WO2022007359A1 - 一种3d打印粉末及其制备方法 - Google Patents

一种3d打印粉末及其制备方法 Download PDF

Info

Publication number
WO2022007359A1
WO2022007359A1 PCT/CN2020/140809 CN2020140809W WO2022007359A1 WO 2022007359 A1 WO2022007359 A1 WO 2022007359A1 CN 2020140809 W CN2020140809 W CN 2020140809W WO 2022007359 A1 WO2022007359 A1 WO 2022007359A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
light stabilizer
printing powder
solution
printing
Prior art date
Application number
PCT/CN2020/140809
Other languages
English (en)
French (fr)
Inventor
叶南飚
常欢
周沃华
李成
唐磊
刘鑫鑫
朱秀梅
苏榆钧
曹绍强
黄险波
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022007359A1 publication Critical patent/WO2022007359A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention relates to the technical field of green polymer materials, in particular to a 3D printing powder and a preparation method thereof.
  • 3D printing technology Compared with traditional technology, 3D printing technology has strong designability, simple process, low energy consumption, suitable for customized production, and can greatly shorten the production cycle from design to parts. field is widely used.
  • 3D printing powders of different material types have been developed.
  • polymer 3D printing powder materials the research and application of polyamide 3D printing powder is one of the important research fields.
  • the methods for preparing polyamide 3D printing powder are mainly cryogenic pulverization combined with grinding.
  • Patent CN107151441A, Patent CN108017905A and other patents use cryogenic pulverization method to crush polyamide particles to obtain polyamide 3D printing powder with smaller particle size, but the powder particles obtained by this technology have poor particle shape uniformity and poor powder fluidity. And if it needs to achieve functionality, it can only be modified by blending with functional additives, which has the defect of uneven mixing, which affects the performance stability of the parts.
  • the fluidity of 3D printing powder is different from that of resin, and the fluidity of powder directly affects the uniformity of powder spreading or the stability of powder feeding.
  • the powder fluidity is too poor, which is easy to cause uneven thickness of the powder layer and uneven melting amount in the scanning area, resulting in uneven internal structure of the part and affecting the forming quality; while the powder with high fluidity is easy to fluidize, deposit evenly, and use the powder
  • the high rate is conducive to improving the dimensional accuracy and uniform densification of the surface of the 3D printed parts.
  • the fluidity of the powder is not only related to the particle size, but also to the surface friction and concave-convex degree (roundness) of the powder particles. Only 3D printing powders with uniform particle size, uniform surface friction and roundness have good powder fluidity.
  • the UV stabilizer is generally fully melted under the high temperature and shear of the screw, and some light-stabilizing functional compounds agglomerate and precipitate, resulting in uneven distribution of the light stabilizer in the resin matrix, and uneven light stabilizer precipitates on the surface of the 3D printing powder. . If there are particles or voids that are much larger than the particle size of the light stabilizer particles themselves through scanning electron microscopy, it means that the light stabilizer has agglomeration and precipitation.
  • the purpose of the present invention is to provide a 3D printing powder in which the light stabilizer is uniformly distributed in the resin matrix with a size of less than 10 microns, the particles are round, and the particle size and bulk density are suitable, and a preparation method thereof.
  • a 3D printing powder in parts by weight, comprising the following components:
  • the particle size of the light stabilizer is dispersed in the polyamide resin matrix in the form of less than 10 microns; the particle size distribution range of the 3D printing powder is d(0.1) ⁇ 20 microns and d(0.9) ⁇ 110 microns.
  • the fluidity is ⁇ 10s/50g, and the bulk density is 0.45-0.65g/cm 3 .
  • the light stabilizer is selected from at least one of the following compounds:
  • Light stabilizer 1 2-(2H-benzotriazole-2)-4,6-bis(1-methyl-1-phenylethyl)phenol, CAS70321-86-7, the commercial product is Tinuvin 234 ;
  • Light stabilizer 2 bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate, CAS 129757-67-1, commercially available product is Tinuvin123;
  • Light stabilizer 3 n-hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, CAS067845-93-6, the commercially available product is Cyasorb 2908;
  • Light stabilizer 4 2-(2-hydroxy-5-methylphenyl) benzotriazole, CAS2240-22-4, the commercially available product is Tinuvin P;
  • Light stabilizer 5 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)-5-chlorobenzotriazole, CAS 3864-99-1, commercially available product is Tinuvin 327;
  • Light stabilizer 6 bis(1,2,2,6,6-pentamethyl-4-piperidinyl)2-butyl-2-[((4-hydroxy-3,5-di-tert-butyl- Phenyl) methyl] malonate, CAS71714-47-1, commercially available product is Tinuvin144;
  • Light Stabilizer 7 N,N"-1,2-ethanediylbis(1,3-propanediamine) with cyclohexane and N-butyl-2,2,6,6-tetramethyl peroxide
  • the reaction product of base-4-piperidinamine-2,4,6-trichloro-1,3,5-triazine, CAS191680-81-6, the commercial product is Flamestab NOR116;
  • Light stabilizer 8 2-hydrazino-2-oxo-N-(1,2,2,6,6-pentamethylpiperidin-4-yl)acetamide, commercially available as LuchemHA-R100.
  • the distribution of the light stabilizer in the polyamide resin matrix is detected by the following method: 3D printing powder is made into a spline by 3D printing, and a section of the strip is cut and soaked in a solution for 24 hours to dissolve the light stabilizer on the surface of the spline. However, the polyamide was not dissolved, and then the cross-sectional morphology of the splines was observed with a scanning electron microscope.
  • the 3D printing powder is made into a spline by 3D printing, and a section of the strip is cut and placed in a solution of soluble light stabilizer but insoluble polyamide (such as: toluene, xylene, dichloromethane, chloroform) ), soaked for 24 hours, and then observed the cross-sectional morphology of the splines with a scanning electron microscope.
  • soluble light stabilizer but insoluble polyamide such as: toluene, xylene, dichloromethane, chloroform
  • the holes are uniform and the diameter is less than 5 microns, indicating that the light stabilizer is distributed uniformly and There is no agglomeration and precipitation; some areas are smooth without holes and some areas have holes and the diameter is greater than 20 microns, indicating that the light stabilizer distribution does not have agglomeration and precipitation.
  • the protrusions and roundness of the surface of the 3D printing powder can also be seen through a scanning electron microscope (generally 200-300 microns or higher).
  • the particle size distribution range of the 3D printing powder obtained by the method of the present invention is d(0.1) ⁇ 10 microns and d(0.9) ⁇ 125 microns.
  • the test method for the particle size range is to test in accordance with the standard GB/T 19077-2016.
  • d(0.1) ⁇ 20 microns means that 10% of the 3D printing powders have a particle size smaller than 20 microns
  • d(0.9) ⁇ 110 microns means that 90% of the 3D printing powders have a particle size smaller than 110 microns.
  • the powder flowability of the 3D printing powder obtained by the method of the present invention is ⁇ 10s/50g.
  • the fluidity of 3D printing powders was tested using a powder flow meter.
  • the bulk density of the 3D printing powder obtained by the method of the present invention is 0.45-0.65 g/cm 3 .
  • the test method of bulk density is to use the self-weight of the resin to freely drop the sample into a container of known volume from a specified height, and measure the mass of the resin per unit volume, that is, to obtain the size of the bulk density.
  • the particle size and bulk density of the 3D printing powder affect the melting process of the material during the 3D printing process. Too low bulk density and too large particle size will lead to longer 3D printing time (especially prolonging the high temperature melting time of 3D printing powder); too high bulk density and too small particle size will lead to 3D printing process.
  • the 3D printing powder is not heated uniformly, which affects the performance of the part.
  • the particle size of the light stabilizer is less than 5 microns
  • the particle size distribution range of the 3D printing powder is d(0.1) ⁇ 30 microns and d(0.9) ⁇ 90 microns
  • the powder flowability It is ⁇ 9s/50g
  • the bulk density is 0.53-0.62g/cm 3 .
  • the polyamide resin is at least one of aliphatic polyamide and semi-aromatic polyamide; the aliphatic polyamide is selected from PA6, PA66, PA12, PA1010, PA1012, PA11, PA610, PA69, PA1212 At least one of the semi-aromatic polyamides is selected from at least one of PA5T, PA6T610, PA6T6I, PA6T1010, PA10T, PA10T10I, PA10T1010, PA10T1012, and PA10T6T. Examples of specific embodiments of the present invention include PA12, PA66, and PA10T.
  • the above-mentioned preparation method of 3D printing powder includes the following steps:
  • the compound solvent by weight, includes 10-30 parts of phenol and 15-40 parts of toluene; the weight ratio of the polyamide raw material to the compound solvent is 1:10-1:2; during the precipitation process, the light stabilization function The weight ratio of the polyamide solution to deionized water is 1:5-1:50.
  • the decolorization treatment process is adding a decolorizing agent, raising the temperature of the solution to 50° C. to the reflux temperature of the compound solvent for 0.5-2 hours, and then cooling the temperature to less than 50° C. and filtering.
  • the decolorizing agent is selected from at least one of activated carbon and activated clay.
  • step (A) the solution is heated to a temperature of 100° C. to the reflux temperature of the solution.
  • step (C) when the 3D printing powder is precipitated, the temperature of deionized water is in the range of 20-50° C.
  • the polyamide raw material is derived from at least one of new polyamide material, polyamide recycled material and polyamide waste material.
  • the new polyamide material is newly synthesized and contains more than or equal to 99wt% of polyamide resin;
  • the polyamide recycled material is the polyamide obtained by processing polyamide waste through a recycling process, which contains more than or equal to 99wt% of polyamide resin;
  • Polyamide wastes are discarded polyamide products, wherein the content of polyamide resin ranges from 25 to 90 wt%.
  • the present invention has the following beneficial effects:
  • the invention overcomes the defects of the existing 3D printing powder preparation technology, and provides a 3D printing powder and a preparation method thereof.
  • the 3D printing powder of the present invention is different from the material obtained by blending and modification.
  • the light stabilizer has a small particle size and a uniform distribution in the resin matrix of the 3D printing powder without agglomeration (the particle size is less than 10 microns, preferably less than 5 microns),
  • the 3D printing powder has a round shape and good fluidity, and the parts printed with it are flat and have excellent light stability.
  • the invention also provides a preparation method of the 3D printing powder.
  • the light-stable functional 3D printing powder can be derived from polyamide waste or from new polyamide materials.
  • the method can integrate the purification of polyamide waste and the preparation of 3D printing powder.
  • the polyamide solution is sprayed into the water by spraying, which can realize the precipitation of polyamide with sufficient, uniform particle size, roundness and no bumps, and the particle size distribution range of the 3D printing powder can be made d(0.1 without screening. ) ⁇ 20 microns and d(0.9) ⁇ 110 microns, the powder fluidity is ⁇ 10s/50g, and the bulk density is 0.45-0.65g/cm 3 .
  • Figure 1 Scanning electron microscope photo of 3D printing powder with rounded surface according to Example 1 of the present invention, with rounded shape and strong uniformity.
  • Figure 2 SEM photos of commercially available 3D printing powders with uneven particle size and different shapes, with many surface bumps.
  • Figure 3 Scanning electron microscope photo of the 3D printing powder of Comparative Example 3, the particle size is uneven, the shape is different, and the surface is uneven.
  • Figure 4 The morphology of the 3D printing powder of Example 1 of the present invention prepared by the 3D printing method after etching treatment, the light stabilizer is uniformly distributed, and there is no phenomenon of agglomeration and precipitation.
  • Figure 5 The 3D printing powder prepared by the blending method (Comparative Example 3), the morphology of the spline prepared by the 3D printing method after etching treatment, the light stabilizer is unevenly distributed, and there is obvious agglomeration.
  • the sources of raw materials used in the present invention are as follows:
  • Polyamide waste PA12 It comes from recycled materials such as plumbing pipes and peripheral parts of automobile engines, and contains a small amount of toner. Theoretically, the PA12 content is about 95%-97%.
  • Polyamide waste PA66 Recycling material from gears, bearings and other parts in mechanical equipment, containing glass fiber reinforcement, the theoretical PA66 content is about 65%-70%.
  • Polyamide waste PA10T Recycling material from parts around the engine, containing glass fiber reinforcement, the theoretical PA10T content is 60-70%.
  • PA12 new material Arkema, P201TL;
  • Phenol industrial grade
  • Light stabilizer 3 n-hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, commercially available.
  • Light stabilizer 1 2-(2H-benzotriazole-2)-4,6-bis(1-methyl-1-phenylethyl)phenol, commercially available.
  • Light stabilizer 2 Tinuvin 123: commercially available.
  • Light stabilizer 4 Tinuvin P, commercially available
  • 3D printing powder bulk density test Using the self-weight of the resin, drop the sample freely into a container of known volume from a specified height, and measure the mass of the resin per unit volume to obtain the bulk density (test standard GB /T 20316.2-2006).
  • 100g polyamide waste PA12 was added to the compound solvent (100g phenol/200g toluene), heated to a temperature of 80°C and stirred until dissolved, then added 10g activated carbon, kept stirring for 0.5 hours, cooled to 40°C and filtered to obtain a clear polyamide solution 0.8g light stabilizer 3 is added in the polyamide clear solution, stirred until fully dissolved, obtains the functional polyamide solution; Then the functional polyamide solution is sprayed into 4000g deionized water by spraying (the deionized water temperature is maintained at 0 -10°C), the polyamide 3D printing powder was precipitated; after drying, weighed, and then tested other properties.
  • the compound solvent 100g phenol/200g toluene
  • Example 2 The difference between Example 2 and Example 1 is that the light stabilizer 1 is added together with the activated carbon.
  • Example 3 The difference between Example 3 and Example 1 is that the light stabilizer 2 is used.
  • polyamide waste PA66 100g was added to the compound solvent (80g phenol/160g toluene), heated to a temperature of 80°C and stirred to dissolve, then 10g of activated carbon was added, kept stirring for 0.5 hours, cooled to 50°C and filtered to obtain a clear polyamide solution 0.8g of light stabilizer 4 is added to the polyamide clear solution, stirred until fully dissolved, to obtain a functional polyamide solution; then the functional polyamide solution is sprayed into 4000g of deionized water (the deionized water temperature is maintained at 10 -15°C), the polyamide 3D printing powder was precipitated; after drying, weighed, and then tested other properties.
  • the compound solvent 80g phenol/160g toluene
  • Example 8 The difference between Example 8 and Example 1 is that in step (A), the solution is heated to a temperature of 110°C and stirred until dissolved, and the temperature of deionized water is maintained at 50-60°C.
  • Example 9 The difference between Example 9 and Example 1 is that in step (A), the solution is heated to a temperature of 105°C and stirred until dissolved, and the temperature of deionized water is maintained at 20-25°C.
  • step (A) the solution is heated to a temperature of 100°C and stirred until dissolved, and the temperature of deionized water is maintained at 40-50°C.
  • the dried recovered polyamide PA12 and 0.8 g of light stabilizer A were extruded and granulated through a twin-screw extruder (the screw length-diameter ratio was 45:1, the first zone was 170°C, the second zone was 180°C, and the third zone was 190°C, The fourth zone is 205°C, the fifth zone is 215°C, the sixth zone is 225°C, the seventh zone is 235°C, the eighth zone is 240°C, the ninth zone is 245°C, the head temperature is 240°C, and the speed is 350 rpm), and then the pellets are placed in the liquid
  • the nitrogen medium and low temperature are frozen to below -120 °C, so as to achieve embrittlement and easy pulverization, and then the frozen pellets are put into the cavity of the low-temperature pulverizer, and the impeller rotates at high speed for pulverization; Choose 3D printing powder with particle size in the range of 120-400 mesh.
  • Table 1 The performance test results of the 3D printing powders of the examples and comparative examples
  • the 3D printing powder obtained by other methods has a light stabilizer hole particle size > 5 microns in the matrix, and has low fluidity and uneven particle size distribution, which also leads to a low bulk density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

本发明提供了一种光稳定功能改性的3D打印粉末,按重量份计,包括以下组分:聚酰胺100份;光稳定剂0.1-4份;所述的光稳定剂的粒径均以小于10微米的形态分散于聚酰胺树脂基体中;3D打印粉末粒径分布均匀、流动性好、堆积密度合适。本发明的3D打印粉末是通过以下方法制备得到,在苯酚/甲苯为主的复配溶剂体系中将聚酰胺新料、废料、回收料的树脂溶解,经过脱色(处理聚酰胺废料所需步骤)、过滤提纯得到聚酰胺澄清溶液,在聚酰胺澄清溶液中加入可以溶于本发明复配溶剂的光稳定剂充分溶解,最后通过将溶液以喷雾法喷入去离子水中,得到颗粒规整、粒径均匀、流动性好的3D打印粉末。

Description

一种3D打印粉末及其制备方法 技术领域
本发明涉及绿色高分子材料技术领域,特别是涉及一种3D打印粉末及其制备方法。
背景技术
3D打印技术与传统技术相比,可设计性强,工序简单,能耗低,适合定制化生产,可大大缩短从设计到制件的生产周期,因此目前在医疗、艺术等个性化需求较强的领域被广泛应用。针对不同应用领域,开发了不同材料种类的3D打印粉末。在高分子3D打印粉末材料中,聚酰胺3D打印粉末的研究和应用是重要的研究领域之一。
目前,制备聚酰胺3D打印粉末的方法主要为深冷粉碎法结合研磨法。专利CN107151441A、专利CN108017905A等专利利用深冷粉碎法,对聚酰胺颗粒料进行破碎获得粒径较小的聚酰胺3D打印粉末,但是该技术获得的粉末颗粒形状均一度差,粉体流动性差。并且如需实现功能性,只能通过与功能性添加剂共混改性,存在混合不均的缺陷,对制件性能稳定性造成影响。
现有聚酰胺3D打印粉末通常使用的都是以纯聚酰胺树脂原材料,基于聚酰胺废料回收提纯过程与制备3D打印粉末过程一体化的技术鲜有报道。
3D打印粉末的流动性与树脂流动性不同,粉体的流动性直接影响铺粉的均匀性或送粉的稳定性。粉末流动性太差,易造成粉层厚度不均,扫描区域内的熔化量不均,导致制件内部结构不均,影响成形质量;而高流动性的粉末易于流化,沉积均匀,粉末利用率高,有利于提高3D打印成形件的尺寸精度和表面均匀致密化。粉末的流动性不仅与粒径有关,而且与粉末颗粒表面摩擦性、凹凸程度(圆润)有关,只有粒径均一、表面摩擦力均一、圆润的3D打印粉末才具有良好的粉末流动性。
同时,现有技术中,难以实现3D打印粉末中光稳定剂均匀分散。紫外稳定剂一般会在螺杆的高温和剪切下充分熔融,部分光稳定功能化合物团聚和析出,造成树脂基体中的光稳定剂分布不均匀,3D打印粉末表面具有凹凸不平的光稳定剂析出物。如果通过扫描电镜观察制件中有比光稳定剂颗粒自身粒径大很多的颗粒或空洞,则说明光稳定剂有团聚和析出。
发明内容
本发明的目的在于,提供一种光稳定剂在树脂基体中均以小于10微米均匀分布、颗粒圆润、粒径与堆积密度适宜的3D打印粉末及其制备方法。
本发明是通过以下技术方案实现的:
一种3D打印粉末,按重量份计,包括以下组分:
聚酰胺树脂    100份;
光稳定剂      0.1-4份;
所述的光稳定剂的粒径均以小于10微米的形态分散于聚酰胺树脂基体中;3D打印粉末的粒径分布范围是d(0.1)<20微米且d(0.9)<110微米,粉体流动性为≤10s/50g,堆积密度0.45-0.65g/cm 3
所述的光稳定剂选自以下化合物中的至少一种:
光稳定剂1:2-(2H-苯并三唑-2)-4,6-二(1-甲基-1-苯基乙基)苯酚,CAS70321-86-7,市售产品为Tinuvin 234;
光稳定剂2:双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酸酯,CAS 129757-67-1,市售产品为Tinuvin123;
光稳定剂3:3,5-二叔丁基-4-羟基苯甲酸正十六酯,CAS067845-93-6,市售产品为Cyasorb 2908;
光稳定剂4:2-(2-羟基-5-甲基苯基)苯并三氮唑,CAS2240-22-4,市售产品为Tinuvin P;
光稳定剂5:2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯代苯并三唑,CAS 3864-99-1,市售产品为Tinuvin 327;
光稳定剂6:双(1,2,2,6,6-五甲基-4-哌啶基)2-丁基-2-[((4-羟基-3,5-二叔丁基-苯基)甲基]丙二酸酯,CAS71714-47-1,市售产品为Tinuvin144;
光稳定剂7:N,N”-1,2-乙烷二基二(1,3-丙二胺)与环己烷和过氧化N-丁基-2,2,6,6-四甲基-4-哌啶胺-2,4,6-三氯-1,3,5-三嗪的反应产物,CAS191680-81-6,市售产品为Flamestab NOR116;。
光稳定剂8:2-肼基-2-氧代-N-(1,2,2,6,6-五甲基哌啶-4-基)乙酰胺,市售商品为LuchemHA-R100。
光稳定剂在聚酰胺树脂基体中分布是通过以下方法检测:将3D打印粉末以3D打印方式制成样条,截取样条中的一段置于溶液中浸泡24小时溶解样条表面的光稳定剂但是不溶解聚酰胺,之后用扫描电子显微镜观察样条截面形貌。
具体的,将3D打印粉末以3D打印方式制成样条,截取样条中的一段置于可溶光稳定剂但是不可溶聚酰胺的溶液中(比如:甲苯、二甲苯、二氯甲烷、氯仿),浸泡处理24小时,之后用扫描电子显微镜观察样条截面形貌,截面形貌中的孔洞分布形态即为光稳定剂的分布形态,孔洞均匀且直径小于5微米说明光稳定剂分布均匀且没有发生团聚和析出;部分区域平滑无孔洞而部分区域有孔洞且直径大于20微米说明光稳定剂分布不均有团聚和析出的情 况。
通过扫描电镜显微镜(一般200-300微米或更高精度)也可以看到3D打印粉末表面的突起、圆润度情况。
通过本发明方法得到的3D打印粉末的粒径分布范围是d(0.1)<10微米且d(0.9)<125微米。粒径范围的测试方法为按照标准GB/T 19077-2016进行测试。d(0.1)<20微米表示10%的3D打印粉末的粒径小于20微米,d(0.9)<110微米表示90%的3D打印粉末的粒径小于110微米。
通过本发明方法得到的3D打印粉末的粉体流动性为≤10s/50g。3D打印粉末流动性使用粉体流动仪测试。
通过本发明方法得到的所述3D打印粉末的堆积密度0.45-0.65g/cm 3。堆积密度的测试方法为利用树脂的自重,将试样从规定的高度自由落入已知容积的容器中,测量单位体积的树脂的质量,即得到堆积密度的大小。3D打印粉末的粒径与堆积密度影响着3D打印过程中材料的熔融过程。过低的堆积密度与过大的粒径会导致3D打印耗时更长(特别是延长3D打印粉末的受高温熔融时长);过高的堆积密度与过小的粒径会导致3D打印过程中3D打印粉末受热不均匀,使制件性能受到影响。
优选的,3D打印粉末树脂基体中,光稳定剂的粒径均小于5微米,3D打印粉末的粒径分布范围是d(0.1)<30微米且d(0.9)<90微米,粉体流动性为≤9s/50g,堆积密度0.53-0.62g/cm 3
通过本发明的方法,可以处理绝大部分种类的聚酰胺,经过实验,以下聚酰胺都可以通过本发明的方法制备得到上述性能的3D打印粉末。所述的聚酰胺树脂为脂肪族聚酰胺、半芳香族聚酰胺中的至少一种;所述的脂肪族聚酰胺选自PA6、PA66、PA12、PA1010、PA1012、PA11、PA610、PA69、PA1212中的至少一种;所述的半芳香族聚酰胺选自PA5T、PA6T610、PA6T6I、PA6T1010、PA10T、PA10T10I、PA10T1010、PA10T1012、PA10T6T中的至少一种。本发明具体实施方式举例PA12、PA66、PA10T。
上述的3D打印粉末的制备方法,包括以下步骤:
(A)将聚酰胺原料加入复配溶剂中,加热达到50℃至溶液回流的温度并搅拌至溶解(如有不溶物,增加过滤工序将不溶物滤除;如溶液颜色较深,则增加脱色处理工序),得到聚酰胺澄清溶液;
(B)将光稳定剂加入聚酰胺澄清溶液中,搅拌至溶解,得到紫外稳定功能性聚酰胺溶液;
(C)将光稳定功能性聚酰胺溶液以喷雾方式喷入去离子水中,析出3D打印粉末,期间, 去离子水的温度为0-60℃范围内;
所述的复配溶剂,按重量份计,包括10-30份苯酚、15-40份甲苯;聚酰胺原料与复配溶剂重量比为1:10-1:2;析出过程中,光稳定功能性聚酰胺溶液与去离子水的重量比为1:5-1:50。
脱色处理工序为加入脱色剂,将溶液升温达到50℃至复配溶剂回流温度保持0.5-2小时,再降温至低于50℃后过滤。
所述的脱色剂选自活性炭、活性白土中的至少一种。
优选的,步骤(A)将溶液加热达到100℃至溶液回流温度,步骤(C)中,析出3D打印粉末时,去离子水的温度为20-50℃范围内。通过控制此步骤中去离子的温度来控制聚酰胺与光稳定剂的析出与结晶速率,能够进一步缩小光稳定剂在树脂基体中的粒径分布,同时使3D打印粉末颗粒更圆润、粒径分布更窄。
所述的聚酰胺原料来源于聚酰胺新料、聚酰胺回收料、聚酰胺废料中的至少一种。聚酰胺新料是新合成得到的,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺回收料是将聚酰胺废料通过回收工艺处理得到的聚酰胺,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺废料为报废丢弃的聚酰胺制品,其中聚酰胺树脂含量范围是25-90wt%。
本发明与现有技术相比,具有如下有益效果:
本发明克服了现有3D打印粉末制备技术的缺陷,提供了一种3D打印粉末及其制备方法。本发明的3D打印粉末不同于共混改性获得的材料,光稳定剂在3D打印粉末的树脂基体中粒径细小且分布均一不聚团(粒径均小于10微米,优选小于5微米)、3D打印粉末形状圆润流动性较好,利用其打印获得的制件平整,光稳定性能优秀。本发明还提供了该3D打印粉末的制备方法,光稳定功能性3D打印粉末可以来源于聚酰胺废料也可以来源于聚酰胺新料。本方法可一体化完成聚酰胺废料的提纯和3D打印粉末制备过程。工艺的最后步骤采用喷雾的方式将聚酰胺溶液喷到水中,这样可以实现聚酰胺充分、粒径均一、圆润无凹凸的析出,无需筛选即可使得3D打印粉末的粒径分布范围是d(0.1)<20微米且d(0.9)<110微米,粉体流动性为≤10s/50g,堆积密度0.45-0.65g/cm 3
附图说明
图1:本发明实施例1的表面圆润的3D打印粉末扫描电镜照片,形状圆润均一性强。
图2:市售的3D打印粉末扫描电镜照片,颗粒粒径不均,形状各异表面凹凸多。
图3:对比例3的3D打印粉末扫描电镜照片,颗粒粒径不均,形状各异表面凹凸多。
图4:本发明实施例1的3D打印粉末利用3D打印方式制备的样条经刻蚀处理后的形貌, 光稳定剂分布均匀,无团聚和析出的现象。
图5:通过共混方法制备得到的3D打印粉末(对比例3),利用3D打印方式制备的样条经刻蚀处理后的形貌,光稳定剂分布不均,有明显的团聚现象。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明所用原料来源如下:
聚酰胺废料PA12:来自水暖管道、汽车发动机周边零件等回收料,含有少量色粉,理论上PA12含量约为95%-97%。
聚酰胺废料PA66:来自机械设备中齿轮、轴承等零部件的回收料,含有玻纤增强,理论上PA66含量约为65%-70%。
聚酰胺废料PA10T:来自发动机周边零部件回收料,含有玻纤增强,理论上PA10T含量为60-70%。
PA12新料:阿科玛,P201TL;
PA12回收料:自制,将上述聚酰胺废料PA12粉碎,加入3倍聚酰胺废料重量的复配溶剂(重量比苯酚:甲苯=1:1),加热至80℃搅拌溶解,降温至30℃后过滤得到聚酰胺溶液;再将聚酰胺溶液加入去离子水中,分离掉液体得到PA12回收料。
苯酚:工业纯;
甲苯:工业纯;
光稳定剂3:3,5-二叔丁基-4-羟基苯甲酸正十六酯,市售。
光稳定剂1:2-(2H-苯并三唑-2)-4,6-二(1-甲基-1-苯基乙基)苯酚,市售。
光稳定剂2:Tinuvin123:市售。
光稳定剂4:Tinuvin P,市售;
各项性能测试方法:
(1)考察3D打印粉末中光稳定合物的分布:将实施例和对比例3D打印粉末通过3D打印成样条后参照说明书列举的方法处理样条的一面,再进行SEM形貌分析测试。具体的,将样条固定在样品台并黏在导电胶上,表面镀金作为导电层,置于样品舱中抽真空,并调整电流电压,观察样品形貌,统计得到光稳定剂孔洞粒径。扫描至20微米-500微米之间。
(3)3D打印粉末流动性测试:使用粉体流动仪,按照使用方法测试。
(4)3D打印粉末粒径测试:按照标准GB/T 19077-2016进行测试。
(5)3D打印粉末堆积密度测试:利用树脂的自重,将试样从规定的高度自由落入已知容积的容器中,测量单位体积的树脂的质量,即得到堆积密度的大小(测试标准GB/T 20316.2-2006)。
(6)通过SEM考察3D打印粉末外观:将试样固定在样品台并黏在导电胶上,表面镀金作为导电层,置于样品舱中抽真空,并调整电流电压,观察样品形貌,扫描至20微米-500微米之间。
实施例1:
将100g聚酰胺废料PA12加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度80℃搅拌至溶解,再加入10g活性炭,保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺澄清溶液;将0.8g光稳定剂3加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;再将功能性聚酰胺溶液以喷雾方式喷入4000g去离子水中(去离子水温度维持0-10℃),析出聚酰胺3D打印粉末;干燥后称量,再进行其他性能的测试。
实施例2:
实施例2与实施例1的区别在于,光稳定剂1与活性炭一同加入。
实施例3:
实施例3与实施例1的区别在于,光稳定剂2。
实施例4:
将100g聚酰胺废料PA10T加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度60℃搅拌至溶解,再加入10g活性炭,升温至120℃,保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺澄清溶液;将0.8g光稳定剂4加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;再将功能性聚酰胺溶液以喷雾方式喷入4000g去离子水中(去离子水温度维持10-15℃),析出聚酰胺3D打印粉末;干燥后称量,再进行其他性能的测试。
实施例5:
将100g聚酰胺废料PA66加入复配溶剂(80g苯酚/160g甲苯)中,加热至温度80℃搅拌至溶解,再加入10g活性炭,保温搅拌0.5小时,降温至50℃后过滤,得到聚酰胺澄清溶液;将0.8g光稳定剂4加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;再将功能性聚酰胺溶液以喷雾方式喷入4000g去离子水中(去离子水温度维持10-15℃),析出聚酰胺3D打印粉末;干燥后称量,再进行其他性能的测试。
实施例6:
将100g的PA12新料加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度90℃搅拌至溶解,保温搅拌0.5小时,降温至50℃后过滤,得到聚酰胺澄清溶液;将4.0g光稳定剂4加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;再将功能性聚酰胺溶液以喷雾方式喷入4000g去离子水中(去离子水温度维持10-15℃),析出聚酰胺3D打印粉末;干燥后称量,再进行其他性能的测试。
实施例7:
将100g的PA12回收料加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度90℃搅拌至溶解,再加入10g活性炭,保温搅拌0.5小时,降温至50℃后过滤,得到聚酰胺澄清溶液;将4.0g光稳定剂4加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;再将功能性聚酰胺溶液以喷雾方式喷入4000g去离子水中(去离子水温度维持10-15℃),析出聚酰胺3D打印粉末;干燥后称量,再进行其他性能的测试。
实施例8:
实施例8与实施例1的区别在于,步骤(A)中将溶液加热至温度110℃搅拌至溶解,去离子水温度维持50-60℃。
实施例9:
实施例9与实施例1的区别在于,步骤(A)中将溶液加热至温度105℃搅拌至溶解,去离子水温度维持20-25℃。
实施例10:
实施例10与实施例1的区别在于,步骤(A)中将溶液加热至温度100℃搅拌至溶解,去离子水温度维持40-50℃。
对比例1:
将100g聚酰胺废料PA12加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度100℃搅拌至溶解,再加入10g活性炭,保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺澄清溶液;将0.8g光稳定剂A加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;在10分钟内向功能性聚酰胺溶液加入4000g去离子水,析出聚酰胺光稳定改性颗粒;干燥后将粒料在液氮中低温冷冻至-120℃以下,使之实现脆化易粉碎状态,再将冷冻好的粒料投入低温粉碎机腔体内,通过叶轮高速旋转进行粉碎加工;由气流筛分机进行分级并收集,选择粒度在120~400目范围内的3D打印粉末。
对比例2:
将100g聚酰胺废料PA12加入1500g的复合溶剂中(甲酸15%、盐酸10%、乙酸35%、水40%),在80℃下搅拌溶解4h,后离心分离(转速为4000R/min)的到清液,再清液中投入0.8g光稳定剂A,搅拌均匀,再将溶液通入1500g的去离子水中,析出PA12沉淀,去离子水洗涤PA12颗粒至pH呈中性,干燥后将粒料在液氮中低温冷冻至-120℃以下,使之实现脆化易粉碎状态,再将冷冻好的粒料投入低温粉碎机腔体内,通过叶轮高速旋转进行粉碎加工;由气流筛分机进行分级并收集,选择粒度在120~400目范围内的3D打印粉末。
对比例3:
将100g聚酰胺废料PA12加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度100℃搅拌至溶解,再加入10g活性炭,保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺澄清溶液;再将聚酰胺澄清溶液通入4000g去离子水中,析出回收聚酰胺PA12。将干燥后的回收聚酰胺PA12与0.8g光稳定剂A通过双螺杆挤出机挤出造粒(螺杆长径比为45:1,一区170℃,二区180℃,三区190℃,四区205℃,五区215℃,六区225℃,七区235℃,八区240℃,九区245℃,机头温度240℃,转速为350转/分),再将粒料在液氮中低温冷冻至-120℃以下,使之实现脆化易粉碎状态,再将冷冻好的粒料投入低温粉碎机腔体内,通过叶轮高速旋转进行粉碎加工;由气流筛分机进行分级并收集,选择粒度在120~400目范围内的3D打印粉末。
表1:实施例和对比例3D打印粉末各项性能测试结果
Figure PCTCN2020140809-appb-000001
续表1:
Figure PCTCN2020140809-appb-000002
从对比例1-3可知,通过其他方法得到的3D打印粉末,其基体中的光稳定剂孔洞粒径>5微米,并且流动性低,粒径分布不均匀也导致了堆积密度较低。

Claims (10)

  1. 一种3D打印粉末,其特征在于,按重量份计,包括以下组分:
    聚酰胺树脂        100份;
    光稳定剂      0.1-4份;
    所述的光稳定剂的粒径均以小于10微米的形态分散于聚酰胺树脂基体中;3D打印粉末的粒径分布范围是d(0.1)<20微米且d(0.9)<110微米,粉体流动性为≤10s/50g,堆积密度0.45-0.65g/cm 3
  2. 根据权利要求1所述的3D打印粉末,其特征在于,所述的光稳定剂选自以下化合物中的至少一种:
    光稳定剂1:2-(2H-苯并三唑-2)-4,6-二(1-甲基-1-苯基乙基)苯酚;
    光稳定剂2:双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酸酯;
    光稳定剂3:3,5-二叔丁基-4-羟基苯甲酸正十六酯;
    光稳定剂4:2-(2-羟基-5-甲基苯基)苯并三氮唑;
    光稳定剂5:2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯代苯并三唑;
    光稳定剂6:双(1,2,2,6,6-五甲基-4-哌啶基)2-丁基-2-[((4-羟基-3,5-二叔丁基-苯基)甲基]丙二酸酯;
    光稳定剂7:N,N”-1,2-乙烷二基二(1,3-丙二胺)与环己烷和过氧化N-丁基-2,2,6,6-四甲基-4-哌啶胺-2,4,6-三氯-1,3,5-三嗪的反应产物;
    光稳定剂8:2-肼基-2-氧代-N-(1,2,2,6,6-五甲基哌啶-4-基)乙酰胺。
  3. 根据权利要求1所述的3D打印粉末,其特征在于,光稳定剂在聚酰胺树脂基体中分布是通过以下方法检测:将3D打印粉末以3D打印方式制成样条,截取样条中的一段置于溶液(选自氯仿、甲苯、DMF、乙酸乙酯、丙酮中的一种或多种的共混)中浸泡24小时溶解样条表面的光稳定剂但是上述溶剂不溶解聚酰胺,之后用扫描电子显微镜观察样条截面形貌。
  4. 根据权利要求1所述的3D打印粉末,其特征在于,所述的光稳定剂的粒径均以小于10微米的形态分散于聚酰胺树脂基体中,并且3D打印粉末的粒径分布范围是d(0.1)<30微米且d(0.9)<90微米,粉体流动性为≤9s/50g,堆积密度0.53-0.62g/cm 3
  5. 根据权利要求1所述的3D打印粉末,其特征在于,所述的聚酰胺树脂选自脂肪族聚酰胺、半芳香族聚酰胺中的至少一种;所述的脂肪族聚酰胺选自PA6、PA66、PA12、PA1010、PA1012、PA11、PA610、PA69、PA1212中的至少一种;所述的半芳香族聚酰胺选自PA5T、PA6T610、PA6T6I、PA6T1010、PA10T、PA10T10I、PA10T1010、PA10T1012、PA10T6T中的至少一种。
  6. 权利要求1-5任一项所述的3D打印粉末的制备方法,其特征在于,包括以下步骤:
    (A)将聚酰胺原料加入复配溶剂中,加热达到50℃至溶液回流的温度并搅拌至溶解(如有不溶物,增加过滤工序将不溶物滤除;如溶液颜色较深,则增加脱色处理工序),得到聚酰胺澄清溶液;
    (B)将光稳定剂加入聚酰胺澄清溶液中,搅拌至溶解,得到紫外稳定功能性聚酰胺溶液;
    (C)将光稳定功能性聚酰胺溶液以喷雾方式喷入去离子水中,析出3D打印粉末,期间,去离子水的温度为0-60℃范围内;
    所述的复配溶剂,按重量份计,包括10-30份苯酚、15-40份甲苯;聚酰胺原料与复配溶剂重量比为1:10-1:2;析出过程中,光稳定功能性聚酰胺溶液与去离子水的重量比为1:5-1:50。
  7. 根据权利要求6所述的3D打印粉末的制备方法,其特征在于,脱色处理工序为加入脱色剂,将溶液升温达到50℃至复配溶剂回流温度保持0.5-2小时,再降温至低于50℃后过滤。
  8. 据权利要求7所述的3D打印粉末的制备方法,其特征在于,所述的脱色剂选自活性炭、活性白土中的至少一种。
  9. 根据权利要求6所述的3D打印粉末的制备方法,其特征在于,步骤(A)将溶液加热达到100℃至溶液回流温度,步骤(C)中,析出3D打印粉末时,去离子水的温度为20-50℃范围内。
  10. 根据权利要求5所述的3D打印粉末的制备方法,其特征在于,所述的聚酰胺原料来源于聚酰胺新料、聚酰胺回收料、聚酰胺废料中的至少一种;聚酰胺新料是新合成得到的,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺回收料是将聚酰胺废料通过回收工艺处理得到的聚酰胺,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺废料为报废丢弃的聚酰胺制品,其中聚酰胺树脂含量范围是25-90wt%。
PCT/CN2020/140809 2020-07-06 2020-12-29 一种3d打印粉末及其制备方法 WO2022007359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010641813.4A CN111995862B (zh) 2020-07-06 2020-07-06 一种3d打印粉末及其制备方法
CN202010641813.4 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022007359A1 true WO2022007359A1 (zh) 2022-01-13

Family

ID=73466734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140809 WO2022007359A1 (zh) 2020-07-06 2020-12-29 一种3d打印粉末及其制备方法

Country Status (2)

Country Link
CN (1) CN111995862B (zh)
WO (1) WO2022007359A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024074794A1 (fr) * 2022-10-05 2024-04-11 Arkema France Procédé de recyclage d'une composition de polyamide usagée

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995862B (zh) * 2020-07-06 2022-02-18 金发科技股份有限公司 一种3d打印粉末及其制备方法
CN114349988B (zh) * 2021-12-29 2023-07-07 湖南华曙新材料科技有限责任公司 一种选择性激光烧结用的高分子粉末材料及其制备方法
CN114350144B (zh) * 2021-12-29 2023-05-23 湖南华曙高科技股份有限公司 一种用于选择性激光烧结的高分子粉末材料及其制备方法
CN115572405A (zh) * 2022-09-27 2023-01-06 西咸新区谷毅恒科技有限公司 一种滑雪板顶片脂肪族长链聚酰胺薄膜抗紫外处理工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760238A (zh) * 2005-11-11 2006-04-19 淄博广通化工有限责任公司 尼龙粉末的制备方法
KR20100026038A (ko) * 2008-08-29 2010-03-10 호서대학교 산학협력단 레이저 소결용 폴리아미드 미립자 제조방법
JP2010189610A (ja) * 2009-02-20 2010-09-02 Idemitsu Technofine Co Ltd レーザー焼結積層用組成物、その製造方法、および成形品
CN102311637A (zh) * 2010-07-01 2012-01-11 湖南华曙高科技有限责任公司 一种用于选择性激光烧结的尼龙复合材料及其制备方法
CN102399371A (zh) * 2011-10-17 2012-04-04 湖南华曙高科技有限责任公司 一种用于选择性激光烧结的聚酰胺粉末制备方法
CN104250437A (zh) * 2013-06-26 2014-12-31 合肥杰事杰新材料股份有限公司 一种改性尼龙微球材料及其在3d打印中的应用
CN104910613A (zh) * 2015-06-23 2015-09-16 青岛科技大学 一种3d打印用耐候尼龙粉末复合材料及其制备方法
CN105542200A (zh) * 2015-12-18 2016-05-04 福建瑞森新材料股份有限公司 一种规则球形尼龙粉末的制备方法
CN107057090A (zh) * 2017-04-27 2017-08-18 万华化学集团股份有限公司 一种尼龙粉末的制备方法
CN110885456A (zh) * 2019-12-13 2020-03-17 万华化学集团股份有限公司 窄粒径分布的尼龙粉末及其制备和在3d打印中的应用
CN111995862A (zh) * 2020-07-06 2020-11-27 金发科技股份有限公司 一种3d打印粉末及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004001324A1 (de) * 2003-07-25 2005-02-10 Degussa Ag Pulverförmige Komposition von Polymer und ammoniumpolyphosphathaltigem Flammschutzmittel, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Pulver
CN104910614B (zh) * 2015-06-23 2017-06-27 青岛科技大学 一种3d打印用低翘曲尼龙粉末复合材料及其制备方法
CN106832906B (zh) * 2017-03-02 2019-08-23 上海术博新材料技术有限公司 一种用于3d打印的高阻燃性尼龙复合材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1760238A (zh) * 2005-11-11 2006-04-19 淄博广通化工有限责任公司 尼龙粉末的制备方法
KR20100026038A (ko) * 2008-08-29 2010-03-10 호서대학교 산학협력단 레이저 소결용 폴리아미드 미립자 제조방법
JP2010189610A (ja) * 2009-02-20 2010-09-02 Idemitsu Technofine Co Ltd レーザー焼結積層用組成物、その製造方法、および成形品
CN102311637A (zh) * 2010-07-01 2012-01-11 湖南华曙高科技有限责任公司 一种用于选择性激光烧结的尼龙复合材料及其制备方法
CN102399371A (zh) * 2011-10-17 2012-04-04 湖南华曙高科技有限责任公司 一种用于选择性激光烧结的聚酰胺粉末制备方法
CN104250437A (zh) * 2013-06-26 2014-12-31 合肥杰事杰新材料股份有限公司 一种改性尼龙微球材料及其在3d打印中的应用
CN104910613A (zh) * 2015-06-23 2015-09-16 青岛科技大学 一种3d打印用耐候尼龙粉末复合材料及其制备方法
CN105542200A (zh) * 2015-12-18 2016-05-04 福建瑞森新材料股份有限公司 一种规则球形尼龙粉末的制备方法
CN107057090A (zh) * 2017-04-27 2017-08-18 万华化学集团股份有限公司 一种尼龙粉末的制备方法
CN110885456A (zh) * 2019-12-13 2020-03-17 万华化学集团股份有限公司 窄粒径分布的尼龙粉末及其制备和在3d打印中的应用
CN111995862A (zh) * 2020-07-06 2020-11-27 金发科技股份有限公司 一种3d打印粉末及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024074794A1 (fr) * 2022-10-05 2024-04-11 Arkema France Procédé de recyclage d'une composition de polyamide usagée
FR3140628A1 (fr) * 2022-10-05 2024-04-12 Arkema France Procédé de recyclage d’une composition de polyamide usagée

Also Published As

Publication number Publication date
CN111995862B (zh) 2022-02-18
CN111995862A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2022007359A1 (zh) 一种3d打印粉末及其制备方法
WO2022007360A1 (zh) 一种3d打印粉末及其制备方法
WO2022007361A1 (zh) 一种3d打印粉末及其制备方法
KR101782179B1 (ko) 폴리프로필렌용 나노 β-핵화제
US20050027050A1 (en) Laser sinter powder with a metal salt and a fatty acid derivative, process for its production, and moldings produced from this laser sinter powder
KR20130066618A (ko) 폴리아마이드 미립자 및 그의 제조방법, 그리고 이것을 이용한 광학 필름 및 액정표시장치
JP5716318B2 (ja) 回収ポリエステル樹脂の再生方法、およびリサイクルポリエステル樹脂を用いた成形品
CN110885456B (zh) 窄粒径分布的尼龙粉末及其制备和在3d打印中的应用
JP2001511085A (ja) 成型されるプラスチックにおける充填剤として再生ガラスを用いる方法
KR20130041333A (ko) 초고분자량 폴리에틸렌 섬유의 방사액의 제조 방법
US3080345A (en) Process for fabrication of shaped articles from linear superpolycarbonamides to provide improved products
Cao et al. Morphologies and crystal structures of styrene–acrylonitrile/isotactic polypropylene ultrafine fibers fabricated by melt electrospinning
KR20110097758A (ko) 고분자 입자의 제조 방법 및 제조 장치
KR20100125359A (ko) 폴리페닐렌술피드 수지 미립자의 제조 방법, 폴리페닐렌술피드 수지 미립자 및 그의 분산액
KR20120117738A (ko) 폴리아미드이미드 수지 미립자의 제조방법, 폴리아미드이미드 수지 미립자
CN108368289A (zh) Pa/pet分离方法
CN108659529A (zh) 一种激光烧结用聚酰胺短纤维复合材料的制备方法
CN108905655A (zh) 一种微孔聚苯硫醚中空纤维膜的制备方法
JP5386955B2 (ja) ポリアミド多孔質略球状粒子および光学材料
US3867332A (en) Process for the production of shaped articles of a linear polyester
JP2003320528A (ja) 熱可塑性樹脂ペレット
JP5271026B2 (ja) アラミドポリマー溶液の製造方法、製造システム、およびアラミドポリマー成形物
CN109569097A (zh) 一种石墨烯夹心复合pp棉滤芯及其制备方法
CN109433391B (zh) 一种磁性复合粉体的制备方法
KR101107585B1 (ko) 고압법에 의한 폴리올레핀-층상구조점토 나노복합체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20944234

Country of ref document: EP

Kind code of ref document: A1