WO2022007660A1 - 利用粉状吸附剂进行卤水提锂的方法 - Google Patents

利用粉状吸附剂进行卤水提锂的方法 Download PDF

Info

Publication number
WO2022007660A1
WO2022007660A1 PCT/CN2021/102991 CN2021102991W WO2022007660A1 WO 2022007660 A1 WO2022007660 A1 WO 2022007660A1 CN 2021102991 W CN2021102991 W CN 2021102991W WO 2022007660 A1 WO2022007660 A1 WO 2022007660A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
brine
washing
zone
lithium
Prior art date
Application number
PCT/CN2021/102991
Other languages
English (en)
French (fr)
Inventor
李亦然
沈芳明
马君耀
Original Assignee
浙江衢州明德新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江衢州明德新材料有限公司 filed Critical 浙江衢州明德新材料有限公司
Publication of WO2022007660A1 publication Critical patent/WO2022007660A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the application belongs to the field of lithium extraction from salt lake brine, relates to a method for extraction of lithium from brine, and in particular relates to a method for extraction of lithium from brine by using a powdery adsorbent.
  • Lithium has important applications in electronics, metallurgy, chemical industry, medicine and other fields. In nature, lithium mainly exists in lithium ore and salt lake brine, seawater and geothermal water. Salt lake brine has the highest lithium content, accounting for 66% of the world's lithium reserves and more than 80% of lithium reserves. Compared with ore, the extraction of lithium from salt lake brine is simple, low cost, and environmentally friendly, and it meets the market demand. At present, lithium extraction from salt lake has become the main research object in the lithium extraction process.
  • the methods of lithium extraction from salt lakes mainly include solvent extraction, adsorption, evaporative crystallization, membrane separation and precipitation.
  • the industrial application of adsorption method for lithium extraction from brine mainly adopts the technical route of particle adsorbent combined with adsorption tower, which is also the main application method of adsorption method in conventional water treatment industry.
  • Chinese patent application discloses a new method for extracting lithium from salt lake brine.
  • the old halogen feed pipe, the desorption liquid feed pipe, the low magnesium water top desorption liquid feed pipe, and the adsorption tail liquid top desorption liquid feed pipe respectively enter the corresponding adsorption columns through the holes and channels in the multi-way valve system.
  • the qualified desorption liquid discharge pipe, the lithium-containing old halogen discharge pipe, and the adsorption tail liquid top desorption liquid discharge pipe to complete the whole process.
  • Chinese patent application [Publication No.: CN109052435A] discloses a group of adsorption towers for extracting lithium from salt lake brine, including a base, the side walls of the base are respectively provided with inspection holes and a clean outlet, and the top of the base is provided with ⁇ 2
  • the adsorption towers are connected up and down and connected in series.
  • the adsorption tower includes an adsorption tower body.
  • the top of the uppermost adsorption tower body is provided with an upper head
  • the lower part of the adsorption tower body connected to the base is provided with a lower head. The two are connected in series.
  • a vent is provided above the liquid discharge port set on the upper side wall of the adsorption tower body, and a manhole is also provided on the upper part of the side wall of each adsorption tower body; the upper head of the adsorption tower The top of the tower is provided with a vent; the tower is filled with adsorbent.
  • the object of the present invention is to address the above problems, and provide a method for extracting lithium from brine using a powdery adsorbent.
  • the present invention creatively provides a method for extracting lithium from brine using a powdery adsorbent, which is characterized in that it comprises the following steps:
  • the filter cake obtained in the brine separation zone continuously passes through the salt washing zone and the desorption zone.
  • the filter cake obtained in the desorption zone is passed through the salt-washing backwater zone, and the high-salt and low-lithium washing brine obtained in the salt-washing zone in step 2) returns the washed salt to the washed salt water.
  • the filter cake in the zone is rinsed.
  • the salt washing zone in step 2) includes several stages of salt washing and leaching sections arranged along the movement direction of the filter cake.
  • the first-stage salt-washing section located at the downstream end of the filter cake movement direction in the salt-washing sections of all levels is washed with clean water as the mobile phase of the washing salt, and the rest
  • the salt washing and leaching sections at all levels use the washing salt water close to the downstream side of the filter cake movement direction as the washing salt mobile phase for step-by-step gradient leaching.
  • Low lithium wash brine Low lithium wash brine.
  • the desorption zone in step 3 includes several stages of desorption and leaching sections sequentially arranged from the upstream direction to the downstream direction.
  • the first-level desorption and leaching sections located at the downstream end of the filter cake moving direction in the desorption and leaching sections of all levels are leached with clean water as the desorption mobile phase, and the remaining levels of desorption and leaching are used for leaching.
  • the leaching section uses the desorption liquid near the downstream side of the filter cake movement direction as the desorption mobile phase for step-by-step gradient leaching.
  • the filter cake obtained in the salt-washing backwater zone is mixed and adsorbed with brine and then sent to step 1) for recycling.
  • the filtrate obtained by vacuum filtration in the brine separation zone in step 1) is subjected to solid-liquid separation to recover the adsorbent.
  • the filtrate obtained from the salt-washing backwater zone is subjected to solid-liquid separation to recover the adsorbent.
  • the present invention has the following advantages:
  • the present invention greatly reduces the investment cost, and the present invention can obtain a desorption solution with a magnesium-lithium ratio of less than 1:1 and a salt-to-lithium ratio (TDS/Li) of less than 10:1, which greatly reduces the investment and cost of the subsequent desalination and purification process. Production cost, and finally, battery-grade lithium carbonate or lithium hydroxide can be stably obtained.
  • the new equipment proposed by the invention can recover the lithium ions lost in the salt washing process, and then make the brine adsorption and desorption process reach a lithium ion recovery rate of more than 80%.
  • the desorption is carried out by means of reverse gradient elution, so that a desorption solution with high lithium concentration and low salt concentration is obtained in the desorption zone, and a regenerated adsorbent is obtained.
  • the washing salt water is circulated to the washing salt water return area, and the lithium ions in the washing salt water are further recovered, so that the recovery rate of lithium ions is improved.
  • FIG. 1 is a production process flow diagram of an embodiment provided by this application.
  • FIG. 2 is a production process flow diagram of another embodiment provided by the present application.
  • FIG. 3 is a production process flow diagram of another embodiment provided by the present application.
  • Fig. 4 is the production process flow chart of the salt washing zone and the desorption zone provided by the application.
  • a belt vacuum filter 1 is used as the main equipment, and the belt vacuum filter 1 is the prior art, and a commercially available product can be used.
  • the belt vacuum filter 1 includes a frame 10 and a filter cloth 11 on the frame 10.
  • the filter cloth 11 is connected end-to-end in a ring shape, and the motor on the frame 10 drives the next cycle through components such as tensioning wheels Turn to cycle.
  • the brine separation zone 2 , the salt washing zone 3 and the desorption zone 4 are sequentially connected along the transmission direction of the filter cloth 11 through the belt vacuum filter 1 .
  • the filtrate is suction filtered by a vacuum pump, and a water collecting tray and a collecting device 12 connected to the water collecting tray are set at corresponding positions in each area to collect the filtrate.
  • the filter cloth 11 is preferably selected with a large ventilation volume.
  • the ventilation volume of the filter cloth 11 is greater than 500 L/m2 ⁇ s to ensure the processing capacity of the separation of brine and the adsorbent.
  • the retention rate of the filter cloth 11 to the adsorbent is greater than 95%.
  • the salt washing zone 3 is provided with a first liquid conveying mechanism 31, including a conveying pump and a conveying pipeline connected to the conveying pump, for washing the salt washing mobile phase from above the filter cloth 11 to wash the filter cake, and the salt washing mobile phase adopts water.
  • a first liquid conveying mechanism 31 including a conveying pump and a conveying pipeline connected to the conveying pump, for washing the salt washing mobile phase from above the filter cloth 11 to wash the filter cake, and the salt washing mobile phase adopts water.
  • the desorption zone 4 is provided with a second liquid conveying mechanism 41, including a conveying pump and a conveying pipeline connected to the conveying pump, for washing the filter cake with the desorption mobile phase from the top of the filter cloth 11, and the desorption mobile phase adopts water.
  • a second liquid conveying mechanism 41 including a conveying pump and a conveying pipeline connected to the conveying pump, for washing the filter cake with the desorption mobile phase from the top of the filter cloth 11, and the desorption mobile phase adopts water.
  • the salt washing zone 3 and the desorption zone 4 are divided by the salt-to-lithium ratio of the filtrate.
  • Brine separation zone 2 The brine mixed with the adsorbent enters the belt vacuum filter 1 at a flow rate of about 300m3/h, and forms a filter cake in the brine separation zone 2 through vacuum filtration.
  • the adsorbent is an aluminum-based magnetic powder adsorbent with a particle size range of 50-100 ⁇ m.
  • the average residence time of the adsorbent and brine in the solid-liquid mixing mechanism 6 is 10-20 minutes, so as to achieve full mixing and adsorption.
  • the filtrate is collected by a vacuum pump, and the solid-liquid separation is carried out by a magnetic separator. A small amount of adsorbent filtered is recovered, and the separated liquid phase is transported back to the salt field.
  • Salt washing zone 3 Belt vacuum filter 1 drives the filter cake obtained from brine separation zone 2 to pass through salt washing zone 3, where water is used as salt washing mobile phase, and the salt washing mobile phase is transported through the first liquid
  • the mechanism 31 rinses the filter cake at a flow rate of 100 m3/h. And through the method of suction filtration, the water quickly passes through the filter cake, reducing the contact time between the water and the filter cake, and the high content of salt in the filter cake is taken out, and at the same time, the loss of lithium ions in the filter cake is greatly reduced, so as to obtain high salt and low lithium. Wash with salt water.
  • the salt concentration TDS in the high-salt low-lithium washing brine obtained in the salt-washing zone 3 is greater than 30 g/L, and the lithium concentration is less than 0.05 g/L.
  • the high-salt and low-lithium washed brine finally obtained in the salt washing zone 3 is circulated and transported back to the salt field.
  • Desorption zone 4 The belt vacuum filter 1 drives the desalted filter cake obtained from the salt washing zone 3 to pass through the desorption zone 4, where water is used as the desorption mobile phase in the desorption zone 4.
  • the method of suction filtration allows the water to pass through the filter cake quickly, taking out the lithium ions in the filter cake after desalination, and obtaining a low-salt and high-lithium desorption solution to enter the next section.
  • the device structure adopted in this embodiment is basically the same as that in the first embodiment, and the differences are:
  • the belt vacuum filter 1 is provided with a salt-washing backwater zone 5 downstream of the desorption zone 4, and the high-salt and low-lithium salt-washing brine in the salt-washing zone 3 is transported to the salt-washing water through the salt-washing backwater assembly. Above the filter cloth 11 in the backwater zone 5, the filter cake is rinsed. Below the upper filter cloth 11 of the washing salt water return area 5 is also provided a water collecting tray and a collecting device 12 for filtrate. The filtrate collected by the collecting device 12 is transported back to the salt field.
  • the retention rate of the filter cloth 11 on the adsorbent in the salt washing zone 3, the desorption zone 4 and the washing salt water reuse zone is greater than 98%.
  • the collecting device 12 in this area can pass the solid
  • the liquid separation device 7 recovers a small amount of adsorbent filtered, and then recycles it back to the salt field.
  • the solid-liquid separation device 7 can be selected from any one of a magnetic separator, a precision filter, a ceramic membrane, a centrifuge or a plate and frame filter press.
  • Brine separation zone 2 The brine mixed with adsorbent enters the belt vacuum filter 1, and in the brine separation zone 2, a filter cake is formed by vacuum filtration. And the filtrate is collected by a vacuum pump, and the solid-liquid separation is carried out by a magnetic separator, a small amount of adsorbent filtered is recovered, and the separated liquid phase is transported back to the salt field.
  • Salt washing zone 3 Belt vacuum filter 1 drives the filter cake obtained from brine separation zone 2 to pass through salt washing zone 3.
  • salt washing zone 3 water is used as the mobile phase of salt washing, and the salt is washed by rinsing. And through the method of suction filtration, the water quickly passes through the filter cake, reducing the contact time between the water and the filter cake, and the high content of salt in the filter cake is taken out, and at the same time, the loss of lithium ions in the filter cake is greatly reduced, so as to obtain high salt and low lithium. Wash with salt water.
  • the salt concentration TDS in the high-salt low-lithium washing brine obtained in the salt-washing zone 3 is greater than 30 g/L, and the lithium concentration is less than 0.05 g/L.
  • Desorption zone 4 The belt vacuum filter 1 drives the desalted filter cake obtained from the salt washing zone 3 to pass through the desorption zone 4.
  • the method of suction filtration allows the water to pass through the filter cake quickly, taking out the lithium ions in the filter cake after desalination, and obtaining a low-salt and high-lithium desorption solution to enter the next section.
  • Washing salt backwater zone 5 Belt vacuum filter 1 drives the filter cake obtained in desorption zone 4 to enter washing salt backwater zone 5, and the high-salt and low-lithium washing salt water obtained in step 3) is pumped to the washing salt by circulating pump Backwater area 5, the filter cake in the wash salt backwater area 5 is rinsed, and the filtrate is collected by a vacuum pump, and the solid-liquid separation is performed by a magnetic separator, and a small amount of adsorbent filtered is recovered, and the separated liquid phase transported back to the salt field.
  • Step 3 After the medium-high-salt low-lithium washing brine passes through the filter cake of the adsorbent again, its lithium concentration is less than 0.02 g/L, which further improves the recovery rate of lithium ions in the adsorption section.
  • the device structure adopted in this embodiment is basically the same as that in the second embodiment, and the differences are:
  • the brine separation zone 2 is connected to a solid-liquid mixing mechanism 6 for mixing and adsorbing the adsorbent and brine.
  • the solid-liquid mixing mechanism 6 can be selected from commercially available stirring barrels or reaction kettles, and is carried out by stirring. Solid-liquid mixing to achieve the purpose of adsorption.
  • the scraper 13 and the recovery bucket 14 are arranged at the end of the belt vacuum filter 1, the filter cake is scraped into the recovery bucket 14 through the scraper 13, and then transported to the solid-liquid mixing mechanism 6 by crawler conveying, screw conveying or other conveying methods , mixed with brine again.
  • Brine separation zone 2 The brine mixed with adsorbent enters the belt vacuum filter 1, and in the brine separation zone 2, a filter cake is formed by vacuum filtration. And the filtrate is collected by a vacuum pump, and the solid-liquid separation is carried out by a magnetic separator, a small amount of adsorbent filtered is recovered, and the separated liquid phase is transported back to the salt field.
  • Salt washing zone 3 Belt vacuum filter 1 drives the filter cake obtained from brine separation zone 2 to pass through salt washing zone 3.
  • salt washing zone 3 water is used as the mobile phase of salt washing, and the salt is washed by rinsing. And through the method of suction filtration, the water quickly passes through the filter cake, reducing the contact time between the water and the filter cake, and the high content of salt in the filter cake is taken out, and at the same time, the loss of lithium ions in the filter cake is greatly reduced, so as to obtain high salt and low lithium. Wash with salt water.
  • the salt concentration TDS in the high-salt low-lithium washing brine obtained in the salt-washing zone 3 is greater than 30 g/L, and the lithium concentration is less than 0.05 g/L.
  • Desorption zone 4 The belt vacuum filter 1 drives the desalted filter cake obtained from the salt washing zone 3 to pass through the desorption zone 4.
  • the method of suction filtration allows the water to pass through the filter cake quickly, taking out the lithium ions in the filter cake after desalination, and obtaining a low-salt and high-lithium desorption solution to enter the next section.
  • Washing salt backwater zone 5 Belt vacuum filter 1 drives the filter cake obtained in desorption zone 4 to enter washing salt backwater zone 5, and the high-salt and low-lithium washing salt water obtained in step 3) is pumped to the washing salt by circulating pump Backwater area 5, the filter cake in the wash salt backwater area 5 is rinsed, and the filtrate is collected by a vacuum pump, and the solid-liquid separation is performed by a magnetic separator, and a small amount of adsorbent filtered is recovered, and the separated liquid phase transported back to the salt field.
  • the filter cake obtained by the belt vacuum filter 1 after washing the salt and returning to the water zone 5 is the regenerated adsorbent, which is transported and circulated to the reaction kettle through the crawler belt for reuse.
  • the device structure adopted in this embodiment is basically the same as that in the second embodiment, and the differences are:
  • the salt washing zone 3 is divided into 2-5 stages of salt washing and leaching sections 30 along the transmission direction of the filter cloth 11 , and the end near the brine separation zone 2 is the upper stage.
  • the first liquid conveying mechanism 31 includes a salt washing liquid circulation assembly 310 independently provided in each stage of the washing salt washing section 30 .
  • the salt washing liquid circulation component 310 in the lowermost washing salt rinsing section 30 is connected to the washing salt water inlet pipeline.
  • the salt washing liquid circulation assembly 310 in the remaining stages is connected to the collecting device 12 in the washing salt washing section 30 of the next stage, and is transported to the top of the filter cloth 11 of the washing salt washing section 30 by the water pump, and is sprayed by the water pump.
  • the filter cloth 11 is rinsed at the water outlet of the head or the conveying pipeline as the mobile phase of the washing salt of this stage.
  • the mobile phase of the washing salt is transported in the reverse direction with the filter cloth 11 to realize the reverse gradient elution.
  • the high-salt and low-lithium washing brine is obtained in the uppermost salt washing and rinsing section 30 .
  • the desorption zone 4 is divided into multi-stage desorption and leaching sections 40 along the transmission direction of the filter cloth 11, and the end near the salt washing zone 3 is the upper stage.
  • the second liquid transmission mechanism includes a desorption liquid circulation assembly 410 independently provided in each stage of the desorption and washing section 40 .
  • the desorption liquid circulation component 410 in the lowermost desorption washing section 40 is connected to the desorption water inlet pipeline.
  • the desorption liquid circulation assembly 410 in the remaining stages is connected to the collection device 12 in the desorption and washing section 40 of the next stage, and is transported to the top of the filter cloth 11 of the desorption washing section 40 of this stage by a water pump, and is transported through the spray head or The water outlet of the pipeline rinses the filter cloth 11 as the desorption mobile phase of this stage.
  • the desorption mobile phase is transported in the reverse direction with the filter cloth 11 to realize reverse gradient leaching.
  • the low-salt and high-lithium desorption liquid is obtained in the uppermost desorption and leaching section 40 and transported to the next section.
  • the salt washing zone 3 includes 2-5 stages of salt washing and leaching sections 30 arranged in sequence from the upstream direction to the downstream direction. Taking the upstream direction as the upper stage and the downstream direction as the lower stage, water is used as the initial salt washing mobile phase to enter the lowermost salt washing and washing section 30 located at the downstream end of the salt washing zone 3 for washing.
  • the brine obtained in the section 30 is transported to the upper stage of the brine leaching section 30 as the mobile phase of the brine, and the brine with high salt and low lithium is obtained in the uppermost section 30 .
  • the salt water in the salt washing and rinsing sections 30 at all levels is collected and circulated by a vacuum pump, respectively.
  • the desorption zone 4 includes 2-5 stages of desorption and leaching sections 40 sequentially arranged from the upstream direction to the downstream direction. Taking the upstream direction as the upper stage and the downstream direction as the lower stage, water is used as the initial desorption mobile phase to enter the lowermost desorption and leaching section 40 located at the downstream end of the desorption zone 4 for leaching. The liquid is transported to the desorption washing section 40 of the upper stage as the desorption mobile phase, and the low-salt and high-lithium washing brine is obtained in the desorption washing section 40 of the uppermost stage. The washing brine of the desorption and washing sections 40 at all levels is collected and circulated by the vacuum pump, respectively.
  • the salts were washed by reverse gradient elution.
  • the washed salt water obtained in the latter stage in the salt washing zone 3 repeatedly enters the upper stage as the salt washing mobile phase, and is combined with the adsorbent in the filter cake for recovery, so that high salt concentration and low lithium can be obtained in the salt washing zone 3.
  • concentration of wash brine concentration of wash brine.
  • the desorption is carried out by means of reverse gradient elution, so that a desorption solution with high lithium concentration and low salt concentration is obtained in the desorption zone 4, and a regenerated adsorbent is obtained.
  • non-magnetic aluminum powder adsorbents or other powder adsorbents can be selected, and a precision filter is used instead of a magnetic separator for solid-liquid separation to achieve the purpose of recovering the adsorbent.
  • first liquid conveying mechanism 31 washing salt liquid circulation assembly 310, desorption zone 4, desorption and rinsing section 40, second liquid conveying mechanism 41, desorption liquid circulation assembly 410, washing salt water return zone 5, solid-liquid mixing mechanism 6 , solid-liquid separation device 7 and other terms, but does not exclude the possibility of using other terms.

Abstract

本发明提供了一种利用粉状吸附剂进行卤水提锂的方法,包括以下步骤:将吸附剂与卤水的混合物在卤水分离区进行真空过滤形成滤饼;将卤水分离区得到的滤饼在洗盐区洗盐,得到高盐低锂洗盐水;将经过洗盐区洗盐得到的滤饼在解吸区进行解吸,得到低盐高锂解吸液。本发明大大降低了投资成本,利用本发明可以得到镁锂比小于1:1,盐锂比小于10:1的解吸液,大幅降低了后续除盐提纯工艺的投资和生产成本,最终可以稳定得到电池级碳酸锂或氢氧化锂。本发明提出的新设备可以回收盐分洗涤过程流失的锂离子,进而使卤水吸附解吸过程达到80%以上的锂离子回收率。

Description

利用粉状吸附剂进行卤水提锂的方法 技术领域
本申请属于盐湖卤水提锂领域,涉及卤水提锂的方法,具体涉及一种利用粉状吸附剂进行卤水提锂的方法。
背景技术
锂在电子、冶金、化工、医药等领域有着重要应用。自然界中锂主要存在于锂矿石和盐湖卤水、海水和地热水中,盐湖卤水中锂含量最高,占世界锂储量的66%和锂储量挤出的80%以上。盐湖卤水提锂较矿石提锂工艺简单、成本低、环境友好,适应市场需求,目前,盐湖提锂成为提锂工艺中主要的研究对象。
盐湖提锂的方式主要有溶剂萃取法、吸附法、蒸发结晶法、膜分离法和沉淀法等提纯手段。目前工业上应用吸附法进行卤水提锂主要采用颗粒吸附剂结合吸附塔的技术路线进行,这也是常规水处理行业吸附法的主要应用方式。然而,采用颗粒吸附剂结合吸附塔的技术路线用于卤水提锂存在诸多问题:1)投产阶段需大量构建填满吸附剂的吸附塔,投资成本高昂;2)得到的解析液镁锂比大于3:1,盐锂比TDS:Li大于30:1,难达到电池级碳酸锂或氢氧化锂对杂质含量的要求;3)吸附段锂回收率一般小于60%,若要实现高锂回收率,需设置多塔串联和功能转换,大幅提高工业连续生产的难度。
例如:中国专利申请[公开号:CN111041201A]公开了一种盐湖卤水中提锂的新方法,盐湖老卤原料、解吸液、低镁水、吸附尾液,分别通过位于多路阀系统转盘上下的老卤进料管、解吸液进料管、低镁水顶解吸液进料管、吸附尾液顶解吸液进料管,通过多路阀系统内孔道和通道分别进入到对应的吸附柱中后,从吸附尾液出料管、合格解吸液出料管、含锂老卤出料管、吸附尾液顶解吸液出料管,完成整个工艺过程。
又如:中国专利申请[公开号:CN109052435A]公开了一种用于盐湖卤水提锂的吸附塔群,包括底座,底座侧壁分别设有检查孔和排净口,底座顶部设有≥2个且彼此上下对接串联的吸附塔,所述吸附塔包括吸附塔本体,最上部的吸附塔本体的顶部设有上封头,与底座对接的吸附塔本体的下部设有下封头,两对接串联的吸附塔本体之间设有分隔封头,吸附塔本体上部侧壁所设排液口的上方设有放空口,每个吸附塔本体的侧壁上部还设有人孔;吸附塔的上封头的顶部设有放空口;塔内填充有吸附剂。
技术问题
上述两种技术方案均采用吸附塔填充颗粒吸附剂的方式进卤水提锂,系统结构复杂,成本较高,无法得到低盐锂比解吸液。
技术解决方案
本发明的目的是针对上述问题,提供一种利用粉状吸附剂进行卤水提锂的方法。
为达到上述目的,本发明采用了下列技术方案:
本发明创造性地提供了一种利用粉状吸附剂进行卤水提锂的方法,其特征在于,包含以下步骤:
1)将吸附剂与卤水的混合物在卤水分离区进行真空过滤形成滤饼;
2)将卤水分离区得到的滤饼在洗盐区洗盐,得到高盐低锂洗盐水;
3)将经过洗盐区洗盐得到的滤饼在解吸区进行解吸,得到低盐高锂解吸液。
在上述的利用粉状吸附剂进行卤水提锂的方法中,卤水分离区得到的滤饼连续式经过洗盐区和解吸区。
在上述的利用粉状吸附剂进行卤水提锂的方法中,解吸区得到的滤饼经洗盐回水区,步骤2)中洗盐区得到的高盐低锂洗盐水对经洗盐回水区的滤饼进行淋洗。
在上述的利用粉状吸附剂进行卤水提锂的方法中,步骤2)中洗盐区包含沿滤饼运动方向设置的若干级洗盐淋洗段。
在上述的利用粉状吸附剂进行卤水提锂的方法中,各级洗盐淋洗段中位于滤饼运动方向下游端的一级洗盐淋洗段以清水作为洗盐流动相进行淋洗,其余各级洗盐淋洗段以其靠近滤饼运动方向下游一侧的洗盐水作为洗盐流动相逐级梯度淋洗,在位于滤饼运动方向上游端的一级洗盐淋洗段中得到高盐低锂洗盐水。
在上述的利用粉状吸附剂进行卤水提锂的方法中,步骤3)中解吸区中包括由上游方向至下游方向依次设置的若干级解吸淋洗段。
在上述的利用粉状吸附剂进行卤水提锂的方法中,各级解吸淋洗段中位于滤饼运动方向下游端的一级解吸淋洗段以清水作为解吸流动相进行淋洗,其余各级解吸淋洗段以其靠近滤饼运动方向下游一侧的解吸液作为解吸流动相逐级梯度淋洗,在位于滤饼运动方向上游端的一级解吸淋洗段中得到低盐高锂洗盐水。
在上述的利用粉状吸附剂进行卤水提锂的方法中,经洗盐回水区得到的滤饼与卤水混合吸附后送入步骤1)中循环使用。
在上述的利用粉状吸附剂进行卤水提锂的方法中,将步骤1)中卤水分离区真空过滤得到的滤液进行固液分离回收吸附剂。
在上述的利用粉状吸附剂进行卤水提锂的方法中,将洗盐回水区得到的滤液进行固液分离回收吸附剂。
有益效果
本发明与现有的技术相比,其优点在于:
1)本发明大大降低了投资成本,利用本发明可以得到镁锂比小于1:1,盐锂比(TDS/Li)小于10:1的解吸液,大幅降低了后续除盐提纯工艺的投资和生产成本,最终可以稳定得到电池级碳酸锂或氢氧化锂。本发明提出的新设备可以回收盐分洗涤过程流失的锂离子,进而使卤水吸附解吸过程达到80%以上的锂离子回收率。
2)在洗盐区通过淋洗的方式洗盐,缩短洗盐流动相与滤饼的接触时间,降低了洗盐水带出滤饼中锂离子的可能性,减少洗盐水中的锂离子的含量。
3)采用逆向梯度洗脱的方式进行洗盐。洗盐区中后一级得到的洗盐水重复进入上一级中作为洗盐流动相,再次与滤饼中的吸附剂接触进行结合回收,从而可在洗盐区得到高盐浓度低锂浓度的洗盐水。
采用逆向梯度洗脱的方式进行解吸,从而在解吸区得到高锂浓度低盐浓度的解吸液,并且获得再生的吸附剂。
4)洗盐水循环至洗盐回水区,进一步回收洗盐水中的锂离子,使锂离子的回收率提高。
5)混合吸附、卤水分离、洗盐、解吸和洗盐回水连续式进行,免去了多塔之间的串联,大幅度提高了生产效率,降低了生产成本。
附图说明
图1为本申请提供的一种实施方式的生产工艺流程图。
图2为本申请提供的另一种实施方式的生产工艺流程图。
图3为本申请提供的又一种实施方式的生产工艺流程图。
图4为本申请提供的洗盐区和解吸区的生产工艺流程图。
图中,带式真空过滤机1、机架10、滤布11、收集装置12、刮板13、回收桶14、卤水分离区2、洗盐区3、洗盐淋洗段30、第一液体输送机构31、洗盐液循环组件310、解吸区4、解吸淋洗段40、第二液体输送机构41、解吸液循环组件410、洗盐回水区5、固液混合机构6、固液分离装置7。
本发明的最佳实施方式
下面结合附图对本发明进行进一步说明。
本发明通过以下实施例进一步说明:
实施例一
如图1所示,本实施例采用带式真空过滤机1作为主要设备,带式真空过滤机1为现有技术,可采用市售产品。具体而言,带式真空过滤机1包括机架10,以及在机架10上的滤布11,该滤布11首尾连接呈环形,机架10上的电机通过张紧轮等组件驱动下周向循环转动。卤水分离区2、洗盐区3和解吸区4通过带式真空过滤机1依次沿滤布11传动方向连接。在上层滤布11下方通过真空泵对过滤液进行抽滤,并在各区域对应位置设置集水盘和连接集水盘的收集装置12进行过滤液的收集。
滤布11优选选用大通气量滤布11,滤布11通气量大于500 L/m2•s,以保证卤水与吸附剂分离的处理能力,滤布11对吸附剂的截留率大于95%。
洗盐区3上设有第一液体输送机构31,包括输送泵和连接输送泵的输送管道,用于将洗盐流动相从滤布11上方冲淋滤饼,该洗盐流动相采用水。
解吸区4上设有第二液体输送机构41,包括输送泵和连接输送泵的输送管道,用于将解吸流动相从滤布11上方冲淋滤饼,该解吸流动相采用水。
洗盐区3和解吸区4通过过滤液的盐锂比进行划分。
基于上述设备,一种利用粉状吸附剂进行卤水提锂的方法,步骤为:
1)卤水分离区2:混合有吸附剂的卤水以约300m3/h的流量进入带式真空过滤机1,在卤水分离区2通过真空过滤形成滤饼。其中,吸附剂选用粒度范围在50-100μm的铝系磁性粉体吸附剂。吸附剂和卤水在固液混合机构6中的平均停留时间为10-20min,以达到充分混合吸附。过滤液经真空泵收集,通过磁选机进行固液分离,回收穿滤的少量吸附剂,分离出的液相输送回盐田中。
2)洗盐区3:带式真空过滤机1带动卤水分离区2得到的滤饼经过洗盐区3,在洗盐区3中用水作为洗盐流动相,洗盐流动相通过第一液体输送机构31以100m3/h的流速对滤饼进行淋洗。并且通过抽滤的方式使水快速经过滤饼,降低水与滤饼接触时间,滤饼中含量较高的盐分被带出,同时大大降低了滤饼中锂离子流失,从而得到高盐低锂洗盐水。洗盐区3得到的高盐低锂洗盐水中盐浓度TDS>30g/L,锂浓度<0.05g/L。洗盐区3中最终得到的高盐低锂洗盐水循环输送回到盐田中。
3)解吸区4:带式真空过滤机1带动洗盐区3得到的脱盐后的滤饼经过解吸区4,在解吸区4中用水作为解吸流动相,通过淋洗的方式进行解吸,并且通过抽滤的方式使水快速经过滤饼,带出脱盐后的滤饼中的锂离子,得到低盐高锂解吸液进入下一工段。解吸区4得到的低盐高锂解吸液中盐锂比TDS/Li<10:1,镁锂比Mg/Li<1:1,锂浓度>0.3 g/L。
实施例二
本实施例采用的设备结构与实施例一基本相同,不同之处在于:
如图2所示,在带式真空过滤机1上位于解吸区4的下游设置有洗盐回水区5,洗盐区3的高盐低锂洗盐水通过洗盐回水组件输送至洗盐回水区5中的滤布11上方,对滤饼进行淋洗。在该洗盐回水区5的上层滤布11下方也设置有集水盘和过滤液的收集装置12。收集装置12收集到的过滤液输送回到盐田中。
滤布11在洗盐区3、解吸区4和洗盐水回用区对吸附剂的截留率大于98%。
为了充分回收吸附剂,在需要将过滤液输送回盐田或下一工段的卤水分离区2、洗盐区3、解吸区4或洗盐回水区5中,该区域的收集装置12可通过固液分离装置7回收穿滤的少量吸附剂,再循环回盐田,固液分离装置7可选用磁选机、精密过滤器、陶瓷膜、离心机或板框压滤机中任意一种。
基于上述设备,一种利用粉状吸附剂进行卤水提锂的方法,其步骤为:
1)混合吸附:将吸附剂与卤水分别持续通过搅拌桶进行混合吸附,使吸附剂吸附卤水中的锂离子。
2)卤水分离区2:混合有吸附剂的卤水进入带式真空过滤机1,在卤水分离区2通过真空过滤形成滤饼。并且过滤液经真空泵收集,通过磁选机进行固液分离,回收穿滤的少量吸附剂,分离出的液相输送回盐田中。
3)洗盐区3:带式真空过滤机1带动卤水分离区2得到的滤饼经过洗盐区3,在洗盐区3中用水作为洗盐流动相,通过淋洗的方式进行洗盐,并且通过抽滤的方式使水快速经过滤饼,降低水与滤饼接触时间,滤饼中含量较高的盐分被带出,同时大大降低了滤饼中锂离子流失,从而得到高盐低锂洗盐水。洗盐区3得到的高盐低锂洗盐水中盐浓度TDS>30g/L,锂浓度<0.05g/L。
4)解吸区4:带式真空过滤机1带动洗盐区3得到的脱盐后的滤饼经过解吸区4,在解吸区4中用水作为解吸流动相,通过淋洗的方式进行解吸,并且通过抽滤的方式使水快速经过滤饼,带出脱盐后的滤饼中的锂离子,得到低盐高锂解吸液进入下一工段。解吸区4得到的低盐高锂解吸液中盐锂比TDS/Li<10:1,镁锂比Mg/Li<1:1,锂浓度>0.3 g/L。
5)洗盐回水区5:带式真空过滤机1带动解吸区4得到的滤饼进入洗盐回水区5,步骤3)中得到的高盐低锂洗盐水通过循环泵送至洗盐回水区5,对该洗盐回水区5中的滤饼进行淋洗,并且过滤液经真空泵收集,通过磁选机进行固液分离,回收穿滤的少量吸附剂,分离出的液相输送回盐田中。步骤3)中高盐低锂洗盐水再次经过吸附剂滤饼后,其锂浓度<0.02g/L,进一步提高了吸附段锂离子回收率。
本发明的实施方式
实施例三
本实施例采用的设备结构与实施例二基本相同,不同之处在于:
如图3所示,卤水分离区2上连接用于将吸附剂与卤水混合吸附的固液混合机构6,该固液混合机构6可选用市售的搅拌桶或反应釜,通过搅拌的方式进行固液混合,达到吸附的目的。在带式真空过滤机1的末端设置的刮板13和回收桶14,滤饼通过刮板13刮进回收桶14中,再通过履带输送、螺旋输送或其他输送方式输送至固液混合机构6中,再次与卤水混合。
基于上述设备,一种利用粉状吸附剂进行卤水提锂的方法,其步骤为:
1)混合吸附:将吸附剂与卤水分别持续通过固液混合机构6进行混合吸附,使吸附剂吸附卤水中的锂离子。吸附剂的进料量与卤水的进料量的质量比小于50%,优选为10~30%。
2)卤水分离区2:混合有吸附剂的卤水进入带式真空过滤机1,在卤水分离区2通过真空过滤形成滤饼。并且过滤液经真空泵收集,通过磁选机进行固液分离,回收穿滤的少量吸附剂,分离出的液相输送回盐田中。
3)洗盐区3:带式真空过滤机1带动卤水分离区2得到的滤饼经过洗盐区3,在洗盐区3中用水作为洗盐流动相,通过淋洗的方式进行洗盐,并且通过抽滤的方式使水快速经过滤饼,降低水与滤饼接触时间,滤饼中含量较高的盐分被带出,同时大大降低了滤饼中锂离子流失,从而得到高盐低锂洗盐水。洗盐区3得到的高盐低锂洗盐水中盐浓度TDS>30g/L,锂浓度<0.05g/L。
4)解吸区4:带式真空过滤机1带动洗盐区3得到的脱盐后的滤饼经过解吸区4,在解吸区4中用水作为解吸流动相,通过淋洗的方式进行解吸,并且通过抽滤的方式使水快速经过滤饼,带出脱盐后的滤饼中的锂离子,得到低盐高锂解吸液进入下一工段。解吸区4得到的低盐高锂解吸液中盐锂比TDS/Li<10:1,镁锂比Mg/Li<1:1,锂浓度>0.3 g/L。
5)洗盐回水区5:带式真空过滤机1带动解吸区4得到的滤饼进入洗盐回水区5,步骤3)中得到的高盐低锂洗盐水通过循环泵送至洗盐回水区5,对该洗盐回水区5中的滤饼进行淋洗,并且过滤液经真空泵收集,通过磁选机进行固液分离,回收穿滤的少量吸附剂,分离出的液相输送回盐田中。
6)回收:带式真空过滤机1经洗盐回水区5后得到的滤饼为再生的吸附剂,通过履带输送循环至反应釜中再次利用。
实施例四
本实施例采用的设备结构与实施例二基本相同,不同之处在于:
如图4所示,洗盐区3沿滤布11传动方向分为2-5级洗盐淋洗段30,以靠近卤水分离区2一端为上级。第一液体输送机构31包括独立设置在每级洗盐淋洗段30的洗盐液循环组件310。最下级的洗盐淋洗段30中的洗盐液循环组件310连接洗盐进水管路。其余各级中的洗盐液循环组件310连接其下一级洗盐淋洗段30中的收集装置12,并通过水泵向该级洗盐淋洗段30的滤布11上方输送,通过喷淋头或输送管道的出水口淋洗滤布11,作为该级的洗盐流动相。洗盐流动相与滤布11逆向输送,实现逆向梯度淋洗。在最上级洗盐淋洗段30得到高盐低锂洗盐水。
解吸区4沿滤布11传动方向分为多级解吸淋洗段40,以靠近洗盐区3一端为上级。第二液体传输机构包括独立设置在每级解吸淋洗段40的解吸液循环组件410。最下级的解吸淋洗段40中的解吸液循环组件410连接解吸进水管路。其余各级中的解吸液循环组件410连接其下一级解吸淋洗段40中的收集装置12,并通过水泵向该级解吸淋洗段40的滤布11上方输送,通过喷淋头或输送管道的出水口淋洗滤布11,作为该级的解吸流动相。解吸流动相与滤布11逆向输送,实现逆向梯度淋洗。在最上级解吸淋洗段40得到低盐高锂解吸液,输送至下一工段中。
步骤3)中洗盐区3中包括由上游方向至下游方向依次设置的2-5级洗盐淋洗段30。以上游方向为上级、下游方向为下级,用水作为初始的洗盐流动相进入位于洗盐区3下游端的最下级洗盐淋洗段30进行淋洗,每个位于下一级的洗盐淋洗段30得到的洗盐水输送至其上一级洗盐淋洗段30中作为洗盐流动相,在最上级的洗盐淋洗段30中得到高盐低锂洗盐水。各级洗盐淋洗段30的洗盐水分别通过真空泵进行收集和循环。
步骤4)中解吸区4中包括由上游方向至下游方向依次设置的2-5级解吸淋洗段40。以上游方向为上级、下游方向为下级,用水作为初始的解吸流动相进入位于解吸区4下游端的最下级解吸淋洗段40进行淋洗,每个位于下一级解吸淋洗段40得到的解吸液输送至其上一级解吸淋洗段40中作为解吸流动相,在最上级的解吸淋洗段40中得到低盐高锂洗盐水。各级解吸淋洗段40的洗盐水分别通过真空泵进行收集和循环。
采用逆向梯度洗脱的方式进行洗盐。洗盐区3中后一级得到的洗盐水重复进入上一级中作为洗盐流动相,再次与滤饼中的吸附剂接触进行结合回收,从而可在洗盐区3得到高盐浓度低锂浓度的洗盐水。采用逆向梯度洗脱的方式进行解吸,从而在解吸区4得到高锂浓度低盐浓度的解吸液,并且获得再生的吸附剂。
工业实用性
上述实施例一至实施例四中,可以选用非磁性的铝系粉体吸附剂或其他粉体吸附剂,并且用精密过滤器替代磁选机进行固液分离,达到回收吸附剂的目的。
 本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了带式真空过滤机1、机架10、滤布11、收集装置12、刮板13、回收桶14、卤水分离区2、洗盐区3、洗盐淋洗段30、第一液体输送机构31、洗盐液循环组件310、解吸区4、解吸淋洗段40、第二液体输送机构41、解吸液循环组件410、洗盐回水区5、固液混合机构6、固液分离装置7等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质,把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (10)

  1. 一种利用粉状吸附剂进行卤水提锂的方法,其特征在于,包含以下步骤:
    将吸附剂与卤水的混合物在卤水分离区(2)进行真空过滤形成滤饼;
    将卤水分离区(2)得到的滤饼在洗盐区(3)洗盐,得到高盐低锂洗盐水;
    将经过洗盐区(3)洗盐得到的滤饼在解吸区(4)进行解吸,得到低盐高锂解吸液。
  2. 如权利要求1所述的利用粉状吸附剂进行卤水提锂的方法,其特征在于:所述卤水分离区(2)得到的滤饼连续式经过洗盐区(3)和解吸区(4)。
  3. 如权利要求1或2所述的利用粉状吸附剂进行卤水提锂的方法,其特征在于:所述解吸区(4)得到的滤饼经洗盐回水区(5),所述步骤2)中洗盐区(3)得到的高盐低锂洗盐水对经洗盐回水区(5)的滤饼进行淋洗。
  4. 如权利要求2所述的利用粉状吸附剂进行卤水提锂的方法,其特征在于:所述步骤2)中洗盐区(3)包含沿滤饼运动方向设置的若干级洗盐淋洗段(30)。
  5. 如权利要求4所述的利用粉状吸附剂进行卤水提锂的方法,其特征在于:所述各级洗盐淋洗段(30)中位于滤饼运动方向下游端的一级洗盐淋洗段(30)以清水作为洗盐流动相进行淋洗,其余各级洗盐淋洗段(30)以其靠近滤饼运动方向下游一侧的洗盐水作为洗盐流动相逐级梯度淋洗,在位于滤饼运动方向上游端的一级洗盐淋洗段(30)中得到所述高盐低锂洗盐水。
  6. 如权利要求2所述的利用粉状吸附剂进行卤水提锂的方法,其特征在于:所述步骤3)中解吸区(4)中包括由上游方向至下游方向依次设置的若干级解吸淋洗段(40)。
  7. 如权利要求6所述的利用粉状吸附剂进行卤水提锂的方法,其特征在于:所述各级解吸淋洗段(40)中位于滤饼运动方向下游端的一级解吸淋洗段(40)以清水作为解吸流动相进行淋洗,其余各级解吸淋洗段(40)以其靠近滤饼运动方向下游一侧的解吸液作为解吸流动相逐级梯度淋洗,在位于滤饼运动方向上游端的一级解吸淋洗段(40)中得到所述低盐高锂洗盐水。
  8. 如权利要求3所述的利用粉状吸附剂进行卤水提锂的方法,其特征在于:经洗盐回水区(5)得到的滤饼与卤水混合吸附后送入所述步骤1)中循环使用。
  9. 如权利要求1所述的利用粉状吸附剂进行卤水提锂的方法,其特征在于:将所述步骤1)中卤水分离区(2)真空过滤得到的滤液进行固液分离回收吸附剂。
  10. 如权利要求3所述的利用粉状吸附剂进行卤水提锂的方法,其特征在于:将所述洗盐回水区(5)得到的滤液进行固液分离回收吸附剂。
PCT/CN2021/102991 2020-07-07 2021-06-29 利用粉状吸附剂进行卤水提锂的方法 WO2022007660A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010645572.0A CN111826531A (zh) 2020-07-07 2020-07-07 利用粉状吸附剂进行卤水提锂的方法
CN202010645572.0 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022007660A1 true WO2022007660A1 (zh) 2022-01-13

Family

ID=72900336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102991 WO2022007660A1 (zh) 2020-07-07 2021-06-29 利用粉状吸附剂进行卤水提锂的方法

Country Status (2)

Country Link
CN (1) CN111826531A (zh)
WO (1) WO2022007660A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161497A (zh) * 2022-07-11 2022-10-11 西宁永正锂业有限公司 一种高硫酸盐原卤的铝系吸附剂提锂方法
CN115418479A (zh) * 2022-08-16 2022-12-02 北京万邦达环保技术股份有限公司 高镁锂比盐湖卤水提锂的新工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825152B (zh) * 2020-07-07 2022-11-01 西宁永正锂业有限公司 带滤机及其在吸附法卤水提锂中的应用
CN111826531A (zh) * 2020-07-07 2020-10-27 浙江衢州明德新材料有限公司 利用粉状吸附剂进行卤水提锂的方法
CN111729350B (zh) * 2020-07-07 2023-09-08 衢州永正锂业科技有限公司 用于吸附法卤水提锂的设备
CN114892025B (zh) * 2022-06-02 2023-11-21 北京万邦达环保技术股份有限公司 模拟移动床提锂吸附工艺
CN117819577A (zh) * 2022-09-28 2024-04-05 比亚迪股份有限公司 适用于盐湖提锂的原卤处理系统及原卤处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345394A (zh) * 2016-11-02 2017-01-25 江苏旌凯中科超导高技术有限公司 一种从卤水中提取锂并制备高纯锂浓液的方法
CN106390960A (zh) * 2016-11-02 2017-02-15 江苏旌凯中科超导高技术有限公司 一种磁性锂离子筛及其制备方法
CN109092242A (zh) * 2017-11-10 2018-12-28 江苏旌凯中科超导高技术有限公司 利用磁性粉体铝基锂吸附剂从卤水中提取锂的方法
CN209123481U (zh) * 2018-08-30 2019-07-19 成都泰利创富锂业科技有限公司 一种用于工业提锂的连续吸附解吸系统
CN111729350A (zh) * 2020-07-07 2020-10-02 浙江衢州明德新材料有限公司 用于吸附法卤水提锂的设备
CN111826531A (zh) * 2020-07-07 2020-10-27 浙江衢州明德新材料有限公司 利用粉状吸附剂进行卤水提锂的方法
CN213221252U (zh) * 2020-07-07 2021-05-18 浙江衢州明德新材料有限公司 应用于卤水提锂工艺的盐锂分离装置
CN213221207U (zh) * 2020-07-07 2021-05-18 浙江衢州明德新材料有限公司 应用于卤水提锂设备的吸附剂回收装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1007908B (zh) * 1985-04-25 1990-05-09 江西省科学院 连续水平真空带式过滤机渗滤浸取工艺
CN100528764C (zh) * 2006-12-31 2009-08-19 于向真 一种污水吸附处理工艺
AU2013201833B2 (en) * 2012-08-13 2014-07-17 Reed Advanced Materials Pty Ltd Processing of Lithium Containing Ore
CA2920789C (en) * 2015-06-04 2021-05-18 Advance International, Inc. Improved methods and systems for recovering protein powder and natural omega-3 oil from animal tissue
CN210583956U (zh) * 2019-08-20 2020-05-22 白银扎布耶锂业有限公司 一种用于锂矿浆的真空带滤机冲洗除杂装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345394A (zh) * 2016-11-02 2017-01-25 江苏旌凯中科超导高技术有限公司 一种从卤水中提取锂并制备高纯锂浓液的方法
CN106390960A (zh) * 2016-11-02 2017-02-15 江苏旌凯中科超导高技术有限公司 一种磁性锂离子筛及其制备方法
CN109092242A (zh) * 2017-11-10 2018-12-28 江苏旌凯中科超导高技术有限公司 利用磁性粉体铝基锂吸附剂从卤水中提取锂的方法
CN209123481U (zh) * 2018-08-30 2019-07-19 成都泰利创富锂业科技有限公司 一种用于工业提锂的连续吸附解吸系统
CN111729350A (zh) * 2020-07-07 2020-10-02 浙江衢州明德新材料有限公司 用于吸附法卤水提锂的设备
CN111826531A (zh) * 2020-07-07 2020-10-27 浙江衢州明德新材料有限公司 利用粉状吸附剂进行卤水提锂的方法
CN213221252U (zh) * 2020-07-07 2021-05-18 浙江衢州明德新材料有限公司 应用于卤水提锂工艺的盐锂分离装置
CN213221207U (zh) * 2020-07-07 2021-05-18 浙江衢州明德新材料有限公司 应用于卤水提锂设备的吸附剂回收装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG KAI, LI YI-RAN;MA JUN-YAO;HOU KAI: "Study on Lithium Extraction from Brine by Superconducting Magnetic Separation and Adsorption", NONFERROUS METALS (EXTRACTIVE METALLURGY), YEJIN GONGYE CHUBANSHE, BEIJING, CN, no. 3, 12 March 2020 (2020-03-12), Beijing, CN , pages 32 - 37, XP055886407, ISSN: 1007-7545 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161497A (zh) * 2022-07-11 2022-10-11 西宁永正锂业有限公司 一种高硫酸盐原卤的铝系吸附剂提锂方法
CN115161497B (zh) * 2022-07-11 2024-02-13 衢州永正锂业科技有限公司 一种高硫酸盐原卤的铝系吸附剂提锂方法
CN115418479A (zh) * 2022-08-16 2022-12-02 北京万邦达环保技术股份有限公司 高镁锂比盐湖卤水提锂的新工艺
CN115418479B (zh) * 2022-08-16 2023-11-10 北京万邦达环保技术股份有限公司 高镁锂比盐湖卤水提锂的新工艺

Also Published As

Publication number Publication date
CN111826531A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2022007660A1 (zh) 利用粉状吸附剂进行卤水提锂的方法
CN111729350B (zh) 用于吸附法卤水提锂的设备
CN108164075B (zh) 一种四钴废水的资源化处理系统及其方法
CN213221206U (zh) 提锂装置用洗盐回水结构
CN106219658A (zh) 一种工业废水中重金属的分类去除和回收方法
CN111517530A (zh) 一种废酸液再生预处理方法及系统
CN213221252U (zh) 应用于卤水提锂工艺的盐锂分离装置
CN212700660U (zh) 用于吸附法卤水提锂的设备
WO2022007662A1 (zh) 带滤机及其在吸附法卤水提锂中的应用
CN105668702B (zh) 氯型阴离子交换树脂去除Ca-EDTA土壤淋洗液中Cu、Zn、Pb、Cd的方法
CN105753219A (zh) 一种含钒废水深度净化处理及回收钒铬的工艺
CN201260959Y (zh) 一种反应及固液分离一体化装置
CN102626646A (zh) 一种氧化段钴锰催化剂回收利用装置及其方法
CN110106356B (zh) 一种粉末型钛系离子交换剂分离盐湖卤水中锂的方法
US11293077B2 (en) Method for recovering scandium from red mud left from alumina production
CN115927852A (zh) 一种从硫精矿焙砂水洗废液中回收金、银、铜的方法
CN214829053U (zh) 一种盐湖卤水吸附提锂装置
CN213624300U (zh) 一种贵金属铂钯高效共萃装置
CN110643831B (zh) 一种无隔膜电化学提锂系统及其提锂方法
CN114014341A (zh) 一种从原卤中制取高锂溶液的装置及方法
CN114920321A (zh) 一种用于不锈钢酸洗废混酸金属离子脱除及废酸和树脂再生装置及方法
CN110372125B (zh) 一种废水中难去除金属离子综合处理装置
CN115595455A (zh) 一种用于低品位卤水提锂的系统及方法、应用
CN115807169A (zh) 一种用于碱性溶液的锂提取方法
CN218404350U (zh) 一种以锂矿石为原料进行回收提锂的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837672

Country of ref document: EP

Kind code of ref document: A1