP、SEEPSEP、SEEPSEEP)について、それぞれCDClに溶解し、H-NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行い、得られたスペクトルから、水添ブロック共重合体中における芳香族ビニル化合物単位の含有量(スチレン含有量)を算出した。
(3.水添ブロック共重合体(C)における、「重合体ブロック(C-2)又は(C-3)のビニル結合量」及び「水添ブロック共重合体(C)のビニル化度」の評価方法)
 水添前のブロック共重合体(C)をCDClに溶解してH-NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行った。イソプレン及び/又はブタジエン由来の構造単位の全ピーク面積に対する、イソプレン構造単位における3,4-結合単位及び1,2-結合単位並びにブタジエン構造単位における1,2-結合単位に対応するピーク面積の比から、ビニル結合量(3,4-結合単位と1,2-結合単位の含有量の合計)を算出した。水添ブロック共重合体(C)が重合体ブロック(C-1)-重合体ブロック(C-2)-重合体ブロック(C-1)からなるトリブロック共重合体である場合は、重合体ブロック(C-2)のビニル結合量を水添ブロック共重合体(C)のビニル化度とした。一方、水添ブロック共重合体(C)が重合体ブロック(C-1)-重合体ブロック(C-2)-重合体ブロック(C-1)-重合体ブロック(C-3)からなるテトラブロック共重合体である場合は、重合体ブロック(C-1)-重合体ブロック(C-2)-重合体ブロック(C-1)からなるトリブロック共重合体までを重合した段階で重合溶液の一部をサンプリングし、上述の手法を用いて重合体ブロック(C-2)のビニル結合量を測定した。そして、重合体ブロック(C-1)-重合体ブロック(C-2)-重合体ブロック(C-1)-重合体ブロック(C-3)からなるテトラブロック共重合体を重合した後に、ポリマー全体のビニル化度を上述の手法で測定した。その結果、得られた重合体ブロック(C-2)のビニル結合量、ポリマー全体のビニル化度、そして重合体ブロック(C-2)及び重合体ブロック(C-3)のそれぞれの含有率から、重合体ブロック(C-3)のビニル結合量を算出した。
(4.水添ブロック共重合体(C)の重合体ブロック(C-2)(及び(C-3))における水素添加率の評価方法)
 水添ブロック共重合体をCDClに溶解してH-NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行い、イソプレン又はブタジエンの残存オレフィン由来のピーク面積と、エチレン、プロピレン及びブチレン由来のピーク面積比から水素添加率を算出した。
(5.水添ブロック共重合体(C)の重量平均分子量の評価方法)
 下記条件のGPC測定により測定することで求めた。
<GPC測定装置及び測定条件>
・装置    :GPC装置「HLC-8020」(東ソー株式会社製)
・分離カラム :東ソ-株式会社製の「TSKgel G4000HX」2本を直列に連結した。
・溶離液   :テトラヒドロフラン
・溶離液流量 :0.7mL/min
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
・検出器:示差屈折率(RI)検出器
・検量線:標準ポリスチレンを用いて作成
(6.耐衝撃性(Charpy衝撃強さ)の評価方法)
 各例で得られたポリプロピレン系樹脂組成物の成型品について、ISO179に準拠して、耐衝撃性(Charpy衝撃強さ)を評価した(Notch付き:Type A Charpy(Test Methods E23)specimens、Hammer capacity:7.5J、サンプル数:n=5、測定温度:+21℃、0℃、-20℃、-40℃)。
(7.規定曲げ強さ(歪3.5%)及び曲げ弾性率(歪0.05-0.25%)の評価方法)
 各例で得られたポリプロピレン系樹脂組成物を用いて、射出成型機(「EC75SX」、東芝機械株式会社製)により射出成型してJIS多目的試験片A1を作製した。その中央部(長さ80mm×幅10mm×厚さ4mm)を使用し、JIS K 7171(ISO 178)に基づき、万能試験機(インストロン社製、5566型)を用いて曲げ強度試験を行い、規定曲げ強さ[MPa](歪3.5%)及び曲げ弾性率[MPa](歪0.05-0.25%)を測定した。
〔製造例1〕
 窒素置換し乾燥させた撹拌装置付き耐圧容器中に、モレキュラーシーブスA4にて乾燥したシクロヘキサン50kg、アニオン重合開始剤として濃度10質量%のsec-ブチルリチウムのシクロヘキサン溶液190g(sec-ブチルリチウムの実質的な添加量:19g)を仕込んだ。耐圧容器内を50℃に昇温した後、充分に脱水したスチレン(1)2000gを加え、50℃で60分間重合した後、予め調製したイソプレン8400gとブタジエン5600gの混合物を加えて50℃で60分間重合を行い、さらにスチレン(2)を2000g加えて50℃で60分間重合し、メタノールを加えて反応を停止し、スチレン-イソプレン/ブタジエン-スチレン型のブロック共重合体(以下ブロック共重合体1と略記する)をシクロヘキサン溶液として調製した。該反応液を50℃に昇温後、水素圧力1MPaまで加圧し、それからオクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系触媒(水素添加触媒)を水素雰囲気下で添加し、反応熱によって80℃まで昇温して水素の吸収が無くなるまで反応させて、重合体ブロック(C-2)の水素添加反応を実施した。該反応液を放冷及び放圧させた後、水洗により上記チーグラー系触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレンのトリブロック共重合体の水素添加物(以下、水添ブロック共重合体1と略記する)を得た。得られた水添ブロック共重合体1は、ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレンのトリブロック共重合体(SEEPS)であり、スチレン含有量が20質量%であり、「重合体ブロック(C-2)のビニル結合量」(即ち、水添ブロック共重合体1のビニル化度)が6.3%であり、重量平均分子量が98,000であり、重合体ブロック(C-2)における水素添加率が98.7%であり、メルトフローレート(MFR)が1.0g/10分間(230℃、2.16kgf)であった。
〔製造例2〕
 窒素置換し乾燥させた撹拌装置付き耐圧容器中に、モレキュラーシーブスA4にて乾燥したシクロヘキサン50kg、アニオン重合開始剤として濃度10質量%のsec-ブチルリチウムのシクロヘキサン溶液70g(sec-ブチルリチウムの実質的な添加量:7g)を仕込んだ。耐圧容器内を50℃に昇温した後、充分に脱水したスチレン(1)3000gを加え、50℃で60分間重合した後、予め調製したイソプレン8400gとブタジエン5600gの混合物を加えて50℃で60分間重合を行い、さらにスチレン(2)を3000g加えて50℃で60分間重合し、メタノールを加えて反応を停止し、スチレン-イソプレン/ブタジエン-スチレン型のブロック共重合体(以下ブロック共重合体2と略記する)をシクロヘキサン溶液として調製した。得られたブロック共重合体2のシクロヘキサン溶液に対し、製造例1に記載の内容と同様の条件で水素添加反応を実施し、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレンのトリブロック共重合体の水素添加物(以下、水添ブロック共重合体2と略記する)を得た。得られた水添ブロック共重合体2は、ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレンのトリブロック共重合体(SEEPS)であり、スチレン含有量が30質量%であり、「重合体ブロック(C-2)のビニル結合量」(即ち、「水添ブロック共重合体2のビニル化度」)が6.3%であり、重量平均分子量が270,000であり、重合体ブロック(C-2)における水素添加率が98.7%であった。また、メルトフローレート(MFR)の測定を行ったが、「230℃、2.16kgf」の条件では流動しなかった。
〔製造例3〕
 窒素置換し乾燥させた撹拌装置付き耐圧容器中に、モレキュラーシーブスA4にて乾燥したシクロヘキサン50kg、アニオン重合開始剤として濃度10質量%のsec-ブチルリチウムのシクロヘキサン溶液70g(sec-ブチルリチウムの実質的な添加量:7g)を仕込んだ。耐圧容器内を50℃に昇温した後、充分に脱水したスチレン(1)3400gを加え、50℃で60分間重合した後、テトラヒドロフラン90gを加え、次いでブタジエン14000gを加えて60℃で60分間重合を行い、さらにスチレン(2)を3400g加えて50℃で60分間重合し、メタノールを加えて反応を停止し、スチレン-ブタジエン-スチレン型のブロック共重合体(以下ブロック共重合体3と略記する)をシクロヘキサン溶液として調製した。得られたブロック共重合体3のシクロヘキサン溶液に対し、製造例1に記載の内容と同様の条件で水素添加反応を実施し、ポリスチレン-ポリブタジエン-ポリスチレンのトリブロック共重合体の水素添加物(以下、水添ブロック共重合体3と略記する)を得た。得られた水添ブロック共重合体3は、ポリスチレン-水添ポリブタジエン-ポリスチレンのトリブロック共重合体(SEBS)であり、スチレン含有量が33質量%であり、「重合体ブロック(C-2)のビニル結合量」(即ち、「水添ブロック共重合体3のビニル化度」)が38.3%であり、重量平均分子量が290,000であり、重合体ブロック(C-2)における水素添加率が99.5%であった。また、メルトフローレート(MFR)の測定を行ったが、「230℃、2.16kgf」の条件では流動しなかった。
〔製造例4〕
 アニオン重合開始剤として、「濃度10質量%のsec-ブチルリチウムのシクロヘキサン溶液70g(sec-ブチルリチウムの実質的な添加量:7g)」を使用する代わりに、「濃度10質量%のsec-ブチルリチウムのシクロヘキサン溶液220g(sec-ブチルリチウムの実質的な添加量:22g)」を使用した以外は、製造例2に記載の方法に準じて、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレンのトリブロック共重合体の水素添加物(以下、水添ブロック共重合体4と略記する)を得た。得られた水添ブロック共重合体4は、ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレンのトリブロック共重合体(SEEPS)であり、スチレン含有量が30質量%であり、重量平均分子量が90,000であり、重合体ブロック(C-2)における水素添加率が98.2%であり、メルトフローレート(MFR)が0.1g/10分間未満(230℃、2.16kgf)であった。
〔製造例5〕
 窒素置換し乾燥させた撹拌装置付き耐圧容器中に、モレキュラーシーブスA4にて乾燥したシクロヘキサン50kg、アニオン重合開始剤として濃度10質量%のsec-ブチルリチウムのシクロヘキサン溶液160g(sec-ブチルリチウムの実質的な添加量:16g)を仕込んだ。耐圧容器内を50℃に昇温した後、充分に脱水したスチレン8000gを加え、50℃で60分間重合した後、イソプレン14000gを加えて60℃で60分間重合を行い、メタノールを加えて反応を停止し、スチレン-イソプレン型のブロック共重合体(以下ブロック共重合体5と略記する)をシクロヘキサン溶液として調製した。得られたブロック共重合体5のシクロヘキサン溶液に対し、製造例1に記載の内容と同様の条件で水素添加反応を実施し、ポリスチレン-ポリイソプレンのジブロック共重合体の水素添加物(以下、水添ブロック共重合体5と略記する)を得た。得られた水添ブロック共重合体5は、ポリスチレン-水添ポリイソプレンのジブロック共重合体(SEP)であり、スチレン含有量が36質量%であり、重量平均分子量が90,000であり、重合体ブロック(C-2)における水素添加率が98.2%であった。また、メルトフローレート(MFR)の測定を行ったが、「230℃、2.16kgf」の条件では流動しなかった。
〔製造例6〕
 窒素置換し乾燥させた撹拌装置付き耐圧容器中に、モレキュラーシーブスA4にて乾燥したシクロヘキサン50kg、アニオン重合開始剤として濃度10質量%のsec-ブチルリチウムのシクロヘキサン溶液130g(sec-ブチルリチウムの実質的な添加量:13g)を仕込んだ。耐圧容器内を50℃に昇温した後、充分に脱水したスチレン(1)1100gを加え、50℃で60分間重合した後、予め調製したイソプレン5000gとブタジエン3950gの混合物を加えて50℃で60分間重合を行い、さらにスチレン(2)を1100g加えて50℃で60分間重合し、さらにイソプレン1250gを加えて50℃で60分間重合を行い、メタノールを加えて反応を停止し、スチレン-イソプレン/ブタジエン-スチレン-イソプレン型のブロック共重合体(以下ブロック共重合体6と略記する)をシクロヘキサン溶液として調製した。該反応液を50℃に昇温後、水素圧力1MPaまで加圧し、それからオクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系触媒(水素添加触媒)を水素雰囲気下で添加し、反応熱によって80℃まで昇温して水素の吸収が無くなるまで反応させて、重合体ブロック(C-2)及び(C-3)の水素添加反応を実施した。該反応液を放冷及び放圧させた後、水洗により上記チーグラー系触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレン-ポリイソプレンのテトラブロック共重合体の水素添加物(以下、水添ブロック共重合体6と略記する)を得た。得られた水添ブロック共重合体6は、ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレン-水添イソプレンのテトラブロック共重合体(SEEPSEP)であり、スチレン含有量が18質量%であり、「重合体ブロック(C-2)のビニル結合量」が6.1%であり、「水添ブロック共重合体6のビニル化度」は6.3%であった。水添ブロック共重合体6における重合体ブロック(C-3)の比率は、10質量%であり、算出された「重合体ブロック(C-3)のビニル結合量」は6.6%であった。また、重合体ブロック(C-3)中のイソプレン(Ip)に由来する構造単位の含有量は100質量%であった。さらに、前記水添ブロック共重合体6の重量平均分子量は132,000であり、重合体ブロック(C-2)及び(C-3)における水素添加率が99.2%であり、メルトフローレート(MFR)が0.7g/10分間(230℃、2.16kgf)であった。
〔製造例7〕
 窒素置換し乾燥させた撹拌装置付き耐圧容器中に、モレキュラーシーブスA4にて乾燥したシクロヘキサン50kg、アニオン重合開始剤として濃度10質量%のsec-ブチルリチウムのシクロヘキサン溶液135g(sec-ブチルリチウムの実質的な添加量:13.5g)を仕込んだ。耐圧容器内を50℃に昇温した後、充分に脱水したスチレン(1)1100gを加え、50℃で60分間重合した後、予め調製したイソプレン4150gとブタジエン3400gの混合物を加えて50℃で60分間重合を行い、さらにスチレン(2)を1100g加えて50℃で60分間重合し、さらに予め調製したイソプレン1350gとブタジエン1100gの混合物とテトラヒドロフラン300gとを加えて50℃で60分間重合を行い、メタノールを加えて反応を停止し、スチレン-イソプレン/ブタジエン-スチレン-イソプレン型のブロック共重合体(以下ブロック共重合体6と略記する)をシクロヘキサン溶液として調製した。該反応液を50℃に昇温後、水素圧力1MPaまで加圧し、それからオクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系触媒(水素添加触媒)を水素雰囲気下で添加し、反応熱によって80℃まで昇温して水素の吸収が無くなるまで反応させて、重合体ブロック(C-2)及び(C-3)の水素添加反応を実施した。該反応液を放冷及び放圧させた後、水洗により上記チーグラー系触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレン-ポリ(イソプレン/ブタジエン)のテトラブロック共重合体の水素添加物(以下、水添ブロック共重合体7と略記する)を得た。得られた水添ブロック共重合体7は、ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレン-水添ポリ(イソプレン/ブタジエン)のテトラブロック共重合体(SEEPSEEP)であり、スチレン含有量が18質量%であり、「重合体ブロック(C-2)のビニル結合量」が6.5%であり、「水添ブロック共重合体7のビニル化度」は20.7%であった。水添ブロック共重合体7における重合体ブロック(C-3)の比率は、20質量%であり、算出された「重合体ブロック(C-3)のビニル結合量」は60.2%であった。また、重合体ブロック(C-3)中のブタジエン(Bd)に由来する構造単位の含有量は44質量%であり、イソプレン(Ip)に由来する構造単位の含有量は56質量%であった。さらに、前記水添ブロック共重合体7の重量平均分子量は120,000であり、重合体ブロック(C-2)及び(C-3)における水素添加率が98.2%であり、メルトフローレート(MFR)が2.5g/10分間(230℃、2.16kgf)であった。
〔実施例1及び比較例1~6〕
 下記表1に示す割合で各成分を二軸押出機(L/D=56、26mmΦ)で、180℃、350rpm、押出量5kg/時間で混錬してポリプロピレン系樹脂組成物を調製し、射出成型温度220℃、金型温度40℃で成型し、ポリプロピレン系樹脂組成物の成型品を作製した。得られたポリプロピレン系樹脂組成物についてメルトフローレート(MFR)を評価し、得られたポリプロピレン系樹脂組成物の成型品について耐衝撃性(Charpy衝撃強さ)を評価し、得られたポリプロピレン系樹脂組成物の成型品について曲げ弾性率(歪0.05-0.25%)を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
(表1中の各成分についての説明)
・ポリプロピレン系重合体(A):PP:ホモポリプロピレン:商品名「P4C5Z-27」、Flint Hills Resources社製:メルトフローレート(MFR)20g/10分間(230℃、2.16kgf)
・エチレン-α-オレフィン共重合体ゴム(B):EOR:エチレン/1-オクテンランダム共重合体:商品名「ENGAGE(登録商標)8200」、ダウ社製:メルトフローレート(MFR)5g/10分間(230℃、2.16kgf)、密度0.87g/cm
・水添ブロック共重合体(C):ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレンのトリブロック共重合体(SEEPS):製造例1で得られた水添ブロック共重合体1(スチレン含有量20質量%)
・水添ブロック共重合体(C):ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレンのトリブロック共重合体(SEEPS):製造例2で得られた水添ブロック共重合体2(スチレン含有量30質量%)
・水添ブロック共重合体(C):ポリスチレン-水添ポリブタジエン-ポリスチレンのトリブロック共重合体(SEBS):製造例3で得られた水添ブロック共重合体3(スチレン含有量33質量%)
・水添ブロック共重合体(C):ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレンのトリブロック共重合体(SEEPS):製造例4で得られた水添ブロック共重合体4(スチレン含有量30質量%)
・水添ブロック共重合体(C):ポリスチレン-水添ポリイソプレンのジブロック共重合体(SEP):製造例5で得られた水添ブロック共重合体5(スチレン含有量36質量%)
 表1より、実施例1で作製した成型品は、耐衝撃性、特に低温(-20℃及び-40℃)での耐衝撃性に優れていた。
 一方、比較例1~6で作製した成型品は、耐衝撃性、特に低温(-20℃及び-40℃)での耐衝撃性が良好でなかった。
 製造例1と同様の方法で、スチレン含有量が4質量%、15質量%、25質量%の水添ブロック共重合体(C)をそれぞれ製造し、実施例1と同様にポリプロピレン系樹脂組成物を調製して作製される成形品には、本発明の効果が期待できる。
 製造例1と同様の方法で水添ブロック共重合体(C)を製造し、実施例1と同様にポリプロピレン系樹脂組成物を調製して作製される成形品中、ポリプロピレン系重合体(A)100質量部に対して水添ブロック共重合体(C)を、5質量部、10質量部、45質量部含有する成形品には、本発明の効果が期待できる。
〔実施例2~10及び比較例7〕
 下記表2に示す割合で各成分を二軸押出機(L/D=56、26mmΦ)で、180℃、350rpm、押出量5kg/時間で混錬してポリプロピレン系樹脂組成物を調製し、射出成型温度220℃、金型温度40℃で成型し、ポリプロピレン系樹脂組成物の成型品を作製した。得られたポリプロピレン系樹脂組成物についてメルトフローレート(MFR)を評価し、得られたポリプロピレン系樹脂組成物の成型品について耐衝撃性(Charpy衝撃強さ)を評価し、得られたポリプロピレン系樹脂組成物の成型品について曲げ弾性率(歪0.05-0.25%)及び規定曲げ強さ(歪3.5%)を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
(表2中の各成分についての説明)
・ポリプロピレン系重合体(A):hPP:ホモポリプロピレン:商品名「プライムポリプロJ106G」、プライムポリマー製:メルトフローレート(MFR)15g/10分間(230℃、2.16kgf)
・ポリプロピレン系重合体(A)+エチレン-α-オレフィン共重合体ゴム(B):block-PP:ホモポリプロピレンとエチレン・プロピレンゴム(EPR)との混合物(質量比70.6:29.4):商品名「プライムポリプロJ750HP」プライムポリマー製:メルトフローレート(MFR)14g/10分間(230℃、2.16kgf)、エチレン含量14.7質量%
・水添ブロック共重合体(C):ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレンのトリブロック共重合体(SEEPS):製造例1で得られた水添ブロック共重合体1(スチレン含有量20質量%、Mw98000、「重合体ブロック(C-2)のビニル結合量」(即ち、「水添ブロック共重合体(C)のビニル化度」)6.3%、重合体ブロック(C-2)における水素添加率98.7%)
・水添ブロック共重合体(C):ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレン-ポリイソプレンのテトラブロック共重合体:製造例6で得られた水添ブロック共重合体6
・水添ブロック共重合体(C):ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレン-水添ブタジエン/イソプレン共重合体のテトラブロック共重合体:製造例7で得られた水添ブロック共重合体7
・エチレン-α-オレフィン共重合体ゴム(B):EOR:エチレン/1-オクテンランダム共重合体:商品名「ENGAGE(登録商標)8200」、ダウ社製:メルトフローレート(MFR)5g/10分間(230℃、2.16kgf)、密度0.87g/cm
・高密度ポリエチレン:HDPE:バイオポリエチレン(biobased-PE):商品名「SHE150」、Braskem社製:メルトフローレート(MFR)1g/10分間(190℃、2.16kgf)
・酸化防止剤:商品名「アデカスタブ AO-60」、株式会社ADEKA製
 表2より、実施例2~10で作製した成型品は、耐衝撃性、特に低温(-20℃及び-40℃)での耐衝撃性に優れていた。
 一方、比較例7で作製した成型品は、耐衝撃性、特に低温(-20℃及び-40℃)での耐衝撃性が良好でなかった。
 本発明のポリプロピレン系樹脂組成物は、耐衝撃性、特に低温での耐衝撃性が良好であるポリプロピレン系樹脂組成物であるため、また、本発明の水添ブロック共重合体を含むポリプロピレン樹脂組成物は前記良好な特性を有するため、機械部品や自動車部品等の各種製品の材料に有用である。 

Claims (18)

  1.  ポリプロピレン系重合体(A)と、エチレン-α-オレフィン共重合体ゴム(B)と、水添ブロック共重合体(C)と、を含むポリプロピレン系樹脂組成物であって、
     前記水添ブロック共重合体(C)は、芳香族ビニル化合物単位を主体とする重合体ブロック(C-1)を少なくとも1個有すると共に、ブタジエン(Bd)単位及びイソプレン(Ip)単位を主体とする重合体ブロック(C-2)を少なくとも1個有するブロック共重合体の水素添加物であり、
     前記水添ブロック共重合体(C)における前記芳香族ビニル化合物単位の含有量が30質量%未満であり、
     前記重合体ブロック(C-2)のビニル結合量が20%以下である、ポリプロピレン系樹脂組成物。
  2.  前記エチレン-α-オレフィン共重合体ゴム(B)の含有量は、前記ポリプロピレン系重合体(A)100質量部に対して、1~50質量部であり、前記水添ブロック共重合体(C)の含有量は、前記ポリプロピレン系重合体(A)100質量部に対して、1~50質量部である、請求項1に記載のポリプロピレン系樹脂組成物。
  3.  JIS K7210に準拠して温度230℃、荷重2.16kgfの条件で求めたメルトフローレート値(MFR)が3~200g/10分間である、請求項1又は2に記載のポリプロピレン系樹脂組成物。
  4.  前記ポリプロピレン系重合体(A)は、JIS K7210に準拠して温度230℃、荷重2.16kgfの条件で求めたメルトフローレート値(MFR)が1~200g/10分間である、請求項1~3のいずれか1項に記載のポリプロピレン系樹脂組成物。
  5.  前記エチレン-α-オレフィン共重合体ゴム(B)は、JIS K7210に準拠して温度230℃、荷重2.16kgfの条件で求めたメルトフローレート値(MFR)が0.1~50g/10分間である、請求項1~4のいずれか1項に記載のポリプロピレン系樹脂組成物。
  6.  前記エチレン-α-オレフィン共重合体ゴム(B)は、エチレン-プロピレン共重合体、エチレン-ブテン共重合体及びエチレン-オクテン共重合体からなる群より選ばれる少なくとも1種である、請求項1~5のいずれか1項に記載のポリプロピレン系樹脂組成物。
  7.  前記エチレン-α-オレフィン共重合体ゴム(B)は、エチレン-オクテン共重合体である、請求項6に記載のポリプロピレン系樹脂組成物。
  8.  高密度ポリエチレンをさらに含む、請求項1~6のいずれか1項に記載のポリプロピレン系樹脂組成物。
  9.  前記水添ブロック共重合体(C)は、JIS K7210に準拠して温度230℃、荷重2.16kgfの条件で求めたメルトフローレート値(MFR)が0.1~50g/10分間である、請求項1~8のいずれか1項に記載のポリプロピレン系樹脂組成物。
  10.  前記水添ブロック共重合体(C)は、ポリスチレン-水添ブタジエン/イソプレン共重合体-ポリスチレンのトリブロック共重合体、又は、ポリスチレン-水添ブタジエン/イソプレン共重合体のジブロック共重合体である、請求項1~9のいずれか1項に記載のポリプロピレン系樹脂組成物。
  11.  芳香族ビニル化合物単位を主体とする重合体ブロック(C-1)と、ブタジエン(Bd)単位及びイソプレン(Ip)単位を主体とする重合体ブロック(C-2)と、イソプレン(Ip)単位由来の構造単位を主体とする重合体ブロック(C-3)(ただし、重合体ブロック(C-2)を除く)とを有するブロック共重合体の水素添加物である水添ブロック共重合体(C)であって、
     重合体ブロック(C-1)をAで、重合体ブロック(C-2)をBで、重合体ブロック(C-3)をCで表したとき、結合形式がA-B-A-Cで示されるテトラブロック共重合体である、水添ブロック共重合体(C)。
  12.  前記重合体ブロック(C-2)のビニル結合量が20%以下である、請求項11に記載の水添ブロック共重合体(C)。
  13.  前記水添ブロック共重合体(C)中の前記重合体ブロック(C-3)の比率が、前記水添ブロック共重合体(C)全体の40質量%以下である、請求項11又は12に記載の水添ブロック共重合体(C)。
  14.  前記重合体ブロック(C-3)のビニル結合量が20%以下である、請求項11~13のいずれか1項に記載の水添ブロック共重合体(C)。
  15.  前記重合体ブロック(C-3)中のイソプレン(Ip)に由来する構造単位の含有量は、前記重合体ブロック(C-3)の合計質量に基づいて、70質量%以上である、請求項11~14のいずれか1項に記載の水添ブロック共重合体(C)。
  16.  前記水添ブロック共重合体(C)における前記重合体ブロック(C-3)の水素添加率(水添率)が80モル%以上である、請求項11~15のいずれか1項に記載の水添ブロック共重合体(C)。
  17.  請求項1~10のいずれか1項に記載のポリプロピレン系樹脂組成物を含む成型品。
  18.  請求項17に記載の成型品を含む自動車用内外装材料。
PCT/JP2021/028090 2020-07-30 2021-07-29 ポリプロピレン系樹脂組成物、水添ブロック共重合体、成型品、及び自動車用内外装材料 WO2022025177A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022539559A JPWO2022025177A1 (ja) 2020-07-30 2021-07-29
CN202180059273.1A CN116157435A (zh) 2020-07-30 2021-07-29 聚丙烯系树脂组合物、氢化嵌段共聚物、成型品和汽车用内外装饰材料
US18/018,134 US20230265271A1 (en) 2020-07-30 2021-07-29 Polypropylene-based resin composition, hydrogenated block copolymer, molded article, and interior-exterior decorative material for automobiles
EP21849162.9A EP4190831A1 (en) 2020-07-30 2021-07-29 Polypropylene-based resin composition, hydrogenated block copolymer, molded article, and interior-exterior decorative material for automobiles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-129205 2020-07-30
JP2020129205 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022025177A1 true WO2022025177A1 (ja) 2022-02-03

Family

ID=80036310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028090 WO2022025177A1 (ja) 2020-07-30 2021-07-29 ポリプロピレン系樹脂組成物、水添ブロック共重合体、成型品、及び自動車用内外装材料

Country Status (6)

Country Link
US (1) US20230265271A1 (ja)
EP (1) EP4190831A1 (ja)
JP (1) JPWO2022025177A1 (ja)
CN (1) CN116157435A (ja)
TW (1) TW202212391A (ja)
WO (1) WO2022025177A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188481A (ja) * 1993-11-03 1995-07-25 Shell Internatl Res Maatschappij Bv スチレン−イソプレンテトラブロックコポリマーにより耐衝撃性の改善されたポリプロピレン成形用組成物
JPH1067894A (ja) 1996-05-23 1998-03-10 Kuraray Co Ltd 樹脂組成物および該組成物からなる医療用具
JPH11130910A (ja) * 1997-10-31 1999-05-18 Tosoh Corp キャップライナー材用組成物及びキャップ
JP2001106844A (ja) * 1999-10-13 2001-04-17 Asahi Kasei Corp プロピレン系樹脂組成物
JP2005320459A (ja) * 2004-05-10 2005-11-17 Kraton Jsr Elastomers Kk 粘接着組成物
WO2009031625A1 (ja) 2007-09-07 2009-03-12 Kuraray Co., Ltd. チューブ及びそれを用いた医療用具
WO2016039257A1 (ja) * 2014-09-08 2016-03-17 株式会社クラレ 液体包装容器用フィルム及び液体包装容器
WO2019167745A1 (ja) * 2018-02-27 2019-09-06 日本ゼオン株式会社 テトラブロック共重合体、およびポリマー組成物、ならびにこれらを用いたホットメルト粘接着剤組成物
JP2020001800A (ja) * 2018-06-29 2020-01-09 株式会社クラレ 液体包装容器用フィルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188481A (ja) * 1993-11-03 1995-07-25 Shell Internatl Res Maatschappij Bv スチレン−イソプレンテトラブロックコポリマーにより耐衝撃性の改善されたポリプロピレン成形用組成物
JPH1067894A (ja) 1996-05-23 1998-03-10 Kuraray Co Ltd 樹脂組成物および該組成物からなる医療用具
JPH11130910A (ja) * 1997-10-31 1999-05-18 Tosoh Corp キャップライナー材用組成物及びキャップ
JP2001106844A (ja) * 1999-10-13 2001-04-17 Asahi Kasei Corp プロピレン系樹脂組成物
JP2005320459A (ja) * 2004-05-10 2005-11-17 Kraton Jsr Elastomers Kk 粘接着組成物
WO2009031625A1 (ja) 2007-09-07 2009-03-12 Kuraray Co., Ltd. チューブ及びそれを用いた医療用具
WO2016039257A1 (ja) * 2014-09-08 2016-03-17 株式会社クラレ 液体包装容器用フィルム及び液体包装容器
WO2019167745A1 (ja) * 2018-02-27 2019-09-06 日本ゼオン株式会社 テトラブロック共重合体、およびポリマー組成物、ならびにこれらを用いたホットメルト粘接着剤組成物
JP2020001800A (ja) * 2018-06-29 2020-01-09 株式会社クラレ 液体包装容器用フィルム

Also Published As

Publication number Publication date
US20230265271A1 (en) 2023-08-24
EP4190831A1 (en) 2023-06-07
TW202212391A (zh) 2022-04-01
CN116157435A (zh) 2023-05-23
JPWO2022025177A1 (ja) 2022-02-03

Similar Documents

Publication Publication Date Title
EP0709413B1 (en) (Modified) Hydrogenated diene block copolymer and composition comprising the same
US6548598B2 (en) Thermoplastic resin composition
JP5705109B2 (ja) ポリプロピレン系樹脂組成物、その成型品及びそれを用いた自動車用内外装材料
JP5116644B2 (ja) 熱可塑性重合体組成物
JP2004359877A (ja) プロピレン系樹脂組成物
WO2005090466A1 (ja) 樹脂組成物およびそれからなる成形体
JP2000309668A (ja) 熱可塑性樹脂組成物及びその射出成形体
WO2003000788A1 (fr) Composition de resine thermoplastique
JP2007091974A (ja) 熱可塑性発泡樹脂組成物
JP3887341B2 (ja) 積層体
JP2002012718A (ja) 熱可塑性樹脂組成物及びその射出成形体
JP3277443B2 (ja) ポリプロピレン系樹脂組成物
WO2022025177A1 (ja) ポリプロピレン系樹脂組成物、水添ブロック共重合体、成型品、及び自動車用内外装材料
KR100440642B1 (ko) 열가소성 수지 조성물
JP2003128855A (ja) 熱可塑性樹脂組成物及びその射出成形体
JP3937203B2 (ja) ポリオレフィン系樹脂組成物
JP2000281862A (ja) 耐傷付き性に優れるエラストマー組成物
JPH0551494A (ja) ポリオレフイン組成物
JP2001240638A (ja) 水添ジエン系共重合体およびそれを含むポリプロピレン樹脂組成物
JP3248558B2 (ja) ポリプロピレン系樹脂組成物
JP2513962B2 (ja) 耐衝撃性と耐熱変形性に優れたポリオレフィン組成物
JP2001019827A (ja) 傷付き性に優れるエラストマー組成物
JPH07292211A (ja) 耐屈曲亀裂性に優れたホース
JP4368467B2 (ja) エラストマー組成物
JPH08109288A (ja) ポリオレフィン系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539559

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021849162

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021849162

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE