WO2022009510A1 - 緩衝器 - Google Patents
緩衝器 Download PDFInfo
- Publication number
- WO2022009510A1 WO2022009510A1 PCT/JP2021/017341 JP2021017341W WO2022009510A1 WO 2022009510 A1 WO2022009510 A1 WO 2022009510A1 JP 2021017341 W JP2021017341 W JP 2021017341W WO 2022009510 A1 WO2022009510 A1 WO 2022009510A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- sub
- shock absorber
- main
- passage
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/50—Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
- F16F9/512—Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
- F16F9/5126—Piston, or piston-like valve elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/50—Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
- F16F9/512—Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/10—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
- F16F9/14—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
- F16F9/16—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
- F16F9/18—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
- F16F9/19—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/34—Special valve constructions; Shape or construction of throttling passages
- F16F9/348—Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G13/00—Resilient suspensions characterised by arrangement, location or type of vibration dampers
- B60G13/02—Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
- B60G13/06—Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
- B60G13/08—Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/06—Characteristics of dampers, e.g. mechanical dampers
- B60G17/08—Characteristics of fluid dampers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2202/00—Indexing codes relating to the type of spring, damper or actuator
- B60G2202/20—Type of damper
- B60G2202/24—Fluid damper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/62—Adjustable continuously, e.g. during driving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/40—Constructional features of dampers and/or springs
- B60G2206/41—Dampers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2500/00—Indexing codes relating to the regulated action or device
- B60G2500/10—Damping action or damper
- B60G2500/11—Damping valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/16—Running
- B60G2800/162—Reducing road induced vibrations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2222/00—Special physical effects, e.g. nature of damping effects
- F16F2222/12—Fluid damping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2228/00—Functional characteristics, e.g. variability, frequency-dependence
- F16F2228/06—Stiffness
- F16F2228/066—Variable stiffness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2232/00—Nature of movement
- F16F2232/08—Linear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2234/00—Shape
- F16F2234/02—Shape cylindrical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/06—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
- F16F9/064—Units characterised by the location or shape of the expansion chamber
- F16F9/065—Expansion chamber provided on the upper or lower end of a damper, separately there from or laterally on the damper
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/34—Special valve constructions; Shape or construction of throttling passages
- F16F9/348—Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
- F16F9/3484—Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features of the annular discs per se, singularly or in combination
Definitions
- the present invention relates to a shock absorber.
- the shock absorber is interposed between the vehicle body and the wheels, for example, and is used to give resistance to the flow of liquid generated during expansion and contraction to generate damping force and suppress vibration of the vehicle body.
- shock absorbers are being improved day by day in order to realize damping force characteristics that can further improve the ride quality in the vehicle.
- the expansion / contraction speed of the shock absorber is in the very low speed range, the damping force is quickly increased with respect to the expansion / contraction speed.
- the damping force characteristics that can effectively dampen the vibration of the wheels in the very low speed range and improve the riding comfort in the vehicle in other speed ranges (Fig. 7).
- a shock absorber that realizes may be desired.
- the shock absorber that realizes such damping force characteristics is configured as follows, for example. Specifically, as disclosed in JP2019-183921A, the shock absorber is mounted on the cylinder, the piston rod movably inserted into the cylinder, and the outer periphery of the tip of the piston rod to extend the inside of the cylinder.
- a piston that divides the side chamber and the compression side chamber, a sub-valve case that is laminated on the piston and attached to the piston rod, and an extension that is annular and has an inner circumference fixed to the piston rod to open and close the port provided on the piston.
- the port provided in the piston and the subport provided in the sub-valve case form a passage communicating the extension side chamber and the compression side chamber, and the sub-valve and the extension side and the compression side are formed.
- Leaf valves are arranged in series with the passage.
- the gap formed between the outer circumference of the free end of the sub-valve and the annular valve seat is maintained in a narrow state.
- the piston speed of the shock absorber increases and the end of the sub-valve on the free end side bends, the gap formed on the outer circumference of the free end becomes wider, and the damping coefficient of the shock absorber becomes smaller when the piston speed increases. Therefore, the damping force characteristic of the shock absorber becomes a characteristic depending on the speed.
- the conventional shock absorber In the conventional shock absorber, the end on the fixed end side of the sub-valve is pressed by the spacer, and the sub-valve bends with the edge on the free end side of the contact portion where the spacer and the sub-valve come into contact as a fulcrum. Further, in the conventional shock absorber, as described above, the sub valve is provided in series with the extension side leaf valve and the compression side leaf valve, and the total flow rate of the hydraulic oil passing between the extension side chamber and the compression side chamber passes through the sub valve. do. Therefore, the conventional shock absorber is provided with a valve stopper that regulates the amount of bending so that a large load is not applied to the sub-valve and the sub-valve does not bend beyond the limit.
- the deflection of the sub valve is regulated by the valve stopper, so that the flow path area in the sub valve is smaller than the flow path area in the leaf valve on the extension side and the compression side, and the bottle is bottled. It becomes a bottleneck.
- the damping force characteristic of the conventional shock absorber is such that the pressure loss due to the resistance of the sub-valve is overridden by the damping force in the high speed range, and the damping force becomes excessive, so that the vehicle becomes excessive. The ride quality is impaired.
- an object of the present invention is to provide a shock absorber that can improve the ride quality in a vehicle without being affected by the override of the subvalve.
- the shock absorber that solves the above-mentioned problems has an outer tube, a shock absorber body that can be expanded and contracted with a rod that is movablely inserted into the outer tube, and two working chambers provided in the shock absorber body in parallel.
- a main valve that includes a main passage and a sub-passage that communicate with each other, a main damping force generating element provided in the main passage, and a sub-damping force generating element provided in the sub-passage, and the main damping force generating element opens and closes the main passage.
- the shock absorber configured in this way, the sub-passage where the sub-valve is provided and the main passage where the main valve is provided communicate in parallel with the two working chambers, so that the flow path area of the sub-valve becomes a bottleneck. Does not affect the main valve.
- the shock absorber may be configured by using the orifice as a variable orifice, and according to the shock absorber configured in this way, the damping force characteristic of the shock absorber is adjusted and the timing at which the variable orifice characteristic appears in the damping force characteristic is adjusted. can.
- the shock absorber is provided with a partition member that is inserted into the outer tube and separates the two working chambers in the outer tube, the main passage is formed by the main port provided in the partition member, and the main valve is the partition member. It may be a leaf valve laminated on. According to the shock absorber configured in this way, the main passage and the main valve can be integrated in the partition wall member, and by making the main valve a leaf valve, the total total length of the partition wall member and the main valve assembled to the partition wall member is shortened. It becomes easier and it becomes easier to secure the stroke length.
- the shock absorber may include a shaft member penetrating the partition wall member and may have a portion through which the sub-passage passes through the shaft member.
- the shock absorber is provided with a valve holder which is attached to the tip of the shaft member to fix the partition wall member to the shaft member and a part of the sub passage is formed, and the sub valve may be held by the valve holder.
- the sub-valve is fixed at one of the inner circumference or the outer circumference to be a fixed end, and bending is allowed with the other of the inner circumference or the outer circumference as a free end, and the annular valve body provided in the sub-passage and the free end of the annular valve body.
- An annular facing portion may be provided with an annular gap between the two and the above.
- the ride quality in the vehicle can be improved without being affected by the override of the subvalve.
- FIG. 1 is a vertical sectional view of a shock absorber according to an embodiment of the present invention.
- FIG. 2 is a partially enlarged cross-sectional view of the shock absorber according to the embodiment of the present invention.
- FIG. 3 is an enlarged cross-sectional view of a subvalve of a shock absorber according to an embodiment of the present invention.
- FIG. 4 is a diagram showing the damping force characteristics of the shock absorber according to the embodiment of the present invention.
- FIG. 5 is a partially enlarged cross-sectional view of the shock absorber of the first modification of the embodiment of the present invention.
- FIG. 6 is a partially enlarged cross-sectional view of the shock absorber of the second modification of the embodiment of the present invention.
- FIG. 7 is a diagram showing the damping force characteristics of the conventional shock absorber.
- the shock absorber D in one embodiment has a cylinder 1 as an outer tube and a rod 2 movably inserted into the cylinder 1 and is a stretchable shock absorber.
- the main passage MP and the sub-passage SP that communicate in parallel with the main body A, the extension side chamber R1 and the compression side chamber R2 as two operating chambers provided in the shock absorber main body A, and the main damping force provided in the main passage MP. It includes a generating element MD and a sub-damping force generating element SD provided in the sub-passage SP.
- this shock absorber D it is used by being interposed between the vehicle body and the axle in a vehicle (not shown), and suppresses vibration of the vehicle body and wheels.
- the shock absorber main body A is connected to a bottomed cylindrical cylinder 1 as an outer tube, a rod 2 movably inserted into the cylinder 1, and the rod 2 into the cylinder 1. It is movably inserted and includes a piston 3 as a partition member that divides the inside of the cylinder 1 into an extension side chamber R1 as an operating chamber and a compression side chamber R2.
- a bracket (not shown) is provided at the base end of the rod 2 which is the upper end in FIG. 1, and the rod 2 is connected to one of the vehicle body and the axle via the bracket (not shown). Further, a bracket (not shown) is also provided on the bottom portion 1a of the cylinder 1, and the cylinder 1 is connected to the other of the vehicle body and the axle via the bracket (not shown).
- the shock absorber D is interposed between the vehicle body and the axle.
- the rod 2 moves in and out of the cylinder 1
- the shock absorber D expands and contracts
- the piston 3 moves up and down in the cylinder 1. Move in (axial direction).
- the shock absorber main body A is provided with an annular rod guide 10 that closes the upper end of the cylinder 1 and allows the rod 2 to be slidably inserted into the inner circumference. Therefore, the inside of the cylinder 1 is a closed space. Then, the free piston 11 is slidably inserted on the side opposite to the rod 2 when viewed from the piston 3 in the cylinder 1.
- a liquid chamber L is formed on the upper side of the free piston 11 in the cylinder 1, and a gas chamber G is formed on the lower side. Further, the liquid chamber L is divided into an extension side chamber R1 on the rod 2 side and a compression side chamber R2 on the piston 3 side by the piston 3, and the extension side chamber R1 and the compression side chamber R2 are each filled with a liquid such as hydraulic oil. Has been done. On the other hand, the gas chamber G is filled with a gas such as air or nitrogen gas in a compressed state.
- a bladder, bellows, or the like may be used to partition the liquid chamber L and the gas chamber G, and the configuration of the movable partition wall serving as the partition can be appropriately changed.
- the shock absorber D is a single rod, single cylinder type, and when the shock absorber D expands and contracts, the gas chamber G is expanded or contracted by the free piston (movable partition wall) 11 to enter and exit the cylinder 1.
- the volume of the rod 2 is compensated.
- the configuration for this volume compensation can also be changed as appropriate.
- the free piston (movable partition wall) 11 and the gas chamber G are abolished, and an outer shell is provided on the outer circumference of the cylinder 1 to make the shock absorber a double cylinder type.
- a reservoir chamber for storing the liquid may be formed between the cylinder 1 and the outer shell, and the volume may be compensated in this reservoir chamber.
- the reservoir chamber may be formed in a tank separately placed from the cylinder 1.
- the shock absorber D may be configured as a double-rod type shock absorber in which a piston 3 is mounted in the center of the rod 2 and the ends of the rod 2 project from both ends of the cylinder 1 to the outside of the cylinder 1.
- the rod 2 has a step portion 2c provided at the boundary between the small diameter portion 2a provided on the tip side and the large diameter portion 2b on the upper side in FIG. 2 from the small diameter portion 2a, and a screw provided on the outer periphery of the tip of the small diameter portion 2a.
- the portion 2d includes a vertical hole 2e that opens from the tip of the small diameter portion 2a and extends in the axial direction, and an orifice 2f that opens from the large diameter portion 2b and leads to the vertical hole 2e.
- the piston 3 as a partition wall member is annular and is fitted to the outer periphery of the small diameter portion 2a of the rod 2, and is fixed to the rod 2 by the valve holder 12 screwed to the screw portion 2d of the rod 2. ing.
- the rod 2 is used as the shaft member. More specifically, the piston 3 is provided on the same circumference of the annular main body portion 3a, the sliding contact cylinder 3b provided on the outer circumference of the main body portion 3a and in sliding contact with the inner circumference of the cylinder 1, and the main body portion 3a.
- extension side main port 3c that penetrates the main body 3a in the axial direction and the compression side main port that is provided on the same circumference on the outer peripheral side of the extension side main port 3c of the main body 3a and penetrates the main body 3a in the axial direction.
- 3d and an annular extension valve seat 3e provided between the extension side main port 3c and the compression side main port 3d at the lower end of FIG. 2 of the main body 3a and surrounding the extension side main port 3c, and a view of the main body 3a. 2
- the extension side main port 3c and the compression side main port 3d provided in the piston 3 form a main passage MP that communicates the extension side chamber R1 and the compression side chamber R2.
- the inside of the rod 2 and the orifice 2f form a part of the sub-passage SP that bypasses the main passage MP and communicates the extension side chamber R1 and the compression side chamber R2.
- the positions of the extension side main valve 4 and the extension side main valve 4 which are laminated leaf valves whose inner peripheral side is fixed to the small diameter portion 2a of the rod 2 are set.
- a spacer 5 and an annular spacer 6 which are annular and have an outer diameter smaller than that of the extension side main valve 4 are overlapped with each other.
- a ring is formed to set the positions of the compression side main valve 7 and the compression side main valve 7 which are laminated leaf valves whose inner peripheral side is fixed to the small diameter portion 2a of the rod 2.
- the spacer 8 and the valve stopper 9 having an outer diameter smaller than that of the compression side main valve 7 are overlapped with each other.
- valve stopper 9, the spacer 8, the compression side main valve 7, the piston 3, the extension side main valve 4, the spacer 5 and the spacer 6 are sequentially assembled to the outer periphery of the small diameter portion 2a of the rod 2, and then the rod. It is sandwiched between the valve holder 12 screwed to the screw portion 2d at the tip of 2 and the step portion 2c of the rod 2 and fixed to the rod 2.
- the extension side main valve 4 is a laminated leaf valve configured by laminating a plurality of annular plates, and the inner circumference is fixed to the rod 2 as described above and laminated at the lower middle end of FIG. 2 of the piston 3 to form the piston 3. It is seated on the extension side valve seat 3e.
- the extension side main valve 4 closes the extension side main port 3c surrounded by the extension side valve seat 3e when seated on the extension side valve seat 3e, but does not close the inlet of the compression side main port 3d.
- the extension side main valve 4 flexes its outer circumference when the pressure difference between the extension side chamber R1 acting on the front side and the compression side chamber R2 acting on the back side reaches the valve opening pressure via the extension side main port 3c.
- the extension side main port 3c is opened apart from the extension side valve seat 3e to give resistance to the flow of liquid passing through the extension side main port 3c.
- the extension side main valve 4 is opened when the shock absorber D is extended and the piston speed is in the middle and high speed range, and the extension side main port 3c is expanded from the extension side chamber R1 to the compression side. It resists the flow of liquid passing through the chamber R2. Further, the extension side main valve 4 sets the extension side main port 3c as a one-way passage that allows only the flow of liquid from the extension side chamber R1 to the compression side chamber R2.
- extension side valve seat 3e protrudes downward in FIG. 2 from the contact surface of the main body portion 3a to which the inner circumference of the extension side main valve 4 abuts, and a difference (height difference) is provided between the two heights.
- a difference height difference
- the extension side main valve 4 is overlapped with the piston 3 and the inner peripheral side is fixed to the outer circumference of the rod 2, the outer circumference bends due to the height difference. In this way, the extension side main valve 4 is given an initial deflection in advance, and presses itself against the extension side valve seat 3e with the elastic force exerted by itself.
- the extension side main valve 4 is not opened until the force for bending the extension side main valve 4 due to the differential pressure between the extension side chamber R1 and the compression side chamber R2 overcomes the above-mentioned pressing force due to the elastic force.
- the differential pressure at the time of valve opening becomes the valve opening pressure of the extension side main valve 4. Therefore, the valve opening pressure of the extension side main valve 4 can be adjusted by the deflection rigidity of the extension side main valve 4 and the initial deflection amount given to the extension side main valve 4.
- the other compression side main valve 7 is a laminated leaf valve formed by laminating a plurality of annular plates, and the inner circumference is fixed to the rod 2 as described above and laminated on the upper end of FIG. 2 of the piston 3 to form a piston. It is seated on the compression side valve seat 3f of 3.
- the compression side main valve 7 closes only the compression side main port 3d surrounded by the compression side valve seat 3f when seated on the compression side valve seat 3f, but does not close the inlet of the extension side main port 3c.
- the pressure side main valve 7 bends the outer periphery when the pressure difference between the pressure side chamber R2 acting on the front side and the extension side chamber R1 acting on the back side reaches the valve opening pressure via the pressure side main port 3d.
- the compression side main port 3d is opened apart from the compression side valve seat 3f to give resistance to the flow of liquid passing through the compression side main port 3d.
- the compression side main valve 7 is opened when the shock absorber D is contracted and the piston speed is in the middle and high speed range, and the compression side main port 3d is opened from the compression side chamber R2 to the extension side chamber R1. Resists the flow of liquid passing towards.
- the compression side main valve 7 sets the compression side main port 3d as a one-way passage that allows only the flow of liquid from the compression side chamber R2 to the extension side chamber R1.
- the valve opening pressure of the compression side main valve 7 can be adjusted by the deflection rigidity of the compression side main valve 7 and the initial deflection amount given to the compression side main valve 7, similarly to the extension side main valve 4.
- the main damping force generating element MD of the present embodiment is composed of the extension side main port 3c constituting the main passage MP, the extension side main valve 4 provided in the compression side main port 3d, and the compression side main valve 7. ing.
- the extension side main valve 4 and the compression side main valve 7 are laminated leaf valves formed by laminating a plurality of annular plates, but the number of laminated annular plates is the damping force to be generated in the shock absorber D. It can be arbitrarily changed according to the above, and may be a leaf valve composed of only one annular plate. Further, the extension side main valve 4 and the compression side main valve 7 may be valves having a configuration other than the leaf valve or the laminated leaf valve, but are buffered by being a leaf valve or a laminated leaf valve using a thin annular plate. It is possible to enjoy the advantage that the total length of the piston portion of the vessel D does not become long and the stroke length of the shock absorber D can be easily secured.
- extension side main valve 4 and the compression side main valve 7 are supported on the inner circumference by the spacers 5 and 8, and the outer peripheral side bending that is not supported by the spacers 5 and 8 is allowed. Therefore, the positions of the bending fulcrums of the extension side main valve 4 and the compression side main valve 7 can be changed by setting the outer diameters of the spacers 5 and 8.
- the valve stopper 9 comes into contact with the outer circumference of the compression side main valve 7 when the compression side main valve 7 is greatly bent, and regulates further bending of the compression side main valve 7 to protect the compression side main valve 7.
- the spacer 6 is composed of a plurality of annular washers, and adjusts the position of the valve holder 12, which will be described later.
- the axial thickness of the extension side main valve 4 and the compression side main valve 7 becomes thinner by adjusting the number of annular plates of the extension side main valve 4 and the compression side main valve 7, the number of shims of the spacer 6 is adjusted by adjusting the number of shims. It is sufficient to take measures so that the valve holder 12 does not become unable to apply axial force to the valve stopper 9, the spacer 8, the compression side main valve 7, the piston 3, the extension side main valve 4, the spacer 5 and the spacer 6.
- the valve holder 12 is screwed to the holding shaft 12a for holding the annular valve body 14 in the sub valve 13 in the sub-damping force generating element SD, and the screw portion 2d at the tip of the rod 2 connected to the upper end of FIG. 2 of the holding shaft 12a.
- the cylindrical nut portion 12b, the flange portion 12c provided on the outer periphery of the upper end in FIG. 2 of the holding shaft 12a, and the flange portion 12c are hung from the outer periphery of the lower end in FIG. It is provided with an annular portion 12d having an annular protrusion.
- the maximum outer diameter of the valve holder 12 is smaller than the inner diameter of the cylinder 1, and does not hinder the communication between the extension side chamber R1 and the compression side chamber R2 by the main passage MP.
- valve holder 12 has a screw portion 12e formed on the outer periphery of the lower end in FIG. 2 of the holding shaft 12a, and an annular portion inside the nut portion 12b which is opened from the upper end of the holding shaft 12a and opened at the lower end of the flange portion 12c. It is provided with a communication hole 12f that communicates within 12d.
- annular spacer 16 An annular spacer 16, a valve stopper 17, a spacer 18, an annular valve body 14 in a sub valve 13, and a spacer 19 are assembled in this order on the outer periphery of the holding shaft 12a.
- the annular spacer 16, the valve stopper 17, the spacer 18, the annular valve body 14 and the spacer 19 in the sub valve 13 are attached to the roots of the nut 20 and the flange portion 12c screwed to the screw portion 12e of the holding shaft 12a. It is fixed in a state of being sandwiched between the inner peripheral seat portion (12 g) to be formed.
- the communication hole 12f is communicated with the extension side chamber R1 through the orifice 2f provided in the rod 2 and the rod 2. Further, the communication hole 12f is communicated with the compression side chamber R2 through the inner circumference of the annular portion 12d.
- the extension side chamber R1 and the compression side chamber R2 are communicated with each other by bypassing the main passage MP in the gap inside the orifice 2f, the rod 2, the communication hole 12f and the annular portion 12d.
- the sub-passage SP is formed. In this way, the main passage MP and the sub-passage SP communicate with the extension side chamber R1 and the compression side chamber R2 in parallel.
- the sub-valve 13 is formed of an annular valve body 14 whose inner circumference is fixed to the outer circumference of the holding shaft 12a of the valve holder 12 and an annular protrusion provided along the circumferential direction on the inner circumference of the annular portion 12d of the valve holder 12. It is provided with an annular facing portion 15. Therefore, the sub-valve 13 is provided in series with the orifice 2f in the sub-passage SP, and the sub-valve 13 and the orifice 2f form a sub-damping force generating element SD. Further, the orifice 2f is provided only in the sub-passage SP, and is not provided in the main passage MP.
- the installation location is not limited to the rod 2, and for example, the communication hole 12f of the valve holder 12 is used as an orifice in the valve holder 12. It may be provided.
- the annular valve body 14 is configured to have three laminated leaf valves 14a, 14b, 14c, and can be elastically deformed.
- the outer diameter of the central leaf valve 14b among the three leaf valves constituting the annular valve body 14 is larger than the outer diameters of the leaf valves 14a and 14c located at both upper and lower ends.
- the number of leaf valves constituting the annular valve body 14 can be arbitrarily set according to the damping force desired to be obtained by the shock absorber D, and may be a single number, not a plurality.
- the annular valve body 14 is positioned at a position where the outer peripheral surface of the central leaf valve 14b faces the inner peripheral surface of the annular facing portion 15 provided on the valve holder 12 and is fixed to the holding shaft 12a. Further, spacers 18 and 19 are interposed between the leaf valve 14a at the upper end and the valve stopper 17 immediately above the leaf valve 14a at the upper end, and between the leaf valve 14c at the lower end and the nut 20 immediately below the leaf valve 14c at the lower end, respectively.
- the spacer 16 is composed of a plurality of annular plates, and by adjusting the number of laminated annular plates in the spacer 16, the leaf valve 14b of the annular valve body 14 just faces the inner peripheral surface of the annular facing portion 15. Positioned.
- Each of these spacers 18 and 19 is an annular plate whose outer diameter is smaller than the outer diameter of each leaf valve 14a, 14b, 14c constituting the annular valve body 14, and the annular valve body 14 has an inner peripheral portion thereof. It is fixed to the holding shaft 12a of the valve holder 12 in a state of being sandwiched between the seats 18 and 19.
- the outer peripheral side of the annular valve body 14 with respect to the spacers 18 and 19 can be flexed and displaced downward in FIG. 3 with the outer peripheral edge of the contact portion between the spacers 18 and 19 and the annular valve body 14 as a fulcrum. ..
- the inner circumference of the annular valve body 14 mounted on the valve holder 12 is a fixed end that does not move with respect to the holding shaft 12a of the valve holder 12, and the outer periphery of the annular valve body 14 is formed.
- the outer peripheral surface of the central leaf valve 14b located on the side is a free end that can move in the vertical direction with respect to the annular facing portion 15 provided on the valve holder 12.
- annular portion 12d of the valve holder 12 is provided with an annular facing portion 15 formed of annular protrusions protruding radially inward from the entire inner circumference of the annular portion 12d, and the annular facing portion 15 is provided with the annular facing portion 15.
- the annular valve body 14 is arranged on the inner peripheral side. Then, in an extremely low speed region where the piston speed is close to 0 (zero), such as when the shock absorber D starts to move, the annular valve body 14 does not bend and is maintained in the initial mounting state shown in FIG.
- the leaf valve 14b of the annular valve body 14 has an outer peripheral surface facing the inner peripheral surface of the annular facing portion 15 and is annular.
- a predetermined annular gap P is opened between the facing portion 15 and the facing portion 15.
- the annular gap P formed between the leaf valve 14b facing each other and the annular facing portion 15 is very narrow, and the opening area of the annular gap P is smaller than the opening area of the above-mentioned orifice 2f. ..
- valve opening pressure When the valve opening pressure is lower than the valve opening pressure of 7 and the piston speed is in the low speed range, the sub valve 13 opens as described above, but the extension side main valve 4 and the compression side main valve 7 do not open, and the liquid is only the sub passage SP. Will pass through.
- the area becomes larger than the opening area of the orifice 2f.
- valve stopper 17 located on the upper side of the annular valve body 14 comes into contact with the upper end surface of the leaf valve 14b in FIG. 3 when the flow rate of the liquid flowing through the sub-passage SP increases and the annular valve body 14 bends significantly. Further bending of the annular valve body 14 toward the upper side in FIG. 3 is restricted to protect the annular valve body 14.
- the valve stopper 17 is provided with a notch 17a formed from the outer periphery of the lower surface of FIG. 3 facing the annular valve body 14 toward the inner peripheral side. Even if the leaf valve 14b comes into contact with the valve stopper 17, the notch 17a allows the gap defined by the annular valve body 14 and the valve stopper 17 to communicate outward to prevent the gap from becoming a closed space.
- the nut 20 located on the lower side of the annular valve body 14 comes into contact with the lower end surface of FIG. 3 of the leaf valve 14b when the flow rate of the liquid flowing through the sub-passage SP increases and the annular valve body 14 bends significantly. Further bending of the annular valve body 14 toward the upper side in FIG. 3 is restricted to protect the annular valve body 14. Therefore, the nut 20 serves to fix the annular valve body 14, the spacer 16, the valve stopper 17, and the spacers 18 and 19 to the valve holder 12, and the valve that regulates the bending of the annular valve body 14 on the lower side in FIG. It also functions as a stopper.
- the nut 20 is provided with a notch 20a formed from the outer periphery of the upper surface of FIG. 3 facing the annular valve body 14 toward the inner peripheral side.
- the notch 20a communicates the gap defined by the annular valve body 14 and the nut 20 to the outside even if the leaf valve 14b comes into contact with the nut 20 to prevent the gap from becoming a closed space.
- the piston 3 moves upward in the cylinder 1 to compress the extension side chamber R1.
- the extension speed of the shock absorber D is in the very low speed range, the pressure of the extension side chamber R1 rises, but the pressure difference from the pressure of the compression side chamber R2 does not reach the valve opening pressure of the extension side main valve 4, so that the extension side main valve 4 is extended.
- the valve 4 does not open and keeps the extension side main port 3c closed.
- the compression side main valve 7 receives the pressure of the extension side chamber R1 from the back surface side and closes the compression side main port 3d.
- the shock absorber D when the extension speed of the shock absorber D is in the very low speed range, the shock absorber D generates a damping force that hinders the extension mainly due to the resistance given to the liquid by the sub valve 13. Therefore, the damping force characteristic on the extension side of the shock absorber D (characteristic of the damping force with respect to the extension speed of the shock absorber D) when the extension speed of the shock absorber D is in the very low speed region is as shown in FIG.
- the coefficient is very large, and it has the characteristic of rising significantly with increasing piston speed.
- the extension speed of the shock absorber D exceeds the very low speed range and is in the low speed range, the pressure in the extension side chamber R1 rises, but the differential pressure from the pressure in the compression side chamber R2 does not reach the valve opening pressure of the extension side main valve 4. Therefore, the extension side main valve 4 has not been opened yet, and the extension side main port 3c is maintained in a closed state.
- the compression side main valve 7 receives the pressure of the extension side chamber R1 from the back surface side and closes the compression side main port 3d.
- the shock absorber D When the liquid passes through the sub-passage SP, it passes through the orifice 2f and the annular gap P, but the flow path area of the annular gap P in the sub-valve 13 in the valve open state becomes larger than the flow path area of the orifice 2f. Therefore, when the elongation rate of the shock absorber D is in the low speed range, the shock absorber D generates a damping force that hinders the elongation mainly due to the resistance given by the orifice 2f to the liquid. Therefore, the damping force characteristic on the extension side of the shock absorber D when the extension speed of the shock absorber D is in the very low speed region is proportional to the square of the extension speed of the shock absorber D peculiar to the orifice, as shown in FIG. However, it is a characteristic that the inclination falls asleep as compared with the case where the extension speed is in the very low speed range.
- the differential pressure between the pressure of the extension side chamber R1 and the pressure of the compression side chamber R2 reaches the valve opening pressure of the extension side main valve 4.
- the extension side main valve 4 bends and opens to open the extension side main port 3c.
- the compression side main valve 7 receives the pressure of the extension side chamber R1 from the back surface side and closes the compression side main port 3d.
- the differential pressure between the pressure of the extension side chamber R1 and the pressure of the compression side chamber R2 exceeds the valve opening pressure of the sub valve 13, so that the sub valve 13 opens and the annular valve.
- the flow path area of the annular gap P between the body 14 and the annular facing portion 15 becomes large.
- the liquid can pass through the sub-passage SP, but the main passage MP is also opened, so that the liquid moves from the extension side chamber R1 to the compression side chamber R2 through both of them.
- the extension speed of the shock absorber D is in the medium-high speed range, the flow rate of the liquid moving from the extension side chamber R1 to the compression side chamber R2 increases. Since the resistance received by the liquid when passing through the orifice 2f and the sub valve 13 of the sub-passage SP is larger than the resistance received by the liquid when passing through the extension side main valve 4, the liquid passes through the sub-passage SP.
- the shock absorber D when the extension speed of the shock absorber D is in the medium to high speed range, the shock absorber D generates a damping force that hinders the extension mainly due to the resistance given to the liquid by the extension side main valve 4. Therefore, when the extension speed of the shock absorber D is in the medium-high speed range, the damping force characteristic on the extension side of the shock absorber D is, as shown in FIG. 4, the extension speed of the shock absorber D peculiar to the extension side main valve 4. However, the damping coefficient is smaller than that when the elongation rate is in the low speed range.
- the piston 3 moves downward in the cylinder 1 to compress the compression side chamber R2.
- the contraction speed of the shock absorber D is in the very low speed range, the pressure of the compression side chamber R2 rises, but the differential pressure from the pressure of the extension side chamber R1 does not reach the valve opening pressure of the compression side main valve 7, so that the compression side main valve 7 Does not open the valve and keeps the compression side main port 3d closed.
- the extension side main valve 4 receives the pressure of the compression side chamber R2 from the back side and closes the extension side main port 3c.
- the shock absorber D when the contraction speed of the shock absorber D is in the very low speed range, the shock absorber D generates a damping force that hinders the contraction mainly due to the resistance given to the liquid by the sub valve 13. Therefore, when the contraction speed of the shock absorber D is in the very low speed region, the damping force characteristic on the compression side of the shock absorber D has a very large damping coefficient and rises greatly with respect to an increase in the piston speed, as shown in FIG. It becomes a characteristic.
- the shock absorber D When the liquid passes through the sub-passage SP, it passes through the orifice 2f and the annular gap P, but the flow path area of the annular gap P in the sub-valve 13 in the valve open state becomes larger than the flow path area of the orifice 2f. Therefore, when the shrinkage rate of the shock absorber D is in the low speed range, the shock absorber D generates a damping force that hinders shrinkage mainly due to the resistance given by the orifice 2f to the liquid. Therefore, when the contraction speed of the shock absorber D is in the low speed range, the damping force characteristic on the compression side of the shock absorber D is proportional to the square of the contraction speed of the shock absorber D peculiar to the orifice, as shown in FIG. However, it has a characteristic that the inclination falls asleep as compared with the case where the contraction speed is in the very low speed range.
- the differential pressure between the pressure of the compression side chamber R2 and the pressure of the extension side chamber R1 reaches the valve opening pressure of the compression side main valve 7, and the compression side
- the main valve 7 bends and opens to open the compression side main port 3d.
- the extension side main valve 4 receives the pressure of the compression side chamber R2 from the back side and closes the extension side main port 3c.
- the flow path area of the annular gap P between the body 14 and the annular facing portion 15 becomes large.
- the liquid can pass through the sub-passage SP, but the main passage MP is also opened, so that the liquid moves from the compression side chamber R2 to the extension side chamber R1 through both of them.
- the contraction speed of the shock absorber D is in the medium-high speed range, the flow rate of the liquid moving from the compression side chamber R2 to the extension side chamber R1 increases. Since the resistance received by the liquid when passing through the orifice 2f and the sub valve 13 of the sub-passage SP is larger than the resistance received by the liquid when passing through the compression side main valve 7, the liquid is difficult to pass through the sub-passage SP.
- the shock absorber D when the contraction speed of the shock absorber D is in the medium to high speed range, the shock absorber D generates a damping force that hinders the contraction mainly due to the resistance given to the liquid by the compression side main valve 7. Therefore, the damping force characteristic on the compression side of the shock absorber D when the contraction speed of the shock absorber D is in the medium to high speed range is proportional to the contraction speed of the shock absorber D peculiar to the compression side main valve 7 as shown in FIG. However, the damping coefficient becomes smaller than when the shrinkage rate is in the low speed range.
- the main passage MP and the sub-passage SP that communicate the extension side chamber R1 and the compression side chamber R2 in parallel, and the main damping force generating element MD and the sub-passage SP in the main passage MP.
- the main damping force generating element MD has only the extension side main valve 4 and the compression side main valve 7 as the main valve for opening and closing the main passage MP, and the sub damping force generating element is provided.
- the SD is configured to have an orifice 2f provided in series with the sub-passage SP, an extension-side main valve 4 as a main valve, and a sub-valve 13 having a valve opening pressure lower than that of the compression-side main valve 7, while opening and closing the sub-passage SP. ing.
- the extension side chamber SP in which the orifice 2f and the sub passage SP provided with the sub valve 13 and the extension side main valve 4 as the main valve and the main passage MP having only the compression side main valve 7 are arranged in parallel. Since R1 and the compression side chamber R2 are communicated with each other, even if the bending of the sub-valve 13 is restricted by the valve stopper 17 or the nut 20, it does not affect the flow of the liquid passing through the main passage MP. That is, in the shock absorber D of the present embodiment, the sub valve 13 does not become a bottleneck that limits the flow path area to the minimum.
- the speed range in which the damping force is mainly generated by the sub valve 13 is set as a very low speed range
- the speed range in which the damping force is mainly generated by the orifice 2f is set as a low speed range, and mainly extended.
- the speed range in which the damping force is generated in the side main valve 4 and the compression side main valve 7 is defined as a medium-high speed range. The designer can arbitrarily set the speed for classifying the very low speed, the low speed, and the medium high speed.
- the shock absorber D includes a shock absorber body A that has a cylinder (outer tube) 1 and a rod 2 that is movably inserted into the cylinder (outer tube) 1 and is expandable and contractible, and a shock absorber.
- the main passage MP and the sub-valve SP that communicate the extension side chamber (operating chamber) R1 and the compression side chamber (operating chamber) R2 in parallel in the main body A, and the main damping force generating element MD provided in the main passage MP.
- the sub-damping force generating element SD provided in the sub-passage SP is provided, and the main damping force generating element MD is only the extension side main valve (main valve) 4 and the compression side main valve (main valve) 7 that open and close the main passage MP.
- the sub-damping force generating element SD opens and closes the orifice 2f and the sub-passage SP provided in series with the sub-passage SP, and the valve opening pressure is the extension side main valve (main valve) 4 and the compression side main valve (main valve). ) It is equipped with a sub-valve 13 lower than 7.
- the sub passage SP in which the sub valve 13 is provided and the main passage MP in which the extension side main valve (main valve) 4 and the compression side main valve (main valve) 7 are provided are the extension side chamber (working chamber).
- the flow path area of the sub valve 13 becomes a bottleneck and the extension side main valve (main valve) 4 and the compression side main valve (main valve). Does not affect 7. Therefore, according to the shock absorber D of the present embodiment, even if the expansion / contraction speed of the shock absorber D reaches a high speed range, the sub-valve 13 has the characteristics of the extension side main valve (main valve) 4 and the compression side main valve (main valve) 7. The phenomenon that the damping force becomes excessive by overriding the characteristics of the above does not occur, and the riding comfort in the vehicle can be improved.
- the shock absorber D of the present embodiment is a sub-passage SP parallel to the main passage MP rather than the valve opening pressure of the extension side main valve (main valve) 4 and the compression side main valve (main valve) 7 in the main passage MP. Since the valve opening pressure of the sub-valve 13 of the above is low and the orifice 2f is provided only in the sub-passage SP, the damping force characteristics of the shock absorber D in the very low speed range, the low speed range, and the medium and high speed range can be adjusted to the corresponding sub valve 13 and the orifice 2f. It can be set by the characteristics of the extension side main valve (main valve) 4 and the compression side main valve (main valve) 7. Therefore, according to the shock absorber D of the present embodiment, the damping force characteristic can be set in detail.
- shock absorber D of the present embodiment is inserted into the cylinder (outer tube) 1 and divides the extension side chamber (operating chamber) R1 and the compression side chamber (operating chamber) R2 into the cylinder (outer tube) 1.
- a piston (partition member) 3 is provided, and a main passage MP is formed by an extension side main port (main port) 3c and a compression side main port (main port) 3d provided on the piston (partition wall member) 3, and an extension side main valve ( The main valve) 4 and the compression side main valve (main valve) 7 are considered to be leaf valves laminated on the piston (partition wall member) 3.
- the main passage MP, the extension side main valve (main valve) 4 and the compression side main valve (main valve) 7 can be integrated into the piston (partition member) 3, and the extension side main valve can be integrated. Since the (main valve) 4 and the compression side main valve (main valve) 7 are used as leaf valves, the extension side main valve (main valve) 4 and the compression side main valve that are assembled to the piston (partition wall member) 3 and the piston (partition wall member) 3 (Main valve) It becomes easy to shorten the total total length of 7 and secure the stroke length.
- the shock absorber D of the present embodiment includes a rod (shaft member) 2 penetrating the piston (partition wall member) 3, and has a portion through which the sub-passage SP passes through the rod (shaft member) 2.
- the piston (partition member) 3 has the main passage MP, the extension side main valve (main valve) 4, and the compression side. Since a part of the sub-passage SP that bypasses the main passage MP is formed in the rod (shaft member) 2 while consolidating the main valve (main valve) 7, the sub-passage SP can be easily installed.
- the extension side main valve 4 and the compression side main valve 7 as the main valve, and the sub valve 13 may be an open / close type valve in which the valve opening pressure can be set in addition to the leaf valve.
- the piston (partition wall member) 3 is attached to the tip of the rod (shaft member) 2 to fix the piston (bulkhead member) 3 to the rod (shaft member) 2, and a part of the sub-passage SP is formed.
- the valve holder 12 is provided, and the sub valve 13 is held by the valve holder 12.
- the sub-valve 13 can be assembled in advance on the valve holder 12, and the valve holder 12 can also be used as a nut for fixing the piston (bulkhead member) 3 to the rod (shaft member) 2. Therefore, according to the shock absorber D configured in this way, not only the installation of the sub-valve 13 becomes easy, but also the assembly of the shock absorber D becomes very easy.
- the sub-valve 13 has a structure in which the annular valve body 14 is fixed on the inner circumference and the outer peripheral side is allowed to bend, and faces the annular facing portion 15 on the outer circumference.
- the annular valve body may be fixed to the outer circumference to allow bending on the inner peripheral side, and may be provided with a structure in which the annular valve seat faces the inner circumference of the annular valve body.
- the sub-valve 13 has one of the inner circumference or the outer circumference fixed to be a fixed end, and the other of the inner circumference or the outer circumference is used as a free end to allow bending and to the sub-passage SP.
- An annular facing portion 15 having an annular gap P opened between the annular valve body 14 provided and the free end of the annular valve body 14 is provided.
- the damping force can be exerted by narrowing the sub-passage SP in the annular gap P in the state where the annular valve body 14 does not bend, and the damping force is generated in the extremely low speed range.
- the opening area of the annular gap P can be adjusted by adjusting the outer diameter of the annular valve body 14, the damping force characteristics can be easily adjusted by replacing the annular valve bodies 14 having different outer diameters.
- the orifice 2f was used as a fixed orifice, but the orifice provided in the sub-passage SP is variable as in the shock absorber D1 of the first modification of the first embodiment shown in FIG. It may be an orifice.
- the shock absorber D1 may have a configuration changed as follows from the configuration of the shock absorber D.
- the shock absorber D1 is provided with a lateral hole 2g that leads from the side of the large diameter portion 2b of the rod 2 into the rod 2 instead of the orifice 2f, and is inserted in the rod 2 below the lateral hole 2g in FIG.
- annular valve seat member 22 that is fixed and fixed, and a needle 23 that is housed in the rod 2 and is accessible to the valve seat member 22.
- the flow path area between the needle 23 and the valve seat member 22 can be changed by moving the needle 23 closer to the valve seat member 22, and the variable orifice VO can be changed between the needle 23 and the valve seat member 22. Is forming.
- the needle 23 is connected to the control rod 24 inserted into the rod 2 from the upper end of the rod 2, and is moved closer to the valve seat member 22 by the operation of the control rod 24 and has a shaft with the valve seat member 22. Change the directional distance.
- the control rod 24 may be driven by a motor (not shown) or a linear actuator, or may be manually operated.
- the shock absorber D1 configured in this way can adjust the damping force characteristics of the shock absorber D1 and the timing at which the characteristics of the variable orifice VO appear in the damping force characteristics by changing the flow path area of the variable orifice VO. Become.
- the shaft member is a rod 2
- the partition wall member is a piston 3
- the two operating chambers are an extension side chamber R1 and a compression side chamber R2.
- the valve case 30 that separates the compression side chamber R4 and the reservoir R is used as a partition member
- the shaft member is used as a guide rod 32 for fixing the main valve 31 to the valve case 30, and the two operating chambers are the compression side chambers. It may be R2 and reservoir R.
- the shock absorber D2 includes a cylinder 34, a bottomed tubular outer tube 35 that covers the outer periphery of the cylinder 34 and forms a reservoir R between the cylinder 34, and a rod 36 that is movably inserted into the cylinder 34.
- a valve case 30 as a partition member that fits to the lower end and is sandwiched between the bottom of the outer tube 35 and separates the reservoir R and the compression side chamber R4 in the outer tube 35, and a main valve case 30. It includes a discharge port 30c as a port, a main valve 31 for opening and closing the discharge port 30c, and a guide rod 32 as a shaft member penetrating the valve case 30.
- the upper ends of the cylinder 34 and the outer tube 35 are annular and are closed by a rod guide 41 through which the rod 36 is inserted, and the inside of the cylinder 34 and the outer tube 35 is a closed space.
- the piston 37 is divided into an extension side chamber R3 and a compression side chamber R4 filled with a liquid in the cylinder 34, and is provided in the passages 37a and 37b connecting the extension side chamber R3 and the compression side chamber R4 and in the middle of the passage 37a.
- a damping valve 37c that allows only the flow of liquid from the extension side chamber R3 to the compression side chamber R4 and gives resistance to the flow of the liquid, and a liquid flow from the compression side chamber R4 to the extension side chamber R3 provided in the middle of the passage 37b. It is equipped with a damping valve 37d that allows only and resists the flow of liquid.
- the valve case 30 is fitted to the lower end of the cylinder 34 to partition the compression side chamber R4 and the reservoir R formed between the cylinder 34 and the outer tube 35.
- the compression side chamber R4 and the reservoir R in the outer tube 35 are used as working chambers, and the valve case 30 for partitioning them is used as a partition wall member.
- the valve case 30 has an annular shape, and includes a main body portion 30a fitted to the lower middle end of FIG. 6 of the cylinder 34, and an annular leg portion 30b extending downward from the outer circumference of the lower end of the main body portion 30a.
- a discharge port 30c as a main port provided on the same circumference of the main body 30a and penetrating the main body 30a in the axial direction, and a main body provided on the same circumference on the outer peripheral side of the discharge port 30c of the main body 30a. It is configured to include a suction port 30d that penetrates the portion 30a in the axial direction.
- the discharge port 30c provided in the valve case 30 forms a main port as a main passage MP that communicates the compression side chamber R4 as the working chamber and the reservoir R as the working chamber. .. Further, the valve case 30 is provided with a notch 30e in the leg portion 30b for communicating the annular gap between the cylinder 34 and the outer tube 35 and the inside of the leg portion 30b, and the compression side chamber R4 and the reservoir R by the main port. It is designed not to interfere with the communication of.
- a guide rod 32 as a shaft member is inserted through the inner circumference of the valve case 30.
- the guide rod 32 includes a cylindrical shaft portion 32a inserted into the valve case 30, a screw portion 32b provided on the outer periphery of the tip of the shaft portion 32a, and a flange portion 32c provided on the outer periphery of the base end of the shaft portion 32a. And have. Further, an orifice 32d is installed in the middle of the shaft portion 32a.
- a main valve 31 made of an annular laminated leaf valve that opens and closes the discharge port 30c is superposed at the lower middle end of FIG. 6 of the valve case 30, and the suction port 30d is opened and closed at the upper end of FIG. 6 of the valve case 30.
- An annular check valve 33 is stacked.
- the main valve 31, the valve case 30, and the check valve 33 are sequentially assembled to the outer periphery of the shaft portion 32a of the guide rod 32, and are sandwiched between the valve holder 12 screwed to the screw portion 32b and the flange portion 32c. It is fixed to the guide rod 32.
- the valve holder 12 is the same component as the valve holder in the shock absorber D, holds the sub-valve 13, and also plays a role of fixing the valve case 30 as a partition member to the guide rod 32 as a shaft member.
- the main valve 31 is a laminated leaf valve configured by laminating a plurality of annular plates, and the inner circumference is fixed to the guide rod 32 as described above and laminated at the lower middle end of FIG. 6 of the valve case 30.
- 30 is seated on a valve seat 30f provided at the lower middle end of FIG. 6 and surrounding the discharge port 30c.
- the main valve 31 closes only the discharge port 30c surrounded by the valve seat 30f, and does not close the inlet of the suction port 30d.
- the main valve 31 bends the outer periphery of the valve seat 30f.
- the discharge port 30c is opened apart from the discharge port 30c to resist the flow of liquid through the discharge port 30c.
- the main valve 31 is opened when the shock absorber D is contracted and the piston speed is in the medium-high speed range, and the discharge port 30c is opened from the compression side chamber R4 toward the reservoir R. It resists the flow of liquid through it. Further, the main valve 31 sets the discharge port 30c as a one-way passage that allows only the flow of liquid from the compression side chamber R4 to the reservoir R.
- the main damping force generating element MD in the shock absorber D2 of the present embodiment is composed of the main valve 31 provided in the discharge port 30c constituting the main passage MP, and does not have an orifice.
- the valve opening pressure setting of the main valve 31 can be adjusted by the deflection rigidity and the initial deflection amount of the main valve 31 as in the shock absorber D, and the adjustment of the position of the fulcrum of the deflection is laminated on the back side of the main valve 31. This can be done by changing the outer diameter of the seat 40. Further, a valve stopper for regulating the maximum amount of deflection of the main valve 31 may be provided, or the flange portion 32c of the guide rod 32 may be used as the valve stopper of the main valve 31.
- the check valve 33 is composed of an annular plate, and the inner circumference thereof is fixed to the guide rod 32 as described above, laminated on the upper surface of FIG. 6 of the valve case 30 and provided at the upper end of FIG. 6 of the valve case 30. It is seated on the valve seat 30g surrounding the suction port 30d. The check valve 33 closes only the suction port 30d surrounded by the valve seat 30g when seated on the valve seat 30g.
- the check valve 33 is provided with a through hole 33a at a position facing the discharge port 30c, and does not block the discharge port 30c even when it is in contact with the upper surface of FIG. 6 of the valve case 30.
- the check valve 33 bends to open the suction port 30d and allows the flow of liquid moving from the reservoir R to the compression side chamber R4 via the suction port 30d. do.
- the check valve 33 sets the suction port 30d as a one-way passage that allows only the flow of liquid from the reservoir R to the compression side chamber R4.
- the inside of the shaft portion 32a faces the communication hole 12f of the valve holder 12, and the inside of the shaft portion 32a communicates with the compression side chamber R4 through the communication hole 12f. Will be done. Further, since the lower middle end of FIG. 6 of the shaft portion 32a is desired by the reservoir R, the compression side chamber R4 and the reservoir R are communicated with each other through the annular portion 12d of the valve holder 12, the communication hole 12f, and the shaft portion 32a. .. Therefore, the shaft portion 32a and the valve holder 12 form a sub-passage SP that communicates with the compression side chamber R4 and the reservoir R in parallel with the main passage MP.
- the valve holder 12 and the sub valve 13 have the same configuration as the shock absorber D. Therefore, the sub-valve 13 is composed of an annular valve body 14 and an annular facing portion 15 provided on the valve holder 12.
- the annular valve body 14 is assembled to the outer periphery of the holding shaft 12a together with the spacer 16, the valve stopper 17, the spacer 18, and the spacer 19, and the nut 20 and the flange portion 12c are screwed to the screw portion 12e. It is sandwiched between the inner peripheral seat portion 12g formed at the base of the valve holder 12 and fixed to the valve holder 12.
- the compression side chamber R4 and the reservoir R which are two operating chambers, are communicated with each other by the main passage MP and the sub-passage SP in parallel, and are the main ports forming the main passage MP.
- a main valve 31 is provided in the discharge port 30c, and an orifice 32d and a sub valve 13 as a sub-damping force generating element SD are provided in series in the sub-passage SP. Then, the valve opening pressure of the main valve 31 is set to be larger than the valve opening pressure of the sub valve 13.
- the opening area of the annular gap P in the state where the annular valve body 14 is not bent is smaller than the opening area of the above-mentioned orifice 32d.
- the annular valve body 14 bends and the opening area of the annular gap P becomes larger than that of the orifice 32d.
- the valve opening pressure of the sub valve 13 is lower than the valve opening pressure of the main valve 31, and when the piston speed at the time of contraction of the shock absorber D2 is in the low speed range, the sub valve 13 opens as described above, but the main valve 31 opens. Without valve, the liquid will pass only through the sub-passage SP.
- the piston 37 moves upward in the cylinder 34 to compress the extension side chamber R3.
- the liquid moves from the compressed extension chamber R3 to the compression side chamber R4 which is expanded through the passage 37a of the piston 37 and the damping valve 37c. Due to the exit of the rod 36 from the cylinder 34, the volume of liquid that the rod 36 exits from the cylinder 34 is insufficient in the cylinder 34, but the insufficient liquid is sucked from the reservoir R by opening the check valve 33. It is supplied to the compression side chamber R4 through 30d. Therefore, the shock absorber D2 generates a damping force that hinders the extension by the damping valve 37c at the time of extension.
- the piston 37 moves downward in the cylinder 34 to compress the compression side chamber R4.
- the liquid moves from the compressed side chamber R4 to the extension side chamber R3 which is expanded through the passage 37b of the piston 37 and the damping valve 37d.
- the shock absorber D2 contracts, the rod 36 invades the cylinder 34, so that the volume of the liquid in which the rod 36 has invaded the cylinder 34 becomes excessive in the cylinder 34, and the excess liquid is the main passage MP or the main passage MP. It moves to the reservoir R via the sub-passage SP.
- the flow path area of the annular gap P in the sub-valve 13 which passes through the orifice 32d and the annular gap P but is closed is smaller than the flow path area of the orifice 32d.
- the pressure in the compression side chamber R4 becomes higher than the pressure in the extension side chamber R3. Therefore, when the contraction speed of the shock absorber D2 is in the very low speed range, the shock absorber D2 generates a damping force mainly by the resistance given to the liquid by the sub valve 13 and the damping valve 37d. Therefore, when the contraction speed of the shock absorber D2 is in the very low speed region, the damping force characteristic on the compression side of the shock absorber D2 has a very large damping coefficient and a characteristic of rising significantly with respect to an increase in the piston speed.
- the liquid cannot pass through the blocked main passage MP, it moves from the compression side chamber R2 to the extension side chamber R1 via the sub passage SP.
- the liquid passes through the sub-passage SP, it passes through the orifice 32d and the annular gap P, but the flow path area of the annular gap P in the sub-valve 13 in the valve open state becomes larger than the flow path area of the orifice 32d.
- the pressure in the compression side chamber R4 becomes higher than the pressure in the extension side chamber R3.
- the shock absorber D2 when the contraction speed of the shock absorber D2 is in the low speed range, the shock absorber D2 generates a damping force mainly by the resistance given to the liquid by the orifice 32d and the damping valve 37d. Therefore, when the contraction speed of the shock absorber D2 is in the low speed range, the damping force characteristic on the compression side of the shock absorber D2 is proportional to the square of the contraction speed of the shock absorber D2 peculiar to the orifice. Compared to the case where it is in the very low speed range, the inclination becomes a characteristic of sleeping.
- the contraction speed of the shock absorber D2 exceeds the low speed range and is in the medium and high speed range, the differential pressure between the pressure of the compression side chamber R4 and the pressure of the reservoir R reaches the valve opening pressure of the main valve 31, and the main valve 31 Bends and opens the valve to open the discharge port 30c.
- the sub-valve 13 is also opened. Therefore, the liquid can pass through the sub-passage SP, but the main passage MP is also opened, so that the liquid moves from the compression side chamber R2 to the extension side chamber R1 through both of them.
- the flow rate of the liquid moving from the compression side chamber R4 to the reservoir R increases. Since the resistance received by the liquid when passing through the orifice 32d and the sub valve 13 of the sub-passage SP is larger than the resistance received by the liquid when passing through the compression side main valve 7, the liquid is difficult to pass through the sub-passage SP. Most of the liquid moving from the compression side chamber R4 to the reservoir R will pass through the main passage MP. Further, since the liquid passing through the damping valve 37d and heading from the compression side chamber R4 to the extension side chamber R3 receives resistance from the damping valve 37d, the pressure in the compression side chamber R4 becomes higher than the pressure in the extension side chamber R3.
- the shock absorber D2 when the extension speed of the shock absorber D2 is in the medium-high speed range, the shock absorber D2 generates a damping force mainly by the resistance given to the liquid by the main valve 31 and the damping valve 37d. Therefore, when the contraction speed of the shock absorber D2 is in the medium-high speed range, the damping force characteristic on the compression side of the shock absorber D2 is proportional to the contraction speed of the shock absorber D2 peculiar to the main valve 31. The characteristic is that the damping coefficient becomes smaller than when the shrinkage speed is in the low speed range.
- a check valve may be provided in the passage 37b to allow only the flow of the liquid from the compression side chamber R4 to the extension side chamber R3.
- the check valve does not contribute to the damping force of the shock absorber D2 because it does not give a step ton and resistance to the flow of the liquid. Therefore, when a check valve is provided instead of the damping valve 37d, the shock absorber D2 is mainly used by the sub valve 13 when the contraction speed is in the very low speed range, and mainly by the orifice 32d when the contraction speed is in the low speed range. When the contraction speed is in the medium to high speed range, damping force is generated mainly by the main valve 31.
- the shock absorber D2 of the present embodiment includes a main passage MP and a sub-passage SP that communicate the compression side chamber R4 and the reservoir R in parallel, and a main damping force generating element MD provided in the main passage MP.
- a sub-damping force generating element SD provided in the sub-passage SP is provided, the main damping force generating element MD has only a main valve 31 for opening and closing the main passage MP, and the sub-damping force generating element SD is connected in series with the sub-passage SP. It is configured to have an orifice 32d provided, a sub-valve 13 that opens and closes the sub-passage SP, and has a valve opening pressure lower than that of the main valve 31.
- the sub-passage SP provided with the orifice 32d and the sub-valve 13 and the main passage MP having only the main valve 31 as the main valve communicate in parallel with the compression side chamber R2 and the reservoir R. Therefore, even if the bending of the sub-valve 13 is regulated by the valve stopper 17 or the nut 20, it does not affect the flow of the liquid passing through the main passage MP. That is, in the shock absorber D2 of the present embodiment, the sub valve 13 does not become a bottleneck that limits the flow path area to the minimum.
- the main passage MP and the sub-passage SP may communicate the extension side chamber R1 and the compression side chamber R2 in the outer tubes 1 and 35, or may communicate the compression side chamber R4 and the reservoir R. ..
- the rod 36 and the piston 37 of the shock absorber D2 instead of the rod 36 and the piston 37 of the shock absorber D2, the rod 2, the piston 3, the extension side main valve 4, the compression side main valve 7, the valve holder 12 and the sub valve 13 of the shock absorber D are applied to the piston side.
- the main passage MP and the sub passage SP, the main damping force generating element MD, and the sub damping force generating element SD are provided on the valve case side, respectively.
- the working chamber is used as an extension chamber and a reservoir, and the extension chamber and the reservoir are communicated in parallel in the main passage and the sub passage, and a main damping force generating element is provided in the main passage to generate a sub damping force in the sub passage.
- An element may be provided.
- the sub-valve 13 is configured to include an annular valve body 14 and an annular facing portion 15 facing the annular valve body 14 with an annular gap P, as described above.
- the inner and outer valve seats with different diameters, and the annular inner and outer valve seats that seat the inner peripheral side of one end surface on the inner valve seat and the outer peripheral side of the other end surface on the outer valve seat.
- It may be a decarboxyl valve consisting of a valve.
- the leaf valve bends either the inner circumference or the outer circumference with respect to the liquid flow from the extension side chamber R1 (compression side chamber R4) to the compression side chamber R2 (reservoir R).
- the sub-passage SP is opened, and the leaf valve bends the inner or outer circumference of the liquid flow from the compression side chamber R2 (reservoir R) to the extension side chamber R1 (compression side chamber R4) to open the sub-passage SP. And can give resistance to the flow of liquid.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fluid-Damping Devices (AREA)
Abstract
緩衝器(D)は、アウターチューブ(1)とアウターチューブ(1)内に移動可能に挿入されるロッド(2)とを有して伸縮可能な緩衝器本体(A)と、緩衝器本体(A)内に設けられる二つの作動室(R1,R2)を並列して連通するメイン通路(MP)とサブ通路(SP)と、メイン通路(MP)に設けられるメイン減衰力発生要素と、サブ通路(SP)に設けられるサブ減衰力発生要素(SD)とを備え、メイン減衰力発生要素(MD)は、メイン通路(MP)を開閉するメインバルブ(4,7)のみを有し、サブ減衰力発生要素(SD)は、サブ通路(SP)に直列に設けられるオリフィス(2f)とサブ通路(SP)を開閉するとともに開弁圧がメインバルブ(4,7)よりも低いサブバルブ(13)とを有する。
Description
本発明は、緩衝器に関する。
緩衝器は、たとえば、車両の車体と車輪との間に介装されて、伸縮時に生じる液体の流れに抵抗を与えて減衰力を発生して車体の振動を抑制するのに利用されている。
このような緩衝器は、車両における乗り心地をより一層向上できるような減衰力特性を実現すべく、日々改良されている。緩衝器の伸縮速度が微低速域においては、減衰力を伸縮速度に対して速やかに立ち上げるが、低速領域では減衰力が過剰とならないように減衰係数を低下させ、高速領域ではさらに一段減衰係数を低下させて伸縮速度に比例する減衰力を発揮させることにより、微低速域において車輪の振動を効果的に減衰させるとともにその他の速度域での車両における乗り心地を向上できる減衰力特性(図7中の実線を参照)を実現する緩衝器が要望される場合がある。
このような減衰力特性を実現する緩衝器は、たとえば、以下のように構成される。具体的には、JP2019-183921Aに開示されているように、緩衝器は、シリンダと、シリンダ内に移動自在に挿入されるピストンロッドと、ピストンロッドの先端の外周に装着されてシリンダ内を伸側室と圧側室とに区画するピストンと、ピストンに積層されてピストンロッドに装着されるサブバルブケースと、環状であって内周がピストンロッドに固定されてピストンに設けられたポートを開閉する伸側リーフバルブと圧側リーフバルブと、環状であって内周がピストンロッドに固定されて外周が隙間を開けてサブバルブケースに設けられた円環状の弁座に対向するサブバルブとを備えて構成される。このように構成された緩衝器では、ピストンに設けられたポートと、サブバルブケースに設けられたサブポートとで伸側室と圧側室とを連通する通路を形成されており、サブバルブと伸側および圧側のリーフバルブとが前記通路に直列に配置されている。
上記構成によれば、緩衝器の伸縮速度(ピストン速度)が低く、サブバルブが撓まない速度領域では、サブバルブの自由端の外周と円環状の弁座との間にできる隙間が狭い状態に維持される。しかし、緩衝器のピストン速度が上昇してサブバルブの自由端側の端部が撓むと、その自由端の外周にできる隙間が広くなって、ピストン速度が上昇したときの緩衝器の減衰係数が小さくなり、緩衝器の減衰力特性が速度に依存した特性となる。
また、従来の緩衝器では、高速で伸縮した場合、伸側と圧側のリーフバルブが撓んでポートを大きく開放し作動油の流れに抵抗を与えるようになり、これによって緩衝器の伸縮速度が高速域では主として伸側と圧側のリーフバルブで減衰力を発生して減衰係数を低速域の減衰係数よりも一段低下させるようにしている。
従来の緩衝器では、サブバルブの固定端側の端部を間座で押さえており、この間座とサブバルブとが当接する当接部の自由端側の縁を支点にしてサブバルブが撓む。また、従来の緩衝器では、前述した通り、サブバルブが伸側リーフバルブと圧側リーフバルブに対して直列に設けられており、伸側室と圧側室とを行きかう作動油の全流量がサブバルブを通過する。そのため、従来の緩衝器では、サブバルブに大きな負荷がかかって限界を超えて撓んでしまうことのないように撓み量を規制するバルブストッパが設けられている。
よって、緩衝器の伸縮速度が高速域にある場合に、サブバルブの撓みがバルブストッパで規制される関係で、サブバルブにおける流路面積が伸側と圧側のリーフバルブにおける流路面積以下となってボトルネックとなってしまう。すると、従来の緩衝器の減衰力特性は、図7の破線で示したように、高速域における減衰力にサブバルブの抵抗による圧力損失分がオーバーライドされて、減衰力が過剰となってしまい、車両における乗り心地が損なわれてしまう。
そこで、本発明は、サブバルブのオーバーライドの影響を受けず車両における乗り心地を向上できる緩衝器の提供を目的とする。
上記課題を解決する緩衝器は、アウターチューブと、アウターチューブ内に移動可能に挿入されるロッドとを有して伸縮可能な緩衝器本体と、緩衝器本体内に設けられる二つの作動室を並列して連通するメイン通路とサブ通路と、メイン通路に設けられるメイン減衰力発生要素と、サブ通路に設けられるサブ減衰力発生要素とを備え、メイン減衰力発生要素がメイン通路を開閉するメインバルブのみを有し、サブ減衰力発生要素がサブ通路に直列に設けられるオリフィスとサブ通路を開閉するとともに開弁圧がメインバルブよりも低いサブバルブとを有している。このように構成された緩衝器は、サブバルブが設けられるサブ通路とメインバルブが設けられるメイン通路が二つの作動室を並列して連通しているので、サブバルブの流路面積がボトルネックとなってメインバルブに影響を与えない。
また、オリフィスを可変オリフィスとして緩衝器を構成してもよく、このように構成された緩衝器によれば、緩衝器の減衰力特性の調整と可変オリフィスの特性が減衰力特性に現れるタイミングを調整できる。
また、緩衝器は、アウターチューブ内に挿入されるとともにアウターチューブ内に二つの作動室とを区画する隔壁部材を備え、メイン通路が隔壁部材に設けられるメインポートで形成され、メインバルブが隔壁部材に積層されるリーフバルブとされてもよい。このように構成された緩衝器によれば、隔壁部材にメイン通路とメインバルブを集約でき、メインバルブをリーフバルブとしたことで隔壁部材と隔壁部材に組み付けられるメインバルブのトータルの全長を短くしやすくなりストローク長の確保が容易となる。
また、緩衝器は、隔壁部材を貫く軸部材を備え、サブ通路が軸部材内を通過する部分を有してもよい。このように構成された緩衝器では、サブ通路の設置が容易となる。
さらに、緩衝器は、軸部材の先端に装着されて隔壁部材を軸部材に固定するとともにサブ通路の一部が形成されるバルブホルダを備え、サブバルブがバルブホルダに保持されてよい。このように構成された緩衝器では、サブバルブの設置が容易となるだけでなく、緩衝器の組み立てが非常に簡単となる。
また、サブバルブが内周あるいは外周の一方が固定されて固定端とされ内周あるいは外周の他方を自由端として撓みが許容されるとともにサブ通路に設けられる環状弁体と、環状弁体の自由端との間に環状隙間を開けて対向する環状対向部とを備えていてもよい。このように構成された緩衝器によれば、環状弁体が撓まない状態において環状隙間でサブ通路を絞って減衰力を発揮できるとともに、外径の異なる環状弁体の交換によって減衰力特性を容易に調整できる。
本発明の緩衝器によれば、サブバルブのオーバーライドの影響を受けず車両における乗り心地を向上できる。
以下、図に示した実施の形態に基づき、本発明を説明する。図1および図2に示すように、一実施の形態における緩衝器Dは、アウターチューブとしてのシリンダ1と、シリンダ1内に移動可能に挿入されるロッド2とを有して伸縮可能な緩衝器本体Aと、緩衝器本体A内に設けられる二つの作動室としての伸側室R1と圧側室R2と並列して連通するメイン通路MPとサブ通路SPと、メイン通路MPに設けられたメイン減衰力発生要素MDと、サブ通路SPに設けられたサブ減衰力発生要素SDとを備えている。そして、この緩衝器Dの場合、図示しない車両における車体と車軸との間に介装されて使用され、車体および車輪の振動を抑制する。
以下、緩衝器Dの各部について詳細に説明する。図1に示すように、緩衝器本体Aは、アウターチューブとしての有底筒状のシリンダ1と、シリンダ1内に移動可能に挿入されるロッド2と、ロッド2に連結されてシリンダ1内に移動可能に挿入されるとともにシリンダ1内を作動室としての伸側室R1と圧側室R2とに区画する隔壁部材としてのピストン3とを備えている。
そして、ロッド2の図1中上端となる基端には、ブラケット(図示せず)が設けられており、ロッド2が図外の前記ブラケットを介して車体と車軸の一方に連結される。また、シリンダ1の底部1aにもブラケット(図示せず)が設けられており、シリンダ1が図外の前記ブラケットを介して車体と車軸の他方に連結される。
このようにして緩衝器Dは車体と車軸との間に介装される。そして、車両が凹凸のある路面を走行する等して車輪が車体に対して上下に振動すると、ロッド2がシリンダ1に出入りして緩衝器Dが伸縮するとともに、ピストン3がシリンダ1内を上下(軸方向)に移動する。
また、緩衝器本体Aは、シリンダ1の上端を塞ぐとともに、内周にロッド2が摺動自在に挿通される環状のロッドガイド10を備えている。よって、シリンダ1内は、密閉空間とされている。そして、そのシリンダ1内のピストン3から見てロッド2とは反対側に、フリーピストン11が摺動自在に挿入されている。
シリンダ1内におけるフリーピストン11の上側には液室Lが形成され、下側にはガス室Gが形成されている。さらに、液室Lは、ピストン3でロッド2側の伸側室R1とピストン3側の圧側室R2とに区画されており、伸側室R1と圧側室R2には、それぞれ作動油等の液体が充填されている。その一方、ガス室Gには、エア、又は窒素ガス等の気体が圧縮された状態で封入されている。
そして、緩衝器Dの伸長時にロッド2がシリンダ1から退出し、その退出したロッド2の体積分シリンダ内容積が増加すると、フリーピストン11がシリンダ1内を上側へ移動してガス室Gを拡大させる。反対に、緩衝器Dの収縮時にロッド2がシリンダ1内へ侵入し、その侵入したロッド2の体積分シリンダ内容積が減少すると、フリーピストン11がシリンダ1内を下側へ移動してガス室Gを縮小させる。
なお、フリーピストン11に替えて、ブラダ、又はベローズ等を利用して液室Lとガス室Gとを仕切っていてもよく、この仕切となる可動隔壁の構成は適宜変更できる。
さらに、本実施の形態では、緩衝器Dが片ロッド、単筒型であり、緩衝器Dの伸縮時にフリーピストン(可動隔壁)11でガス室Gを拡大又は縮小させて、シリンダ1に出入りするロッド2の体積補償をする。しかし、この体積補償のための構成も適宜変更できる。
例えば、フリーピストン(可動隔壁)11とガス室Gとを廃し、シリンダ1の外周にアウターシェルを設けて緩衝器を複筒型にする。そして、シリンダ1とアウターシェルとの間に液体を貯留するリザーバ室を形成し、このリザーバ室で体積補償をしてもよい。さらに、そのリザーバ室は、シリンダ1とは別置き型のタンク内に形成されていてもよい。また、緩衝器Dは、ロッド2の中央にピストン3が装着されてシリンダ1の両端からロッド2の端部がシリンダ1外に突出する両ロッド型の緩衝器として構成されてもよい。
ロッド2は、先端側に設けた小径部2aと、小径部2aより図2中上側の大径部2bとの境に設けられた段部2cと、小径部2aの先端外周に設けられた螺子部2dと、小径部2aの先端から開口して軸方向へ延びる縦孔2eと、大径部2bから開口して縦孔2eへ通じるオリフィス2fとを備えている。
つづいて、隔壁部材としてのピストン3は、環状であってロッド2の小径部2aの外周に嵌合されており、ロッド2の螺子部2dに螺着されるバルブホルダ12によってロッド2に固定されている。このように、本実施の形態では、ロッド2を軸部材として用いている。より詳細には、ピストン3は、環状の本体部3aと、本体部3aの外周に設けられてシリンダ1の内周に摺接する摺接筒3bと、本体部3aの同一円周上に設けられて本体部3aを軸方向に貫く伸側メインポート3cと、本体部3aの前記伸側メインポート3cよりも外周側の同一円周上に設けられて本体部3aを軸方向に貫く圧側メインポート3dと、本体部3aの図2中下端の伸側メインポート3cと圧側メインポート3dとの間に設けられて伸側メインポート3cを取り囲む環状の伸側弁座3eと、本体部3aの図2中上端に設けられて伸側メインポート3cを避けて圧側メインポート3dの開口のみをそれぞれ個別に取り囲む花弁型の圧側弁座3fとを備えて構成されている。そして、本実施の形態では、ピストン3に設けられた伸側メインポート3cと圧側メインポート3dとによって、伸側室R1と圧側室R2とを連通するメイン通路MPが構成されている。他方、ロッド2の内部およびオリフィス2fは、メイン通路MPを迂回して伸側室R1と圧側室R2とを連通するサブ通路SPの一部を形成している。
戻って、ピストン3の図2中下面には、ロッド2の小径部2aに内周側が固定される積層リーフバルブでなる伸側メインバルブ4、伸側メインバルブ4の撓みの支点の位置を設定する環状であって伸側メインバルブ4より外径が小径な間座5および環状のスペーサ6が重ねられている。また、ピストン3の図2中上面には、ロッド2の小径部2aに内周側が固定される積層リーフバルブでなる圧側メインバルブ7、圧側メインバルブ7の撓みの支点の位置を設定する環状であって圧側メインバルブ7より外径が小径な間座8およびバルブストッパ9が重ねられている。
そして、これらのバルブストッパ9、間座8、圧側メインバルブ7、ピストン3、伸側メインバルブ4、間座5およびスペーサ6は、順にロッド2の小径部2aの外周に組み付けられた後、ロッド2の先端の螺子部2dに螺着されるバルブホルダ12とロッド2の段部2cとで挟持されてロッド2に固定される。
伸側メインバルブ4は、複数の環状板を積層して構成された積層リーフバルブであって、内周が前述の通りロッド2に固定されてピストン3の図2中下端に積層されてピストン3の伸側弁座3eに着座している。伸側メインバルブ4は、伸側弁座3eに着座した状態では伸側弁座3eにより取り囲まれている伸側メインポート3cを閉塞するが、圧側メインポート3dの入口については閉塞しない。そして、伸側メインバルブ4は、伸側メインポート3cを介して正面側に作用する伸側室R1の圧力と背面側に作用する圧側室R2との差圧が開弁圧に達すると外周を撓ませて伸側弁座3eから離間して伸側メインポート3cを開放し、伸側メインポート3cを通過する液体の流れに抵抗を与える。本実施の形態の緩衝器Dでは、伸側メインバルブ4は、緩衝器Dの伸長時であってピストン速度が中高速域にある場合に開いて、伸側メインポート3cを伸側室R1から圧側室R2へ向かって通過する液体の流れに抵抗を与える。また、伸側メインバルブ4は、伸側メインポート3cを伸側室R1から圧側室R2へ向かう液体の流れのみを許容する一方通行の通路に設定している。
また、伸側メインバルブ4の内周が当接する本体部3aの当接面より伸側弁座3eの方が図2中下方へ突出していて、両者の高さに差(高低差)が設けられていて、伸側メインバルブ4は、ピストン3に重ねられてロッド2の外周に内周側が固定されると前記高低差によって外周が撓む。このように伸側メインバルブ4には、予め初期撓みが与えられて伸側弁座3eに自身が発揮する弾発力で自身を押し付けている。よって、伸側室R1と圧側室R2との差圧による伸側メインバルブ4を撓ませる力が前述の弾発力による押し付け力に打ち勝つようになるまで伸側メインバルブ4は開弁せず、この開弁時の差圧が伸側メインバルブ4の開弁圧となる。よって、伸側メインバルブ4の開弁圧は、伸側メインバルブ4の撓み剛性と伸側メインバルブ4に与える初期撓み量によって調整できる。
他方の圧側メインバルブ7は、複数の環状板を積層して構成された積層リーフバルブであって、内周が前述の通りロッド2に固定されてピストン3の図2中上端に積層されてピストン3の圧側弁座3fに着座している。圧側メインバルブ7は、圧側弁座3fに着座した状態では圧側弁座3fにより取り囲まれている圧側メインポート3dのみを閉塞するが、伸側メインポート3cの入口については閉塞しない。そして、圧側メインバルブ7は、圧側メインポート3dを介して正面側に作用する圧側室R2の圧力と背面側に作用する伸側室R1との差圧が開弁圧に達すると外周を撓ませて圧側弁座3fから離間して圧側メインポート3dを開放し、圧側メインポート3dを通過する液体の流れに抵抗を与える。本実施の形態の緩衝器Dでは、圧側メインバルブ7は、緩衝器Dの収縮時であってピストン速度が中高速域にある場合に開いて、圧側メインポート3dを圧側室R2から伸側室R1へ向かって通過する液体の流れに抵抗を与える。また、圧側メインバルブ7は、圧側メインポート3dを圧側室R2から伸側室R1へ向かう液体の流れのみを許容する一方通行の通路に設定している。なお、圧側メインバルブ7の開弁圧は、伸側メインバルブ4と同様に、圧側メインバルブ7の撓み剛性と圧側メインバルブ7に与える初期撓み量によって調整できる。
このように本実施の形態のメイン減衰力発生要素MDは、メイン通路MPを構成する伸側メインポート3cおよび圧側メインポート3dに設けられた伸側メインバルブ4と圧側メインバルブ7とで構成されている。
なお、伸側メインバルブ4および圧側メインバルブ7は、複数枚の環状板を積層して構成される積層リーフバルブとされているが、環状板の積層枚数は緩衝器Dに発生させたい減衰力に応じて任意に変更でき、1枚の環状板のみで構成されるリーフバルブとされてもよい。また、伸側メインバルブ4および圧側メインバルブ7は、リーフバルブ或いは積層リーフバルブ以外の構成のバルブとされてもよいが、薄い環状板を用いたリーフバルブ或いは積層リーフバルブとされることで緩衝器Dのピストン部の全長が長くならず緩衝器Dのストローク長を確保しやすくなるという利点を享受できる。
また、伸側メインバルブ4および圧側メインバルブ7は、間座5,8によって内周が支持されていて、間座5,8によって支持されていない外周側の撓みが許容される。よって、間座5,8の外径の設定によって、伸側メインバルブ4および圧側メインバルブ7の撓みの支点の位置を変更できる。
バルブストッパ9は、圧側メインバルブ7が大きく撓んだ際に圧側メインバルブ7の外周に当接して圧側メインバルブ7のそれ以上の撓みを規制して圧側メインバルブ7を保護する。
スペーサ6は、複数枚の環状のワッシャで構成されており、後述するバルブホルダ12の位置を調整する。伸側メインバルブ4および圧側メインバルブ7の環状板の枚数の調整によって、伸側メインバルブ4および圧側メインバルブ7の軸方向の厚みが薄くなった場合、スペーサ6のシムの枚数の調整によって、バルブホルダ12でバルブストッパ9、間座8、圧側メインバルブ7、ピストン3、伸側メインバルブ4、間座5およびスペーサ6に対して軸力をかけられなくなることが無いよう対処すればよい。
バルブホルダ12は、サブ減衰力発生要素SDにおけるサブバルブ13における環状弁体14を保持する保持軸12aと、保持軸12aの図2中上端に連なってロッド2の先端の螺子部2dに螺着される筒状のナット部12bと、保持軸12aの図2中上端外周に設けたフランジ部12cと、フランジ部12cの図2中下端外周から垂下されるとともに下端内周に内側へ向けて突出する環状突起を有する環状部12dとを備えている。また、バルブホルダ12の最大外径は、シリンダ1の内径よりも小さく、メイン通路MPによる伸側室R1と圧側室R2との連通を阻害しない。
また、バルブホルダ12は、保持軸12aの図2中下端外周に形成される螺子部12eと、保持軸12aの上端から開口してフランジ部12cの下端に開口してナット部12b内を環状部12d内に連通する連通孔12fとを備えている。
保持軸12aの外周には、環状のスペーサ16、バルブストッパ17、間座18、サブバルブ13における環状弁体14および間座19が順に組付けられている。そして、これら環状のスペーサ16、バルブストッパ17、間座18、サブバルブ13における環状弁体14および間座19は、保持軸12aの螺子部12eに螺着されるナット20とフランジ部12cの付け根に形成される内周座部12gとで挟持された状態で固定される。
このようにバルブホルダ12をロッド2の螺子部2dに取り付けると、連通孔12fがロッド2内およびロッド2に設けたオリフィス2fを通じて伸側室R1に連通される。また、連通孔12fは、環状部12dの内周を通じて圧側室R2に連通される。このように、本実施の形態の緩衝器Dでは、オリフィス2f、ロッド2内、連通孔12fおよび環状部12dの内側の空隙でメイン通路MPを迂回して伸側室R1と圧側室R2とを連通するサブ通路SPを形成している。このように、メイン通路MPとサブ通路SPとは、並列して伸側室R1と圧側室R2とを連通している。
サブバルブ13は、バルブホルダ12の保持軸12aの外周に内周が固定される環状弁体14と、バルブホルダ12の環状部12dの内周に周方向に沿って設けられた環状突起で形成される環状対向部15とを備えている。よって、サブバルブ13は、サブ通路SPにオリフィス2fと直列に設けられており、サブバルブ13とオリフィス2fとでサブ減衰力発生要素SDを構成している。また、オリフィス2fは、サブ通路SPのみに設けられており、メイン通路MPには設けられていない。また、オリフィス2fは、サブ通路SPに対してサブバルブ13と直列に設けられれば良いので、設置個所はロッド2に限られず、たとえば、バルブホルダ12の連通孔12fをオリフィスとするなどバルブホルダ12に設けてもよい。
環状弁体14は、図3に示すように、積層された三枚のリーフバルブ14a,14b,14cを有して構成されていて、弾性変形できる。そして、環状弁体14を構成する三枚のリーフバルブのうちの中央のリーフバルブ14bの外径は、上下両端に位置するリーフバルブ14a,14cの外径よりも大きい。なお、環状弁体14を構成するリーフバルブの枚数は、緩衝器Dで得たい減衰力に応じて任意に設定でき、複数でなくとも単数とされてもよい。
そして、環状弁体14は、中央のリーフバルブ14bの外周面がバルブホルダ12に設けた環状対向部15の内周面に対向する位置に位置決めされて保持軸12aに固定される。また、上端のリーフバルブ14aとその直上のバルブストッパ17との間、および下端のリーフバルブ14cとその直下のナット20との間には、それぞれ間座18,19が介装されている。スペーサ16は、複数の環状板で構成されており、スペーサ16における環状板の積層枚数の調整によって、環状弁体14のリーフバルブ14bは、丁度環状対向部15の内周面と対向するように位置決めされる。
これらの各間座18,19は、外径が環状弁体14を構成する各リーフバルブ14a,14b,14cの外径よりも小さい環状板であり、環状弁体14はその内周部を間座18,19で挟まれた状態でバルブホルダ12の保持軸12aに固定されている。その一方、環状弁体14の間座18,19よりも外周側は、間座18,19と環状弁体14との当接部の外周縁を支点に図3中上下方へ撓んで変位できる。
このように、本実施の形態では、バルブホルダ12に装着された環状弁体14の内周がバルブホルダ12の保持軸12aに対して動かない固定端となっており、環状弁体14の外周側に位置する中央のリーフバルブ14bの外周面が、バルブホルダ12に設けられた環状対向部15に対して上下方向へ動ける自由端となっている。
また、バルブホルダ12における環状部12dには、環状部12dの内周の全周から径方向内側へ突出する環状突起で形成される環状対向部15が設けられており、その環状対向部15の内周側に環状弁体14が配置される。そして、緩衝器Dの動き出しのような、ピストン速度が0(ゼロ)に近い極低速域では、環状弁体14が撓まず、図3に示す取付初期の状態に保たれる。
このように、環状弁体14が撓んでいない状態では、図3に示すように、環状弁体14のリーフバルブ14bは、外周面を環状対向部15の内周面に正対させて、環状対向部15との間に所定の環状隙間Pをあけて対向する。そして、本実施の形態では、正対するリーフバルブ14bと環状対向部15との間にできる環状隙間Pは非常に狭く、その環状隙間Pの開口面積は、前述のオリフィス2fの開口面積よりも小さい。
その一方、緩衝器Dの伸長時であってピストン速度が低速域、又は中高速域にある場合には、環状弁体14の外周部が撓み支点に下側へと撓む。反対に、緩衝器Dの収縮時であってピストン速度が低速域、又は中高速域にある場合には、環状弁体14の外周部が撓み支点に上側へと撓む。環状弁体14が撓んで環状対向部15から離間して開弁する際の伸側室R1と圧側室R2の差圧、つまり、サブバルブ13の開弁圧は、伸側メインバルブ4および圧側メインバルブ7の開弁圧より低く、ピストン速度が低速域にある場合、サブバルブ13は前述の通り開弁するが、伸側メインバルブ4および圧側メインバルブ7は開弁せず、液体はサブ通路SPのみを通過することになる。
このように、環状弁体14の外周部が上下に撓む低速域、及び高速域では、上下にずれた環状弁体14のリーフバルブ14bと環状対向部15との間にできる環状隙間の開口面積が、オリフィス2fの開口面積よりも大きくなる。
また、環状弁体14の上側に位置するバルブストッパ17は、サブ通路SPを流れる液体の流量が多くなって環状弁体14が大きく撓むとリーフバルブ14bの図3中上端面に当接して、環状弁体14のそれ以上の図3中上方側への撓みを規制して、環状弁体14を保護する。また、バルブストッパ17は、環状弁体14に対向する図3中下面の外周から内周側へ向けて形成される切欠17aを備えている。切欠17aは、バルブストッパ17にリーフバルブ14bが当接しても環状弁体14とバルブストッパ17とで区画される空隙を外方へ連通させて当該空隙が閉鎖空間となるのを防止している。この切欠17aの設置により、バルブストッパ17にリーフバルブ14bが当接して際にリーフバルブ14bがバルブストッパ17に吸着するのが防止される。よって、サブバルブ13が最大限に開弁してから閉弁側へ動作した際に、サブバルブ13のサブ通路SPの閉じ遅れが阻止される。
さらに、環状弁体14の下側に位置するナット20は、サブ通路SPを流れる液体の流量が多くなって環状弁体14が大きく撓むとリーフバルブ14bの図3中下端面に当接して、環状弁体14のそれ以上の図3中上方側への撓みを規制して、環状弁体14を保護する。よって、ナット20は、バルブホルダ12に環状弁体14、スペーサ16、バルブストッパ17、間座18,19を固定する役割を果たすとともに環状弁体14の図3中下方側の撓みを規制するバルブストッパとしても機能している。
また、ナット20は、環状弁体14に対向する図3中上面の外周から内周側へ向けて形成される切欠20aを備えている。切欠20aは、ナット20にリーフバルブ14bが当接しても環状弁体14とナット20とで区画される空隙を外方へ連通させて当該空隙が閉鎖空間となるのを防止している。この切欠20aの設置により、ナット20にリーフバルブ14bが当接して際にリーフバルブ14bがナット20に吸着するのが防止される。よって、サブバルブ13が最大限に開弁してから閉弁側へ動作した際に、サブバルブ13のサブ通路SPの閉じ遅れが阻止される。
以下、本実施の形態に係る緩衝器Dの作動について説明する。緩衝器Dの伸長時には、ピストン3がシリンダ1内を上方へ移動して伸側室R1を圧縮する。緩衝器Dの伸長速度が微低速域にある場合、伸側室R1の圧力が上昇するものの圧側室R2の圧力との差圧が伸側メインバルブ4の開弁圧に達しないため、伸側メインバルブ4は開弁せず伸側メインポート3cを閉塞したまま維持する。圧側メインバルブ7は、伸側室R1の圧力を背面側から受けて圧側メインポート3dを閉塞する。緩衝器Dの伸長速度が微低速域にある場合、伸側室R1の圧力が上昇するものの圧側室R2の圧力との差圧がサブバルブ13の開弁圧に達しないため、サブバルブ13は閉弁状態となるが環状弁体14と環状対向部15との間に環状隙間Pが形成されている。よって、液体は、遮断されるメイン通路MPを通過できないものの、サブ通路SPを介して伸側室R1から圧側室R2へ移動する。液体は、サブ通路SPを通過する際に、オリフィス2fおよび環状隙間Pを通過するが閉弁状態のサブバルブ13における環状隙間Pの流路面積はオリフィス2fの流路面積よりも小さい。そのため、緩衝器Dの伸長速度が微低速域にある場合、緩衝器Dは、主としてサブバルブ13が液体に与える抵抗によって伸長を妨げる減衰力を発生する。したがって、緩衝器Dの伸長速度が微低速域にある場合の緩衝器Dの伸側の減衰力特性(緩衝器Dの伸長速度に対する減衰力の特性)は、図4に示したように、減衰係数が非常に大きくピストン速度の増加に対して大きく立ち上がる特性となる。
緩衝器Dの伸長速度が微低速域を超えて低速域にある場合、伸側室R1の圧力が上昇するものの圧側室R2の圧力との差圧が伸側メインバルブ4の開弁圧に達しないため、伸側メインバルブ4は未だ開弁せず伸側メインポート3cを閉塞したまま維持する。圧側メインバルブ7は、伸側室R1の圧力を背面側から受けて圧側メインポート3dを閉塞する。緩衝器Dの伸長速度が低速域にある場合、伸側室R1の圧力と圧側室R2の圧力との差圧がサブバルブ13の開弁圧を超えるので環状弁体14が撓んでサブバルブ13が開弁して環状弁体14と環状対向部15との間の環状隙間Pの流路面積が大きくなる。よって、液体は、遮断されるメイン通路MPを通過できないものの、サブ通路SPを介して伸側室R1から圧側室R2へ移動する。液体は、サブ通路SPを通過する際に、オリフィス2fおよび環状隙間Pを通過するが開弁状態のサブバルブ13における環状隙間Pの流路面積はオリフィス2fの流路面積よりも大きくなる。よって、緩衝器Dの伸長速度が低速域にある場合、緩衝器Dは、主としてオリフィス2fが液体に与える抵抗によって伸長を妨げる減衰力を発生する。したがって、緩衝器Dの伸長速度が微低速域にある場合の緩衝器Dの伸側の減衰力特性は、図4に示したように、オリフィス特有の緩衝器Dの伸長速度の2乗に比例する特性となるが、前記伸長速度が微低速域にある場合に比較して傾きが寝る特性となる。
さらに、緩衝器Dの伸長速度が低速域を超えて中高速域にある場合、伸側室R1の圧力と圧側室R2の圧力との差圧が伸側メインバルブ4の開弁圧に達して、伸側メインバルブ4が撓んで開弁して伸側メインポート3cを開放する。圧側メインバルブ7は、伸側室R1の圧力を背面側から受けて圧側メインポート3dを閉塞する。緩衝器Dの伸長速度が中高速域にある場合、伸側室R1の圧力と圧側室R2の圧力との差圧がサブバルブ13の開弁圧を超えているのでサブバルブ13が開弁して環状弁体14と環状対向部15との間の環状隙間Pの流路面積が大きくなる。液体は、サブ通路SPを通過し得るがメイン通路MPも開放されるので、両者を通じて伸側室R1から圧側室R2へ移動する。緩衝器Dの伸長速度が中高速域にある場合、伸側室R1から圧側室R2へ移動する液体の流量が多くなる。サブ通路SPのオリフィス2fとサブバルブ13を通過する際に液体がうける抵抗は、伸側メインバルブ4を通過する際に液体が受ける抵抗よりも大きくなるので、液体は、サブ通路SPを通過しがたくなり、伸側室R1から圧側室R2へ移動する液体の殆どは、メイン通路MPを通過するようになる。よって、緩衝器Dの伸長速度が中高速域にある場合、緩衝器Dは、主として伸側メインバルブ4が液体に与える抵抗によって伸長を妨げる減衰力を発生する。したがって、緩衝器Dの伸長速度が中高速域にある場合の緩衝器Dの伸側の減衰力特性は、図4に示したように、伸側メインバルブ4の特有の緩衝器Dの伸長速度に比例するような特性となるが、前記伸長速度が低速域にある場合に比較して減衰係数が小さくなる特性となる。
つづいて、緩衝器Dの収縮時には、ピストン3がシリンダ1内を下方へ移動して圧側室R2を圧縮する。緩衝器Dの収縮速度が微低速域にある場合、圧側室R2の圧力が上昇するものの伸側室R1の圧力との差圧が圧側メインバルブ7の開弁圧に達しないため、圧側メインバルブ7は開弁せず圧側メインポート3dを閉塞したまま維持する。伸側メインバルブ4は、圧側室R2の圧力を背面側から受けて伸側メインポート3cを閉塞する。緩衝器Dの収縮速度が微低速域にある場合、圧側室R2の圧力が上昇するものの伸側室R1の圧力との差圧がサブバルブ13の開弁圧に達しないため、サブバルブ13は閉弁状態となるが環状弁体14と環状対向部15との間に環状隙間Pが形成されている。よって、液体は、遮断されるメイン通路MPを通過できないものの、サブ通路SPを介して圧側室R2から伸側室R1へ移動する。液体は、サブ通路SPを通過する際に、オリフィス2fおよび環状隙間Pを通過するが閉弁状態のサブバルブ13における環状隙間Pの流路面積はオリフィス2fの流路面積よりも小さい。そのため、緩衝器Dの収縮速度が微低速域にある場合、緩衝器Dは、主としてサブバルブ13が液体に与える抵抗によって収縮を妨げる減衰力を発生する。したがって、緩衝器Dの収縮速度が微低速域にある場合の緩衝器Dの圧側の減衰力特性は、図4に示したように、減衰係数が非常に大きくピストン速度の増加に対して大きく立ち上がる特性となる。
緩衝器Dの収縮速度が微低速域を超えて低速域にある場合、圧側室R2の圧力が上昇するものの伸側室R1の圧力との差圧が圧側メインバルブ7の開弁圧に達しないため、圧側メインバルブ7は未だ開弁せず圧側メインポート3dを閉塞したまま維持する。伸側メインバルブ4は、圧側室R2の圧力を背面側から受けて伸側メインポート3cを閉塞する。緩衝器Dの収縮速度が低速域にある場合、圧側室R2の圧力と伸側室R1の圧力との差圧がサブバルブ13の開弁圧を超えるので環状弁体14が撓んでサブバルブ13が開弁して環状弁体14と環状対向部15との間の環状隙間Pの流路面積が大きくなる。よって、液体は、遮断されるメイン通路MPを通過できないものの、サブ通路SPを介して圧側室R2から伸側室R1へ移動する。液体は、サブ通路SPを通過する際に、オリフィス2fおよび環状隙間Pを通過するが開弁状態のサブバルブ13における環状隙間Pの流路面積はオリフィス2fの流路面積よりも大きくなる。よって、緩衝器Dの収縮速度が低速域にある場合、緩衝器Dは、主としてオリフィス2fが液体に与える抵抗によって収縮を妨げる減衰力を発生する。したがって、緩衝器Dの収縮速度が低速域にある場合の緩衝器Dの圧側の減衰力特性は、図4に示したように、オリフィス特有の緩衝器Dの収縮速度の2乗に比例する特性となるが、前記収縮速度が微低速域にある場合に比較して傾きが寝る特性となる。
さらに、緩衝器Dの収縮速度が低速域を超えて中高速域にある場合、圧側室R2の圧力と伸側室R1の圧力との差圧が圧側メインバルブ7の開弁圧に達して、圧側メインバルブ7が撓んで開弁して圧側メインポート3dを開放する。伸側メインバルブ4は、圧側室R2の圧力を背面側から受けて伸側メインポート3cを閉塞する。緩衝器Dの収縮速度が中高速域にある場合、圧側室R2の圧力と伸側室R1の圧力との差圧がサブバルブ13の開弁圧を超えているのでサブバルブ13が開弁して環状弁体14と環状対向部15との間の環状隙間Pの流路面積が大きくなる。液体は、サブ通路SPを通過し得るがメイン通路MPも開放されるので、両者を通じて圧側室R2から伸側室R1へ移動する。緩衝器Dの収縮速度が中高速域にある場合、圧側室R2から伸側室R1へ移動する液体の流量が多くなる。サブ通路SPのオリフィス2fとサブバルブ13を通過する際に液体がうける抵抗は、圧側メインバルブ7を通過する際に液体が受ける抵抗よりも大きくなるので、液体は、サブ通路SPを通過しがたくなり、圧側室R2から伸側室R1へ移動する液体の殆どは、メイン通路MPを通過するようになる。よって、緩衝器Dの収縮速度が中高速域にある場合、緩衝器Dは、主として圧側メインバルブ7が液体に与える抵抗によって収縮を妨げる減衰力を発生する。したがって、緩衝器Dの収縮速度が中高速域にある場合の緩衝器Dの圧側の減衰力特性は、図4に示したように、圧側メインバルブ7の特有の緩衝器Dの収縮速度に比例するような特性となるが、前記収縮速度が低速域にある場合に比較して減衰係数が小さくなる特性となる。
ここで、本実施の形態の緩衝器Dでは、伸側室R1と圧側室R2とを並列して連通するメイン通路MPとサブ通路SPと、メイン通路MPにおけるメイン減衰力発生要素MDとサブ通路SPに設けられるサブ減衰力発生要素SDとを備え、メイン減衰力発生要素MDがメイン通路MPを開閉するメインバルブとしての伸側メインバルブ4と圧側メインバルブ7のみを有し、サブ減衰力発生要素SDがサブ通路SPに直列に設けられるオリフィス2fとサブ通路SPを開閉するとともに開弁圧がメインバルブとしての伸側メインバルブ4と圧側メインバルブ7よりも低いサブバルブ13とを有して構成されている。このように構成された緩衝器Dでは、オリフィス2fとサブバルブ13が設けられるサブ通路SPとメインバルブとしての伸側メインバルブ4と圧側メインバルブ7のみを有するメイン通路MPとが並列して伸側室R1と圧側室R2とを連通しているので、サブバルブ13がバルブストッパ17或いはナット20によって撓みが規制されてもメイン通路MPを通過する液体の流れに対して影響を与えない。つまり、本実施の形態の緩衝器Dでは、サブバルブ13が流路面積を最小に制限するボトルネックとなることがない。したがって、緩衝器Dの伸縮速度が高速域に達しても、ピストン3によって圧縮される伸側室R1或いは圧側室R2の液体の多くはメイン通路MPを流れるので、サブバルブ13による圧力損失が伸側メインバルブ(メインバルブ)4或いは圧側メインバルブ(メインバルブ)7における圧力損失に加わって、減衰力が過剰となるオーバーライドを抑制できる。
なお、このように本実施の形態の緩衝器Dでは、主としてサブバルブ13で減衰力を発生する速度域を微低速域とし、主としてオリフィス2fで減衰力を発生する速度域を低速域とし、主として伸側メインバルブ4および圧側メインバルブ7で減衰力を発生する速度域を中高速域としている。なお、微低速、低速および中高速の区分する速度については設計者が任意に設定できる。
以上のように、緩衝器Dは、シリンダ(アウターチューブ)1と、シリンダ(アウターチューブ)1内に移動可能に挿入されるロッド2とを有して伸縮可能な緩衝器本体Aと、緩衝器本体A内に設けられる伸側室(作動室)R1と圧側室(作動室)R2とを並列して連通するメイン通路MPとサブ通路SPと、メイン通路MPに設けられるメイン減衰力発生要素MDと、サブ通路SPに設けられるサブ減衰力発生要素SDとを備え、メイン減衰力発生要素MDは、メイン通路MPを開閉する伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7のみを有し、サブ減衰力発生要素SDは、サブ通路SPに直列に設けられるオリフィス2fとサブ通路SPを開閉するとともに開弁圧が伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7よりも低いサブバルブ13とを備えている。このように構成された緩衝器Dでは、サブバルブ13が設けられるサブ通路SPと伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7が設けられるメイン通路MPが伸側室(作動室)R1と圧側室(作動室)R2とを並列して連通しているので、サブバルブ13の流路面積がボトルネックとなって伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7に影響を与えない。よって、本実施の形態の緩衝器Dによれば、緩衝器Dの伸縮速度が高速域に達しても伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7の特性にサブバルブ13の特性がオーバーライドして減衰力が過剰となる現象が発生せず、車両における乗心地を向上できる。
また、本実施の形態の緩衝器Dは、メイン通路MPにおける伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7の開弁圧よりもメイン通路MPに並列されるサブ通路SPのサブバルブ13の開弁圧が低く、サブ通路SPのみにオリフィス2fを備えているので、緩衝器Dの微低速域、低速域および中高速域の減衰力特性を、対応するサブバルブ13、オリフィス2fおよび伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7の特性で設定できる。よって、本実施の形態の緩衝器Dによれば、減衰力特性を細かく設定できる。
また、本実施の形態の緩衝器Dは、シリンダ(アウターチューブ)1内に挿入されるとともにシリンダ(アウターチューブ)1内に伸側室(作動室)R1と圧側室(作動室)R2とを区画するピストン(隔壁部材)3を備え、メイン通路MPがピストン(隔壁部材)3に設けられる伸側メインポート(メインポート)3cおよび圧側メインポート(メインポート)3dで形成され、伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7がピストン(隔壁部材)3に積層されるリーフバルブとされている。このように構成された緩衝器Dによれば、ピストン(隔壁部材)3にメイン通路MPと伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7を集約でき、伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7をリーフバルブとしたことでピストン(隔壁部材)3とピストン(隔壁部材)3に組み付けられる伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7のトータルの全長を短くしやすくなりストローク長の確保が容易となる。
また、本実施の形態の緩衝器Dでは、ピストン(隔壁部材)3を貫くロッド(軸部材)2を備え、サブ通路SPがロッド(軸部材)2内を通過する部分を有している。このように構成された緩衝器Dでは、二つの作動室を伸側室R1と圧側室R2とする場合において、ピストン(隔壁部材)3にメイン通路MPと伸側メインバルブ(メインバルブ)4および圧側メインバルブ(メインバルブ)7を集約しつつ、ロッド(軸部材)2内にメイン通路MPを迂回するサブ通路SPの一部が形成されるので、サブ通路SPの設置が容易となる。
なお、メインバルブとしての伸側メインバルブ4および圧側メインバルブ7と、とサブバルブ13については、リーフバルブ以外にも開弁圧の設定が可能な開閉型のバルブであってもよい。
さらに、本実施の形態の緩衝器Dでは、ロッド(軸部材)2の先端に装着されてピストン(隔壁部材)3をロッド(軸部材)2に固定するとともにサブ通路SPの一部が形成されるバルブホルダ12を備え、サブバルブ13がバルブホルダ12に保持されている。このように構成された緩衝器Dでは、バルブホルダ12に予めサブバルブ13をアッセンブリ化でき、バルブホルダ12をロッド(軸部材)2にピストン(隔壁部材)3を固定するナットとしても利用できる。よって、このように構成された緩衝器Dによれば、サブバルブ13の設置が容易となるだけでなく、緩衝器Dの組み立てが非常に簡単となる。
なお、本実施の形態では、サブバルブ13は、環状弁体14が内周固定で外周側の撓みが許容されており、外周の環状対向部15に対向している構造となっているが、サブバルブの環状弁体を外周固定にして内周側の撓みを可能として、この環状弁体の内周に環状弁座を対向させる構造を備えていてもよい。
そして、本実施の形態の緩衝器Dでは、サブバルブ13は、内周あるいは外周の一方が固定されて固定端とされ内周あるいは外周の他方を自由端として撓みが許容されるとともにサブ通路SPに設けられる環状弁体14と、環状弁体14の自由端との間に環状隙間Pを開けて対向する環状対向部15とを備えている。このように構成された緩衝器Dによれば、環状弁体14が撓まない状態において環状隙間Pでサブ通路SPを絞って減衰力を発揮でき、伸縮速度が極低速域における減衰力を発生できるとともに、環状弁体14の外径の大きさで環状隙間Pの開口面積の調整できるから、外径の異なる環状弁体14の付け替えによって減衰力特性を容易に調整できる。
また、図2に示したところでは、オリフィス2fを固定オリフィスとしていたが、図5に示した一実施の形態の第一変形例の緩衝器D1のように、サブ通路SPに設けられるオリフィスを可変オリフィスとしてもよい。具体的には、図5に示すように、緩衝器D1は、緩衝器Dの構成から以下のように変更した構成を備えればよい。緩衝器D1は、オリフィス2fの代わりにロッド2の大径部2bの側方からロッド2内へ通じる横孔2gを備えるとともに、ロッド2内であって横孔2gよりも図5中下方に挿入されて固定される環状の弁座部材22と、ロッド2内に収容されるとともに弁座部材22に遠近可能なニードル23とを備えている。そして、ニードル23が弁座部材22に対して遠近することでニードル23と弁座部材22との間の流路面積を変更可能となっており、ニードル23と弁座部材22とで可変オリフィスVOを形成している。また、ニードル23は、ロッド2の上端からロッド2内に挿入されるコントロールロッド24に連結されており、コントロールロッド24の操作によって弁座部材22に対して遠近して弁座部材22との軸方向距離を変化させる。なお、コントロールロッド24は、図示しないモータや直動のアクチュエータによって駆動されてもよいし、手動によって操作されるものであってもよい。このように構成された緩衝器D1は、可変オリフィスVOの流路面積の変更で、緩衝器D1の減衰力特性の調整と可変オリフィスVOの特性が前記減衰力特性に現れるタイミングを調整が可能となる。
また、図1に示したところでは、軸部材をロッド2とし、隔壁部材をピストン3として、二つの作動室を伸側室R1と圧側室R2としているが、図6に示した複筒型の緩衝器D2のように、圧側室R4とリザーバRとを仕切るバルブケース30を隔壁部材として、軸部材をバルブケース30にメインバルブ31を固定するためのガイドロッド32とし、二つの作動室を圧側室R2とリザーバRとしてもよい。
緩衝器D2は、シリンダ34と、シリンダ34の外周を覆うとともにシリンダ34との間にリザーバRを形成する有底筒状のアウターチューブ35と、シリンダ34内に移動可能に挿入されるロッド36とを備えた緩衝器本体A1と、ロッド36に連結されてシリンダ34内に移動可能に挿入されてシリンダ34内を伸側室R3と圧側室R4とに区画するピストン37と、シリンダ34の図6中下端に嵌合するとともにアウターチューブ35の底部との間で挟持されるとともにアウターチューブ35内にリザーバRと圧側室R4とを区画する隔壁部材としてのバルブケース30と、バルブケース30に設けたメインポートとしての排出ポート30cと、排出ポート30cを開閉するメインバルブ31と、バルブケース30を貫く軸部材してのガイドロッド32とを備えている。
シリンダ34とアウターチューブ35の上端は、環状であって内周にロッド36が挿通されるロッドガイド41によって閉塞されており、シリンダ34およびアウターチューブ35内は、密閉空間とされている。
ピストン37は、シリンダ34内を液体が充填される伸側室R3と圧側室R4とに区画するとともに、伸側室R3と圧側室R4とを連通する通路37a,37bと、通路37aの途中に設けられて伸側室R3から圧側室R4へ向かう液体の流れのみを許容するとともに液体の流れに抵抗を与える減衰バルブ37cと、通路37bの途中に設けられて圧側室R4から伸側室R3へ向かう液体の流れのみを許容するとともに液体の流れに抵抗を与える減衰バルブ37dとを備えている。
バルブケース30は、シリンダ34の下端に嵌合されて、圧側室R4とシリンダ34とアウターチューブ35との間に形成されるリザーバRとを区画している。このように本実施の形態の緩衝器D2では、アウターチューブ35内の圧側室R4とリザーバRとを作動室とし、これらを区画するバルブケース30を隔壁部材としている。
詳細には、バルブケース30は、環状であって、シリンダ34の図6中下端に嵌合される本体部30aと、本体部30aの下端外周から下方へ向けて延びる環状の脚部30bと、本体部30aの同一円周上に設けられて本体部30aを軸方向に貫くメインポートとしての排出ポート30cと、本体部30aの排出ポート30cよりも外周側の同一円周上に設けられて本体部30aを軸方向に貫く吸込ポート30dととを備えて構成されている。そして、本実施の形態では、バルブケース30に設けられた排出ポート30cによって、作動室としての圧側室R4と作動室としてのリザーバRとを連通するメイン通路MPとしてのメインポートを形成している。また、バルブケース30は、脚部30bにシリンダ34とアウターチューブ35との間の環状隙間と脚部30b内とを連通する切欠30eが設けられており、メインポートによる圧側室R4とリザーバRとの連通を妨げないようになっている。
また、バルブケース30の内周には、軸部材としてのガイドロッド32が挿通されている。ガイドロッド32は、バルブケース30内に挿入される筒状の軸部32aと、軸部32aの先端外周に設けられた螺子部32bと、軸部32aの基端外周に設けられたフランジ部32cとを備えている。また、軸部32a内の途中には、オリフィス32dが設置されている。
バルブケース30の図6中下端には、排出ポート30cを開閉する環状の積層リーフバルブでなるメインバルブ31が重ねられており、バルブケース30の図6中上端には、吸込ポート30dを開閉する環状のチェックバルブ33が重ねられている。これらのメインバルブ31、バルブケース30およびチェックバルブ33は、ガイドロッド32の軸部32aの外周に順番に組み付けられるとともに、螺子部32bに螺着されるバルブホルダ12とフランジ部32cとで挟持されてガイドロッド32に固定されている。バルブホルダ12は、緩衝器Dにおけるバルブホルダと同一部品であって、サブバルブ13を保持するとともに、隔壁部材としてのバルブケース30を軸部材としてのガイドロッド32に固定する役割も果たしている。
メインバルブ31は、複数の環状板を積層して構成された積層リーフバルブであって、内周が前述の通りガイドロッド32に固定されてバルブケース30の図6中下端に積層されてバルブケース30の図6中下端に設けられて排出ポート30cを取り囲む弁座30fに着座している。メインバルブ31は、弁座30fに着座した状態では弁座30fにより取り囲まれている排出ポート30cのみを閉塞し、吸込ポート30dの入口については閉塞しない。そして、メインバルブ31は、排出ポート30cを介して正面側に作用する圧側室R4の圧力と背面側に作用するリザーバRとの差圧が開弁圧に達すると外周を撓ませて弁座30fから離間して排出ポート30cを開放し、排出ポート30cを通過する液体の流れに抵抗を与える。本実施の形態の緩衝器D2では、メインバルブ31は、緩衝器Dの収縮時であってピストン速度が中高速域にある場合に開いて、排出ポート30cを圧側室R4からリザーバRへ向かって通過する液体の流れに抵抗を与える。また、メインバルブ31は、排出ポート30cを圧側室R4からリザーバRへ向かう液体の流れのみを許容する一方通行の通路に設定している。このように本実施の形態の緩衝器D2におけるメイン減衰力発生要素MDは、メイン通路MPを構成する排出ポート30cに設けられたメインバルブ31で構成されており、オリフィスを備えていない。
なお、メインバルブ31の開弁圧の設定は、緩衝器Dと同様にメインバルブ31の撓み剛性と初期撓み量によって調整でき、撓みの支点の位置の調整についてはメインバルブ31の背面側に積層される間座40の外径の変更で行うことができる。また、メインバルブ31の最大撓み量の規制のためのバルブストッパを設けてもよいし、ガイドロッド32のフランジ部32cをメインバルブ31のバルブストッパとして用いてもよい。
また、チェックバルブ33は、環状板で構成されており、内周が前述の通りガイドロッド32に固定されてバルブケース30の図6中上面に積層されてバルブケース30の図6中上端に設けられて吸込ポート30dを取り囲む弁座30gに着座している。チェックバルブ33は、弁座30gに着座した状態では弁座30gにより取り囲まれている吸込ポート30dのみを閉塞する。なお、チェックバルブ33は、排出ポート30cに対向する位置に透孔33aを備えており、バルブケース30の図6中上面に当接した状態でも排出ポート30cを閉塞することはない。そして、チェックバルブ33は、リザーバRの圧力よりも圧側室R4の圧力が低下すると撓んで吸込ポート30dを開放し、吸込ポート30dを介してリザーバRから圧側室R4へ移動する液体の流れを許容する。このように、チェックバルブ33は、吸込ポート30dをリザーバRから圧側室R4へ向かう液体の流れのみを許容する一方通行の通路に設定している。
そして、前述のようにバルブホルダ12がガイドロッド32に螺着されると、軸部32a内がバルブホルダ12の連通孔12fに対向し、軸部32a内が連通孔12fを通じて圧側室R4に連通される。また、軸部32aの図6中下端は、リザーバRに望んでいるので、バルブホルダ12の環状部12d内、連通孔12fおよび軸部32a内を通じて圧側室R4とリザーバRとが連通されている。よって、軸部32aおよびバルブホルダ12は、メイン通路MPに並列して圧側室R4とリザーバRと連通するサブ通路SPを形成している。
バルブホルダ12およびサブバルブ13は、緩衝器Dと同様の構成とされている。よって、サブバルブ13は、環状弁体14とバルブホルダ12に設けた環状対向部15とで構成されている。そして、環状弁体14は、スペーサ16、バルブストッパ17、間座18、および間座19とともに保持軸12aの外周に組み付けられた状態で、螺子部12eに螺着されるナット20とフランジ部12cの付け根に形成される内周座部12gとで挟持されてバルブホルダ12に固定される。よって、緩衝器D2にあっても、二つの作動室である圧側室R4とリザーバRとが並列されるメイン通路MPとサブ通路SPによって連通されており、メイン通路MPを形成するメインポートである排出ポート30cにメインバルブ31が設けられ、サブ通路SPにサブ減衰力発生要素SDとしてのオリフィス32dおよびサブバルブ13が直列に設けられている。そして、メインバルブ31の開弁圧は、サブバルブ13の開弁圧よりも大きくなるように設定される。
そして、環状弁体14が撓んでいない状態における環状隙間Pの開口面積は、前述のオリフィス32dの開口面積よりも小さい。緩衝器D2の収縮時であってピストン速度が低速域、又は中高速域にある場合には、環状弁体14が撓んで環状隙間Pの開口面積がオリフィス32dよりも大きくなる。サブバルブ13の開弁圧は、メインバルブ31の開弁圧より低く、緩衝器D2の収縮時におけるピストン速度が低速域にある場合、サブバルブ13は前述の通り開弁するが、メインバルブ31は開弁せず、液体はサブ通路SPのみを通過することになる。
このように構成された緩衝器D2の伸長時には、ピストン37がシリンダ34内を上方へ移動して伸側室R3を圧縮する。液体は、圧縮される伸側室R3からピストン37の通路37aおよび減衰バルブ37cを通過して拡大される圧側室R4へ移動する。ロッド36のシリンダ34からの退出によって、ロッド36がシリンダ34から退出した体積分の液体がシリンダ34内で不足するが、不足分の液体は、チェックバルブ33が開弁してリザーバRから吸込ポート30dを通じて圧側室R4へ供給される。よって、緩衝器D2は、伸長時に減衰バルブ37cによって伸長を妨げる減衰力を発生する。
これに対して、緩衝器D2の収縮時には、ピストン37がシリンダ34内を下方へ移動して圧側室R4を圧縮する。液体は、圧縮される圧側室R4からピストン37の通路37bおよび減衰バルブ37dを通過して拡大される伸側室R3へ移動する。緩衝器D2が収縮する場合、ロッド36がシリンダ34内へ侵入するため、ロッド36がシリンダ34内へ侵入した体積分の液体がシリンダ34内で過剰となり、過剰分の液体は、メイン通路MP或いはサブ通路SPを介してリザーバRへ移動する。緩衝器D2の収縮速度が微低速域にある場合、圧側室R4の圧力が上昇するもののリザーバRの圧力との差圧がメインバルブ31の開弁圧に達しないため、液体はメイン通路MPを通過できない。他方、緩衝器D2の収縮速度が微低速域にある場合、圧側室R4の圧力が上昇するもののリザーバRの圧力との差圧がサブバルブ13の開弁圧に達しないため、サブバルブ13も閉弁状態となるが、液体は、サブバルブ13における環状隙間Pを通過し得る。よって、液体は、遮断されるメイン通路MPを通過できないもののサブ通路SPを介して圧側室R4からリザーバRへ移動する。液体がサブ通路SPを通過する際に、オリフィス32dおよび環状隙間Pを通過するが閉弁状態のサブバルブ13における環状隙間Pの流路面積はオリフィス32dの流路面積よりも小さい。また、減衰バルブ37dを通過して圧側室R4から伸側室R3へ向かう液体は、減衰バルブ37dから抵抗を受けるため、圧側室R4の圧力は、伸側室R3の圧力よりも高くなる。そのため、緩衝器D2の収縮速度が微低速域にある場合、緩衝器D2は、主としてサブバルブ13および減衰バルブ37dが液体に与える抵抗によって減衰力を発生する。したがって、緩衝器D2の収縮速度が微低速域にある場合の緩衝器D2の圧側の減衰力特性は、減衰係数が非常に大きくピストン速度の増加に対して大きく立ち上がる特性となる。
緩衝器D2の収縮速度が微低速域を超えて低速域にある場合、圧側室R4の圧力が上昇するもののリザーバRの圧力との差圧がメインバルブ31の開弁圧に達しないため、メインバルブ31は未だ開弁せず排出ポート30cを閉塞したまま維持する。緩衝器D2の収縮速度が低速域にある場合、圧側室R4の圧力とリザーバRの圧力との差圧がサブバルブ13の開弁圧を超えるので環状弁体14が撓んでサブバルブ13が開弁して環状弁体14と環状対向部15との間の環状隙間Pの流路面積が大きくなる。よって、液体は、遮断されるメイン通路MPを通過できないものの、サブ通路SPを介して圧側室R2から伸側室R1へ移動する。液体は、サブ通路SPを通過する際に、オリフィス32dおよび環状隙間Pを通過するが開弁状態のサブバルブ13における環状隙間Pの流路面積はオリフィス32dの流路面積よりも大きくなる。また、減衰バルブ37dを通過して圧側室R4から伸側室R3へ向かう液体は、減衰バルブ37dから抵抗を受けるため、圧側室R4の圧力は、伸側室R3の圧力よりも高くなる。よって、緩衝器D2の収縮速度が低速域にある場合、緩衝器D2は、主としてオリフィス32dおよび減衰バルブ37dが液体に与える抵抗によって減衰力を発生する。したがって、緩衝器D2の収縮速度が低速域にある場合の緩衝器D2の圧側の減衰力特性は、オリフィス特有の緩衝器D2の収縮速度の2乗に比例する特性となるが、前記収縮速度が微低速域にある場合に比較して傾きが寝る特性となる。
さらに、緩衝器D2の収縮速度が低速域を超えて中高速域にある場合、圧側室R4の圧力とリザーバRの圧力との差圧がメインバルブ31の開弁圧に達して、メインバルブ31が撓んで開弁して排出ポート30cを開放する。緩衝器D2の収縮速度が中高速域にある場合、サブバルブ13も開弁する。よって、液体は、サブ通路SPを通過し得るがメイン通路MPも開放されるので、両者を通じて圧側室R2から伸側室R1へ移動する。緩衝器D2の収縮速度が中高速域にある場合、圧側室R4からリザーバRへ移動する液体の流量が多くなる。サブ通路SPのオリフィス32dとサブバルブ13を通過する際に液体がうける抵抗は、圧側メインバルブ7を通過する際に液体が受ける抵抗よりも大きくなるので、液体は、サブ通路SPを通過しがたくなり、圧側室R4からリザーバRへ移動する液体の殆どは、メイン通路MPを通過するようになる。また、減衰バルブ37dを通過して圧側室R4から伸側室R3へ向かう液体は、減衰バルブ37dから抵抗を受けるため、圧側室R4の圧力は、伸側室R3の圧力よりも高くなる。よって、緩衝器D2の伸長速度が中高速域にある場合、緩衝器D2は、主としてメインバルブ31および減衰バルブ37dが液体に与える抵抗によって減衰力を発生する。したがって、緩衝器D2の収縮速度が中高速域にある場合の緩衝器D2の圧側の減衰力特性は、メインバルブ31の特有の緩衝器D2の収縮速度に比例するような特性となるが、前記収縮速度が低速域にある場合に比較して減衰係数が小さくなる特性となる。なお、減衰バルブ37dに代えて、通路37bに圧側室R4から伸側室R3へ向かう液体の流れのみを許容するチェックバルブを設けてもよい。チェックバルブは、液体の流れに歩トンと抵抗を与えないため、緩衝器D2の減衰力に寄与しない。よって、減衰バルブ37dに代えてチェックバルブを設ける場合、緩衝器D2は、収縮速度が微低速域にある際には主としてサブバルブ13によって、収縮速度が低速域にある際には主としてオリフィス32dによって、収縮速度が中高速域にある際には主としてメインバルブ31によって、それぞれ減衰力を発生する。
このように、本実施の形態の緩衝器D2は、圧側室R4とリザーバRとを並列して連通するメイン通路MPとサブ通路SPと、メイン通路MPに設けられるメイン減衰力発生要素MDと、サブ通路SPに設けられるサブ減衰力発生要素SDとを備え、メイン減衰力発生要素MDがメイン通路MPを開閉するメインバルブ31のみを有し、サブ減衰力発生要素SDがサブ通路SPに直列に設けられるオリフィス32dとサブ通路SPを開閉するとともに開弁圧がメインバルブ31よりも低いサブバルブ13とを有して構成されている。このように構成された緩衝器D2では、オリフィス32dとサブバルブ13が設けられるサブ通路SPとメインバルブとしてのメインバルブ31のみを有するメイン通路MPとが並列して圧側室R2とリザーバRとを連通しているので、サブバルブ13がバルブストッパ17或いはナット20によって撓みが規制されてもメイン通路MPを通過する液体の流れに対して影響を与えない。つまり、本実施の形態の緩衝器D2では、サブバルブ13が流路面積を最小に制限するボトルネックとなることがない。したがって、緩衝器D2の収縮速度が高速域に達しても、ピストン3によって圧縮される圧側室R4の液体の多くはメイン通路MPを流れるので、サブバルブ13による圧力損失がメインバルブ31における圧力損失に加わって、減衰力が過剰となるオーバーライドを抑制できる。
以上のように、メイン通路MPとサブ通路SPは、アウターチューブ1,35内の伸側室R1と圧側室R2とを連通してもよいし、圧側室R4とリザーバRとを連通してもよい。また、緩衝器D2のロッド36およびピストン37の代わりに、緩衝器Dのロッド2、ピストン3、伸側メインバルブ4、圧側メインバルブ7、バルブホルダ12およびサブバルブ13を適用して、ピストン側とバルブケース側にそれぞれメイン通路MPとサブ通路SP、メイン減衰力発生要素MDおよびサブ減衰力発生要素SDを設ける構成も採用可能である。また、作動室を伸側室とリザーバとして、伸側室とリザーバとをメイン通路とサブ通路とで並列して連通させて、メイン通路にメイン減衰力発生要素を設けて、サブ通路にサブ減衰力発生要素を設けてもよい。
なお、サブバルブ13は、前述したところでは、環状弁体14と、環状弁体14に対して環状隙間Pを開けて対向する環状対向部15とを備えて構成されているが、これに代えて、図示はしないが、径の異なる内側弁座と外側弁座と、内側弁座に一端面の内周側を着座させるとともに外側弁座に他端面の外周側を着座させる環状の内外両開きのリーフバルブとでなるドカルボンバルブとされてもよい。このようにサブバルブ13をドカルボンバルブとする場合、伸側室R1(圧側室R4)から圧側室R2(リザーバR)へ向かう液体の流れに対してはリーフバルブが内周或いは外周の一方を撓ませてサブ通路SPを開き、圧側室R2(リザーバR)から伸側室R1(圧側室R4)へ向かう液体の流れに対してはリーフバルブが内周或いは外周の他方を撓ませてサブ通路SPを開いて、液体の流れに抵抗を与えることができる。
以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、及び変更が可能である。
1・・・シリンダ(アウターチューブ)、2・・・ロッド(軸部材)、2f,32d・・・オリフィス、3・・・ピストン(隔壁部材)、3c・・・伸側メインポート(メインポート)、3d・・・圧側メインポート(メインポート)、4・・・伸側メインバルブ(メインバルブ)、7・・・圧側メインバルブ(メインバルブ)、12・・・バルブホルダ、13・・・サブバルブ、14・・・環状弁体、15・・・環状対向部、30・・・バルブケース(隔壁部材)、31・・・メインバルブ、32・・・ガイドロッド(軸部材)、35・・・アウターチューブ、A,A1・・・緩衝器本体、D,D1,D2・・・緩衝器、MD・・・メイン減衰力発生要素、MP・・・メイン通路、R1・・・伸側室(作動室)、R2・・・圧側室(作動室)、R4・・・SD・・・サブ減衰力発生要素、SP・・・サブ通路、VO・・・可変オリフィス
Claims (6)
- 緩衝器であって、
アウターチューブと、前記アウターチューブ内に移動可能に挿入されるロッドとを有して伸縮可能な緩衝器本体と、
前記緩衝器本体内に設けられる二つの作動室を並列して連通するメイン通路とサブ通路と、
前記メイン通路に設けられるメイン減衰力発生要素と、
前記サブ通路に設けられるサブ減衰力発生要素とを備え、
前記メイン減衰力発生要素は、前記メイン通路を開閉するメインバルブのみを有し、
前記サブ減衰力発生要素は、前記サブ通路に直列に設けられるオリフィスと前記サブ通路を開閉するとともに開弁圧が前記メインバルブよりも低いサブバルブとを有する
ことを特徴とする緩衝器。 - 請求項1に記載の緩衝器であって、
前記オリフィスは、可変オリフィスである
緩衝器。 - 請求項1に記載の緩衝器であって、
前記アウターチューブ内に挿入されるとともに前記アウターチューブ内に前記二つの作動室を区画する隔壁部材を備え、
前記メイン通路は、前記隔壁部材に設けられるメインポートで形成され、
前記メインバルブは、前記隔壁部材に積層されるリーフバルブである
緩衝器。 - 請求項3に記載の緩衝器であって、
前記隔壁部材を貫く軸部材を備え、
前記サブ通路は、前記軸部材内を通過する部分を有する
緩衝器。 - 請求項4に記載の緩衝器であって、
前記軸部材の先端に装着されて前記隔壁部材を前記軸部材に固定するとともに前記サブ通路の一部が形成されるバルブホルダを備え、
前記サブバルブは、前記バルブホルダに保持される
緩衝器。 - 請求項1に記載の緩衝器であって、
前記サブバルブは、
内周あるいは外周の一方が固定されて固定端とされ内周あるいは外周の他方を自由端として撓みが許容されるとともに前記サブ通路に設けられる環状弁体と、
前記環状弁体の自由端との間に環状隙間を開けて対向する環状対向部とを有する
緩衝器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112021003611.4T DE112021003611T5 (de) | 2020-07-06 | 2021-05-06 | Stossdämpfer |
CN202180042267.5A CN115885118A (zh) | 2020-07-06 | 2021-05-06 | 缓冲器 |
US17/923,423 US20230193973A1 (en) | 2020-07-06 | 2021-05-06 | Shock absorber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020116053A JP7492390B2 (ja) | 2020-07-06 | 2020-07-06 | 緩衝器 |
JP2020-116053 | 2020-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022009510A1 true WO2022009510A1 (ja) | 2022-01-13 |
Family
ID=79552909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/017341 WO2022009510A1 (ja) | 2020-07-06 | 2021-05-06 | 緩衝器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230193973A1 (ja) |
JP (1) | JP7492390B2 (ja) |
CN (1) | CN115885118A (ja) |
DE (1) | DE112021003611T5 (ja) |
WO (1) | WO2022009510A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024002315A (ja) * | 2022-06-23 | 2024-01-11 | カヤバ株式会社 | 減衰バルブおよび緩衝器 |
WO2024070527A1 (ja) * | 2022-09-29 | 2024-04-04 | 日立Astemo株式会社 | 緩衝器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008232316A (ja) * | 2007-03-22 | 2008-10-02 | Kayaba Ind Co Ltd | 緩衝器のバルブ構造 |
JP2017002989A (ja) * | 2015-06-10 | 2017-01-05 | Kyb株式会社 | 緩衝器 |
JP2018179091A (ja) * | 2017-04-07 | 2018-11-15 | 株式会社エッチ・ケー・エス | 油圧緩衝器 |
JP2019183921A (ja) * | 2018-04-06 | 2019-10-24 | Kyb株式会社 | 液圧機器 |
-
2020
- 2020-07-06 JP JP2020116053A patent/JP7492390B2/ja active Active
-
2021
- 2021-05-06 US US17/923,423 patent/US20230193973A1/en active Pending
- 2021-05-06 DE DE112021003611.4T patent/DE112021003611T5/de active Pending
- 2021-05-06 WO PCT/JP2021/017341 patent/WO2022009510A1/ja active Application Filing
- 2021-05-06 CN CN202180042267.5A patent/CN115885118A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008232316A (ja) * | 2007-03-22 | 2008-10-02 | Kayaba Ind Co Ltd | 緩衝器のバルブ構造 |
JP2017002989A (ja) * | 2015-06-10 | 2017-01-05 | Kyb株式会社 | 緩衝器 |
JP2018179091A (ja) * | 2017-04-07 | 2018-11-15 | 株式会社エッチ・ケー・エス | 油圧緩衝器 |
JP2019183921A (ja) * | 2018-04-06 | 2019-10-24 | Kyb株式会社 | 液圧機器 |
Also Published As
Publication number | Publication date |
---|---|
JP2022013974A (ja) | 2022-01-19 |
US20230193973A1 (en) | 2023-06-22 |
CN115885118A (zh) | 2023-03-31 |
JP7492390B2 (ja) | 2024-05-29 |
DE112021003611T5 (de) | 2023-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7757826B2 (en) | Damping force adjustable fluid pressure shock absorber | |
JP4840557B2 (ja) | 減衰力調整式油圧緩衝器 | |
JP2012215220A (ja) | 減衰力調整式緩衝器 | |
CN103277447A (zh) | 嵌套式单向高速阀 | |
WO2022009510A1 (ja) | 緩衝器 | |
JP6078635B2 (ja) | 緩衝器およびこれを用いた車両 | |
JP2019183918A (ja) | バルブ及び緩衝器 | |
US11655875B2 (en) | Damping valve and shock absorber | |
JP7051543B2 (ja) | バルブ及び緩衝器 | |
JP5156547B2 (ja) | 緩衝器 | |
WO2023002735A1 (ja) | バルブおよび緩衝器 | |
JP6047035B2 (ja) | 車両用液圧緩衝器 | |
KR102385442B1 (ko) | 주파수 감응형 쇽업소버 | |
US11867253B2 (en) | Shock absorber | |
JP4318071B2 (ja) | 油圧緩衝器 | |
JP4868166B2 (ja) | 流体圧緩衝器 | |
WO2024185398A1 (ja) | 減衰バルブおよび緩衝器 | |
US20220316549A1 (en) | Shock absorber | |
JP5517337B2 (ja) | 緩衝器のバルブ構造 | |
WO2023248694A1 (ja) | 減衰バルブおよび緩衝器 | |
WO2024185396A1 (ja) | 減衰バルブおよび緩衝器 | |
WO2024195429A1 (ja) | 減衰バルブおよび緩衝器 | |
WO2024185400A1 (ja) | 減衰バルブおよび緩衝器 | |
WO2024185397A1 (ja) | 減衰バルブおよび緩衝器 | |
JP7522646B2 (ja) | 緩衝器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21838543 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21838543 Country of ref document: EP Kind code of ref document: A1 |