WO2022021642A1 - 一种钠离子电池负极材料及其制备方法 - Google Patents

一种钠离子电池负极材料及其制备方法 Download PDF

Info

Publication number
WO2022021642A1
WO2022021642A1 PCT/CN2020/124576 CN2020124576W WO2022021642A1 WO 2022021642 A1 WO2022021642 A1 WO 2022021642A1 CN 2020124576 W CN2020124576 W CN 2020124576W WO 2022021642 A1 WO2022021642 A1 WO 2022021642A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
ion battery
sodium ion
battery negative
Prior art date
Application number
PCT/CN2020/124576
Other languages
English (en)
French (fr)
Inventor
仰永军
彭飞
Original Assignee
广东凯金新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东凯金新能源科技股份有限公司 filed Critical 广东凯金新能源科技股份有限公司
Publication of WO2022021642A1 publication Critical patent/WO2022021642A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of nanomaterials, and particularly designs a novel negative electrode material for a sodium ion battery and a preparation method thereof.
  • Na-ion batteries have become a very cost-effective alternative to lithium-ion batteries because of their easy availability and low price. Its working principle is similar to that of lithium-ion batteries.
  • Na+ is deintercalated from the positive electrode, inserted into the negative electrode through the electrolyte, and discharged. On the contrary, electricity is stored and released by the transfer of sodium ions.
  • Existing sodium ion anode materials are mainly concentrated in the fields of carbonaceous materials, transition metals and their alloy compounds, such as carbonaceous materials such as hard carbon, hollow carbon spheres, and carbon fibers, as well as Sn, SnO 2 , Bi 0.94 Sb 1.06 S 3 , Metal/metal chalcogenides such as Sb.
  • the volume of these anode materials changes greatly during the electrochemical reaction process, the structure is easily damaged after repeated charge and discharge, and the cycle performance is poor.
  • the present invention aims to provide a novel negative electrode material for a sodium ion battery and a preparation method thereof, so as to solve the problem of low electrochemical performance caused by structural expansion of the negative electrode material in the prior art.
  • the present invention adopts the following technical solutions.
  • a preparation method of a novel sodium ion battery negative electrode material comprising the following steps:
  • Step 1 Dissolving the sulfur source, tin source and carbon source in water to obtain a mixed solution; Step 2, adsorb the mixed solution with a foam material and freeze-dry to obtain a precursor; Step 3, transfer the precursor to a microwave In the reactor, microwave irradiation is performed under inert conditions to obtain an intermediate product; in step 4, the intermediate product is uniformly mixed with selenium powder, and treated at high temperature under the protection of an inert gas to obtain a novel negative electrode material for sodium ion batteries.
  • the sulfur source is one of water-soluble sulfate and sodium thiosulfate.
  • Sulfate mainly includes one or more of sodium sulfate, potassium sulfate, lithium sulfate, magnesium sulfate, nickel sulfate, ferrous sulfate, zinc sulfate, aluminum sulfate, and copper sulfate.
  • the tin source is mainly a water-soluble tin salt, such as one of tin tetrachloride and tin methanesulfonate.
  • the carbon source is mainly a water-soluble organic carbon source, such as one or more of sucrose, glucose, phenolic resin, epoxy resin, agar, polyaniline and polypyrrole.
  • the molar ratio of sulfur source, tin source and carbon source is 2-3:1:0.5-1.5, and the concentration of tin source in the mixed solution is 0.1-1 mol/L.
  • the foam material is a melamine foam material.
  • the freeze-drying temperature is -50 to -30°C.
  • step 3 the inert gas is introduced into the microwave reactor for at least 30 minutes, and then the precursor is added.
  • the microwave irradiation power is 800-1200W, and the duration is 1-30 minutes.
  • step 4 the mass ratio of the intermediate product to the selenium powder is 10:0.1-1.
  • step 4 the intermediate product and selenium powder are kept at 500-700° C. for 4-6 hours under nitrogen protection to obtain a new negative electrode material for sodium ion batteries.
  • the present invention also provides a novel negative electrode material for sodium ion battery prepared by the above method.
  • the invention provides a new negative electrode material for sodium ion battery and a preparation method thereof.
  • the sulfur source, tin source and carbon source are fully dispersed and adsorbed in the pores of the foam material, and the foam material avoids the aggregation of the reaction products, which is conducive to the in-situ reaction growth of S element and SnS 2 nanoscale in the carbon material.
  • the microwave reactor provides an ultra-fast heating rate, greatly shortens the reaction time, and avoids the migration and agglomeration of metal atoms, which is conducive to the formation of nano-scale S element and SnS 2 compounds with smaller particle size.
  • the intermediate product reacts with selenium powder to dope the surface of SnS 2 with Se, and at the same time, the S element is sublimated and removed, and a porous structure is formed inside the negative electrode material of the sodium ion battery, which is the negative electrode material of the sodium ion battery during the charging and discharging process.
  • the ion accommodation space is provided, the volume expansion and pulverization of the electrode material caused by the deintercalation of sodium ions are avoided, and the cycle performance of the negative electrode material of the sodium ion battery is improved.
  • the sulfur source, the tin source and the carbon source are dispersed in water according to a molar ratio of 2.5:1:1 to obtain a mixed solution, wherein the concentration of the tin source is 0.5mol/L.
  • the sulfur source is sodium sulfate
  • the tin source is tin tetrachloride
  • the carbon source is glucose.
  • the melamine foam material was immersed in the above mixed solution, repeatedly pressed and absorbed until saturated, and then placed in a freeze dryer at -40°C for freeze drying for 48 hours to obtain the precursor.
  • the precursor was put into, and microwave irradiation was carried out, and the microwave irradiation power was 1000W, and the duration was 5min to obtain an intermediate product.
  • the intermediate product and the selenium powder are fully mixed uniformly.
  • the mixing method is preferably to use a ball mill, adjust the parameters of the ball mill, the ball-to-powder ratio is 15:1, the rotational speed is 200r/min, and the ball milling time is 4h.
  • the mixed intermediate product and selenium powder were transferred to a tube furnace, and nitrogen was used as a protective gas, and the temperature was kept at 600 °C for 5 h to obtain a new negative electrode material for sodium ion battery.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the molar ratio of the sulfur source, the tin source and the carbon source is 1:1:1, and the rest are the same as those in Embodiment 1, and will not be repeated here.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the molar ratio of the sulfur source, the tin source and the carbon source is 2:1:0.5, and the rest are the same as those in Embodiment 1, and will not be repeated here.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the molar ratio of the sulfur source, the tin source and the carbon source is 3:1:1.5, and the rest are the same as those in Embodiment 1, and will not be repeated here.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the concentration of the tin source is 0.1 mol/L, and the rest are the same as those in Embodiment 1, and are not repeated here.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the concentration of the tin source is 1 mol/L, and the rest are the same as those in Embodiment 1, and are not repeated here.
  • the sulfur source is sodium thiosulfate
  • the tin source is tin methanesulfonate
  • the carbon source is polypyrrole
  • Example 1 The difference between this example and Example 1 is that the freeze-drying temperature is -50°C, and the rest are the same as those in Example 1, and will not be repeated here.
  • Example 1 The difference between this example and Example 1 is that the freeze-drying temperature is -30°C, and the rest are the same as those in Example 1, and will not be repeated here.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the microwave irradiation power is 800W and the duration is 30min.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the microwave irradiation power is 1200W, and the duration is 1 min.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the mass ratio of the intermediate product to the selenium powder is 10:0.1, and the rest are the same as those in Embodiment 1, and will not be repeated here.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the mass ratio of the intermediate product to the selenium powder is 10:0.3, and the rest are the same as those in Embodiment 1, and will not be repeated here.
  • Example 1 The difference between this example and Example 1 is that the mass ratio of the intermediate product to the selenium powder is 10:0.7, and the rest are the same as those in Example 1, and will not be repeated here.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the mass ratio of the intermediate product to the selenium powder is 10:1, and the rest are the same as those in Embodiment 1, and will not be repeated here.
  • Example 1 The difference between this example and Example 1 is that the intermediate product and selenium powder are kept at 500° C. for 6 hours under nitrogen protection, and the rest are the same as those in Example 1, and will not be repeated here.
  • Example 1 The difference between this example and Example 1 is that the intermediate product and the selenium powder are kept at 700° C. for 4 hours under nitrogen protection, and the rest are the same as those in Example 1, and will not be repeated here.
  • Example 1 The difference between this example and Example 1 is that the mixed solution is directly freeze-dried to obtain a precursor, and the rest are the same as those of Example 1, and will not be repeated here.
  • Example 1 The difference between this example and Example 1 is that the intermediate product is directly transferred to a tube furnace, and nitrogen is used as a protective gas, and the temperature is kept at 600° C. for 5 hours. The rest is the same as Example 1, and will not be repeated here.
  • Preparation of negative electrode plate The new lithium-ion battery negative electrode material, acetylene black, and PVDF were ground in a mortar for more than 20 minutes according to the mass ratio of 8:1:1, so that the three were fully mixed. An appropriate amount of N-methylpyrrolidone (NMP) was added dropwise and stirred for 8 h under the action of a magnetic stirrer at room temperature to obtain a paste-like material. The paste material was evenly poured onto the current collector (copper foil), and a pole piece with a thickness of about 150 ⁇ m was applied with a manual coater. Dry at 80°C for 12h and then at 120°C for 12h. Cut into circular pole pieces with a diameter of about 1.2 cm by a microtome, which are reserved for assembling the button battery.
  • NMP N-methylpyrrolidone
  • the size of the button cell is type CR2016, and the assembly is carried out in the glove box.
  • the protective gas in the glove box is argon, and the partial pressure of water and oxygen is less than 1ppm.
  • the assembled analog button battery is sealed and compacted under the pressure of about 4Mpa. The assembled battery was tested by standing at room temperature for 8-12 hours. The specific capacity of each example measured at a current density of 100 mA/g is shown in the table below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种钠离子电池负极材料及其制备方法,首先将硫源、锡源和碳源溶于水中,得到混合溶液;再用泡沫材料吸附所述混合溶液后冷冻干燥,得到前驱体;然后将所述前驱体转移至微波反应器中,在惰性条件下微波辐照,获得中间产物;最后将所述中间产物与硒粉混合均匀,在惰性气体保护下高温处理,得到钠离子电池负极材料。通过掺硒和脱硫增强了电池负极材料的活性,为钠离子在电池负极中的脱嵌提供了一定的预留空间,避免了电极负极材料因钠离子的脱嵌导致的体积膨胀和粉化,提高了钠离子电池负极材料的电化学性能和循环性能。

Description

一种钠离子电池负极材料及其制备方法 技术领域
本发明属于纳米材料技术领域,尤其设计一种新型钠离子电池负极材料及其制备方法。
背景技术
钠离子电池因其原料易得、价格低廉,成为锂离子电池的一种非常划算的替代品,其工作原理与锂离子电池类似,在充电时,Na+从正极脱嵌,经过电解质嵌入负极,放电时正好相反,通过借助钠离子的转移来存储和释放电能。现有的钠离子负极材料主要集中在碳质材料、过渡金属及其合金类化合物等领域,例如硬碳、空心碳球、碳纤维等碳质材料以及Sn、SnO 2,Bi 0.94Sb 1.06S 3、Sb等金属/金属硫族化合物。然而,这些负极材料在电化学反应过程中体积变化较大,多次充放电后结构极易损坏,循环性能较差。
发明内容
基于现有技术的不足,本发明旨在提供一种新型钠离子电池负极材料及其制备方法,用以解决现有技术中负极材料结构膨胀所致的电化学性能低下的问题。
为了实现上述目的,本发明采用了如下技术方案。
一种新型钠离子电池负极材料的制备方法,包括以下步骤:
步骤一:将硫源、锡源和碳源溶于水中,得到混合溶液;步骤二,用泡沫材料吸附所述混合溶液后冷冻干燥,得到前驱体;步骤三,将所述前驱体转移至微波反应器中,在惰性条件下微波辐照,获得中间 产物;步骤四,将所述中间产物与硒粉混合均匀,在惰性气体保护下高温处理,得到新型钠离子电池负极材料。
作为本发明改进的技术方案,步骤一中,所述硫源为水溶性硫酸盐、硫代硫酸钠中的其中一种。硫酸盐主要包括硫酸钠、硫酸钾、硫酸锂、硫酸镁、硫酸镍、硫酸亚铁、硫酸锌、硫酸铝、硫酸铜中的一种或多种。所述锡源主要为水溶性锡盐,例如四氯化锡、甲基磺酸锡中的一种。所述碳源主要为水溶性有机碳源,例如蔗糖、葡萄糖、酚醛树脂、环氧树脂、琼脂、聚苯胺及聚吡咯中的一种或多种。
作为本发明改进的技术方案,硫源、锡源和碳源摩尔比为2~3:1:0.5~1.5,混合溶液中锡源的浓度为0.1~1mol/L。
作为本发明改进的技术方案,所述泡沫材料为三聚氰胺泡沫材料。
作为本发明改进的技术方案,步骤二中,所述冷冻干燥温度为‐50~‐30℃。
作为本发明改进的技术方案,步骤三中,在微波反应器中通入惰性气体至少30min后,再放入前驱体,所述微波辐照功率为800~1200W,时长为1~30min。
作为本发明改进的技术方案,步骤四中,所述中间产物与硒粉的质量比为10:0.1~1。
作为本发明改进的技术方案,步骤四中,所述中间产物与硒粉在氮气保护下以500~700℃保温4~6h,得到新型钠离子电池负极材料。
本发明还提供一种采用上述方法制成的新型钠离子电池负极材 料。
有益效果
本发明提供了一种新的钠离子电池负极材料及其制备方法。硫源、锡源和碳源充分分散吸附在泡沫材料的孔洞里,泡沫材料避免了反应产物发生聚集,从而有利于S单质和SnS 2纳米级原位反应生长分散在碳材料中。微波反应器提供了超快的升温速度,极大缩小了反应时长,避免了金属原子的迁移和团聚现象发生,从而有利于形成更小粒径的纳米级S单质和SnS 2化合物。在管式炉中,中间产物通过与硒粉反应,在SnS 2表面掺杂Se,同时S单质升华脱除,钠离子电池负极材料内部形成多孔结构,为钠离子电池负极材料在充放电过程中提供了离子容纳空间,避免了电极材料因钠离子的脱嵌导致的体积膨胀和粉化,提高了钠离子电池负极材料的循环性能。
具体实施方式
为了使本领域技术人员清楚明了地理解本发明,现结合具体实施方式,对本发明进行详细说明。
实施例1
将硫源、锡源和碳源按照摩尔比为2.5:1:1分散到水中,得到混合溶液,其中锡源的浓度为0.5mol/L。所述硫源为硫酸钠,所述锡源为四氯化锡,所述碳源为葡萄糖。将三聚氰胺泡沫材料浸入上述混合溶液中,反复按压吸收至饱和,然后放入‐40℃的冷冻干燥器中冷冻干燥,时间为48h,得到前驱体。在微波反应器中通入惰性气体至少30min后,放入所述前驱体,进行微波辐照,微波辐照功率为 1000W,时长为5min,得到中间产物。将所述中间产物与硒粉充分混合均匀。混合方式优选使用球磨机,调节球磨机的参数,球粉比为15:1,转速为200r/min,球磨时间为4h。将混合后的中间产物和硒粉转移至管式炉中,以氮气为保护气体,在600℃下保温5h,得到新型钠离子电池负极材料。
实施例2
本实施例与实施例1不同之处在于:硫源、锡源和碳源的摩尔比为1:1:1,其余同实施例1,此处不再赘述。
实施例3
本实施例与实施例1不同之处在于:硫源、锡源和碳源的摩尔比为2:1:0.5,其余同实施例1,此处不再赘述。
实施例4
本实施例与实施例1不同之处在于:硫源、锡源和碳源的摩尔比为3:1:1.5,其余同实施例1,此处不再赘述。
实施例5
本实施例与实施例1不同之处在于:锡源的浓度为0.1mol/L,其余同实施例1,此处不再赘述。
实施例6
本实施例与实施例1不同之处在于:锡源的浓度为1mol/L,其余同实施例1,此处不再赘述。
实施例7
本实施例与实施例1不同之处在于:所述硫源为硫代硫酸钠、锡 源为甲基磺酸锡,碳源为聚吡咯,其余同实施例1,此处不再赘述。
实施例8
本实施例与实施例1不同之处在于冷冻干燥温度为‐50℃,其余同实施例1,此处不再赘述。
实施例9
本实施例与实施例1不同之处在于冷冻干燥温度为‐30℃,其余同实施例1,此处不再赘述。
实施例10
本实施例与实施例1不同之处在于微波辐照功率为800W,时长为30min,其余同实施例1,此处不再赘述。
实施例11
本实施例与实施例1不同之处在于微波辐照功率为1200W,时长为1min,其余同实施例1,此处不再赘述。
实施例12
本实施例与实施例1不同之处在于中间产物与硒粉的质量比为10:0.1,其余同实施例1,此处不再赘述。
实施例13
本实施例与实施例1不同之处在于中间产物与硒粉的质量比为10:0.3,其余同实施例1,此处不再赘述。
实施例14
本实施例与实施例1不同之处在于中间产物与硒粉的质量比为10:0.7,其余同实施例1,此处不再赘述。
实施例15
本实施例与实施例1不同之处在于中间产物与硒粉的质量比为10:1,其余同实施例1,此处不再赘述。
实施例16
本实施例与实施例1不同之处在于中间产物与硒粉在氮气保护下以500℃保温6h,其余同实施例1,此处不再赘述。
实施例17
本实施例与实施例1不同之处在于中间产物与硒粉在氮气保护下以700℃保温4h,其余同实施例1,此处不再赘述。
实施例18
本实施例与实施例1不同之处在于直接将混合溶液冷冻干燥,制得前驱体,其余同实施例1,此处不再赘述。
实施例19
本实施例与实施例1不同之处在于直接将中间产物转移至管式炉中,以氮气为保护气体,在600℃下保温5h,其余同实施例1,此处不再赘述。
负极极片的制备:将新型锂离子电池负极材料、乙炔黑、PVDF按照质量比为8:1:1在研钵中研磨20min以上,使三者充分混合。滴加适量的N‐甲基吡络烷酮(NMP)并于室温下在磁力搅拌器的作用下搅拌8h得到浆糊状材料。将糊状材料均匀的倾倒到集流体(铜箔)上,用手工涂布器涂敷厚度约为150μm的极片。在80℃下干燥12h,再在120℃下干燥12h。通过切片机切成直径约为1.2cm的圆 形极片,留待组装扣式电池。
钠离子扣式电池的组装:扣式电池的规格为CR2016型,在手套箱中进行组装。手套箱内保护气为氩气,水氧分压均低于1ppm。按照顺序将CR2016配套的正极壳、垫片、钠片、隔膜、负极极片、垫片依次组装,并滴加适量电解液至钠片、隔膜、负极片之间使得电解液充分浸润隔膜和负极片。最后将组装好的模拟扣式电池在4Mpa左右的压强下进行封口压实。将组装好的电池于室温下静置8‐12小时候进行测试。以100mA/g的电流密度下测得各实施例的比容量如下表所示。
Figure PCTCN2020124576-appb-000001
Figure PCTCN2020124576-appb-000002
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (9)

  1. 一种新型钠离子电池负极材料的制备方法,包括以下步骤:
    步骤一:将硫源、锡源和碳源溶于水中,得到混合溶液;
    步骤二,用泡沫材料吸附所述混合溶液后冷冻干燥,得到前驱体;
    步骤三,将所述前驱体转移至微波反应器中,在惰性条件下微波辐照,获得中间产物;
    步骤四,将所述中间产物与硒粉混合均匀,在惰性气体保护下高温处理,得到新型钠离子电池负极材料。
  2. 根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:步骤一中,所述硫源为水溶性硫酸盐、硫代硫酸钠中的其中一种;所述锡源主要为水溶性锡盐;所述碳源主要为水溶性有机碳源。
  3. 根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:所述硫源、锡源和碳源的摩尔比为2~3:1:0.5~1.5,混合溶液中锡源的浓度为0.1~1mol/L。
  4. 根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:所述泡沫材料为三聚氰胺泡沫材料。
  5. 根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:步骤二中,所述冷冻干燥温度为‐50~‐30℃。
  6. 根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:步骤三中,在微波反应器中通入惰性气体至少30min后,再放入前驱体,所述微波辐照功率为800~1200W,时长为1~30min。
  7. 根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:步骤四中,所述中间产物与硒粉的质量比为10:0.1~1。
  8. 根据权利要求1所述的新型钠离子电池负极材料的制备方法,其特征在于:步骤四中,所述中间产物与硒粉在氮气保护下以500~700℃保温4~6h,得到新型钠离子电池负极材料。
  9. 一种新型钠离子电池负极材料,采用权利要求1~8任一项所述的新型钠离子电池负极材料的制备方法制得。
PCT/CN2020/124576 2020-07-31 2020-10-29 一种钠离子电池负极材料及其制备方法 WO2022021642A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010764800.6A CN111924873A (zh) 2020-07-31 2020-07-31 一种新型钠离子电池负极材料及其制备方法
CN202010764800.6 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022021642A1 true WO2022021642A1 (zh) 2022-02-03

Family

ID=73315120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124576 WO2022021642A1 (zh) 2020-07-31 2020-10-29 一种钠离子电池负极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111924873A (zh)
WO (1) WO2022021642A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594156A (zh) * 2022-11-10 2023-01-13 安徽工业大学(Cn) 一种竹节状锑-硫硒化锑@空心碳管材料及其制备方法与应用
CN115692612A (zh) * 2022-11-03 2023-02-03 福州大学 一种锡碳负极材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111924873A (zh) * 2020-07-31 2020-11-13 广东凯金新能源科技股份有限公司 一种新型钠离子电池负极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160294000A1 (en) * 2015-03-30 2016-10-06 Hui He Active cathode layer for metal-sulfur secondary battery
CN106784814A (zh) * 2016-12-07 2017-05-31 陕西科技大学 一种六角片层状SnS2钠离子电池负极材料的制备方法
CN106848250A (zh) * 2017-03-15 2017-06-13 清华大学深圳研究生院 一种高硫含量的碳硫材料及其制备方法
CN109742361A (zh) * 2019-01-08 2019-05-10 福建师范大学 一种复合物钠离子电池负极材料的制备方法和应用
CN110148723A (zh) * 2019-05-18 2019-08-20 福建师范大学 一种具有高性能的SnS2@氮掺杂碳复合物钾离子电池负极材料的制备方法和应用
CN111924873A (zh) * 2020-07-31 2020-11-13 广东凯金新能源科技股份有限公司 一种新型钠离子电池负极材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2430112B1 (en) * 2009-04-23 2018-09-12 The University of Chicago Materials and methods for the preparation of nanocomposites
BR112020022105B1 (pt) * 2018-04-30 2022-09-13 Lyten, Inc. Bateria de íon de lítio e materiais da bateria
CN109473649B (zh) * 2018-11-07 2022-03-15 哈尔滨理工大学 一种钠离子电池复合负极材料及其制备方法
CN111403744A (zh) * 2020-03-25 2020-07-10 广东凯金新能源科技股份有限公司 锂离子二次电池含氮硅氧碳化合物复合负极材料及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160294000A1 (en) * 2015-03-30 2016-10-06 Hui He Active cathode layer for metal-sulfur secondary battery
CN106784814A (zh) * 2016-12-07 2017-05-31 陕西科技大学 一种六角片层状SnS2钠离子电池负极材料的制备方法
CN106848250A (zh) * 2017-03-15 2017-06-13 清华大学深圳研究生院 一种高硫含量的碳硫材料及其制备方法
CN109742361A (zh) * 2019-01-08 2019-05-10 福建师范大学 一种复合物钠离子电池负极材料的制备方法和应用
CN110148723A (zh) * 2019-05-18 2019-08-20 福建师范大学 一种具有高性能的SnS2@氮掺杂碳复合物钾离子电池负极材料的制备方法和应用
CN111924873A (zh) * 2020-07-31 2020-11-13 广东凯金新能源科技股份有限公司 一种新型钠离子电池负极材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115692612A (zh) * 2022-11-03 2023-02-03 福州大学 一种锡碳负极材料及其制备方法
CN115594156A (zh) * 2022-11-10 2023-01-13 安徽工业大学(Cn) 一种竹节状锑-硫硒化锑@空心碳管材料及其制备方法与应用
CN115594156B (zh) * 2022-11-10 2023-11-28 安徽工业大学 一种竹节状锑-硫硒化锑@空心碳管材料及其制备方法与应用

Also Published As

Publication number Publication date
CN111924873A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN107425185B (zh) 一种碳纳米管负载的碳化钼材料的制备方法及其在锂硫电池正极材料中的应用
WO2022021642A1 (zh) 一种钠离子电池负极材料及其制备方法
CN105895879B (zh) 一种氟掺杂碳包覆正极复合材料及其制备方法及应用
CN106784690B (zh) 一种复合正极材料及其制备方法以及全固态锂硫电池
CN102332572A (zh) 一种负极材料及其制造方法、锂离子电池及其负极片
CN107069001B (zh) 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
CN105428618B (zh) 一种壳核型碳包覆金属硫化物纳米复合粒子的制备方法及其应用
CN110148719B (zh) 用于锂硫电池的改性薄壁多级孔碳的制备方法及其应用
CN107785552B (zh) 一种氮掺杂花状等级结构多孔碳-硒复合正极材料及其制备方法与应用
CN109244378A (zh) 一种多孔纳米硅碳复合材料的制备方法
CN107732203B (zh) 一种纳米二氧化铈/石墨烯/硫复合材料的制备方法
CN104638242A (zh) 原位聚合包覆合成锂离子电池正极材料磷酸铁锂的方法
CN112436145A (zh) 钠离子电池负极用mof-74衍生碳包覆钴镍双金属硫化物的制备方法和应用
CN102306772A (zh) 一种混合离子电池氟磷酸亚铁钠正极材料的制备方法
CN108321438B (zh) 全石墨锂硫电池及其制备方法
CN111129489B (zh) 一种石墨烯基硫化锑负极材料及其制备方法和应用
CN112952047B (zh) 一种碳负载钒酸钾的制备方法及其在钾离子电池中的应用
CN108963235A (zh) 石墨烯增强碳包覆磷酸钛锰钠微米球电极材料及其制备方法和应用
CN105047861A (zh) 一种硫碳复合材料及其制备方法
CN107681125B (zh) 一种锂离子电池用负极材料、其制备方法及锂离子二次电池
CN110416501B (zh) 一种静电自组装三维花状二硫化钴/rGO复合材料及其制备方法和应用
CN102299334A (zh) 一种碳包覆LiFePO4多孔正极及其制备方法
CN109244393A (zh) 一种长循环高倍率性能的锂硫电池正极材料及其制备方法
CN105990572A (zh) 一种锡炭复合材料及其制备方法和应用
CN105304866B (zh) 一种含金属镁粉的锂硫电池正极及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20947063

Country of ref document: EP

Kind code of ref document: A1