WO2024070527A1 - 緩衝器 - Google Patents
緩衝器 Download PDFInfo
- Publication number
- WO2024070527A1 WO2024070527A1 PCT/JP2023/032339 JP2023032339W WO2024070527A1 WO 2024070527 A1 WO2024070527 A1 WO 2024070527A1 JP 2023032339 W JP2023032339 W JP 2023032339W WO 2024070527 A1 WO2024070527 A1 WO 2024070527A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- piston
- passage
- speed
- damping force
- Prior art date
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 66
- 230000035939 shock Effects 0.000 title claims abstract description 66
- 238000013016 damping Methods 0.000 claims abstract description 165
- 230000007246 mechanism Effects 0.000 claims abstract description 43
- 239000012530 fluid Substances 0.000 claims description 20
- 230000001419 dependent effect Effects 0.000 abstract description 6
- 230000006835 compression Effects 0.000 description 115
- 238000007906 compression Methods 0.000 description 115
- 239000003921 oil Substances 0.000 description 113
- 238000010586 diagram Methods 0.000 description 17
- 230000008859 change Effects 0.000 description 15
- 230000008602 contraction Effects 0.000 description 13
- 239000010720 hydraulic oil Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/10—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
- F16F9/14—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
- F16F9/16—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
- F16F9/18—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
- F16F9/19—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/34—Special valve constructions; Shape or construction of throttling passages
- F16F9/348—Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/50—Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
Definitions
- This disclosure relates to a shock absorber that reduces vibrations in vehicles, such as automobiles.
- Vehicles such as four-wheeled automobiles are provided with shock absorbers (dampers) between the vehicle body (sprung) side and each wheel (unsprung) side.
- the shock absorber described in Patent Document 1 has disk valves on both the bottom and top sides of the piston.
- the disk valve on the bottom side of the piston opens based on the increase in differential pressure between the piston bottom oil chamber and the piston top oil chamber when the rod moves to the extension side.
- the disk valve on the top side of the piston opens based on the increase in differential pressure between the piston bottom oil chamber and the piston top oil chamber when the rod moves to the compression side.
- shock absorbers When shock absorbers are installed (introduced, adopted) in a vehicle, they need to be adapted to that vehicle. That is, the damping force of the shock absorber is adjusted (tuned) so that the desired ride comfort can be obtained for the vehicle in which it is installed. In this case, the desired ride comfort is approached primarily by adjusting the damping force relative to the piston speed on the extension and compression sides. However, simply adjusting the damping force relative to the piston speed on the extension and compression sides may result in a worsening of ride comfort depending on road conditions, and there may be a limit to the types of road surfaces on which the shock absorber can be driven comfortably.
- One of the objectives of the present invention is to provide a shock absorber that can obtain damping force characteristics that stabilize the vehicle's sprung mass regardless of the road surface.
- the present invention is preferably a shock absorber comprising an inner cylinder filled with hydraulic fluid, a piston slidably disposed within the inner cylinder and dividing the inner cylinder into a first chamber and a second chamber, a first passage disposed in the piston, a first valve for opening and closing the first passage, a second passage disposed in the piston, and a second valve for opening and closing the second passage, and the first or second valve, whichever has a higher valve opening pressure, is provided with a valve opening promotion mechanism that synchronizes the opening timing of the valve with the lower valve opening pressure.
- the present invention also provides a shock absorber that preferably includes an inner cylinder filled with hydraulic fluid, a piston slidably disposed within the inner cylinder and dividing the inner cylinder into a first chamber and a second chamber, a first passage disposed in the piston, a first valve for opening and closing the first passage, a second passage disposed in the piston, and a second valve for opening and closing the second passage, and is configured such that the frequency characteristics of the valve having a greater frequency dependency of damping force out of the first valve and the second valve are matched to the frequency characteristics of the valve having a lesser frequency dependency of damping force.
- the present invention also provides a shock absorber that preferably includes an inner cylinder filled with hydraulic fluid, a piston slidably disposed within the inner cylinder and dividing the inner cylinder into a first chamber and a second chamber, a first passage disposed in the piston, a first valve for opening and closing the first passage, a second passage disposed in the piston, and a second valve for opening and closing the second passage, and the first valve and the second valve, whichever has a higher valve opening pressure, has a smaller biasing force than the valve which has a lower valve opening pressure, and is provided with a low-speed valve that opens the first passage or the second passage when the piston speed is low.
- the present invention preferably includes an inner cylinder filled with hydraulic fluid, a piston slidably provided within the inner cylinder and dividing the inner cylinder into a first chamber and a second chamber, an outer cylinder provided outside the inner cylinder and forming a reservoir chamber between the inner cylinder and an outer cylinder, a valve body provided between the reservoir chamber and the second chamber, a first passage provided in the piston, a first valve (e.g., a piston extension valve) that opens and closes the first passage, a first orifice provided in the first passage, a second passage provided in the piston, and a second valve (e.g., a piston retraction valve) that opens and closes the second passage.
- a first valve e.g., a piston extension valve
- a second valve e.g., a piston retraction valve
- valve body a third valve (e.g., a suction valve) that opens and closes the third passage
- a fourth passage provided in the valve body
- a fourth valve e.g., a body contraction valve
- the first valve and the fourth valve are provided with a valve opening promotion mechanism that matches the opening timing of the valve with the lower valve opening pressure (for example, when the valve opening pressure of the first valve is higher than that of the fourth valve, the opening timing of the first valve is matched to that of the second valve).
- FIG. 1 is a vertical cross-sectional view showing a shock absorber according to a first embodiment.
- FIG. 2 is an enlarged cross-sectional view showing a piston, a first valve, and a second valve in FIG. 1 .
- FIG. 3 is an enlarged view of part (III) in FIG. 2.
- FIG. 2 is an exploded perspective view showing a piston, a first valve, etc.
- 5 is a characteristic diagram showing the relationship between piston speed and damping force when low-frequency vibration is applied according to the first embodiment.
- FIG. 5 is a characteristic diagram showing the relationship between the expansion/compression ratio (expansion/compression ratio) of the damping force and the frequency according to the first embodiment.
- FIG. FIG. 4 is a cross-sectional view taken from a position similar to that of FIG.
- FIG. 5 is a cross-sectional view taken from a position similar to that of FIG. 3 , showing a piston, a first valve, and the like according to a second embodiment.
- FIG. 11 is an exploded perspective view showing a piston, a first valve, and the like according to a second embodiment.
- FIG. 11 is a characteristic diagram showing the relationship between piston speed and damping force when subjected to low-frequency vibration according to the second embodiment.
- FIG. 11 is a characteristic diagram showing the relationship between the expansion/compression ratio (expansion/compression ratio) of the damping force and the frequency according to the second embodiment.
- FIG. 4 is a characteristic diagram showing the relationship between the damping force of the orifice area and frequency.
- FIG. 4 is a characteristic diagram showing the relationship between the damping force of the valve region and the frequency.
- FIG. 11 is a characteristic diagram showing the relationship between piston speed and damping force according to a comparative example.
- FIG. 11 is a characteristic diagram showing the relationship between the expansion/compression ratio (expansion/compression ratio) of the damping force and the frequency according to the comparative example.
- This is a hydraulic circuit diagram of a monotube damper and a twin tube damper.
- FIG. 2 is an explanatory diagram for explaining ride comfort (vehicle behavior) in an ideal state.
- FIG. 1 is an explanatory diagram for explaining a ride comfort (vehicle behavior) to be improved.
- FIGS. 1 to 6 show a first embodiment.
- shock absorber 1 is, for example, a hydraulic shock absorber for a vehicle such as an automobile.
- Shock absorber 1 constitutes a suspension device for a vehicle together with a suspension spring (not shown) made of, for example, a coil spring.
- a suspension spring (not shown) made of, for example, a coil spring.
- one axial end side of shock absorber 1 is referred to as the "lower end” side, and the other axial end side is referred to as the "upper end” side, but one axial end side of shock absorber 1 may also be referred to as the "upper end” side, and the other axial end side may also be referred to as the "lower end” side.
- the shock absorber 1 includes an outer cylinder 2, an inner cylinder 4, a piston 5, a piston rod 10, and a valve body 12.
- the outer cylinder 2 is provided on the outside of the inner cylinder 4.
- the outer cylinder 2 is formed in a cylindrical shape with a bottom, and constitutes the outer shell of the shock absorber 1.
- One end of the outer cylinder 2, or the lower end, is closed by welding a bottom cap 3, and the other end, or the upper end, is open.
- the upper end of the outer cylinder 2 is provided with a plurality of crimped portions 2A that are bent radially inward by crimping, for example.
- the upper end opening of the outer cylinder 2 is closed by a rod guide 8 and a rod seal 9.
- the inner cylinder 4 is coaxially arranged within the outer cylinder 2. Together with the outer cylinder 2, the inner cylinder 4 constitutes a twin-cylinder shock absorber (cylinder device).
- the inner cylinder 4 and the outer cylinder 2 are filled with oil (hydraulic oil) as a working fluid (hydraulic fluid).
- the hydraulic fluid is not limited to oil, and may be, for example, water mixed with an additive.
- the lower end of the inner cylinder 4 is fitted and attached to the outer periphery of the valve body 12, and the upper end is closed by the rod guide 8.
- the inner cylinder 4 forms (defines) an annular reservoir chamber A between the outer cylinder 2.
- the outer cylinder 2 forms the reservoir chamber A between the inner cylinder 4.
- Gas is sealed in the reservoir chamber A together with hydraulic fluid, which is the working liquid. This gas may be, for example, air at atmospheric pressure, or compressed nitrogen gas.
- the reservoir chamber A as a reservoir compensates for the advancement and withdrawal of the piston rod 10.
- the valve body 12 is located at the lower end side of the inner cylinder 4, between the bottom cap 3 and the inner cylinder 4.
- the piston 5 is slidably disposed within the inner cylinder 4.
- the piston 5 divides the inner cylinder 4 into two chambers, namely, the rod side oil chamber B which is the first chamber, and the bottom side oil chamber C which is the second chamber.
- the piston 5 is provided with a plurality of oil passages 5A, 5B which allow communication between the rod side oil chamber B and the bottom side oil chamber C.
- the first oil passage 5A as the first passage is shown in Figures 1 to 4
- the second oil passage 5B as the second passage is shown in Figure 4.
- Oil passages 5A and 5B form passages that allow hydraulic fluid (oil) to flow from one of oil chambers B and C in inner cylinder 4 to the other as piston 5 moves. That is, first oil passage 5A as the first passage and second oil passage 5B as the second passage connect rod side oil chamber B, which is the first chamber, to bottom side oil chamber C, which is the second chamber, as piston 5 moves. First oil passage 5A and second oil passage 5B are flow paths through which the flow of hydraulic fluid (oil) occurs as piston 5 moves.
- the piston 5 is provided with a valve 6, which may include, for example, one or more disks (disk valves). That is, the underside of the piston 5 is provided with a valve 6 that serves as a damping valve on the extension side.
- the extension side valve 6 (hereinafter referred to as the piston extension side valve 6) applies resistance to the oil flowing in the first oil passage 5A from the rod side oil chamber B to the bottom side oil chamber C when the piston 5 slides upward along the inner cylinder 4 during the extension stroke of the piston rod 10. This generates a predetermined damping force during the extension stroke of the piston rod 10.
- the piston extension side valve 6 controls the flow of working fluid (oil) caused by the sliding of the piston 5 inside the inner cylinder 4 to generate a damping force.
- the piston extension side valve 6 corresponds to a first valve that opens and closes the first oil passage 5A as a first passage.
- the first oil passage 5A is provided with a piston extension side orifice 52 that acts as a throttle (opening) as necessary.
- the piston extension side orifice 52 which corresponds to the first orifice, may be provided in the piston extension side valve 6 or on the seat side (piston 5 side).
- the piston 5 is provided with a valve 7, which is composed of, for example, one or more disks (disk valves), in addition to the piston extension side valve 6. That is, the valve 7, which serves as a contraction side damping valve, is provided on the upper surface of the piston 5.
- the contraction side valve 7 (hereinafter referred to as the piston contraction side valve 7) applies resistance to the oil flowing in the second oil passage 5B from the bottom side oil chamber C to the rod side oil chamber B when the piston 5 slides downward along the inner cylinder 4 during the contraction stroke of the piston rod 10. This generates a predetermined damping force during the contraction stroke of the piston rod 10.
- the piston compression side valve 7 controls the flow of working fluid (oil) caused by the sliding of the piston 5 inside the inner cylinder 4 to generate a damping force.
- the piston compression side valve 7 corresponds to a second valve that opens and closes the second oil passage 5B as a second passage.
- the second oil passage 5B is provided with a piston compression side orifice 53 that acts as a throttle (opening) as necessary.
- the piston compression side orifice 53 which corresponds to the third orifice, may be provided in the piston compression side valve 7 or on the seat side (piston 5 side).
- the upper end (open end) of the outer cylinder 2 and the inner cylinder 4 is closed by a rod guide 8 and a rod seal 9.
- the rod guide 8 is a guide member that slidably guides the piston rod 10 to prevent it from displacing in the axial direction.
- the rod guide 8 is formed into a cylindrical body of a predetermined shape by performing molding, cutting, etc. on a metal material or a hard resin material, and is fitted into the upper end (open end) of the outer cylinder 2 and the inner cylinder 4.
- the rod seal 9 is provided between the upper surface of the rod guide 8 and the crimped portion 2A of the outer cylinder 2.
- the rod seal 9 has a metallic annular plate 9A as a core metal.
- An elastic sealing material such as rubber is integrally molded into the annular plate 9A by, for example, baking.
- the rod seal 9 provides a liquid-tight and airtight seal between the outer cylinder 2 and the piston rod 10 by sliding its inner periphery against the outer periphery of the piston rod 10.
- the piston 5, the piston retraction side valve 7, and the piston extension side valve 6 are attached to the lower end of the piston rod 10.
- the lower end of the piston rod 10 is provided with a small diameter section 10A that is smaller in diameter than the other parts.
- the end of the small diameter section 10A is provided with a male thread section 10B into which a nut 11 is screwed to secure the piston 5, the piston retraction side valve 7, and the piston extension side valve 6 to the piston rod 10.
- a valve body 12 is provided at the lower end of the inner cylinder 4, which is located between the inner cylinder 4 and the bottom cap 3 and serves as the bottom body.
- the valve body 12 is provided on the body side (cylinder side) of the shock absorber 1.
- the valve body 12 separates (divides) the reservoir chamber A and the bottom-side oil chamber C between the bottom cap 3 and the inner cylinder 4. As a result, the valve body 12 is provided between the reservoir chamber A and the bottom-side oil chamber C.
- the valve body 12 is provided with a number of oil passages 12A, 12B that allow communication between the reservoir chamber A and the bottom-side oil chamber C.
- Oil passages 12A and 12B form passages that allow hydraulic fluid (oil) to flow from one of the bottom-side oil chamber C in the inner cylinder 4 and the reservoir chamber A in the outer cylinder 2 to the other chamber as the piston 5 moves. That is, the third oil passage 12A as the third passage and the fourth oil passage 12B as the fourth passage connect the bottom-side oil chamber C, which becomes the second chamber, to the reservoir chamber A, which becomes the third chamber, as the piston 5 moves. Oil passages 12A and 12B are flow paths through which a flow of hydraulic fluid (oil) occurs as the piston 5 moves.
- the valve body 12 is provided with a valve 13, which is composed of, for example, one or more disks (disc valves). That is, the valve 13, which serves as an extension side damping valve, is provided on the upper surface side of the valve body 12.
- the extension side valve 13 (hereinafter referred to as the body extension side valve 13) applies resistance to the oil flowing through the third oil passage 12A from the reservoir chamber A side toward the bottom side oil chamber C when the piston 5 slides upward during the extension stroke of the piston rod 10.
- the body extension side valve 13 corresponds to a third valve that opens and closes the third oil passage 12A as a third passage. As shown in FIG. 16 described later, the third oil passage 12A is provided with a body extension side orifice 56 that acts as a throttle (opening) as necessary.
- the body extension side orifice 56 which corresponds to the fourth orifice, may be provided in the body extension side valve 13 or on the seat side (valve body 12 side).
- the body extension valve 13 which serves as the third valve, can be configured, for example, as a suction valve that mainly functions as a check valve and generates almost no damping force. That is, the body extension valve 13 can be configured as a check valve that opens when the piston 5 slides upward during the extension stroke of the piston rod 10 and closes at other times.
- a body extension valve 13, which serves as a check valve allows the oil in the reservoir chamber A to flow through the oil passage 12A toward the bottom oil chamber C and prevents the oil from flowing in the opposite direction.
- the valve body 12 is provided with a valve 14, which is composed of, for example, one or more disks (disc valves), in addition to the body extension valve 13. That is, the valve 14, which serves as a compression side damping valve, is provided on the underside of the valve body 12.
- the contraction side valve 14 (hereinafter referred to as the body contraction side valve 14) applies resistance to the oil flowing through the fourth oil passage 12B from the bottom side oil chamber C toward the reservoir chamber A when the piston 5 slides downward during the contraction stroke of the piston rod 10.
- the body compression side valve 14 corresponds to a fourth valve that opens and closes the fourth oil passage 12B as the fourth passage.
- the fourth oil passage 12B is provided with a body compression side orifice 57 that acts as a throttle (opening) as necessary.
- the body compression side orifice 57 which corresponds to the second orifice, may be provided in the body compression side valve 14 or on the seat side (valve body 12 side).
- hydraulic damping force is frequency dependent. For this reason, simply adjusting the magnitude of the damping force relative to the piston speed based on the characteristics in the low frequency band where the amplitude is relatively large on the compression and extension sides may not allow the hydraulic shock absorber to generate an appropriate damping force when the input frequency changes in various ways. For example, simply adjusting the damping force may result in a stiff feeling as shown in Figure 18 (A). Also, simply adjusting the damping force may result in a bumpy feeling as shown in Figure 18 (B). As a result, good behavior may not be obtained depending on the road surface during actual driving, which may impair the stability felt by the occupants.
- a vehicle body receives various inputs from the road surface while in motion.
- the size of the undulations on the road surface and the spacing between the bumps and recesses vary widely. Therefore, it is important to optimize the damping force not only in relation to the piston speed, but also in relation to the input frequency.
- reducing frequency dependency is difficult, as it can cause delays in the damping force due to the compressibility of the hydraulic oil.
- a typical hydraulic shock absorber that applies damping force by stacking valves has a high-pressure oil chamber (high-pressure side chamber) and a low-pressure oil chamber (low-pressure side chamber) filled with hydraulic oil.
- a flow path is provided through which the hydraulic oil moves between these oil chambers, and the differential pressure is adjusted by the area of this flow path to obtain the desired damping force.
- the flow paths through which the hydraulic oil moves are generally divided into two types. One of these is an orifice that is always connected with a constant area regardless of the pressure difference between the oil chambers.
- the other is a valve composed of a valve body made of stacked disc valves.
- the valve closes until the pressure difference between the upstream and downstream oil chambers of the flow path reaches a set value, thereby blocking the flow path.
- the pressure difference reaches or exceeds the set value, the valve opens, connecting the upstream and downstream oil chambers. Therefore, when the stroke speed (piston speed) of the hydraulic shock absorber is low, the pressure difference is also low, so the valve closes and hydraulic oil passes only through the orifice.
- the stroke speed pressure difference
- the pressure difference increases, and when the load caused by this pressure difference exceeds the closing load (preset) given to the valve in advance, the valve opens. From this point on, as the pressure difference increases, the valve opening increases and the flow path area expands.
- the region where a pressure difference occurs through the orifice when the valve is closed is defined as the "orifice region,” and the region where the valve is open is defined as the “valve region.”
- the frequency characteristics of the damping force differ between the orifice region and the valve region.
- the flow path area is small and constant, so it is difficult to obtain a flow rate in response to an increase in the pressure difference, and the pressure is easily converted not only into inflow and outflow but also into a volumetric deformation of the hydraulic oil, resulting in a large response delay and a decrease in damping force as the frequency increases.
- the response delay is easily alleviated and almost no change in damping force due to frequency is observed.
- damping force characteristics of dampers (shock absorbers) used in automobiles are often given different characteristics on the extension side and compression side.
- valve opening characteristics of the extension and compression sides that is, the timing at which the valves open, and depending on the piston speed, one of the extension and compression sides will be in the orifice region and the other in the valve region, and the difference in frequency characteristics between the orifice region and the valve region shown above will cause the extension-pressure ratio of the damping force to be frequency-dependent.
- Figure 14 shows an example of the relationship between piston speed and damping force when a significantly higher valve opening pressure is applied to the extension valve compared to the compression valve.
- the extension valve has the characteristics of an orifice region up to a higher piston speed than the compression valve, and the extension damping force in that region decreases as the frequency increases.
- the compression valve transitions to the valve region at a lower piston speed than the extension valve, so the decrease in damping force with frequency is small.
- Figure 15 shows an example of the relationship between the damping force extension/compression ratio (extension/compression damping force) and frequency in a case similar to that of Figure 14, that is, when a significantly higher valve opening pressure is applied to the extension valve than to the compression valve.
- characteristic line 101 in Figure 15 shows the change in the damping force extension/compression ratio versus frequency at "piston speed a" in Figure 14.
- characteristic line 102 in Figure 15 shows the change in the damping force extension/compression ratio versus frequency at "piston speed b" in Figure 14
- characteristic line 103 shows the change in the damping force extension/compression ratio versus frequency at "piston speed c" in Figure 14.
- valve-opening promotion mechanism (sub-valve) that matches the piston speed at which the valve with the lower opening pressure opens.
- This valve-opening promotion mechanism makes it possible to suppress a drop in valve-opening pressure while slowing down the valve opening timing compared to the typical stacking method for disc valves. Therefore, by slowing down the valve opening timing and matching it to the opening timing of the valve with the lower opening pressure, it is possible to suppress a drop in damping force while reducing the frequency dependency of the extension-pressure ratio of the damping force.
- valve opening promotion mechanism sub-valve
- valves for which the valve opening promotion mechanism is to be installed based on the structure of the damper (shock absorber).
- FIG. 16A shows the hydraulic circuit of a monotube damper 51, which is a single-tube shock absorber.
- the monotube damper 51 generates a damping force using two valves 6 and 7 provided on the piston 5. That is, the monotube damper 51 has a piston retraction valve 7 (piston retraction valve) and a piston extension valve 6 (piston extension valve) provided on the piston 5.
- a piston extension orifice 52 piston extension orifice
- a piston retraction orifice 53 are provided between the rod side oil chamber B, which is the piston upper chamber, and the bottom side oil chamber C, which is the piston lower chamber, as necessary.
- the valve opening promotion mechanism can be provided in the valve (for example, the piston extension valve 6) with the higher valve opening pressure of the two valves 6 and 7 of the piston 5.
- FIG. 16 shows the hydraulic circuit of a twin-tube damper 54, which is a double-tube shock absorber.
- the shock absorber 1 of the embodiment corresponds to the twin-tube damper 54.
- the twin-tube damper 54 has four valves 6, 7, 13, and 14 on the piston 5 side and the body 55 side. That is, the twin-tube damper 54 has a piston compression side valve 7 (piston compression valve) that contributes to the compression side damping force and a piston extension side valve 6 (piston extension valve) that contributes to the extension side damping force on the piston 5 side.
- a piston extension side orifice 52 piston extension orifice
- a piston compression side orifice 53 piston compression orifice
- the twin-tube damper 54 is provided with a body extension valve 13 (body extension valve) that contributes to the extension damping force, and a body compression valve 14 (body compression valve) that contributes to the compression damping force, on the body 55 (valve body 12) side.
- a body extension orifice 56 (body extension orifice) and/or a body compression orifice 57 (body compression orifice) are provided between the bottom oil chamber C, which is the piston lower chamber, and the reservoir chamber A, as necessary.
- the damping force expansion-pressure ratio can be efficiently reduced.
- the body expansion-side valve 13 which functions primarily as a check valve and is a suction valve that generates almost no damping force, is ignored because its contribution to the damping force characteristics is small, and the opening timing of the remaining three valves 6, 7, and 14 is adjusted based on the following concept.
- the frequency dependency of the damping force is due to a decrease in responsiveness in the orifice area. For this reason, frequency dependency becomes prominent in valves where the valve opening pressure is high and the orifice area persists up to higher piston speeds. Therefore, a valve opening promotion mechanism is provided for the valve with the highest opening pressure of the three valves 6, 7, 14, to bring the valve opening timing closer to that of a valve with low rigidity and low valve opening pressure. Specifically, the valve opening pressures of the piston compression valve 7 and body compression valve 14, which contribute to the compression damping force, and the piston extension valve 6, which contributes to the extension damping force, are compared.
- a valve opening promotion mechanism is provided for the piston extension valve 6. This brings the opening timing of the piston extension valve 6 closer to the opening timing of the valve with the smaller valve opening pressure between the piston compression valve 7 and the body compression valve 14, which contribute to the compression damping force (in principle, this will be the piston compression valve 7 due to the pressure balance relationship).
- a valve opening promotion mechanism is provided for the body compression valve 14. This brings the opening timing of the body compression valve 14 closer to the opening timing of the piston extension valve 6.
- valve opening promotion mechanism 21 of the first embodiment will be described with reference to Figs. 2 to 4 in addition to Fig. 1.
- the valve opening promotion mechanism 21 is provided on the piston extension side valve 6.
- the piston extension valve 6 includes a low-speed valve 22 and a second-stage valve 24 as a main valve.
- the valve opening promotion mechanism 21 includes the low-speed valve 22.
- the low-speed valve 22 includes a low-speed disk 22A corresponding to the low-speed valve opening valve and a small-diameter disk 22B corresponding to the small-diameter valve.
- the low-speed disk 22A is in contact with the seat portion 5C provided at the opening of the first oil passage 5A of the piston 5.
- the low-speed disk 22A is formed as an annular plate with an insertion hole on the inside.
- the low-speed disk 22A constituting the low-speed valve 22 is seated on and removed from the seat pressure-receiving surface 5C1 of the seat portion 5C. As shown in FIG.
- the seat portion 5C is not a circular ring but has a seat shape with a different diameter.
- the seat portion 5C can be provided with a recess (gap) that becomes an orifice by coining (printing, pressing) as necessary.
- a small diameter disk 22B whose outer diameter is smaller than that of the seat portion 5C of the piston 5, is disposed on the rear side (lower side) of the low speed disk 22A.
- the small diameter disk 22B has an outer diameter smaller than that of the low speed disk 22A.
- the small diameter disk 22B is also formed as an annular plate with an insertion hole on the inside.
- a second stage valve 24 is disposed on the rear side (lower surface) of the small diameter disk 22B.
- the second stage valve 24 has an outer diameter that is the same as that of the low speed disk 22A of the low speed valve 22.
- the second stage valve 24 is constructed by stacking three disks 24A, 24B, and 24C, each formed as an annular plate.
- a retainer 25 and a washer 26 are disposed on the rear side of the second stage valve 24.
- the low-speed valve 22 (low-speed disk 22A, small-diameter disk 22B), second-stage valve 24 (disks 24A, 24B, 24C), retainer 25 and washer 26 are fastened to the piston rod 10 by a nut 11.
- the small diameter disc 22B is disposed between the low speed disc 22A and the second stage valve 24.
- This gap 27 can therefore reduce the stiffness of the low speed valve 22 (low speed disc 22A) when it is initially opened. In other words, the gap 27 can encourage the low speed valve 22 (low speed disc 22A) to open at a lower piston speed.
- the second-stage valve 24 also functions as a valve body, so the valve stiffness becomes high.
- This nonlinear valve stiffness characteristic is a feature of this configuration.
- the stiffness of the low-speed valve 22 is mainly determined by the plate thickness dimension of the low-speed disk 22A and the outer diameter dimension of the small diameter disk 22B.
- two parameters i.e., the plate thickness dimension of the low-speed disk 22A and the outer diameter dimension of the small diameter disk 22B
- the opening timing of the piston extension valve 6 i.e., the opening timing of the low-speed valve 22
- the size of the gap 27 between the low-speed valve 22 (low-speed disk 22A) and the second-stage valve 24 governs the timing (piston speed) at which the low-speed valve 22 (low-speed disk 22A) comes into contact with the second-stage valve 24. Therefore, the size of the gap 27 (the distance between the low-speed disk 22A and the second-stage valve 24) determines the range in which the low-speed valve 22 (low-speed disk 22A) is effective.
- the second stage valve 24 may be structured to give an initial deflection to the piston extension side valve 6. Also, the outer diameter of the second stage valve 24 may be changed midway. In other words, the discs 24A, 24B, and 24C that make up the second stage valve 24 may have different outer diameters.
- the piston extension valve 6 is provided with a low-speed valve 22 (low-speed disk 22A and small diameter disk 22B) that serves as a valve opening promotion mechanism 21.
- the valve opening promotion mechanism 21 matches the frequency characteristics of the damping force generated by the piston extension valve 6 with the frequency characteristics of the damping force generated by the piston compression valve 7 to reduce the frequency dependency of the extension pressure ratio of the damping force.
- the valve opening promotion mechanism 21 (low-speed valve 22) matches the frequency characteristics of the damping force of the piston extension valve 6 with the frequency characteristics of the damping force of the piston compression valve 7.
- the low-speed valve 22 (low-speed disk 22A) opens at a piston speed lower than the piston speed at which the piston compression valve 7 opens.
- the piston extension valve 6 opens when the piston speed is lower than that of the piston compression valve 7.
- the piston compression valve 7 and the piston extension valve 6 are adjusted to open simultaneously.
- FIG. 5 shows the relationship between the piston speed and the damping force of the shock absorber 1 of the first embodiment, that is, the characteristics of the damping force with respect to the piston speed at low frequencies of the shock absorber 1 in which the valve opening promotion mechanism 21 is provided on the piston extension side valve 6.
- FIG. 6 shows the relationship between the expansion pressure ratio of the damping force and the frequency, that is, the change in the expansion pressure ratio of the damping force with respect to the frequency at three different "piston speeds a", “piston speeds b", and “piston speeds c" in FIG. 5.
- the characteristic line 31 in FIG. 6 shows the change in the expansion pressure ratio of the damping force with respect to the frequency at "piston speed a" in FIG. 5.
- valve opening promotion mechanism 21 can significantly reduce the change in the expansion pressure ratio of the damping force with respect to the frequency. As a result, compared to a configuration that does not have a valve opening promotion mechanism 21 (low-speed valve 22), it is possible to achieve a ride that is more robust against changes in road conditions and gives the occupants a sense of stability.
- the shock absorber 1 of the first embodiment includes the inner cylinder 4, the piston 5, the first oil passage 5A as the first passage, the piston extension side valve 6 as the first valve, the second oil passage 5B as the second passage, and the piston compression side valve 7 as the second valve.
- the shock absorber 1 also includes the outer cylinder 2 and the valve body 12.
- the shock absorber 1 further includes the piston extension side orifice 52 (see FIG. 16) as the first orifice provided in the first oil passage 5A of the piston 5, the third oil passage 12A as the third passage, the body extension side valve 13 as the third valve, the fourth oil passage 12B as the fourth passage, the body compression side valve 14, and the body compression side orifice 57 (see FIG. 16) as the second orifice provided in the fourth oil passage 12B of the valve body 12.
- the frequency characteristics of the valve e.g., piston extension valve 6) whose damping force is more frequency-dependent among the piston extension valve 6 and the piston compression valve 7 (or body compression valve 14) are configured to match the frequency characteristics of the valve (e.g., piston compression valve 7) whose damping force is less frequency-dependent.
- the valve e.g., piston extension valve 6) whose valve opening pressure is higher among the piston extension valve 6 and the piston compression valve 7 is provided with a valve opening promotion mechanism 21 that matches the valve opening timing of the valve (e.g., piston compression valve 7) whose valve opening pressure is lower.
- valve e.g., piston extension valve 6
- valve opening promotion mechanism 21 that matches the valve opening timing of the valve (e.g., piston compression valve 7) whose valve opening pressure is lower.
- valve with the higher valve opening pressure e.g., the piston extension valve 6
- the valve with the higher valve opening pressure e.g., the piston extension valve 6
- the valve with the higher valve opening pressure e.g., the piston extension valve 6
- the valve opening promotion mechanism 21 opens the valve with the higher valve opening pressure (e.g., the piston extension valve 6) when the piston speed is slower than the valve with the lower valve opening pressure (e.g., the piston compression valve 7 and/or the body compression valve 14).
- the valve opening promotion mechanism 21 is, for example, composed of a low-speed valve 22 (low-speed disk 22A and small-diameter disk 22B). That is, the valve with the higher valve opening pressure (e.g., piston extension valve 6) of the piston extension valve 6 and piston compression valve 7 is provided with a low-speed valve 22 having a smaller biasing force (deformation resistance force, deformation resistance force, valve closing force, force to keep the valve closed) than the valve with the lower valve opening pressure (e.g., piston compression valve 7 and/or body compression valve 14).
- the low-speed valve 22 opens the first oil passage 5A when the piston speed is low.
- the low-speed valve 22 when the low-speed valve 22 is provided in the piston compression valve 7, the low-speed valve 22 opens the second oil passage 5B when the piston speed is low. As shown in Figures 2 and 3, a gap 27 is formed between the low-speed valve 22 and the valve stacked on top of the low-speed valve 22 (i.e., the second-stage valve 24).
- the shock absorber 1 according to the first embodiment has the configuration described above, and its operation will now be explained.
- the tip side (upper end side) of the piston rod 10 is attached to the body side of the vehicle (automobile), and the bottom cap 3 side, which is the base end side (lower end side) of the outer cylinder 2, is attached to the wheel side (axle side) of the vehicle.
- the piston rod 10 is extended and contracted, while a damping force is generated by the valves 6, 7 of the piston 5, etc., and the vibrations at that time are damped.
- the bottom-side oil chamber C is under higher pressure than the rod-side oil chamber B. Then, the oil (pressurized oil) in the bottom-side oil chamber C flows into the rod-side oil chamber B via the second oil passage 5B of the piston 5 and the piston contraction-side valve 7, generating a damping force. At this time, an amount of oil equivalent to the intrusion volume of the piston rod 10 into the inner cylinder 4 flows from the bottom-side oil chamber C into the reservoir chamber A via the fourth oil passage 12B of the valve body 12 and the body contraction-side valve 14. In the reservoir chamber A, the gas sealed inside is compressed, and the intrusion volume of the piston rod 10 is absorbed.
- the piston extension valve 6 having the second stage valve 24, which is the valve with the higher valve opening pressure between the piston extension valve 6 and the piston compression valve 7, is provided with a valve opening promotion mechanism 21 that aligns the valve opening timing with the piston compression valve 7, which is the valve with the lower valve opening pressure.
- a valve opening promotion mechanism 21 that aligns the valve opening timing with the piston compression valve 7, which is the valve with the lower valve opening pressure.
- the piston extension valve 6 is configured so that the frequency dependency of the damping force is equivalent to that of the piston compression valve 7. That is, the piston extension valve 6, which is the valve with a greater frequency dependency of the damping force, is configured to match the piston compression valve 7, which is the valve with a smaller frequency dependency of the damping force.
- This makes it possible to reduce the frequency dependency of the damping force extension/pressure ratio. This makes it possible to achieve a ride that is more robust against changes in road surface conditions and gives the occupants a sense of stability. That is, it is possible to obtain damping force characteristics that stabilize the sprung mass of the vehicle regardless of the road surface, allowing the occupants to continue riding the vehicle without any discomfort.
- the piston extension valve 6, which is the valve with the higher valve opening pressure, opens when the piston speed is low compared to the piston compression valve 7, which is the valve with the lower valve opening pressure. Therefore, while the piston extension valve 6 opens at a low piston speed, the valve stiffness in the medium to high speed range can be increased to obtain a large pressure difference, so that the decrease in the damping force of the piston extension valve 6 is suppressed, and by opening the piston extension valve 6 at a low piston speed, the frequency dependency of the extension pressure ratio of the damping force can be reduced.
- the piston extension valve 6 is provided with a low-speed valve 22 that has a smaller biasing force than the piston compression valve 7 and opens the first oil passage 5A when the piston speed is low. Therefore, the initial opening characteristics of the piston extension valve 6 and the stiffness in the medium to high speed range can be adjusted independently, so that the frequency dependency of the extension pressure ratio of the damping force can be reduced while ensuring the degree of freedom in adjusting the extension damping force.
- a gap 27 is formed between the low-speed valve 22 (low-speed disk 22A) and the second-stage valve 24. This makes it easier for the low-speed valve 22 (low-speed disk 22A) to displace (deform) toward the gap 27. This allows the low-speed valve 22 to be opened when the piston speed is low.
- the piston extension valve 6, which is the valve with the higher valve opening pressure out of the piston extension valve 6 and the body compression valve 14, is provided with a valve opening promotion mechanism 21 that aligns the opening timing with the piston compression valve 7, which is the valve with the lower valve opening pressure. Therefore, the piston extension valve 6 can increase the rigidity in the medium to high speed range while opening at a low piston speed. This reduces the frequency dependency of the extension pressure ratio of the damping force, and ensures the damping force in the medium to high speed range on the extension side. Therefore, compared to the conventional technology (a configuration without the valve opening promotion mechanism 21), it is possible to achieve a ride comfort that is more robust against changes in road surface conditions and gives the occupant a sense of stability. In other words, it is possible to obtain damping force characteristics that stabilize the sprung mass of the vehicle regardless of the road surface, and the occupant can continue to ride the vehicle without any discomfort.
- the size of the gap 27 between the low-speed disc 22A and the second-stage valve 24 is determined by the thickness of the small-diameter disc 22B.
- the piston extension side valve 6 transitions to a region of high valve stiffness from an earlier timing (piston speed), making it possible to generate a large damping force.
- the low-speed valve 41 is provided between the small-diameter disk 22B and the second-stage valve 24 with a gap adjustment disk 42 that makes the gap 27 different between the inner diameter side and the outer diameter side.
- the gap adjustment disk 42 makes the size of the gap 27 larger on the inner diameter side and smaller on the outer diameter side. That is, in the modified example, the low-speed valve 41 is provided with the gap adjustment disk 42 as the fifth valve (gap adjustment valve) and the small-diameter disk 22B.
- the gap adjustment disk 42 has a protruding portion 42A that protrudes toward the low-speed disk 22A of the piston extension side valve 6 and has a larger axial width than other portions.
- the small-diameter disk 22B is provided between the low-speed disk 22A of the piston extension side valve 6 and the gap adjustment disk 42.
- the small-diameter disk 22B has a smaller diameter than the low-speed disk 22A and the gap adjustment disk 42.
- a gap adjustment disk 42 with a variable radial outer thickness is provided between the small diameter disk 22B and the second stage valve 24. This allows the gap 27 between the low speed disk 22A and the second stage valve 24 to be set small even if the thickness of the small diameter disk 22B is increased. This allows the thickness of the small diameter disk 22B to be set to a thickness that ensures mass productivity and strength, while improving the degree of freedom in generating damping force.
- the modified low speed valve 41 includes a gap adjustment disk 42 in addition to the low speed disk 22A and the small diameter disk 22B.
- the gap adjustment disk 42 has a protruding portion 42A that protrudes toward the low speed disk 22A. This makes it possible to reduce the gap 27 between the low speed disk 22A of the piston extension side valve 6 and the gap adjustment disk 42 (protruding portion 42A) while increasing the plate thickness of the small diameter disk 22B. This makes it possible to "ensure the mass productivity and strength of the small diameter disk 22B" and “ensure the freedom of adjustment of the damping force of the piston extension side valve 6" at the same time.
- the gap adjustment disk 42 may, for example, have different plate thicknesses at the inner diameter portion and the outer diameter portion.
- the plate thickness of the outer diameter portion of the gap adjustment disk may be greater than the plate thickness of the inner diameter portion.
- the protrusion may be formed integrally with the disk by pressing, or may be formed integrally with the disk by welding a separate member to the portion corresponding to the protrusion.
- Figs. 8 to 11 show a second embodiment.
- the second embodiment is characterized in that it is configured to have a first seat portion on which the low-speed valve seats and leaves, and a second seat portion on which the main valve (second stage valve) seats and leaves.
- the same components as those in the first embodiment described above are given the same reference numerals, and their description will be omitted.
- the piston extension valve 6 includes a low-speed valve 61 and a second-stage valve 62 as a main valve.
- the valve opening promotion mechanism 21 is composed of the low-speed valve 61. That is, the piston extension valve 6 includes the low-speed valve 61, which has low valve rigidity and contributes to the damping force in the low-speed range where the valve opens from low speed, and the second-stage valve 62, which has higher rigidity than the low-speed valve 61 and contributes to the damping force in the medium to high speed range.
- the low-speed valve 61 and the second-stage valve 62 are arranged in series in the hydraulic circuit.
- the low-speed valve 61 is composed of two low-speed disks 61A and 61B and a retainer 61C.
- the second-stage valve 62 is composed of four disks 62A, 62B, 62C, and 62D.
- the retainer 61C is provided between the low-speed disk 61B arranged on the rear side (lower side) and the disk 62A of the second-stage valve 62.
- the low-speed valve 61 and the second-stage valve 62 have different seat portions 63 and 64 on which they are seated.
- the piston 5 is provided with an inner seat portion 63 as a first seat portion on which the low-speed valve 61 is seated and released, and an outer seat portion 64 as a second seat portion located radially outside the inner seat portion 63 on which the second-stage valve 62 is seated and released.
- the inner seat portion 63 with which the low-speed valve 61 comes into contact is arranged on the inner diameter side of the outer seat portion 64 with which the second-stage valve 62 comes into contact.
- Both the inner sheet portion 63 and the outer sheet portion 64 have an annular sheet shape.
- the low-speed valve 61 is provided for the purpose of opening the piston extension valve 6 from a lower speed range. For this reason, it is desirable that the height between the "seat surface 63A of the inner seat portion 63 on which the low-speed valve 61 sits and leaves" and the "support surface 65A of the support portion 65 on which the inner diameter side of the low-speed valve 61 abuts", that is, the step (height difference) between the seat surface 63A and the support surface 65A, be as small as manufacturing variations allow.
- the support surface 65A on which the inner diameter side of the low-speed valve 61 abuts is also used as a part on which the inner diameter side of the second-stage valve 62 is supported.
- the low-speed valve 61 is first stacked on the support surface 65A, and then the second-stage valve 62 is placed on the back side of this low-speed valve 61. For this reason, a step H, which is the height difference, is provided between the support surface 65A and the seat surface 64A of the outer seat portion 64.
- the second-stage valve 62 may be given a preset (preload, preset load).
- the size of the step H between the support surface 65A and the seat surface 64A of the outer seat portion 64 is set to be equal to or greater than the thickness of the low-speed valve 61 (two low-speed discs 61A, 61B and retainer 61C).
- the low-speed disc 61A that comes into contact with the inner seat portion 63 is a slit disc with a pair of notches 61A1 on its outer periphery.
- the notches 61A1 correspond to the first orifice (piston extension side orifice).
- the low-speed valve 61 contributes to the characteristics in the low-speed range.
- a slit disc (low-speed disc 61A).
- a disc of the same diameter as the low-speed valve 61 (low-speed discs 61A, 61B) or a valve whose inner and outer diameter portions have different thicknesses may be placed on the back surface (lower surface) of the retainer 61C in order to regulate the lift amount of the low-speed valve 61 (low-speed discs 61A, 61B).
- disc 62A that comes into contact with the outer seat portion 64 is a slit disc with a pair of notches 62A1 on the outer periphery.
- the second-stage valve 62 reduces the contribution of the damping force generated in the low-speed range by ensuring a sufficient orifice area with disc 62A (slit disc).
- the second stage valve 62 has the role of generating the damping force of the piston extension valve 6 in the medium to high speed range. For this reason, the rigidity of the second stage valve 62 is adjusted by parameters such as the number of stacked discs 62A, 62B, 62C, and 62D, the plate thickness, and the diameter dimension of the retainer 25 on the back side. In addition, the second stage valve 62 may be given a set step to impart preload, thereby adjusting it to obtain the desired characteristics.
- the inner seat portion 63 on which the low speed valve 61 sits and unseats is not limited to an annular seat shape, and may be a seat shape of different diameters depending on the desired low speed characteristics.
- the second embodiment is provided with the low-speed valve 61 and the second-stage valve 62 as described above, and its basic operation is not particularly different from that of the first embodiment described above. That is, the second embodiment, like the first embodiment, can obtain a damping force characteristic that stabilizes the sprung mass of the vehicle regardless of the road surface.
- FIG. 10 shows the damping force characteristic with respect to the piston speed according to the second embodiment.
- FIG. 11 shows the change in the expansion-pressure ratio of the damping force with respect to the frequency at three different piston speeds (piston speed a, piston speed b, piston speed c) in FIG. 10. As is clear from a comparison of FIG. 11 with the above-mentioned FIG.
- valve opening promotion mechanism 21 can significantly reduce the change in the expansion-pressure ratio of the damping force with respect to the frequency. As a result, a ride comfort that is more robust to changes in road surface conditions and gives the occupant a sense of stability can be achieved compared to a configuration without the valve opening promotion mechanism 21 (low-speed valve 61).
- valve opening point cannot be precisely determined from the "damping force-piston speed diagram" shown in FIG. 5 and FIG. 10. That is, even if the break point of the damping force on the extension side and the break point of the damping force on the compression side appear to coincide on the "damping force-piston speed diagram", this does not necessarily mean that the valve opening timing coincides.
- the valve stiffness is made nonlinear to reduce the valve stiffness only in the low speed range, and the stiffness increases in the medium and high speed ranges, so that a clear valve opening point does not appear on the damping force-piston speed diagram.
- valve opening point of the second stage valve 62 which has a high valve opening pressure, appears on the diagram, but the valve opening point of the low speed valve 61 does not appear clearly. Therefore, it is difficult to determine the valve opening point from the "damping force - piston speed diagram" and to determine the valve opening point, it is necessary to either calculate it from the orifice, valve pressure-receiving area, and valve stiffness, or to determine the valve opening point by measuring the frequency characteristics at each piston speed.
- valve opening timing (piston speed) is determined by the differential pressure acting between the upstream and downstream of the valve, the valve stiffness, the set load, the pressure-receiving area, and the valve seat shape, it must be determined by calculation, not from the "damping force - piston speed diagram.”
- the piston extension valve 6 is the first valve and the piston compression valve 7 is the second valve.
- the piston extension valve may be the second valve and the piston compression valve may be the first valve. This also applies to the second embodiment and the modified example.
- the body extension side valve 13 is the third valve and the body compression side valve 14 is the fourth valve.
- the body extension side valve may be the fourth valve and the body compression side valve may be the third valve.
- the second embodiment and the modified example also applies to the second embodiment and the modified example.
- the piston extension valve 6 on the lower side of the piston 5 applies resistance to the oil (working fluid) during the extension stroke of the piston rod 10 to generate a damping force
- the piston compression valve 7 on the upper side of the piston 5 applies resistance to the oil (working fluid) during the contraction stroke of the piston rod 10 to generate a damping force.
- the piston extension valve on the upper side of the piston may be a check valve
- a body compression valve as a fourth valve provided in the valve body may generate a damping force during the contraction stroke of the piston rod. This is also true for the second embodiment and the modified example.
- the piston extension valve 6, which has the higher valve opening pressure of the piston extension valve 6 and the body compression valve 14 is provided with a valve opening promotion mechanism 21 that synchronizes the opening timing of the piston compression valve 7, which has the lower valve opening pressure.
- a valve opening promotion mechanism 21 that synchronizes the opening timing of the piston compression valve 7, which has the lower valve opening pressure.
- a twin-tube shock absorber 1 consisting of an outer tube 2 and an inner tube 4 has been described as an example.
- the present invention is not limited to this, and may be applied to, for example, a shock absorber consisting of a single-tube tubular member (cylinder).
- the valve with the greater rigidity can be provided with a valve opening promotion mechanism. This also applies to the second embodiment and the modified example.
- a shock absorber attached to an automobile has been described as a representative example of a shock absorber.
- the present invention is not limited to this, and may be applied to a shock absorber attached to a railway vehicle, for example.
- the present invention may be applied to various types of shock absorbers used in various machines, structures, buildings, etc. that are sources of vibration, not limited to vehicles such as automobiles and railway vehicles.
- the first valve and the second valve are provided with a valve opening promotion mechanism that aligns the valve opening timing with the valve with the lower valve opening pressure. Therefore, the valve with the higher valve opening pressure can increase the rigidity in the medium to high speed range while opening at a lower piston speed. This reduces the frequency dependency of the extension pressure ratio of the damping force, and ensures the damping force in the medium to high speed range of the valve with the higher valve opening pressure. Therefore, compared to a configuration without a valve opening promotion mechanism, it is possible to achieve a ride that is more robust against changes in road surface conditions and gives the occupants a sense of stability. In other words, it is possible to obtain damping force characteristics that stabilize the sprung mass of the vehicle regardless of the road surface, and the occupants can continue to ride the vehicle without any discomfort.
- the first valve and the second valve are configured so that the frequency characteristics of the valve whose damping force has a greater frequency dependency are matched to the frequency characteristics of the valve whose damping force has a lesser frequency dependency.
- This makes it possible to reduce the frequency dependency of the extension/pressure ratio of the damping force. This makes it possible to achieve a ride that is more robust against changes in road surface conditions and gives the occupants a sense of stability. In other words, it is possible to obtain damping force characteristics that stabilize the sprung mass of the vehicle regardless of the road surface, allowing the occupants to continue riding in the vehicle without any discomfort.
- the valve with the higher valve opening pressure opens when the piston speed is slower than the valve with the lower valve opening pressure. This allows the valve with the higher valve opening pressure to increase rigidity in the medium to high speed range while opening at a lower piston speed. This reduces the frequency dependency of the extension-pressure ratio of the damping force, while ensuring the damping force in the medium to high speed range of the valve with the higher valve opening pressure.
- the valve with the higher valve opening pressure is provided with a low-speed valve that has a smaller biasing force than the valve with the lower valve opening pressure and opens the first or second passage when the piston speed is low.
- the valve with the higher valve opening pressure can increase rigidity in the medium to high speed range while opening at a lower piston speed. This ensures the degree of freedom of the damping force in the medium to high speed range of the valve with the higher valve opening pressure, while reducing the frequency dependency of the extension-pressure ratio of the damping force.
- a gap is formed between the "low-speed valve” and the "valve stacked on the low-speed valve.” This makes it easier for the low-speed valve to displace (deform) toward the gap. This allows the low-speed valve to be opened when the piston speed is low.
- the low-speed valve includes a fifth valve having a protruding portion that protrudes toward the second valve and has a larger axial width than other portions, and a small-diameter disk between the second valve and the fifth valve.
- a fifth valve having a protruding portion that protrudes toward the second valve and has a larger axial width than other portions, and a small-diameter disk between the second valve and the fifth valve.
- the valve with the higher valve opening pressure out of the first and fourth valves is provided with a valve opening promotion mechanism that aligns the opening timing with the valve with the lower valve opening pressure.
- a valve opening promotion mechanism that aligns the opening timing with the valve with the lower valve opening pressure.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fluid-Damping Devices (AREA)
Abstract
路面を問わずに車両のばね上が安定する減衰力特性を得ることができる緩衝器を提供する。緩衝器は、内筒と、ピストンと、第1油路と、ピストン伸び側バルブと、第2油路と、ピストン縮み側バルブと、を備えている。そして、ピストン伸び側バルブとピストン縮み側バルブのうち、減衰力の周波数依存性が大きい方のバルブを減衰力の周波数依存性が小さい方のバルブに合わせるよう構成している。このために、例えば、ピストン伸び側バルブとピストン縮み側バルブのうち、開弁圧が高いほうのバルブ(例えば、ピストン伸び側バルブ)には、開弁圧が低いほうのバルブ(例えば、ピストン縮み側バルブ)の開弁タイミングとあわせる開弁促進機構を設けている。
Description
本開示は、例えば、自動車等の車両の振動を低減する緩衝器に関する。
4輪自動車等の車両は、車体(ばね上)側と各車輪(ばね下)側との間に緩衝器(ダンパ)が設けられている。特許文献1に記載された緩衝器は、ピストンの下面側と上面側とにそれぞれディスクバルブが設けられている。ピストンの下面側のディスクバルブは、ロッドが伸び側に移動したときに、ピストン下面側油室に対するピストン上面側油室の差圧の上昇に基づいて開弁する。ピストンの上面側のディスクバルブは、ロッドが縮み側に移動したときに、ピストン上面側油室に対するピストン下面側油室の差圧の上昇に基づいて開弁する。
ところで、緩衝器は、車両に搭載(導入、採用)するに当たり、その車両に適合させる必要がある。即ち、緩衝器は、搭載される車両で所望の乗り心地が得られるように、減衰力の調整(チューニング)が行われる。この場合、主として、ピストン速度に対する減衰力を伸び側と縮み側とで調整することにより、所望の乗り心地に近付ける。しかし、ピストン速度に対する減衰力を伸び側と縮み側とで調整するだけでは、路面状態によって乗り心地が悪化する場合があり、違和感なく走行できる路面が限られる可能性がある。
本発明の目的の一つは、路面を問わずに車両のばね上が安定する減衰力特性を得ることができる緩衝器を提供することにある。
本発明は、好ましくは、作動液が封入された内筒と、前記内筒内に摺動可能に設けられ、該内筒内を第1室と第2室とに画成するピストンと、前記ピストンに設けられる第1通路と、該第1通路を開閉する第1バルブと、前記ピストンに設けられる第2通路と、該第2通路を開閉する第2バルブと、を備え、前記第1バルブと前記第2バルブのうち、開弁圧が高いほうのバルブには、開弁圧が低いほうの開弁タイミングとあわせる開弁促進機構を設ける緩衝器である。
また、本発明は、好ましくは、作動液が封入された内筒と、前記内筒内に摺動可能に設けられ、該内筒内を第1室と第2室とに画成するピストンと、前記ピストンに設けられる第1通路と、該第1通路を開閉する第1バルブと、前記ピストンに設けられる第2通路と、該第2通路を開閉する第2バルブと、を備え、前記第1バルブと前記第2バルブのうち、減衰力の周波数依存性が大きい方のバルブの周波数特性を減衰力の周波数依存性が小さい方のバルブの周波数特性に合わせるよう構成する緩衝器である。
また、本発明は、好ましくは、作動液が封入された内筒と、前記内筒内に摺動可能に設けられ、該内筒内を第1室と第2室とに画成するピストンと、前記ピストンに設けられる第1通路と、び該第1通路を開閉する第1バルブと、前記ピストンに設けられる第2通路と、該第2通路を開閉する第2バルブと、を備え、前記第1バルブと前記第2バルブのうち、開弁圧が高いほうのバルブには、開弁圧が低いほうのバルブに比して付勢力が小さく、前記第1通路、または第2通路をピストン速度が低いときに開弁する低速バルブが設けられている緩衝器である。
さらに、本発明は、好ましくは、作動液が封入された内筒と、前記内筒内に摺動可能に設けられ、該内筒内を第1室と第2室とに画成するピストンと、前記内筒の外側に設けられ、該内筒との間にリザーバ室を形成する外筒と、前記リザーバ室と前記第2室との間に設けられるバルブボディと、前記ピストンに設けられる第1通路と、該第1通路を開閉する第1バルブ(例えば、ピストン伸びバルブ)と、該第1通路に設けられる第1オリフィスと、前記ピストンに設けられる第2通路と、該第2通路を開閉する第2バルブ(例えば、ピストン縮みバルブ)と、前記バルブボディに設けられる第3通路と、該第3通路を開閉する第3バルブ(例えば、サクションバルブ)と、前記バルブボディに設けられる第4通路と、該第4通路を開閉する第4バルブ(例えば、ボディ縮みバルブ)と、該第4通路に設けられる第2オリフィスと、を有し、前記第1バルブと前記第4バルブのうち、開弁圧が高いほうのバルブには、開弁圧が低いバルブの開弁タイミングとあわせる開弁促進機構を設ける緩衝器である(例えば、開弁圧が第1バルブ>第4バルブの場合は、第1バルブを第2バルブの開弁タイミングに合わせる)。
本発明の一実施形態によれば、路面を問わずに車両のばね上が安定する減衰力特性を得ることができる。
以下、実施形態による緩衝器を、4輪自動車等の車両に組込まれる油圧緩衝器に用いた場合を例に挙げ、添付図面を参照しつつ説明する。
図1ないし図6は、第1の実施形態を示している。図1において、緩衝器1は、例えば、自動車等の車両用の油圧緩衝器である。緩衝器1は、例えば、コイルばねからなる懸架ばね(図示せず)と共に車両用のサスペンション装置を構成する。なお、以下の説明では、緩衝器1の軸方向の一端側を「下端」側とし、軸方向の他端側を「上端」側として説明するが、緩衝器1の軸方向の一端側を「上端」側とし、軸方向の他端側を「下端」側としてもよい。
緩衝器1は、外筒2と、内筒4と、ピストン5と、ピストンロッド10と、バルブボディ12と、を含んで構成されている。外筒2は、内筒4の外側に設けられている。外筒2は、有底筒状に形成されており、緩衝器1の外殻を構成している。外筒2は、一端側となる下端側がボトムキャップ3を溶接することにより閉塞され、他端側となる上端側は開口している。外筒2の上端部には、例えばかしめ加工により径方向内側に屈曲させてなる複数のかしめ部2Aが設けられている。外筒2の上端側開口は、ロッドガイド8およびロッドシール9により閉塞されている。
内筒4は、外筒2内に同軸に設けられている。内筒4は、外筒2と共に、複筒式の緩衝器(シリンダ装置)を構成している。内筒4および外筒2内には、作動流体(作動液)としての油液(作動油)が封入されている。作動液である油液は、オイルに限らず、例えば添加剤を混在させた水等でもよい。内筒4は、下端側がバルブボディ12の外周側に嵌合して取付けられており、上端側がロッドガイド8により閉塞されている。
内筒4は、外筒2との間に環状のリザーバ室Aを形成(画成)している。逆に言えば、外筒2は、内筒4との間にリザーバ室Aを形成している。リザーバ室A内には、作動液体である油液と共にガスが封入されている。このガスは、例えば、大気圧状態の空気であってもよく、また、圧縮された窒素ガスでもよい。リザーバとしてのリザーバ室Aは、ピストンロッド10の進入および退出を補償する。バルブボディ12は、内筒4の下端側に位置してボトムキャップ3と内筒4との間に設けられている。
ピストン5は、内筒4内に摺動可能に設けられている。ピストン5は、内筒4内を2室、即ち、第1室となるロッド側油室Bと第2室となるボトム側油室Cとに区画(画成)している。ピストン5には、ロッド側油室Bとボトム側油室Cとの間を連通可能とする複数の油路5A,5Bが設けられている。なお、複数の油路5A,5Bのうち第1通路としての第1油路5Aは、図1ないし図4に示しており、第2通路としての第2油路5Bは、図4に示している。
油路5A,5Bは、ピストン5の移動により、内筒4内の油室B,Cのうち、一方の室から他方の室に向けて作動液体(油液)が流通するのを許す通路を構成している。即ち、第1通路としての第1油路5Aおよび第2通路としての第2油路5Bは、ピストン5の移動によって、第1室となるロッド側油室Bと第2室となるボトム側油室Cとを連通する。第1油路5Aおよび第2油路5Bは、ピストン5の移動によって作動流体(油液)の流れが生じる流路である。
ピストン5には、例えば1または複数のディスク(ディスクバルブ)を含んで構成されるバルブ6が設けられている。即ち、ピストン5の下側面には、伸長側(伸び側)の減衰バルブとなるバルブ6が設けられている。伸長側のバルブ6(以下、ピストン伸び側バルブ6という)は、ピストンロッド10の伸長行程(伸び行程)でピストン5が内筒4に沿って上向きに摺動変位するときに、ロッド側油室Bからボトム側油室Cに向けて第1油路5A内を流通する油液に対し抵抗力を与える。これにより、ピストンロッド10の伸長行程で所定の減衰力を発生させる。
即ち、ピストン伸び側バルブ6は、内筒4内のピストン5の摺動によって生じる作動流体(油液)の流れを制御して減衰力を発生させる。ピストン伸び側バルブ6は、第1通路としての第1油路5Aを開閉する第1バルブに相当する。後述の図16に示すように、第1油路5Aには、必要に応じて絞り(開口)となるピストン伸び側オリフィス52を設ける。第1オリフィスに相当するピストン伸び側オリフィス52は、ピストン伸び側バルブ6に設けてもよいし、シート側(ピストン5側)に設けてもよい。
ピストン5には、ピストン伸び側バルブ6とは別に、例えば1または複数のディスク(ディスクバルブ)を含んで構成されるバルブ7が設けられている。即ち、ピストン5の上側面には、縮小側(縮み側)の減衰バルブとなるバルブ7が設けられている。縮小側のバルブ7(以下、ピストン縮み側バルブ7という)は、ピストンロッド10の縮小行程(縮み行程)でピストン5が内筒4に沿って下向きに摺動変位するときに、ボトム側油室Cからロッド側油室Bに向けて第2油路5B内を流通する油液に対し抵抗力を与える。これにより、ピストンロッド10の縮小行程で所定の減衰力を発生させる。
即ち、ピストン縮み側バルブ7は、内筒4内のピストン5の摺動によって生じる作動流体(油液)の流れを制御して減衰力を発生させる。ピストン縮み側バルブ7は、第2通路としての第2油路5Bを開閉する第2バルブに相当する。後述の図16に示すように、第2油路5Bには、必要に応じて絞り(開口)となるピストン縮み側オリフィス53を設ける。第3オリフィスに相当するピストン縮み側オリフィス53は、ピストン縮み側バルブ7に設けてもよいし、シート側(ピストン5側)に設けてもよい。
外筒2と内筒4の上端側(開口端側)は、ロッドガイド8とロッドシール9とにより閉塞されている。ロッドガイド8は、ピストンロッド10が軸方向に変位するのを摺動可能にガイドするガイド部材である。ロッドガイド8は、例えば金属材料、硬質な樹脂材料等に成形加工、切削加工等を施すことにより所定形状の筒体として形成され、外筒2と内筒4の上端側(開口端側)に嵌合して設けられている。
ロッドシール9は、ロッドガイド8の上面と外筒2のかしめ部2Aとの間に設けられている。ロッドシール9は、芯金として金属性の環状板9Aを有している。環状板9Aには、例えば焼付け等の手段でゴム等の弾性シール材料が一体に成形されている。ロッドシール9は、その内周がピストンロッド10の外周側に摺接することにより、外筒2とピストンロッド10との間を液密、気密に封止(シール)する。
ピストンロッド10は、基端側となる下端側が内筒4内に挿入され、先端側となる上端側がロッドガイド8を介して内筒4外へと突出している。即ち、ピストンロッド10は、ピストン5に連結されて内筒4の外部へ延びている。ピストンロッド10の下端側には、ピストン5、ピストン縮み側バルブ7およびピストン伸び側バルブ6が取付けられている。このために、ピストンロッド10の下端側には、他の部分よりも小径の小径部10Aが設けられている。そして、小径部10Aの端部には、ピストン5、ピストン縮み側バルブ7およびピストン伸び側バルブ6をピストンロッド10に固定するためのナット11が螺着される雄ねじ部10Bが設けられている。
内筒4の下端側には、内筒4とボトムキャップ3との間に位置してボトムボディとなるバルブボディ12が設けられている。バルブボディ12は、緩衝器1のボディ側(筒側)に設けられている。バルブボディ12は、ボトムキャップ3と内筒4との間でリザーバ室Aとボトム側油室Cとを仕切っている(区画している)。これにより、バルブボディ12は、リザーバ室Aとボトム側油室Cとの間に設けられている。バルブボディ12には、リザーバ室Aとボトム側油室Cとを連通可能とする複数の油路12A,12Bが設けられている。
油路12A,12Bは、ピストン5の移動により、内筒4内のボトム側油室Cと外筒2内のリザーバ室Aとのうち、一方の室から他方の室に向けて作動液体(油液)が流通するのを許す通路を構成している。即ち、第3通路としての第3油路12Aおよび第4通路としての第4油路12Bは、ピストン5の移動によって、第2室となるボトム側油室Cと第3室となるリザーバ室Aとを連通する。油路12Aおよび油路12Bは、ピストン5の移動によって作動流体(油液)の流れが生じる流路である。
バルブボディ12には、例えば1または複数のディスク(ディスクバルブ)により構成されるバルブ13が設けられている。即ち、バルブボディ12の上面側には、伸長側の減衰バルブとなるバルブ13が設けられている。伸長側のバルブ13(以下、ボディ伸び側バルブ13という)は、ピストンロッド10の伸長行程でピストン5が上向きに摺動変位するときに、リザーバ室A側からボトム側油室Cに向けて第3油路12A内を流通する油液に対し抵抗力を与える。
ボディ伸び側バルブ13は、第3通路としての第3油路12Aを開閉する第3バルブに相当する。後述の図16に示すように、第3油路12Aには、必要に応じて絞り(開口)となるボディ伸び側オリフィス56が設けられる。第4オリフィスに相当するボディ伸び側オリフィス56は、ボディ伸び側バルブ13に設けてもよいし、シート側(バルブボディ12側)に設けてもよい。
なお、第3バルブとなるボディ伸び側バルブ13は、例えば、逆止弁(チェック弁)としての機能が主となり減衰力を殆ど生み出さないサクションバルブとして構成することができる。即ち、ボディ伸び側バルブ13は、ピストンロッド10の伸長行程でピストン5が上向きに摺動変位するときに開弁し、これ以外のときには閉弁する逆止弁として構成することができる。このような逆止弁となるボディ伸び側バルブ13は、リザーバ室A内の油液がボトム側油室Cに向けて油路12A内を流通するのを許し、これとは逆向きに油液が流れるのを阻止する。
バルブボディ12には、ボディ伸び側バルブ13とは別に、例えば1または複数のディスク(ディスクバルブ)により構成されるバルブ14が設けられている。即ち、バルブボディ12の下面側には、圧縮側の減衰バルブとなるバルブ14が設けられている。縮小側のバルブ14(以下、ボディ縮み側バルブ14という)は、ピストンロッド10の縮小行程でピストン5が下向きに摺動変位するときに、ボトム側油室Cからリザーバ室A側に向けて第4油路12B内を流通する油液に対し抵抗力を与える。
ボディ縮み側バルブ14は、第4通路としての第4油路12Bを開閉する第4バルブに相当する。後述の図16に示すように、第4油路12Bには、必要に応じて絞り(開口)となるボディ縮み側オリフィス57が設けられる。第2オリフィスに相当するボディ縮み側オリフィス57は、ボディ縮み側バルブ14に設けてもよいし、シート側(バルブボディ12側)に設けてもよい。
ところで、自動車は様々な路面状態の道路を任意の速度で走行する。このため、車体は、様々な路面からの入力を受ける。このような様々な走行条件下において、乗員に安定感を与える乗り心地を保つことが望まれる。ここで、一般的な油圧緩衝器では、主としてピストン速度に対する減衰力の大きさを縮み側と伸び側とで調整し、所望の乗り心地になるように近付けている。一般に、このような減衰力の調整は、比較的振幅が大きく低い周波数帯での特性に基づいて行われる。
しかし、油圧減衰力は周波数依存性を示す。このため、ピストン速度に対する減衰力の大きさを、縮み側と伸び側とで比較的振幅が大きく低い周波数帯での特性によって調整するのみでは、入力周波数が様々に変化する場合に、適切な減衰力を油圧緩衝器で発生させることができない可能性がある。例えば、減衰力を調整するのみでは、図18の(A)に示すような突っ張り感が出現する可能性がある。また、減衰力を調整するのみでは、図18の(B)に示すようなヒョコつきが出現する可能性がある。この結果、実際の走行時に、路面によっては良好な挙動が得られず、乗員が感じる安定性を損なうおそれがある。
上述のように、走行中の車体は、路面から様々な入力を受ける。また、路面の起伏の大小、凹凸の間隔等は、様々である。従って、ピストン速度に対する減衰力だけでなく、入力周波数に対する減衰力を適正化することが重要である。特に、様々な走行条件下で安定した乗り心地を得るためには、減衰力の周波数依存性を低減させることが望ましい。しかし、周波数依存性を低減させることは、作動油の圧縮性に起因する減衰力の遅れが発生する等、難しい。
これに対して、伸び側減衰力と縮み側減衰力とにそれぞれ周波数依存性が生じたとしても、これらの比が、入力周波数に対して変化しなければ、または、変化が小さければ、路面状態が変化しても、ばね上の上下動のバランスが大きく変わらない。即ち、図17に示すように、一貫してフラット感のある状態(理想状態)を得ることができ、走行時の違和感を低減させることができる。そこで、実施形態では、伸び側減衰力と縮み側減衰力の比(以下、「減衰力の伸び圧比」という)の周波数依存性を減らすことにより、上記の課題を解決する。
以下、減衰力の伸び圧比(=伸び側減衰力/縮み側減衰力)の周波数依存性が生じる要因およびその低減手法について、説明する。
一般的なバルブ積層によって減衰力を与える油圧緩衝器は、作動油が満たされた高圧側油室(高圧側チャンバ)と低圧側油室(低圧側チャンバ)とを備えている。そして、これら油室の間を作動油が移動する流路を設け、この流路面積によって差圧を調整し、所望の減衰力を得る。作動油が移動する流路は、概して2種類に分けられる。このうちの一方は、油室間の差圧を問わず、常に一定の面積で連通しているオリフィスである。もう一方は、積層されたディスクバルブによる弁体で構成されたバルブである。
バルブは、流路の上流側油室と下流側油室との間に生じる差圧が設定した大きさになるまで閉弁することにより、流路を閉塞する。そして、差圧が設定した大きさ以上となると、バルブが開弁し、上流側油室と下流側油室とが連通する。従って、油圧緩衝器がストロークする速度(ピストン速度)が低い状態では、上記差圧も低いため、バルブは閉弁し、オリフィスのみを作動油が通過する。この状態からさらにピストン速度が増加することで差圧が増加し、その差圧による荷重がバルブに予め与えられた閉弁荷重(プリセット)を上回るとバルブが開弁する。これ以降は、差圧が大きくなるに応じてバルブの開度も増加し、流路面積が拡大する。
ここで、バルブ閉弁時のオリフィスによる差圧が生じる領域を「オリフィス領域」と定義し、バルブが開弁している領域を「バルブ領域」と定義する。この場合、オリフィス領域とバルブ領域とでは、減衰力の周波数特性が異なっている。具体的には、図12に示すように、オリフィス領域では、流路面積が小さくかつ一定値であるため、差圧の増加に対して流量を得られづらく、流出入だけでなく作動油の体積変形に変換されやすいため、応答遅れが大きく周波数が増加するにつれて減衰力が低下する。これに対して、図13に示すように、バルブ領域では、応答遅れが緩和されやすく周波数による減衰力の変化がほとんど見られない。
一般に、自動車に用いられるダンパ(緩衝器)の減衰力特性は、伸び側と縮み側とで異なった特性を与える場合がほとんどである。このような特性を得るには、伸び側と縮み側とで異なったオリフィス面積とするほか、伸び側バルブと縮み側バルブに対し、それぞれの剛性およびプリセットによって異なった開弁圧、差圧に対するバルブ開口高さとする必要がある。そのため、伸び側と縮み側とのバルブの開弁特性、つまり、バルブが開弁するタイミングに差が生じることから、ピストン速度によっては伸び側と縮み側とのうち一方はオリフィス域でもう一方はバルブ域となる状態となり、先に示したオリフィス領域とバルブ領域の周波数特性の違いから減衰力の伸び圧比に周波数依存性が生じる。
例えば、図14は、縮み側に対して伸び側のバルブに著しく高い開弁圧が与えられている場合のピストン速度と減衰力との関係の例を示している。このようなケースでは、縮み側に対し伸び側はより高いピストン速度までオリフィス領域の特性となり、当該領域の伸び側減衰力は周波数増加に伴い低下する。一方で、縮み側は伸び側に対してより低いピストン速度でバルブ領域へ移行することから、周波数に対する減衰力の低下量は小さい。
このような特性の違いから減衰力の伸び圧比(伸び縮み比)に対して周波数依存性が生じる。図15は、図14と同様の場合、即ち、縮み側に対して伸び側のバルブに著しく高い開弁圧が与えられている場合の減衰力の伸び圧比(伸び側減衰力/縮み側減衰力)と周波数との関係の例を示している。この場合、図15中の特性線101は、図14中の「ピストン速度a」における周波数に対する減衰力の伸び圧比の変化を示している。同様に、図15中の特性線102は、図14中の「ピストン速度b」における周波数に対する減衰力の伸び圧比の変化を示しており、特性線103は、図14中の「ピストン速度c」における周波数に対する減衰力の伸び圧比の変化を示している。
図15に示すように、例えば、「ピストン速度b」のときは、「ピストン速度a」および「ピストン速度c」のときと比較して、周波数に対する減衰力の伸び圧比の変化が大きくなっている。このような場合、前述したように、乗員が感じる安定感の低下を招く。従って、伸び側と縮み側とのそれぞれのバルブの開弁タイミングを近付けることで、伸び圧比の周波数依存性を低減させることが可能である。
しかしながら、一般的なディスクバルブの積層手法では、伸び側と縮み側とのバルブの開弁タイミングを近付けるために、高減衰側(今回の例では伸び側)の開弁タイミングを低速化しようとすると、高減衰側のバルブの剛性を低下させ開弁圧を下げる必要があり、開弁後の減衰力が低下してばね上共振の抑制など本来必要とする中高速域の減衰力が不足する恐れがある。
そこで、実施形態では、伸び側と縮み側とのうち開弁圧の高い方のバルブには、開弁圧が低い方のバルブが開弁するピストン速度に合わせる開弁促進機構(サブバルブ)を設ける。この開弁促進機構によって、一般的なディスクバルブの積層手法と比較してバルブの開弁タイミングを低速化しながら、開弁圧の低下を抑制することができる。そのため、バルブの開弁タイミングを低速化し、開弁圧が小さい方のバルブの開弁タイミングに合わせることで、減衰力の伸び圧比の周波数依存性を低減しながら、減衰力の低下を抑制すること可能である。
即ち、実施形態では、開弁促進機構(サブバルブ)を設けることにより、伸び側と縮み側とのうち開弁圧が大きいバルブの開弁圧を維持しながら開弁タイミングを低速側にシフトすることができるため、(開弁圧が大きい方の)減衰力の調整自由度を確保した上で、伸び側と縮み側の開弁タイミングを合わせることができ、減衰力の伸び圧比の周波数依存性を低減することができる。この結果、従来技術と比較して、路面状態の変化に対してよりロバスト性の高い、乗員に対して安定感を与える乗り心地を実現できる。以下、これらを実現する構成について、詳しく説明する。
最初に、ダンパ(緩衝器)の構造別に開弁促進機構を設ける対象となるバルブを定義する。
図16の(A)は、単筒式の緩衝器であるモノチューブダンパ51の油圧回路を示している。図16の(A)に示すように、モノチューブダンパ51は、ピストン5に設けられた2つのバルブ6,7で減衰力を発生させる。即ち、モノチューブダンパ51は、ピストン5に、ピストン縮み側バルブ7(ピストン縮みバルブ)およびピストン伸び側バルブ6(ピストン伸びバルブ)が設けられている。この場合、必要に応じて、ピストン上室となるロッド側油室Bとピストン下室となるボトム側油室Cとの間には、ピストン伸び側オリフィス52(ピストン伸びオリフィス)および/またはピストン縮み側オリフィス53(ピストン縮みオリフィス)が設けられる。このようなモノチューブダンパ51の場合、開弁促進機構は、ピストン5の2つのバルブ6,7のうちバルブ開弁圧力がより高いバルブ(例えば、ピストン伸び側バルブ6)に設けることができる。
図16の(B)は、複筒式の緩衝器であるツインチューブダンパ54の油圧回路を示している。実施形態の緩衝器1は、ツインチューブダンパ54に対応する。図16の(B)に示すように、ツインチューブダンパ54は、ピストン5側とボディ55側とに4つのバルブ6,7,13,14を備えている。即ち、ツインチューブダンパ54は、ピストン5側に、縮み側減衰力に寄与するピストン縮み側バルブ7(ピストン縮みバルブ)、および、伸び側減衰力に寄与するピストン伸び側バルブ6(ピストン伸びバルブ)が設けられている。この場合、必要に応じて、ピストン上室となるロッド側油室Bとピストン下室となるボトム側油室Cとの間には、ピストン伸び側オリフィス52(ピストン伸びオリフィス)および/またはピストン縮み側オリフィス53(ピストン縮みオリフィス)が設けられる。
また、ツインチューブダンパ54は、ボディ55(バルブボディ12)側に、伸び側減衰力に寄与するボディ伸び側バルブ13(ボディ伸びバルブ)、および、縮み側減衰に寄与するボディ縮み側バルブ14(ボディ縮みバルブ)が設けられている。この場合、必要に応じて、ピストン下室となるボトム側油室Cとリザーバ室Aとの間には、ボディ伸び側オリフィス56(ボディ伸びオリフィス)および/またはボディ縮み側オリフィス57(ボディ縮みオリフィス)が設けられる。
ここで、減衰力の伸び圧比の周波数依存性を低減させようとする場合、すべてのバルブで開弁するタイミング(ピストン速度)を一致させればよい。しかし、それぞれのバルブは、剛性(バルブ剛性)が大きく異なるため、現実的ではない。そこで、主として減衰力の発生に寄与しているバルブの開弁タイミングを一致させることで、減衰力の伸び圧比の低減を効率的に図る。このために、チェック弁としての機能が主で減衰力を殆ど生み出さないサクションバルブとなるボディ伸び側バルブ13については、減衰力特性に対する寄与が小さいため無視し、残り3つのバルブ6,7,14の開弁タイミングを以下のような考え方で調整する。
まず、減衰力の周波数依存性は、オリフィス領域における応答性の低下に起因する。このため、バルブの開弁圧力が高く、オリフィス領域がより高いピストン速度まで持続するバルブにおいて、周波数依存性が顕著になる。従って、3つのバルブ6,7,14の中で最も開弁圧力の高いバルブに対して、開弁促進機構を設け、バルブ開弁圧力が小さな剛性の低いバルブの開弁タイミングに近付ける。具体的には、縮み側減衰力に寄与するピストン縮み側バルブ7とボディ縮み側バルブ14と、伸び側減衰力に寄与するピストン伸び側バルブ6のバルブ開弁圧力を比較する。
例えば、縮み側減衰力より伸び側減衰力が大きい場合、即ち、ピストン伸び側バルブ6のバルブ開弁圧力が最も大きい場合は、ピストン伸び側バルブ6に開弁促進機構を設ける。これにより、ピストン伸び側バルブ6の開弁タイミングを、縮み側減衰力に寄与するピストン縮み側バルブ7とボディ縮み側バルブ14のうちバルブ開弁圧力が小さい方のバルブ(原則的には、圧力バランスの関係からピストン縮み側バルブ7となる)の開弁タイミングに近付ける。次に、伸び側減衰力より縮み側減衰力が大きい場合、即ち、ボディ縮み側バルブ14のバルブ開弁圧力が最も大きい場合、ボディ縮み側バルブ14に開弁促進機構を設ける。これにより、ボディ縮み側バルブ14の開弁タイミングを、ピストン伸び側バルブ6の開弁タイミングに近付ける。
次に、第1の実施形態の開弁促進機構21について、図1に加えて図2ないし図4も参照しつつ説明する。第1の実施形態では、ピストン伸び側バルブ6に開弁促進機構21が設けられている。
ピストン伸び側バルブ6は、低速バルブ22と、メインバルブとしての2段目バルブ24とを備えている。開弁促進機構21は、低速バルブ22により構成されている。低速バルブ22は、低速開弁バルブに対応する低速ディスク22Aと、小径バルブに対応する小径ディスク22Bと、を備えている。低速ディスク22Aは、ピストン5の第1油路5Aの開口に設けられたシート部5Cに接触している。低速ディスク22Aは、内側に挿通孔が設けられた環状板として形成されている。低速バルブ22を構成する低速ディスク22Aは、シート部5Cのシート受圧面5C1に離着座する。図4に示すように、シート部5Cは、円環ではなく異径のシート形状となっている。なお、図示は省略するが、シート部5Cには、必要に応じてオリフィスとなる凹部(隙間)をコイニング(印圧加工、プレス加工)により設けることができる。
低速ディスク22Aの背面側(下面側)には、外径寸法がピストン5のシート部5Cの外径寸法よりも小さな小径ディスク22Bが配置されている。小径ディスク22Bは、外径寸法が低速ディスク22Aよりも小さい。小径ディスク22Bも、内側に挿通孔が設けられた環状板として形成されている。小径ディスク22Bの背面(下面)には、2段目バルブ24が配置されている。2段目バルブ24は、外径寸法が低速バルブ22の低速ディスク22Aと同径である。2段目バルブ24は、それぞれが環状板として形成された3枚のディスク24A,24B,24Cを積層することにより構成されている。2段目バルブ24の背面には、リテーナ25およびワッシャ26が配置されている。そして、低速バルブ22(低速ディスク22A、小径ディスク22B)、2段目バルブ24(ディスク24A,24B,24C)、リテーナ25およびワッシャ26は、ナット11によってピストンロッド10に締結されている。
このように、第1の実施形態では、低速ディスク22Aと2段目バルブ24との間に小径ディスク22Bを配置している。これにより、低速ディスク22Aと2段目バルブ24との間には、小径ディスク22Bによって隙間27が設けられている。このため、この隙間27によって、低速バルブ22(低速ディスク22A)の開弁初期の剛性を低下させることができる。即ち、隙間27によって、低速バルブ22(低速ディスク22A)の開弁をより低いピストン速度から促すことができる。
この結果、ピストン伸び側バルブ6は、開弁初期のピストン速度が低い領域では、低速バルブ22(低速ディスク22A)のみが弁体として機能するため、バルブ剛性を低くできる。また、低速バルブ22(低速ディスク22A)が2段目バルブ24に接触する中高速域では2段目バルブ24も弁体となるため、バルブ剛性が高くなる。このような非線形なバルブ剛性の特性とすることが本構成の特徴である。低速バルブ22の剛性は、主に低速ディスク22Aの板厚寸法と小径ディスク22Bの外径寸法とで決定される。このため、ピストン伸び側バルブ6の開弁タイミング(即ち、低速バルブ22の開弁タイミング)が所望のタイミングとなるように、2つのパラメータ(即ち、低速ディスク22Aの板厚寸法、小径ディスク22Bの外径寸法)を調整する。
低速バルブ22(低速ディスク22A)と2段目バルブ24との間の隙間27の大きさは、低速バルブ22(低速ディスク22A)が2段目バルブ24に接触するタイミング(ピストン速度)を支配している。このため、隙間27の大きさ(低速ディスク22Aと2段目バルブ24との間隔)により、低速バルブ22(低速ディスク22A)が有効となる範囲を決定している。
従って、中高速域の減衰力に影響を与える。また、中高速域の減衰力を支配する要素としては、2段目バルブ24の剛性がある。このため、所望の減衰力が得られるように、2段目バルブ24の剛性を調整する。2段目バルブ24は、ピストン伸び側バルブ6に初期たわみを与えるような構造としてもよい。また、2段目バルブ24は、外径を途中で変化させてもよい。即ち、2段目バルブ24を構成するディスク24A,24B,24Cは、外径が異なってもよい。
いずれにしても、第1の実施形態では、ピストン伸び側バルブ6に開弁促進機構21となる低速バルブ22(低速ディスク22Aおよび小径ディスク22B)が設けられている。開弁促進機構21は、ピストン伸び側バルブ6によって生じる減衰力の周波数特性とピストン縮み側バルブ7によって生じる減衰力の周波数特性とを合わせて減衰力の伸び圧比の周波数依存性を小さくする。開弁促進機構21(低速バルブ22)は、ピストン伸び側バルブ6の減衰力の周波数特性をピストン縮み側バルブ7の減衰力の周波数特性に合せる。この場合、低速バルブ22(低速ディスク22A)は、ピストン縮み側バルブ7が開弁するピストン速度よりも低いピストン速度で開弁する。これにより、ピストン伸び側バルブ6は、ピストン縮み側バルブ7と比して、ピストン速度が低いときに開弁する。好ましくは、ピストン縮み側バルブ7とピストン伸び側バルブ6が同時になるよう調整する。
図5は、第1の実施形態の緩衝器1のピストン速度と減衰力との関係、即ち、ピストン伸び側バルブ6に開弁促進機構21が設けられた緩衝器1の低周波におけるピストン速度に対する減衰力の特性を示している。図6は、減衰力の伸び圧比と周波数との関係、即ち、図5中の3つの異なる「ピストン速度a」、「ピストン速度b」、「ピストン速度c」における周波数に対する減衰力の伸び圧比の変化を示している。この場合、図6中の特性線31は、図5中の「ピストン速度a」における周波数に対する減衰力の伸び圧比の変化を示している。同様に、図6中の特性線32は、図5中の「ピストン速度b」における周波数に対する減衰力の伸び圧比の変化を示しており、特性線33は、図5中の「ピストン速度c」における周波数に対する減衰力の伸び圧比の変化を示している。図6と前述の図15とを比較すると明らかなように、開弁促進機構21を設けることにより、周波数に対する減衰力の伸び圧比の変化を大幅に減少させることができる。この結果、開弁促進機構21(低速バルブ22)を設けていない構成と比較して、路面状態の変化に対してよりロバスト性の高い、乗員に対して安定感を与える乗り心地を実現できる。
以上のように、第1の実施形態の緩衝器1は、内筒4と、ピストン5と、第1通路としての第1油路5Aと、第1バルブとしてのピストン伸び側バルブ6と、第2通路としての第2油路5Bと、第2バルブとしてのピストン縮み側バルブ7と、を備えている。また、緩衝器1は、外筒2と、バルブボディ12と、を備えている。さらに、緩衝器1は、ピストン5の第1油路5Aに設けられる第1オリフィスとしてのピストン伸び側オリフィス52(図16参照)と、第3通路としての第3油路12Aと、第3バルブとしてのボディ伸び側バルブ13と、第4通路としての第4油路12Bと、ボディ縮み側バルブ14と、バルブボディ12の第4油路12Bに設けられる第2オリフィスとしてのボディ縮み側オリフィス57(図16参照)と、を有している。
この上で、ピストン伸び側バルブ6とピストン縮み側バルブ7(または、ボディ縮み側バルブ14)のうち、減衰力の周波数依存性が大きい方のバルブ(例えば、ピストン伸び側バルブ6)の周波数特性を、減衰力の周波数依存性が小さい方のバルブ(例えば、ピストン縮み側バルブ7)の周波数特性に合わせるよう構成している。このために、ピストン伸び側バルブ6とピストン縮み側バルブ7のうち、開弁圧が高いほうのバルブ(例えば、ピストン伸び側バルブ6)には、開弁圧が低いほうのバルブ(例えば、ピストン縮み側バルブ7)の開弁タイミングとあわせる開弁促進機構21を設けている。また、ピストン伸び側バルブ6とボディ縮み側バルブ14のうち、開弁圧が高いほうのバルブ(例えば、ピストン伸び側バルブ6)には、開弁圧が低いバルブ(例えば、ピストン縮み側バルブ7)の開弁タイミングとあわせる開弁促進機構21を設けている。
この場合、ピストン伸び側バルブ6とピストン縮み側バルブ7のうち、開弁圧が高いほうのバルブ(例えば、ピストン伸び側バルブ6)は、開弁圧が低いほうのバルブ(例えば、ピストン縮み側バルブ7)と比して、ピストン速度が低いときに開弁する。また、ピストン伸び側バルブ6とボディ縮み側バルブ14のうち、開弁圧が高いほうのバルブ(例えば、ピストン伸び側バルブ6)は、開弁圧が低いほうのバルブ(例えば、ボディ縮み側バルブ14)と比して、ピストン速度が低いときに開弁する。即ち、開弁促進機構21は、開弁圧の低いほうのバルブ(例えば、ピストン縮み側バルブ7および/またはボディ縮み側バルブ14)と比較してピストン速度が低いときに、開弁圧の高いほうのバルブ(例えば、ピストン伸び側バルブ6)を開弁させる。
開弁促進機構21は、例えば、低速バルブ22(低速ディスク22Aおよび小径ディスク22B)により構成されている。即ち、ピストン伸び側バルブ6とピストン縮み側バルブ7のうち、開弁圧が高いほうのバルブ(例えば、ピストン伸び側バルブ6)には、開弁圧が低いほうのバルブ(例えば、ピストン縮み側バルブ7および/またはボディ縮み側バルブ14)に比して付勢力(変形抵抗力、抗変形力、閉弁力、バルブを閉に維持する力)が小さい低速バルブ22が設けられている。例えば、低速バルブ22をピストン伸び側バルブ6に設ける場合、低速バルブ22は、第1油路5Aをピストン速度が低いときに開弁する。例えば、低速バルブ22をピストン縮み側バルブ7に設ける場合、低速バルブ22は、第2油路5Bをピストン速度が低いときに開弁する。図2および図3に示すように、低速バルブ22とこの低速バルブ22に積層されるバルブ(即ち、2段目バルブ24)との間には、隙間27が形成されている。
第1の実施形態による緩衝器1は、上述の如き構成を有するもので、次に、その作動について説明する。
緩衝器1は、例えば、ピストンロッド10の先端側(上端側)が車両(自動車)の車体側に取付けられ、外筒2の基端側(下端側)となるボトムキャップ3側が車両の車輪側(車軸側)に取付けられる。これにより、車両の走行時に振動が発生したときに、ピストンロッド10を伸長、縮小させつつ、ピストン5のバルブ6,7等によって減衰力を発生させ、このときの振動を減衰する。
即ち、ピストンロッド10が縮小行程にある場合には、ロッド側油室Bよりもボトム側油室C内が高圧状態になる。そして、ボトム側油室C内の油液(圧油)は、ピストン5の第2油路5B、ピストン縮み側バルブ7を介してロッド側油室B内へと流通し、減衰力を発生する。このとき、内筒4内へのピストンロッド10の進入体積分に相当する分量の油液が、ボトム側油室Cからバルブボディ12の第4油路12B、ボディ縮み側バルブ14を介してリザーバ室A内へと流入する。リザーバ室A内では、内部に封入されたガスが圧縮され、ピストンロッド10の進入体積分が吸収される。
一方、ピストンロッド10が伸長行程にある場合には、ボトム側油室Cよりもロッド側油室B内が高圧状態となる。そして、ロッド側油室B内の油液(圧油)は、ピストン5の第1油路5A、ピストン伸び側バルブ6を介してボトム側油室C内へと流通し、減衰力が発生する。このとき、内筒4から進出(退出)したピストンロッド10の進出体積分(退出体積分)に相当する分量の油液が、リザーバ室A内からバルブボディ12の第3油路12A、ボディ伸び側バルブ13(逆止弁)を介してボトム側油室C内に流入する。
ここで、第1の実施形態によれば、ピストン伸び側バルブ6とピストン縮み側バルブ7のうち、開弁圧が高いほうのバルブとなる2段目バルブ24を有するピストン伸び側バルブ6には、開弁圧が低いほうのバルブとなるピストン縮み側バルブ7の開弁タイミングとあわせる開弁促進機構21が設けられている。このため、例えば、(開弁促進機構21が設けられていない従来の構成と比較して)ピストン伸び側バルブ6の低速バルブ22が低いピストン速度で開弁しながら、2段目バルブ24によってさらにピストン速度が高くなった状態での剛性を高くすることができる。これにより、減衰力の伸び圧比の周波数依存性を低減した上で、伸び側の中高速域の減衰力を確保することができる。このため、従来技術(開弁促進機構21が設けられていない構成)と比較して、路面状態の変化に対してよりロバスト性が高く、乗員に対して安定感を与える乗り心地を実現できる。即ち、路面を問わずに車両のばね上が安定する減衰力特性を得ることができ、乗員が違和感なく車両に乗り続けることができる。
第1の実施形態によれば、ピストン伸び側バルブ6は、減衰力の周波数依存性がピストン縮み側バルブ7相当になるよう構成されている。即ち、減衰力の周波数依存性が大きい方のバルブとなるピストン伸び側バルブ6を減衰力の周波数依存性が小さい方のバルブとなるピストン縮み側バルブ7に合わせるよう構成している。このため、減衰力の伸び圧比の周波数依存性を低減することができる。これにより、路面状態の変化に対してよりロバスト性が高く、乗員に対して安定感を与える乗り心地を実現できる。即ち、路面を問わずに車両のばね上が安定する減衰力特性を得ることができ、乗員が違和感なく車両に乗り続けることができる。
第1の実施形態によれば、開弁圧の高いほうのバルブとなるピストン伸び側バルブ6は、開弁圧の低いほうのバルブとなるピストン縮み側バルブ7に比して、ピストン速度が低いときに開弁する。このため、ピストン伸び側バルブ6が低いピストン速度で開弁しながら、中高速域でのバルブ剛性を高くして大きな差圧を得ることができるため、ピストン伸び側バルブ6の減衰力の低下を抑制した上で、ピストン伸び側バルブ6が低いピストン速度で開弁することにより、減衰力の伸び圧比の周波数依存性を低減することができる。
第1の実施形態によれば、ピストン伸び側バルブ6には、ピストン縮み側バルブ7に比して付勢力が小さく、第1油路5Aをピストン速度が低いときに開弁する低速バルブ22が設けられている。このため、ピストン伸び側バルブ6の開弁初期の特性と中高速域の剛性とを独立して調整できるため、減衰力の伸び圧比の周波数依存性を低減した上で、伸び側減衰力の調整自由度を確保することができる。
第1の実施形態によれば、低速バルブ22(低速ディスク22A)と2段目バルブ24との間には、隙間27が形成されている。このため、低速バルブ22(低速ディスク22A)は、隙間27側に変位(変形)し易くなる。これにより、低速バルブ22をピストン速度が低いときに開弁させることができる。
第1の実施形態によれば、ピストン伸び側バルブ6とボディ縮み側バルブ14のうち、開弁圧が高いほうのバルブとなるピストン伸び側バルブ6には、開弁圧が低いバルブとなるピストン縮み側バルブ7の開弁タイミングとあわせる開弁促進機構21が設けられている。このため、ピストン伸び側バルブ6が低いピストン速度で開弁しながら中高速域の剛性を高くすることができる。これにより、減衰力の伸び圧比の周波数依存性を低減した上で、伸び側の中高速域の減衰力を確保することができる。このため、従来技術(開弁促進機構21が設けられていない構成)と比較して、路面状態の変化に対してよりロバスト性が高く、乗員に対して安定感を与える乗り心地を実現できる。即ち、路面を問わずに車両のばね上が安定する減衰力特性を得ることができ、乗員が違和感なく車両に乗り続けることができる。
なお、第1の実施形態の低速バルブ22は、小径ディスク22Bの板厚によって低速ディスク22Aと2段目バルブ24との間の隙間27の大きさが決定される。そして、小径ディスク22Bと2段目バルブ24との間の隙間27を小さくすることで、ピストン伸び側バルブ6は、より早いタイミング(ピストン速度)からバルブ剛性が高い領域に移行し、大きな減衰力が発生させることが可能である。しかしながら、小径ディスク22Bの板厚は、量産性や強度の観点から一定以上薄くすることが困難であり、減衰力発生の自由度の制約となる可能性がある。
そこで、図7に示す変形例では、低速バルブ41は、小径ディスク22Bと2段目バルブ24との間に、内径側と外径側とで隙間27の間隔を異ならせる隙間調整ディスク42を設けている。そして、隙間調整ディスク42により、隙間27の大きさを、内径部側で大きく、外径部側で小さくしている。即ち、変形例では、低速バルブ41は、第5バルブ(隙間調整バルブ)としての隙間調整ディスク42と、小径ディスク22Bと、を備えている。隙間調整ディスク42は、ピストン伸び側バルブ6の低速ディスク22Aに向けて突出し、他の部分よりも軸方向幅が大きくなる突出部42Aを有している。小径ディスク22Bは、ピストン伸び側バルブ6の低速ディスク22Aと隙間調整ディスク42との間に設けられている。小径ディスク22Bは、低速ディスク22Aおよび隙間調整ディスク42よりも小径である。
このように、変形例では、小径ディスク22Bと2段目バルブ24との間に、径方向外側の厚さが変化した隙間調整ディスク42を設けている。これにより、小径ディスク22Bの板厚を厚くしても、低速ディスク22Aと2段目バルブ24との間の隙間27を小さく設定することができる。このため、小径ディスク22Bの板厚を量産性・強度を確保できる厚さに設定しつつ、減衰力の発生の自由度を向上できる。
即ち、変形例の低速バルブ41は、低速ディスク22Aと小径ディスク22Bとに加えて、隙間調整ディスク42を備えている。そして、隙間調整ディスク42は、低速ディスク22Aに向けて突出する突出部42Aを有している。このため、小径ディスク22Bの板厚を大きくしつつ、ピストン伸び側バルブ6の低速ディスク22Aと隙間調整ディスク42(突出部42A)との間の隙間27を小さくすることができる。これにより、「小径ディスク22Bの量産性および強度を確保すること」と「ピストン伸び側バルブ6の減衰力の調整の自由度を確保すること」とを両立できる。
なお、変形例では、隙間調整ディスク42に突出部42Aを設ける構成とした場合を例に挙げて説明した。しかし、これに限らず、隙間調整ディスクは、例えば、内径部と外径部とで板厚を異ならせてもよい。即ち、隙間調整ディスクは、外径部の板厚を内径部の板厚よりも大きくてもよい。また、突出部は、プレス加工によりディスクと一体に形成してもよいし、突出部に対応する部分にディスクとは別部材を溶接で溶着させることによりディスクと一体に形成してもよい。
次に、図8ないし図11は、第2の実施形態を示している。第2の実施形態の特徴は、低速バルブが離着座する第1シート部とメインバルブ(2段目バルブ)が離着座する第2シート部とを設ける構成としたことにある。なお、第2の実施形態では、上述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略する。
第2の実施形態では、ピストン伸び側バルブ6は、低速バルブ61と、メインバルブとしての2段目バルブ62と、を備えている。開弁促進機構21は、低速バルブ61により構成されている。即ち、ピストン伸び側バルブ6は、バルブ剛性が低く低速から開弁する低速域の減衰力に寄与する低速バルブ61と、低速バルブ61と比較して剛性の高い中高速域の減衰力に寄与する2段目バルブ62と、により構成されている。低速バルブ61と2段目バルブ62は、油圧回路において直列に配置されている。
低速バルブ61は、2枚の低速ディスク61A,61Bと、リテーナ61Cと、により構成されている。2段目バルブ62は、4枚のディスク62A,62B,62C,62Dにより構成されている。リテーナ61Cは、背面側(下面側)に配置された低速ディスク61Bと2段目バルブ62のディスク62Aとの間に設けられている。第2の実施形態では、低速バルブ61と2段目バルブ62とで離着座するシート部63,64が異なっている。即ち、ピストン5には、低速バルブ61が離着座する第1シート部としての内側シート部63と、内側シート部63の径方向外側に位置して2段目バルブ62が離着座する第2シート部としての外側シート部64と、が設けられている。低速バルブ61が接触する内側シート部63は、2段目バルブ62が接触する外側シート部64の内径側に配置されている。内側シート部63および外側シート部64は、いずれも環状のシート形状となっている。
低速バルブ61は、より低速域からピストン伸び側バルブ6が開弁すること目的として設けられている。このため、「低速バルブ61が離着座する内側シート部63のシート面63A」と「低速バルブ61の内径側が当接する支持部65の支持面65A」との高さ、即ち、シート面63Aと支持面65Aとの段差(高さの差)は、製造上のバラつきが許容する限り小さい方が望ましい。また、低速バルブ61の内径側が当接する支持面65Aは、2段目バルブ62の内径側が支持される部位としても共用される。即ち、支持面65Aには、先に低速バルブ61が積層されてから、この低速バルブ61の背面側に、2段目バルブ62が配置される。このため、支持面65Aと外側シート部64のシート面64Aとの間には、高さの差である段差Hが設けられている。
さらに、2段目バルブ62は、プリセット(予圧、プリセット荷重)を付与する場合もある。この場合は、支持面65Aと外側シート部64のシート面64Aとの段差Hの大きさを、低速バルブ61(2枚の低速ディスク61A,61Bおよびリテーナ61C)の厚さ以上に設定する。低速バルブ61を構成する2枚の低速ディスク61A,61Bのうち内側シート部63と接触する低速ディスク61Aは、外周縁に一対の切欠き61A1が設けられたスリットディスクとしている。切欠き61A1は、第1オリフィス(ピストン伸び側オリフィス)に対応する。低速バルブ61は、低速域の特性に寄与する。
なお、車両要件によってはスリットディスク(低速ディスク61A)を設けなくてもよい。また、図示は省略するが、リテーナ61Cの背面(下面)には、例えば、低速バルブ61(低速ディスク61A,61B)のリフト量の規制を目的として、低速バルブ61(低速ディスク61A,61B)と同径のディスク、または、内径部と外径部の板厚が異なるバルブ(例えば、図7の隙間調整ディスク42)を配置してもよい。
ピストン伸び側バルブ6の低速域の減衰力としては、低速バルブ61によって生じる減衰力の寄与度を高めたい。このために、2段目バルブ62を構成する4枚のディスク62A,62B,62C,62Dのうち外側シート部64と接触するディスク62Aは、外周縁に一対の切欠き62A1が設けられたスリットディスクとしている。この場合、2段目バルブ62は、ディスク62A(スリットディスク)によって十分なオリフィス面積を確保することで、低速域での減衰力の発生寄与度を下げる。
2段目バルブ62は、ピストン伸び側バルブ6の中高速域の減衰力を生み出す役割がある。このため、2段目バルブ62は、ディスク62A,62B,62C,62Dの積層枚数、板厚、背面側のリテーナ25の径寸法等のパラメータにより、剛性を調整する。また、2段目バルブ62にセット段差を与えてプリロードを付与することで、所望の特性が得られるように調整してもよい。なお、低速バルブ61が離着座する内側シート部63は、円環状のシート形状に限らず、得たい低速域の特性によっては異径のシート形状としてもよい。
第2の実施形態は、上述の如き低速バルブ61および2段目バルブ62を備えたもので、その基本的作用については、上述した第1の実施形態によるものと格別差異はない。即ち、第2の実施形態も、第1の実施形態と同様に、路面を問わずに車両のばね上が安定する減衰力特性を得ることができる。図10は、第2の実施形態によるピストン速度に対する減衰力の特性を示している。図11は、図10中の3つの異なる3つのピストン速度(ピストン速度a、ピストン速度b、ピストン速度c)における周波数に対する減衰力の伸び圧比の変化を示している。図11と前述の図15とを比較すると明らかなように、開弁促進機構21を設けることにより、周波数に対する減衰力の伸び圧比の変化を大幅に減少させることができる。この結果、開弁促進機構21(低速バルブ61)を設けていない構成と比較して、路面状態の変化に対してよりロバスト性の高い、乗員に対して安定感を与える乗り心地を実現できる。
なお、前述の図5および上述の図10に示すような「減衰力-ピストン速度線図」からは、バルブの開弁点を厳密に判断することはできない。即ち、「減衰力-ピストン速度線図」上で、伸び側の減衰力の折れ点と縮み側の減衰力の折れ点とが一致しているように見えても、バルブの開弁タイミングが一致しているとは限らない。例えば、第1の実施形態の開弁促進機構21では、バルブ剛性を非線形にして低速域のみのバルブ剛性を低下させ、中高速域では剛性が上がる特性のため、減衰力-ピストン速度線図上では明確なバルブ開弁ポイントが現れない。また、第2の実施形態のように、低速バルブ61と2段目バルブ62とが直列に配置されるような構成の場合は、開弁圧力の高い2段目バルブ62の開弁ポイントが線図上に現れるが、低速バルブ61の開弁ポイントは、明確に現れない。従って、「減衰力-ピストン速度線図」でバルブの開弁ポイントを判断するのは困難であり、バルブの開弁ポイントを判定するには、オリフィス、バルブ受圧面積、バルブ剛性から計算で割り出すか、各ピストン速度における周波数特性を計測によってバルブ開弁ポイントを割り出す必要がある。即ち、バルブの開弁タイミング(ピストン速度)は、バルブの上下流間に作用する差圧、バルブ剛性、セット荷重、受圧面積およびバルブシート形状によって決まるため、「減衰力-ピストン速度線図」からではなく、計算によって判定する必要がある。
第1の実施形態では、ピストン伸び側バルブ6を第1バルブとし、ピストン縮み側バルブ7を第2バルブとした場合を例に挙げて説明した。しかし、これに限らず、例えば、ピストン伸び側バルブを第2バルブとし、ピストン縮み側バルブを第1バルブとしてもよい。このことは、第2の実施形態および変形例についても同様である。
第1の実施形態では、ボディ伸び側バルブ13を第3バルブとし、ボディ縮み側バルブ14を第4バルブとした場合を例に挙げて説明した。しかし、これに限らず、例えば、ボディ伸び側バルブを第4バルブとし、ボディ縮み側バルブを第3バルブとしてもよい。このことは、第2の実施形態および変形例についても同様である。
第1の実施形態では、ピストンロッド10の伸長行程ではピストン5の下側のピストン伸び側バルブ6が油液(作動流体)に対し抵抗力を与えて減衰力を発生させ、ピストンロッド10の縮小行程ではピストン5の上側のピストン縮み側バルブ7が油液(作動流体)に対し抵抗力を与えて減衰力を発生させる構成とした場合を例に挙げて説明した。しかし、これに限らず、例えば、ピストンの上側のピストン伸び側バルブを逆止弁とし、バルブボディに設けた第4バルブとしてのボディ縮み側バルブでピストンロッドの縮小行程で減衰力を発生させる構成としてもよい。このことは、第2の実施形態および変形例についても同様である。
第1の実施形態では、ピストン伸び側バルブ6とボディ縮み側バルブ14のうち、開弁圧が高いほうのバルブとなるピストン伸び側バルブ6には、開弁圧が低いバルブとなるピストン縮み側バルブ7の開弁タイミングとあわせる開弁促進機構21を設ける構成とした場合を例に挙げて説明した。しかし、これに限らず、例えば、ピストン伸び側バルブとボディ縮み側バルブのうち、開弁圧が高いほうのバルブがボディ縮み側バルブの場合には、ボディ縮み側バルブに、開弁圧が低いバルブとなるピストン伸び側バルブの開弁タイミングとあわせる開弁促進機構を設けてもよい。このことは、第2の実施形態および変形例についても同様である。
第1の実施形態では、外筒2と内筒4とからなる複筒式の緩衝器1を例に挙げて説明した。しかし、これに限らず、例えば、単筒式の筒部材(シリンダ)からなる緩衝器に適用してもよい。この場合、ピストンに設けられる第1バルブと第2バルブのうち、剛性が高いほうのバルブに開弁促進機構を設けることができる。このことは、第2の実施形態および変形例についても同様である。
また、各実施形態および変形例では、緩衝器の代表例として自動車に取付ける緩衝器を例に挙げて説明した。しかし、これに限らず、例えば、鉄道車両に取付ける緩衝器に適用してもよい。また、自動車、鉄道車両等の車両に限らず、振動源となる種々の機械、構造物、建築物等に用いる各種の緩衝器に適用することができる。
さらに、各実施形態および変形例は例示であり、異なる実施形態および変形例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。
以上説明した実施形態および/または変形例(以下、単に「実施形態」という)によれば、第1バルブと第2バルブのうち、開弁圧が高いほうのバルブには、開弁圧が低いほうの開弁タイミングとあわせる開弁促進機構が設けられている。このため、開弁圧が高いほうのバルブが、より低いピストン速度で開弁しながら中高速域の剛性を高くすることができる。これにより、減衰力の伸び圧比の周波数依存性を低減した上で、開弁圧が高いほうのバルブの中高速域の減衰力を確保することができる。このため、開弁促進機構が設けられていない構成と比較して、路面状態の変化に対してよりロバスト性が高く、乗員に対して安定感を与える乗り心地を実現できる。即ち、路面を問わずに車両のばね上が安定する減衰力特性を得ることができ、乗員が違和感なく車両に乗り続けることができる。
実施形態によれば、第1バルブと第2バルブのうち、減衰力の周波数依存性が大きい方のバルブの周波数特性を減衰力の周波数依存性が小さい方のバルブの周波数特性に合わせるように構成されている。このため、減衰力の伸び圧比の周波数依存性を低減することができる。これにより、路面状態の変化に対してよりロバスト性が高く、乗員に対して安定感を与える乗り心地を実現できる。即ち、路面を問わずに車両のばね上が安定する減衰力特性を得ることができ、乗員が違和感なく車両に乗り続けることができる。
実施形態によれば、第1バルブと第2バルブのうち、開弁圧の高いほうのバルブは、開弁圧の低いほうのバルブと比して、ピストン速度が低いときに開弁する。このため、開弁圧が高いほうのバルブが、より低いピストン速度で開弁しながら中高速域の剛性を高くすることができる。これにより、減衰力の伸び圧比の周波数依存性を低減した上で、開弁圧が高いほうのバルブの中高速域の減衰力を確保することができる。
実施形態によれば、第1バルブと第2バルブのうち、開弁圧が高いほうのバルブには、開弁圧が低いほうのバルブに比して付勢力が小さく、第1通路、または第2通路をピストン速度が低いときに開弁する低速バルブが設けられている。このため、開弁圧が高いほうのバルブが、より低いピストン速度で開弁しながら中高速域の剛性を高くすることができる。これにより、開弁圧が高いほうのバルブの中高速域の減衰力の自由度を確保した上で減衰力の伸び圧比の周波数依存性を低減することができる。
実施形態によれば、「低速バルブ」と「該低速バルブに積層されるバルブ」との間には、隙間が形成されている。このため、低速バルブは、隙間側に変位(変形)し易くなる。これにより、低速バルブをピストン速度が低いときに開弁させることができる。
実施形態によれば、低速バルブは、第2バルブに向けて突出し、他の部分よりも軸方向幅が大きくなる突出部を有する第5バルブと、第2バルブと第5バルブとの間の小径ディスクと、を備える。このため、小径ディスクの板厚を大きくしつつ、第2バルブと第5バルブ(突出部)との間の隙間を小さくすることができる。これにより、「小径ディスクの量産性および強度を確保すること」と「減衰力の調整の自由度を確保すること」とを両立できる。
実施形態によれば、第1バルブと第4バルブのうち、開弁圧が高いほうのバルブには、開弁圧が低いバルブの開弁タイミングとあわせる開弁促進機構が設けられている。このため、開弁圧が高いほうのバルブが、より低いピストン速度で開弁しながら中高速域の剛性を高くすることができる。これにより、減衰力の伸び圧比の周波数依存性を低減した上で、開弁圧が高いほうのバルブの中高速域の減衰力を確保することができる。このため、開弁促進機構が設けられていない構成と比較して、路面状態の変化に対してよりロバスト性が高く、乗員に対して安定感を与える乗り心地を実現できる。即ち、路面を問わずに車両のばね上が安定する減衰力特性を得ることができ、乗員が違和感なく車両に乗り続けることができる。
本願は、2022年9月29日付出願の日本国特許出願第2022-156052号に基づく優先権を主張する。2022年9月29日付出願の日本国特許出願第2022-156052号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
1:緩衝器
2:外筒
4:内筒
5:ピストン
5A:第1油路(第1通路)
5B:第2油路(第2通路)
6:ピストン伸び側バルブ(第1バルブ)
7:ピストン縮み側バルブ(第2バルブ)
12:バルブボディ
12A:第3油路(第3通路)
12B:第4油路(第4通路)
13:ボディ伸び側バルブ(第3バルブ)
14:ボディ縮み側バルブ(第4バルブ)
21:開弁促進機構
22,41,61:低速バルブ
22B,小径ディスク
42:隙間調整ディスク(第5バルブ)
42A:突出部
52:ピストン伸び側オリフィス(第1オリフィス)
57:ボディ縮み側オリフィス(第2オリフィス)
A:リザーバ室
B:ロッド側油室(第1室)
C:ボトム側油室(第2室)
2:外筒
4:内筒
5:ピストン
5A:第1油路(第1通路)
5B:第2油路(第2通路)
6:ピストン伸び側バルブ(第1バルブ)
7:ピストン縮み側バルブ(第2バルブ)
12:バルブボディ
12A:第3油路(第3通路)
12B:第4油路(第4通路)
13:ボディ伸び側バルブ(第3バルブ)
14:ボディ縮み側バルブ(第4バルブ)
21:開弁促進機構
22,41,61:低速バルブ
22B,小径ディスク
42:隙間調整ディスク(第5バルブ)
42A:突出部
52:ピストン伸び側オリフィス(第1オリフィス)
57:ボディ縮み側オリフィス(第2オリフィス)
A:リザーバ室
B:ロッド側油室(第1室)
C:ボトム側油室(第2室)
Claims (7)
- 緩衝器であって、該緩衝器は、
作動液が封入された内筒と、
前記内筒内に摺動可能に設けられ、該内筒内を第1室と第2室とに画成するピストンと、
前記ピストンに設けられる第1通路と、
該第1通路を開閉する第1バルブと、
前記ピストンに設けられる第2通路と、
該第2通路を開閉する第2バルブと、を備え、
前記第1バルブと前記第2バルブのうち、開弁圧が高いほうのバルブには、開弁圧が低いほうの開弁タイミングとあわせる開弁促進機構を設ける緩衝器。 - 緩衝器であって、該緩衝器は、
作動液が封入された内筒と、
前記内筒内に摺動可能に設けられ、該内筒内を第1室と第2室とに画成するピストンと、
前記ピストンに設けられる第1通路と、
該第1通路を開閉する第1バルブと、
前記ピストンに設けられる第2通路と、
該第2通路を開閉する第2バルブと、を備え、
前記第1バルブと前記第2バルブのうち、減衰力の周波数依存性が大きい方のバルブの周波数特性を減衰力の周波数依存性が小さい方のバルブの周波数特性に合わせるよう構成する緩衝器。 - 請求項1に記載の緩衝器において、
前記第1バルブと前記第2バルブのうち、開弁圧の高いほうのバルブは、開弁圧の低いほうのバルブと比して、ピストン速度が低いときに開弁する緩衝器。 - 緩衝器であって、該緩衝器は、
作動液が封入された内筒と、
前記内筒内に摺動可能に設けられ、該内筒内を第1室と第2室とに画成するピストンと、
前記ピストンに設けられる第1通路と、
該第1通路を開閉する第1バルブと、
前記ピストンに設けられる第2通路と、
該第2通路を開閉する第2バルブと、を備え、
前記第1バルブと前記第2バルブのうち、開弁圧が高いほうのバルブには、開弁圧が低いほうのバルブに比して付勢力が小さく、前記第1通路、または第2通路をピストン速度が低いときに開弁する低速バルブが設けられている緩衝器。 - 請求項4に記載の緩衝器において、
前記低速バルブと、該低速バルブに積層されるバルブとの間には隙間が形成されている緩衝器。 - 請求項4に記載の緩衝器において、
前記低速バルブは、前記第2バルブに向けて突出し、他の部分よりも軸方向幅が大きくなる突出部を有する第5バルブと、前記第2バルブと前記第5バルブとの間であって、該第2バルブおよび第5バルブよりも小径の小径ディスクと、を備える緩衝器。 - 緩衝器であって、該緩衝器は、
作動液が封入された内筒と、
前記内筒内に摺動可能に設けられ、該内筒内を第1室と第2室とに画成するピストンと、
前記内筒の外側に設けられ、該内筒との間にリザーバ室を形成する外筒と、
前記リザーバ室と前記第2室との間に設けられるバルブボディと、
前記ピストンに設けられる第1通路と、
該第1通路を開閉する第1バルブと、
該第1通路に設けられる第1オリフィスと、
前記ピストンに設けられる第2通路と、
該第2通路を開閉する第2バルブと、
前記バルブボディに設けられる第3通路と、
該第3通路を開閉する第3バルブと、
前記バルブボディに設けられる第4通路と、
該第4通路を開閉する第4バルブと、
該第4通路に設けられる第2オリフィスと、を有し、
前記第1バルブと前記第4バルブのうち、開弁圧が高いほうのバルブには、開弁圧が低いバルブの開弁タイミングとあわせる開弁促進機構を設ける緩衝器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-156052 | 2022-09-29 | ||
JP2022156052 | 2022-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024070527A1 true WO2024070527A1 (ja) | 2024-04-04 |
Family
ID=90477305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/032339 WO2024070527A1 (ja) | 2022-09-29 | 2023-09-05 | 緩衝器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024070527A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009127818A (ja) * | 2007-11-27 | 2009-06-11 | Showa Corp | 油圧緩衝器の減衰力調整構造 |
JP2020034068A (ja) * | 2018-08-29 | 2020-03-05 | 日立オートモティブシステムズ株式会社 | 流体圧緩衝器 |
JP2022013974A (ja) * | 2020-07-06 | 2022-01-19 | Kyb株式会社 | 緩衝器 |
-
2023
- 2023-09-05 WO PCT/JP2023/032339 patent/WO2024070527A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009127818A (ja) * | 2007-11-27 | 2009-06-11 | Showa Corp | 油圧緩衝器の減衰力調整構造 |
JP2020034068A (ja) * | 2018-08-29 | 2020-03-05 | 日立オートモティブシステムズ株式会社 | 流体圧緩衝器 |
JP2022013974A (ja) * | 2020-07-06 | 2022-01-19 | Kyb株式会社 | 緩衝器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5350372B2 (ja) | ショックアブソーバ | |
US8794405B2 (en) | Damping force control type shock absorber | |
US9139065B2 (en) | Shock absorber | |
US20090078517A1 (en) | Damping force adjusting structure of hydraulic shock absorber | |
US8833532B2 (en) | Shock absorber | |
JP5909557B2 (ja) | サスペンション装置 | |
KR20120112039A (ko) | 감쇠력 조정식 완충기 | |
US10012283B2 (en) | Shock absorber and vehicle using the same | |
WO2016067724A1 (ja) | 緩衝器 | |
JP2010538219A (ja) | 完全変位弁組立体を備えたショックアブソーバ | |
JP2009243530A (ja) | 流体圧緩衝器 | |
KR20150052099A (ko) | 다중-조정가능한 체감 밸브 | |
WO2021084956A1 (ja) | 緩衝器 | |
JP2006283924A (ja) | 車両用油圧緩衝器 | |
WO2024070527A1 (ja) | 緩衝器 | |
JP6202726B2 (ja) | 緩衝器 | |
JP5456597B2 (ja) | 油圧緩衝器 | |
JP5798813B2 (ja) | 緩衝器 | |
JP2006283923A (ja) | 車両用油圧緩衝器 | |
JP2017180607A (ja) | 弁機構、減衰力発生装置、及び緩衝器 | |
JP2014231854A (ja) | 緩衝器およびこれを用いた車両 | |
JP2014231880A (ja) | 緩衝器 | |
JP7350182B2 (ja) | 緩衝器 | |
WO2024219202A1 (ja) | 減衰バルブおよび緩衝器 | |
WO2024116546A1 (ja) | 緩衝器および減衰力発生機構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23871767 Country of ref document: EP Kind code of ref document: A1 |