WO2022022510A1 - 核壳型复合催化剂及其制备方法和用途 - Google Patents

核壳型复合催化剂及其制备方法和用途 Download PDF

Info

Publication number
WO2022022510A1
WO2022022510A1 PCT/CN2021/108678 CN2021108678W WO2022022510A1 WO 2022022510 A1 WO2022022510 A1 WO 2022022510A1 CN 2021108678 W CN2021108678 W CN 2021108678W WO 2022022510 A1 WO2022022510 A1 WO 2022022510A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
core
zsm
molecular sieve
silicalite
Prior art date
Application number
PCT/CN2021/108678
Other languages
English (en)
French (fr)
Inventor
高潮
椿范立
杨国辉
Original Assignee
高化学株式会社
株式会社模范
高潮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高化学株式会社, 株式会社模范, 高潮 filed Critical 高化学株式会社
Priority to EP21850023.9A priority Critical patent/EP4190444A1/en
Priority to AU2021319346A priority patent/AU2021319346A1/en
Priority to US18/018,390 priority patent/US20240034697A1/en
Priority to JP2023506135A priority patent/JP2023536481A/ja
Publication of WO2022022510A1 publication Critical patent/WO2022022510A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0341Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • B01J35/53Spheres with a core-shell structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/023Preparation of physical mixtures or intergrowth products of zeolites chosen from group C01B39/04 or two or more of groups C01B39/14 - C01B39/48
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/03Catalysts comprising molecular sieves not having base-exchange properties
    • C07C2529/035Crystalline silica polymorphs, e.g. silicalites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a core-shell type composite catalyst and a preparation method thereof, as well as the use of the catalyst in preparing p-xylene by a one-step synthesis gas method.
  • Xylene is an important organic chemical raw material, which is widely used in packaging, fiber and other fields.
  • Para-xylene is mainly used in the manufacture of terephthalic acid, which can be used in the pharmaceutical industry.
  • paraxylene is also an important intermediate for the production of polyester fibers and industrial plastics.
  • the industrial production methods of p-xylene mainly include toluene disproportionation and C 9 aromatics transalkylation, xylene isomerization, xylene adsorption separation and other technologies. In this disproportionation and transalkylation pathway, the para-xylene content in the product is thermodynamically limited, and only about 24 wt% concentration of para-xylene can be collected.
  • polyester fiber requires that the concentration of paraxylene is more than 60% by weight, so the concentration of paraxylene obtained by the existing means is far from meeting the requirements of industrial production.
  • concentration and yield of p-xylene In order to improve the concentration and yield of p-xylene, a series of subsequent treatments are required.
  • the physical properties of the three isomers of xylene, especially the boiling points, are relatively small, which brings difficulties to the separation of para-xylene in C 8 aromatics. Therefore, an expensive adsorption separation process must be adopted, which is accompanied by the loss of raw materials and the increase in cost.
  • aromatic hydrocarbons come from the petroleum industry.
  • petroleum energy has become increasingly scarce. Whether it is from the perspective of market demand or alternative energy, the development of new aromatic hydrocarbon synthesis process routes has extremely high value.
  • syngas comes from natural resources such as natural gas, coal and biomass, and can be converted into clean oil products with high added value. It is considered to be one of the most potential substitutes for oil.
  • natural resources such as natural gas, coal and biomass
  • Fischer-Tropsch reaction products have successfully controlled the distribution of Fischer-Tropsch reaction products, and have made significant progress.
  • Fischer-Tropsch synthesis to produce oil products with different carbon number ranges
  • more and more researchers focus on the process of converting syngas into high value-added chemicals with high selectivity in one step.
  • the high value-added chemicals include important chemical raw materials such as low-carbon olefins and low-carbon alcohols.
  • Lasa et al. reported earlier the performance of aromatics from syngas using Cr-Zn/ZSM-5 catalyst (Ind.Eng.Chem.Res., 1991, 30, 1448-1455), in which among the hydrocarbon products, The aromatics selectivity can reach more than 70%, but the specific product distribution of aromatics is not mentioned. Lasa et al. subsequently reported the use of Cr-Zn/ZSM-5 composite catalyst to produce aromatics from synthesis gas (Appl. Catal. A, 1995, 125, 81-98), the reaction at 356-410 ° C, 3.6-4.5 MPa Under these conditions, the aromatics selectivity in the hydrocarbon product reaches 75%, but the xylene selectivity does not exceed 20%. Nankai University Guan Naijia et al.
  • the core-shell composite catalyst of the patent application reduces the surface acid content of the molecular sieve catalyst to a certain extent, because the mixing method of the molecular sieve catalyst and the metal oxide catalyst is physical grinding, a part of the intermediate product (methanol) cannot be immediately The next reaction is carried out by molecular sieve catalyst. Therefore, there is still a need to develop more efficient catalysts.
  • the above catalysts can achieve the synthesis gas to obtain aromatics in one step, the selectivity of p-xylene in the product is often not high or the conversion rate of carbon monoxide is not high, and the isomerization reaction of xylene cannot be effectively controlled. On the other hand, more efficient utilization of the spatial location of catalysts remains a challenge.
  • the invention aims to provide a novel core-shell type composite catalyst and a preparation method thereof, as well as its use in preparing p-xylene with high selectivity from synthesis gas through methanol.
  • the involved catalyst has the advantages of simple preparation method, high synthesis gas conversion rate, high selectivity of p-xylene in the xylene product, long service life and great industrial application prospect.
  • An object of the present invention is to provide a core-shell composite catalyst.
  • the core-shell type composite catalyst is used for one-step conversion of synthesis gas to prepare para-xylene, not only the process is simple, the operation is simple, the conversion rate of synthesis gas is high, and the selectivity of para-xylene in xylene is also high, and the core-shell type composite catalyst is not only simple in process, simple in operation, high in conversion rate of synthesis gas, and high in selectivity of para-xylene in xylene.
  • the composite catalyst has a long service life.
  • Another object of the present invention is to provide a method for preparing the core-shell composite catalyst of the present invention.
  • Another object of the present invention is to provide the use of the core-shell composite catalyst of the present invention or the core-shell composite catalyst obtained by the method of the present invention as a catalyst in the one-step preparation of para-xylene from synthesis gas.
  • FIG. 1 is a simplified schematic diagram of the core-shell type composite catalyst prepared according to Example 4, wherein the core is a spinel structure catalyst, the shell is a molecular sieve catalyst, and a binder layer exists between the core and the shell.
  • a core-shell type composite catalyst wherein the core is a spinel structure XY a O b catalyst, wherein X and Y are different from each other and are selected from the second main group of the periodic table, transition Elements and metal elements in the third main group, a is a number between 1-15, preferably a number between 1-5, b is the number of oxygen atoms required to satisfy the valence of each element; the shell is a molecular sieve catalyst, preferably One or more selected from ZSM-5, ZSM-11, ZSM-35 and MOR, more preferably selected from ZSM-5 and ZSM-11.
  • the weight ratio of the spinel structure XY a O b catalyst to the molecular sieve catalyst is 150: 1-1: 50, preferably 20: 1-1: 20, more preferably 10: 1-1:10.
  • the core in the core-shell composite catalyst of the present invention is a spinel structure XY a O b catalyst, wherein X is a metal element selected from the second main group, transition element and third main group of the periodic table of elements, preferably selected from Al , Ga, In, Tl, Zn, Cu, Co, Fe, Mn, Cr, Ti, Mg, Ca and Ba, more preferably selected from Ga, In and Zn; Y is selected from the second main group of the periodic table, transition Elements and metal elements in the three main groups, preferably selected from Al, Ga, In, Tl, Zn, Cu, Co, Fe, Mn, Cr, Ti, Mg, Ca and Ba, more preferably selected from Cr, Ga and Ti.
  • the spinel structure XY a O b catalyst is ZnCr 2 O 4 or InGa 2 O 4 .
  • the spinel structure XY a O b catalyst of the present invention can be prepared by any conventional method in the art, such as sequential impregnation, co-impregnation and co-precipitation, preferably co-precipitation.
  • a spinel structure catalyst comprising a first metal component X and a second metal component Y
  • it involves mixing the metal comprising the first metal component X and the second metal component Y Mix with saline solution.
  • the catalyst is dried and calcined.
  • the roasting atmosphere is air; the roasting temperature is 500-600°C, preferably 550-600°C; the roasting time is 5-9h, preferably 5-6h.
  • aqueous solutions of soluble metal salts of X and Y are usually mixed, then dried and calcined.
  • a precipitant can be added to keep the pH between 8-9 at all times.
  • the soluble salts are, for example, nitrates, chlorides and the like.
  • the precipitant is, for example, an alkaline substance such as NaOH, Na 2 CO 3 , NaHCO 3 , (NH 4 ) 2 CO 3 , NH 4 OH or ammonia water.
  • the mixing is carried out with heating and stirring.
  • the heating temperature is 50-100°C, preferably 60-90°C, more preferably 70-80°C.
  • the reaction time is 0.5-5h, preferably 1-4h. After the reaction, the reaction mixture was aged at the reaction temperature.
  • the aging time is 0.5-10h, preferably 1-5h.
  • the mixed solution a containing X and Y and the solution b of the precipitant are respectively added to the reactor by means of a pump, and the rate of addition of the two should ensure that the solution a that has been added is mixed with the solution a that has been added.
  • the pH of the mixture formed in real time by solution b was 8-9.
  • nitrates of chromium and zinc are usually prepared with deionized water in the desired chromium/zinc ratio. into a mixed nitrate aqueous solution; this solution and ammonium carbonate aqueous solution (other precipitants can also be used, such as sodium carbonate, sodium hydroxide, ammonium hydroxide) are simultaneously added dropwise to a beaker with a pump for co-precipitation.
  • the shell in the core-shell composite catalyst of the present invention is a molecular sieve catalyst, preferably selected from one or more of ZSM-5, ZSM-11, ZSM-35 and MOR, more preferably selected from ZSM-5 and ZSM-11.
  • Molecular sieve catalysts of the present invention are commercially available or prepared by any conventional method in the art, such as by hydrothermal synthesis, impregnation, ion exchange, vapor deposition, liquid deposition, and the like. Typically, molecular sieve catalysts can be prepared by hydrothermal synthesis.
  • a silicon source such as TEOS
  • an aluminum source such as Al(NO 3 ) 3 9H 2 O
  • an organic template such as tetrapropylammonium hydroxide ( TPAOH)
  • ethanol and deionized water were prepared into a mixture, stirred at room temperature for 2-10 h to obtain a sol, and then the stirred sol was transferred into a hydrothermal synthesis kettle, then sealed, at a temperature of 160-200 ° C at 2-5 rpm The rotation speed of crystallization is 12-72h.
  • the molecular sieve catalyst of the present invention may be in the form of H or a modified molecular sieve in which part or all of H is replaced by M, wherein M is selected from Zn, Ga, Cr, Mn, Fe, Ni, Zr, Cu, La, In and Ca One or more of , preferably Zn.
  • the molecular sieve catalyst in the M modified form can be prepared from the molecular sieve in the H form by ion exchange method, impregnation method, vapor deposition method or liquid deposition method.
  • the molecular sieve catalyst in the H form can be impregnated with a soluble salt solution of metal M, then dried and calcined, so that M is supported on the molecular sieve catalyst.
  • the soluble salts are, for example, nitrates, chlorides and the like.
  • the molecular sieve catalyst in the H form can be subjected to ion exchange treatment with a soluble salt solution of metal M, followed by drying and calcination.
  • the element M accounts for 0.1-15 wt %, preferably 0.5-10 wt %, more preferably 0.7-5 wt %, more preferably 0.7-2 wt % of the total weight of the molecular sieve.
  • the particle size of the molecular sieve catalyst is usually 0.01-20 ⁇ m, preferably 0.1-15 ⁇ m.
  • the molecular sieve catalyst can be surface-modified.
  • the surface modification is performed after the modification with M.
  • Surface modification is performed using surface modification materials.
  • the surface modification material used in the present invention is selected from metal oxides, graphene, activated carbon, Silicalite-1, Silicalite-2, MOF, COF, silica, resin, biomass (such as kelp, glucose, fructose) and One or more of carbon nanotubes, more preferably one or more selected from activated carbon, Silicalite-1 and Silicalite-2.
  • Surface modification can be performed using any conventional method in the art.
  • modification method hydrothermal synthesis method, vapor deposition method, coating method, dipping method, sputtering method, method, etc., which can be routinely selected according to the properties of the surface modification material.
  • silicalite-1 and Silicalite-2 are used for surface modification
  • hydrothermal synthesis can be used; when activated carbon, graphene, or carbon nanotubes are used for modification, vapor deposition can be used; when metal oxides are used for modification
  • dipping method and sputtering method when using silicon dioxide for modification, can use method; when resin or biomass is used for modification, coating method or impregnation method can be used, and then the obtained surface-modified molecular sieve is calcined under an inert gas, such as nitrogen, to obtain a carbon-surface-modified molecular sieve catalyst.
  • an inert gas such as nitrogen
  • a silicon source such as TEOS
  • an organic template such as TPAOH
  • ethanol and deionized water were prepared according to the The mixture was prepared and stirred at room temperature for 2-6 h to obtain the Silicalite-1 molecular sieve precursor solution.
  • the H-ZSM-5 molecular sieve together with the obtained Silicalite-1 molecular sieve precursor solution was transferred into a hydrothermal kettle, then sealed, and crystallized at a temperature of 100-200°C with a rotation speed of 2-5rmp for 12-72h.
  • the weight ratio of the molecular sieve catalyst to the surface-modified material is 100:1-2:1, preferably 50:1-2:1, more preferably 10:1-2:1, particularly preferably 5:1-2:1.
  • the core-shell type composite catalyst of the present invention additionally comprises a binder layer interposed between the core and the shell.
  • the adhesive layer is made of a silicon-containing substance, preferably selected from the group consisting of silica sol, ⁇ -aminopropoxytriethoxysilane (APTES), ⁇ -aminopropoxytrimethoxysilane (APTMS) , ⁇ -glycidyl etheroxypropyltrimethoxysilane and ⁇ -(methacryloyloxy)propyltrimethoxysilane, more preferably silica sol.
  • APTES ⁇ -aminopropoxytriethoxysilane
  • APITMS ⁇ -aminopropoxytrimethoxysilane
  • ⁇ -glycidyl etheroxypropyltrimethoxysilane ⁇ -(methacryloyloxy)propyltrimethoxysilane, more preferably silica sol.
  • a method for preparing the core-shell composite catalyst of the present invention comprising:
  • the core may be coated with a binder and then coated with a molecular sieve catalyst.
  • the binder may be a silicon-containing substance selected from the group consisting of: silica sol, gamma-aminopropoxytriethoxysilane (APTES), gamma-aminopropoxytrimethoxysilane (APTMS), gamma-glycidyl ether Oxypropyltrimethoxysilane and ⁇ -(methacryloyloxy)propyltrimethoxysilane, preferably silica sol.
  • APTES gamma-aminopropoxytriethoxysilane
  • APITMS gamma-aminopropoxytrimethoxysilane
  • Oxypropyltrimethoxysilane and ⁇ -(methacryloyloxy)propyltrimethoxysilane preferably silica sol.
  • the core can be impregnated in the binder, so that the core is evenly stained with the binder, and then the core impregnated with the binder is added to the powder of the molecular sieve catalyst for coating.
  • the impregnation and coating process can be repeated 2-10 times.
  • the resulting product is dried and calcined. Drying can be carried out at room temperature to 120°C, preferably at room temperature to 60°C, most preferably at room temperature; the drying time can be 3-30 hours, preferably 6-20 hours. Firing can be carried out in a muffle furnace under an air atmosphere.
  • the roasting temperature is 350-750°C, preferably 400-600°C, and the roasting time is 1-6h, preferably 2-4h.
  • the catalyst prepared by the method of the present invention is a core-shell composite catalyst, which can be used to prepare p-xylene from synthesis gas in one step.
  • the one-step preparation of p-xylene from synthesis gas can be roughly divided into two parts. The first part is the conversion of synthesis gas into methanol, and the other part is the conversion of methanol into p-xylene.
  • the spinel structure catalyst in the core-shell type composite catalyst of the present invention can convert the synthesis gas into methanol with high conversion rate and high selectivity, and the molecular sieve catalyst can further catalyze the conversion of the methanol converted from the synthesis gas into p-xylene.
  • the core-shell type composite catalyst of the invention greatly improves the selectivity of p-xylene in the xylene product.
  • the inventors found that when the core-shell composite catalyst of the present invention is used, the conversion rate of carbon monoxide is significantly improved, and the selectivity of p-xylene in the xylene product is also greatly improved.
  • the core-shell composite catalyst of the present invention has the advantages of long life, simple preparation and easy repetition, and has good application prospects.
  • the core-shell type composite catalyst of the present invention as a catalyst in the one-step preparation of p-xylene from synthesis gas.
  • a method for preparing p-xylene from syngas in one step wherein the core-shell composite catalyst of the present invention or the core-shell composite catalyst prepared by the method of the present invention is used.
  • the process conditions of the reduction pretreatment are as follows: the reduction gas is pure hydrogen; the pretreatment temperature is 200-800°C, preferably 300-500°C; the pretreatment pressure is 0.1-1.5MPa, preferably 0.1-0.7MPa; The volumetric space velocity of the treated hydrogen is 300-7500 standard cubic meters per hour, preferably 600-4500 standard cubic meters per hour; and/or the pretreatment reduction time is 2-24 hours, preferably 6-8 hours.
  • the synthesis gas is introduced for the reaction to produce p-xylene.
  • the molar ratio of hydrogen to carbon monoxide in the synthesis gas used for this purpose is 0.1-10, preferably 2-5; the reaction pressure is 1-20MPa, preferably 2-10MPa; the reaction temperature is 100-700°C, preferably 350- 500°C; and/or, the space velocity is 300-7500 standard cubic meters per hour, preferably 600-4500 standard cubic meters per hour.
  • the conversion rate of synthesis gas can reach more than 65%
  • the selectivity of para-xylene in xylene products can reach more than 80%
  • the selectivity of para-xylene can be significantly improved .
  • the core-shell type composite catalyst of the present invention can convert the synthesis gas into para-xylene in one step, without using a multi-stage reactor containing a variety of different types of catalysts, and the reaction process is simpler and easy to operate.
  • the core-shell type composite catalyst of the present invention when used to convert syngas into p-xylene in one step, it can maintain high conversion rate and selectivity for at least 2000 h, and thus has a long life.
  • the pH was kept around 8, which was controlled by the relative flow rates of the two solutions. After the co-precipitation, it was left to stand at 75 °C for 3 h. The precipitate was filtered and washed three times with deionized water. The washed precipitate was dried in an oven at 120 °C for 12 h, and then calcined in a muffle furnace at 500 °C for 5 h. The methanol synthesis catalyst was obtained, which was designated as ZnCr 2 O 4 catalyst.
  • a silicon source (TEOS), an aluminum source (Al(NO 3 ) 3 ⁇ 9H 2 O), an organic template (TPAOH), ethanol and deionized water were prepared in a molar ratio (2TEOS: 0.02Al2O3 : 0.68TPAOH :8EtOH) : 120H 2 O) was prepared into a mixture, and stirred at room temperature for 6 h to obtain a sol. Then, the agitated sol was transferred into a hydrothermal synthesis kettle, then sealed, and rotated and crystallized at a speed of 2 rmp at a temperature of 180 °C for 24 h.
  • ZSM-5 molecular sieve was obtained as H-ZSM-5.
  • the Si/Al molar ratio in the HZSM-5 molecular sieve is 46.
  • the surface of 3g ZnCr 2 O 4 granular catalyst was impregnated with 10g silica sol (ALDRICH, 30wt.%suspension in H 2 O), and then the excess silica sol was decanted .
  • ADRICH 30wt.%suspension in H 2 O
  • the round-bottom flask of powdered H-ZSM-5 rotate the round-bottom flask quickly and vigorously to ensure that the surface of ZnCr2O4 is fully coated by H - ZSM- 5 .
  • the coating process was repeated 2 more times, each time coating was carried out in a round bottom flask containing 1 g of powdered H-ZSM-5.
  • the catalyst was dried at room temperature overnight, and calcined in a muffle furnace at 550 °C for 3 h to obtain ZnCr 2 O 4 @H-ZSM-5 catalyst, in which ZnCr 2 O 4 was the core and H-ZSM-5 was the shell,
  • the mass ratio of ZnCr 2 O 4 catalyst and H-ZSM-5 molecular sieve was 1:1. Denoted as ZnCr 2 O 4 @H-ZSM-5 catalyst.
  • Example 1 The "Preparation of ZnCr 2 O 4 catalyst" in Example 1 was repeated to obtain a ZnCr 2 O 4 catalyst.
  • a silicon source (TEOS), an organic template agent (TPAOH), ethanol and deionized water in a molar ratio (1.0TEOS:0.06TPAOH:16.0EtOH:240H 2 O) were prepared into a mixture, and stirred at room temperature for 4 h to obtain the Silicalite-1 molecular sieve precursor body solution.
  • the H-ZSM-5 catalyst prepared in b. was transferred into a polytetrafluoroethylene hydrothermal kettle together with the obtained Silicalite-1 molecular sieve precursor solution, and then sealed, and crystallized at a temperature of 180°C with a rotation speed of 2rmp for 24h.
  • Example 1 The "catalysis experiment" in Example 1 was repeated, but using the ZnCr2O4@H-ZSM- 5 @Silicalite - 1 catalyst instead of the ZnCr2O4@H-ZSM- 5 catalyst.
  • the reaction results are shown in Table 1.
  • Example 1 The "Preparation of ZnCr 2 O 4 catalyst" in Example 1 was repeated to obtain a ZnCr 2 O 4 catalyst.
  • Example 1 The "Preparation of ZnCr 2 O 4 @H-ZSM-5 catalyst" in Example 1 was repeated, but Zn-ZSM-5 was used instead of H-ZSM-5 to obtain ZnCr 2 O 4 @Zn-ZSM-5 molecular sieves.
  • Example 1 The "Catalysis Experiment” in Example 1 was repeated, but using the ZnCr2O4@Zn - ZSM - 5 catalyst instead of the ZnCr2O4@H-ZSM- 5 catalyst.
  • the reaction results are shown in Table 1.
  • Example 1 The "Preparation of ZnCr 2 O 4 catalyst" in Example 1 was repeated to obtain a ZnCr 2 O 4 catalyst.
  • Example 2 The "Preparation of H-ZSM-5@Silicalite-1 catalyst" in Example 2 was repeated, but Zn-ZSM-5 was used instead of H-ZSM-5 to obtain Zn-ZSM-5@Silicalite-1 molecular sieves.
  • Example 1 The "Catalysis Experiment” in Example 1 was repeated, but using the ZnCr2O4@Zn - ZSM- 5 @Silicalite- 1 catalyst instead of the ZnCr2O4@H-ZSM- 5 catalyst.
  • the reaction results are shown in Table 1.
  • the pH was kept around 8, which was controlled by the relative flow rates of the two solutions. After the co-precipitation, it was left to stand at 75 °C for 3 h. The precipitate was filtered and washed three times with deionized water. The washed precipitate was dried in an oven at 120 °C for 12 h, and then calcined in a muffle furnace at 500 °C for 5 h. The methanol synthesis catalyst was obtained, which was designated as InGa 2 O 4 catalyst.
  • Example 2 The "Preparation of H-ZSM-5@Silicalite-1 catalyst" in Example 2 was repeated, but Zn-ZSM-5 was used instead of H-ZSM-5 to obtain Zn-ZSM-5@Silicalite-1 molecular sieves.
  • Example 1 The "Catalysis Experiment” in Example 1 was repeated, but using InGa2O4 @Zn - ZSM- 5 @Silicalite-1 catalyst instead of ZnCr2O4@H-ZSM-5 catalyst. The reaction results are shown in Table 1.
  • Example 1 The "Preparation of ZnCr 2 O 4 catalyst" in Example 1 was repeated to obtain a ZnCr 2 O 4 catalyst.
  • a silicon source (TEOS), an aluminum source (Al(NO 3 ) 3 ⁇ 9H 2 O), an organic template (tetrabutylammonium hydroxide (TBAOH)), ethanol and deionized water were prepared in a molar ratio (2TEOS:0.02Al 2 O) 3 :0.68TBAOH:8EtOH:120H 2 O) was prepared into a mixture, and stirred at room temperature for 6 h to obtain a sol. Then, the agitated sol was transferred into a hydrothermal synthesis kettle, then sealed, and rotated and crystallized at a speed of 2 rmp at a temperature of 180 °C for 24 h.
  • TEOS silicon source
  • an organic template tetrabutylammonium hydroxide (TBAOH)
  • ethanol and deionized water were prepared in a molar ratio (2TEOS:0.02Al 2 O) 3 :0.68TBAOH:
  • the H-ZSM-11 molecular sieve was obtained as H-ZSM-11.
  • the Si/Al molar ratio in the H-ZSM-11 molecular sieve is 46.
  • Example 1 The "Catalysis Experiment” in Example 1 was repeated, but using the ZnCr2O4@Zn - ZSM- 11 @Silicalite- 1 catalyst instead of the ZnCr2O4@H-ZSM- 5 catalyst.
  • the reaction results are shown in Table 1.
  • Example 1 The "Preparation of ZnCr 2 O 4 catalyst" in Example 1 was repeated to obtain a ZnCr 2 O 4 catalyst.
  • Zn-ZSM-5@C 1.5g of glucose aqueous solution with a concentration of 1mol/L was immersed in 1.0g of Zn-ZSM-5, dried at room temperature overnight, and then placed in a 600°C tube furnace, calcined under nitrogen protection, and calcined for 5h to obtain Zn-ZSM-5@C catalyst. Denoted as Zn-ZSM-5@C.
  • Example 1 The "Catalysis Experiment" in Example 1 was repeated, but using the ZnCr2O4@Zn - ZSM - 5 @C catalyst instead of the ZnCr2O4@H-ZSM- 5 catalyst. The reaction results are shown in Table 1.
  • the preparation method of the catalyst is basically the same as that of Example 1, but the core catalyst and the shell catalyst are directly physically mixed by the physical mixture method, and the weight ratio of the core and the shell is changed, so that the ZnCr 2 O 4 catalyst and the H- The weight ratio of ZSM-5 molecular sieve is 1:1.
  • Example 1 As described in Example 1, the obtained catalyst was applied to syngas to directly produce p-xylene, and the results are shown in Table 1.
  • the catalyst preparation method is basically the same as that in Example 2, but the weight ratio of H-ZSM-5 to Silicalite-1 molecular sieve is changed to 1:1.
  • Example 2 As described in Example 2, the obtained catalyst was applied to syngas to directly produce p-xylene, and the results are shown in Table 1.
  • the catalyst preparation method is basically the same as that in Example 2, but the weight ratio of H-ZSM-5 to Silicalite-1 molecular sieve is changed to 1:3.
  • Example 2 As described in Example 2, the obtained catalyst was applied to syngas to directly produce p-xylene, and the results are shown in Table 1.
  • the catalyst preparation method is basically the same as that in Example 4, but the mixing method of ZnCr 2 O 4 and H-ZSM-5@Silicalite-1 is changed to physical grinding method.
  • Example 4 As described in Example 4, the obtained catalyst was applied to syngas to directly produce p-xylene, and the results are shown in Table 1.
  • the catalyst preparation method is the same as Example 2 in "The catalyst for the direct preparation of p-xylene from syngas and its preparation and application" (Application Publication No. CN 109590019 A).
  • Example 1 The "Preparation of ZnCr 2 O 4 catalyst" in Example 1 was repeated to obtain a ZnCr 2 O 4 catalyst.
  • Example 2 The "Preparation of H-ZSM-5@Silicalite-1 catalyst" in Example 2 was repeated, but Zn-ZSM-5 was used instead of H-ZSM-5 to obtain Zn-ZSM-5@Silicalite-1 molecular sieves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种核壳型复合催化剂,其中核为尖晶石结构XYaOb催化剂,其中X和Y彼此不同且选自元素周期表第二主族、过渡元素和第三主族中的金属元素,a为1-15之间的数,优选为1-5之间的数,b为满足各元素化合价所需的氧原子数;壳为分子筛催化剂,优选选自ZSM-5、ZSM-11、ZSM-35和MOR中的一种或多种,更优选选自ZSM-5和ZSM-11。该核壳型复合催化剂在用于一步法由合成气直接制备对二甲苯时,不仅工艺简便,操作简单,二甲苯产物中的对二甲苯的选择性高,合成气的转化率高,而且催化剂寿命长。此外,本发明还涉及所述核壳型复合催化剂的制备方法及其在由合成气一步制备对二甲苯中作为催化剂的用途。

Description

核壳型复合催化剂及其制备方法和用途 技术领域
本发明涉及一种核壳型复合催化剂及其制备方法,以及该催化剂在合成气一步法制备对二甲苯中的用途。
背景技术
二甲苯是重要的有机化工原料,在包装、纤维等领域有着广泛的应用。对二甲苯主要用于制造对苯二甲酸,其可用于制药行业。此外,对二甲苯也是用于生产聚酯纤维和工业塑料的重要中间体。如今,对二甲苯的工业生产方法主要有甲苯歧化与C 9芳烃烷基转移、二甲苯异构化、二甲苯吸附分离等技术。在该歧化与烷基转移途径中,热力学限制了产物中的对二甲苯含量,仅可收集到约24重量%浓度的对二甲苯。聚酯纤维的生产要求对二甲苯浓度为60重量%以上,因此现有手段得到的对二甲苯浓度远不能满足工业生产的要求。为了提高对二甲苯的浓度和收率,需要进行一系列后续处理。二甲苯的三种异构体的物理性质,尤其是沸点相差较小,这给对二甲苯在C 8芳烃中的分离带来了困难。因此,必须采用昂贵的吸附分离工艺,随之而来的是原材料的损耗和成本的上升。目前90%以上的芳烃来源于石油工业。但近年来石油能源日益短缺,无论是从市场需求还是从替代能源的角度出发,开发新型芳烃合成工艺路线都具有极高的价值。
合成气作为能源转化的桥梁,来源于天然气、煤炭和生物质等自然资源,又可以转化为高附加值的清洁油品,被认为是石油最有潜力的替代品之一。其中,近年来以金属催化剂与合适的分子筛组合的复合催化剂为首的多种新型催化剂成功地调控费托反应产物的分布,取得了重大进展。在成功利用费托合成生产不同碳数区间的油品之后,越来越多研究者将目光聚焦到以高选择性将合成气一步转化为高附加值化学品的工艺来。所述高附加值化学品包括低碳烯烃、低碳醇等重要化工原料。虽然合成气一步法制苯、甲苯、二甲苯等芳烃的相关研究方法不断被报道,但产物中的对二甲苯选择性通常不高且距离产业化还有相当一段距离。产物选择性的调控难以取得突破是面临的主要问题,另一个问题是催化剂容易失活,这使得难以保持催化性能的稳定性。
合成气一步法制备对二甲苯的选择性提高的关键在于高性能催化剂的研发。其中,发现由甲醇或二甲醚合成催化剂与分子筛耦合而成的复合双功能催化剂具有较好的催化性能。该反应路线衍生出一系列的串联反应:合成气加氢制甲醇和甲醇脱水制二甲醚的反应、芳构化反应、二甲苯烷基异构化反应等等。该路线对发展合成气转化工艺有很大的意义,不仅填补了相关工艺路线的空白,而且保障了国家的能源战略安全,同时也提供了一种应对世界石油能源枯竭潜在威胁的解决方案。因此,对该路线进行深入发掘,例如提高对二甲苯的选择性,降低工艺复杂性和成本,是合成气一步法制备对二甲苯亟需解决的技术难点。
Lasa等人较早报道了利用Cr-Zn/ZSM-5催化剂由合成气制芳烃的性能(Ind.Eng.Chem.Res.,1991,30,1448-1455),其中在碳氢化合物产物中,芳烃选择性可达到70%以上,但并未提及芳烃的具体产物分布。Lasa等人随后又报道了利用Cr-Zn/ZSM-5复合催化剂由合成气制芳烃(Appl.Catal.A,1995,125,81-98),在356-410℃,3.6-4.5MPa的反应条件下,碳氢化合物产物中的芳烃选择性达到75%,但是二甲苯的选择性不超过20%。南开大学关乃佳等人(Catal.Today,1996,30(1-3),207-213)采用FeMnO-ZnZSM-5复合催化剂,在270℃,1.1MPa的反应条件下,CO转化率达到98.1%,且催化剂活性连续60h保持稳定,碳氢化合物产物中的芳烃选择性高达53.1%,但是不涉及二甲苯以及碳数在9以上的苯类同系物的具体产物分布。最近,马丁与樊卫斌团队(Chem,2017,3,323-333)将Na-Zn-Fe 5C 2(FeZnNa)催化剂与具有多层孔道结构的介孔H-ZSM-5分子筛耦合,成功实现了合成气经烯烃中间体一步制备芳烃的转化。在340℃、2MPa的条件下,CO的转化率在85%以上,且催化体系稳定不易失活,在碳氢化合物产物中最多可以得到51重量%的芳烃,其中以轻质芳烃BTX(苯,甲苯,二甲苯)为主,然而并未提及芳烃中的对二甲苯的选择性。厦门大学王野课题组(Chem,2017,3,334-347)成功开发了Zn改性的ZrO 2与H-ZSM-5的混合催化剂,CO转化率为20%,芳烃选择性达到了80%。为了提高轻质芳烃的含量,作者根据化学沉积法用TEOS(正硅酸乙酯)处理H-ZSM-5外表面使得最终产物中的BTX选择性得到显著提高,达到了60重量%,但并未提及其中二甲苯和对二甲苯的含量。2019年,日本富山市椿范立,杨国辉,高潮,柴剑宇等的相关专利申请(用于合成气直接制备对二甲苯的催化剂及其制备和应用,申请公布号CN 109590019 A)以高选择 性从合成气制备对二甲苯,在最佳反应条件下一氧化碳转化率为55%,对二甲苯选择性为35.3%。该专利申请的核壳型复合催化剂虽然在一定程度上降低了分子筛催化剂的表面酸量,但由于该分子筛催化剂与金属氧化物催化剂的混合方式为物理研磨,这使得一部分中间产物(甲醇)不能立即通过分子筛催化剂进行下一步反应。因此,仍需开发更高效的催化剂。
上述催化剂尽管均可实现合成气一步得到芳烃,但产物中的对二甲苯选择性往往不高或者一氧化碳的转化率不高,而且不能有效地控制二甲苯的异构化反应。另一方面,更高效地利用催化剂的空间位置依然是个挑战。
发明内容
本发明旨在提供一种新型核壳型复合催化剂及其制备方法,及其在合成气经甲醇高选择性地制备对二甲苯中的用途。所涉及的催化剂制备方法简便,合成气转化率高,二甲苯产物中的对二甲苯选择性高,寿命长,工业应用前景大。
本发明的一个目的是提供一种核壳型复合催化剂。该核壳型复合催化剂在用于一步法转化合成气制备对二甲苯时,不仅工艺简便,操作简单,合成气的转化率高,二甲苯中的对二甲苯选择性也高,而且该核壳型复合催化剂寿命长。
本发明另一个目的是提供一种制备本发明核壳型复合催化剂的方法。
本发明的又一个目的是提供本发明核壳型复合催化剂或通过本发明的方法获得的核壳型复合催化剂在由合成气一步制备对二甲苯中作为催化剂的用途。
本发明的这些和其它目的、特征和优点在结合下文考虑后,将易于为本领域技术人员所明了。
附图说明
图1是根据实施例4制备的核壳型复合催化剂的简化结构示意图,其中核为尖晶石结构催化剂,壳为分子筛催化剂,其中核与壳之间存在一粘结剂层。
具体实施方式
根据本发明的第一个方面,提供了一种核壳型复合催化剂,其中核为尖晶石结构XY aO b催化剂,其中X和Y彼此不同且选自元素周期表第二主族、过渡元素 和第三主族中的金属元素,a为1-15之间的数,优选为1-5之间的数,b为满足各元素化合价所需的氧原子数;壳为分子筛催化剂,优选选自ZSM-5、ZSM-11、ZSM-35和MOR中的一种或多种,更优选选自ZSM-5和ZSM-11。
在本发明的核壳型复合催化剂中,尖晶石结构XY aO b催化剂与分子筛催化剂的重量比为150:1-1:50,优选为20:1-1:20,更优选为10:1-1:10。
本发明核壳型复合催化剂中的核为尖晶石结构XY aO b催化剂,其中X为选自元素周期表第二主族、过渡元素和第三主族中的金属元素,优选选自Al、Ga、In、Tl、Zn、Cu、Co、Fe、Mn、Cr、Ti、Mg、Ca和Ba,更优选选自Ga、In和Zn;Y为选自元素周期表第二主族、过渡元素与和三主族中的金属元素,优选选自Al、Ga、In、Tl、Zn、Cu、Co、Fe、Mn、Cr、Ti、Mg、Ca和Ba,更优选选自Cr、Ga和Ti。优选地,尖晶石结构XY aO b催化剂为ZnCr 2O 4或InGa 2O 4
本发明的尖晶石结构XY aO b催化剂可通过本领域的任何常规方法制备,例如顺序浸渍法、共浸渍法和共沉淀法,优选共沉淀法。对于包含第一金属组分X和第二金属组分Y的尖晶石结构催化剂,当通过前述方法制备该催化剂时,都涉及将包含第一金属组分X和第二金属组分Y的金属盐水溶液混合。在制备完催化剂后,将其干燥并焙烧。焙烧气氛为空气;焙烧温度为500-600℃,优选550-600℃;焙烧时间为5-9h,优选5-6h。
例如,当以共沉淀法制备尖晶石结构XY aO b催化剂时,通常将X和Y的可溶性金属盐的水溶液混合,然后干燥和焙烧。在混合过程中,可加入沉淀剂,从而将pH值始终控制在8-9之间。所述可溶性盐例如为硝酸盐、氯化物等。所述沉淀剂例如为碱性物质,例如NaOH、Na 2CO 3、NaHCO 3、(NH 4) 2CO 3、NH 4OH或氨水。混合在加热和搅拌下进行。加热温度为50-100℃,优选为60-90℃,更优选为70-80℃。反应时间为0.5-5h,优选为1-4h。在反应后,将反应混合物在反应温度下陈化。陈化时间为0.5-10h,优选为1-5h。
优选地,在共沉淀法中,分别借助泵将包含X和Y的混合溶液a以及沉淀剂的溶液b加入到反应器中,二者的添加速率应确保由已经加入的溶液a与已经加入的溶液b实时形成的混合物的pH值为8-9。
以共沉淀法制备作为尖晶石结构XY aO b催化剂的ZnCr 2O 4为例:为了制备该催化剂,通常将铬、锌各自的硝酸盐用去离子水按所需的铬/锌比例配成混合硝酸 盐水溶液;将该溶液与碳酸铵水溶液(也可使用其它沉淀剂,例如碳酸钠、氢氧化钠、氢氧化铵)用泵同时滴加到烧杯中进行共沉淀。在共沉淀过程中不断搅拌,保持沉淀温度为50-100℃,同时通过这两种溶液相对添加速度来将pH值始终控制在8-9之间;在滴加完毕后,停止搅拌,并于反应温度下保持3-5h以进行陈化;过滤陈化后的沉淀物并用去离子水洗涤;将洗涤后的产物干燥;再进行焙烧,即得ZnCr 2O 4催化剂。
本发明核壳型复合催化剂中的壳为分子筛催化剂,优选选自ZSM-5、ZSM-11、ZSM-35和MOR中的一种或多种,更优选选自ZSM-5和ZSM-11。
本发明的分子筛催化剂可商购获得,或者通过本领域的任何常规方法制备,例如通过水热合成法、浸渍法、离子交换法、气相沉积法、液相沉积法等制备。通常,分子筛催化剂可通过水热合成法制备。
以HZSM-5沸石分子筛的水热合成法为例:将硅源(例如TEOS)、铝源(例如Al(NO 3) 3·9H 2O)、有机模板剂(例如四丙基氢氧化铵(TPAOH))、乙醇和去离子水配制成混合物,室温搅拌2-10h得到溶胶,然后将搅拌好的溶胶转移入水热合成釜中,然后密封,在160-200℃的温度下以2-5rpm的旋转速度晶化12-72h。晶化结束后冷却至室温,将所得的产物洗涤至滤液pH=7-8,干燥过夜,然后置于马弗炉中以0.1-3℃/min升温速率升至400-650℃,焙烧4-8h后,得到ZSM-5分子筛,其为HZSM-5。所述ZSM-5分子筛中SiO 2/Al 2O 3为10-1000。
本发明的分子筛催化剂可呈H形式或其中H部分或全部被M替代的改性分子筛形式,其中M选自Zn、Ga、Cr、Mn、Fe、Ni、Zr、Cu、La、In和Ca中的一种或多种,优选为Zn。
呈M改性形式的分子筛催化剂可以以H形式的分子筛为原料,采用离子交换法、浸渍法、气相沉积法或液相沉积法等制备。
当使用浸渍法制备呈M改性形式的分子筛催化剂时,可将H形式的分子筛催化剂用金属M的可溶性盐水溶液进行浸渍处理,再干燥和焙烧,从而使得M负载在分子筛催化剂上。所述可溶性盐例如为硝酸盐、氯化物盐等。
当使用离子交换法制备呈M改性形式的分子筛催化剂时,可将H形式的分子筛催化剂用金属M的可溶性盐水溶液进行离子交换处理,然后干燥和焙烧。
以离子交换方法制备Zn-ZSM-5分子筛为例:将HZSM-5分子筛加入到硝酸 锌水溶液中,在60-100℃下不断搅拌10-20h,进行离子交换。离子交换结束后冷却至室温,将所得产物洗涤至滤液pH=7-8,干燥过夜,然后置于400-600℃马弗炉中焙烧4-6h,从而得到Zn-ZSM-5分子筛。
在元素M改性的分子筛中,元素M占分子筛总重量的0.1-15重量%,优选0.5-10重量%,更优选0.7-5重量%,更优选0.7-2重量%。
所述分子筛催化剂的粒径大小通常为0.01-20μm,优选为0.1-15μm。
在本发明的一个实施方案中,可对分子筛催化剂进行表面修饰。当所用的分子筛是M改性的分子筛时,表面修饰在用M改性之后进行。表面修饰使用表面修饰材料进行。优选地,本发明所用的表面修饰材料选自金属氧化物、石墨烯、活性炭、Silicalite-1、Silicalite-2、MOF、COF、二氧化硅、树脂、生物质(如海带、葡萄糖、果糖)和碳纳米管中的一种或多种,更优选选自活性炭、Silicalite-1和Silicalite-2中的一种或多种。
表面修饰覆盖或去除分子筛催化剂露在表面的酸性位点,从而减少副反应的产生,由此提高目标产物对二甲苯的选择性。
表面修饰可采用本领域的任何常规方法进行。作为修饰方法,可以提及水热合成法、气相沉积法、涂覆法、浸渍法、溅射法、
Figure PCTCN2021108678-appb-000001
法等,这可以根据表面修饰材料的性质进行常规选择。例如,当使用Silicalite-1和Silicalite-2进行表面修饰时,可采用水热合成法;当使用活性炭、石墨烯或碳纳米管进行修饰时,可采用气相沉积法;当使用金属氧化物进行修饰时,可采用浸渍法和溅射法;当使用二氧化硅进行修饰时,可采用
Figure PCTCN2021108678-appb-000002
法;当使用树脂或生物质进行修饰时,可以采用涂覆法或浸渍法,然后将所得的表面修饰分子筛在惰性气体,例如氮气下进行焙烧,从而得到碳表面修饰的分子筛催化剂。
以Silicalite-1通过水热合成法修饰H-ZSM-5得到H-ZSM-5@Silicalite-1为例:将硅源(例如TEOS)、有机模板剂(例如TPAOH)、乙醇和去离子水按配制成混合物,室温搅拌2-6h,得到Silicalite-1分子筛前体溶液。将H-ZSM-5分子筛连同所得Silicalite-1分子筛前体溶液一起转移入水热釜中,然后密封,在100-200℃的温度下以2-5rmp的旋转速度晶化12-72h。晶化结束后冷却至室温,将所得产物用去离子水洗涤至滤液pH=7-8,在室温下干燥过夜,然后置于马弗炉中以0.1-3℃/min的升温速率升至500-650℃,焙烧2-8h后,得到H- ZSM-5@Silicalite-1。
在得到的表面修饰分子筛催化剂中,分子筛催化剂与表面修饰材料的重量比为100:1-2:1,优选为50:1-2:1,更优选为10:1-2:1,特别优选为5:1-2:1。
在本发明的一个实施方案中,本发明的核壳型复合催化剂额外包含介于核和壳之间的粘结剂层。所述粘结剂层由含硅物质制成,所述含硅物质优选选自硅溶胶、γ-氨丙氧三乙氧基硅烷(APTES)、γ-氨丙氧三甲氧基硅烷(APTMS)、γ-缩水甘油醚氧丙基三甲氧基硅烷和γ-(甲基丙烯酰氧)丙基三甲氧基硅烷,更优选为硅溶胶。
在本发明的第二个方面中,提供了一种制备本发明的核壳型复合催化剂的方法,包括:
1)提供呈颗粒形式的核,
2)提供呈颗粒形式的分子筛催化剂,以及
3)用分子筛催化剂对核进行包覆。
在步骤3)的包覆之前,可用粘结剂涂覆核,然后用分子筛催化剂对核进行包覆。所述粘结剂可为选自如下的含硅物质:硅溶胶、γ-氨丙氧三乙氧基硅烷(APTES)、γ-氨丙氧三甲氧基硅烷(APTMS)、γ-缩水甘油醚氧丙基三甲氧基硅烷和γ-(甲基丙烯酰氧)丙基三甲氧基硅烷,优选为硅溶胶。可将核在粘结剂中浸渍,使得核上均匀地沾有粘结剂,然后将浸渍有粘结剂的核加入分子筛催化剂的粉末中进行包覆。浸渍和包覆过程可重复2-10次。
在包覆后,对所得产物进行干燥和焙烧。干燥可在室温至120℃下,优选在室温至60℃下,最优选在室温下进行;干燥时间可为3-30小时,优选为6-20小时。焙烧可在马弗炉中在空气气氛下进行。焙烧温度为350-750℃,优选为400-600℃,焙烧时间为1-6h,优选为2-4h。
令人惊讶地发现,当使用粘结剂制备本发明的核壳型复合催化剂时,转化率和对二甲苯的选择显著提高。
由本发明方法制备的催化剂为核壳型复合催化剂,该核壳型复合催化剂可以用于由合成气一步制备对二甲苯。合成气一步制备对二甲苯大体可以分为两部分,第一部分是合成气转化为甲醇,另一部分为甲醇转化为对二甲苯。本发明核壳型复合催化剂中的尖晶石结构催化剂能够将合成气以高转化率和高选择性 转化为甲醇,分子筛催化剂则能将由合成气转化来的甲醇进一步催化转化为对二甲苯。本发明的核壳型复合催化剂使得二甲苯产物中的对二甲苯选择性大幅度提高。本发明人发现,在使用本发明的核壳型复合催化剂时,一氧化碳转化率明显提高、对二甲苯在二甲苯产物中的选择性也大幅度提高。此外,本发明的核壳型复合催化剂具有寿命长、制备简单且易于重复的优势,具有良好的应用前景。
在本发明的第三个方面中,提供了本发明的核壳型复合催化剂在由合成气一步制备对二甲苯中作为催化剂的用途。
在本发明的第四个方面中,提供了一种由合成气一步制备对二甲苯的方法,其中使用本发明的核壳型复合催化剂或通过本发明的方法制备的核壳型复合催化剂。
在将本发明的复合催化剂用于催化合成气制对二甲苯之前,可以对其进行还原预处理。有利地,还原预处理的工艺条件如下:还原气为纯氢气;预处理温度为200-800℃,优选为300-500℃;预处理压力为0.1-1.5MPa,优选为0.1-0.7MPa;预处理氢气体积空速为300-7500标准立方米/小时,优选为600-4500标准立方米/小时;和/或预处理还原时间为2-24h,优选为6-8h。在还原预处理之后,通入合成气进行反应以制得对二甲苯。为此使用的合成气中的氢气与一氧化碳的摩尔比为0.1-10,优选为2-5;反应压力为1-20MPa,优选为2-10MPa;反应温度为100-700℃,优选为350-500℃;和/或,空速为300-7500标准立方米/小时,优选为600-4500标准立方米/小时。
采用本发明的核壳型复合催化剂进行合成气的转化,合成气转化率可以达到65%以上,对二甲苯在二甲苯产物中的选择性可达到80%以上,对二甲苯的选择性明显提高。本发明的核壳型复合催化剂可将合成气一步转化为对二甲苯,无需使用包含多种不同类型催化剂的多段反应器,反应流程更为简单,易于操作。此外,本发明的核壳型复合催化剂在用于将合成气一步转化为对二甲苯时,能够在至少2000h内保持高转化率和选择性,因此具有长寿命。
实施例
实施例1
a.ZnCr 2O 4催化剂的制备
将24.0g的Cr(NO 3) 3·9H 2O和8.9g的Zn(NO 3) 2·6H 2O溶于90ml去离子水中。将所得的混合硝酸盐水溶液与1mol/L的(NH 4) 2CO 3水溶液(将19.2g的(NH 4) 2CO 3溶于200ml去离子水中制得)同时滴加到盛有2L去离子水的烧杯中进行共沉淀。共沉淀过程中不断搅拌,在75℃下恒温3h。pH值保持在8左右,这由两种溶液的相对流速来控制。共沉淀结束后在75℃下静置陈化3h。将沉淀物过滤,然后用去离子水洗涤3次。将洗净的沉淀物在烘箱中于120℃下干燥12h,再在马弗炉中于500℃下焙烧5h。得甲醇合成催化剂,记为ZnCr 2O 4催化剂。
b.H-ZSM-5分子筛的制备
将硅源(TEOS)、铝源(Al(NO 3) 3·9H 2O)、有机模板剂(TPAOH)、乙醇和去离子水按摩尔比(2TEOS:0.02Al 2O 3:0.68TPAOH:8EtOH:120H 2O)配制成混合物,室温搅拌6h,得到溶胶。然后将搅拌好的溶胶转移入水热合成釜中,而后密封,在180℃的温度下以2rmp速度旋转晶化24h。晶化结束后冷却至室温,将所得产物用去离子水洗涤至滤液pH=7,在室温下干燥过夜,然后置于马弗炉中以1℃/min升温速率升至550℃,焙烧6h后得到ZSM-5分子筛,为H-ZSM-5。所述HZSM-5分子筛中Si/Al摩尔比为46。
c.ZnCr 2O 4@H-ZSM-5催化剂的制备
用10g硅溶胶(ALDRICH,30wt.%suspension in H 2O)浸渍3g ZnCr 2O 4颗粒状催化剂表面,随后滗出多余的硅溶胶,然后将表面湿润状态的ZnCr 2O 4放入盛有1g粉末状H-ZSM-5的圆底烧瓶中,快速有力地旋转圆底烧瓶以确保ZnCr 2O 4表面全部被H-ZSM-5包覆。再重复该包覆过程2次,每次均在盛有1g粉末状H-ZSM-5的圆底烧瓶中进行包覆。最后将催化剂在室温下干燥过夜,在马弗炉中于550℃下焙烧3h制得ZnCr 2O 4@H-ZSM-5催化剂,其中ZnCr 2O 4为核,H-ZSM-5为壳,其中ZnCr 2O 4催化剂与H-ZSM-5分子筛的质量比为1:1。记为ZnCr 2O 4@H-ZSM-5催化剂。
d.催化实验
将0.5g ZnCr 2O 4@H-ZSM-5催化剂以固定床形式填充在固定床高压反应器中,连续通入H 2与CO的摩尔比为2.1的合成气,控制反应压力为4MPa,合成气空速为1200标准立方米/小时,反应温度为400℃。反应4h后对反应产物和原 料气用气相色谱在线分析,反应结果见表1。
实施例2
a.ZnCr 2O 4催化剂的制备
重复实施例1中的“ZnCr 2O 4催化剂的制备”,得到ZnCr 2O 4催化剂。
b.H-ZSM-5催化剂的制备
重复实施例1中的“H-ZSM-5分子筛的制备”,得到H-ZSM-5分子筛。
c.H-ZSM-5@Silicalite-1催化剂的制备
将硅源(TEOS)、有机模板剂(TPAOH)、乙醇和去离子水按摩尔比(1.0TEOS:0.06TPAOH:16.0EtOH:240H 2O)配制成混合物,室温搅拌4h,得到Silicalite-1分子筛前驱体溶液。将b.中制备的H-ZSM-5催化剂同所得Silicalite-1分子筛前驱体溶液一起转移入聚四氟乙烯水热釜中,而后密封,在180℃的温度下以2rmp旋转速度晶化24h。晶化结束后冷却至室温,将所得产物用去离子水洗涤至滤液pH=7,在室温下干燥过夜,然后置于马弗炉中以1℃/min升温速率升至550℃,焙烧4h后,得到H-ZSM-5@Silicalite-1,其中H-ZSM-5与Silicalite-1分子筛的重量比为3:1。
d.ZnCr 2O 4@H-ZSM-5@Silicalite-1催化剂的制备
重复实施例1中的“ZnCr 2O 4@H-ZSM-5催化剂的制备”,但是使用H-ZSM-5@Silicalite-1代替H-ZSM-5,得到ZnCr 2O 4@H-ZSM-5@Silicalite-1催化剂。
e.催化实验
重复实施例1中的“催化实验”,但是使用ZnCr 2O 4@H-ZSM-5@Silicalite-1催化剂代替ZnCr 2O 4@H-ZSM-5催化剂。反应结果见表1。
实施例3
a.ZnCr 2O 4催化剂的制备
重复实施例1中的“ZnCr 2O 4催化剂的制备”,得到ZnCr 2O 4催化剂。
b.H-ZSM-5催化剂的制备
重复实施例1中的“H-ZSM-5分子筛的制备”,得到H-ZSM-5分子筛。
c.Zn-ZSM-5分子筛的制备
将1.5g的H-ZSM-5分子筛加入到1mol/L的硝酸锌水溶液中,在80℃下不断搅拌15h,进行离子交换。离子交换结束后冷却至室温,将所得的产物洗涤至滤液pH=7,在室温下干燥过夜,然后置于550℃马弗炉中焙烧,焙烧5h后,得到Zn-ZSM-5。基于Zn-ZSM-5分子筛的总重量,Zn的含量为1%。记为Zn-ZSM-5分子筛。
d.ZnCr 2O 4@Zn-ZSM-5催化剂的制备
重复实施例1中的“ZnCr 2O 4@H-ZSM-5催化剂的制备”,但是使用Zn-ZSM-5代替H-ZSM-5,得到ZnCr 2O 4@Zn-ZSM-5分子筛。
e.催化实验
重复实施例1中的“催化实验”,但是使用ZnCr 2O 4@Zn-ZSM-5催化剂代替ZnCr 2O 4@H-ZSM-5催化剂。反应结果见表1。
实施例4
a.ZnCr 2O 4催化剂的制备
重复实施例1中的“ZnCr 2O 4催化剂的制备”,得到ZnCr 2O 4催化剂。
b.H-ZSM-5催化剂的制备
重复实施例1中的“H-ZSM-5分子筛的制备”,得到H-ZSM-5分子筛。
c.Zn-ZSM-5分子筛的制备
重复实施例3中的“Zn-ZSM-5分子筛的制备”,得到Zn-ZSM-5分子筛。
d.Zn-ZSM-5@Silicalite-1催化剂的制备
重复实施例2中的“H-ZSM-5@Silicalite-1催化剂的制备”,但是使用Zn-ZSM-5代替H-ZSM-5,得到Zn-ZSM-5@Silicalite-1分子筛。
e.ZnCr 2O 4@Zn-ZSM-5@Silicalite-1催化剂的制备
重复实施例1中的“ZnCr 2O 4@H-ZSM-5催化剂的制备”,但是使用Zn-ZSM-5@Silicalite-1代替H-ZSM-5,得到ZnCr 2O 4@Zn-ZSM-5@Silicalite-1分子筛。
f.催化实验
重复实施例1中的“催化实验”,但是使用ZnCr 2O 4@Zn-ZSM-5@Silicalite-1催化剂代替ZnCr 2O 4@H-ZSM-5催化剂。反应结果见表1。
实施例5
a.InGa 2O 4催化剂的制备
将10.6g的In(NO 3) 3·3H 2O和23.9g的Ga(NO 3) 2·8H 2O溶于90ml去离子水中。将所得的混合硝酸盐水溶液与1mol/L的(NH 4) 2CO 3水溶液(将19.2g的(NH 4) 2CO 3溶于200ml去离子水中制得)同时滴加到盛有2L去离子水的烧杯中进行共沉淀。共沉淀过程中不断搅拌,在75℃下恒温3h。pH值保持在8左右,这由两种溶液的相对流速来控制。共沉淀结束后在75℃下静置陈化3h。将沉淀物过滤,然后用去离子水洗涤3次。将洗净的沉淀物在烘箱中于120℃下干燥12h,再在马弗炉中于500℃下焙烧5h。得甲醇合成催化剂,记为InGa 2O 4催化剂。
b.H-ZSM-5催化剂的制备
重复实施例1中的“H-ZSM-5分子筛的制备”,得到H-ZSM-5分子筛。
c.Zn-ZSM-5催化剂的制备
重复实施例3中的“Zn-ZSM-5分子筛的制备”,得到Zn-ZSM-5分子筛。
d.Zn-ZSM-5@Silicalite-1催化剂的制备
重复实施例2中的“H-ZSM-5@Silicalite-1催化剂的制备”,但是使用Zn-ZSM-5代替H-ZSM-5,得到Zn-ZSM-5@Silicalite-1分子筛。
e.InGa 2O 4@Zn-ZSM-5@Silicalite-1催化剂的制备
重复实施例1中的“ZnCr 2O 4@H-ZSM-5催化剂的制备”,但是使用Zn-ZSM-5@Silicalite-1代替H-ZSM-5,并且使用InGa 2O 4代替ZnCr 2O 4,得到InGa 2O 4@Zn-ZSM-5@Silicalite-1催化剂。
f.催化实验
重复实施例1中的“催化实验”,但是使用InGa 2O 4@Zn-ZSM-5@Silicalite-1催化剂代替ZnCr 2O 4@H-ZSM-5催化剂。反应结果见表1。
实施例6
a.ZnCr 2O 4催化剂的制备
重复实施例1中的“ZnCr 2O 4催化剂的制备”,得到ZnCr 2O 4催化剂。
b.H-ZSM-11分子筛的制备
将硅源(TEOS)、铝源(Al(NO 3) 3·9H 2O)、有机模板剂(四丁基氢氧化铵(TBAOH))、乙醇和去离子水按摩尔比(2TEOS:0.02Al 2O 3:0.68TBAOH:8EtOH:120H 2O)配制成混合物,室温搅拌6h,得到溶胶。然后将搅拌好的溶胶转移入水热合成釜中,而后密封,在180℃的温度下以2rmp速度旋转晶化24h。晶化结束后冷却至室温,将所得产物用去离子水洗涤至滤液pH=7,在室温下干燥过夜,然后置于马弗炉中以1℃/min升温速率升至550℃,焙烧6h后得到H-ZSM-11分子筛,为H-ZSM-11。所述H-ZSM-11分子筛中Si/Al摩尔比为46。
c.Zn-ZSM-11催化剂的制备
重复实施例3中的“Zn-ZSM-5分子筛的制备”,但是使用H-ZSM-11代替H-ZSM-5,得到Zn-ZSM-11分子筛。
d.Zn-ZSM-11@Silicalite-1催化剂的制备
重复实施例2中的“H-ZSM-5@Silicalite-1催化剂的制备”,但是使用Zn-ZSM-11代替H-ZSM-5,得到Zn-ZSM-11@Silicalite-1分子筛。
e.ZnCr 2O 4@Zn-ZSM-11@Silicalite-1催化剂的制备
重复实施例1中的“ZnCr 2O 4@H-ZSM-5催化剂的制备”,但是使用Zn-ZSM-11@Silicalite-1代替H-ZSM-5,得到ZnCr 2O 4@Zn-ZSM-11@Silicalite-1催化剂。
f.催化实验
重复实施例1中的“催化实验”,但是使用ZnCr 2O 4@Zn-ZSM-11@Silicalite-1催化剂代替ZnCr 2O 4@H-ZSM-5催化剂。反应结果见表1。
实施例7
a.ZnCr 2O 4催化剂的制备
重复实施例1中的“ZnCr 2O 4催化剂的制备”,得到ZnCr 2O 4催化剂。
b.H-ZSM-5催化剂的制备
重复实施例1中的“H-ZSM-5分子筛的制备”,得到H-ZSM-5分子筛。
c.Zn-ZSM-5催化剂的制备
重复实施例3中的“Zn-ZSM-5分子筛的制备”,得到Zn-ZSM-5分子筛。
d.Zn-ZSM-5@C催化剂的制备
将1.5g浓度为1mol/L的葡萄糖水溶液浸渍在1.0g的Zn-ZSM-5上,在室 温下干燥过夜,然后置于600℃管式炉中,在氮气保护下焙烧,焙烧5h后,得到Zn-ZSM-5@C催化剂。记为Zn-ZSM-5@C。
e.ZnCr 2O 4@Zn-ZSM-5@C催化剂的制备
重复实施例1中的“ZnCr 2O 4@H-ZSM-5催化剂的制备”,但是使用Zn-ZSM-5@C代替H-ZSM-5,得到ZnCr 2O 4@Zn-ZSM-5@C催化剂。
f.催化实验
重复实施例1中的“催化实验”,但是使用ZnCr 2O 4@Zn-ZSM-5@C催化剂代替ZnCr 2O 4@H-ZSM-5催化剂。反应结果见表1。
对比例1
催化剂制备方法与实施例1基本相同,但是使用物理混合物法将核催化剂与壳催化剂直接物理混合,并且改变核与壳重量的比例,使得所得核壳型复合催化剂中ZnCr 2O 4催化剂与H-ZSM-5分子筛的重量比为1:1。
按照实施例1所述,将所得催化剂应用于合成气直接制得对二甲苯,结果见表1。
对比例2
催化剂制备方法与实施例2基本相同,但改变H-ZSM-5与Silicalite-1分子筛的重量比为1:1。
按照实施例2所述,将所得催化剂应用于合成气直接制得对二甲苯,结果见表1。
对比例3
催化剂制备方法与实施例2基本相同,但改变H-ZSM-5与Silicalite-1分子筛的重量比为1:3。
按照实施例2所述,将所得催化剂应用于合成气直接制得对二甲苯,结果见表1。
对比例4
催化剂制备方法与实施例4基本相同,但改变ZnCr 2O 4与H-ZSM-5@Silicalite-1的混合方式为物理研磨法。
按照实施例4所述,将所得催化剂应用于合成气直接制得对二甲苯,结果见表1。
对比例5
催化剂制备方法与“用于合成气直接制备对二甲苯的催化剂及其制备和应用”(申请公布号CN 109590019 A)中实施例2相同。
本发明催化剂的寿命测试
a.ZnCr 2O 4催化剂的制备
重复实施例1中的“ZnCr 2O 4催化剂的制备”,得到ZnCr 2O 4催化剂。
b.H-ZSM-5催化剂的制备
重复实施例1中的“H-ZSM-5分子筛的制备”,得到H-ZSM-5分子筛。
c.Zn-ZSM-5分子筛的制备
重复实施例3中的“Zn-ZSM-5分子筛的制备”,得到Zn-ZSM-5分子筛。
d.Zn-ZSM-5@Silicalite-1催化剂的制备
重复实施例2中的“H-ZSM-5@Silicalite-1催化剂的制备”,但是使用Zn-ZSM-5代替H-ZSM-5,得到Zn-ZSM-5@Silicalite-1分子筛。
e.ZnCr 2O 4@Zn-ZSM-5@Silicalite-1催化剂的制备
重复实施例1中的“ZnCr 2O 4@H-ZSM-5催化剂的制备”,但是使用Zn-ZSM-5@Silicalite-1代替H-ZSM-5,得到ZnCr 2O 4@Zn-ZSM-5@Silicalite-1分子筛。
f.寿命实验
将0.5g ZnCr 2O 4@Zn-ZSM-5@Silicalite-1催化剂以固定床形式填充在固定床高压反应器中,连续通入H 2与CO的体积比为2.1的合成气,控制反应压力为4MPa,合成气空速为1200标准立方米/小时,反应温度为400℃。用气相色谱在线分析反应2000h内反应产物和原料气组成,反应结果见表2。
表1
Figure PCTCN2021108678-appb-000003
注:
MeOH:甲醇
DME:二甲醚
C 2-C 5:C 2-C 5
其余:所有其余产物
MX:间二甲苯
OX:邻二甲苯
PX:对二甲苯
PX/X:对二甲苯在二甲苯中的选择性
表2
Figure PCTCN2021108678-appb-000004
注:
MeOH:甲醇
DME:二甲醚
C 2-C 5:C 2-C 5
其余:所有其余产物
MX:间二甲苯
OX:邻二甲苯
PX:对二甲苯
PX/X:对二甲苯在二甲苯中的选择性

Claims (19)

  1. 一种核壳型复合催化剂,其中核为尖晶石结构XY aO b催化剂,其中X和Y彼此不同且选自元素周期表第二主族、过渡元素和第三主族中的金属元素,a为1-15之间的数,优选为1-5之间的数,b为满足各元素化合价所需的氧原子数;壳为分子筛催化剂,优选选自ZSM-5、ZSM-11、ZSM-35和MOR中的一种或多种,更优选选自ZSM-5和ZSM-11。
  2. 根据权利要求1的核壳型复合催化剂,其中X和Y选自Al、Ga、In、Tl、Zn、Cu、Co、Fe、Mn、Cr、Ti、Mg、Ca和Ba;优选地,X为Ga、In或Zn,和/或,Y为Cr、Ga或Ti。
  3. 根据权利要求1或2的核壳型复合催化剂,其中所述分子筛催化剂呈H形式或其中H部分或全部被M替代的改性分子筛形式,其中M选自Zn、Ga、Cr、Mn、Fe、Ni、Zr、Cu、La、In和Ca中的一种或多种,优选为Zn。
  4. 根据权利要求1-3中任一项的核壳型复合催化剂,其中尖晶石结构XY aO b催化剂与分子筛催化剂的重量比为150:1-1:50,优选为20:1-1:20,更优选为10:1-1:10。
  5. 根据权利要求1-4中任一项的核壳型复合催化剂,其中所述分子筛催化剂经表面修饰材料修饰,所述表面修饰材料选自金属氧化物、石墨烯、活性炭、Silicalite-1、Silicalite-2、MOF、COF、二氧化硅、树脂、生物质(如海带、葡萄糖、果糖)和碳纳米管中的一种或多种,更优选选自活性炭、Silicalite-1和Silicalite-2中的一种或多种。
  6. 根据权利要求5的核壳型复合催化剂,其中在得到的表面修饰分子筛催化剂中,分子筛催化剂与表面修饰材料的重量比为100:1-2:1,优选为50:1-2:1,更优选为10:1-2:1,特别优选为5:1-2:1。
  7. 根据权利要求1-6中任一项的核壳型复合催化剂,其额外包含介于核和壳之间的粘结剂层。
  8. 根据权利要求7的核壳型复合催化剂,所述粘结剂层由含硅物质制成,所述含硅物质优选选自硅溶胶、γ-氨丙氧三乙氧基硅烷(APTES)、γ-氨丙氧三甲氧基硅烷(APTMS)、γ-缩水甘油醚氧丙基三甲氧基硅烷和γ-(甲基丙烯酰氧) 丙基三甲氧基硅烷,更优选为硅溶胶。
  9. 根据权利要求1-8中任一项的核壳型复合催化剂,其中所述尖晶石结构XY aO b催化剂为ZnCr 2O 4或InGa 2O 4
  10. 一种制备根据权利要求1-9中任一项的核壳型复合催化剂的方法,包括:
    1)提供呈颗粒形式的核,
    2)提供呈颗粒形式的分子筛催化剂,以及
    3)用分子筛催化剂对核进行包覆。
  11. 根据权利要求10的方法,其中在用分子筛催化剂对核进行包覆之前,用粘结剂涂覆核。
  12. 根据权利要求10或11的方法,其中粘结剂为选自如下的含硅物质:硅溶胶、γ-氨丙氧三乙氧基硅烷(APTES)、γ-氨丙氧三甲氧基硅烷(APTMS)、γ-缩水甘油醚氧丙基三甲氧基硅烷和γ-(甲基丙烯酰氧)丙基三甲氧基硅烷,优选为硅溶胶。
  13. 根据权利要求10-12中任一项的方法,其中在用分子筛催化剂对核进行包覆之前,用表面修饰材料对分子筛催化剂进行表面修饰。
  14. 根据权利要求10-13中任一项的方法,其中表面修饰材料选自金属氧化物、石墨烯、活性炭、Silicalite-1、Silicalite-2、MOF、COF、二氧化硅、树脂、生物质(如海带、葡萄糖、果糖)和碳纳米管中的一种或多种,更优选选自活性炭、Silicalite-1和Silicalite-2中的一种或多种。
  15. 根据权利要求10-14中任一项的方法,其中在用分子筛催化剂对核进行包覆之后,将得到的产物焙烧。
  16. 根据权利要求1-9中任一项的核壳型复合催化剂或通过根据权利要求10-15中任一项的方法制备的核壳型复合催化剂在由合成气一步制备对二甲苯中作为催化剂的用途。
  17. 一种由合成气一步制备对二甲苯的方法,其中使用根据权利要求1-9中任一项的核壳型复合催化剂或通过根据权利要求10-15中任一项的方法制备的核壳型复合催化剂。
  18. 根据权利要求17的方法,其中合成气中的氢气与一氧化碳的摩尔比为 0.1-10,优选为2-5;反应压力为1-20MPa,优选为2-10MPa;反应温度为100-700℃,优选为350-500℃;和/或,空速为300-7500标准立方米/小时,优选为600-4500标准立方米/小时。
  19. 根据权利要求17或18的方法,其中在通入合成气进行反应之前,对所述催化剂进行还原预处理,优选还原预处理的工艺条件如下:
    还原气为纯氢气;
    预处理温度为200-800℃,优选为300-500℃;
    预处理压力为0.1-1.5MPa,优选为0.1-0.7MPa;
    预处理氢气体积空速为300-7500标准立方米/小时,优选为600-4500标准立方米/小时;和/或
    预处理还原时间为2-24h,优选为6-8h。
PCT/CN2021/108678 2020-07-30 2021-07-27 核壳型复合催化剂及其制备方法和用途 WO2022022510A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21850023.9A EP4190444A1 (en) 2020-07-30 2021-07-27 Core-shell composite catalyst, preparation method for same, and use thereof
AU2021319346A AU2021319346A1 (en) 2020-07-30 2021-07-27 Core-shell composite catalyst, preparation method for same, and use thereof
US18/018,390 US20240034697A1 (en) 2020-07-30 2021-07-27 Core-shell composite catalyst, preparation method for same, and use thereof
JP2023506135A JP2023536481A (ja) 2020-07-30 2021-07-27 コアシェル型複合触媒及びその製造方法と用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010752882.2 2020-07-30
CN202010752882.2A CN114054077A (zh) 2020-07-30 2020-07-30 核壳型复合催化剂及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2022022510A1 true WO2022022510A1 (zh) 2022-02-03

Family

ID=80037621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108678 WO2022022510A1 (zh) 2020-07-30 2021-07-27 核壳型复合催化剂及其制备方法和用途

Country Status (6)

Country Link
US (1) US20240034697A1 (zh)
EP (1) EP4190444A1 (zh)
JP (1) JP2023536481A (zh)
CN (1) CN114054077A (zh)
AU (1) AU2021319346A1 (zh)
WO (1) WO2022022510A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646535B (zh) * 2022-10-20 2024-05-14 中国科学院山西煤炭化学研究所 一种核壳型双功能催化剂及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10137440B2 (en) * 2015-07-29 2018-11-27 Korea Institute Of Science And Technology Core-shell cobalt catalysts for Fischer-Tropsch synthesis reaction and preparing method thereof
CN109590019A (zh) 2017-09-30 2019-04-09 株式会社模范 用于合成气直接制备对二甲苯的催化剂及其制备和应用
CN111375444A (zh) * 2018-12-27 2020-07-07 中国科学院广州能源研究所 一种用于合成气直接生产芳烃的核壳铁基催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10137440B2 (en) * 2015-07-29 2018-11-27 Korea Institute Of Science And Technology Core-shell cobalt catalysts for Fischer-Tropsch synthesis reaction and preparing method thereof
CN109590019A (zh) 2017-09-30 2019-04-09 株式会社模范 用于合成气直接制备对二甲苯的催化剂及其制备和应用
CN111375444A (zh) * 2018-12-27 2020-07-07 中国科学院广州能源研究所 一种用于合成气直接生产芳烃的核壳铁基催化剂及其制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Catalog. Today", vol. 30, 1996, NANKAI UNIVERSITY, pages: 207 - 213
LASA ET AL.: "reported the performance of Cr-Zn/ZSM-5 catalysts for producing aromatics from syngas", IND. ENG. CHEM. RES., vol. 30, 1991, pages 1448 - 1455
LATELY, LASA ET AL.: "reported using Cr-Zn/ZSM-5 composite catalysts to produce aromatics from syngas", APPL. CATALOG. A, vol. 125, 1995, pages 81 - 98
MA DINGFAN WEIBIN'S TEAM, CHEM, vol. 3, 2017, pages 323 - 333
WANG YE: "Chem", vol. 3, 2017, XIAMEN UNIVERSITY, pages: 334 - 347
ZHANG PEIPEI, TAN LI, YANG GUOHUI, TSUBAKI NORITATSU: "One-pass selective conversion of syngas to para -xylene", CHEMICAL SCIENCE, vol. 8, no. 12, 1 January 2017 (2017-01-01), United Kingdom , pages 7941 - 7946, XP055896318, ISSN: 2041-6520, DOI: 10.1039/C7SC03427J *

Also Published As

Publication number Publication date
JP2023536481A (ja) 2023-08-25
CN114054077A (zh) 2022-02-18
US20240034697A1 (en) 2024-02-01
AU2021319346A1 (en) 2023-03-02
EP4190444A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
JP7443474B2 (ja) 合成ガスからパラキシレンを直接製造する触媒及びその製造方法と使用
US10532961B2 (en) Catalyst and method of preparing light olefin directly from synthesis gas by one-step process
CN107349954B (zh) 一种合成气直接制备芳香族化合物的多级纳米反应器催化剂及其制备与应用
CN102234212B (zh) 合成气直接转化为低碳烯烃的方法
JP7007762B2 (ja) 触媒及び合成ガスの直接転化による低級オレフィンの製造方法
CN108568313B (zh) 一种催化剂及一氧化碳加氢直接转化制低碳烯烃的方法
CN111229303B (zh) 二氧化碳直接制高值芳烃的复合催化剂及制备方法与应用
CN111375444B (zh) 一种用于合成气直接生产芳烃的核壳铁基催化剂及其制备方法和应用
Qu et al. Advances in zeolite-supported metal catalysts for propane dehydrogenation
WO2019144952A1 (zh) 一种负载催化剂及合成气直接转化制低碳烯烃的方法
WO2021147213A1 (zh) 一种用于合成气直接生产芳烃的核壳铁基催化剂及其制备方法和应用
CN110280302B (zh) 一种将甲烷转化为芳烃的催化剂及其制备方法和应用
CN108940355A (zh) 一种碱修饰的催化剂及一氧化碳加氢反应制乙烯的方法
WO2022022510A1 (zh) 核壳型复合催化剂及其制备方法和用途
CN112108180A (zh) 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
CN109663613B (zh) 一种金属改性zsm-5分子筛催化剂及其制备和应用
JP7007763B2 (ja) 有機アルカリで修飾された複合触媒及び一酸化炭素の水素化によるエチレンの製造方法
JP6338218B2 (ja) 有機基修飾ゼオライト触媒を用いた二酸化炭素からの炭化水素製造方法
CN113996330B (zh) 一种球磨法制备的Zr基MFI分子筛催化剂及其应用
KR20210045671A (ko) 메탄의 탈수소방향족화 반응용 촉매 및 이을 이용한 방향족화 화합물의 제조방법
JP2023014129A (ja) 酸化亜鉛修飾mfi型ゼオライト及びそれを用いた芳香族化合物の製造方法
CN112246275A (zh) 一种二氧化碳氧化低碳烷烃制烯烃的催化剂及其制备方法
RU2585289C1 (ru) Катализатор ароматизации метана, способ его получения и способ конверсии метана с получением ароматических углеводородов
JP4159853B2 (ja) 炭化水素の接触分解用触媒及びこれを使用する接触分解方法
CN108970636A (zh) 一种苯烷基化催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506135

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18018390

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021850023

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021850023

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021319346

Country of ref document: AU

Date of ref document: 20210727

Kind code of ref document: A