WO2022021514A1 - 反射模组及潜望式摄像头 - Google Patents

反射模组及潜望式摄像头 Download PDF

Info

Publication number
WO2022021514A1
WO2022021514A1 PCT/CN2020/110647 CN2020110647W WO2022021514A1 WO 2022021514 A1 WO2022021514 A1 WO 2022021514A1 CN 2020110647 W CN2020110647 W CN 2020110647W WO 2022021514 A1 WO2022021514 A1 WO 2022021514A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic steel
base
rotating shaft
coil
reflection module
Prior art date
Application number
PCT/CN2020/110647
Other languages
English (en)
French (fr)
Inventor
李林珍
卢继亮
储著明
陈凯
杨元瑞
岳晓
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2022021514A1 publication Critical patent/WO2022021514A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/1805Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/303Clamping coils, windings or parts thereof together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • the invention relates to the field of periscope cameras, in particular to a reflection module and a periscope camera using the reflection module.
  • OIS optical image stabilization
  • the reflective module in the related art includes a base with an accommodation space, a base and a prism bracket arranged in the accommodation space, a prism fixed on the prism bracket, a first shaft for rotating the connection between the base and the base, and a rotating connection between the base and the prism.
  • this kind of reflection module needs to use more magnetic steel to realize the rotation and reset of the base or the prism support, wherein the difference between the magnetic steel for realizing the rotation of the base and the prism support and the magnetic steel for realizing the rotation and reset of the base and the prism support There will be magnetic interference between them.
  • the purpose of the present invention is to provide a reflection module, which can realize the rotation and reset of the base and the prism bracket by using less magnetic steel, so as to reduce or even avoid the rotation and reset of the base and the prism bracket due to magnetic interference. effect of reset.
  • the present invention provides a reflection module, which includes a housing with a receiving space, a base and a prism bracket arranged in the housing, a prism fixed to the prism bracket, a rotatable connection to the housing and a prism bracket.
  • the first rotating shaft of the base, the second rotating shaft rotatably connecting the base and the prism support, the first driving component that drives the base to rotate around the first rotating shaft, and the prism support A second drive assembly for rotating the second shaft, the axis of the first shaft and the axis of the second shaft are perpendicular to each other, and the first drive assembly includes a first coil fixed relative to the housing and a first coil fixed on the
  • the reflection module further includes a magnetic conductive plate disposed on the side of the first coil away from the first magnetic steel and fixed relative to the casing, and a magnetic conductive plate disposed on the first magnetic steel
  • a restoring magnet on the side away from the first coil and fixed on the prism bracket a restoring force for driving the base to rotate and return is formed between the magnetic conducting plate and the first magnet
  • the first magnet A driving force for driving the prism bracket to rotate and return is formed between a magnetic steel and the restoring magnetic steel.
  • the restoring magnetic steel includes a first restoring magnetic steel and a second restoring magnetic steel spaced along the axial direction of the first rotating shaft, and there is a space between the first restoring magnetic steel and the first restoring magnetic steel.
  • a first repulsive force there is a second repulsive force opposite the direction of the first repulsive force between the first magnetic steel and the second restoring magnetic steel, and the resultant force of the first repulsive force and the second repulsive force forms the driving force.
  • the second drive assembly includes a second coil fixed relative to the housing and a second magnet steel fixed on the prism bracket.
  • the first magnet steel, the first restoring magnet steel, the second restoring magnet steel and the second magnet steel are all quadrupole magnet steel.
  • a flexible circuit board electrically connected to the first coil and the second coil is fixed on the casing, a first opening and a second opening are opened on the casing, and the flexible circuit board surrounds the outer casing.
  • the casing is arranged and covers the first opening and the second opening, and the first coil and the second coil are respectively located in the first opening and the second opening and are fixed to the flexible circuit board , the magnetic conductive plate is fixed on the side of the flexible circuit board away from the casing.
  • a first reinforcing plate and a second reinforcing plate are fixed on the side of the flexible circuit board away from the casing, the first reinforcing plate is provided with a through hole, and the magnetic conducting plate is located on the side of the flexible circuit board.
  • the second reinforcing plate and the second coil are arranged at intervals along the axis direction of the first rotating shaft.
  • first limiting blocks are respectively provided at opposite ends of the base along the axial direction of the second rotating shaft, and the first limiting blocks are located from a side of the base close to the first coil. It is formed by extension, wherein the base can be rotated around the first rotation axis until the first limiting block is in contact with the housing.
  • the rotation angle of the base is ⁇ , -2° ⁇ 2°.
  • the prism bracket is formed by extending from two opposite ends of the prism bracket along the axial direction of the first rotating shaft respectively to form second limit blocks, and the prism bracket can rotate around the second axis to the second limit position A block is in contact with the base.
  • the rotation angle of the prism support is ⁇ , where -2° ⁇ 2°.
  • the base is provided with a first accommodating groove, one end of the first rotating shaft passes through the casing and is fixed to the casing, and the other end is inserted into the first accommodating groove, and the prism bracket A second accommodating groove is provided on it, one end of the second rotating shaft passes through the base and is fixed with the base, and the other end is inserted into the second accommodating groove.
  • the inner wall of the first accommodating groove and the inner wall of the second accommodating groove are both concave spherical surfaces
  • the first rotating shaft is inserted into the end of the first accommodating groove
  • the second rotating shaft is inserted into the first accommodating groove.
  • the ends of the two receiving grooves are both convex spherical surfaces.
  • the base is further provided with an escape opening at the position facing the second magnetic steel, and the end of the second magnetic steel away from the prism bracket is inserted into the escape opening.
  • the present invention also provides a periscope camera, wherein the periscope camera includes the reflection module described in any one of the above.
  • a magnetic conducting plate fixed to the casing is arranged on the side of the first coil away from the first magnetic steel, and the first magnetic steel is far away from the first magnetic steel.
  • One side of a coil is provided with a return magnetic steel fixed to the prism bracket, so that the magnetic conducting plate and the first magnetic steel form a first magnetic spring and the return magnetic steel and the first magnetic steel form a The second magnetic spring, when the magnetic conducting plate and the first magnetic steel and the restoring magnetic steel and the first magnetic steel are relatively dislocated, a restoring force is generated, which can drive the base and the prism support respectively Rotation reset.
  • the reflector module can use the magnetic steel driving the base to reset the base and the prism support, thereby reducing the use of magnetic steel to reduce or even avoid magnetic interference on the base and the prism support.
  • it can also reduce the production cost and simplify the structure of the reflection module; on the other hand, the magnetic conductive plate is arranged on the side of the first coil away from the first magnet The Lorentz force of the first coil is increased by the magnetic permeability of the magnetic conductive plate, and the length of the force arm of the restoring force is increased.
  • FIG. 1 is an exploded view of a preferred embodiment of a reflection module of the present invention.
  • FIG. 2 is a schematic structural diagram of a base in the reflection module shown in FIG. 1 .
  • FIG. 3 is a schematic structural diagram of a base in the reflection module shown in FIG. 1 .
  • FIG. 4 is a schematic structural diagram of a prism bracket in the reflection module shown in FIG. 1 .
  • FIG. 5 is a perspective view of the reflective module shown in FIG. 1 after being assembled.
  • FIG. 6 is a cross-sectional view of the reflection module shown in FIG. 5 along the direction A-A.
  • FIG. 7 is an enlarged view of part D of the reflection module shown in FIG. 6 .
  • FIG. 8 is a cross-sectional view of the reflection module shown in FIG. 5 along the B-B direction.
  • FIG. 9 is an enlarged view of part E of the reflection module shown in FIG. 8 .
  • FIG. 10 is a schematic diagram of the movement principle of the base of the present invention.
  • FIG. 11 is a schematic diagram of the movement principle of the prism support of the present invention.
  • the reflection module includes a housing 1 with a receiving space 100 , a base 2 and a prism bracket 3 arranged in the housing 1 , a prism 4 fixed on the prism bracket 3 , and a rotatable connection
  • the first driving component 7 and the second driving component 8 for driving the prism support 3 to rotate around the second rotating shaft 6, the axis of the first rotating shaft 5 and the axis of the second rotating shaft 6 are perpendicular to each other.
  • two opposite sides of the base 2 are respectively provided with the first rotating shafts 5 , and the axes of the two first rotating shafts 5 are collinear;
  • the second rotating shafts 6 are respectively provided on the sides, and the axes of the two second rotating shafts 6 are collinear;
  • the number of the second driving assemblies 8 is two, and the two second driving assemblies 8 are along the first
  • the axis direction of a rotating shaft 5 is spaced apart.
  • the first drive assembly 7 includes a first coil 71 fixed to the housing 1 and a first magnet 73 fixed to the base 2 .
  • the first coil 71 and the first magnetic steel 73 are arranged at intervals along a direction perpendicular to the axis of the first rotating shaft 5 and the axis of the second rotating shaft 6 at the same time.
  • the first Lorentz force F1 generated by the first coil 71 forms a first driving torque T1 to drive the base 2 around the first
  • the rotating shaft 5 rotates, and when the base 2 rotates, the prism bracket 3 is driven to rotate together, so that the prism 4 can rotate around the first rotating shaft 5 .
  • T1 F1*R1
  • R1 is the vertical distance between the first Lorentz force F1 and the axis of the first rotating shaft 5 (that is, R1 is the arm length of the first Lorentz force F1).
  • the reflection module further includes a magnetic conducting plate a which is arranged on the side of the first coil 71 away from the first magnetic steel 73 and is fixed relative to the casing 1.
  • the magnetic conducting plate a and the first magnet A restoring force F2 that drives the base 2 to rotate and return is formed between the steels 73 (that is, the magnetic conducting plate a and the first magnetic steel 73 constitute a first magnetic spring).
  • the restoring force F2 forms a first restoring torque T2 to drive the base 2 to rotate and return.
  • T2 F2*R2
  • R2 is the vertical distance between the restoring force F2 and the axis of the first rotating shaft 5 (ie, R2 is the arm length of the restoring force F2).
  • the first coil 71 is energized to drive the base 2 to rotate around the first shaft 5, due to the relative dislocation of the magnetic conductive plate a and the first magnetic steel 73
  • the first restoring torque T2 will be formed.
  • the total torque T T1-T2 of the base 2 rotating around the first shaft 5; in specific implementation, by controlling the magnetic conducting plate a can control the size of the restoring force F2, so as to control the size of the first restoring torque T2 (the greater the first restoring torque T2, the faster the response of the base 2 to the rotational reset, and the time for the rotational reset The shorter it is; on the contrary, the slower the response of the base 2 to the rotational reset, and the longer the rotational reset time).
  • the second driving assembly 8 includes a second coil 81 fixed to the housing 1 and a second magnet 83 fixed to the prism bracket 3 .
  • the second coil 81 and the second magnetic steel 83 are arranged at intervals along the axial direction of the first rotating shaft 5 .
  • the second Lorentz force f1 generated by the second coil 81 forms a second driving torque t1 to drive the prism holder 3 to wind the second The rotating shaft 6 rotates, so that the prism 4 rotates around the second rotating shaft 6 .
  • t1 f1*r1
  • r1 is the vertical distance between the second Lorentz force f1 and the axis of the second rotating shaft 6 (ie r1 is the length of the arm of the second Lorentz force f1).
  • two of the second coils 81 are connected in series.
  • the reflection module further includes a return magnetic steel b disposed on the side of the first magnetic steel 73 away from the first coil 71 and fixed to the prism bracket 3 .
  • the first magnetic steel 73 and the A driving force f2 that drives the prism support 3 to rotate and reset is formed between the return magnets b (that is, the return magnet b and the first magnet 73 constitute a second magnetic spring).
  • the driving force f2 forms a second restoring torque t2 to drive the prism support 3 to rotate and reset.
  • t2 f2*r22
  • r2 is the vertical distance between the driving force f2 and the axis of the second rotating shaft 6 (ie r2 is the length of the lever arm of the driving force f2).
  • only one second driving component 8 may be provided.
  • the axis of the first rotating shaft 5 has a certain distance from the first coil 71 and the first magnetic steel 73 , the magnetic conducting plate a and the return magnetic steel b
  • the The axis of the second rotating shaft 6 has a certain distance from the second coil 81 and the second magnetic steel 83 , so that the first driving torque that drives the base 2 to rotate around the first rotating shaft 5 T1, the first restoring torque T2 for driving the base 2 to rotate and reset, the second driving torque t1 for driving the prism support 3 to rotate around the second shaft 6, and the second driving torque t1 for driving the prism support 3 to rotate and reset
  • the second restoring torque t2 is relatively large.
  • the restoring magnetic steel b includes a first restoring magnetic steel 1 b and a second restoring magnetic steel 2 b that are spaced along the axial direction of the first rotating shaft 5 , the first restoring magnetic steel 73 and the There is a first repulsive force between the first restoring magnetic steel 1b, and a second repulsive force opposite to the first repulsive force between the first magnetic steel 73 and the second restoring magnetic steel 2b, when the prism support When the 3 is in a balanced state (that is, when the prism bracket 3 does not rotate around the second rotation axis 6), the first repulsion force and the second repulsion force cancel each other out. When the two rotating shafts 6 rotate, the resultant force of the first repulsion force and the second repulsion force forms the driving force f2.
  • the magnitude of the second restoring torque t2 can be controlled by controlling the magnitude of the driving force f2 (the larger the second restoring torque t2, the more the prism holder 3 rotates The faster the reset response is, the shorter the rotary reset time; on the contrary, the slower the rotary reset response of the prism bracket 3 is, and the longer the rotary reset time).
  • the following three factors can control the size of the driving force f2: 1. the size of the first restoring magnetic steel 1b and the second restoring magnetic steel 2b; 2. the first restoring magnetic steel 1b and the The model of the second restoring magnetic steel 2b (magnetic steels with the same size but different models have different magnetic field strengths); 3.
  • the first restoring magnetic steel 1b and the second restoring magnetic steel 2b are along the first rotation axis 5.
  • the first magnetic steel 73 , the first returning magnetic steel 1 b , the second returning magnetic steel 2 b and the second magnetic steel 83 are all quadrupole magnetic steels.
  • the prism 4 has an incident surface 41, a reflecting surface 43 and an exit surface 45. Light enters the prism 4 from the incident surface 41 and is reflected by the reflecting surface 43, and the light reflected by the reflecting surface 43 exits the prism 4.
  • the emitting surface 45 emits light.
  • the housing 1 includes a base 11 , an upper cover 13 covered on the base 11 and opposite to the exit surface 45 and arranged at intervals, and a cover covered on the base 11 away from the
  • the lower cover 15 on one side of the upper cover 13 has a light outlet 131 penetrating through the upper cover 13 facing the exit surface 45 , and the base 11 facing the incident surface 41 .
  • a light entrance 111 is opened on the top.
  • the light reaches the incident surface 41 through the light entrance 111, and the light emitted from the exit surface 45 exits the reflection module through the light exit 131;
  • the first shaft 5 is rotatably connected to the base 11 and the base 2
  • the first coil 71 is relatively fixed to the side of the base 11 away from the light entrance 111
  • the second coil 81 is relatively fixed to the base 11 along the first Both sides in the axial direction of the rotating shaft 5 .
  • a flexible circuit board 10 electrically connected to the first coil 71 and the second coil 81 is fixed on the casing 1 .
  • the casing 1 is provided with a first opening 1A and a second opening 1B
  • the flexible circuit board 10 is arranged around the casing 1 and covers the first opening 1A and the second opening 1B
  • the first coil 71 and the second coil 81 are respectively located in the first opening 1A and the second opening 1B and are fixed to the flexible circuit board 10
  • the magnetic conductive plate a is fixed to the flexible circuit board 10 away from all on one side of the housing 1.
  • first opening 1A and the second opening 1B are opened on the base 11 .
  • the first coil 71 is provided with a first sensor 75 that is electrically connected to the flexible circuit board 10 , and the first sensor 75 is used to measure the base 2 around the first rotation axis 5 Angle of rotation.
  • a first reinforcing plate 20 and a second reinforcing plate 30 are fixed on the side of the flexible circuit board 10 away from the casing 1 , and a through hole is formed through the first reinforcing plate 20 .
  • the magnetic conducting plate a is located in the through hole 201
  • the second reinforcing plate 30 is spaced apart from the second coil 81 along the axis direction of the first rotating shaft 5 .
  • the magnetic conductive plate a may also be disposed between the first coil 71 and the flexible circuit board 10 , and the first coil 71 passes through the magnetic conductive plate a fixed with the flexible circuit board 10 .
  • the opposite ends of the base 2 along the axial direction of the second rotating shaft 6 are respectively provided with first limiting blocks 21 , and the first limiting blocks 21 are approached from the base 2 .
  • One side of the first coil 71 is formed by extending, wherein the base 2 can be rotated around the first shaft 5 until the first limiting block 21 is in contact with the housing 1 . That is to say, in the rotation direction of the base 2 around the first rotating shaft 5 , the first limiting block 21 is limited by impacting with the housing 1 .
  • the limiting block 21 is limited by impacting with the upper cover 13 and the lower cover 15 of the housing 1 .
  • the rotation angle of the base 2 is ⁇ , -2° ⁇ 2°. That is to say, the maximum rotation of the base 2 around the first shaft 5 is 2°.
  • the second limiting blocks 31 are respectively formed to extend from opposite ends of the prism bracket 3 along the axial direction of the first rotating shaft 5 , and the prism bracket 3 can surround the second rotating shaft 6 . Rotate until the second limiting block 31 is in contact with the base 2 . That is to say, in the rotation direction of the prism bracket 3 around the second rotating shaft 6 , the second limiting block 31 is limited by impacting with the base 2 .
  • the rotation angle of the prism support is ⁇ , where -2° ⁇ 2°. That is to say, the maximum rotation of the prism holder 3 around the second shaft 6 is 2°.
  • the base 2 is provided with a first accommodating groove 23 , one end of the first rotating shaft 5 passes through the casing 1 and is fixed to the casing 1 , and the other end is inserted into the first accommodating groove 23 .
  • the prism bracket 3 is provided with a second accommodating groove 33 , one end of the second rotating shaft 6 passes through the base 2 and is fixed to the base 2 , and the other end is inserted into the second accommodating groove 33 .
  • One end of the first rotating shaft 5 passes through the base 11 of the housing 1 and is fixed to the base 11 .
  • the base 11 is provided with a The first through hole 1C through which the rotating shaft 5 passes
  • the base 2 is provided with a second through hole 25 through which the second rotating shaft 6 passes.
  • the inner wall of the first accommodating groove 23 and the inner wall of the second accommodating groove 33 are both concave spherical surfaces, and the first rotating shaft 5 is inserted into the end of the first accommodating groove 23 and the The ends of the second rotating shaft 6 inserted into the second receiving groove 33 are convex spherical surfaces.
  • the friction between the inner wall of the first receiving groove 23 and the first rotating shaft 5 can be reduced when the base 2 rotates around the first rotating shaft 5 , and the prism bracket 3 can rotate around the first rotating shaft 5 .
  • the second rotating shaft 6 rotates, the friction between the inner wall of the second receiving groove 33 and the second rotating shaft 6 occurs.
  • the base 2 is further provided with an escape opening 27 at the position facing the second magnetic steel 83 , and the end of the second magnetic steel 83 away from the prism bracket 3 is inserted into the escape opening within 27.
  • the distance between the second magnetic steel 83 and the second coil 81 can be reduced, so that the magnetic field strength of the second magnetic steel 83 is the same and the magnetic field strength generated after the second coil 81 is energized is the same.
  • the force between the second magnetic steel 83 and the second coil 81 can be increased (that is, it can be The second Lorentz force f1) is increased, and it is beneficial to reduce the overall size of the reflection module.
  • a second sensor 85 electrically connected to the flexible circuit board 10 is provided in the second coil 81 , and the second sensor 85 is used to measure the winding of the prism bracket 3 around the second sensor 85 .
  • the present invention also provides a periscope camera, the periscope camera comprising the above-mentioned reflection module.
  • a magnetic conductive plate a fixed relative to the casing 1 is arranged on the side of the first coil 71 away from the first magnetic steel 73 and a magnetic conductive plate a is arranged on the first magnetic steel.
  • the side away from the first coil 71 is provided with a restoring magnetic steel b fixed to the prism bracket 3, so that the magnetic conducting plate a and the first magnetic steel 73 constitute a first magnetic spring and the restoring The magnetic steel b and the first magnetic steel 73 constitute a second magnetic spring.
  • the reflector module can use the magnetic steel driving the base 2 to reset the base 2 and the prism support 3, thereby reducing the use of magnetic steel to reduce or even avoid magnetic interference on the base
  • the magnetic conductive plate a is arranged on the first coil 71 away from the first magnetic steel
  • the Lorentz force of the first coil 71 be increased by the magnetic conducting effect of the magnetic conducting plate a, but also the length of the force arm of the restoring force F2 can be increased.

Abstract

一种反射模组及潜望式摄像头,反射模组包括外壳(1)、基座(2)、棱镜支架(3)、棱镜(4)、转动连接外壳(1)和基座(2)的第一转轴(5)、转动连接基座(2)和棱镜支架(3)的第二转轴(6)、驱动基座(2)绕第一转轴(5)转动的第一驱动组件(7)以及驱动棱镜支架(3)绕第二转轴(6)转动的第二驱动组件(8),第一驱动组件(7)包括相对外壳(1)固定的第一线圈(71)及固定于基座(2)的第一磁钢(73),反射模组还包括设于第一线圈(71)远离第一磁钢(73)一侧并相对外壳(1)固定的导磁板(a)以及设于第一磁钢(73)远离第一线圈(71)的一侧并固定于棱镜支架(3)的回复磁钢(b),第一磁钢(73)和导磁板(a)之间形成驱动基座(2)回转复位的回复力,第一磁钢(73)和回复磁钢(b)之间形成驱动棱镜支架(3)回转复位的驱动力。

Description

反射模组及潜望式摄像头 技术领域
本发明涉及潜望式摄像领域,尤其涉及一种反射模组及采用该反射模组的潜望式摄像头。
背景技术
OIS(optical image stabilization,光学防抖)主要作用是调整摄像头视野以方便对用户手抖进行补偿。OIS主要是通过 “镜头移位”来实现,也就是当镜头移动或者摄像头倾斜时,镜头和图像传感器会一并倾斜。目前业界通过反射模组实现更好的光学防抖的效果。
相关技术中的反射模组包括具有收容空间的底座、设于收容空间内的基座和棱镜支架、固定于棱镜支架的棱镜、转动连接底座和基座的第一转轴、转动连接基座和棱镜支架的第二转轴、驱动基座绕第一转轴转动的第一驱动组件、驱动棱镜支架绕第二转轴转动的第二驱动组件以及用于复位基座或棱镜支架的复位组件,其中,基座绕第一转轴转动时可带动棱镜支架一同转动。然而,此种反射模组需要使用较多的磁钢以实现基座或棱镜支架转动和复位,其中,实现基座和棱镜支架转动的磁钢与实现基座和棱镜支架转动复位的磁钢之间会产生磁干扰。
因此,实有必要提供一种新的反射模组解决上述技术问题。
技术问题
本发明的目的在于提供一种反射模组,该反射模组可以使用更少的磁钢实现基座和棱镜支架的转动和复位,从而可以降低甚至避免磁干扰对基座和棱镜支架的转动和复位的影响。
技术解决方案
为了达到上述目的,本发明提供了一种反射模组,包括具有收容空间的外壳、设于所述外壳内的基座和棱镜支架、固定于所述棱镜支架的棱镜、转动连接所述外壳和所述基座的第一转轴、转动连接所述基座和所述棱镜支架的第二转轴、驱动所述基座绕所述第一转轴转动的第一驱动组件以及驱动所述棱镜支架绕所述第二转轴转动的第二驱动组件,所述第一转轴的轴线和所述第二转轴的轴线相互垂直, 所述第一驱动组件包括相对所述外壳固定的第一线圈及固定于所述基座的第一磁钢,所述反射模组还包括设于所述第一线圈远离所述第一磁钢一侧并相对所述外壳固定的导磁板以及设于所述第一磁钢远离所述第一线圈的一侧并固定于所述棱镜支架的回复磁钢,所述导磁板和所述第一磁钢之间形成驱动所述基座回转复位的回复力,所述第一磁钢和所述回复磁钢之间形成驱动所述棱镜支架回转复位的驱动力。
优选地,所述回复磁钢包括沿所述第一转轴的轴线方向间隔设置的第一回复磁钢和第二回复磁钢,所述第一磁钢和所述第一回复磁钢之间存在第一斥力,所述第一磁钢和所述第二回复磁钢之间存在与所述第一斥力方向相反的第二斥力,所述第一斥力和所述第二斥力的合力形成所述驱动力。
优选地,所述第二驱动组件包括相对所述外壳固定的第二线圈及固定于所述棱镜支架的第二磁钢。
优选地,所述第一磁钢、所述第一回复磁钢、所述第二回复磁钢及所述第二磁钢均为四极磁钢。
优选地,所述外壳上固设有与所述第一线圈和所述第二线圈电连接的柔性电路板,所述外壳上开设有第一开口和第二开口,所述柔性电路板环绕所述外壳设置并覆盖所述第一开口和所述第二开口,所述第一线圈和所述第二线圈分别位于所述第一开口和所述第二开口内并固定于所述柔性电路板,所述导磁板固定于所述柔性电路板远离所述外壳的一侧上。
优选地,所述柔性电路板远离所述外壳的一侧上还固设有第一加强板和第二加强板,所述第一加强板上贯穿设有通孔,所述导磁板位于所述通孔内,所述第二加强板与所述第二线圈沿所述第一转轴的轴线方向间隔设置。
优选地,所述基座沿所述第二转轴的轴线方向的相对两端分别设有第一限位块,所述第一限位块自所述基座靠近所述第一线圈的一侧延伸形成,其中,所述基座可绕所述第一转轴旋转至所述第一限位块与所述外壳接触。
优选地,所述基座的旋转角度为α,-2°≤α≤2°。
优选地,自所述棱镜支架沿所述第一转轴的轴线方向的相对两端分别延伸形成的第二限位块,所述棱镜支架可绕所述第二转轴旋转至所述第二限位块与所述基座接触。
优选地,所述棱镜支架的旋转角度为β,其中,-2°≤β≤2°。
优选地,所述基座上设有第一收容槽,所述第一转轴的一端穿过所述外壳并与所述外壳固定,其另一端插入所述第一收容槽内,所述棱镜支架上设有第二收容槽,所述第二转轴的一端穿过所述基座并与所述基座固定,其另一端插入所述第二收容槽内。
优选地,所述第一收容槽的内壁和所述第二收容槽的内壁均为凹陷的球面,所述第一转轴插入所述第一收容槽的末端和所述第二转轴插入所述第二收容槽的末端均为凸出的球面。
优选地,所述基座正对所述第二磁钢的位置上还开设有避让口,所述第二磁钢远离所述棱镜支架的一端插入所述避让口内。
本发明还提供了一种潜望式摄像头,所述潜望式摄像头包括上述中任一项所述的反射模组。
有益效果
与相关技术相比,本发明的反射模组通过在所述第一线圈远离所述第一磁钢一侧设置相对所述外壳固定的导磁板以及在所述第一磁钢远离所述第一线圈的一侧设置固定于所述棱镜支架的回复磁钢,从而使得所述导磁板和所述第一磁钢构成第一磁力弹簧以及所述回复磁钢和所述第一磁钢构成第二磁力弹簧,当所述导磁板和所述第一磁钢以及所述回复磁钢和所述第一磁钢发生相对错位后产生回复力可分别驱动所述基座和所述棱镜支架回转复位。这样一方面可以使得反射模组可以利用驱动所述基座的磁钢对所述基座和所述棱镜支架进行复位,从而可以减少磁钢的使用以降低甚至避免磁干扰对基座和棱镜支架的转动和复位的影响,同时,还可以降低生产成本及简化反射模组的结构;另一方面,所述导磁板设置于所述第一线圈远离所述第一磁钢一侧,不仅可以通过所述导磁板的导磁作用以提高所述第一线圈的洛伦兹力,而且增加了回复力的力臂长度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中。
图1为本发明的反射模组一较佳实施例的分解图。
图2为图1所示反射模组中底座的结构示意图。
图3为图1所示反射模组中基座的结构示意图。
图4为图1所示反射模组中棱镜支架的结构示意图。
图5为图1所示反射模组组装后的立体图。
图6为图5所示反射模组沿A-A方向的剖视图。
图7为图6所示反射模组中D部分的放大图。
图8为图5所示反射模组沿B-B方向的剖视图。
图9为图8所示反射模组中E部分的放大图。
图10为本发明的基座的运动原理的示意图。
图11为本发明的棱镜支架的运动原理的示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请结合参阅图1至图11,反射模组包括具有收容空间100的外壳1、设于所述外壳1内的基座2和棱镜支架3、固定于所述棱镜支架3的棱镜4、转动连接所述外壳1和所述基座2的第一转轴5、转动连接所述基座2和所述棱镜支架3的第二转轴6、驱动所述基座2绕所述第一转轴5转动的第一驱动组件7以及驱动所述棱镜支架3绕所述第二转轴6转动的第二驱动组件8,所述第一转轴5的轴线和所述第二转轴6的轴线相互垂直。
如图6和图8所示,所述基座2的两相对侧分别设有所述第一转轴5,且两个所述第一转轴5的轴线共线;所述棱镜支架3的两相对侧分别设有所述第二转轴6,且两个所述第二转轴6的轴线共线;所述第二驱动组件8为两个,并且两个所述第二驱动组件8沿所述第一转轴5的轴线方向间隔设置。
所述第一驱动组件7包括相对所述外壳1固定的第一线圈71及固定于所述基座2的第一磁钢73。其中,所述第一线圈71和所述第一磁钢73沿同时垂直于所述第一转轴5的轴线和所述第二转轴6的轴线的方向间隔设置。(即所述第一线圈71和所述第一磁钢73之间垂直距离的连线分别与所述第一转轴5的轴线和所述第二转轴6的轴线垂直,也就是说,所述第一线圈71和所述第一磁钢73之间垂直距离的连线、所述第一转轴5的轴线、所述第二转轴6的轴线两两之间相互垂直)。如图10所示,当所述第一线圈71通电后,所述第一线圈71产生的第一洛伦兹力F1形成第一驱动转矩T1以驱动所述基座2绕所述第一转轴5转动,而所述基座2转动时会带动所述棱镜支架3一同转动,从而实现所述棱镜4绕所述第一转轴5转动。其中,T1=F1*R1,R1为第一洛伦兹力F1与所述第一转轴5的轴线的垂直距离(即R1为所述第一洛伦兹力F1的力臂长度)。
所述反射模组还包括设于所述第一线圈71远离所述第一磁钢73一侧并相对所述外壳1固定的导磁板a,所述导磁板a和所述第一磁钢73之间形成驱动所述基座2回转复位的回复力F2(即所述导磁板a和所述第一磁钢73构成第一磁力弹簧)。具体地,如图10所示,当所述基座2绕所述第一转轴5转动后,所述导磁板a和所述第一磁钢73因发生相对错位而产生所述回复力F2,所述回复力F2形成第一回复转矩T2以驱动所述基座2回转复位。其中,T2=F2*R2,R2为所述回复力F2与所述第一转轴5的轴线的垂直距离(即R2为所述回复力F2的力臂长度)。
需要说明的是,在所述第一线圈71通电以驱动所述基座2绕所述第一转轴5转动的过程中,由于所述导磁板a和所述第一磁钢73发生相对错位会形成所述第一回复转矩T2,此时,所述基座2绕所述第一转轴5转动的总转矩T= T1- T2;在具体实施中,通过控制所述导磁板a的大小可以控制回复力F2的大小,从而可以控制所述第一回复转矩T2的大小(所述第一回复转矩T2越大,所述基座2回转复位的响应越快,回转复位时间越短;反之,则所述基座2回转复位的响应越慢,回转复位时间越长)。
所述第二驱动组件8包括相对所述外壳1固定的第二线圈81及固定于所述棱镜支架3的第二磁钢83。其中,所述第二线圈81和所述第二磁钢83沿所述第一转轴5的轴线方向间隔设置。如图11所示,当所述第二线圈81通电后,所述第二线圈81产生的第二洛伦兹力f1形成第二驱动转矩t1以驱动所述棱镜支架3绕所述第二转轴6转动,从而实现所述棱镜4绕所述第二转轴6转动。其中,t1=f1*r1,r1为第二洛伦兹力f1与所述第二转轴6的轴线的垂直距离(即r1为所述第二洛伦兹力f1的力臂长度)。在本实施例中,两个所述第二线圈81串联。
所述反射模组还包括设于所述第一磁钢73远离所述第一线圈71的一侧并固定于所述棱镜支架3的回复磁钢b,所述第一磁钢73和所述回复磁钢b之间形成驱动所述棱镜支架3回转复位的驱动力f2(即所述回复磁钢b和所述第一磁钢73构成第二磁力弹簧)。具体地,如图11所示,当所述棱镜支架3绕所述第二转轴6转动后,所述回复磁钢b和所述第一磁钢73因发生相对错位而产生所述驱动力f2,所述驱动力f2形成第二回复转矩t2以驱动所述棱镜支架3回转复位。其中,t2=f2*r2,r2为所述驱动力f2与所述第二转轴6的轴线的垂直距离(即r2为所述驱动力f2的力臂长度)。
需要说明的是,在所述第二线圈81通电以驱动所述棱镜支架3绕所述第二转轴6转动的过程中,由于所述回复磁钢b和所述第一磁钢73发生相对错位会形成所述第二回复转矩t2,此时,所述棱镜支架3绕所述第二转轴6转动的总转矩t=2* t1- t2。
可以理解的是,在其他实施方式中,所述第二驱动组件8也可以仅设有一个,相应地,在所述第二线圈81通电以驱动所述棱镜支架3绕所述第二转轴6转动的过程中,所述棱镜支架3绕所述第二转轴6转动的总转矩t=t1- t2。
需要说明的是,由于所述第一转轴5的轴线与所述第一线圈71和所述第一磁钢73、所述导磁板a及所述回复磁钢b均具有一定间距,所述第二转轴6的轴线与所述第二线圈81和所述第二磁钢83均具有一定间距,从而使得驱动所述基座2绕所述第一转轴5转动的所述第一驱动转矩T1、驱动所述基座2回转复位的第一回复转矩T2、驱动所述棱镜支架3绕所述第二转轴6转动的所述第二驱动转矩t1以及驱动所述棱镜支架3回转复位的所述第二回复转矩t2均较大。
在本实施方式中,所述回复磁钢b包括沿所述第一转轴5的轴线方向间隔设置的第一回复磁钢1b和第二回复磁钢2b,所述第一磁钢73和所述第一回复磁钢1b之间存在第一斥力,所述第一磁钢73和所述第二回复磁钢2b之间存在与所述第一斥力方向相反的第二斥力,当所述棱镜支架3处于平衡状态时(即所述棱镜支架3未发生绕所述第二转轴6的转动时),所述第一斥力和所述第二斥力相互抵消,当所述棱镜支架3绕所述第二转轴6转动时,所述第一斥力和所述第二斥力的合力形成所述驱动力f2。
需要说明的是,在具体实施方式中,可以通过控制所述驱动力f2的大小控制所述第二回复转矩t2的大小(所述第二回复转矩t2越大,所述棱镜支架3回转复位的响应越快,回转复位时间越短;反之,则所述棱镜支架3回转复位的响应越慢,回转复位时间越长)。例如,如下三个因素均可以控制所述驱动力f2的大小:一、所述第一回复磁钢1b和所述第二回复磁钢2b的尺寸;二、所述第一回复磁钢1b和所述第二回复磁钢2b的型号(大小相同而型号不同的磁钢的磁场强度不同);三、所述第一回复磁钢1b和所述第二回复磁钢2b沿所述第一转轴5的轴线方向的间距;四、沿所述第一磁钢73至所述第一线圈71方向上,所述第一回复磁钢1b和所述第二回复磁钢2b与所述第一磁钢73之间的间距。
在本实施方式中,所述第一磁钢73、所述第一回复磁钢1b、所述第二回复磁钢2b及所述第二磁钢83均为四极磁钢。
所述棱镜4具有入射面41、反射面43及出射面45,光线自所述入射面41进入所述棱镜4并经所述反射面43反射,经所述反射面43反射后的光线从所述出射面45射出。
如图1和图7所示,所述外壳1包括底座11、盖设于所述底座11并与所述出射面45相对且间隔设置的上盖板13及盖设于所述底座11远离所述上盖板13一侧的下盖板15,所述上盖板13正对所述出射面45的位置上贯穿设有出光口131,所述底座11正对所述入射面41的一侧上开设有入光口111。
其中,光线经所述入光口111到达所述入射面41,从所述出射面45射出的光线经所述出光口131射出所述反射模组;所述第一转轴5转动连接所述底座11和所述基座2,所述第一线圈71相对固定于所述底座11远离所述入光口111的一侧,所述第二线圈81相对固定于所述底座11沿所述第一转轴5的轴线方向的两侧。
所述外壳1上固设有与所述第一线圈71和所述第二线圈81电连接的柔性电路板10。
所述外壳1上开设有第一开口1A和第二开口1B,所述柔性电路板10环绕所述外壳1设置并覆盖所述第一开口1A和所述第二开口1B,所述第一线圈71和所述第二线圈81分别位于所述第一开口1A和所述第二开口1B内并固定于所述柔性电路板10,所述导磁板a固定于所述柔性电路板10远离所述外壳1的一侧上。通过在所述外壳1上设置所述第一开口1A和所述第二开口1B以分别收容所述第一线圈71和所述第二线圈81,有利于减小反射模组的整体尺寸。
其中,所述第一开口1A和所述第二开口1B开设于所述底座11上。
如图6所示,所述第一线圈71内设有与所述柔性电路板10电连接的第一传感器75,所述第一传感器75用于测量所述基座2绕所述第一转轴5转动的角度。
在本实施方式中,所述柔性电路板10远离所述外壳1的一侧上还固设有第一加强板20和第二加强板30,所述第一加强板20上贯穿设有通孔201,所述导磁板a位于所述通孔201内,所述第二加强板30沿所述第一转轴5的轴线方向与所述第二线圈81间隔设置。通过设置所述第一加强板20和所述第二加强板30可以加强所述柔性电路板10的刚度以避免所述柔性电路板10在对应所述第一线圈71和所述第二线圈81处在线圈与磁钢相互作用时出现形变的问题,同时,通过在所述第一加强板20上设置收容所述导磁板a的所述通孔201,可以避免增加所述反射模组沿所述第一线圈71至所述第一磁钢73方向上的厚度。
可以理解的是,在其他实施方式中,所述导磁板a还可以设置在所述第一线圈71和所述柔性电路板10之间,所述第一线圈71通过所述导磁板a与所述柔性电路板10固定。
在本实施方式中,所述基座2沿所述第二转轴6的轴线方向的相对两端分别设有第一限位块21,所述第一限位块21自所述基座2靠近所述第一线圈71的一侧延伸形成,其中,所述基座2可绕所述第一转轴5旋转至所述第一限位块21与所述外壳1接触。也就是说,在所述基座2绕所述第一转轴5的旋转方向上,所述第一限位块21通过与所述外壳1撞击的方式做限位,具体的,所述第一限位块21通过与所述外壳1的所述上盖板13和所述下盖板15撞击限位。
在本实施例中,所述基座2的旋转角度为α,-2°≤α≤2°。也就是说,所述基座2绕所述第一转轴5旋转的最大行程为2°。
在本实施方式中,自所述棱镜支架3沿所述第一转轴5的轴线方向的相对两端分别延伸形成的第二限位块31,所述棱镜支架3可绕所述第二转轴6旋转至所述第二限位块31与所述基座2接触。也就是说,在所述棱镜支架3可绕所述第二转轴6的旋转方向上,所述第二限位块31通过与所述基座2撞击的方式做限位。
在本实施例中,所述棱镜支架的旋转角度为β,其中,-2°≤β≤2°。也就是说,所述棱镜支架3绕所述第二转轴6的旋转的最大行程为2°。
所述基座2上设有第一收容槽23,所述第一转轴5的一端穿过所述外壳1并与所述外壳1固定,其另一端插入所述第一收容槽23内,所述棱镜支架3上设有第二收容槽33,所述第二转轴6的一端穿过所述基座2并与所述基座2固定,其另一端插入所述第二收容槽33内。其中,所述第一转轴5的一端穿过所述外壳1的所述底座11并与所述底座11固定。
可以理解的是,为了使所述第一转轴5的一端穿过所述底座11以及所述第二转轴6的一端穿过所述基座2,所述底座11上设有供所述第一转轴5穿过的第一穿孔1C,所述基座2上设有供所述第二转轴6穿过的第二穿孔25。
在本实施方式中,所述第一收容槽23的内壁和所述第二收容槽33的内壁均为凹陷的球面,所述第一转轴5插入所述第一收容槽23的末端和所述第二转轴6插入所述第二收容槽33的末端均为凸出的球面。这样可以减小所述基座2绕所述第一转轴5转动时,所述第一收容槽23的内壁与所述第一转轴5之间的摩擦,以及,所述棱镜支架3绕所述第二转轴6转动时,所述第二收容槽33的内壁与所述第二转轴6之间的摩擦。
在本实施方式中,所述基座2正对所述第二磁钢83的位置上还开设有避让口27,所述第二磁钢83远离所述棱镜支架3的一端插入所述避让口27内。这样可以减小所述第二磁钢83与所述第二线圈81之间的间距,从而在所述第二磁钢83的磁场强度相同以及所述第二线圈81通电后产生的磁场强度相同的情况下,通过减小所述第二磁钢83与所述第二线圈81之间的间距可以增大所述第二磁钢83与所述第二线圈81之间的作用力(即可以提高第二洛伦兹力f1),而且有利于减小反射模组的整体尺寸。
如图6所示,一所述第二线圈81内设有与所述柔性电路板10电连接的第二传感器85,所述第二传感器85用于测量所述棱镜支架3绕所述第二转轴6转动的角度。
本发明还提供了一种潜望式摄像头,所述潜望式摄像头包括上述所述的反射模组。
与相关技术相比,本发明的反射模组通过在所述第一线圈71远离所述第一磁钢73一侧设置相对所述外壳1固定的导磁板a以及在所述第一磁钢73远离所述第一线圈71的一侧设置固定于所述棱镜支架3的回复磁钢b,从而使得所述导磁板a和所述第一磁钢73构成第一磁力弹簧以及所述回复磁钢b和所述第一磁钢73构成第二磁力弹簧,当所述导磁板a和所述第一磁钢73以及所述回复磁钢b和所述第一磁钢73发生相对错位后产生的回复力可分别驱动所述基座2和所述棱镜支架3回转复位。这样一方面可以使得反射模组可以利用驱动所述基座2的磁钢对所述基座2和所述棱镜支架3进行复位,从而可以减少磁钢的使用以降低甚至避免磁干扰对基座和棱镜支架的转动和复位的影响,同时,还可以降低生产成本及简化反射模组的结构;另一方面,所述导磁板a设置于所述第一线圈71远离所述第一磁钢73一侧,不仅可以通过所述导磁板a的导磁作用以提高所述第一线圈71的洛伦兹力,而且增加了回复力F2的力臂长度。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (14)

  1. 一种反射模组,包括具有收容空间的外壳、设于所述外壳内的基座和棱镜支架、固定于所述棱镜支架的棱镜、转动连接所述外壳和所述基座的第一转轴、转动连接所述基座和所述棱镜支架的第二转轴、驱动所述基座绕所述第一转轴转动的第一驱动组件以及驱动所述棱镜支架绕所述第二转轴转动的第二驱动组件,所述第一转轴的轴线和所述第二转轴的轴线相互垂直,所述第一驱动组件包括相对所述外壳固定的第一线圈及固定于所述基座的第一磁钢,其特征在于,所述反射模组还包括设于所述第一线圈远离所述第一磁钢一侧并相对所述外壳固定的导磁板以及设于所述第一磁钢远离所述第一线圈的一侧并固定于所述棱镜支架的回复磁钢,所述导磁板和所述第一磁钢之间形成驱动所述基座回转复位的回复力,所述第一磁钢和所述回复磁钢之间形成驱动所述棱镜支架回转复位的驱动力。
  2. 根据权利要求1所述的反射模组,其特征在于,所述回复磁钢包括沿所述第一转轴的轴线方向间隔设置的第一回复磁钢和第二回复磁钢,所述第一磁钢和所述第一回复磁钢之间存在第一斥力,所述第一磁钢和所述第二回复磁钢之间存在与所述第一斥力方向相反的第二斥力,所述第一斥力和所述第二斥力的合力形成所述驱动力。
  3. 根据权利要求2所述的反射模组,其特征在于,所述第二驱动组件包括相对所述外壳固定的第二线圈及固定于所述棱镜支架的第二磁钢。
  4. 根据权利要求3所述的反射模组,其特征在于,所述第一磁钢、所述第一回复磁钢、所述第二回复磁钢及所述第二磁钢均为四极磁钢。
  5. 根据权利要求3所述的反射模组,其特征在于,所述外壳上固设有与所述第一线圈和所述第二线圈电连接的柔性电路板,所述外壳上开设有第一开口和第二开口,所述柔性电路板环绕所述外壳设置并覆盖所述第一开口和所述第二开口,所述第一线圈和所述第二线圈分别位于所述第一开口和所述第二开口内并固定于所述柔性电路板,所述导磁板固定于所述柔性电路板远离所述外壳的一侧上。
  6. 根据权利要求5所述的反射模组,其特征在于,所述柔性电路板远离所述外壳的一侧上还固设有第一加强板和第二加强板,所述第一加强板上贯穿设有通孔,所述导磁板位于所述通孔内,所述第二加强板与所述第二线圈沿所述第一转轴的轴线方向间隔设置。
  7. 根据权利要求1所述的反射模组,其特征在于,所述基座沿所述第二转轴的轴线方向的相对两端分别设有第一限位块,所述第一限位块自所述基座靠近所述第一线圈的一侧延伸形成,其中,所述基座可绕所述第一转轴旋转至所述第一限位块与所述外壳接触。
  8. 根据权利要求7所述的反射模组,其特征在于,所述基座的旋转角度为α,-2°≤α≤2°。
  9. 根据权利要求1所述的反射模组,其特征在于,自所述棱镜支架沿所述第一转轴的轴线方向的相对两端分别延伸形成的第二限位块,所述棱镜支架可绕所述第二转轴旋转至所述第二限位块与所述基座接触。
  10. 根据权利要求9所述的反射模组,其特征在于,所述棱镜支架的旋转角度为β,其中,-2°≤β≤2°。
  11. 根据权利要求1所述的反射模组,其特征在于,所述基座上设有第一收容槽,所述第一转轴的一端穿过所述外壳并与所述外壳固定,其另一端插入所述第一收容槽内,所述棱镜支架上设有第二收容槽,所述第二转轴的一端穿过所述基座并与所述基座固定,其另一端插入所述第二收容槽内。
  12. 根据权利要求11所述的反射模组,其特征在于,所述第一收容槽的内壁和所述第二收容槽的内壁均为凹陷的球面,所述第一转轴插入所述第一收容槽的末端和所述第二转轴插入所述第二收容槽的末端均为凸出的球面。
  13. 根据权利要求3所述的反射模组,其特征在于,所述基座正对所述第二磁钢的位置上还开设有避让口,所述第二磁钢远离所述棱镜支架的一端插入所述避让口内。
  14. 一种潜望式摄像头,包括如权利要求1-13中任一项所述的反射模组。
PCT/CN2020/110647 2020-07-29 2020-08-21 反射模组及潜望式摄像头 WO2022021514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010740551.7A CN111624728B (zh) 2020-07-29 2020-07-29 反射模组及潜望式摄像头
CN202010740551.7 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022021514A1 true WO2022021514A1 (zh) 2022-02-03

Family

ID=72272202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110647 WO2022021514A1 (zh) 2020-07-29 2020-08-21 反射模组及潜望式摄像头

Country Status (2)

Country Link
CN (1) CN111624728B (zh)
WO (1) WO2022021514A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885293B (zh) * 2020-09-28 2020-12-08 常州市瑞泰光电有限公司 电子设备、光学采集模组及反射模组
CN212229303U (zh) * 2020-11-24 2020-12-25 常州市瑞泰光电有限公司 一种镜头棱镜模组
CN215297798U (zh) * 2020-11-24 2021-12-24 常州市瑞泰光电有限公司 一种镜头棱镜模组
CN113556450A (zh) * 2021-07-13 2021-10-26 基合半导体(宁波)有限公司 摄像头模组及电子设备
CN117666251A (zh) * 2022-08-30 2024-03-08 荣耀终端有限公司 镜片承载装置、摄像模组以及电子设备
CN117666250A (zh) * 2022-08-30 2024-03-08 荣耀终端有限公司 镜片承载装置、摄像模组以及电子设备
CN117666252A (zh) * 2022-08-30 2024-03-08 荣耀终端有限公司 镜片承载装置、摄像模组以及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282510A (zh) * 2009-01-14 2011-12-14 日本电产科宝株式会社 像抖动修正装置和具有像抖动修正装置的拍摄单元
CN110187465A (zh) * 2019-06-01 2019-08-30 瑞声科技(新加坡)有限公司 应用于潜望式镜头模组的棱镜装置和潜望式镜头模组
CN110286462A (zh) * 2019-06-01 2019-09-27 瑞声科技(新加坡)有限公司 棱镜模组和潜望式摄像头
US20190361260A1 (en) * 2017-02-15 2019-11-28 Samsung Electro-Mechanics Co., Ltd. Reflecting module for ois and camera module including the same
CN110703538A (zh) * 2019-10-15 2020-01-17 瑞声通讯科技(常州)有限公司 镜头模组
CN110764217A (zh) * 2019-11-07 2020-02-07 河南皓泽电子股份有限公司 棱镜驱动装置及棱镜组件
CN111142319A (zh) * 2019-12-30 2020-05-12 瑞声通讯科技(常州)有限公司 反射模组及潜望式摄像头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109963058B (zh) * 2017-12-14 2021-04-06 Lg 电子株式会社 棱镜装置、和包括棱镜装置的相机装置
US11029453B2 (en) * 2018-01-25 2021-06-08 Tdk Taiwan Corp. Optical system
EP3674768B1 (en) * 2018-12-27 2023-09-20 Tdk Taiwan Corp. Optical member driving mechanism
WO2020243860A1 (zh) * 2019-06-01 2020-12-10 瑞声光学解决方案私人有限公司 光学防抖镜头组件及其光学防抖的方法
CN210781015U (zh) * 2019-12-03 2020-06-16 南昌欧菲光电技术有限公司 摄像头模组及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282510A (zh) * 2009-01-14 2011-12-14 日本电产科宝株式会社 像抖动修正装置和具有像抖动修正装置的拍摄单元
US20190361260A1 (en) * 2017-02-15 2019-11-28 Samsung Electro-Mechanics Co., Ltd. Reflecting module for ois and camera module including the same
CN110187465A (zh) * 2019-06-01 2019-08-30 瑞声科技(新加坡)有限公司 应用于潜望式镜头模组的棱镜装置和潜望式镜头模组
CN110286462A (zh) * 2019-06-01 2019-09-27 瑞声科技(新加坡)有限公司 棱镜模组和潜望式摄像头
CN110703538A (zh) * 2019-10-15 2020-01-17 瑞声通讯科技(常州)有限公司 镜头模组
CN110764217A (zh) * 2019-11-07 2020-02-07 河南皓泽电子股份有限公司 棱镜驱动装置及棱镜组件
CN111142319A (zh) * 2019-12-30 2020-05-12 瑞声通讯科技(常州)有限公司 反射模组及潜望式摄像头

Also Published As

Publication number Publication date
CN111624728A (zh) 2020-09-04
CN111624728B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2022021514A1 (zh) 反射模组及潜望式摄像头
EP3581979B1 (en) Camera module, camera assembly and electronic device
WO2020243856A1 (zh) 棱镜模组和潜望式摄像头
JP7153746B2 (ja) 電子機器
CN212410942U (zh) 防抖反射模块、镜头模组、摄像装置及电子设备
WO2020082425A1 (zh) 潜望式防抖模组及潜望式摄像模组
CN109407441B (zh) 无转轴防抖反射模块及潜望式模组
WO2020093819A1 (zh) 成像模组、摄像头组件及电子装置
US20070008502A1 (en) Light quantity adjustment apparatus
CN109218590B (zh) 成像模组、摄像头组件及电子装置
US8337102B2 (en) Shutter device for camera
JP2015041066A (ja) 可動体の支持機構
WO2023241197A1 (zh) 棱镜马达、摄像装置及移动终端
WO2020082412A1 (zh) 单轴防抖的移轴防抖对焦模块及潜望式防抖模组
WO2023240802A1 (zh) 绕两轴驱动防抖的棱镜马达、摄像装置及移动终端
KR20210150195A (ko) 광 굴절식 카메라 모듈용 액추에이터 및 이를 포함하는 카메라 모듈
WO2022021515A1 (zh) 反射模组及潜望式摄像头
WO2020010886A1 (zh) 摄像头模组、组件、电子设备、移动终端及拍摄方法
WO2020082411A1 (zh) 一种平板弹片及转动防抖反射模块
WO2022062136A1 (zh) 电子设备、光学采集模组及反射模组
WO2020019838A1 (zh) 成像模组、摄像头组件和电子装置
WO2022000535A1 (zh) 光学装置及电子设备
CN114355552A (zh) 光学单元
WO2023165266A1 (zh) 一种棱镜马达和电子设备
WO2023165267A1 (zh) 一种棱镜组件、棱镜马达和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946673

Country of ref document: EP

Kind code of ref document: A1