WO2022009593A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2022009593A1
WO2022009593A1 PCT/JP2021/021952 JP2021021952W WO2022009593A1 WO 2022009593 A1 WO2022009593 A1 WO 2022009593A1 JP 2021021952 W JP2021021952 W JP 2021021952W WO 2022009593 A1 WO2022009593 A1 WO 2022009593A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
motor
bearings
shaft
cushioning portion
Prior art date
Application number
PCT/JP2021/021952
Other languages
English (en)
French (fr)
Inventor
彩加 島田
徹也 関
健太郎 鈴木
幸嗣 癸生川
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2022009593A1 publication Critical patent/WO2022009593A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations

Definitions

  • the present invention relates to a motor.
  • centrifugal force is generated by the rotation of the shaft.
  • the bearing that supports the shaft is subject to vibration due to centrifugal force.
  • motor bearings may deteriorate due to continuous vibration caused by various causes, including those caused by centrifugal force. Therefore, in a motor, it is required to reduce the vibration applied to the bearing in order to suppress the deterioration of the bearing.
  • the present invention is an example of the above-mentioned problems, and an object of the present invention is to provide a motor capable of suppressing deterioration of bearings.
  • the motor according to the present invention includes a shaft, a rotor held by the shaft, a stator provided outside the rotor, and a pair of bearings fixed to the shaft.
  • a sleeve for holding the pair of bearings, a holder for supporting the sleeve, and a cushioning portion provided on at least one of the sleeve and the holder are provided.
  • the cushioning portion is provided at a position where it overlaps with at least one of the pair of bearings in the radial direction.
  • the cushioning portion is a recess provided in at least one of the sleeve and the holder.
  • the motor can be deformed in the radial direction by the cushioning portion.
  • the cushioning portion is a hole provided in the sleeve.
  • the cushioning portion is a recess provided in the holder and a plurality of holes provided in the sleeve, and the recess and the plurality of holes communicate with each other. ..
  • the plurality of holes communicate with each other through the recesses.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a motor according to the first embodiment of the present invention.
  • the arrow a direction is referred to as the upper side a and the arrow b direction is referred to as the lower side b in the axis x direction.
  • the direction away from the axis x is defined as the outer peripheral side c
  • the direction toward the axis x is defined as the inner peripheral side d. ..
  • the direction shown in FIG. 1 is referred to as the side surface of the motor 1.
  • the direction in which the motor 1 is viewed from the upper side a toward the lower side b is the front surface
  • the direction in which the motor 1 is viewed from the lower side b toward the upper side a is the bottom surface.
  • the motor 1 As shown in FIG. 1, the motor 1 according to the present embodiment is fixed to the shaft 10, the rotor 20 held by the shaft 10, the stator 30 provided on the outer peripheral side c of the rotor 20, and the shaft 10.
  • the cushioning portion 63 is provided.
  • the configuration and operation of the motor 1 will be specifically described.
  • the motor 1 includes a housing 62 in addition to the shaft 10, rotor 20, stator 30, pair of bearings 41, 42, sleeve 50, and holder 61 described above.
  • the shaft 10 is located at the center of the motor 1 when viewed from the upper side a, and extends in the axis x direction, that is, in the vertical direction.
  • the lower side b (one end side) of the shaft 10 is located in the housing 62, and the upper side a (the other end side) protrudes upward from the holder 61.
  • the shaft 10 is fixed to the holder 61 via the sleeve 50 in a state of being fitted into the pair of bearings 41 and 42.
  • the term "circumferential direction” means the circumferential direction of the circle centered on the axis x of the shaft 10.
  • the rotor 20 is fixed to the lower side b (one end side) of the shaft 10 in the housing 62.
  • the rotor 20 has a rotor yoke 22 fixed to the shaft 10 and a magnet 21 attached to the outer periphery of the rotor yoke 22.
  • the rotor yoke 22 is formed of, for example, a magnetic material, but may be formed of a non-magnetic material such as aluminum if there is no problem in characteristics.
  • the magnet 21 is attached to the outer peripheral surface of the rotor yoke 22 so as to face the stator 30.
  • the magnet 21 is formed in an annular shape.
  • the magnet 21 is provided with a region magnetized at the N pole and a region magnetized at the S pole alternately at a constant cycle along the circumferential direction.
  • the stator 30 includes a stator core 31, a coil 32, and an insulator 33.
  • the stator 30 surrounds the rotor 20.
  • the stator core 31 is a laminated body such as a silicon steel plate, and has an annular portion (core) 34 coaxially arranged with the shaft 10 and an annular portion 34 toward the rotor 20 (in the direction of the rotation axis L). It has a plurality of extending teeth portions 35.
  • the coil 32 is, for example, a three-phase coil, and is wound around each of the plurality of teeth portions 35.
  • the stator core 31 and the coil 32 are insulated by an insulator 33 formed of an insulator.
  • the surface of the stator core 31 may be coated with an insulating film to insulate the stator core 31 and the coil 32.
  • the pair of bearings 41 and 42 are mounted side by side at regular intervals in the axis x direction of the shaft 10.
  • the bearing 41 is attached to the lower side (one end side) of the shaft 10 to which the rotor 20 is fixed.
  • the bearing 42 is attached to the upper side a (the other end side) opposite to the bearing 41.
  • the bearing 41 is located closer to the lower side b (one end side) to which the rotor 20 is fixed. Further, the bearing 42 is located closer to the upper side a, which is the other end side opposite to the one end side.
  • Bearings 41 and 42 are so-called ball bearings having an outer ring, an inner ring, and a rolling element (ball) interposed between the outer ring and the inner ring. By rolling the rolling element between the outer ring and the inner ring, the rotational resistance of the inner ring with respect to the outer ring is reduced.
  • the bearings 41 and 42 are made of a hard metal such as iron or a ceramic member because of their functions.
  • the shaft 10 is fixed to the inner ring of the pair of bearings 41 and 42, and is rotatable with respect to the outer ring.
  • the sleeve 50 is a member having a tubular shape (particularly a cylindrical shape), and is made of, for example, plastic or metal.
  • the sleeve 50 has a cylindrical outer peripheral side c housed in the holder 61.
  • the sleeve 50 holds a pair of bearings 41 and 42 on the inner peripheral side d of the cylinder.
  • the outer rings of the pair of bearings 41 and 42 are fitted and fixed to the inner peripheral surface 52 of the sleeve 50, respectively.
  • the outer rings of the bearings 41 and 42 are supported by the inner peripheral surface 52 of the sleeve 50. In this way, the shaft 10 is supported so as to be rotatable with respect to the sleeve 50.
  • a pressurization spring (not shown) that applies pressurization to the pair of bearings 41, 42 may be arranged inside the sleeve.
  • the holder 61 accommodates the bearings 41, 42 and the sleeve 50 on the upper side a of the shaft 10.
  • the holder 61 has an inner peripheral surface 611 that forms a cylindrical or substantially cylindrical space corresponding to the shape of the outer peripheral surface 51 of the sleeve 50 in order to accommodate the sleeve 50.
  • a cushioning portion 63 is provided on the inner peripheral surface 611 of the holder 61 on the radial outer peripheral side c at the position where the bearings 41 and 42 are fitted by the sleeve 50.
  • the cushioning portion 63 is, for example, in the position (hereinafter, also referred to as “bearing mounting portion 54”) and the radial direction of the pair of bearings 41, 42 mounted on the inner peripheral surface 52 of the sleeve 50 on the inner peripheral surface 611. It is provided at an overlapping position.
  • the cushioning portion 63 is a recess provided on the inner peripheral surface 611 of the holder 61.
  • the cushioning portion 63 is formed by expanding the inner peripheral surface 611 at a position corresponding to the outer peripheral side c of the bearing mounting portion 54 toward the radial outer peripheral side c.
  • An annular gap G1 is formed between the outer peripheral surface 51 and the cushioning portion 63 on the radial outer peripheral side c of the bearing mounting portion 54 of the sleeve 50.
  • the housing 62 accommodates the rotor 20 and the stator 30 on the lower side b of the shaft 10.
  • the holder 61 and the housing 62 are made of, for example, a resin material or a metal material. Other components of the motor 1 are housed in the space inside the housing 62.
  • the motor 1 even if a force such as vibration is generated by the centrifugal force of the shaft 10, the motor 1 is radially transmitted from the shaft 10 to the bearings 41, 42 and the sleeve 50.
  • the applied force is released by the gap G1 of the buffer portion 63.
  • the cushioning portion 63 is provided on the outer peripheral side c of the bearing mounting portion 54 of the sleeve 50, the force transmitted from the shaft 10 and the bearings 41 and 42 is directly held from the sleeve 50. It is possible to avoid being transmitted to 61.
  • the gap G1 is provided by the cushioning portion 63, the sleeve 50 of the motor 1 can be deformed in the radial direction. As described above, by providing the buffer portion 63, the sleeve 50 can obtain a buffering action of the force transmitted between the shaft 10 and the pair of bearings 41 and 42.
  • the buffer portion 63 is provided on the inner peripheral surface 611 of the holder 61, a space for releasing the pressure input of the outer ring portions of the bearings 41 and 42 by obtaining a buffering action is provided. Therefore, it is possible to suppress an increase in the rotational load torque during use.
  • the cushioning portion 63 by providing the inner peripheral surface 611 of the holder 61, the force applied to the bearings 41 and 42 is dispersed according to the motor 1, and the deterioration of the bearings 41 and 42 is delayed. can do.
  • the shock absorber 63 is effective not only for resonance due to the centrifugal force of the shaft 10 described above, but also for, for example, a drop impact.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the motor 2 according to the second embodiment of the present invention.
  • the shock absorber 253 is provided on the sleeve 250 instead of the holder 261 unlike the shock absorber 63 of the motor 1 described above.
  • the cushioning portion 253 is provided at a position on the sleeve 250 where the pair of bearings 41 and 42 are fitted.
  • the cushioning portion 253 is provided, for example, at a position overlapping the positions where the bearings 41 and 42 are mounted in the radial direction of the sleeve 250, that is, on the outer peripheral surface 251 or the inner peripheral surface 252 of the bearing mounting portion 254.
  • the cushioning portion 253 is a recess formed by thinning the outer peripheral surface 251 of the bearing mounting portion of the sleeve 250 toward the radial inner peripheral side d.
  • an annular gap G2 is formed between the cushioning portion 253 and the inner peripheral surface 611 of the holder 61 on the radial outer peripheral side c of the bearing mounting portion 254.
  • the bearings 41 and 42 from the shaft 10 even when a force such as vibration is generated by the centrifugal force of the shaft 10 as in the motor 1 described above. , And the force transmitted in the radial direction to the sleeve 250 is released by the gap G2 of the cushioning portion 253. Further, the cushioning portion 253 is easily deformed because it is thinner than the other parts of the sleeve 250 of the motor 2, so that it can be deformed in the radial direction. As described above, by providing the buffer portion 253, the sleeve 250 can obtain a buffering action of the force transmitted between the shaft 10 and the bearings 41 and 42.
  • the force applied to the pair of bearings 41 and 42 can be dispersed and the deterioration of the bearings 41 and 42 can be delayed. can.
  • the cushioning portion 253 provided on the sleeve 250 may be a recess formed in the bearing mounting portion 254 of the sleeve 250. That is, the cushioning portion 253 is not limited to the one provided on the outer peripheral surface 251 as shown in FIG. 2, and may be provided on the inner peripheral surface 252. Further, the cushioning portion 253 is not limited to the one provided in an annular shape on the outer peripheral surface 251 or the inner peripheral surface 252 of the sleeve 250, and may be, for example, a plurality of recesses or holes provided at predetermined intervals. good.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the motor 3 according to the third embodiment of the present invention.
  • the sleeve 350 is also provided with the cushioning portion 353.
  • the cushioning portion 353 of the motor 3 is a hole that penetrates the outer peripheral surface 351 and the inner peripheral surface 352 of the sleeve 350 in the radial direction, unlike the cushioning portion 253 of the motor 2 described above.
  • the cushioning portion 353 formed on the sleeve 350 can easily deform the position overlapping the bearing mounting portion 254 and cushion the force applied to the bearings 41 and 42. Therefore, it is not limited to the one that thins the position overlapping with the bearing mounting portion 254 of the sleeve 250 like the cushioning portion 253 of the sleeve 250 provided in the motor 2 described above, and the cushioning portion 353 has a plurality of holes.
  • the sleeve 250 may be deformable in the radial direction.
  • the motor 3 is provided with buffer portions 63 and 353 on both the holder 61 and the sleeve 350. Therefore, in both the holder 61 and the sleeve 350, the motor 3 can obtain an impact mitigation effect in the same manner as the motors 1 and 2 described above.
  • the sleeve 350 is provided with a hole-shaped cushioning portion 353, and the cushioning portion 63 is provided on the inner peripheral surface 611 of the holder 61 on the outer peripheral side c of the cushioning portion 353.
  • a flow path C is formed in which the peripheral side d and the outer peripheral side c are communicated with each other, and a plurality of holes constituting the cushioning portion 353 are communicated with each other via the cushioning portion 63 of the holder 61. According to the motor 3, ventilation can be promoted around the bearings 41 and 42 by the flow path C, so that the cooling effect of the bearings 41 and 42 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

軸受の劣化を抑制する。 モータ(1)は、シャフト(10)と、シャフト(10)に保持されるロータ(20)と、ロータ(20)の外周側(c)に設けられているステータ(30)とを備える。また、モータ(1)は、シャフト(10)に固定される一対の軸受(41,42)と、一対の軸受(41,42)を保持するスリーブ(50)と、スリーブ(50)を支持するホルダ(61)とを備える。モータ(1)において、スリーブ(50)とホルダ(61)との少なくともいずれか一方に設けられている緩衝部(63)と、を備える。

Description

モータ
 本発明は、モータに関する。
 一般に、モータにおいて、シャフトが回転することで遠心力が生じる。シャフトを支持する軸受は、遠心力による振動が加わる。
 なお、軸受の振動減衰に関する技術としては、球状粒子をダンパ要素にした振動減衰装置が知られている(例えば、特許文献1参照)。
特開2019-157870号公報
 ところで、モータの軸受は、遠心力によるものも含めて様々な原因による振動が継続的に加わることで、劣化を生じる恐れがある。このため、モータにおいて、軸受の劣化を抑制するために、軸受に加わる振動を低減することが求められている。
 本発明は、上述の課題を一例とするものであり、軸受の劣化を抑制することができるモータを提供することを目的とする。
 上記目的を達成するために、本発明に係るモータは、シャフトと、前記シャフトに保持されるロータと、前記ロータの外側に設けられているステータと、前記シャフトに固定される一対の軸受と、前記一対の軸受を保持するスリーブと、前記スリーブを支持するホルダと、前記スリーブと前記ホルダとの少なくともいずれか一方に設けられている緩衝部と、を備える。
 本発明の一態様に係るモータにおいて、前記緩衝部は、前記一対の軸受の少なくともいずれか一方と径方向において重なる位置に設けられている。
 本発明の一態様に係るモータにおいて、前記緩衝部は、前記スリーブと前記ホルダの少なくともいずれか一方に設けられた凹部である。
 本発明の一態様に係るモータにおいて、前記緩衝部により径方向に変形可能である。
 本発明の一態様に係るモータにおいて、前記緩衝部は、前記スリーブに設けられている孔である。
 本発明の一態様に係るモータにおいて、前記緩衝部は、前記ホルダに設けられている凹部及び前記スリーブに設けられている複数の孔であり、前記凹部と前記複数の孔とは連通している。
 本発明の一態様に係るモータにおいて、前記複数の孔は、前記凹部を介して互いに連通している。
 本発明に係るモータによれば、軸受の劣化を抑制することができる。
本発明の第1の実施の形態に係るモータの構成を概略的に示す断面図である。 本発明の第2の実施の形態に係るモータの構成を概略的に示す断面図である。 本発明の第3の実施の形態に係るモータの構成を概略的に示す断面図である。
[第1の実施の形態]
 以下、本発明の第1の実施の形態に係るモータについて図面を参照しながら説明する。
 図1は、本発明の第1の実施の形態に係るモータの構成を概略的に示す断面図である。
 以下の説明では、便宜上、軸線x方向において矢印a方向を上側aとし、矢印b方向を下側bとする。また、軸線xに垂直な径方向において、軸線xから遠ざかる方向(図1の矢印c方向)を外周側cとし、軸線xに向かう方向(図1の矢印d方向)を内周側dとする。以下の説明では、便宜上、図1に示す方向をモータ1の側面とする。また、以下の説明では、便宜上、図1に示すようにモータ1を上側aから下側bに向かって見る方向を正面、下側bから上側aに向かって見る方向を底面とする。
 図1に示すように、本実施の形態に係るモータ1は、シャフト10と、シャフト10に保持されるロータ20と、ロータ20の外周側cに設けられているステータ30と、シャフト10に固定される一対の軸受41,42と、一対の軸受41,42を保持するスリーブ50と、スリーブ50を支持するホルダ61と、スリーブ50とホルダ61との少なくともいずれか一方、例えば、ホルダ61に設けられている緩衝部63と、を備える。以下、モータ1の構成及び動作を具体的に説明する。
[モータの構成]
 図1に示すように、モータ1は、上述したシャフト10、ロータ20、ステータ30、一対の軸受41,42、スリーブ50、及び、ホルダ61に加えて、ハウジング62を備える。
 シャフト10は、モータ1の上側aから見て中心に位置して、軸線x方向、つまり上下方向に延在している。シャフト10の下側b(一端側)は、ハウジング62内に位置し、上側a(他端側)は、ホルダ61から上方に突き出している。シャフト10は、一対の軸受41,42に嵌入された状態でスリーブ50を介してホルダ61に固定されている。なお、本実施形態において、「周方向」と云うときは、シャフト10の軸線xを中心とする円の周方向を意味する。
 ロータ20は、ハウジング62内において、シャフト10の下側b(一端側)に固定されている。ロータ20は、シャフト10に固定されたローターヨーク22と、ローターヨーク22の外周に取り付けられたマグネット21と、を有する。ローターヨーク22は、例えば、磁性体により形成されるが、特性上問題がなければ、アルミニウム等の非磁性体で形成してもよい。
 マグネット21は、ステータ30と対向するようにローターヨーク22の外周面に取り付けられている。マグネット21は、環状に形成されている。マグネット21には、N極に着磁された領域と、S極に着磁された領域とが、周方向に沿って一定の周期で交互に設けられている。
 ステータ30は、ステータコア31と、コイル32と、インシュレータ33と、を備える。ステータ30は、ロータ20を取り囲んでいる。
 ステータコア31は、珪素鋼板等の積層体となっており、シャフト10と同軸上に配された円環部(コア)34と、円環部34からロータ20へ(回転軸線L方向に)向かって延びる複数のティース部35と、を有する。
 コイル32は、例えば、3相のコイルであり、複数のティース部35の各々の周囲に巻き回されている。ステータコア31とコイル32とは、絶縁体で形成されたインシュレータ33によって絶縁されている。なお、モータ1では、インシュレータ33を用いるのに代えて、ステータコア31の表面に絶縁膜を塗装してステータコア31とコイル32とを絶縁してもよい。
 一対の軸受41,42は、シャフト10の軸線x方向で一定の間隔を置いて並んで取り付けられている。軸受41は、シャフト10における、ロータ20が固定されている下側(一端側)に取り付けられている。軸受42は、軸受41と反対側の上側a(他端側)に取り付けられている。軸受41は、ロータ20が固定された下側b(一端側)寄りに位置する。また、軸受42は、一端側とは反対側の他端側である、上側a寄りに位置する。
 軸受41,42は、外輪と、内輪と、外輪及び内輪の間に介在する転動体(ボール)とを有する、いわゆるボールベアリングである。転動体が外輪と内輪との間で転がることにより、外輪に対する内輪の回転抵抗が低減される。軸受41,42は、その機能から、例えば、鉄等の硬質の金属やセラミックスの部材で形成されている。シャフト10は、一対の軸受41,42の内輪に固定されており、外輪に対して回転自在になっている。
 スリーブ50は、筒状(特に円筒状)の形状を有する部材であり、例えば、プラスチックあるいは金属で形成されている。スリーブ50は、筒状の外周側cがホルダ61に収容されている。スリーブ50は、筒状の内周側dに一対の軸受41,42が保持されている。具体的には、一対の軸受41,42の外輪は、スリーブ50の内周面52にそれぞれ嵌め込まれるとともに固定されている。軸受41,42の外輪は、スリーブ50の内周面52に支持されている。このように、シャフト10は、スリーブ50に対して回転自在となるように支持されている。なお、スリーブ内部に、一対の軸受41,42に対して与圧を付与する不図示の与圧ばねを配置してもよい。
 ホルダ61は、シャフト10の上側aで軸受41,42、及び、スリーブ50を収容する。ホルダ61は、スリーブ50を収容するために、スリーブ50の外周面51の形状に対応した筒状または略筒状の空間を形成する内周面611を有している。ホルダ61の内周面611には、スリーブ50にて軸受41,42が嵌め込まれている位置の径方向外周側cに緩衝部63が設けられている。
 緩衝部63は、例えば、内周面611において、スリーブ50の内周面52に取り付けられている一対の軸受41,42の位置(以下、「軸受取付部54」ともいう。)と径方向において重なる位置に設けられている。緩衝部63は、ホルダ61の内周面611に設けられている凹部である。緩衝部63は、軸受取付部54の外周側cに対応する位置の内周面611を径方向外周側cに向かって拡径することによって形成されている。スリーブ50の、軸受取付部54の径方向外周側cにおいて、外周面51と緩衝部63の間に環状の空隙G1が形成されている。
 ハウジング62は、シャフト10の下側bでロータ20及びステータ30を収容する。ホルダ61及びハウジング62は、例えば、樹脂材料や金属材料により作製される。ハウジング62の内部の空間には、その他モータ1の構成要素が収容されている。
 以上のように構成されていることにより、モータ1では、シャフト10の遠心力により振動などの力が生じる場合であっても、シャフト10から軸受41,42、及びスリーブ50へと径方向に伝達した力が緩衝部63の空隙G1により逃がされる。詳細には、モータ1では、スリーブ50の軸受取付部54の外周側cに緩衝部63が設けられていることにより、シャフト10及び軸受41,42から伝わった力がスリーブ50から直接的にホルダ61に伝わることを回避することができる。また、緩衝部63により空隙G1が設けられていることで、モータ1のスリーブ50は、径方向に変形可能である。このように、緩衝部63が設けられていることにより、スリーブ50は、シャフト10と一対の軸受41,42との間に伝わる力の緩衝作用を得ることができる。
 また、一般に、モータでは、軸受の位置決めの精度を向上させるためにスリーブへ軸受を圧入することを考えた場合に、軸受の外輪が圧入する力によって変形し、内外輪のレースと転動体との隙間が減少し回転負荷トルクが上昇してしまう。
 一方、以上説明したモータ1では、ホルダ61の内周面611に緩衝部63が設けられていることにより、緩衝作用を得ることによって、軸受41,42の外輪部分の圧入力を逃がすための空間ができるため、使用時における回転負荷トルクの上昇を抑えることができる。
 従って、ホルダ61の内周面611に凹部を設けることで緩衝部63とすることによって、モータ1によれば、軸受41,42にかかっていた力を分散し、軸受41,42の劣化を遅くすることができる。
 なお、一般に、衝撃を受ける際の力の向きを問わず、内部から外部(シャフト10から軸受41,42)への衝撃と、外部から内部(軸受41,42からシャフト10)への衝撃とは等価である。このため、緩衝部63は、上述したシャフト10の遠心力による共振のみならず、例えば、落下衝撃等に対しても有効である。
[第2の実施の形態]
 次に、本発明に係るモータの第2の実施の形態について、説明する。なお、本実施の形態に係るモータ2において、先に説明したモータ1と同様の構成については同一の符号を付し、説明を省略する。
 図2は、本発明の第2の実施の形態に係るモータ2の構成を概略的に示す断面図である。図2に示すように、本実施の形態に係るモータ2は、緩衝部253が先に説明したモータ1の緩衝部63と異なり、ホルダ261ではなくスリーブ250に設けられている。
 緩衝部253は、スリーブ250において、一対の軸受41,42が嵌め込まれている位置に設けられている。緩衝部253は、例えば、スリーブ250の径方向において、軸受41,42が取り付けられている位置と重なる位置、つまり、軸受取付部254の外周面251または内周面252に設けられている。緩衝部253は、スリーブ250の軸受取付部の外周面251を径方向内周側dに向かって薄肉化することによって形成されている凹部である。スリーブ250は、軸受取付部254の径方向外周側cにおいて、緩衝部253とホルダ61の内周面611との間に環状の空隙G2が形成されている。
 以上のように構成されていることにより、モータ2では、先に説明したモータ1と同様に、シャフト10の遠心力により振動などの力が生じる場合であっても、シャフト10から軸受41,42、及びスリーブ250へと径方向に伝達した力が緩衝部253の空隙G2により逃がされる。また、緩衝部253は、モータ2のスリーブ250の他の部分と比較して薄肉化されていることで変形が生じやすいため、径方向に変形可能である。このように、緩衝部253が設けられていることにより、スリーブ250は、シャフト10と軸受41,42との間に伝わる力の緩衝作用を得ることができる。
 また、以上説明したモータ2では、先に説明したモータ1と同様に、使用時における回転負荷トルクの上昇を抑えることができる。
 従って、スリーブ250に凹部を設けることで緩衝部253とすることによって、モータ2によれば、一対の軸受41,42にかかっていた力を分散し、軸受41,42の劣化を遅くすることができる。
 なお、スリーブ250に設けられている緩衝部253は、スリーブ250の軸受取付部254に形成されている凹部であればよい。すなわち、緩衝部253は、図2に示したように外周面251に設けられているものに限定されず、内周面252に設けられていてもよい。また、緩衝部253は、スリーブ250の外周面251または内周面252に環状に設けられているものに限定されず、例えば、所定の間隔で設けられている複数の凹部あるいは孔であってもよい。
[第3の実施の形態]
 次に、本発明に係るモータの第3の実施の形態について、説明する。なお、本実施の形態に係るモータ3において、先に説明したモータ1,2と同様の構成については同一の符号を付し、説明を省略する。
 図3は、本発明の第3の実施の形態に係るモータ3の構成を概略的に示す断面図である。図3に示すように、本実施の形態に係るモータ3は、先に説明したモータ1の緩衝部63に加えて、スリーブ350にも緩衝部353が設けられている。また、モータ3の緩衝部353は、先に説明したモータ2の緩衝部253と異なり、スリーブ350の外周面351と内周面352とを径方向に貫通する孔である。
 スリーブ350に形成されている緩衝部353は、軸受取付部254に重なる位置の変形を容易にして軸受41,42に加わる力を緩衝することができればよい。このため、先に説明したモータ2が備えるスリーブ250の緩衝部253のようにスリーブ250の軸受取付部254に重なる位置を薄肉化するものに限定されず、緩衝部353のように複数の孔によりスリーブ250を径方向に変形可能にしてもよい。
 モータ3は、ホルダ61及びスリーブ350の双方に緩衝部63,353が設けられている。このため、モータ3は、ホルダ61及びスリーブ350の双方で、先に説明したモータ1,2と同様に、衝撃の緩和作用を得ることができる。
 従って、緩衝部63,353を備えるモータ3によれば、軸受41,42の劣化を抑制することができる。
 また、モータ3は、スリーブ350に孔形状の緩衝部353が設けられ、緩衝部353の外周側cのホルダ61の内周面611に緩衝部63が設けられていることにより、スリーブ350の内周側dと外周側cとを連通し、緩衝部353を構成している複数の孔がホルダ61の緩衝部63を介して互いに連通する流路Cとが形成される。この流路Cにより、モータ3によれば、軸受41,42の周囲に通風を促すことができるため、軸受41,42の冷却効果を得ることができる。
 その他、当業者は、従来公知の知見に従い、本発明のモータを適宜改変することができる。かかる改変によってもなお本発明の構成を具備する限り、勿論、本発明の範疇に含まれるものである。
1,2,3…モータ、10…シャフト、11…外周面、20…ロータ、21…マグネット、22…ローターヨーク、30…ステータ、31…ステータコア、32…コイル、33…インシュレータ、34…円環部(コア)、34…円環部、35…ティース部、41,42…軸受、50,250,350…スリーブ、51,251,351…外周面、52,252,352…内周面、54,254…軸受取付部、61,261…ホルダ、62…ハウジング、63,253,353…緩衝部、611…内周面、G1,G2…空隙、C…流路

Claims (7)

  1.  シャフトと、
     前記シャフトに保持されるロータと、
     前記ロータの外周側に設けられているステータと、
     前記シャフトに固定される一対の軸受と、
     前記一対の軸受を保持するスリーブと、
     前記スリーブを支持するホルダと、
     前記スリーブと前記ホルダとの少なくともいずれか一方に設けられている緩衝部と、
     を備える、
     モータ。
  2.  前記緩衝部は、前記一対の軸受の少なくともいずれか一方と径方向において重なる位置に設けられている、
     請求項1に記載のモータ。
  3.  前記緩衝部は、前記スリーブと前記ホルダの少なくともいずれか一方に設けられた凹部である、
     請求項1または2に記載のモータ。
  4.  前記スリーブは、前記緩衝部により径方向に変形可能である、
     請求項1から3のいずれか1項に記載のモータ。
  5.  前記緩衝部は、前記スリーブに設けられている孔である、
     請求項1から4のいずれか1項に記載のモータ。
  6.  前記緩衝部は、前記ホルダに設けられている凹部及び前記スリーブに設けられている複数の孔であり、
     前記凹部と前記複数の孔とは連通している、
     請求項5に記載のモータ。
  7.  前記複数の孔は、前記凹部を介して互いに連通している、
     請求項6に記載のモータ。
PCT/JP2021/021952 2020-07-06 2021-06-09 モータ WO2022009593A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-116153 2020-07-06
JP2020116153A JP7478046B2 (ja) 2020-07-06 2020-07-06 モータ

Publications (1)

Publication Number Publication Date
WO2022009593A1 true WO2022009593A1 (ja) 2022-01-13

Family

ID=79552443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021952 WO2022009593A1 (ja) 2020-07-06 2021-06-09 モータ

Country Status (2)

Country Link
JP (1) JP7478046B2 (ja)
WO (1) WO2022009593A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268875A (ja) * 2000-03-16 2001-09-28 Minebea Co Ltd スピンドルモータ
JP2004150563A (ja) * 2002-10-31 2004-05-27 Mitsubishi Heavy Ind Ltd 主軸の支持構造、工作機械
JP2006057653A (ja) * 2004-08-17 2006-03-02 Kawasaki Heavy Ind Ltd 軸受振動減衰機構
JP2013024059A (ja) * 2011-07-15 2013-02-04 Mitsubishi Heavy Ind Ltd 電動過給圧縮機、その組立方法及び内燃機関
JP2015030379A (ja) * 2013-08-02 2015-02-16 株式会社ショーワ パワーステアリング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268875A (ja) * 2000-03-16 2001-09-28 Minebea Co Ltd スピンドルモータ
JP2004150563A (ja) * 2002-10-31 2004-05-27 Mitsubishi Heavy Ind Ltd 主軸の支持構造、工作機械
JP2006057653A (ja) * 2004-08-17 2006-03-02 Kawasaki Heavy Ind Ltd 軸受振動減衰機構
JP2013024059A (ja) * 2011-07-15 2013-02-04 Mitsubishi Heavy Ind Ltd 電動過給圧縮機、その組立方法及び内燃機関
JP2015030379A (ja) * 2013-08-02 2015-02-16 株式会社ショーワ パワーステアリング装置

Also Published As

Publication number Publication date
JP2022014027A (ja) 2022-01-19
JP7478046B2 (ja) 2024-05-02

Similar Documents

Publication Publication Date Title
JP7361083B2 (ja) モータ
EP3402053B1 (en) Rotating electrical machine
KR102048473B1 (ko) 전기 모터 또는 제너레이터 시스템
JP3525088B2 (ja) 送風機
WO2022009593A1 (ja) モータ
US10530217B2 (en) Motor having screws with differing pitch and screw-receiving groove portions with differing axial length
JP4909671B2 (ja) 軸方向空隙型電動機
JP2022014026A (ja) モータ
US9698637B2 (en) Motor and disk drive apparatus
JP2015163021A (ja) ステッピングモータ
CN208656574U (zh) 马达
JP2022014028A (ja) モータ
JPH0739103A (ja) 磁気ディスク駆動用スピンドルモータ
JP7479944B2 (ja) モータ
JP2019054615A (ja) モータ
JP5889420B2 (ja) エレベータ用巻上機
JP4878965B2 (ja) 電気自動車用インホイール型軸継手
JP2023039359A (ja) モータ
JP2002165395A (ja) モータ
JP2007116794A (ja) 回転電機
JP2021090311A (ja) モーター
JP2020018110A (ja) ブラシレスモータ
JP2006064100A (ja) 緩衝器
JP2021078180A (ja) 動力伝達装置
JPH07222390A (ja) ディスク駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838755

Country of ref document: EP

Kind code of ref document: A1