CN114951695A - 一种高强高塑双相纯钛的制备方法 - Google Patents

一种高强高塑双相纯钛的制备方法 Download PDF

Info

Publication number
CN114951695A
CN114951695A CN202210480154.XA CN202210480154A CN114951695A CN 114951695 A CN114951695 A CN 114951695A CN 202210480154 A CN202210480154 A CN 202210480154A CN 114951695 A CN114951695 A CN 114951695A
Authority
CN
China
Prior art keywords
pure titanium
phase
plasticity
double
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210480154.XA
Other languages
English (en)
Other versions
CN114951695B (zh
Inventor
陈刚
秦明礼
丁旺旺
陶麒鹦
曲选辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210480154.XA priority Critical patent/CN114951695B/zh
Publication of CN114951695A publication Critical patent/CN114951695A/zh
Application granted granted Critical
Publication of CN114951695B publication Critical patent/CN114951695B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于粉末冶金领域,涉及一种高强高塑双相纯钛的制备方法。以氧含量为0.40~0.70wt.%的纯钛粉末为原料,并进行3D打印或压制、真空烧结;将得到的样品加热到700~1300℃保温5~30min,随后在纯净水或者盐水中进行淬火,得到双相纯钛材料。本发明采用粉末冶金近净成形工艺,减少原料浪费,降低制备成本。通过原位诱导生成纳米尺度且与基体共格的析出相,形成双相组织,对纯钛的组织与性能精确调控,该析出相具有较基体更好的塑性,从而实现增强增塑。利用纳米尺度共格关系的马氏体相增强增塑纯钛材料,减少稀有金属战略资源的使用,同时实现了钛材料的素化设计。

Description

一种高强高塑双相纯钛的制备方法
技术领域
本发明属于粉末冶金领域,涉及制备高强高塑双相纯钛的方法。
背景技术
钛及钛合金具有低密度、抗腐蚀性能优异、良好的生物相容性等优点,在航空航天、生物医学、机械等领域有着广泛的应用。但是,一般情况下纯钛的强度较低,无法满足其作为结构件的应用要求,极大限制了其应用和产业的发展。目前,通常采用合金化的方式来提高钛的强度,但同时往往带了材料塑性的显著下降,使得钛的强度与塑性难以兼顾,无法满足特定应用场景下对于高塑性的要求。研究表明,合金化导致材料塑性下降的主要原因是合金元素固溶强化的同时产生了较大晶格畸变。然而,通过引入具有优异变形能力且与基体共格的纳米第二相,理论上可以同时提高纯钛的强度和塑性。因此,本发明提出一种通过引入纳米第二相的方法在保证优异塑性的情况下大幅提高纯钛的强度,减少稀有金属战略资源的使用,同时实现钛材料的素化设计。
发明内容
本发明的目的在于提供一种高强高塑双相钛的制备方法。以纯钛粉末为原料,通过3D打印、真空烧结等方法制备纯钛样品,对样品进行塑性变形处理或淬火,获得具有纳米尺度马氏体相且与基体α相共格的双相结构纯钛材料,室温力学性能优异。
本发明包括如下具体步骤:
(1)以氧含量为0.40~0.70wt.%的纯钛粉末为原料,并进行3D打印或压制、真空烧结;
(2)将步骤(1)得到的样品加热到700~1300℃保温5~30min,随后在纯净水或者盐水中进行淬火,得到双相纯钛材料;
(3)将步骤(2)得到的样品进行拉伸测试并观察材料组织;
进一步地,步骤(1)所述3D打印工艺参数为:功率100~270W,扫描速度300~1200mm/s,扫描间隙0.08~0.14mm.
进一步地,所述真空烧结工艺参数为:升温速率5~10℃/min,烧结温度为900~1300℃,保温时间为1~3h,真空度不低于1×10-3Pa。
本发明技术关键点在于:
1、粉末原料不同:本发明3D打印或压制烧结工艺所用钛粉的氧含量为0.40~0.70wt.%,而传统3D打印雾化钛粉氧含量一般在0.15wt.%以下,传统压制烧结成形所用钛粉氧含量则在0.25wt.%以下。
2、烧结工艺不同:本发明采用压制烧结成形时,在真空烧结后随炉进行淬火(快速冷却)处理,而传统工艺则烧结后随炉缓慢冷却。
3、显微组织不同:本发明研制的3D打印或压制烧结纯钛具有纳米尺度并与基体α相具有共格关系的马氏体相(见附图)。该马氏体相是由3D打印或烧结后淬火产生的快速冷却和高含量氧原子共同诱导形成,弥散分布在基体中,且具有优异的塑性,能同时提高该材料的强度和塑性。显然,本发明颠覆了钛金属的氧含量与其塑性存在反比关系的传统认知,实现了强度和塑性的协同兼顾,为高性能金属材料的设计提供了新思路。然而,通常情况下,采用低氧钛粉的3D打印或压制烧结制备的纯钛材料,因为固溶氧原子较少,即便在快速冷却条件下,所产生的晶格畸变也不足以诱导形成大量分布的纳米尺度马氏体相,故无法有效提高材料的强度。
本发明优点在于:
(1)采用粉末冶金近净成形工艺,减少原料浪费,降低制备成本。
(2)通过原位诱导生成纳米尺度且与基体共格的析出相,形成双相组织,对纯钛的组织与性能精确调控,该析出相具有较基体更好的塑性,从而实现增强增塑。
(3)利用纳米尺度共格关系的马氏体相增强增塑纯钛材料,减少稀有金属战略资源的使用,同时实现了钛材料的素化设计。
附图说明
图1实施例1制备样品的透射电镜照片。
具体实施方式
实施例1
将氧含量为0.50wt.%纯钛粉末进行3D打印,打印过程在氩气环境打印工艺为功率150W,扫描速度500mm/s,扫描间隙0.13mm;将打印件置于管式炉中以5℃/min的升温速率进行加热到1100℃保温5min,随后将样品用耐火钳夹出放入冷水中淬火得到双相钛合金样品;取出样品,取样观察其组织形貌,然后将其进行机加工成拉伸条,并测室温力学性能。所得纳米尺度马氏体相含量为20.4%,晶粒尺寸宽度为30~60nm,纯钛抗拉强度为1130MPa,断裂延伸率为13.2%。
实施例2
将氧含量为0.63wt.%纯钛粉末进行3D打印,打印过程在氩气环境打印工艺为功率180W,扫描速度800mm/s,扫描间隙0.13mm;将打印件置于管式炉中以5℃/min的升温速率进行加热到1100℃保温5min,随后将样品用耐火钳夹出放入冷水中淬火得到双相钛合金样品;取出样品,取样观察其组织形貌,然后将其进行机加工成拉伸条,并测室温力学性能。所得纳米尺度马氏体相含量为23.5%,晶粒尺寸宽度为20~40nm,纯钛抗拉强度为1210MPa,断裂延伸率为10.1%。
实施例3
将氧含量为0.58wt.%纯钛粉末进行模压成形,然后在真空度为1×10-3Pa的真空炉中进行烧结,烧结工艺为:以5℃/min的升温速率升温到900℃保温3h,随炉冷却后取出;将烧结样品置于管式炉中以5℃/min的升温速率进行加热到1100℃保温5min,随后将样品用耐火钳夹出放入纯净水中淬火得到双相钛合金样品;取出样品,取样观察其组织形貌,然后将其进行机加工成拉伸条,并测室温力学性能。所得纳米尺度马氏体相含量为21.8%,晶粒尺寸宽度为30~50nm,纯钛抗拉强度为1180MPa,断裂延伸率为12.6%。
实施例4
将氧含量为0.46wt.%纯钛粉末进行模压成形,然后在真空度为1×10-3Pa的真空炉中进行烧结,烧结工艺为:以5℃/min的升温速率升温到1000℃保温2h,随炉冷却后取出;将烧结样品置于管式炉中以5℃/min的升温速率进行加热到1100℃保温5min,随后将样品用耐火钳夹出放入冷水中淬火得到双相钛合金样品;取出样品,取样观察其组织形貌,然后将其进行机加工成拉伸条,并测室温力学性能。所得纳米尺度马氏体相含量为19.6%,晶粒尺寸宽度为40~80nm,纯钛抗拉强度为1090MPa,断裂延伸率为15.6%。

Claims (3)

1.一种高强高塑双相纯钛的制备方法,其特征在于具体制备步骤如下:
(1)以氧含量为0.40~0.70wt.%的纯钛粉末为原料,并进行3D打印或压制、真空烧结;
(2)将步骤(1)得到的样品加热到700~1300℃保温5~30min,随后在纯净水或者盐水中进行淬火,得到双相纯钛材料;
(3)将步骤(2)得到的样品进行拉伸测试并观察材料组织。
2.如权利要求1所述高强高塑双相纯钛的制备方法,其特征在于步骤(1)所述3D打印工艺参数为:功率100~270W,扫描速度300~1200mm/s,扫描间隙0.08~0.14mm。
3.如权利要求1所述高强高塑双相纯钛的制备方法,其特征在于所述真空烧结工艺参数为:升温速率5~10℃/min,烧结温度为900~1300℃,保温时间为1~3h,真空度不低于1×10-3Pa。
CN202210480154.XA 2022-04-27 2022-04-27 一种高强高塑双相纯钛的制备方法 Active CN114951695B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210480154.XA CN114951695B (zh) 2022-04-27 2022-04-27 一种高强高塑双相纯钛的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210480154.XA CN114951695B (zh) 2022-04-27 2022-04-27 一种高强高塑双相纯钛的制备方法

Publications (2)

Publication Number Publication Date
CN114951695A true CN114951695A (zh) 2022-08-30
CN114951695B CN114951695B (zh) 2023-05-30

Family

ID=82981442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210480154.XA Active CN114951695B (zh) 2022-04-27 2022-04-27 一种高强高塑双相纯钛的制备方法

Country Status (1)

Country Link
CN (1) CN114951695B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040115083A1 (en) * 2001-03-26 2004-06-17 Tadahiko Furuta High-strength titanium alloy and process for producing the same
JP2011195864A (ja) * 2010-03-18 2011-10-06 Katsuyoshi Kondo チタン基複合材料およびその製造方法
JP2012241241A (ja) * 2011-05-20 2012-12-10 Katsuyoshi Kondo チタン材料およびその製造方法
US20140290811A1 (en) * 2011-11-10 2014-10-02 Universite De Lorraine Method for the thermomechanical treatment of a titanium alloy, and resulting alloy and prosthesis
CN108080621A (zh) * 2017-11-21 2018-05-29 北京科技大学 低成本激光选区熔化用钛粉、其制备方法及钛材制备方法
CN109988940A (zh) * 2019-04-16 2019-07-09 上海材料研究所 一种稀土改性3d打印用高氧钛粉及制备方法
JP2021134397A (ja) * 2020-02-27 2021-09-13 東邦チタニウム株式会社 チタン系圧粉体の製造方法及び、チタン系焼結体の製造方法
WO2022021488A1 (zh) * 2020-07-29 2022-02-03 北京科技大学 高强高塑钛基复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040115083A1 (en) * 2001-03-26 2004-06-17 Tadahiko Furuta High-strength titanium alloy and process for producing the same
JP2011195864A (ja) * 2010-03-18 2011-10-06 Katsuyoshi Kondo チタン基複合材料およびその製造方法
JP2012241241A (ja) * 2011-05-20 2012-12-10 Katsuyoshi Kondo チタン材料およびその製造方法
US20140290811A1 (en) * 2011-11-10 2014-10-02 Universite De Lorraine Method for the thermomechanical treatment of a titanium alloy, and resulting alloy and prosthesis
CN108080621A (zh) * 2017-11-21 2018-05-29 北京科技大学 低成本激光选区熔化用钛粉、其制备方法及钛材制备方法
CN109988940A (zh) * 2019-04-16 2019-07-09 上海材料研究所 一种稀土改性3d打印用高氧钛粉及制备方法
JP2021134397A (ja) * 2020-02-27 2021-09-13 東邦チタニウム株式会社 チタン系圧粉体の製造方法及び、チタン系焼結体の製造方法
WO2022021488A1 (zh) * 2020-07-29 2022-02-03 北京科技大学 高强高塑钛基复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐坚: "《金属的应力腐蚀断裂 上》", 31 December 1977, 上海化学工业设计院石油化工设备设计建设组 *

Also Published As

Publication number Publication date
CN114951695B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US20210394268A1 (en) 4d printing method and application of titanium-nickel shape memory alloy
CN108060322B (zh) 硬质高熵合金复合材料的制备方法
CN108213422B (zh) 一种含碳高熵合金复合材料的制备方法
CN108103381B (zh) 一种高强度FeCoNiCrMn高熵合金及其制备方法
CN112391556B (zh) 一种双峰晶粒尺寸、双尺度纳米相强化的高强高导Cu-Cr-Nb合金
US20200399135A1 (en) Boron-containing titanium-based composite powder for 3d printing and method of preparing same
Srinivasarao et al. Microstructure and mechanical properties of Al–Zr nanocomposite materials
Jia et al. Microstructural evolution and competitive reaction behavior of Ti-B4C system under solid-state sintering
CN104878238A (zh) 纳米颗粒弥散化的超细晶金属基纳米复合材料的制备方法
CN112322933A (zh) 一种高性能近α高温钛合金及其粉末冶金制备方法
Guan et al. Microstructure and tensile properties of in situ polymer-derived particles reinforced steel matrix composites produced by powder metallurgy method
CN114134385B (zh) 一种难熔中熵合金及其制备方法
CN110592412A (zh) 纳米AlN颗粒增强混晶耐热铝基复合材料及制备方法
Zhang et al. Evolution of inhomogeneous reinforced structure in TiBw/Ti-6AL-4V composite prepared by pre-sintering and canned β extrusion
CN101935777A (zh) 高压缩比强度的钛基超细晶或细晶复合材料及其制备方法
Wang et al. Characterization of hydrogenated niobium interlayer and its application in TiAl/Ti2AlNb diffusion bonding
CN109576546A (zh) 一种高强韧性无磁Ti(C,N)基金属陶瓷的制备方法
CN113798494A (zh) 一种TiB2颗粒增强镁基复合材料及其制备方法
Zhang et al. Tensile properties and deformation behavior of an extra-low interstitial fine-grained powder metallurgy near alpha titanium alloy by recycling coarse pre-alloyed powder
CN114951695B (zh) 一种高强高塑双相纯钛的制备方法
CN109971983A (zh) 一种高性能石墨烯增强镁基复合材料及其制备方法
CN107761022B (zh) 一种混合相增强镁基复合材料及其制备方法
CN113523282A (zh) 一种通过3d打印制备细小等轴晶钛合金的方法
CN102732747A (zh) 以TiH2粉为原料粉末冶金法制备Ti-24Nb-8Sn合金的方法
CN112342419B (zh) 一种基于交联改性的烧结氢化钛制备TiC增强钛基复合材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant