WO2022011839A1 - 皂洗剂及其制备方法与用途 - Google Patents

皂洗剂及其制备方法与用途 Download PDF

Info

Publication number
WO2022011839A1
WO2022011839A1 PCT/CN2020/118021 CN2020118021W WO2022011839A1 WO 2022011839 A1 WO2022011839 A1 WO 2022011839A1 CN 2020118021 W CN2020118021 W CN 2020118021W WO 2022011839 A1 WO2022011839 A1 WO 2022011839A1
Authority
WO
WIPO (PCT)
Prior art keywords
soaping
agent
sophorolipid
water washing
soaping agent
Prior art date
Application number
PCT/CN2020/118021
Other languages
English (en)
French (fr)
Inventor
李政
刘佳
李凤艳
卢文玉
巩继贤
张健飞
李秋瑾
Original Assignee
北京锐盛明杰知识产权代理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京锐盛明杰知识产权代理有限公司 filed Critical 北京锐盛明杰知识产权代理有限公司
Priority to MYPI2021007428A priority Critical patent/MY192898A/en
Priority to PCT/CN2020/118021 priority patent/WO2022011839A1/zh
Priority to US17/178,237 priority patent/US20210171864A1/en
Publication of WO2022011839A1 publication Critical patent/WO2022011839A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/38General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using reactive dyes
    • D06P1/382General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using reactive dyes reactive group directly attached to heterocyclic group
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/58Material containing hydroxyl groups
    • D06P3/60Natural or regenerated cellulose
    • D06P3/66Natural or regenerated cellulose using reactive dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/02After-treatment
    • D06P5/04After-treatment with organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/02After-treatment
    • D06P5/04After-treatment with organic compounds
    • D06P5/08After-treatment with organic compounds macromolecular

Definitions

  • the invention relates to the technical field of textiles, in particular to an environment-friendly soaping agent and a preparation method and application thereof.
  • Reactive dyes are widely used because of their advantages of good color brightness, complete chromatogram, and low price. However, when using reactive dyes to dye cellulose fibers, it is easy to form floating color, and the reasons may be as follows: (1) When using reactive dyes to dye cellulose fibers, some of the dyes are dyed on the fabric and combined with the van der Waals force, and the other part of the dyes are in the alkali.
  • Hydrolysis occurs under natural conditions to form hydrolyzed dyes; 2If the dyes are used too much, they will accumulate on the surface of the fabric in the form of multi-molecular layer associations, so that only the bottom dye molecules can react with cellulose fibers to dye; 3 When the dissociation reaction between the carbon atom and the active chlorine atom in the dye molecule occurs, it is not easy to escape freely, and the phenomenon of "steric hindrance” is easy to occur, which makes the dye fixation rate decrease and form a floating color again.
  • Reactive dye soaping agents play an important role in improving the washing fastness of dyed fabrics and removing hydrolyzed dyes from fabrics. Soaping agents currently used in industry are mainly surfactants and their complexes.
  • the invention patent with publication number CN109989280A "A Low-Temperature Soaping Agent for Cellulose Reactive Dyes", relates to the technical field of textile printing and dyeing.
  • the invention adopts Gemini type anionic sulfonate surfactant and auxiliary agents such as polymers. , is composed of the following components according to weight percentage: sodium dialkyldiphenyl ether disulfonate 1-20%, anionic surfactant AOT 5-15%, defoamer 0.1-0.5%, ⁇ -cyclodextrin 0.1-5%, sodium polyacrylate 0.2-2%, polyvinylpyrrolidone 1-10%, balance of deionized water.
  • the soaping agent has low foam and strong resistance to hard water, and has a significant effect of removing floating color by soaping at a low temperature of 60°C, saving energy and reducing emissions and reducing production costs, and has positive significance for improving the high energy consumption problem in the printing and dyeing industry.
  • a method for preparing an anti-staining soaping agent for printing white ground with reactive dyes is characterized in that it includes the following steps: A. In a compounding kettle, sequentially Add fatty alcohol polyoxyethylene ether-9 and water, raise the temperature to 30-50°C, and stir for 0.5-1 hour to dissolve.
  • the soaping agent prepared by the invention has excellent cleaning performance, strong anti-fouling ability, good biodegradability, moderate price, safety and environmental protection, and can replace similar foreign products. However, it also uses a soaping agent with chemical reagents as the main component, and the active ingredient is also polluting during production.
  • the invention provides a soaping agent, which realizes the application of a low-toxicity and environment-friendly biosurfactant sophorolipid in the soaping of cotton fabrics dyed with reactive dyes, so as to slow down or reduce the impact of cotton fabric soaping waste liquid on the environment. pollution.
  • a soaping agent comprises the following raw materials in parts by weight: 1-9 parts of sophorolipid, 1-9 parts of anionic surfactant, and a soaping aid 1-9 parts, the anionic surfactant is one of sodium dodecylbenzenesulfonate or rhamnolipid.
  • the anionic surfactant is sodium dodecylbenzenesulfonate, and the weight ratio of the sophorolipid to sodium dodecylbenzenesulfonate is 7-9:1-3.
  • the anionic surfactant is sodium dodecylbenzenesulfonate, and the weight ratio of the sophorolipid to sodium dodecylbenzenesulfonate is 8:2.
  • the soaping aid is polyvinylpyrrolidone.
  • the anionic surfactant is sodium dodecylbenzenesulfonate
  • the weight ratio of the sophorolipid, sodium dodecylbenzenesulfonate and polyvinylpyrrolidone is 7-9:1-3:4 -6.
  • the anionic surfactant is sodium dodecylbenzenesulfonate, and the weight ratio of the sophorolipid, sodium dodecylbenzenesulfonate and polyvinylpyrrolidone is 8:2:5.
  • the anionic surfactant is rhamnolipid, and the weight ratio of the sophorolipid to rhamnolipid is 1-3:7-9.
  • the anionic surfactant is rhamnolipid, and the weight ratio of the sophorolipid to rhamnolipid is 2:8.
  • the anionic surfactant is rhamnolipid, and the weight ratio of the sophorolipid, rhamnolipid and polyvinylpyrrolidone is 1-3:7-9:4-6.
  • the anionic surfactant is rhamnolipid, and the weight ratio of the sophorolipid, rhamnolipid and polyvinylpyrrolidone is 2:8:5.
  • Another object of the present invention is to provide the preparation method of the above-mentioned soaping agent, the specific steps are as follows: compound sophorolipid with anionic surfactant and soaping aid in proportions, and shake the solution to make it evenly mixed.
  • Another object of the present invention is to provide the use of the above soaping agent in soaping technology.
  • the washing process includes hot water washing, cold water washing, soaping with soaping agent, and then going through the steps of cold water washing.
  • the total concentration of the soaping agent system is 1.0-5.0 g/L.
  • the total concentration of the soaping agent system can be 1.0g/L, 1.1g/L, 1.2g/L, 1.3g/L, 1.4g/L, 1.5g/L, 1.6g/L, 1.7g/L, 1.8g/L, 1.9g/L, 2g/L, 2.1g/L, 2.2g/L, 2.3g/L, 2.4g/L, 2.5g/L, 2.6g/L, 2.7g/L, 2.8 g/L, 2.9g/L, 3.0g/L, 3.1g/L, 3.2g/L, 3.3g/L, 3.4g/L, 3.5g/L, 3.6g/L, 3.7g/L, 3.8 g/L, 3.9g/L, 4.0g/L, 4.1g/L, 4.2g/L, 4.3g/L, 4.4g/L, 4.5g/L, 4.6g/L,
  • the total concentration of the soaping agent system is 1.5-3.0 g/L.
  • the ratio of soaping to washing is 1:10-30.
  • the soaping time is 15-25min.
  • the soaping temperature is 60-80°C.
  • the temperature is 50-60° C.
  • the time is 5-10 min
  • the bath ratio is 1:50-1:80.
  • the temperature is 20-30° C.
  • the time is 5-10 min
  • the bath ratio is 1:50-1:80.
  • the chemical soaping agent added in the traditional soaping process increases the burden of wastewater treatment, directly affects the energy saving, emission reduction and environmental protection of dyeing, and causes environmental pollution.
  • Water pollution and water consumption are the two major challenges facing the sustainable development of the textile printing and dyeing industry.
  • microbial fermentation biosurfactant is obtained through biological fermentation. It is environmentally friendly from production to application. It can be used in production, Effectively reduce the use of water resources during application and degradation.
  • the microbial fermentation biosurfactant selected in the present invention has a directional adsorption effect on the floating color on the surface of the fabric, reduces the interfacial tension, penetrates between the floating color and the fiber, weakens the adhesion of the floating color on the fiber, and has better emulsifying and dispersing effects.
  • Sophorolipids are the most promising class of glycolipid biosurfactants, with extremely low biotoxicity, environmental friendliness, and biodegradability; suitable for extreme temperatures, pH and salinity; biocompatibility Well, generally not causing allergies.
  • biosurfactant sophorolipids have been widely used in various fields such as daily chemicals, medicine, and environmental engineering. However, there is no report on the use of sophorolipids as soaping agents in the soaping process of dyed cotton fabrics.
  • the invention uses microbial fermentation biosurfactant as a soaping agent for soaping, utilizes the soaping agent to have a directional adsorption effect on the floating color on the surface of the fabric, reduces the interfacial tension, penetrates between the floating color and the fiber, and weakens the floating color on the fiber. Adhesion, with good emulsification and dispersion. Sophorolipids are environmentally friendly and their biodegradability is higher than that of conventional soaps.
  • the chemical oxygen demand (COD) of 1 g/L microbial fermentation biosurfactant is 1655 mg/L, and the COD of sodium dodecylbenzenesulfonate at the same concentration is as high as 2685 mg/L.
  • COD chemical oxygen demand
  • the ratio of BOD to COD is greater than 0.3, the biodegradability is good.
  • the BOD/COD of the sophorolipid is 0.44, while the BOD/COD of sodium dodecylbenzenesulfonate is 0.28, which indicates the biodegradability of the sophorolipid. more pronounced.
  • sophorolipids and anionic surfactants is the molecular interaction between nonionic surfactants and ionic surfactants. From the structural point of view, it is mainly the ion-dipole interaction between polarities.
  • the non-anionic surfactant compound system has three synergistic effects: (1) synergy of micelle-forming ability; (2) synergistic effect of reducing surface tension efficiency; (3) synergistic effect of reducing surface tension ability.
  • soaping auxiliaries to the compound system, the soaping auxiliaries play a major role in increasing the activity of the compound system, and play the roles of decontamination, dispersion, emulsification and solubilization.
  • sophorolipid is environmentally friendly, and its biodegradability is higher than that of conventional soaps.
  • soaping advantages of microbial fermentation biosurfactant and its complex system microbial fermentation biosurfactant will first adsorb on the surface of the fiber and penetrate into the fiber gap, reducing its binding force by reducing the surface tension between unfixed dyes and hydrolyzed dyes and fibers. The unfixed and hydrolyzed dyes are then released from the fibers by mechanical stirring. After the sophorolipid is compounded with sodium dodecylbenzenesulfonate or rhamnolipid, it can effectively improve the wettability and emulsification of the sophorolipid, and improve the surface activity of the sophorolipid, which can be used at a lower concentration.
  • the soaping auxiliaries play an anti-contamination effect, preventing the floating color from recombining with the fibers.
  • the combination of microbial fermentation biosurfactant, anionic surfactant (sodium dodecylbenzenesulfonate or rhamnolipid), and soaping aid further effectively improves the soaping fastness and rubbing fastness of plants.
  • Fig. 1 is the dyeing process diagram of the embodiment of the present invention.
  • Dyeing prescription reactive dye red SNE (M-type reactive dye, that is, with monochloro-s-triazine and vinyl sulfone dual reactive groups) 2% (owf), sodium chloride 60g/L, soda ash 15g/L, liquor ratio 1:30 , dyeing process conditions:
  • the specific process of dyeing cotton fabrics with reactive dyes is as follows: at room temperature 25-30 °C, add fabrics, dyes, and sodium chloride according to the above proportions and mix for 10 minutes, then heat up to 65 °C at a heating rate of 2 °C/min , Soda ash was added after constant temperature heating treatment for 35min, mixing continued at 65°C constant temperature treatment for 45min, the heating was ended, and soaping and water washing of the following experimental examples and examples were carried out.
  • the dyed fabrics were tested for color fastness to soaping.
  • the tablet liquid concentration was 5 g/L, and the soap-to-wash ratio was 1:50.
  • the steel tank was fixed in the color fastness tester to washing, mechanically stirred at 40°C for 30 minutes, and after soaping, the sample to be tested was taken out for washing and drying.
  • the standard backing fabric is made of cotton fiber in the first piece and wool fiber in the second piece. Using the original and the original standard backing fabric as the reference, use the gray sample card to evaluate the discoloration of the sample and the staining grade of the backing fabric.
  • Determination of color fastness to dry rubbing Fix the sample on the platform of the Y571L dyeing color fastness tester with a tightening device, so that the length direction of the sample is in line with the running of the rubbing head (a cylinder with a diameter of 16 ⁇ 0.1mm). the same direction.
  • the running speed is 1 reciprocating friction cycle per second, a total of 10 friction cycles, the friction stroke is 104 ⁇ 3mm, and the applied downward pressure is 9 ⁇ 0.2N.
  • remove the sample to be tested and the standard rubbing cotton cloth and use the gray sample card for staining to evaluate the staining grade of the rubbing cloth.
  • Wet rubbing color fastness determination Weigh the standard rubbing cotton cloth, then completely immerse it in distilled water, remove the excess water on the cotton cloth with an adjustable paddle device, and re-weigh the rubbing cloth to ensure that the moisture content of the rubbing cloth reaches 95- 100%. Then test according to the method of color fastness to dry rubbing. After the test, dry the wet rubbing cloth. Finally, use the gray sample card for staining to evaluate the staining grade of the rubbing cloth.
  • a soaping process comprises the steps of hot water washing, cold water washing, soaping with a soaping agent, and cold water washing.
  • the soaping agent is a sophorolipid with a mass concentration of 2 g/L.
  • the ratio of soaping to washing is 1:30, and the soaping temperature is 80°C.
  • the temperature was 55° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the temperature was 25° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the reactive dye-dyed cotton fabric is soaped according to the above-mentioned soaping method, and is grouped according to different soaping times, wherein: the corresponding soaping times of experimental groups 1, 2, and 3 are: 15min, 20min, 25min;
  • control group 1 and 2 The corresponding soaping time of control group 1 and 2 is: 10min and 30min
  • a soaping process includes hot water washing, cold water washing, soaping with a soaping agent, and then going through the steps of cold water washing.
  • the soaping agent is a sophorolipid with a mass concentration of 2.0 g/L.
  • the ratio of soaping to washing is 1:30, and the soaping time is 20min.
  • the temperature was 55° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the temperature was 25° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the reactive dye-dyed cotton fabric was soaped according to the above soaping method, and grouped according to different soaping temperatures, wherein: the corresponding soaping temperatures of experimental groups 1, 2, and 3 were: 60°C, 70°C, and 80°C;
  • control group 1 and 2 The corresponding soaping times of control group 1 and 2 are: 50°C and 90°C
  • the temperature has a great influence on the soaping effect.
  • the concentration of the soaping residual liquid is 6.87mg/L
  • the concentration of the soaping residual liquid at a temperature of 80 °C reaches 6.87 mg/L. 17.29mg/L, which is almost the same as the soaping effect at 90°C.
  • Reactive dyes have high directness and combine with cotton fibers with their own affinity for cotton fibers. Most of the dyes exist in the inner pores of the fibers, and a small amount of dyes adhere to the surface of the fibers.
  • the reactive dyes on the fiber surface are due to the concentration of water and water. Poor and dispersibility of the sophorolipids were removed.
  • a soaping process includes hot water washing, cold water washing, soaping with a soaping agent, and then going through the steps of cold water washing.
  • the total concentration of the soaping agent system in both the experimental group and the control group was 2.0 g/L.
  • the ratio of soaping to washing is 1:30, the soaping time is 20min, and the soaping temperature is 80°C.
  • the temperature was 55° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the temperature was 25° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the reactive dye-dyed cotton fabric was soaped according to the above-mentioned soaping method, and grouped according to different soaping agents, wherein: experimental groups 1, 2, and 3 were respectively the weight ratio of sophorolipid and sodium dodecylbenzenesulfonate: : 7:3, 8:2, 9:1 compound system;
  • Control group 1 sodium dodecylbenzenesulfonate
  • Control group 2 Sophorolipids
  • Control group 3 sodium lauryl sulfate
  • Control group 4 the weight ratio of sophorolipid and sodium lauryl sulfate is 10:3 (the preferred ratio of sophorolipid and sodium lauryl sulfate), measure the absorbance of the soaping residue, and then according to the reactive dyes The standard curve for calculating the dye concentration in the soaping raffinate. The soaping fastness and rubbing fastness of the fabric after soaping were determined.
  • sophorolipid Compared with the experimental group and the control group 2, the soaping performance of the combination of sophorolipid and sodium dodecylbenzenesulfonate was significantly higher than that of the sophorolipid, the anionic surfactant sodium dodecylbenzenesulfonate.
  • sophorolipid reduces the steric hindrance of the nonionic sophorolipid itself, so that the sophorolipid and sodium dodecylbenzenesulfonate have a synergistic effect.
  • a soaping process includes hot water washing, cold water washing, soaping with a soaping agent, and then passing through the steps of cold water washing.
  • the total concentration of the soaping agent system of the experimental group and the control group is 2.0g/L;
  • the ratio of soaping to washing is 1:30, the soaping time is 20min, and the soaping temperature is 80°C.
  • the temperature was 55° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the temperature was 25° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the reactive dye-dyed cotton fabric was soaped according to the above-mentioned soaping method, and grouped according to different soaping agents, wherein: experimental groups 1, 2, and 3 were respectively the ratio of sophorolipid to rhamnolipid: 3:7, 2:8, 1:9 composite soaping system;
  • Control group 1 is rhamnolipid
  • Control group 2 is sophorolipid.
  • the soaping performance of the combination of sophorolipids and rhamnolipids was significantly higher than that of the sophorolipids.
  • the rhamnolipids themselves had excellent surface activity, and the The existence of the steric hindrance of the sophorolipid itself is reduced, so that the sophorolipid and rhamnolipid have a synergistic effect.
  • Example 1 Soaping effect of SL/SDBS/PVP (polyvinylpyrrolidone) compound system
  • a soaping process includes hot water washing, cold water washing, soaping with a soaping agent, and then passing through the steps of cold water washing.
  • the total concentration of the soaping agent system of the experimental group and the control group is 2.0g/L;
  • the ratio of soaping to washing is 1:30, the soaping time is 20min, and the soaping temperature is 80°C.
  • the temperature was 55° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the temperature was 25° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • Reactive dye-dyed cotton fabrics were soaped according to the above soaping method, and grouped according to different soaping agents, wherein: experimental groups 1, 2, and 3 were respectively sophorolipid, sodium dodecylbenzenesulfonate and polyethylene
  • the weight ratio of pyrrolidone is: 8:2:4, 8:2:5, 8:2:6 compound soaping system.
  • control group 1 sodium dodecylbenzenesulfonate
  • Control group 2 is: soap flakes (product manufacturer: Shanghai Textile Industry Technical Supervision Institute);
  • Control group 3 is: alkyl glycosides, sodium dodecylbenzenesulfonate and polyvinylpyrrolidone are mixed in a weight ratio of 10:3:5 (the preferred ratio).
  • alkyl glycosides and microbial fermentation biosurfactants are also environmentally friendly.
  • a soaping agent in terms of soaping function and performance, microbial fermentation biosurfactants are compared with sodium dodecylbenzenesulfonate and polysorbate.
  • the combined soaping performance of vinylpyrrolidone was significantly higher than that of alkyl glycosides with sodium dodecylbenzenesulfonate and polyvinylpyrrolidone.
  • the alkyl glycosides need more water for washing. When the water-to-wash ratio reaches 1:80, the soaping fastness and rubbing fastness of the fabric are improved by about 0.5-1.
  • the foaming height of 1 g/L microbial fermentation biosurfactant was 10.67 mm, while the 1 g/L alkyl glycoside reached 75 mm. It can be seen that the foaming height of microbial fermentation biosurfactant in the soaping process was 75 mm. Lower lather, so less water is used during washing, allowing soaping at low water levels.
  • a soaping process includes hot water washing, cold water washing, soaping with a soaping agent, and then passing through the steps of cold water washing.
  • the total concentration of the soaping agent system is 1.5g/L.
  • the ratio of soaping to washing is 1:20, the soaping time is 25min, and the soaping temperature is 70°C.
  • the temperature is 55° C.
  • the time is 5 min
  • the bath ratio is 1:55.
  • the temperature is 28-30° C.
  • the time is 5 min
  • the bath ratio is 1:55.
  • Reactive dye-dyed cotton fabric is soaped according to the above-mentioned soaping method, and is grouped according to different soaping agents, wherein: the weight ratio of sophorolipid, sodium dodecylbenzenesulfonate and polyvinylpyrrolidone is: 8:2: 5;
  • Example 2 is similar to Example 1 in the technical effects of soaping residue concentration, soaping fastness and rubbing fastness.
  • a soaping process includes hot water washing, cold water washing, soaping with a soaping agent, and then passing through the steps of cold water washing.
  • the total concentration of the soaping agent system in both the experimental group and the control group was 2.0 g/L.
  • the ratio of soaping to washing is 1:30, the soaping time is 20min, and the soaping temperature is 80°C.
  • the temperature was 55° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the temperature was 25° C.
  • the time was 5 min
  • the bath ratio was 1:50.
  • the reactive dye-dyed cotton fabric was soaped according to the above soaping method, and grouped according to different soaping agents, wherein: experimental groups 1, 2, and 3 were respectively the weight ratio of sophorolipid, rhamnolipid and polyvinylpyrrolidone: : 2:8:4, 2:8:5, 2:8:6 compound soaping system.
  • Control group 1 sodium dodecylbenzenesulfonate
  • Control group 2 is: soap flakes (product manufacturer: Shanghai Textile Industry Technical Supervision Institute);
  • Control group 3 is: alkyl glycosides, rhamnolipids and polyvinylpyrrolidone are mixed in a weight ratio of 11:3:5 (the preferred ratio of alkyl glycosides, rhamnolipids and polyvinylpyrrolidone).
  • a soaping process includes hot water washing, cold water washing, soaping with a soaping agent, and then passing through the steps of cold water washing.
  • the soaping agent is a compound system of sophorolipid, rhamnolipid and polyvinylpyrrolidone, wherein the weight ratio of sophorolipid, rhamnolipid and polyvinylpyrrolidone is: 2:8:5; The total concentration of the agent system is 2.5g/L.
  • the ratio of soaping to washing is 1:20, the soaping time is 25min, and the soaping temperature is 60°C.
  • the temperature is 50° C.
  • the time is 5 min
  • the bath ratio is 1:60.
  • the temperature is 25° C.
  • the time is 5 min
  • the bath ratio is 1:60.
  • Example 4 is similar to Example 3 in the technical effects of soaping residue concentration, soaping fastness and rubbing fastness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Coloring (AREA)

Abstract

一种活性染料染色棉织物的环保型皂洗剂及其制备方法与用途,属于纺织技术领域。该皂洗剂按照重量份数计包括如下原料:槐糖脂1-9份,阴离子表面活性剂1-9份,皂洗助剂1-9份,阴离子表面活性剂为十二烷基苯磺酸钠或鼠李糖脂中的一种。利用槐糖脂、阴离子表面活性剂、皂洗助剂的组合能有效提高织物的皂洗牢度和摩擦牢度,同时该皂洗剂对环境友好,可生物降解,具有广泛的应用前景。

Description

皂洗剂及其制备方法与用途
本申请要求于2019年9月29日提交中国专利局、申请号为201910931728.9、发明名称为“一种活性染料染色棉织物的环保型皂洗剂及其制备方法与用途”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及纺织技术领域,具体涉及一种环保型皂洗剂及其制备方法与用途。
背景技术
活性染料因具有色泽鲜艳度好、色谱齐全、价格低廉等优点而被广泛使用。但在使用活性染料染色纤维素纤维时容易形成浮色,其原因可能有以下三点:①使用活性染料染色纤维素纤维时,一部分染料上染到织物与其以范德华力结合,另外一部分染料在碱性条件下发生水解,形成水解染料;②如果染料使用过多,会以多分子层缔合物的形式在织物表面堆积,使得只有最底层的染料分子才能与纤维素纤维反应而上染;③染料分子中碳原子和活性氯原子发生离解反应时不易自由地避让,易产生“位阻”现象,使得染料固着率下降再次形成浮色。活性染料皂洗剂在提高染色织物水洗牢度、从织物上去除水解染料方面起着重要的作用。目前工业中所用皂洗剂主要是表面活性剂及其复配物。
公开号为CN109989280A的发明专利《一种纤维素活性染料用的低温皂洗剂》,涉及纺织印染技术领域,该发明采用Gemini型阴离子磺酸盐表面活性剂和聚合物等助剂复配而成,由以下按照重量百分比的各分组分构成:双烷基二苯醚二磺酸钠1-20%,阴离子表面活性剂 AOT 5-15%,消泡剂0.1-0.5%,β-环糊精0.1-5%,聚丙烯酸钠0.2-2%,聚乙烯吡咯烷酮1-10%,去离子水余量。该皂洗剂低泡且抗硬水能力强,在60℃低温皂洗去浮色效果显著,节能减排且降低生产成本,对改善印染行业高耗能问题有积极意义。
现有技术中,皂洗工艺中往往加入化学皂洗剂,从而增加了废水处理的负担,直接影响染色的节能减排和环保性,造成环境污染。
虽然现有技术中公开了具有生物降解性的皂洗剂,如CN102911807A一种活性染料印花白地防沾污皂洗剂的制备方法,其特征在于,包括以下步骤:A、在复配釜中依次加入脂肪醇聚氧乙烯醚-9和水,升温至30~50℃,搅拌0.5~1小时,使其溶解。B、在剧烈搅拌下,向步骤A得到的溶液中依次加入聚-4一羟基四亚甲基1,2-二羧酸(CP2),十二烷基二甲基甜菜碱,月桂醇聚醚-9硫酸铵,羧甲基羟丙基纤维素,EDTA二钠盐,偏硅酸钠,再加入定量的水,在40~60℃搅拌0.5~2小时,制得活性含量为25%的优化皂洗剂产品。本发明所制得皂洗剂净洗性能优良,防沾污能力强,生物降解性好,价格适中,安全环保,可替代国外同类产品。但是其同样使用的是化学试剂为主要成分的皂洗剂,该有效成分在生产中同时也是具有污染性的。
发明内容
本发明提供一种皂洗剂,实现了一种低毒、环境友好的生物表面活性剂槐糖脂在活性染料染色棉织物皂洗上的应用,以减缓或降低棉织物皂洗废液对环境的污染。
本发明提供的完整技术方案为:一种皂洗剂,所述皂洗剂按照重量份数计包括如下原料:槐糖脂1-9份,阴离子表面活性剂1-9份,皂洗助剂1-9份,所述阴离子表面活性剂为十二烷基苯磺酸钠或鼠李糖脂中的一种。
优选地,所述阴离子表面活性剂为十二烷基苯磺酸钠,所述槐糖脂与十二烷基苯磺酸钠的重量比为7-9:1-3。
更优选地,所述阴离子表面活性剂为十二烷基苯磺酸钠,所述槐 糖脂与十二烷基苯磺酸钠的重量比为8:2。
优选地,所述皂洗助剂为聚乙烯吡咯烷酮。
优选地,所述阴离子表面活性剂为十二烷基苯磺酸钠,所述槐糖脂、十二烷基苯磺酸钠以及聚乙烯吡咯烷酮的重量比为7-9:1-3:4-6。
更优选地,所述阴离子表面活性剂为十二烷基苯磺酸钠,所述槐糖脂、十二烷基苯磺酸钠以及聚乙烯吡咯烷酮的重量比为8:2:5。
优选地,所述阴离子表面活性剂为鼠李糖脂,所述槐糖脂与鼠李糖脂的重量比为1-3:7-9。
更优选地,所述阴离子表面活性剂为鼠李糖脂,所述槐糖脂与鼠李糖脂的重量比为2:8。
优选地,所述阴离子表面活性剂为鼠李糖脂,所述槐糖脂、鼠李糖脂与聚乙烯吡咯烷酮的重量比为1-3:7-9:4-6。
更优选地,所述阴离子表面活性剂为鼠李糖脂,所述槐糖脂、鼠李糖脂与聚乙烯吡咯烷酮的重量比为2:8:5。
本发明的另一目的是提供上述皂洗剂的制备方法,具体步骤如下:将槐糖脂与阴离子表面活性剂和皂洗助剂按比例份数进行复配,振荡溶液使其混合均匀。
本发明的另一目的是提供上述皂洗剂在皂洗工艺上的用途。
优选地,所述洗涤工艺包括热水洗、冷水洗、皂洗剂皂洗、再经过冷水洗步骤。
优选地,所述皂洗剂体系总浓度为1.0-5.0g/L。所述皂洗剂体系总浓度可以为1.0g/L、1.1g/L、1.2g/L、1.3g/L、1.4g/L、1.5g/L、1.6g/L、1.7g/L、1.8g/L、1.9g/L、2g/L、2.1g/L、2.2g/L、2.3g/L、2.4g/L、2.5g/L、2.6g/L、2.7g/L、2.8g/L、2.9g/L、3.0g/L、3.1g/L、3.2g/L、3.3g/L、3.4g/L、3.5g/L、3.6g/L、3.7g/L、3.8g/L、3.9g/L、4.0g/L、4.1g/L、4.2g/L、4.3g/L、4.4g/L、4.5g/L、4.6g/L、4.7g/L、4.8g/L、4.9g/L、5.0g/L。
更优选地,所述皂洗剂体系总浓度为1.5-3.0g/L。
优选地,所述皂洗剂皂洗步骤中:皂洗浴比为1:10-30。
优选地,所述皂洗剂皂洗步骤中:皂洗时间为15-25min。
优选地,所述皂洗剂皂洗步骤中:皂洗温度60-80℃。
优选地,所述热水洗步骤中,温度为50-60℃,时间为5-10min,浴比为1:50-1:80。
优选地,所述冷水洗步骤中,温度为20-30℃,时间为5-10min,浴比为1:50-1:80。
本发明具有如下有益效果:
传统皂洗工艺中加入的化学皂洗剂增加了废水处理的负担,直接影响染色的节能减排和环保性,造成环境污染。而水污染和耗水量是纺织印染行业可持续发展面临的两大挑战,槐糖脂作为皂洗剂,是经过生物发酵而获得的,从生产到应用都是具有环保性的,可在生产、应用和降解过程中有效减少水资源的使用。
本发明选择的槐糖脂对织物表面浮色有定向吸附作用,通过降低界面张力,渗透于浮色与纤维之间,削弱浮色在纤维上的附着力,具有较好的乳化、分散作用。槐糖脂是糖脂类生物表面活性剂中最有前途的一类生物表面活性剂,生物毒性极低、对环境友好,可生物降解;适用于极端温度、pH和盐度;生物相容性好,一般不会导致过敏。近年来,生物表面活性剂槐糖脂已逐渐广泛用途于日化、医药、环境工程等各个领域。然而关于槐糖脂作为皂洗剂在染色棉织物皂洗工艺中的用途还未见报道。
本发明利用槐糖脂作为皂洗剂进行皂洗,利用了皂洗剂对织物表面浮色有定向吸附作用,通过降低界面张力,渗透于浮色与纤维之间,削弱浮色在纤维上的附着力,具有较好的乳化、分散作用。槐糖脂具有环保性,其生物降解性比常规皂洗液高。
槐糖脂的降解性:1g/L的槐糖脂的化学需氧量(COD)为1655mg/L,同浓度的十二烷基苯磺酸钠的COD高达2685mg/L。COD值越小,说明水质污染程度越轻,降解性越好。BOD与COD的比值大于0.3时,可生化性好,槐糖脂的BOD/COD为0.44,而十二烷基苯磺酸钠的BOD/COD为0.28,由此说明槐糖脂的可生化性更为显著。
槐糖脂与阴离子表面活性剂复配是非离子表面活性剂与离子表面活性剂之间的分子相互作用,从结构上考虑,主要是极性之间的离子—偶极子相互作用。非-阴离子表面活性剂复配体系具有三大增效作用:(1)形成胶团能力的增效;(2)降低表面张力效率的增效;(3)降低表面张力能力的增效。在复配体系中加入皂洗助剂,皂洗助剂在增大复配体系活性方面起主要作用,起到去污、分散、乳化和增溶的作用。并且槐糖脂具有环保性,其生物降解性比常规皂洗液高。
槐糖脂及其复配体系皂洗优势:槐糖脂首先会吸附在纤维表面同时渗透到纤维缝隙之中,通过降低未固着染料以及水解染料和纤维之间的表面张力而降低其结合力,之后通过机械搅拌作用,使未固着染料以及水解染料脱离纤维。槐糖脂与十二烷基苯磺酸钠或鼠李糖脂复配后,可以有效提高槐糖脂润湿性和乳化性,提高了槐糖脂表面活性,可以在较低浓度下就能达到原本的皂洗性能,皂洗助剂起到防沾染作用,防止浮色与纤维再结合。槐糖脂、阴离子表面活性剂(十二烷基苯磺酸钠或鼠李糖脂)、皂洗助剂的组合更进一步有效提高植物的皂洗牢度和摩擦牢度。
附图说明
图1为本发明实施例的染色工艺图。
具体实施方式
下面通过具体的实施方案叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。以下结合具体实施例对本发明进行进一步说明。
以下实验例和实施例中选择的皂洗织物的染色工艺如下:
染色处方:活性染料红SNE(M型活性染料,即带有一氯均三嗪和乙烯砜双活性基)2%(owf),氯化钠60g/L,纯碱15g/L,浴比 1:30,染色工艺条件:活性染料染色棉织物工艺流程具体为:在室温25-30℃下,按照上述比例加入织物、染料、氯化钠混合10min后,以2℃/min的升温速度升温至65℃,恒温加热处理35min后加入纯碱,混合继续65℃恒温再处理45min,结束加热,进行下述实验例和实施例的皂洗和水洗。
以下实施例和实验例中对应的耐皂洗色牢度测试和耐摩擦色牢度测试方法如下:
(1)耐皂洗色牢度测试
根据国标GB/T 3920-2008《纺织品色牢度试验耐皂洗色牢度》对染色织物进行耐皂洗色牢度测试。取试样100×40mm夹于两块标准贴衬织物100×40mm之间,沿一短边缝合。首先将装有皂液的钢罐放入型号为SW-10的耐皂洗色牢度试验机中预热,待温度达到40±2℃后,将待测试样放入钢管中,其中皂片液浓度是5g/L,皂洗浴比为1:50。将钢罐固定于耐洗色牢度试验机中,在40℃条件下机械搅拌30min,皂洗完毕后取出待测试样进行水洗和干燥。标准贴衬织物第一块由棉纤维制成,第二块由毛纤维制成。以原样和原标准贴衬织物为参照物,用灰色样卡评定试样的变色和贴衬织物沾色等级。
(2)耐摩擦色牢度测试
根据国标GB/T 3920-2008《纺织品色牢度试验耐摩擦色牢度》,对染色织物净洗耐摩擦色牢度测试。取试样50×200mm两块,分别用于干摩擦试验和湿摩擦(湿摩擦中含水率达到98%)试验。标准摩擦棉布50×50mm用于摩擦头。
干摩擦色牢度测定:用加紧装置将试样固定在型号为Y571L的染色摩擦色牢度仪平台上,使试样的长度方向与摩擦头(直径为16±0.1mm的圆柱体)的运行方向一致。运行速度为每秒1个往复摩擦循环,共摩擦10个循环,摩擦的动程为104±3mm,施加的向下压力为9±0.2N。测试完毕后取下待测试样和标准摩擦棉布,用沾色用灰色样卡评定摩擦布的沾色级数。
湿摩擦色牢度测定:称量标准摩擦棉布,然后将其完全浸入蒸馏 水中,用可调节的轧液装置去除棉布上多余的水,重新称量摩擦布以确保摩擦布的含水率达到95-100%。然后按干摩擦色牢度测定方法进行测试,测试完毕后将湿摩擦布晾干,最后用沾色用灰色样卡评定摩擦布的沾色级数。
实验例1:时间对槐糖脂皂洗效果的影响
一种皂洗工艺,包括热水洗、冷水洗、皂洗剂皂洗、再经过冷水洗步骤。
其中,皂洗剂为质量浓度为2g/L的槐糖脂。
其中,皂洗剂皂洗步骤中:皂洗浴比为1:30,皂洗温度80℃。
其中,热水洗步骤中,温度为55℃,时间为5min,浴比为1:50。
其中,冷水洗步骤中,温度为25℃,时间为5min,浴比为1:50。
按照上述皂洗方法对活性染料染色棉织物进行皂洗,并按照不同皂洗时间进行分组,其中:实验组1、2、3分别对应皂洗时间为:15min,20min,25min;
对照组1和2对应皂洗时间为:10min和30min
测定皂洗残液的吸光度,再根据活性染料的标准曲线计算出皂洗残液中的染料浓度。
表1 时间对槐糖脂皂洗效果的影响
时间(min) 皂洗残液浓度(mg/L)
实验组1:15 15.87
实验组2:20 17.24
实验组3:25 17.60
对照组1:10 12.48
对照组2:30 17.69
由上表可以看出,随着皂洗时间的增加,皂洗残液浓度先升高后趋于平缓。当皂洗时间为20min时,槐糖脂对棉织物已达到了较好的皂洗效果。
实验例2:温度对槐糖脂皂洗效果的影响
一种皂洗工艺,所述皂洗工艺包括热水洗、冷水洗、皂洗剂皂洗、 再经过冷水洗步骤。
其中,皂洗剂为质量浓度为2.0g/L的槐糖脂。
其中,皂洗剂皂洗步骤中:皂洗浴比为1:30,皂洗时间为20min。
其中,热水洗步骤中,温度为55℃,时间为5min,浴比为1:50。
其中,冷水洗步骤中,温度为25℃,时间为5min,浴比为1:50。
按照上述皂洗方法对活性染料染色棉织物进行皂洗,并按照不同皂洗温度进行分组,其中:实验组1、2、3分别对应皂洗温度为:60℃,70℃,80℃;
对照组1、2对应皂洗时间为:50℃和90℃
测定皂洗残液的吸光度,再根据活性染料的标准曲线计算出皂洗残液中的染料浓度。
表2 温度对槐糖脂皂洗效果的影响
温度(℃) 皂洗残液浓度(mg/L)
实验组1:60 7.70
实验组2:70 11.01
实验组3:80 17.29
对照组1:50 6.87
对照组2:90 17.42
由上表看出,温度对皂洗效果的影响比较大,当皂洗温度是50℃时,皂洗残液浓度为6.87mg/L,而温度为80℃下的皂洗残液浓度就达到了17.29mg/L,与90℃下的皂洗效果相差无几。活性染料的直接性较高,以自身对棉纤维的亲和力与棉纤维结合,大部分染料存在于纤维的内孔道中,少量染料沾附在纤维表面。皂洗温度越高,纤维的溶胀越充分,染料的扩散系数也会相应的提高,有利于纤维内孔道未完全固着的活性染料解吸并向纤维表面扩散,纤维表面的活性染料因为与水的浓度差和槐糖脂的分散性被去除。
实验例3:槐糖脂(SL)/十二烷基苯磺酸钠(SDBS)复配体系对应皂洗效果的影响
一种皂洗工艺,所述皂洗工艺包括热水洗、冷水洗、皂洗剂皂洗、 再经过冷水洗步骤。
其中,实验组和对照组的皂洗剂体系的总浓度均为2.0g/L。
其中,皂洗剂皂洗步骤中:皂洗浴比为1:30,皂洗时间为20min,皂洗温度80℃。
其中,热水洗步骤中,温度为55℃,时间为5min,浴比为1:50。
其中,冷水洗步骤中,温度为25℃,时间为5min,浴比为1:50。
按照上述皂洗方法对活性染料染色棉织物进行皂洗,并按照不同皂洗剂进行分组,其中:实验组1、2、3分别为槐糖脂与十二烷基苯磺酸钠重量比为:7:3,8:2,9:1的复配体系;
对照组1:十二烷基苯磺酸钠;
对照组2:槐糖脂;
对照组3:十二烷基硫酸钠;
对照组4:槐糖脂和十二烷基硫酸钠重量比为10:3(槐糖脂和十二烷基硫酸钠的优选配比),测定皂洗残液的吸光度,再根据活性染料的标准曲线计算出皂洗残液中的染料浓度。测定皂洗后织物的皂洗牢度和摩擦牢度。
表3 SL/SDBS复配体系对应皂洗效果的影响
Figure PCTCN2020118021-appb-000001
由上表看出,不同重量比的SL/SDBS复配体系对染色棉织物的皂洗效果不同,而且经过重量比8:2的复配皂洗体系皂洗后的棉织物, 其皂洗牢度和摩擦牢度有1-2级左右的提高。
实验组和对照组1相比,槐糖脂与十二烷基苯磺酸钠的组合皂洗性能要显著高于十二烷基苯磺酸钠的皂洗性能,非离子表面活性剂槐糖脂的加入削弱了十二烷基苯磺酸钠所形成电荷排斥作用。
实验组和对照组2相比,槐糖脂与十二烷基苯磺酸钠的组合皂洗性能要显著高于槐糖脂的皂洗性能,阴离子表面活性剂十二烷基苯磺酸钠的存在降低了非离子槐糖脂自身的空间位阻作用,使槐糖脂与十二烷基苯磺酸钠具有协同增效作用。
同时通过实验组和对照组3、4相比,可知在利用十二烷基硫酸钠作为皂洗剂时,虽然其性质和与十二烷基苯磺酸钠相似,但是在皂洗功能和性能上,槐糖脂与十二烷基苯磺酸钠的组合皂洗性能要显著高于槐糖脂与十二烷基硫酸钠的皂洗性能,由此说明十二烷基苯磺酸钠更显著提高了槐糖脂表面活性,可以在较低浓度下就能达到原本的皂洗性能。
实验例4:SL/RL(鼠李糖脂)复配体系的皂洗效果
一种皂洗工艺,所述皂洗工艺包括热水洗、冷水洗、皂洗剂皂洗、再经过冷水洗步骤。
其中,实验组和对照组的皂洗剂体系的总浓度均为2.0g/L;
其中,皂洗剂皂洗步骤中:皂洗浴比为1:30,皂洗时间为20min,皂洗温度80℃。
其中,热水洗步骤中,温度为55℃,时间为5min,浴比为1:50。
其中,冷水洗步骤中,温度为25℃,时间为5min,浴比为1:50。
按照上述皂洗方法对活性染料染色棉织物进行皂洗,并按照不同皂洗剂进行分组,其中:实验组1、2、3分别为槐糖脂与鼠李糖脂比为:3:7,2:8,1:9的复合皂洗体系;
对照组1为鼠李糖脂;
对照组2为槐糖脂。
测定皂洗残液的吸光度,再根据活性染料的标准曲线计算出皂洗残液中的染料浓度。测定皂洗后织物的皂洗牢度和摩擦牢度。
表4 SL/RL复配体系对应皂洗效果的影响
Figure PCTCN2020118021-appb-000002
由上表看出,不同重量比的SL/RL复配体系对染色棉织物的皂洗效果不同,而且经过重量比2:8的复配皂洗体系皂洗后的棉织物,其皂洗牢度和摩擦牢度有1-2级左右的提高。
实验组和对照组1相比,槐糖脂与鼠李糖脂的组合皂洗性能要显著高于鼠李糖脂的皂洗性能,槐糖脂的加入削弱了十二烷基苯磺酸钠所形成电荷排斥作用,提高了两者的综合性能,具有协同增效作用。
实验组和对照组2相比,槐糖脂与鼠李糖脂的组合皂洗性能要显著高于槐糖脂的皂洗性能,鼠李糖脂本身具有优异的表面活性,鼠李糖脂的存在降低了槐糖脂自身的空间位阻作用,使槐糖脂与鼠李糖脂具有协同增效作用。
实施例1:SL/SDBS/PVP(聚乙烯吡咯烷酮)复配体系的皂洗效果
一种皂洗工艺,所述皂洗工艺包括热水洗、冷水洗、皂洗剂皂洗、再经过冷水洗步骤。
其中,所述实验组和对照组的皂洗剂体系的总浓度均为2.0g/L;
其中,皂洗剂皂洗步骤中:皂洗浴比为1:30,皂洗时间为20min, 皂洗温度80℃。
其中,热水洗步骤中,温度为55℃,时间为5min,浴比为1:50。
其中,冷水洗步骤中,温度为25℃,时间为5min,浴比为1:50。
按照上述皂洗方法对活性染料染色棉织物进行皂洗,并按照不同皂洗剂进行分组,其中:实验组1、2、3分别为槐糖脂、十二烷基苯磺酸钠与聚乙烯吡咯烷酮重量比为:8:2:4,8:2:5,8:2:6的复配皂洗体系。
同时选择三种皂洗剂作为对照,对照组1为:十二烷基苯磺酸钠;
对照组2为:皂片(产品生厂商:上海市纺织工业技术监督所);
对照组3为:烷基糖苷、十二烷基苯磺酸钠与聚乙烯吡咯烷酮按照重量比10:3:5混合(烷基糖苷、十二烷基苯磺酸钠与聚乙烯吡咯烷酮的优选配比)。
测定皂洗残液的吸光度,再根据活性染料的标准曲线计算出皂洗残液中的染料浓度。测定皂洗后织物的皂洗牢度和摩擦牢度。
表5 SL/SDBS/PVP复配体系的皂洗效果
Figure PCTCN2020118021-appb-000003
由上表可看出,加入皂洗助剂聚乙烯吡咯烷酮(PVP),SL/SDBS复配皂洗体系溶液对染色棉织物的皂洗效果有所提高,经过加入皂洗助剂的复配皂洗体系皂洗后的棉织物,其皂洗牢度和摩擦牢度有1-2级左右的提高。
在实验组和对照组3的对比中,烷基糖苷与槐糖脂同样具有环保 性,作为皂洗剂,在皂洗功能和性能上,槐糖脂与十二烷基苯磺酸钠和聚乙烯吡咯烷酮的组合皂洗性能要显著高于烷基糖苷与十二烷基苯磺酸钠和聚乙烯吡咯烷酮的皂洗性能。在相同皂洗条件下,烷基糖苷需要更多的水进行水洗,当水洗浴比达到1:80时,织物的皂洗牢度和摩擦牢度才有0.5-1级左右的提高。经测定在皂洗过程中,1g/L的槐糖脂的起泡高度为10.67mm,而1g/L的烷基糖苷达到了75mm,由此可以看出,槐糖脂在皂洗过程中的起泡性更低,从而在水洗的过程中,用水量也会更低,可以在低用水量水平达到皂洗效果。
实施例2:SL/SDBS/PVP复配体系的皂洗效果
一种皂洗工艺,所述皂洗工艺包括热水洗、冷水洗、皂洗剂皂洗、再经过冷水洗步骤。
其中,皂洗剂体系的总浓度为1.5g/L。
其中,皂洗剂皂洗步骤中:皂洗浴比为1:20,皂洗时间为25min,皂洗温度70℃。
其中,热水洗步骤中,温度为55℃,时间为5min,浴比为1:55。
其中,冷水洗步骤中,温度为28-30℃,时间为5min,浴比为1:55。
按照上述皂洗方法对活性染料染色棉织物进行皂洗,并按照不同皂洗剂进行分组,其中:槐糖脂、十二烷基苯磺酸钠与聚乙烯吡咯烷酮重量比为:8:2:5;
实施例2在皂洗残液浓度、皂洗牢度和摩擦牢度的技术效果上与实施例1相近。
实施例3:SL/RL/PVP(聚乙烯吡咯烷酮)复配体系的皂洗效果
一种皂洗工艺,所述皂洗工艺包括热水洗、冷水洗、皂洗剂皂洗、再经过冷水洗步骤。
其中,实验组和对照组的皂洗剂体系的总浓度均为2.0g/L。
其中,皂洗剂皂洗步骤中:皂洗浴比为1:30,皂洗时间为20min,皂洗温度80℃。
其中,热水洗步骤中,温度为55℃,时间为5min,浴比为1:50。
其中,冷水洗步骤中,温度为25℃,时间为5min,浴比为1:50。
按照上述皂洗方法对活性染料染色棉织物进行皂洗,并按照不同皂洗剂进行分组,其中:实验组1、2、3分别为槐糖脂、鼠李糖脂与聚乙烯吡咯烷酮重量比为:2:8:4,2:8:5,2:8:6的复配皂洗体系。
对照组1为:十二烷基苯磺酸钠;
对照组2为:皂片(产品生厂商:上海市纺织工业技术监督所);
对照组3为:烷基糖苷、鼠李糖脂与聚乙烯吡咯烷酮按照重量比11:3:5混合(烷基糖苷、鼠李糖脂与聚乙烯吡咯烷酮的优选配比)。
测定皂洗残液的吸光度,再根据活性染料的标准曲线计算出皂洗残液中的染料浓度。测定皂洗后织物的皂洗牢度和摩擦牢度。
表6 SL/RL/PVP复配体系的皂洗效果
Figure PCTCN2020118021-appb-000004
由上表可看出,加入皂洗助剂聚乙烯吡咯烷酮(PVP)后,SL/RL复配皂洗体系溶液对染色棉织物的皂洗效果均有所提高,经过加入皂洗助剂的复配皂洗体系皂洗后的棉织物,其皂洗牢度和摩擦牢度有0.5-1级左右的提高。
实施例4:SL/RL/PVP(聚乙烯吡咯烷酮)复配体系的皂洗效果
一种皂洗工艺,所述皂洗工艺包括热水洗、冷水洗、皂洗剂皂洗、再经过冷水洗步骤。
其中,皂洗剂为槐糖脂、鼠李糖脂与聚乙烯吡咯烷酮的复配体系,其中槐糖脂、鼠李糖脂与聚乙烯吡咯烷酮重量比为:2:8:5;其中,皂洗剂体系的总浓度均为2.5g/L。
其中,皂洗剂皂洗步骤中:皂洗浴比为1:20,皂洗时间为25min,皂洗温度60℃。
其中,热水洗步骤中,温度为50℃,时间为5min,浴比为1:60。
其中,冷水洗步骤中,温度为25℃,时间为5min,浴比为1:60。
实施例4在皂洗残液浓度、皂洗牢度和摩擦牢度的技术效果上与实施例3相近。

Claims (10)

  1. 一种皂洗剂,其特征在于:所述皂洗剂按照重量份数计包括如下原料:槐糖脂1-9份,阴离子表面活性剂1-9份,皂洗助剂1-9份,所述阴离子表面活性剂为十二烷基苯磺酸钠或鼠李糖脂中的一种。
  2. 如权利要求1所述的一种皂洗剂,其特征在于:所述阴离子表面活性剂为十二烷基苯磺酸钠,所述槐糖脂与十二烷基苯磺酸钠的重量比为7-9:1-3。
  3. 如权利要求1所述的一种皂洗剂,其特征在于:所述皂洗助剂为聚乙烯吡咯烷酮。
  4. 如权利要求3所述的一种皂洗剂,其特征在于:所述阴离子表面活性剂为十二烷基苯磺酸钠,所述槐糖脂、十二烷基苯磺酸钠以及聚乙烯吡咯烷酮的重量比为7-9:1-3:4-6。
  5. 如权利要求1所述的一种皂洗剂,其特征在于:所述阴离子表面活性剂为鼠李糖脂,所述槐糖脂与鼠李糖脂的重量比为1-3:7-9。
  6. 如权利要求3所述的一种皂洗剂,其特征在于:所述阴离子表面活性剂为鼠李糖脂,所述槐糖脂、鼠李糖脂与聚乙烯吡咯烷酮的重量比为1-3:7-9:4-6。
  7. 权利要求1-6任一所述皂洗剂的制备方法,其特征在于:将槐糖脂与阴离子表面活性剂和皂洗助剂按比例份数进行复配,振荡溶液使其混合均匀。
  8. 权利要求1-6任一所述皂洗剂的在皂洗工艺上的用途。
  9. 如权利要求8所述皂洗剂的在皂洗工艺中的用途,其特征在于:所述皂洗工艺,所述皂洗工艺包括热水洗、冷水洗、皂洗剂皂洗、再经过冷水洗。
  10. 如权利要求9所述皂洗剂的在皂洗工艺中的用途,其特征在于:所述皂洗剂皂洗步骤中:所述皂洗剂体系总浓度为1.0-5.0g/L;皂洗浴比为1:10-30,皂洗时间为15-25min,皂洗温度为60-80℃;
    所述热水洗步骤中,温度为50-60℃,时间为5-10min,浴比为1:50-1:80;所述冷水洗步骤中,温度为20-30℃,时间为5-10min,浴比为1:50-1:80。
PCT/CN2020/118021 2019-09-29 2020-09-27 皂洗剂及其制备方法与用途 WO2022011839A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2021007428A MY192898A (en) 2019-09-29 2020-09-27 Soaping agent and preparation method and application thereof
PCT/CN2020/118021 WO2022011839A1 (zh) 2020-09-27 2020-09-27 皂洗剂及其制备方法与用途
US17/178,237 US20210171864A1 (en) 2019-09-29 2021-02-17 Soaping Agent And Preparation Method And Application Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118021 WO2022011839A1 (zh) 2020-09-27 2020-09-27 皂洗剂及其制备方法与用途

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/178,237 Continuation US20210171864A1 (en) 2019-09-29 2021-02-17 Soaping Agent And Preparation Method And Application Thereof

Publications (1)

Publication Number Publication Date
WO2022011839A1 true WO2022011839A1 (zh) 2022-01-20

Family

ID=79554447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118021 WO2022011839A1 (zh) 2019-09-29 2020-09-27 皂洗剂及其制备方法与用途

Country Status (1)

Country Link
WO (1) WO2022011839A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107257849A (zh) * 2015-03-02 2017-10-17 荷兰联合利华有限公司 具有减少的染料转移性能的组合物
EP3290501A1 (de) * 2016-08-29 2018-03-07 Richli, Remo Wasch- und reinigungsmittel mit alkoxylierten fettsäureamiden
WO2018065314A1 (de) * 2016-10-07 2018-04-12 Evonik Degussa Gmbh Zusammensetzung enthaltend glykolipide und konservierungsmittel
CN112574829A (zh) * 2019-09-29 2021-03-30 天津工业大学 一种活性染料染色棉织物的环保型皂洗剂及其制备方法与用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107257849A (zh) * 2015-03-02 2017-10-17 荷兰联合利华有限公司 具有减少的染料转移性能的组合物
EP3290501A1 (de) * 2016-08-29 2018-03-07 Richli, Remo Wasch- und reinigungsmittel mit alkoxylierten fettsäureamiden
WO2018065314A1 (de) * 2016-10-07 2018-04-12 Evonik Degussa Gmbh Zusammensetzung enthaltend glykolipide und konservierungsmittel
CN112574829A (zh) * 2019-09-29 2021-03-30 天津工业大学 一种活性染料染色棉织物的环保型皂洗剂及其制备方法与用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAI JINGRONG, LV JIAJIA: "Research Situation of Sophorolipid, a Kind of Biosurfactant", CHINA CLEANING INDUSTRY, no. 12, 31 December 2019 (2019-12-31), pages 86 - 92, XP055887086, ISSN: 1672-2701, DOI: 10.16054/j.cnki.cci.2019.12.009 *
CHEN MINGLEI, DONG CHUCHUAN, PENFOLD JEFF, THOMAS ROBERT K., SMYTH THOMAS J. P., PERFUMO AMEDEA, MARCHANT ROGER, BANAT IBRAHIM M.,: "Adsorption of Sophorolipid Biosurfactants on Their Own and Mixed with Sodium Dodecyl Benzene Sulfonate, at the Air/Water Interface", LANGMUIR, AMERICAN CHEMICAL SOCIETY, US, vol. 27, no. 14, 19 July 2011 (2011-07-19), US , pages 8854 - 8866, XP055887090, ISSN: 0743-7463, DOI: 10.1021/la201660n *
LIU JIA, LI ZHENG;LI FENGYAN;LU WENYU;GONG JIXIAN;ZHANG JIANFEI: "Research Progress of Biological Surfactant", KNITTING INDUSTRIES, no. 9, 31 December 2018 (2018-12-31), pages 47 - 52, XP055887088, ISSN: 1000-4033 *
M. L. CHEN, J. PENFOLD, R. K. THOMAS, T. J. P. SMYTH, A. PERFUMO, R. MARCHANT, I. M. BANAT, P. STEVENSON, A. PARRY, I. TUCKER, I. : "Mixing Behavior of the Biosurfactant, Rhamnolipid, with a Conventional Anionic Surfactant, Sodium Dodecyl Benzene Sulfonate", LANGMUIR, AMERICAN CHEMICAL SOCIETY, US, vol. 26, no. 23, 7 December 2010 (2010-12-07), US , pages 17958 - 17968, XP055306933, ISSN: 0743-7463, DOI: 10.1021/la1031834 *

Similar Documents

Publication Publication Date Title
CN106337303B (zh) 一种棉织物的活性染料染色方法
CN102994259B (zh) 一种低温皂洗剂及其制备方法
CN112574829B (zh) 一种活性染料染色棉织物的皂洗剂及其制备方法与用途
CN101328687A (zh) 以烷基邻苯二甲酰亚胺为载体的环保型涤纶低温染色助剂及其制备方法
CN101805451B (zh) 基于壳聚糖/明胶复合材料的活性染料净洗剂制备方法
CN103711011A (zh) 一种微交联型聚甲基丙烯酰氧乙基三甲基氯化铵改性固色剂及其制备方法
CN103233377A (zh) 牛仔服装防返沾色剂及制备方法
CN103556464A (zh) 织物功能修复剂组合物及其制备方法
CN1584192A (zh) 一种纤维素纤维及其混纺织物生化前处理的纺织助剂、制备方法和用途
WO2022011839A1 (zh) 皂洗剂及其制备方法与用途
CN1635213A (zh) 大豆纤维散纤维染色加工方法
CN109322176A (zh) 一种棉涤混纺织物用染料组合物及其染色方法
CN102994253A (zh) 牛仔服专用除菌洗衣液
US20210171864A1 (en) Soaping Agent And Preparation Method And Application Thereof
CN102585548B (zh) 一种红色活性染料组合物
CN1354233A (zh) 一种去印染浮色的清洗剂
CN101451131A (zh) 甲壳素-棉混纺织物生物酶前处理工艺及其所用酶制剂
CN101967751A (zh) 一种真丝织物的脱胶方法
CN109577035B (zh) 一种纤维染色工艺
CN108560262A (zh) 一种湿摩擦牢度增强剂及其制备方法
CN105886131A (zh) 一种棉质活性染料清洗剂及其制备方法
CN101880958B (zh) 棉亚麻、粘亚麻坯布氧漂工艺中使用的酶助剂的制备方法
CN109944055A (zh) 一种织物的环保型退浆方法
CN103276595A (zh) 一种易生物降解的棉织物低温前处理助剂
CN110331603A (zh) 一种酸性染料染色及印花用皂洗剂组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20945464

Country of ref document: EP

Kind code of ref document: A1