CN111995862B - 一种3d打印粉末及其制备方法 - Google Patents

一种3d打印粉末及其制备方法 Download PDF

Info

Publication number
CN111995862B
CN111995862B CN202010641813.4A CN202010641813A CN111995862B CN 111995862 B CN111995862 B CN 111995862B CN 202010641813 A CN202010641813 A CN 202010641813A CN 111995862 B CN111995862 B CN 111995862B
Authority
CN
China
Prior art keywords
polyamide
light stabilizer
printing powder
solution
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010641813.4A
Other languages
English (en)
Other versions
CN111995862A (zh
Inventor
叶南飚
常欢
周沃华
李成
唐磊
刘鑫鑫
朱秀梅
苏榆钧
曹绍强
黄险波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kingfa Science and Technology Co Ltd
Original Assignee
Kingfa Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kingfa Science and Technology Co Ltd filed Critical Kingfa Science and Technology Co Ltd
Priority to CN202010641813.4A priority Critical patent/CN111995862B/zh
Publication of CN111995862A publication Critical patent/CN111995862A/zh
Priority to PCT/CN2020/140809 priority patent/WO2022007359A1/zh
Application granted granted Critical
Publication of CN111995862B publication Critical patent/CN111995862B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

本发明提供了一种光稳定功能改性的3D打印粉末,按重量份计,包括以下组分:聚酰胺100份;光稳定剂0.1‑4份;所述的光稳定剂的粒径均以小于10微米的形态分散于聚酰胺树脂基体中;3D打印粉末粒径分布均匀、流动性好、堆积密度合适。本发明的3D打印粉末是通过以下方法制备得到,在苯酚/甲苯为主的复配溶剂体系中将聚酰胺新料、废料、回收料的树脂溶解,经过脱色(处理聚酰胺废料所需步骤)、过滤提纯得到聚酰胺澄清溶液,在聚酰胺澄清溶液中加入可以溶于本发明复配溶剂的光稳定剂充分溶解,最后通过将溶液以喷雾法喷入去离子水中,得到颗粒规整、粒径均匀、流动性好的3D打印粉末。

Description

一种3D打印粉末及其制备方法
技术领域
本发明涉及绿色高分子材料技术领域,特别是涉及一种3D打印粉末及其制备方法。
背景技术
3D打印技术与传统技术相比,可设计性强,工序简单,能耗低,适合定制化生产,可大大缩短从设计到制件的生产周期,因此目前在医疗、艺术等个性化需求较强的领域被广泛应用。针对不同应用领域,开发了不同材料种类的3D打印粉末。在高分子3D打印粉末材料中,聚酰胺3D打印粉末的研究和应用是重要的研究领域之一。
目前,制备聚酰胺3D打印粉末的方法主要为深冷粉碎法结合研磨法。专利CN107151441A、专利CN108017905A等专利利用深冷粉碎法,对聚酰胺颗粒料进行破碎获得粒径较小的聚酰胺3D打印粉末,但是该技术获得的粉末颗粒形状均一度差,粉体流动性差。并且如需实现功能性,只能通过与功能性添加剂共混改性,存在混合不均的缺陷,对制件性能稳定性造成影响。
现有聚酰胺3D打印粉末通常使用的都是以纯聚酰胺树脂原材料,基于聚酰胺废料回收提纯过程与制备3D打印粉末过程一体化的技术鲜有报道。
3D打印粉末的流动性与树脂流动性不同,粉体的流动性直接影响铺粉的均匀性或送粉的稳定性。粉末流动性太差,易造成粉层厚度不均,扫描区域内的熔化量不均,导致制件内部结构不均,影响成形质量;而高流动性的粉末易于流化,沉积均匀,粉末利用率高,有利于提高3D打印成形件的尺寸精度和表面均匀致密化。粉末的流动性不仅与粒径有关,而且与粉末颗粒表面摩擦性、凹凸程度(圆润)有关,只有粒径均一、表面摩擦力均一、圆润的3D打印粉末才具有良好的粉末流动性。
同时,现有技术中,难以实现3D打印粉末中光稳定剂均匀分散。紫外稳定剂一般会在螺杆的高温和剪切下充分熔融,部分光稳定功能化合物团聚和析出,造成树脂基体中的光稳定剂分布不均匀,3D打印粉末表面具有凹凸不平的光稳定剂析出物。如果通过扫描电镜观察制件中有比光稳定剂颗粒自身粒径大很多的颗粒或空洞,则说明光稳定剂有团聚和析出。
发明内容
本发明的目的在于,提供一种光稳定剂在树脂基体中均以小于10微米均匀分布、颗粒圆润、粒径与堆积密度适宜的3D打印粉末及其制备方法。
本发明是通过以下技术方案实现的:
一种3D打印粉末,按重量份计,包括以下组分:
聚酰胺树脂 100份;
光稳定剂 0.1-4份;
所述的光稳定剂的粒径均以小于10微米的形态分散于聚酰胺树脂基体中;3D打印粉末的粒径分布范围是d(0.1)<20微米且d(0.9)<110微米,粉体流动性为≤10s/50g,堆积密度0.45-0.65g/cm3
所述的光稳定剂选自以下化合物中的至少一种:
光稳定剂1:2-(2H-苯并三唑-2)-4,6-二(1-甲基-1-苯基乙基)苯酚,CAS70321-86-7,市售产品为Tinuvin 234;
光稳定剂2:双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酸酯,CAS 129757-67-1,市售产品为Tinuvin123;
光稳定剂3:3,5-二叔丁基-4-羟基苯甲酸正十六酯,CAS067845-93-6,市售产品为Cyasorb 2908;
光稳定剂4:2-(2-羟基-5-甲基苯基)苯并三氮唑,CAS2240-22-4,市售产品为Tinuvin P;
光稳定剂5:2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯代苯并三唑,CAS 3864-99-1,市售产品为Tinuvin 327;
光稳定剂6:双(1,2,2,6,6-五甲基-4-哌啶基)2-丁基-2-[((4-羟基-3,5-二叔丁基-苯基)甲基]丙二酸酯,CAS71714-47-1,市售产品为Tinuvin144;
光稳定剂7:N,N''-1,2-乙烷二基二(1,3-丙二胺)与环己烷和过氧化N-丁基-2,2,6,6-四甲基-4-哌啶胺-2,4,6-三氯-1,3,5-三嗪的反应产物,CAS191680-81-6,市售产品为Flamestab NOR116;。
光稳定剂8:2-肼基-2-氧代-N-(1,2,2,6,6-五甲基哌啶-4-基)乙酰胺,市售商品为LuchemHA-R100。
光稳定剂在聚酰胺树脂基体中分布是通过以下方法检测:将3D打印粉末以3D打印方式制成样条,截取样条中的一段置于溶液中浸泡24小时溶解样条表面的光稳定剂但是不溶解聚酰胺,之后用扫描电子显微镜观察样条截面形貌。
具体的,将3D打印粉末以3D打印方式制成样条,截取样条中的一段置于可溶光稳定剂但是不可溶聚酰胺的溶液中(比如:甲苯、二甲苯、二氯甲烷、氯仿),浸泡处理24小时,之后用扫描电子显微镜观察样条截面形貌,截面形貌中的孔洞分布形态即为光稳定剂的分布形态,孔洞均匀且直径小于5微米说明光稳定剂分布均匀且没有发生团聚和析出;部分区域平滑无孔洞而部分区域有孔洞且直径大于20微米说明光稳定剂分布不均有团聚和析出的情况。
通过扫描电镜显微镜(一般200-300微米或更高精度)也可以看到3D打印粉末表面的突起、圆润度情况。
通过本发明方法得到的3D打印粉末的粒径分布范围是d(0.1) <10微米且d(0.9)<125微米。粒径范围的测试方法为按照标准GB/T 19077-2016进行测试。d(0.1) <20微米表示10%的3D打印粉末的粒径小于20微米,d(0.9)<110微米表示90%的3D打印粉末的粒径小于110微米。
通过本发明方法得到的3D打印粉末的粉体流动性为≤10s/50g。3D打印粉末流动性使用粉体流动仪测试。
通过本发明方法得到的所述3D打印粉末的堆积密度0.45-0.65g/cm3。堆积密度的测试方法为利用树脂的自重,将试样从规定的高度自由落入已知容积的容器中,测量单位体积的树脂的质量,即得到堆积密度的大小。3D打印粉末的粒径与堆积密度影响着3D打印过程中材料的熔融过程。过低的堆积密度与过大的粒径会导致3D打印耗时更长(特别是延长3D打印粉末的受高温熔融时长);过高的堆积密度与过小的粒径会导致3D打印过程中3D打印粉末受热不均匀,使制件性能受到影响。
优选的,3D打印粉末树脂基体中,光稳定剂的粒径均小于5微米,3D打印粉末的粒径分布范围是d(0.1)<30微米且d(0.9)<90微米,粉体流动性为≤9s/50g,堆积密度0.53-0.62g/cm3
通过本发明的方法,可以处理绝大部分种类的聚酰胺,经过实验,以下聚酰胺都可以通过本发明的方法制备得到上述性能的3D打印粉末。所述的聚酰胺树脂为脂肪族聚酰胺、半芳香族聚酰胺中的至少一种;所述的脂肪族聚酰胺选自PA6、PA66、PA12、PA1010、PA1012、PA11、PA610、PA69、PA1212中的至少一种;所述的半芳香族聚酰胺选自PA5T、PA6T610、PA6T6I、PA6T1010、PA10T、PA10T10I、PA10T1010、PA10T1012、PA10T6T中的至少一种。本发明具体实施方式举例PA12、PA66、PA10T。
上述的3D打印粉末的制备方法,包括以下步骤:
(A)将聚酰胺原料加入复配溶剂中,加热达到50℃至溶液回流的温度并搅拌至溶解(如有不溶物,增加过滤工序将不溶物滤除;如溶液颜色较深,则增加脱色处理工序),得到聚酰胺澄清溶液;
(B)将光稳定剂加入聚酰胺澄清溶液中,搅拌至溶解,得到紫外稳定功能性聚酰胺溶液;
(C)将光稳定功能性聚酰胺溶液以喷雾方式喷入去离子水中,析出3D打印粉末,期间,去离子水的温度为0-60℃范围内;
所述的复配溶剂,按重量份计,包括10-30份苯酚、15-40份甲苯;聚酰胺原料与复配溶剂重量比为1:10-1:2;析出过程中,光稳定功能性聚酰胺溶液与去离子水的重量比为1:5-1:50。
脱色处理工序为加入脱色剂,将溶液升温达到50℃至复配溶剂回流温度保持0.5-2小时,再降温至低于50℃后过滤。
所述的脱色剂选自活性炭、活性白土中的至少一种。
优选的,步骤(A)将溶液加热达到100℃至溶液回流温度,步骤(C)中,析出3D打印粉末时,去离子水的温度为20-50℃范围内。通过控制此步骤中去离子的温度来控制聚酰胺与光稳定剂的析出与结晶速率,能够进一步缩小光稳定剂在树脂基体中的粒径分布,同时使3D打印粉末颗粒更圆润、粒径分布更窄。
所述的聚酰胺原料来源于聚酰胺新料、聚酰胺回收料、聚酰胺废料中的至少一种。聚酰胺新料是新合成得到的,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺回收料是将聚酰胺废料通过回收工艺处理得到的聚酰胺,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺废料为报废丢弃的聚酰胺制品,其中聚酰胺树脂含量范围是25-90wt%。
本发明与现有技术相比,具有如下有益效果:
本发明克服了现有3D打印粉末制备技术的缺陷,提供了一种3D打印粉末及其制备方法。本发明的3D打印粉末不同于共混改性获得的材料,光稳定剂在3D打印粉末的树脂基体中粒径细小且分布均一不聚团(粒径均小于10微米,优选小于5微米)、3D打印粉末形状圆润流动性较好,利用其打印获得的制件平整,光稳定性能优秀。本发明还提供了该3D打印粉末的制备方法,光稳定功能性3D打印粉末可以来源于聚酰胺废料也可以来源于聚酰胺新料。本方法可一体化完成聚酰胺废料的提纯和3D打印粉末制备过程。工艺的最后步骤采用喷雾的方式将聚酰胺溶液喷到水中,这样可以实现聚酰胺充分、粒径均一、圆润无凹凸的析出,无需筛选即可使得3D打印粉末的粒径分布范围是d(0.1) <20微米且d(0.9)<110微米,粉体流动性为≤10s/50g,堆积密度0.45-0.65g/cm3
附图说明
图1:本发明实施例1的表面圆润的3D打印粉末扫描电镜照片,形状圆润均一性强。
图2:市售的3D打印粉末扫描电镜照片,颗粒粒径不均,形状各异表面凹凸多。
图3:对比例3的3D打印粉末扫描电镜照片,颗粒粒径不均,形状各异表面凹凸多。
图4:本发明实施例1的3D打印粉末利用3D打印方式制备的样条经刻蚀处理后的形貌,光稳定剂分布均匀,无团聚和析出的现象。
图5:通过共混方法制备得到的3D打印粉末(对比例3),利用3D打印方式制备的样条经刻蚀处理后的形貌,光稳定剂分布不均,有明显的团聚现象。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明所用原料来源如下:
聚酰胺废料PA12:来自水暖管道、汽车发动机周边零件等回收料,含有少量色粉,理论上PA12含量约为95%-97%。
聚酰胺废料PA66:来自机械设备中齿轮、轴承等零部件的回收料,含有玻纤增强,理论上PA66含量约为65%-70%。
聚酰胺废料PA10T:来自发动机周边零部件回收料,含有玻纤增强,理论上PA10T含量为60-70%。
PA12新料:阿科玛,P201TL;
PA12回收料:自制,将上述聚酰胺废料PA12粉碎,加入3倍聚酰胺废料重量的复配溶剂(重量比苯酚:甲苯=1:1),加热至80℃搅拌溶解,降温至30℃后过滤得到聚酰胺溶液;再将聚酰胺溶液加入去离子水中,分离掉液体得到PA12回收料。
苯酚:工业纯;
甲苯:工业纯;
光稳定剂3:3,5-二叔丁基-4-羟基苯甲酸正十六酯,市售。
光稳定剂1:2-(2H-苯并三唑-2)-4,6-二(1-甲基-1-苯基乙基)苯酚,市售。
光稳定剂2:Tinuvin123:市售。
光稳定剂4:Tinuvin P,市售;
各项性能测试方法:
(1)考察3D打印粉末中光稳定合物的分布:将实施例和对比例3D打印粉末通过3D打印成样条后参照说明书列举的方法处理样条的一面,再进行SEM形貌分析测试。具体的,将样条固定在样品台并黏在导电胶上,表面镀金作为导电层,置于样品舱中抽真空,并调整电流电压,观察样品形貌,统计得到光稳定剂孔洞粒径。扫描至20微米-500微米之间。
(3)3D打印粉末流动性测试:使用粉体流动仪,按照使用方法测试。
(4)3D打印粉末粒径测试:按照标准GB/T 19077-2016进行测试。
(5)3D打印粉末堆积密度测试:利用树脂的自重,将试样从规定的高度自由落入已知容积的容器中,测量单位体积的树脂的质量,即得到堆积密度的大小(测试标准GB/T20316.2-2006)。
(6)通过SEM考察3D打印粉末外观:将试样固定在样品台并黏在导电胶上,表面镀金作为导电层,置于样品舱中抽真空,并调整电流电压,观察样品形貌,扫描至20微米-500微米之间。
实施例1:
将100g聚酰胺废料PA12加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度80℃搅拌至溶解,再加入10g活性炭,保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺澄清溶液;将0.8g光稳定剂3加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;再将功能性聚酰胺溶液以喷雾方式喷入4000g去离子水中(去离子水温度维持0-10℃),析出聚酰胺3D打印粉末;干燥后称量,再进行其他性能的测试。
实施例2:
实施例2与实施例1的区别在于,光稳定剂1与活性炭一同加入。
实施例3:
实施例3与实施例1的区别在于,光稳定剂2。
实施例4:
将100g聚酰胺废料PA10T加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度60℃搅拌至溶解,再加入10g活性炭,升温至120℃,保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺澄清溶液;将0.8g 光稳定剂4加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;再将功能性聚酰胺溶液以喷雾方式喷入4000g去离子水中(去离子水温度维持10-15℃),析出聚酰胺3D打印粉末;干燥后称量,再进行其他性能的测试。
实施例5:
将100g聚酰胺废料PA66加入复配溶剂(80g苯酚/160g甲苯)中,加热至温度80℃搅拌至溶解,再加入10g活性炭,保温搅拌0.5小时,降温至50℃后过滤,得到聚酰胺澄清溶液;将0.8g光稳定剂4加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;再将功能性聚酰胺溶液以喷雾方式喷入4000g去离子水中(去离子水温度维持10-15℃),析出聚酰胺3D打印粉末;干燥后称量,再进行其他性能的测试。
实施例6:
将100g 的PA12新料加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度90℃搅拌至溶解,保温搅拌0.5小时,降温至50℃后过滤,得到聚酰胺澄清溶液;将4.0g光稳定剂4加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;再将功能性聚酰胺溶液以喷雾方式喷入4000g去离子水中(去离子水温度维持10-15℃),析出聚酰胺3D打印粉末;干燥后称量,再进行其他性能的测试。
实施例7:
将100g的PA12回收料加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度90℃搅拌至溶解,再加入10g活性炭,保温搅拌0.5小时,降温至50℃后过滤,得到聚酰胺澄清溶液;将4.0g光稳定剂4加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;再将功能性聚酰胺溶液以喷雾方式喷入4000g去离子水中(去离子水温度维持10-15℃),析出聚酰胺3D打印粉末;干燥后称量,再进行其他性能的测试。
实施例8:
实施例8与实施例1的区别在于,步骤(A)中将溶液加热至温度110℃搅拌至溶解,去离子水温度维持50-60℃。
实施例9:
实施例9与实施例1的区别在于,步骤(A)中将溶液加热至温度105℃搅拌至溶解,去离子水温度维持20-25℃。
实施例10:
实施例10与实施例1的区别在于,步骤(A)中将溶液加热至温度100℃搅拌至溶解,去离子水温度维持40-50℃。
对比例1:
将100g聚酰胺废料PA12加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度100℃搅拌至溶解,再加入10g活性炭,保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺澄清溶液;将0.8g 光稳定剂A加入聚酰胺澄清溶液中,搅拌至充分溶解,得到功能性聚酰胺溶液;在10分钟内向功能性聚酰胺溶液加入4000g去离子水,析出聚酰胺光稳定改性颗粒;干燥后将粒料在液氮中低温冷冻至-120℃以下,使之实现脆化易粉碎状态,再将冷冻好的粒料投入低温粉碎机腔体内,通过叶轮高速旋转进行粉碎加工;由气流筛分机进行分级并收集,选择粒度在120~400目范围内的3D打印粉末。
对比例2:
将100g聚酰胺废料PA12加入1500g的复合溶剂中(甲酸15%、盐酸10%、乙酸35%、水40%),在80℃下搅拌溶解4h,后离心分离(转速为4000R/min)的到清液,再清液中投入0.8g光稳定剂A,搅拌均匀,再将溶液通入1500g的去离子水中,析出PA12沉淀,去离子水洗涤PA12颗粒至pH呈中性,干燥后将粒料在液氮中低温冷冻至-120℃以下,使之实现脆化易粉碎状态,再将冷冻好的粒料投入低温粉碎机腔体内,通过叶轮高速旋转进行粉碎加工;由气流筛分机进行分级并收集,选择粒度在120~400目范围内的3D打印粉末。
对比例3:
将100g聚酰胺废料PA12加入复配溶剂(100g苯酚/200g甲苯)中,加热至温度100℃搅拌至溶解,再加入10g活性炭,保温搅拌0.5小时,降温至40℃后过滤,得到聚酰胺澄清溶液;再将聚酰胺澄清溶液通入4000g去离子水中,析出回收聚酰胺PA12。将干燥后的回收聚酰胺PA12与0.8g 光稳定剂A通过双螺杆挤出机挤出造粒(螺杆长径比为45:1,一区170℃,二区180℃,三区190℃,四区205℃,五区215℃,六区225℃,七区235℃,八区240℃,九区245℃,机头温度240℃,转速为350转/分),再将粒料在液氮中低温冷冻至-120℃以下,使之实现脆化易粉碎状态,再将冷冻好的粒料投入低温粉碎机腔体内,通过叶轮高速旋转进行粉碎加工;由气流筛分机进行分级并收集,选择粒度在120~400目范围内的3D打印粉末。
表1:实施例和对比例3D打印粉末各项性能测试结果
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7
光稳定剂孔洞粒径,um <10 <10 <10 <10 <10 <10 <10
3D打印粉流动性测试,s/50g 9.4 9.5 9.1 9.2 9.1 9.6 9.0
3D打印粉末粒径测试d(0.1),微米 18.5 19.0 18.2 17.3 19.2 18.4 16.5
3D打印粉末粒径测试d(0.9),微米 103.7 103.5 108.4 109.2 102.5 109.0 108.6
3D打印粉末堆积密度测试,g/cm<sup>3</sup> 0.46 0.52 0.51 0.49 0.50 0.47 0.52
续表1:
实施例8 实施例9 实施例10 对比例1 对比例2 对比例3
光稳定剂孔洞粒径,um <10 <5 <5 >10 >10 >10
3D打印粉流动性测试,s/50g 9.3 7.8 8.2 19.2 25.1 29.7
3D打印粉末粒径测试d(0.1),微米 19.6 25.6 27.4 10.5 11.6 9.7
3D打印粉末粒径测试d(0.9),微米 100.5 87.8 88.2 482.0 410.7 435.5
3D打印粉末堆积密度测试,g/cm<sup>3</sup> 0.64 0.55 0.60 0.40 0.41 0.39
从对比例1-3可知,通过其他方法得到的3D打印粉末,其基体中的光稳定剂孔洞粒径>5微米,并且流动性低,粒径分布不均匀也导致了堆积密度较低。

Claims (9)

1.一种3D打印粉末的制备方法,其特征在于,包括以下步骤:
(A)将聚酰胺原料加入复配溶剂中,加热达到50℃至溶液回流的温度并搅拌至溶解,如有不溶物,增加过滤工序将不溶物滤除;如溶液颜色较深,则增加脱色处理工序,得到聚酰胺澄清溶液;
(B)将光稳定剂加入聚酰胺澄清溶液中,搅拌至溶解,得到紫外稳定功能性聚酰胺溶液;
(C)将光稳定功能性聚酰胺溶液以喷雾方式喷入去离子水中,析出3D打印粉末,期间,去离子水的温度为0-60℃范围内;
所述的复配溶剂,按重量份计,包括10-30份苯酚、15-40份甲苯;聚酰胺原料与复配溶剂重量比为1:10-1:2;析出过程中,光稳定功能性聚酰胺溶液与去离子水的重量比为1:5-1:50;
按重量份计,得到的3D打印粉末包括以下组分:
聚酰胺树脂 100份;
光稳定剂 0.1-4份;
所述的光稳定剂的粒径均以小于10微米的形态分散于聚酰胺树脂基体中;3D打印粉末的粒径分布范围是d(0.1)<20微米且d(0.9)<110微米,粉体流动性为≤10s/50g,堆积密度0.45-0.65g/cm3
2.根据权利要求1所述的3D打印粉末的制备方法,其特征在于,脱色处理工序为加入脱色剂,将溶液升温达到50℃至复配溶剂回流温度保持0.5-2小时,再降温至低于50℃后过滤。
3.据权利要求2所述的3D打印粉末的制备方法,其特征在于,所述的脱色剂选自活性炭、活性白土中的至少一种。
4.根据权利要求1所述的3D打印粉末的制备方法,其特征在于,步骤(A)将溶液加热达到100℃至溶液回流温度,步骤(C)中,析出3D打印粉末时,去离子水的温度为20-50℃范围内。
5.根据权利要求1所述的3D打印粉末的制备方法,其特征在于,所述的聚酰胺原料来源于聚酰胺新料、聚酰胺回收料、聚酰胺废料中的至少一种;聚酰胺新料是新合成得到的,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺回收料是将聚酰胺废料通过回收工艺处理得到的聚酰胺,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺废料为报废丢弃的聚酰胺制品,其中聚酰胺树脂含量范围是25-90wt%。
6.根据权利要求1-5任一项3D打印粉末制备方法得到的3D打印粉末,其特征在于,所述的光稳定剂选自以下化合物中的至少一种:
光稳定剂1:2-(2H-苯并三唑-2)-4,6-二(1-甲基-1-苯基乙基)苯酚;
光稳定剂2:双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酸酯;
光稳定剂3:3,5-二叔丁基-4-羟基苯甲酸正十六酯;
光稳定剂4:2-(2-羟基-5-甲基苯基)苯并三氮唑;
光稳定剂5:2-(2'-羟基-3',5'-二叔丁基苯基)-5-氯代苯并三唑;
光稳定剂6:双(1,2,2,6,6-五甲基-4-哌啶基)2-丁基-2-[((4-羟基-3,5-二叔丁基-苯基)甲基]丙二酸酯;
光稳定剂7:N,N''-1,2-乙烷二基二(1,3-丙二胺)与环己烷和过氧化N-丁基-2,2,6,6-四甲基-4-哌啶胺-2,4,6-三氯-1,3,5-三嗪的反应产物;
光稳定剂8:2-肼基-2-氧代-N-(1,2,2,6,6-五甲基哌啶-4-基)乙酰胺。
7.根据权利要求6所述的3D打印粉末,其特征在于,光稳定剂在聚酰胺树脂基体中分布是通过以下方法检测:将3D打印粉末以3D打印方式制成样条,截取样条中的一段置于溶液,中浸泡24小时溶解样条表面的光稳定剂但是上述溶剂不溶解聚酰胺,其中溶液选自氯仿、甲苯、DMF、乙酸乙酯、丙酮中的一种或多种的共混,之后用扫描电子显微镜观察样条截面形貌。
8.根据权利要求6所述的3D打印粉末,其特征在于,所述的光稳定剂的粒径均以小于10微米的形态分散于聚酰胺树脂基体中,并且3D打印粉末的粒径分布范围是d(0.1) <30微米且d(0.9)<90微米,粉体流动性为≤9s/50g,堆积密度0.53-0.62g/cm3
9.根据权利要求6所述的3D打印粉末,其特征在于,所述的聚酰胺树脂选自脂肪族聚酰胺、半芳香族聚酰胺中的至少一种;所述的脂肪族聚酰胺选自PA6、PA66、PA12、PA1010、PA1012、PA11、PA610、PA69、PA1212中的至少一种;所述的半芳香族聚酰胺选自PA5T、PA6T610、PA6T6I、PA6T1010、PA10T、PA10T10I、PA10T1010、PA10T1012、PA10T6T中的至少一种。
CN202010641813.4A 2020-07-06 2020-07-06 一种3d打印粉末及其制备方法 Active CN111995862B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010641813.4A CN111995862B (zh) 2020-07-06 2020-07-06 一种3d打印粉末及其制备方法
PCT/CN2020/140809 WO2022007359A1 (zh) 2020-07-06 2020-12-29 一种3d打印粉末及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010641813.4A CN111995862B (zh) 2020-07-06 2020-07-06 一种3d打印粉末及其制备方法

Publications (2)

Publication Number Publication Date
CN111995862A CN111995862A (zh) 2020-11-27
CN111995862B true CN111995862B (zh) 2022-02-18

Family

ID=73466734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010641813.4A Active CN111995862B (zh) 2020-07-06 2020-07-06 一种3d打印粉末及其制备方法

Country Status (2)

Country Link
CN (1) CN111995862B (zh)
WO (1) WO2022007359A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995862B (zh) * 2020-07-06 2022-02-18 金发科技股份有限公司 一种3d打印粉末及其制备方法
CN114349988B (zh) * 2021-12-29 2023-07-07 湖南华曙新材料科技有限责任公司 一种选择性激光烧结用的高分子粉末材料及其制备方法
CN114350144B (zh) * 2021-12-29 2023-05-23 湖南华曙高科技股份有限公司 一种用于选择性激光烧结的高分子粉末材料及其制备方法
CN115572405A (zh) * 2022-09-27 2023-01-06 西咸新区谷毅恒科技有限公司 一种滑雪板顶片脂肪族长链聚酰胺薄膜抗紫外处理工艺
FR3140628A1 (fr) * 2022-10-05 2024-04-12 Arkema France Procédé de recyclage d’une composition de polyamide usagée

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010087A1 (de) * 2003-07-25 2005-02-03 Degussa Ag Pulverförmige komposition von polymer und ammoniumpolyphosphathaltigem flammschutzmittel, verfahren zu dessen herstellung und formkörper, hergestellt aus diesem pulver
CN104910613A (zh) * 2015-06-23 2015-09-16 青岛科技大学 一种3d打印用耐候尼龙粉末复合材料及其制备方法
CN104910614A (zh) * 2015-06-23 2015-09-16 青岛科技大学 一种3d打印用低翘曲尼龙粉末复合材料及其制备方法
CN106832906A (zh) * 2017-03-02 2017-06-13 张家港市五湖新材料技术开发有限公司 一种用于3d打印的高阻燃性尼龙复合材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358939C (zh) * 2005-11-11 2008-01-02 淄博广通化工有限责任公司 尼龙粉末的制备方法
KR100991569B1 (ko) * 2008-08-29 2010-11-04 호서대학교 산학협력단 레이저 소결용 폴리아미드 미립자 제조방법
JP2010189610A (ja) * 2009-02-20 2010-09-02 Idemitsu Technofine Co Ltd レーザー焼結積層用組成物、その製造方法、および成形品
CN102311637B (zh) * 2010-07-01 2016-01-06 湖南华曙高科技有限责任公司 一种用于选择性激光烧结的尼龙复合材料及其制备方法
CN102399371B (zh) * 2011-10-17 2015-11-04 湖南华曙高科技有限责任公司 一种用于选择性激光烧结的聚酰胺粉末制备方法
CN104250437A (zh) * 2013-06-26 2014-12-31 合肥杰事杰新材料股份有限公司 一种改性尼龙微球材料及其在3d打印中的应用
CN105542200B (zh) * 2015-12-18 2017-11-24 福建瑞森新材料股份有限公司 一种规则球形尼龙粉末的制备方法
CN107057090B (zh) * 2017-04-27 2019-07-23 万华化学集团股份有限公司 一种尼龙粉末的制备方法
CN110885456B (zh) * 2019-12-13 2022-07-12 万华化学集团股份有限公司 窄粒径分布的尼龙粉末及其制备和在3d打印中的应用
CN111995862B (zh) * 2020-07-06 2022-02-18 金发科技股份有限公司 一种3d打印粉末及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010087A1 (de) * 2003-07-25 2005-02-03 Degussa Ag Pulverförmige komposition von polymer und ammoniumpolyphosphathaltigem flammschutzmittel, verfahren zu dessen herstellung und formkörper, hergestellt aus diesem pulver
CN104910613A (zh) * 2015-06-23 2015-09-16 青岛科技大学 一种3d打印用耐候尼龙粉末复合材料及其制备方法
CN104910614A (zh) * 2015-06-23 2015-09-16 青岛科技大学 一种3d打印用低翘曲尼龙粉末复合材料及其制备方法
CN106832906A (zh) * 2017-03-02 2017-06-13 张家港市五湖新材料技术开发有限公司 一种用于3d打印的高阻燃性尼龙复合材料

Also Published As

Publication number Publication date
WO2022007359A1 (zh) 2022-01-13
CN111995862A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN111995862B (zh) 一种3d打印粉末及其制备方法
CN111961335B (zh) 一种3d打印粉末及其制备方法
CN111909509B (zh) 一种3d打印粉末及其制备方法
CN110885456B (zh) 窄粒径分布的尼龙粉末及其制备和在3d打印中的应用
Kröber et al. Crystallization of insensitive HMX
CN105440663B (zh) 一种选择性激光烧结用尼龙微粉的制备方法
EP2543701B1 (de) Pulver enthaltend mit polymer beschichtete anorganische partikel
JP2001511085A (ja) 成型されるプラスチックにおける充填剤として再生ガラスを用いる方法
EP1792930B1 (en) Modified powder, fluid composition containing said modified powder, formed article, and method for producing modified powder
WO2010063691A2 (fr) Realisation d&#39;article par fusion selective de couches de poudre de polymere
KR20050013955A (ko) 금속 염 및 지방산 유도체를 포함하는 레이저 소결 분말,이의 제조방법 및 이러한 레이저 소결 분말로부터 제조된성형품
EP2621712B1 (en) Polymer powder composition
CN108659529A (zh) 一种激光烧结用聚酰胺短纤维复合材料的制备方法
CN113652029B (zh) 一种微发泡聚丙烯组合物及其制备方法和应用
CN110845723B (zh) 一种解聚废聚酯在线添加锦纶制备共聚酯酰胺的方法
CN110615964A (zh) 一种能改善金刚线切割大系统的专用塑料板及其制备方法
CN108453927A (zh) 一种可生物降解PCL/Mg复合材料FDM耗材的制备工艺
CN111234430A (zh) 用于选择性激光烧结的聚乙烯醇基复合粉体及其制备方法
CN110862535B (zh) 一种解聚含锦纶废聚酯制备共聚酯酰胺的方法
KR20140018934A (ko) 복합체 물품을 위한 함침 직물의 제조 방법, 및 상기 방법에 의해 제조되는 함침 직물
CN109880358B (zh) 一种低翘曲增强pa材料及其制备方法和在3d打印中的应用
KR20210030395A (ko) 폴리아미드 분말의 연속적 제조 방법
CN110903537A (zh) 一种透气膜粒子及其制备方法和透气膜
JP2010132768A (ja) ポリアミド多孔質略球状粒子および光学材料
CN109569097B (zh) 一种石墨烯夹心复合pp棉滤芯及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant