WO2022021488A1 - 高强高塑钛基复合材料及其制备方法 - Google Patents

高强高塑钛基复合材料及其制备方法 Download PDF

Info

Publication number
WO2022021488A1
WO2022021488A1 PCT/CN2020/109487 CN2020109487W WO2022021488A1 WO 2022021488 A1 WO2022021488 A1 WO 2022021488A1 CN 2020109487 W CN2020109487 W CN 2020109487W WO 2022021488 A1 WO2022021488 A1 WO 2022021488A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
powder
oxygen
based composite
composite material
Prior art date
Application number
PCT/CN2020/109487
Other languages
English (en)
French (fr)
Inventor
路新
潘宇
杨宇承
张嘉振
徐伟
刘博文
张策
孙健卓
刘艳军
曲选辉
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to US17/768,737 priority Critical patent/US20230191482A1/en
Publication of WO2022021488A1 publication Critical patent/WO2022021488A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/049Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising at particular temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/45Part of a final mixture to be processed further
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to the technical field of powder metallurgy, in particular to a high-strength and high-plastic titanium-based composite material and a preparation method thereof.
  • titanium matrix composite materials are widely used in high-tech industries such as aerospace, weaponry and other high-tech industries of national strategic significance because of their potential high strength, high toughness and heat resistance. favor.
  • powder metallurgy in-situ autogenous technology has unique advantages in the optimization design of material structure and function and performance regulation, which can meet the needs of high-end products for material diversification, light weight and rapid development, and effectively realize the Near-net-shape fabrication of high-performance titanium matrix composites.
  • Interstitial oxygen is an important impurity and alloying element of powdered titanium parts, which greatly affects the microstructure and mechanical properties of the material.
  • it is difficult to obtain titanium-based composite materials with low preparation cost and strong strength and plasticity at the same time by the traditional preparation process.
  • HDH hydrodehydrogenation
  • the main purpose of the present invention is to provide a high-strength and high-plastic titanium-based composite material and a preparation method thereof.
  • the high-strength and high-plastic titanium-based composite material preparation method uses low-cost HDH titanium powder as raw material, and firstly adopts a high-temperature rotary ball milling method to prepare high-oxygen HDH Titanium powder, and then high-purity ultra-fine CaC 2 /CaB 6 powder was prepared by wet grinding high-energy vibration ball milling, and then the powder metallurgy forming and sintering process was used to prepare in-situ multi-scale Ca-Ti-O, TiC, TiB particles reinforced titanium matrix composite
  • the material can effectively refine the structure and grains, and significantly improve the strength and plasticity of the material, so as to solve the technical problem of high preparation cost of high-strength and high-plastic titanium-based composite materials in the prior art.
  • a preparation method of a high-strength and high-plastic titanium-based composite material is provided.
  • the preparation method of the high-strength and high-plastic titanium-based composite material comprises the following steps:
  • the high-purity ultra-fine oxygen adsorbent powder is prepared by using the wet milling high-energy vibration ball milling process; the purity of the oxygen adsorbent powder is greater than or equal to 99.9%, and the particle size is less than or equal to 8 ⁇ m; the oxygen adsorbent is selected from at least CaC 2 and CaB 6 . A sort of;
  • step S4 sintering: the green body obtained in step S3 is subjected to atmosphere protection sintering treatment to obtain a titanium-based composite material.
  • step S1 the high temperature rotary ball milling treatment process includes:
  • step S1-3 Cool the titanium hydrodehydrogenation powder treated in step S1-2 to room temperature, and obtain high-oxygen hydrodehydrogenation titanium powder after sieving.
  • the median particle diameter D50 of the hydrodehydrogenated titanium powder is 15-50 ⁇ m, and the oxygen content is ⁇ 0.30 wt.%;
  • the grinding balls are zirconium oxide with a particle size of 6-8 mm; the mass ratio of the grinding balls to the hydrogenated titanium powder is preferably 0.5-2:1.
  • the high-temperature rotary ball milling treatment includes two stages, wherein the first treatment stage is: in a mixed atmosphere of argon and oxygen with an oxygen volume fraction of 10-30 vol. The temperature is raised to 140-200°C at a rate of °C/min, and kept for 0.5-3h; the second treatment stage is: in a high-purity argon atmosphere, the temperature is raised to 450-600°C at a rate of 5-10°C/min, and the temperature is kept for 0.5-3h.
  • step S2 the wet grinding method high-energy vibration ball milling treatment process includes:
  • step S2-1 the ball-to-material ratio of the zirconia grinding ball and the oxygen adsorbent raw material is 5-10:1; the diameter of the bulk CaC 2 /CaB 6 raw material is 50-80 mm;
  • the protective liquid is an anhydrous and oxygen-free volatile organic solvent.
  • the surface of the bulk CaC 2 /CaB 6 raw material is cut and polished by using a small grinding device in a protective atmosphere glove box, so as to remove the surface deterioration part.
  • anhydrous and oxygen-free volatile organic solvent is at least one of aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons or halogenated hydrocarbons.
  • aromatic hydrocarbons include at least one of benzene, toluene and xylene.
  • the aliphatic hydrocarbons include at least one of n-pentane, n-hexane, n-heptane and n-octane.
  • the alicyclic hydrocarbons include cyclohexane; the halogenated hydrocarbons include at least one of dichloromethane and chloroform.
  • step S2-2 the vibration frequency of the wet grinding treatment is 1000-1400 times/min, and the ball milling operation is performed for 3-6 hours according to the ball-milling method in which the ball-milling is stopped for 2-4 minutes and 4-8 minutes.
  • step S3 the mass fraction percentage of the oxygen adsorbent powder during mixing is 0.4-2.0 wt.%; the mixing treatment is performed on a preferably mechanical mixer, and the rotation speed of the mixer is preferably 60 ⁇ 100r/min, the time is preferably 4 ⁇ 8h.
  • step S4 the sintering temperature of the sintering treatment is 1100-1300°C, the heating rate is 2-8°C/min, and the holding time is 30-180min.
  • a high-strength and high-plastic titanium-based composite material is provided.
  • the high-strength and high-plastic titanium-based composite material is prepared by the above-mentioned preparation method, and the titanium-based composite material has a fine equiaxed grain structure, and the grain size is 20-100 ⁇ m;
  • granular Ca-Ti-O reinforced phases and TiC, TiB reinforced phases are generated in-situ in the titanium-based composite material, wherein the particle size of the Ca-Ti-O reinforced phase is 100-300 nm, and the particle size of the TiC and TiB reinforced phases is 100-300 nm. 1 to 5 ⁇ m.
  • oxygen determines the strength and plasticity of titanium alloys. With the increase of oxygen content, the strength of titanium alloy will increase, but the plasticity will continue to decrease. Once the critical oxygen tolerance content (0.32wt.%) is exceeded, its plasticity index will drop sharply and even brittle fracture will occur. In order to solve the problem that strength and plasticity cannot be achieved simultaneously, it is necessary to add an appropriate amount of oxygen scavenger to titanium, which can not only reduce the oxygen content in the matrix, but also generate reinforcing phase particles to play a role in dispersion strengthening, so that titanium matrix composites have both Good strength and plasticity.
  • the invention designs a new type of high-purity ultra-fine CaC 2 /CaB 6 oxygen adsorbent, which can efficiently absorb oxygen before the surface oxygen diffuses and dissolves, inhibits the dissolution of the oxide film to the matrix, and ensures the excellent plastic toughness of the matrix; at the same time, the interstitial oxygen is adsorbed and fixed on the powder On the particle surface, the matrix lattice is purified, and Ca-Ti-O and TiC, TiB reinforced phase particles are generated in situ, which plays a key role in improving the strength and hardness of titanium parts.
  • TiC and TiB are known as one of the most ideal reinforcement phases for titanium matrix composites due to their high strength and hardness, excellent wear resistance, thermal expansion coefficient similar to that of Ti matrix, and good compatibility with Ti matrix.
  • the nano-sized Ca-Ti-O particles can refine the grain size of the matrix and play a role of fine-grain strengthening; Creep strength and high temperature strength make titanium matrix composites have excellent comprehensive mechanical properties.
  • the preparation of the high-oxygen HDH titanium powder and the high-purity ultra-fine CaC 2 /CaB 6 oxygen adsorbent designed by the present invention is the basis for increasing the content of multi-scale Ca-Ti-O, TiC, TiB reinforced phase particles.
  • High-oxygen HDH titanium powder can control the actual oxygen content in the titanium powder by changing the volume fraction of oxygen in the mixed gas, and ensure that the oxygen is evenly distributed on the surface of the HDH titanium powder through the process of rotating ball milling and heat preservation at high temperature.
  • the wet-milling high-energy vibration ball milling process was used to suppress the deliquescence and deterioration of CaC 2 /CaB 6 during the preparation process, and high-purity ultra-fine CaC 2 /CaB 6 powder was realized.
  • preparation In the process of preparing the titanium matrix composite material, the addition amount of CaC 2 /CaB 6 is 0.4-2.0wt.%. If the addition amount is too large, it is difficult to completely react with the oxygen in the matrix to cause agglomeration, which will deteriorate the performance of the material; If the amount is too small, the effect of adsorbing solid oxygen and improving mechanical properties cannot be achieved. Experiments have confirmed that this process can obtain high-strength and high-plastic titanium matrix composites with uniform distribution of reinforcement phases, fine grains, uniform structure and excellent performance.
  • the preparation of high-oxygen HDH titanium powder is effectively realized by high-temperature rotary ball milling, and the oxygen content is in the range of 0.8-1.5wt.% (the oxygen content of traditional HDH titanium powder is 0-0.4wt.%) to ensure uniform interstitial oxygen. Distributed on the surface of titanium powder.
  • the high-purity ultra-fine CaC 2 /CaB 6 oxygen adsorbent is easy to react with the oxygen in the high-oxygen HDH titanium powder, and at the same time purifies the matrix, a large number of multi-scale Ca-Ti-O and TiC, TiB reinforced phase particles are generated in situ, and the Improve the strength, hardness and plastic toughness of titanium matrix composites.
  • Fig. 1 is the scanning electron microscope morphology picture of HDH titanium powder in the embodiment 1 of the present invention
  • Fig. 2 is the physical map of CaC in the embodiment of the present invention 1 raw material
  • Fig. 3 is the scanning electron microscope morphology picture of CaC powder after ball milling in Example 1 of the present invention.
  • FIG. 4 is a flow chart of the preparation process of the high-strength and high-plastic titanium-based composite material in the embodiment of the present invention.
  • the invention discloses a method for preparing high-oxygen hydrogenation dehydrogenation titanium powder by utilizing a high-temperature rotary ball milling process.
  • the method specifically includes:
  • S1-1 Weigh the hydrodehydrogenated titanium powder with a particle size median diameter D50 of 15-50 ⁇ m and an oxygen content of ⁇ 0.30 wt.% and a zirconia grinding ball with a particle size of 6-8 mm, and weigh the hydrodehydrogenated titanium powder and The grinding balls are put into a protective atmosphere tube furnace, and the mass ratio of the grinding balls to the hydrogenated titanium powder is 0.5-2:1.
  • the protective atmosphere tube furnace is rotated at a speed of 10-60 r/min, and the hydrogenation and dehydrogenation titanium powder in the tube furnace is subjected to high-temperature rotary ball milling treatment; wherein, the high-temperature rotary ball milling treatment includes two stages, the first treatment stage. It is: in a mixed atmosphere of argon and oxygen with an oxygen volume fraction of 10 to 30 vol.%, the temperature is raised to 140 to 200 °C at a rate of 5 to 10 °C/min, and the temperature is maintained for 0.5 to 3 hours; the second treatment stage is: in high purity Under an argon atmosphere, the temperature was raised to 450-600°C at a rate of 5-10°C/min, and the temperature was maintained for 0.5-3h.
  • the invention also discloses a method for preparing high-purity ultra-fine CaC 2 /CaB 6 powder by using a wet grinding method high-energy vibration ball milling treatment process, the method specifically includes:
  • S2-1 Select bulk CaC 2 /CaB 6 raw materials and zirconia grinding balls, and use small grinding equipment to cut and grind the surface of bulk CaC 2 /CaB 6 raw materials in an argon-protected glove box, and then degrade the surface. Remove; then put the CaC 2 /CaB 6 raw material and zirconia grinding balls into the ball mill jar in an argon protected glove box, and add anhydrous and oxygen-free volatile organic solvent to the ball mill jar as a protective liquid to ensure the CaC after grinding.
  • the diameter of the bulk CaC 2 /CaB 6 raw material is usually 50-80mm, and the surface of the CaC 2 /CaB 6 raw material is deliquescence in the air, so a layer of Ca(OH) 2 metamorphic layer is attached, and the internal purity is greater than or equal to 99.9 %;
  • the oxygen content in the argon-protected glove box is less than or equal to 0.1ppm, and the water content is less than or equal to 0.1ppm;
  • anhydrous and oxygen-free volatile organic solvents include at least aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons or halogenated hydrocarbons A sort of.
  • Aromatic hydrocarbons include at least one of benzene, toluene and xylene; aliphatic hydrocarbons include at least one of n-pentane, n-hexane, n-heptane and n-octane; alicyclic hydrocarbons include cyclohexane; halogenated hydrocarbons
  • the class includes at least one of dichloromethane and trichloromethane.
  • the present invention also discloses a method for preparing a high-strength and high-plastic titanium-based composite material, as shown in FIG. 4 , the method specifically includes the following steps:
  • the high-purity ultrafine CaC 2 /CaB 6 powder with a purity of ⁇ 99.9% and a particle size of ⁇ 8 ⁇ m is prepared by using the above-mentioned wet-milling high-energy vibration ball milling treatment process.
  • the high-oxygen hydrogenation dehydrogenation titanium powder and the high-purity ultrafine CaC 2 /CaB 6 powder are loaded in an argon-protected glove box, wherein the mass fraction of the CaC 2 /CaB 6 powder is 0.4-2.0wt.%, and then Seal it out and put it on a mechanical mixer, mix it at a speed of 60-100r/min for 4-8h, and then press the powder after mixing by mechanical one-way pressing, mechanical two-way pressing or cold isostatic pressing. Get a green body.
  • the obtained green body is sintered in hydrogen, argon or vacuum protective atmosphere, the sintering temperature is 1100-1300°C, the heating rate is 2-8°C/min, and the holding time is 30-180min to obtain Titanium matrix composites.
  • CaC2 with a median particle size of 50 mm was used as the raw material, and its SEM morphology photo is shown in Figure 2 .
  • the surface of the bulk CaC 2 raw material was ground by a small grinding device in an argon gas-protected glove box to remove the surface deterioration.
  • the zirconia grinding balls and the polished high - purity bulk CaC2 raw materials were filled into the tank in the glove box at a ball-to-material ratio of 5:1.
  • n-hexane was added as a protective solvent, and the tank was filled with argon. , so that there is a certain pressure in the ball mill tank.
  • the filled ball mill jar was put into a vibrating ball mill for wet grinding, and the excitation frequency was 1400 times/min. Then, the ball mill jar was placed in an argon-protected glove box to open the jar, and dried at 40 °C for 1 h to prepare CaC 2 powder with a median particle size of about 3 ⁇ m.
  • the prepared HDH titanium powder was mixed with 0.6 wt.% CaC 2 powder, and mixed on a mixer at a speed of 100 r/min for 4 h. Afterwards, the composite powder is packed into a soft film envelope and cold isostatically pressed to form a green body. Finally, the prepared green body is put into a vacuum furnace for sintering, and the vacuum degree is 10 -4 Pa. Sintering process: the sintering temperature is 1300°C, the heating rate is 5°C/min, the holding time is 120min, and then cooled to room temperature with the furnace to obtain titanium matrix composite parts.
  • the HDH titanium powder with a median particle size of 35 ⁇ m and an oxygen content of 0.17 wt. % was used as the raw material.
  • the raw titanium powder and zirconia grinding balls (6-8mm particle size) are mixed into a tubular quartz boat, and the mass ratio of the balls to the material is 1.5:1, and placed in a rotary sintering furnace.
  • an argon/oxygen mixed atmosphere oxygen volume fraction 20 vol.%
  • the temperature was raised to 180° C. at 6° C./min, and the temperature was kept for 1 h.
  • the atmosphere was replaced with a pure argon protective atmosphere, and the temperature was raised to 600 °C at a heating rate of 6 °C/min, and the temperature was maintained for 1.5 h.
  • HDH titanium powder with a median particle size of 30 ⁇ m and an oxygen content of 1.1 wt. % is obtained by sieving.
  • the surface of the bulk CaC 2 raw material was ground by a small grinding device in an argon-protected glove box to remove the surface deterioration.
  • the zirconia grinding balls (6-8mm particle size) and the ground high - purity bulk CaC2 raw materials were filled into the tank in the glove box at a ball-to-material ratio of 6:1, and dichloromethane was added as a protective solvent at the same time. , and filled with argon gas after canning, so that there is a certain pressure in the ball mill jar.
  • the filled ball mill jar was put into a vibrating ball mill for wet grinding, and the excitation frequency was 1300 times/min. Subsequently, the ball mill jar was put into an argon-protected glove box to open the jar, and dried at 45 °C for 1.5 h to prepare CaC 2 powder with a median particle size of about 5 ⁇ m.
  • the prepared HDH titanium powder was mixed with 1.1 wt.% CaC 2 powder, and mixed on a mixer at a speed of 90 r/min for 5 h. Then, the composite powder is packed into a soft film envelope and pressed into a green body by single-phase pressing. Finally, the prepared green body is put into a vacuum furnace for sintering, and the vacuum degree is 10 -3 Pa. Sintering process: the sintering temperature is 1250°C, the heating rate is 6°C/min, the holding time is 100min, and then cooled to room temperature with the furnace to obtain titanium matrix composite parts.
  • HDH titanium powder with a median particle size of 30 ⁇ m and an oxygen content of 0.15 wt. % was used as the raw material.
  • the raw material titanium powder and zirconia grinding balls (6-8mm particle size) are mixed into a tubular quartz boat, the mass ratio of the balls to the material is 2:1, and placed in a rotary sintering furnace.
  • an argon/oxygen mixed atmosphere oxygen volume fraction 30vol.%
  • the temperature was raised to 200°C at 8°C/min, and the temperature was kept for 2h.
  • the atmosphere was changed to a pure argon protective atmosphere, and the temperature was raised to 600 °C at a heating rate of 8 °C/min, and kept for 2 h.
  • HDH titanium powder with a median particle size of 25 ⁇ m and an oxygen content of 1.5 wt. % is obtained by sieving.
  • the surface of the bulk CaB 6 raw material was ground by a small grinding device in an argon gas-protected glove box to remove the surface deterioration.
  • the zirconia grinding balls (6-8mm particle size) and the polished high-purity bulk CaB 6 raw materials were filled into the tank in the glove box at a ball-to-material ratio of 8:1, and dichloromethane was added as a protective solvent at the same time. , and filled with argon gas after canning, so that there is a certain pressure in the ball mill jar.
  • the filled ball mill jar is put into a vibrating ball mill for wet grinding, the excitation frequency is 1200 times/min, and the ball milling mode is 3 minutes and 6 minutes is stopped, and the running time is 3 hours. Then, the ball mill jar was placed in an argon-protected glove box to open the jar, and dried at 50 °C for 2 h to prepare CaB 6 powder with a median particle size of about 2 ⁇ m.
  • the prepared HDH titanium powder was mixed with 1.8 wt.% CaB 6 powder, and mixed on a mixer at a speed of 80 r/min for 6 h. Then, the composite powder is packed into a soft film envelope and pressed into a green body by single-phase pressing. Finally, the prepared green body is put into a vacuum furnace for sintering, and the vacuum degree is 10 -3 Pa. Sintering process: the sintering temperature is 1200°C, the heating rate is 6°C/min, the holding time is 90 minutes, and then cooled to room temperature with the furnace to obtain titanium matrix composite parts.
  • the HDH titanium powder with a median particle size of 20 ⁇ m and an oxygen content of 0.16 wt.% was used as the raw material.
  • the raw titanium powder and zirconia grinding balls (6-8mm particle size) are mixed into a tubular quartz boat, and the mass ratio of the balls to the material is 1.8:1, and placed in a rotary sintering furnace.
  • an argon/oxygen mixed atmosphere oxygen volume fraction 25vol.%
  • the temperature was raised to 190°C at 5°C/min, and the temperature was maintained for 1.5h.
  • the atmosphere was replaced with a pure argon protective atmosphere, and the temperature was raised to 600 °C at a heating rate of 5 °C/min, and the temperature was maintained for 2 h.
  • HDH titanium powder with a median particle size of 20 ⁇ m and an oxygen content of 1.3 wt.% is obtained by sieving.
  • the surface of the bulk CaC 2 and CaB 6 raw materials was ground by a small grinding device in an argon-protected glove box to remove the surface deterioration.
  • the zirconia grinding balls (6-8mm particle size) and the ground high-purity bulk CaC 2 and CaB 6 raw materials were filled in the glove box at the ratio of 7:1 into the cans (CaC 2 and CaB 6 ).
  • the mass ratio of 1:2) was added as a protective solvent at the same time, and argon was filled after canning, so that there was a certain pressure in the ball mill jar.
  • the filled ball mill jar was put into a vibrating ball mill for wet grinding, the excitation frequency was 1300 times/min, and the ball milling mode was 2 minutes and 5 minutes was stopped, and the running time was 4 hours. Then, the ball mill jar was placed in an argon-protected glove box to open the jar, and dried at 45 °C for 2 h to prepare a mixed powder of CaC 2 /CaB 6 with a median particle size of about 5 ⁇ m.
  • the prepared HDH titanium powder was mixed with 1.3wt.% CaC 2 /CaB 6 mixed powder (the mass ratio of CaC 2 and CaB 6 was 1:2), and mixed on a mixer at a speed of 100r/min for 4h. Then, the composite powder is packed into a soft film envelope and pressed into a green body by single-phase pressing. Finally, the prepared green body is put into a vacuum furnace for sintering, and the vacuum degree is 10 -2 Pa. Sintering process: the sintering temperature is 1200°C, the heating rate is 5°C/min, the holding time is 120min, and then cooled to room temperature with the furnace to obtain titanium matrix composite parts.
  • the preparation of high-oxygen HDH titanium powder and high-purity ultra-fine CaC 2 /CaB 6 oxygen adsorbent can increase the content of multi-scale Ca-Ti-O, TiC, TiB reinforced phase particles
  • the basis, that is, the preparation of high-oxygen HDH titanium powder and the preparation of high-purity ultra-fine CaC 2 /CaB 6 oxygen adsorbent complement each other, and play a synergistic role in the preparation of high-strength and high-plastic titanium matrix composites.
  • Titanium powder raw materials using different preparation processes (1) Titanium powder raw materials using different preparation processes
  • the properties of the titanium-based composite materials prepared in Examples 1 to 4 and Comparative Examples 1 to 12 were measured by using conventional detection methods in the prior art.
  • Relative density test The relative density of the titanium-based composite materials prepared in Examples 1 to 4 and Comparative Examples 1 to 12 was measured respectively.
  • the gas-atomized spherical titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.17 wt. % was used as a raw material, and a green body was prepared. Subsequently, the prepared green body was put into a vacuum furnace for sintering, and the vacuum degree and sintering process were the same as those in Example 1, and finally a low-oxygen pure titanium sample was obtained.
  • the titanium-based composite material prepared in the present invention has a fine equiaxed grain structure, the grain size is in the range of 40-80 ⁇ m, and the titanium-based composite material has granular Ca-Ti-O reinforcing phase and The TiC/TiB reinforced phase has excellent bonding between the reinforced phase particles and the matrix interface.
  • the particle size of Ca-Ti-O is in the range of 200-300 nm, the particle size of TiC/TiB is in the range of 3-4 ⁇ m, and the material density is greater than or equal to 98.0% , the room temperature tensile strength is greater than or equal to 820MPa, and the elongation is not less than 18%.
  • the titanium-based composite material prepared by using low-cost hydrogenated titanium powder in the present invention not only has better mechanical properties than the titanium alloy prepared by commonly used gas-atomized spherical titanium powder, but also meets the requirements of the current stage. Application requirements, and can greatly reduce the cost of raw materials, the cost can be reduced by about 90%, and has broad application prospects.
  • HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt.% as a raw material, HDH titanium powder with a median particle size of 35 ⁇ m is obtained after sieving.
  • high-purity ultra-fine CaC 2 powder was prepared, and HDH titanium powder and CaC 2 powder were made into green bodies.
  • the prepared green body was put into a vacuum furnace for sintering, and the vacuum degree and sintering process were the same as those in Example 1, and finally a low-oxygen pure titanium sample was obtained.
  • the HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt. % was used as the raw material.
  • the titanium powder and zirconia grinding balls (6-8mm particle size) were subjected to high-temperature oxidation and sieving of HDH titanium powder in a mixed atmosphere of argon and oxygen (oxygen volume fraction 5 vol.%) according to the method of Example 1.
  • An HDH titanium powder with an oxygen content of 0.3 wt. % and a median particle size of 35 ⁇ m was obtained.
  • high-purity ultrafine CaB 6 powder was prepared, and HDH titanium powder and CaB 6 powder were made into green bodies. Subsequently, the prepared green body was put into a vacuum furnace for sintering, and the vacuum degree and sintering process were the same as those in Example 1, and finally a high-oxygen pure titanium sample was obtained.
  • the HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt. % was used as the raw material.
  • the titanium powder and zirconia grinding balls (6-8mm particle size) were subjected to high-temperature oxidation and sieving of HDH titanium powder in a mixed atmosphere of argon and oxygen (oxygen volume fraction of 40 vol.%) according to the method of Example 1. , to obtain HDH titanium powder with an oxygen content of 1.8 wt.% and a median particle size of 35 ⁇ m.
  • high-purity ultra-fine CaC 2 powder was prepared, and HDH titanium powder and CaC 2 powder were made into green bodies. Subsequently, the prepared green body was put into a vacuum furnace for sintering, and the vacuum degree and sintering process were the same as those in Example 1, and finally a high-oxygen pure titanium sample was obtained.
  • the titanium-based composite material prepared in the present invention has excellent mechanical properties, and the oxygen volume fraction of the argon/oxygen mixture in the high-temperature rotary ball milling process is 10-30 vol.%. If the oxygen volume fraction is low, the oxygen content of HDH titanium powder is low ( ⁇ 10vol.%), which makes it difficult for the CaC 2 /CaB 6 powder to react completely and deteriorates the material properties; if the oxygen volume fraction is high (>30vol.%) , the oxygen content of HDH titanium powder is large, which makes it difficult for the oxygen in the powder to be completely absorbed and dissolved in the matrix, which also deteriorates the material properties. Therefore, the oxygen content of HDH titanium powder should be controlled within a certain range and the reaction with high-purity ultra-fine CaC 2 /CaB 6 powder should be completely in order to prepare titanium matrix composites with excellent comprehensive mechanical properties.
  • the HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt. % was used as the raw material.
  • the titanium powder and zirconia grinding balls (6-8mm particle size) were subjected to high-temperature oxidation and sieving of the HDH titanium powder in a mixed atmosphere of argon and oxygen (with an oxygen volume fraction of 10 vol.%) as in Example 1. , to obtain HDH titanium powder with an oxygen content of 0.8 wt.% and a median particle size of 35 ⁇ m.
  • the HDH titanium powder was made into green compacts according to the method of Example 1 , except that no CaC2 powder was added. Subsequently, the prepared green body was put into a vacuum furnace for sintering, and the vacuum degree and sintering process were the same as those in Example 1, and finally a high-oxygen pure titanium sample was obtained.
  • the HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt. % was used as the raw material.
  • the titanium powder and zirconia grinding balls (6-8mm particle size) were subjected to high-temperature oxidation and sieving of HDH titanium powder in a mixed atmosphere of argon and oxygen (oxygen volume fraction 30 vol.%) according to the method of Example 1. , to obtain HDH titanium powder with an oxygen content of 1.5 wt.% and a median particle size of 35 ⁇ m.
  • the HDH titanium powder was made into green compacts according to the method of Example 1 , except that no CaC2 powder was added. Subsequently, the prepared green body was put into a vacuum furnace for sintering, and the vacuum degree and sintering process were the same as those in Example 1, and finally a high-oxygen pure titanium sample was obtained.
  • HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt.% as raw materials the titanium powder and zirconia grinding balls (6-8 mm particle size) were mixed with argon and oxygen according to the method of Example 1.
  • the HDH titanium powder was oxidized and sieved at high temperature in an atmosphere (oxygen volume fraction 10 vol.%) to obtain HDH titanium powder with an oxygen content of 0.8 wt.% and a median particle size of 35 ⁇ m.
  • the CaC 2 raw material with a median particle size of 50 mm was directly loaded into a ball milling tank for high-energy vibration ball milling to obtain CaC 2 powder, and after sieving, an ultrafine CaC 2 powder with a median particle size of 3 ⁇ m was obtained.
  • HDH titanium powder (the volume fraction of oxygen in the mixed gas during oxidation: 10 vol.%) and 0.6 wt.% CaC 2 powder were mixed, pressed into green bodies, and then sintered to finally obtain high-oxide titanium matrix composites. sample.
  • Example 1 Using HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt.% as raw materials, the titanium powder and zirconia grinding balls (6-8 mm particle size) were mixed with argon and oxygen according to the method of Example 1.
  • the HDH titanium powder was oxidized and sieved at high temperature in an atmosphere (oxygen volume fraction 10 vol.%) to obtain HDH titanium powder with an oxygen content of 0.8 wt.% and a median particle size of 35 ⁇ m.
  • a CaB 6 powder with a median particle size of about 3 ⁇ m was prepared as in Example 1.
  • HDH titanium powder (the volume fraction of oxygen in the mixed gas during oxidation is 10 vol.%) and 0.3 wt.% CaB 6 powder are mixed, pressed into green bodies, and then sintered to finally obtain high-oxide titanium matrix composites sample.
  • Example 1 Using HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt.% as raw materials, the titanium powder and zirconia grinding balls (6-8 mm particle size) were mixed with argon and oxygen according to the method of Example 1.
  • the HDH titanium powder was oxidized and sieved at high temperature in an atmosphere (oxygen volume fraction 10 vol.%) to obtain HDH titanium powder with an oxygen content of 0.8 wt.% and a median particle size of 35 ⁇ m.
  • a CaC 2 powder with a median particle size of about 3 ⁇ m was prepared as in Example 1.
  • HDH titanium powder (the volume fraction of oxygen in the mixed gas during oxidation: 10 vol.%) and 2.4 wt.% CaC 2 powder were mixed, pressed into a green body, and then sintered to obtain a high-oxide titanium matrix composite material. sample.
  • Example 1 of the present invention can prepare a titanium-based composite material with low cost and excellent mechanical properties.
  • Examples 5 to 6 it can be found that if high-purity ultra-fine CaC 2 powder is not introduced, when the oxygen content of HDH titanium powder is high, its tensile strength is slightly increased, but its plasticity deteriorates seriously.
  • Example 7 it can be found that the CaC 2 powder prepared without the protection of the method of Example 1 is prone to moisture absorption and hydrolysis.
  • Example 1 Using HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt.% as raw materials, the titanium powder and zirconia grinding balls (6-8 mm particle size) were mixed with argon and oxygen according to the method of Example 1.
  • the HDH titanium powder was oxidized and sieved at high temperature in an atmosphere (oxygen volume fraction 5 vol.%) to obtain HDH titanium powder with an oxygen content of 0.3 wt.% and a median particle size of 35 ⁇ m.
  • a CaB 6 powder with a median particle size of about 3 ⁇ m was prepared as in Example 1.
  • HDH titanium powder (the oxygen volume fraction in the mixed gas during oxidation is 5 vol.%) and 0.3 wt.% CaB 6 powder are mixed, pressed into green bodies, and then sintered to finally obtain high-oxide titanium matrix composites sample.
  • Example 1 Using HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt.% as raw materials, the titanium powder and zirconia grinding balls (6-8 mm particle size) were mixed with argon and oxygen according to the method of Example 1.
  • the HDH titanium powder was oxidized and sieved at high temperature in an atmosphere (oxygen volume fraction 40 vol.%) to obtain HDH titanium powder with an oxygen content of 1.8 wt.% and a median particle size of 35 ⁇ m.
  • a CaC 2 powder with a median particle size of about 3 ⁇ m was prepared as in Example 1.
  • HDH titanium powder (the oxygen volume fraction in the mixed gas during oxidation is 40vol.%) and 2.4wt.% CaC 2 powder are mixed, pressed into a green body and then sintered, and finally a high-oxide titanium matrix composite material is obtained sample.
  • HDH titanium powder with a median particle size of 40 ⁇ m and an oxygen content of 0.18 wt.% as a raw material, HDH titanium powder with a median particle size of 35 ⁇ m is obtained after sieving.
  • the CaC 2 raw material with a median particle size of 50 mm was directly loaded into a ball milling tank for high-energy vibration ball milling to obtain CaC 2 powder, and after sieving, an ultrafine CaC 2 powder with a median particle size of 3 ⁇ m was obtained.
  • HDH titanium powder and CaC 2 powder were made into green bodies. Subsequently, the prepared green body was put into a vacuum furnace for sintering, and the vacuum degree and sintering process were the same as those in Example 1, and finally a low-oxygen pure titanium sample was obtained.
  • the titanium-based composite material prepared in the present invention has excellent mechanical properties.
  • the oxygen volume fraction of the argon/oxygen mixture and the addition amount of the high-purity ultrafine CaC 2 /CaB 6 powder in the high-temperature rotary ball milling process need to be organically coordinated to prepare a titanium-based matrix with excellent comprehensive mechanical properties. composite material. From Comparative Example 12, it can be found that if the high-oxygen HDH titanium powder and CaC 2 /CaB 6 powder are not prepared according to the method of Example 1, the prepared titanium matrix composite material has poor mechanical properties and is prone to brittle fracture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种高强高塑钛基复合材料及其制备方法,该制备方法包括:利用高温旋转球磨处理工艺制备高氧氢化脱氢钛粉,且使制备的氢化脱氢钛粉的粒度为10~40μm,氧含量为0.8~1.5wt.%;利用湿磨法高能振动球磨处理工艺制备高纯超细氧吸附剂粉末;氧吸附剂粉末的纯度≥99.9%,粒度≤8μm;在保护气氛下,将高氧氢化脱氢钛粉与氧吸附剂粉末进行混料处理,然后将混料处理后的粉末压制成形,得到生料坯;将生料坯进行气氛保护烧结处理,得到钛基复合材料。该方法制得原位自生多尺度Ca-Ti-O、TiC、TiB颗粒增强钛基复合材料,有效细化组织晶粒,显著提高材料的强度和塑性。

Description

高强高塑钛基复合材料及其制备方法 技术领域
本发明涉及粉末冶金技术领域,具体涉及一种高强高塑钛基复合材料及其制备方法。
背景技术
随着现代制造业的发展,金属基复合材料已成为支撑尖端科技发展不可或缺的新型材料。作为金属基复合材料大家庭中的“贵族成员”,钛基复合材料因为其潜在的高强、高韧及耐热特性,在具有国家重大战略意义的航空航天、武器装备等高技术行业中倍受青睐。在众多钛基复合材料制备工艺中,粉末冶金原位自生技术在材料的结构功能优化设计、性能调控方面具出独特优势,满足高端产品对材料多样化、轻量化和快速研制的需求,有效实现高性能钛基复合材料的近终形制备。
间隙氧是粉末钛制件重要的杂质和合金元素,极大地影响着材料组织结构和力学性能。而传统制备工艺很难同时获得制备成本低且强度及塑性较强的钛基复合材料。
综上,为了实现低成本氢化脱氢(HDH)钛粉应用于高强高塑钛基复合材料的近终形制备,开发一种高氧HDH钛粉、高纯超细CaC 2/CaB 6粉末及其高强高塑钛基复合材料的制备方法,能够保持HDH钛粉低成本优势的同时,大幅度提高钛制件的力学性能。
发明内容
本发明的主要目的在于提供一种高强高塑钛基复合材料及其制备方法,该高强高塑钛基复合材料制备方法以低成本HDH钛粉为原料,首先采用高温旋转球磨方法制备高氧HDH钛粉,再利用湿磨法高能振动球磨制备高纯超细CaC 2/CaB 6粉末,随后采用粉末冶金成形烧结工艺,制备得到原位自生多尺度Ca-Ti-O、TiC、TiB颗粒增强钛基复合材料,有效细化组织晶粒,显著提高材料的强度和塑性,以解决现有技术中高强高塑钛基复合材料的制备成本高的技术问题。
为了实现上述目的,根据本发明的第一方面,提供了一种高强高塑钛基复合材料的制备方法。
该高强高塑钛基复合材料的制备方法包括以下步骤:
S1,利用高温旋转球磨处理工艺制备高氧氢化脱氢钛粉,且使制备的所述氢化脱氢钛粉的粒度为10~40μm,氧含量为0.8~1.5wt.%;
S2,利用湿磨法高能振动球磨处理工艺制备高纯超细氧吸附剂粉末;所述氧吸附剂粉末的纯度≥99.9%,粒度≤8μm;所述氧吸附剂选自CaC 2、CaB 6中的至少一种;
S3,制备生料坯:在保护气氛下,将所述高氧氢化脱氢钛粉与所述高纯超细CaC 2/CaB 6粉末进行混料处理,然后将混料处理后的粉末压制成形,得到生料坯;
S4,烧结:将步骤S3中得到的所述生料坯进行气氛保护烧结处 理,得到钛基复合材料。
进一步的,步骤S1中,所述高温旋转球磨处理工艺包括:
S1-1:将所述氢化脱氢钛粉和磨球放入保护气氛炉内;
S1-2:在所述保护气氛炉内对所述氢化脱氢钛粉进行高温旋转球磨处理;其中,该步旋转球磨的转速为10~60r/min
S1-3:将经过步骤S1-2处理后的氢化脱氢钛粉冷却至室温,经筛分后得到高氧氢化脱氢钛粉。
进一步的,步骤S1-1中,所述氢化脱氢钛粉的粒度中位径D50为15~50μm,氧含量≤0.30wt.%;
优选的,所述磨球为氧化锆,粒径为6~8mm;所述磨球与所述氢化脱氢钛粉的质量比优选为0.5~2:1。
进一步的,步骤S1-2中,所述高温旋转球磨处理包括两个阶段,其中第一处理阶段为:在氧气体积分数为10~30vol.%的氩气和氧气混合气氛下,以5~10℃/min速率升温至140~200℃,保温0.5~3h;第二处理阶段为:在高纯氩气气氛下,以5~10℃/min速率升温至450~600℃,保温0.5~3h。
进一步的,步骤S2中,所述湿磨法高能振动球磨处理工艺包括:
S2-1:在保护气氛下将所述氧吸附剂原料和氧化锆磨球装入球磨罐,并向所述球磨罐中加入保护液体,然后将所述球磨罐进行密封;
S2-2:将经过密封处理后的所述球磨罐装入高能振动式球磨机进行湿磨处理,得到氧吸附剂浆料;
S2-3:在保护气氛或真空条件下,将经过湿磨处理后的所述氧吸附剂浆料取出,并在40~60℃下烘干1~4h,然后经筛分得到高纯超细氧吸附剂粉末。
进一步的,步骤S2-1中,所述氧化锆磨球和所述氧吸附剂原料的球料比5~10:1;所述块状CaC 2/CaB 6原料的直径为50~80mm;所述保护液体为无水无氧易挥发有机溶剂。
进一步的,在保护气氛手套箱中利用小型磨削设备对所述块状CaC 2/CaB 6原料表面进行切削打磨,进而将表面变质部分去除。
进一步的,所述无水无氧易挥发有机溶剂为芳香烃类、脂肪烃类、脂环烃类或卤化烃类中的至少一种。
进一步的,所述芳香烃类包括苯、甲苯和二甲苯中的至少一种。
进一步的,所述脂肪烃类包括正戊烷、正己烷、正庚烷和正辛烷中的至少一种。
进一步的,所述脂环烃类包括环己烷;所述卤化烃类包括二氯甲烷和三氯甲烷中的至少一种。
进一步的,步骤S2-2中,所述湿磨处理的振动频率为1000~1400次/min,按照球磨2~4min停机4~8min的球磨方式,运行3~6h。
进一步的,步骤S3中,混料时所述氧吸附剂粉末的质量分数百分比为0.4~2.0wt.%;所述混料处理在优选机械混料机上进行,所述混料机的转速优选为60~100r/min,时间优选为4~8h。
进一步的,步骤S4中,所述烧结处理的烧结温度为1100~1300℃,升温速率为2~8℃/min,保温时间为30~180min。
为了实现上述目的,根据本发明的第二方面,提供了一种高强高塑钛基复合材料。
该高强高塑钛基复合材料利用上述的制备方法制备得到,所述钛基复合材料为微细等轴晶组织,晶粒尺寸为20~100μm;
进一步的,所述钛基复合材料中原位生成颗粒状Ca-Ti-O增强相和TiC、TiB增强相,其中Ca-Ti-O增强相颗粒尺寸为100~300nm,TiC、TiB增强相颗粒尺寸为1~5μm。
氧作为一种重要的杂质间隙元素决定了钛合金的强度和塑性。随着氧含量增加,钛合金的强度会增加,但塑性不断降低,一旦超出临界氧容忍含量(0.32wt.%),其塑性指标会大幅下滑甚至发生脆性断裂。为了解决强度和塑性不可兼得的问题,需要向钛中加入适量的除氧剂,既可以降低基体中氧含量,同时可以生成增强相颗粒以起到弥散强化作用,使钛基复合材料兼具良好的强度和塑性。本发明设计一种新型高纯超细CaC 2/CaB 6氧吸附剂,可以在表面氧扩散溶解之前高效吸氧、抑制氧化膜向基体溶解,保证基体优异的塑韧性;同时将间隙氧吸附固定于粉末颗粒表面,净化基体晶格,原位生成Ca-Ti-O和TiC、TiB增强相颗粒,对钛制件的强度硬度提升起到关键作用。其中TiC、TiB因强度硬度高、耐磨性优异、热膨胀系数与Ti基体相似,同时与Ti基体具有良好的相容性等特点而被誉为钛基复合材料最为理想的增强相之一。而纳米Ca-Ti-O颗粒一方面可以细化基体晶粒尺寸,起到细晶强化作用;另一方面可以弥散 分布于钛基体中,阻碍基体中位错运动,提高复合材料的瞬时强度、蠕变强度及高温强度,使钛基复合材料具有优异的综合力学性能。
本发明设计的高氧HDH钛粉和高纯超细CaC 2/CaB 6氧吸附剂的制备是提升多尺度Ca-Ti-O、TiC、TiB增强相颗粒含量的基础。高氧HDH钛粉可以通过改变混合气体中氧气的体积分数从而控制钛粉中的实际氧含量,并且通过旋转球磨及高温下保温的工艺保证氧均匀分布于HDH钛粉表面。基于无水无氧溶液隔离和高纯氩气保护隔离的方式,采用湿磨法高能振动球磨工艺,抑制CaC 2/CaB 6在制备过程中的潮解变质,实现了高纯超细CaC 2/CaB 6粉末的制备。在制备钛基复合材料的过程中,CaC 2/CaB 6的添加量为0.4~2.0wt.%,若添加量过多则难以完全与基体中氧反应而发生团聚,恶化材料的性能;若添加量过少则达不到吸附固氧、改善力学性能的效果。经实验证实,该工艺可以获得增强相分布均匀、晶粒细小、组织均匀且性能优异的高强高塑钛基复合材料。
本发明的技术效果如下:
(1)采用高温旋转球磨的方式有效实现高氧HDH钛粉的制备,氧含量在0.8~1.5wt.%范围内(传统HDH钛粉的氧含量0~0.4wt.%),保证间隙氧均匀分布于钛粉表面。
(2)采用湿磨法高能振动球磨技术在制粉过程中避免高活性CaC 2/CaB 6与空气直接接触而发生潮解变质,实现了高纯超细CaC 2/CaB 6粉末的制备。
(3)高纯超细CaC 2/CaB 6氧吸附剂易与高氧HDH钛粉中的氧 反应,净化基体的同时原位生成大量多尺度Ca-Ti-O和TiC、TiB增强相颗粒,大幅度提高钛基复合材料的强度硬度和塑性韧性。
(4)吸附固氧和颗粒增强的协同作用使得低成本HDH粉末原料成功应用于高性能钛基复合材料的制备,可将钛制件原料成本降低90%,实现了高强高塑钛基复合材料的低成本近终形制备。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明的实施例1中HDH钛粉的扫描电镜形貌图片;
图2为本发明的实施例1中CaC 2原料的实物图;
图3为本发明的实施例1中经球磨后CaC 2粉末的扫描电镜形貌图片;
图4为本发明的实施例中高强高塑钛基复合材料的制备工艺流程图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提 供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本发明公开了一种利用高温旋转球磨处理工艺制备高氧氢化脱氢钛粉的方法,该方法具体包括:
S1-1:称取粒度中位径D50为15~50μm,氧含量≤0.30wt.%的氢化脱氢钛粉和粒径为6~8mm的氧化锆磨球,并将氢化脱氢钛粉和磨球放入保护气氛管式炉内,磨球与氢化脱氢钛粉的质量比为0.5~2:1。
S1-2:保护气氛管式炉以10~60r/min转速旋转,对管式炉内的氢化脱氢钛粉进行高温旋转球磨处理;其中,高温旋转球磨处理包括两个阶段,第一处理阶段为:在氧气体积分数为10~30vol.%的氩气和氧气混合气氛下,以5~10℃/min速率升温至140~200℃,保温0.5~3h;第二处理阶段为:在高纯氩气气氛下,以5~10℃/min速率升温至450~600℃,保温0.5~3h。
S1-3:将经过高温旋转球磨处理后的氢化脱氢钛粉随炉冷却至室温,经筛分后得到粒度为10~40μm,氧含量为0.8~1.5wt.%的高氧氢化脱氢钛粉。
本发明还公开了一种利用湿磨法高能振动球磨处理工艺制备高纯超细CaC 2/CaB 6粉末的方法,该方法具体包括:
S2-1:选取块状CaC 2/CaB 6原料和氧化锆磨球,在氩气保护手套箱中利用小型磨削设备对块状CaC 2/CaB 6原料表面进行切削打磨, 进而将表面变质部分去除;然后在氩气保护手套箱中将CaC 2/CaB 6原料和氧化锆磨球装入球磨罐,并向球磨罐中加入无水无氧易挥发有机溶剂作为保护液体,确保打磨后的CaC 2/CaB 6原料与磨球完全浸没在保护液体中;之后将球磨罐进行密封,并充入氩气,使得球磨罐内保持一定压力;氧化锆磨球和CaC 2/CaB 6原料的球料比5~10:1。其中,块状CaC 2/CaB 6原料的直径通常为50~80mm,CaC 2/CaB 6原料表面在空气中发生潮解,因此附着一层Ca(OH) 2变质层,而内部为纯度大于等于99.9%;氩气保护手套箱中氧含量小于等于0.1ppm,水含量小于等于0.1ppm;无水无氧易挥发有机溶剂包括芳香烃类、脂肪烃类、脂环烃类或卤化烃类中的至少一种。
芳香烃类包括苯、甲苯和二甲苯中的至少一种;脂肪烃类包括正戊烷、正己烷、正庚烷和正辛烷中的至少一种;脂环烃类包括环己烷;卤化烃类包括二氯甲烷和三氯甲烷中的至少一种。
S2-2:将经过密封处理后的球磨罐装入高能振动式球磨机进行湿磨处理,湿磨处理的振动频率为1000~1400次/min,按照球磨2~4min停机4~8min的球磨方式,运行3~6h得到CaC 2/CaB 6浆料。
S2-3:将球磨罐放入氩气保护手套箱中或者在真空条件下进行开罐,取出经过湿磨处理后的CaC 2/CaB 6浆料,在40~60℃下烘干1~4h,然后经筛分得到纯度≥99.9%,粒度≤8μm的高纯超细CaC 2/CaB 6粉末。
本发明还公开了一种高强高塑钛基复合材料的制备方法,如图4 所示,该方法具体包括以下步骤:
S1,利用上述高温旋转球磨处理工艺制备得到粒度为10~40μm,氧含量为0.8~1.5wt.%的高氧氢化脱氢钛粉。
S2,利用上述湿磨法高能振动球磨处理工艺制备得到纯度≥99.9%,粒度≤8μm的高纯超细CaC 2/CaB 6粉末。
S3,将高氧氢化脱氢钛粉与高纯超细CaC 2/CaB 6粉末在氩气保护手套箱中进行装粉,其中CaC 2/CaB 6粉末的质量分数百分比为0.4~2.0wt.%,然后密封取出并放入机械混料机上,在转速为60~100r/min下混料处理4~8h,之后将混料处理后的粉末采用机械单向压制、机械双向压制或冷等静压成形压制得到生料坯。
S4,烧结:将得到的生料坯在氢气、氩气或真空保护气氛中进行烧结处理,烧结温度为1100~1300℃,升温速率为2~8℃/min,保温时间为30~180min,得到钛基复合材料。
以下将通过具体实施例对高强高塑钛基复合材料及其制备方法进行详细说明。
实施例1:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料,其扫描电镜形貌照片如图1所示。将原料钛粉与氧化锆磨球混合装入管式石英舟,球料质量比为1:1,放入旋转烧结炉内。在氩/氧混合气氛下(氧气体积分数10vol.%),以5℃/min升温至160℃,保温30min。保温结束后将气氛更换为单纯氩气保护气氛,以5℃/min升 温速率升至450℃,保温60min。完成氧化后,经过筛分得到粒度中值为35μm,氧含量为0.8wt.%的HDH钛粉。
随后以粒度中值为50mm的CaC 2为原料,其扫描电镜形貌照片如图2所示。在氩气保护手套箱中利用小型磨削设备对块状CaC 2原料表面进行打磨,将表面变质部分去除。再以5:1的球料比将氧化锆磨球与打磨后的高纯块状CaC 2原料在手套箱中进行装填入罐,同时加入正己烷作为保护溶剂,装罐后充入氩气,使得球磨罐内存在一定的压力。完成上述步骤后,将装填完毕的球磨罐装入振动球磨机中进行湿磨,激振频率为1400次/min,按照球磨2min停机4min的球磨方式,运行时间为4h。随后将球磨罐放入氩气保护手套箱中开罐,并在40℃下烘干1h,制备出CaC 2粉末,粒度中值约为3μm,其扫描电镜形貌照片如图3所示。
最后将制备的HDH钛粉与0.6wt.%CaC 2粉进行混合,在混料机上以100r/min的转速混合4h。之后将复合粉末装入软膜包套中,经冷等静压成生坯。最后将制备的生坯放入真空炉中进行烧结,真空度为10 -4Pa。烧结工艺:烧结温度为1300℃,升温速率为5℃/min,保温时间120min,之后随炉冷却至室温,得到钛基复合材料制件。
实施例2:
以粒度中值为35μm,氧含量为0.17wt.%的HDH钛粉为原料。将原料钛粉与氧化锆磨球(6~8mm粒径)混合装入管式石英舟,球料质量比为1.5:1,放入旋转烧结炉内。在氩/氧混合气氛下(氧气体积分数20vol.%),以6℃/min升温至180℃,保温1h。保温结束 后将气氛更换为单纯氩气保护气氛,以6℃/min升温速率升至600℃,保温1.5h。完成氧化后,经过筛分得到粒度中值为30μm,氧含量为1.1wt.%的HDH钛粉。
随后以粒度中值为55mm的CaC 2为原料,在氩气保护手套箱中利用小型磨削设备对块状CaC 2原料表面进行打磨,将表面变质部分去除。再以6:1的球料比将氧化锆磨球(6~8mm粒径)与打磨后的高纯块状CaC 2原料在手套箱中进行装填入罐,同时加入二氯甲烷作为保护溶剂,装罐后充入氩气,使得球磨罐内存在一定的压力。完成上述步骤后,将装填完毕的球磨罐装入振动球磨机中进行湿磨,激振频率为1300次/min,按照球磨3min停机5min的球磨方式,运行时间为3.5h。随后将球磨罐放入氩气保护手套箱中开罐,并在45℃下烘1.5h,制备出CaC 2粉末,粒度中值约为5μm。
最后将制备的HDH钛粉与1.1wt.%CaC 2粉进行混合,在混料机上以90r/min的转速混合5h。之后将复合粉末装入软膜包套中,经单相压制压成生坯。最后将制备的生坯放入真空炉中进行烧结,真空度为10 -3Pa。烧结工艺:烧结温度为1250℃,升温速率为6℃/min,保温时间100min,之后随炉冷却至室温,得到钛基复合材料制件。
实施例3:
以粒度中值为30μm,氧含量为0.15wt.%的HDH钛粉为原料。将原料钛粉与氧化锆磨球(6~8mm粒径)混合装入管式石英舟,球料质量比为2:1,放入旋转烧结炉内。在氩/氧混合气氛下(氧气体积分数30vol.%),以8℃/min升温至200℃,保温2h。保温结束后 将气氛更换为单纯氩气保护气氛,以8℃/min升温速率升至600℃,保温2h。完成氧化后,经过筛分得到粒度中值为25μm,氧含量为1.5wt.%的HDH钛粉。
随后以粒度中值为60mm的CaB 6为原料,在氩气保护手套箱中利用小型磨削设备对块状CaB 6原料表面进行打磨,将表面变质部分去除。再以8:1的球料比将氧化锆磨球(6~8mm粒径)与打磨后的高纯块状CaB 6原料在手套箱中进行装填入罐,同时加入二氯甲烷作为保护溶剂,装罐后充入氩气,使得球磨罐内存在一定的压力。完成上述步骤后,将装填完毕的球磨罐装入振动球磨机中进行湿磨,激振频率为1200次/min,按照球磨3min停机6min的球磨方式,运行时间为3h。随后将球磨罐放入氩气保护手套箱中开罐,并在50℃下烘干2h,制备出CaB 6粉末,粒度中值约为2μm。
最后将制备的HDH钛粉与1.8wt.%CaB 6粉进行混合,在混料机上以80r/min的转速混合6h。之后将复合粉末装入软膜包套中,经单相压制压成生坯。最后将制备的生坯放入真空炉中进行烧结,真空度为10 -3Pa。烧结工艺:烧结温度为1200℃,升温速率为6℃/min,保温时间90min,之后随炉冷却至室温,得到钛基复合材料制件。
实施例4
以粒度中值为20μm,氧含量为0.16wt.%的HDH钛粉为原料。将原料钛粉与氧化锆磨球(6~8mm粒径)混合装入管式石英舟,球料质量比为1.8:1,放入旋转烧结炉内。在氩/氧混合气氛下(氧气体积分数25vol.%),以5℃/min升温至190℃,保温1.5h。保温结束 后将气氛更换为单纯氩气保护气氛,以5℃/min升温速率升至600℃,保温2h。完成氧化后,经过筛分得到粒度中值为20μm,氧含量为1.3wt.%的HDH钛粉。
随后以粒度中值为58mm的CaC 2和CaB 6为原料,在氩气保护手套箱中利用小型磨削设备对块状CaC 2和CaB 6原料表面进行打磨,将表面变质部分去除。再以7:1的球料比将氧化锆磨球(6~8mm粒径)与打磨后的高纯块状CaC 2和CaB 6原料在手套箱中进行装填入罐(CaC 2和CaB 6的质量比为1:2),同时加入二氯甲烷作为保护溶剂,装罐后充入氩气,使得球磨罐内存在一定的压力。完成上述步骤后,将装填完毕的球磨罐装入振动球磨机中进行湿磨,激振频率为1300次/min,按照球磨2min停机5min的球磨方式,运行时间为4h。随后将球磨罐放入氩气保护手套箱中开罐,并在45℃下烘2h,制备出CaC 2/CaB 6混合粉末,粒度中值约为5μm。
最后将制备的HDH钛粉与1.3wt.%CaC 2/CaB 6混合粉(CaC 2和CaB 6的质量比为1:2)进行混合,在混料机上以100r/min的转速混合4h。之后将复合粉末装入软膜包套中,经单相压制压成生坯。最后将制备的生坯放入真空炉中进行烧结,真空度为10 -2Pa。烧结工艺:烧结温度为1200℃,升温速率为5℃/min,保温时间120min,之后随炉冷却至室温,得到钛基复合材料制件。
从上述实施例1~实施例4也可以看出,高氧HDH钛粉和高纯超细CaC 2/CaB 6氧吸附剂的制备是提升多尺度Ca-Ti-O、TiC、TiB 增强相颗粒含量的基础,也即高氧HDH钛粉的制备和高纯超细CaC 2/CaB 6氧吸附剂的制备相辅相成,为制备得到高强高塑钛基复合材料而协同发挥作用。
为了对本发明中的钛基复合材料及其制备工艺进行更好的说明,以下将采用对比实验,通过具体对比实施例详细说明高氧HDH钛粉与高纯超细CaC 2/CaB 6氧吸附剂的协同作用,以及高氧HDH钛粉与高纯超细CaC 2/CaB 6氧吸附剂的制备工艺中主要参数的特定范围值。
一、实验对象
实施例1~4中制备得到的钛基复合材料以及对比实施例1~12中制备得到的钛基复合材料,其中对比实施例1~12分为以下四组:
(一)采用不同制备工艺的钛粉原料;
(二)HDH钛粉的制备工艺不同;
(三)CaC 2/CaB 6粉末的制备工艺不同;
(四)HDH钛粉和CaC 2/CaB 6粉末的制备工艺均不同。
二、实验方法
采用现有技术的常规检测方法对实施例1~4以及对比实施例1~12制备得到的钛基复合材料进行性能测定。
性能检测:
(1)相对密度测试:对实施例1~4以及对比实施例1~12中制备得到的钛基复合材料分别进行相对密度测定。
(2)力学性能测试:对实施例1~4以及对比实施例1~12中制 备得到的钛基复合材料分别进行室温抗拉强度和延伸率测定。
三、试验结果
对实施例1~4以及对比实施例1~12的实验结果分别进行汇总。
(一)采用不同制备工艺的钛粉原料
对比实施例1:
以粒度中值为40μm,氧含量为0.17wt.%的气雾化球形钛粉为原料,并制成生坯。随后将制备的生坯放入真空炉中进行烧结,真空度及烧结工艺与实施例1相同,最终得到低氧纯钛样品。
对采用实施例1~4中的制备工艺制备得到的钛基复合材料以及对比实施例1中制备得到的低氧纯钛样品进行性能检测,并进行汇总,如下表1和表2所示。
表1
Figure PCTCN2020109487-appb-000001
从表1可以看出,本发明中制备得到的钛基复合材料为微细等 轴晶组织,晶粒尺寸在40~80μm范围内,钛基复合材料中具有颗粒状Ca-Ti-O增强相和TiC/TiB增强相,并且增强相颗粒与基体界面结合优异,其中Ca-Ti-O颗粒尺寸在200~300nm范围内,TiC/TiB颗粒尺寸在3~4μm范围内,材料致密度大于等于98.0%,室温抗拉强度大于等于820MPa,延伸率不低于18%。
表2
Figure PCTCN2020109487-appb-000002
从表2可以看出,本发明中采用低成本氢化脱氢钛粉制备得到的钛基复合材料,不仅较常用气雾化球形钛粉制备的钛合金的力学性能更为优异,满足现阶段的应用需求,而且可以大幅度降低原料成本,成本可降低约90%,具有广阔的应用前景。
(二)HDH钛粉的制备工艺不同
对比实施例2:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料,筛分后得到粒度中值为35μm的HDH钛粉。按照实施例1的方法制备得到高纯超细CaC 2粉末,以及将HDH钛粉与CaC 2粉末制成生坯。随后将制备的生坯放入真空炉中进行烧结,真空度及烧结工艺与实 施例1相同,最终得到低氧纯钛样品。
对比实施例3:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料。将该钛粉以及氧化锆磨球(6~8mm粒径)按照实施例1的方法,在氩气与氧气混合气氛下(氧气体积分数5vol.%),对HDH钛粉进行高温氧化、筛分得到氧含量为0.3wt.%,粒度中值为35μm的HDH钛粉。按照实施例1的方法制备得到高纯超细CaB 6粉末,以及将HDH钛粉与CaB 6粉末制成生坯。随后将制备的生坯放入真空炉中进行烧结,真空度及烧结工艺与实施例1相同,最终得到高氧纯钛样品。
对比实施例4:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料。将该钛粉以及氧化锆磨球(6~8mm粒径)按照实施例1的方式,在氩气与氧气混合气氛下(氧气体积分数40vol.%),对HDH钛粉进行高温氧化、筛分,得到氧含量为1.8wt.%,粒度中值为35μm的HDH钛粉。按照实施例1的方法制备得到高纯超细CaC 2粉末,以及将HDH钛粉与CaC 2粉末制成生坯。随后将制备的生坯放入真空炉中进行烧结,真空度及烧结工艺与实施例1相同,最终得到高氧纯钛样品。
对采用实施例1中的制备工艺制备得到的钛基复合材料以及对比实施例2~4中制备得到的纯钛样品进行性能检测,并进行汇总,如下表3所示。
表3
Figure PCTCN2020109487-appb-000003
从表3可以看出,本发明中制备得到的钛基复合材料具有优异的力学性能,其中高温旋转球磨过程中氩/氧气混合气的氧气体积分数为10~30vol.%。若氧气体积分数偏低,则HDH钛粉的氧含量较少(<10vol.%),导致CaC 2/CaB 6粉末难以反应完全而恶化材料性能;若氧气体积分数偏高(>30vol.%),则HDH钛粉的氧含量较多,导致粉末中的氧难以被完全吸附而固溶于基体中,同样恶化材料性能。故HDH钛粉的氧含量应控制在一定范围内且与高纯超细CaC 2/CaB 6粉末反应完全,才能制备出综合力学性能优异的钛基复合材料。
(三)CaC 2/CaB 6粉末的制备工艺不同
对比实施例5:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料。将该钛粉以及氧化锆磨球(6~8mm粒径)按照实施例1的方式,在氩气与氧气混合气氛下(氧气体积分数10vol.%),对HDH钛粉进行高温氧化、筛分,得到氧含量为0.8wt.%,粒度中值为35μm的HDH钛粉。按照实施例1的方法将HDH钛粉制成生坯,不同之处在于未添加CaC 2粉末。随后将制备的生坯放入真空炉中进行烧结,真空度及烧结工艺与实施例1相同,最终得到高氧纯钛样品。
对比实施例6:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料。将该钛粉以及氧化锆磨球(6~8mm粒径)按照实施例1的方式,在氩气与氧气混合气氛下(氧气体积分数30vol.%),对HDH钛粉进行高温氧化、筛分,得到氧含量为1.5wt.%,粒度中值为35μm的HDH钛粉。按照实施例1的方法将HDH钛粉制成生坯,不同之处在于未添加CaC 2粉末。随后将制备的生坯放入真空炉中进行烧结,真空度及烧结工艺与实施例1相同,最终得到高氧纯钛样品。
对比实施例7:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料,将该钛粉以及氧化锆磨球(6~8mm粒径)按照实施例1的方式,在氩气与氧气混合气氛下(氧气体积分数10vol.%)对HDH钛粉进行高温氧化、筛分,得到氧含量为0.8wt.%,粒度中值为35μm的HDH钛粉。直接将粒度中值为50mm的CaC 2原料装填入球磨罐中进行高能振动球磨后得到CaC 2粉末,经筛分后得到粒度中值为3μm的超 细CaC 2粉末。最后按照实施例1的方式将HDH钛粉(氧化时混合气体中氧气体积分数10vol.%)与0.6wt.%CaC 2粉末进行混合、压制成生坯后烧结,最终得到高氧钛基复合材料样品。
对比实施例8:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料,将该钛粉以及氧化锆磨球(6~8mm粒径)按照实施例1的方式,在氩气与氧气混合气氛下(氧气体积分数10vol.%)对HDH钛粉进行高温氧化、筛分,得到氧含量为0.8wt.%,粒度中值为35μm的HDH钛粉。按照实施例1的方式制备粒度中值约为3μmCaB 6粉末。最后按照实施例1的方式将HDH钛粉(氧化时混合气体中氧气体积分数10vol.%)与0.3wt.%CaB 6粉末进行混合、压制成生坯后烧结,最终得到高氧钛基复合材料样品。
对比实施例9:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料,将该钛粉以及氧化锆磨球(6~8mm粒径)按照实施例1的方式,在氩气与氧气混合气氛下(氧气体积分数10vol.%)对HDH钛粉进行高温氧化、筛分,得到氧含量为0.8wt.%,粒度中值为35μm的HDH钛粉。按照实施例1的方式制备粒度中值约为3μmCaC 2粉末。最后按照实施例1的方式将HDH钛粉(氧化时混合气体中氧气体积分数10vol.%)与2.4wt.%CaC 2粉末进行混合、压制成生坯后烧结,最终得到高氧钛基复合材料样品。
对采用实施例1中的制备工艺制备得到的钛基复合材料以及对 比实施例5~9中制备得到的纯钛样品进行性能检测,并进行汇总,如下表4所示。
表4
Figure PCTCN2020109487-appb-000004
从表4可以看出,本发明实施例1的方法可以制备出低成本且力学性能优异的钛基复合材料。通过对比实施例5~6可以发现,若不引入高纯超细CaC 2粉末,当HDH钛粉的氧含量较高时,其抗拉强度虽有小幅增加,但塑性恶化严重。通过对比实施例7可以发现,未经实施例1方法保护制备的CaC 2粉末易发生吸潮水解,引入后无法起到吸附固氧作用且在基体中团聚,严重恶化材料性能。通过对 比实施例8~9可以发现,高纯超细CaC 2/CaB 6粉末的加入量应该控制在一定的范围(0.4~2.0wt.%),过多或过少均会导致材料力学性能恶化。
(四)HDH钛粉和CaC 2/CaB 6粉末的制备工艺均不同
对比实施例10:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料,将该钛粉以及氧化锆磨球(6~8mm粒径)按照实施例1的方式,在氩气与氧气混合气氛下(氧气体积分数5vol.%)对HDH钛粉进行高温氧化、筛分,得到氧含量为0.3wt.%,粒度中值为35μm的HDH钛粉。按照实施例1的方式制备粒度中值约为3μmCaB 6粉末。最后按照实施例1的方式将HDH钛粉(氧化时混合气体中氧气体积分数5vol.%)与0.3wt.%CaB 6粉末进行混合、压制成生坯后烧结,最终得到高氧钛基复合材料样品。
对比实施例11:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料,将该钛粉以及氧化锆磨球(6~8mm粒径)按照实施例1的方式,在氩气与氧气混合气氛下(氧气体积分数40vol.%)对HDH钛粉进行高温氧化、筛分,得到氧含量为1.8wt.%,粒度中值为35μm的HDH钛粉。按照实施例1的方式制备粒度中值约为3μmCaC 2粉末。最后按照实施例1的方式将HDH钛粉(氧化时混合气体中氧气体积分数40vol.%)与2.4wt.%CaC 2粉末进行混合、压制成生坯后烧结,最终 得到高氧钛基复合材料样品。
对比实施例12:
以粒度中值为40μm,氧含量为0.18wt.%的HDH钛粉为原料,筛分后得到粒度中值为35μm的HDH钛粉。直接将粒度中值为50mm的CaC 2原料装填入球磨罐中进行高能振动球磨后得到CaC 2粉末,经筛分后得到粒度中值为3μm的超细CaC 2粉末。按照实施例1的方法将HDH钛粉与CaC 2粉末制成生坯。随后将制备的生坯放入真空炉中进行烧结,真空度及烧结工艺与实施例1相同,最终得到低氧纯钛样品。
对采用实施例1中的制备工艺制备得到的钛基复合材料以及对比实施例10~12中制备得到的纯钛样品进行性能检测,并进行汇总,如下表5所示。
表5
Figure PCTCN2020109487-appb-000005
由表5可以得出,本发明中制备得到的钛基复合材料具有优异的力学性能。通过对比实施例10~11可以发现,高温旋转球磨过程中氩/氧气混合气的氧气体积分数与高纯超细CaC 2/CaB 6粉末的加入量需进行有机协调才能制备出综合力学性能优异的钛基复合材料。从对比实施例12可以发现,若不按照实施例1的方法制备高氧HDH钛粉与CaC 2/CaB 6粉末,则制备的钛基复合材料力学性能较差,易发生脆断。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种高强高塑钛基复合材料的制备方法,其特征在于,包括以下步骤:
    S1,利用高温旋转球磨处理工艺制备高氧氢化脱氢钛粉,且使制备的所述氢化脱氢钛粉的粒度为10~40μm,氧含量为0.8~1.5wt.%;
    S2,利用湿磨法高能振动球磨处理工艺制备高纯超细氧吸附剂粉末;所述氧吸附剂粉末的纯度≥99.9%,粒度≤8μm;所述氧吸附剂选自CaC 2、CaB 6中的至少一种;
    S3,制备生料坯:在保护气氛下,将所述高氧氢化脱氢钛粉与所述高纯超细氧吸附剂粉末进行混料处理,然后将混料处理后的粉末压制成形,得到生料坯;
    S4,烧结:将步骤S3中得到的所述生料坯进行气氛保护烧结处理,得到钛基复合材料。
  2. 根据权利要求1所述的高强高塑钛基复合材料的制备方法,其特征在于,步骤S1中,所述高温旋转球磨处理工艺包括:
    S1-1:将所述氢化脱氢钛粉和磨球放入保护气氛炉内;
    S1-2:在所述保护气氛炉内对所述氢化脱氢钛粉进行高温旋转球磨处理;其中,该步旋转球磨的转速为10~60r/min;
    S1-3:将经过步骤S1-2处理后的氢化脱氢钛粉冷却至室温,经筛分后得到高氧氢化脱氢钛粉。
  3. 根据权利要求2所述的高强高塑钛基复合材料的制备方法,其特征在于,步骤S1-1中,所述氢化脱氢钛粉的粒度中位径D50为15~50μm,氧含量≤0.30wt.%;
    优选的,所述磨球为氧化锆,粒径为6~8mm;所述磨球与所述氢化脱氢钛粉的质量比优选为0.5~2:1。
  4. 根据权利要求2所述的高强高塑钛基复合材料的制备方法,其特征在于,步骤S1-2中,所述高温旋转球磨处理包括两个阶段,其中第一处理阶段为:在氧气体积分数为10~30vol.%的氩气和氧气混合气氛下,以5~10℃/min速率升温至140~200℃,保温0.5~3h;第二处理阶段为:在高纯氩气气氛下,以5~10℃/min速率升温至450~600℃,保温0.5~3h。
  5. 根据权利要求1或2所述的高强高塑钛基复合材料的制备方法,其特征在于,步骤S2中,所述湿磨法高能振动球磨处理工艺包括:
    S2-1:在保护气氛下将所述氧吸附剂原料和氧化锆磨球装入球磨罐,并向所述球磨罐中加入保护液体,然后将所述球磨罐进行密封;
    S2-2:将经过密封处理后的所述球磨罐装入高能振动式球磨机进行湿磨处理,得到氧吸附剂浆料;
    S2-3:在保护气氛或真空条件下,将经过湿磨处理后的所述氧吸附剂浆料在40~60℃下烘干1~4h,然后经筛分得到高纯超细氧吸附剂粉末。
  6. 根据权利要求5所述的高强高塑钛基复合材料的制备方法,其特征在于,步骤S2-1中,所述氧化锆磨球和所述氧吸附剂原料的球料比5~10:1;所述保护液体为无水无氧易挥发有机溶剂。
  7. 根据权利要求5所述的高强高塑钛基复合材料的制备方法,其特征在于,步骤S2-2中,所述湿磨处理的振动频率为1000~1400次/min,按照球磨2~4min停机4~8min的球磨方式,运行3~6h。
  8. 根据权利要求1所述的高强高塑钛基复合材料的制备方法,其特征在于,步骤S3中,混料时所述氧吸附剂粉末的质量分数百分比为0.4~2.0wt.%;所述混料处理优选在机械混料机上进行,所述混料机的转速优选为60~100r/min,时间优选为4~8h。
  9. 根据权利要求1所述的高强高塑钛基复合材料的制备方法,其特征在于,步骤S4中,所述烧结处理的烧结温度为1100~1300℃,升温速率为2~8℃/min,保温时间为30~180min。
  10. 一种高强高塑钛基复合材料,其特征在于,利用权利要求1-9任一项所述的制备方法制备得到,所述钛基复合材料为微细等轴晶组织,晶粒尺寸为20~100μm;
    优选地,所述钛基复合材料中原位生成颗粒状Ca-Ti-O增强相和TiC、TiB增强相,其中Ca-Ti-O增强相颗粒尺寸为100~300nm,TiC、TiB增强相颗粒尺寸为1~5μm。
PCT/CN2020/109487 2020-07-29 2020-08-17 高强高塑钛基复合材料及其制备方法 WO2022021488A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/768,737 US20230191482A1 (en) 2020-07-29 2020-08-17 High-strength and high-plasticity titanium matrix composite and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010745078.1 2020-07-29
CN202010745078.1A CN112030024B (zh) 2020-07-29 2020-07-29 高强高塑钛基复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022021488A1 true WO2022021488A1 (zh) 2022-02-03

Family

ID=73583518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109487 WO2022021488A1 (zh) 2020-07-29 2020-08-17 高强高塑钛基复合材料及其制备方法

Country Status (3)

Country Link
US (1) US20230191482A1 (zh)
CN (1) CN112030024B (zh)
WO (1) WO2022021488A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114951695A (zh) * 2022-04-27 2022-08-30 北京科技大学 一种高强高塑双相纯钛的制备方法
CN115772615A (zh) * 2022-12-07 2023-03-10 西安理工大学 三维球团微构型高温钛合金基复合材料及其制备方法
CN116005084A (zh) * 2022-12-12 2023-04-25 华北电力大学 一种W颗粒-TiB晶须杂化增强钛基复合材料及其制备方法
CN117548668A (zh) * 2024-01-12 2024-02-13 南宫市日晶合金焊接材料有限公司 基于金属粉末的抛丸机叶片材料及抛丸机叶片的制造工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941366B (zh) * 2021-01-25 2022-04-26 北京科技大学 一种超细钛粉制备高性能粉末冶金钛及钛合金的方法
CN114182127B (zh) * 2021-12-09 2022-08-12 吉林大学 高性能原位增强钛基复合材料及其制备工艺
CN114682778B (zh) * 2022-02-23 2023-06-02 北京科技大学 基于微细球形钛基粉末制备钛基制件的方法、钛基制件
CN117226086B (zh) * 2023-11-15 2024-02-02 西安稀有金属材料研究院有限公司 一种高强塑多相异构钛基复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105734316A (zh) * 2016-03-07 2016-07-06 上海交通大学 一种利用氢化钛粉末直接制备成型钛基复合材料的方法
CN108193064A (zh) * 2017-12-26 2018-06-22 天钛隆(天津)金属材料有限公司 一种低成本工业化生产TiC颗粒增强钛基复合材料的方法
CN109848406A (zh) * 2019-02-22 2019-06-07 北京科技大学 钛基复合材料的粉末冶金制备方法及制品
CN109971982A (zh) * 2019-02-22 2019-07-05 北京科技大学 原位自生陶瓷相增强钛基复合材料的制备方法及制品
CN109988940A (zh) * 2019-04-16 2019-07-09 上海材料研究所 一种稀土改性3d打印用高氧钛粉及制备方法
CN111151762A (zh) * 2020-01-15 2020-05-15 北京科技大学 一种低成本细粒度低氧钛及钛合金粉末的制备方法
US20200215606A1 (en) * 2018-06-19 2020-07-09 Amastan Technologies Inc. Process for producing spheroidized powder from feedstock materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103572084B (zh) * 2013-10-28 2015-08-12 中南大学 一种含氧的钛基合金的粉末冶金制备方法
US11077497B2 (en) * 2017-06-07 2021-08-03 Global Titanium Inc. Deoxidation of metal powders
CN108080621B (zh) * 2017-11-21 2019-09-27 北京科技大学 低成本激光选区熔化用钛粉、其制备方法及钛材制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105734316A (zh) * 2016-03-07 2016-07-06 上海交通大学 一种利用氢化钛粉末直接制备成型钛基复合材料的方法
CN108193064A (zh) * 2017-12-26 2018-06-22 天钛隆(天津)金属材料有限公司 一种低成本工业化生产TiC颗粒增强钛基复合材料的方法
US20200215606A1 (en) * 2018-06-19 2020-07-09 Amastan Technologies Inc. Process for producing spheroidized powder from feedstock materials
CN109848406A (zh) * 2019-02-22 2019-06-07 北京科技大学 钛基复合材料的粉末冶金制备方法及制品
CN109971982A (zh) * 2019-02-22 2019-07-05 北京科技大学 原位自生陶瓷相增强钛基复合材料的制备方法及制品
CN109988940A (zh) * 2019-04-16 2019-07-09 上海材料研究所 一种稀土改性3d打印用高氧钛粉及制备方法
CN111151762A (zh) * 2020-01-15 2020-05-15 北京科技大学 一种低成本细粒度低氧钛及钛合金粉末的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114951695A (zh) * 2022-04-27 2022-08-30 北京科技大学 一种高强高塑双相纯钛的制备方法
CN115772615A (zh) * 2022-12-07 2023-03-10 西安理工大学 三维球团微构型高温钛合金基复合材料及其制备方法
CN115772615B (zh) * 2022-12-07 2024-04-09 西安理工大学 三维球团微构型高温钛合金基复合材料及其制备方法
CN116005084A (zh) * 2022-12-12 2023-04-25 华北电力大学 一种W颗粒-TiB晶须杂化增强钛基复合材料及其制备方法
CN116005084B (zh) * 2022-12-12 2023-08-04 华北电力大学 一种W颗粒-TiB晶须杂化增强钛基复合材料及其制备方法
CN117548668A (zh) * 2024-01-12 2024-02-13 南宫市日晶合金焊接材料有限公司 基于金属粉末的抛丸机叶片材料及抛丸机叶片的制造工艺
CN117548668B (zh) * 2024-01-12 2024-03-29 南宫市日晶合金焊接材料有限公司 基于金属粉末的抛丸机叶片材料及抛丸机叶片的制造工艺

Also Published As

Publication number Publication date
CN112030024A (zh) 2020-12-04
US20230191482A1 (en) 2023-06-22
CN112030024B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2022021488A1 (zh) 高强高塑钛基复合材料及其制备方法
CN106244893B (zh) 一种纳米碳化硅颗粒增强铝基复合材料及其制备方法
CN108941546A (zh) 一种高熵合金结合立方氮化硼超硬复合材料及其制备方法
CN105063457A (zh) 一种纳米石墨复合的高容量RE-Mg-Ni基贮氢材料及其制备方法
CN110004349A (zh) 一种碳纳米管增强高熵合金复合材料及其制备方法
CN109023082A (zh) 一种原位微量双相纳米陶瓷颗粒强化钢的方法
CN108193064A (zh) 一种低成本工业化生产TiC颗粒增强钛基复合材料的方法
CN109207830A (zh) 一种高熵合金结合立方氮化硼超硬复合材料及其制备方法
CN107142407B (zh) 一种表面自润滑Ti(C,N)基金属陶瓷耐磨材料的制备方法
CN109930029B (zh) 一种TiB2/Ti2AlNb复合材料及其制备方法
CN109848406B (zh) 钛基复合材料的粉末冶金制备方法及制品
CN113458388B (zh) 基于钛合金粒径与石墨烯层厚度错配的多尺度复合材料及其制备方法
CN109971982A (zh) 原位自生陶瓷相增强钛基复合材料的制备方法及制品
CN110449580B (zh) 一种粉末冶金高强韧性含硼高熵合金材料及其制备方法和应用
CN112111664B (zh) 一种两步烧结法制备化学改性的钛基复合材料及其制备方法
CN113667902B (zh) 高熵晶界修饰的铁基多元纳米晶合金及其制备方法
CN113718185B (zh) 一种含Zr的TiB晶须增强钛基复合材料及其制备方法
CN108893645B (zh) 含多元润滑相TiAl基自润滑复合材料及其制备方法
CN111151762A (zh) 一种低成本细粒度低氧钛及钛合金粉末的制备方法
CN112453384A (zh) 一种扩散粘接钛粉制备方法
CN1260383C (zh) 纳米级锆基非蒸散型吸气材料制备工艺
CN114682778B (zh) 基于微细球形钛基粉末制备钛基制件的方法、钛基制件
CN110153408A (zh) 一种陶瓷颗粒增强6xxx铝基复合材料的制备方法
CN112453398B (zh) 一种增强镁基复合材料界面结合的方法
CN113957288B (zh) 一种低成本高性能的TiBw/Ti复合材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947464

Country of ref document: EP

Kind code of ref document: A1