WO2022004782A1 - 酢酸ビニル、酢酸ビニル重合体およびビニルアルコール重合体 - Google Patents

酢酸ビニル、酢酸ビニル重合体およびビニルアルコール重合体 Download PDF

Info

Publication number
WO2022004782A1
WO2022004782A1 PCT/JP2021/024729 JP2021024729W WO2022004782A1 WO 2022004782 A1 WO2022004782 A1 WO 2022004782A1 JP 2021024729 W JP2021024729 W JP 2021024729W WO 2022004782 A1 WO2022004782 A1 WO 2022004782A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl acetate
mol
vinyl alcohol
vinyl
polymer
Prior art date
Application number
PCT/JP2021/024729
Other languages
English (en)
French (fr)
Inventor
康貴 犬伏
恵之 蜂谷
雅己 加藤
義和 山崎
真人 岡本
利孝 染宮
隆文 伊澤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to US18/003,775 priority Critical patent/US20230257491A1/en
Priority to DE112021003449.9T priority patent/DE112021003449T5/de
Priority to BR112022027048A priority patent/BR112022027048A2/pt
Priority to JP2022534077A priority patent/JPWO2022004782A1/ja
Priority to CN202180046097.8A priority patent/CN115996962A/zh
Publication of WO2022004782A1 publication Critical patent/WO2022004782A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • C07C69/14Acetic acid esters of monohydroxylic compounds
    • C07C69/145Acetic acid esters of monohydroxylic compounds of unsaturated alcohols
    • C07C69/15Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F118/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F118/02Esters of monocarboxylic acids
    • C08F118/04Vinyl esters
    • C08F118/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F18/02Esters of monocarboxylic acids
    • C08F18/04Vinyl esters
    • C08F18/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis

Definitions

  • the present invention relates to traceable vinyl acetate, a polymer containing the vinyl acetate as a monomer unit, and a saponified product thereof.
  • Vinyl acetate is used as a raw material for vinyl acetate resin and vinyl alcohol resin, and further as a monomer for copolymerization with ethylene, styrene, acrylate, methacrylate and the like.
  • the obtained resins and copolymers are important industrial materials used in a wide range of fields such as paints, adhesives, and fiber processing agents.
  • the vinyl alcohol polymer obtained by polymerizing vinyl acetate and saponifying the obtained polymer (hereinafter, may be referred to as PVOH) is one of the few crystalline water-soluble polymers and has excellent water-soluble properties. Utilizing properties and film properties (strength, oil resistance, film-forming property, oxygen gas barrier property, etc.), emulsifiers, suspending agents, surfactants, various binders, adhesives, fiber processing agents, paper processing agents, films, Widely used for fibers, fabrics, etc.
  • the ethylene-vinyl alcohol copolymer obtained by copolymerizing vinyl acetate and ethylene and saponifying the obtained copolymer has various kinds of transparency, oxygen and the like. It has excellent gas barrier properties, fragrance retention, solvent resistance, oil resistance, non-chargeability, mechanical strength, etc., and by taking advantage of these characteristics, it can be used in food packaging containers, pharmaceutical packaging containers, industrial chemical packaging containers, pesticide packaging containers, etc. It is widely used in various packaging containers. When producing such a molded product, it is often the case that the ethylene-vinyl alcohol copolymer is melt-molded and then secondary processed. For example, it is widely practiced to stretch for the purpose of improving mechanical strength, or to thermoform a multilayer sheet containing an ethylene-vinyl alcohol copolymer layer in order to form a container.
  • EVOH ethylene-vinyl alcohol copolymer
  • vinyl alcohol polymers and ethylene-vinyl alcohol copolymers are used in a wide range of applications, and it is the supplier's responsibility to supply high-quality products to the market. There is also a need for a way to distinguish between our own products and those of other companies for branding.
  • the ethylene-vinyl alcohol copolymer used for the gas barrier layer of a commercially available packaging container is molded into a packaging container by thermoforming, but the ethylene-vinyl alcohol copolymer is a solvent due to the heat history received during thermoforming. May form an insoluble gel. Therefore, even if the packaging container is collected, the ethylene-vinyl alcohol copolymer used is extracted with a solvent, and the molecular weight is to be measured, it is often difficult to accurately measure the molecular weight. Therefore, it is not possible to determine whether or not the product is an ethylene-vinyl alcohol copolymer of the company only by analyzing the molded product.
  • the vinyl acetate produced, the polymers and copolymers obtained from the polymer, the copolymers thereof, and their saponifications are passed through many distribution channels to paints, adhesives, fiber processing agents, paper processing agents, films, fibers, fabrics, and the like.
  • paints adhesives, fiber processing agents, paper processing agents, films, fibers, fabrics, and the like.
  • a method of adding a tracer substance to a vinyl alcohol polymer can be considered.
  • the addition of the tracer may cause an increase in cost and a decrease in the performance of the vinyl alcohol polymer.
  • the present inventors have focused on carbon isotopes contained in vinyl acetate, and by using vinyl acetate containing a certain amount of a specific carbon isotope, it is possible to trace the obtained polymer and copolymer. It was found that even if the final product is discarded, it is possible to determine whether the raw material is an in-house product.
  • an object of the present invention is to provide a traceable vinyl acetate, a polymer containing the vinyl acetate as a monomer unit, and a vinyl alcohol polymer which is a saponified product thereof.
  • the present invention provides the following vinyl acetate, and a polymer containing the vinyl acetate as a monomer unit and a saponified product thereof.
  • the vinyl acetate according to any one of [1] to [8] above, which comprises 1 ppm to 500 ppm of at least one compound selected from a polyvalent carboxylic acid, a hydroxycarboxylic acid, and a hydroxylactone compound.
  • the ethylene unit content is 1 mol% or more and 15 mol% or less, and the saponification degree is 85 mol% or more and 99.9 mol% or less.
  • Any of the above [12] to [21], which has a propyl group at the end of the polymer and the content of the propyl group with respect to all the monomer units is 0.0005 mol% or more and 0.1 mol% or less.
  • Y is a hydrogen atom or a methyl group.
  • Z is a hydrogen atom or a methyl group.
  • the ethylene unit content is 1 mol% or more and 15 mol% or less, and the saponification degree is 85 mol% or more and 99.9 mol% or less.
  • the molar ratio R [I / (I + II)] of the structure (I) to the sum of the structure (I) and the structure (II) is the following formula (1).
  • Et is the ethylene unit content (mol%).
  • the ethylene unit content is 15 mol% or more and 60 mol% or less, and the saponification degree is 85 mol% or more and 99.9 mol% or less.
  • the total content of the structure (I) and the structure (II) is 0.002 mol% or more and 0.02 mol% or less with respect to all the monomer units constituting the vinyl alcohol polymer, and the above-mentioned
  • the molar ratio R [I / (I + II)] of the structure (I) to the sum of the structure (I) and the structure (II) is expressed by the following formula (2) using the ethylene unit content Et in the vinyl alcohol polymer. ) 0.8 ⁇ R + Et / 100 (2)
  • the vinyl alcohol polymer according to any one of the above [24] or [25], which satisfies the above conditions.
  • Example 46 It is a schematic diagram of the polymerization apparatus used in Example 46. It is a schematic diagram of the stirring blade used in Example 46.
  • the vinyl acetate according to the present invention the vinyl acetate polymer obtained by polymerizing the vinyl acetate polymer, and the vinyl alcohol polymer which is a saponified product thereof will be described in detail.
  • the ratio of carbon-14 (hereinafter, also referred to as 14 C) to total carbon (hereinafter, may be referred to as 14 C / C) is less than 1.0 ⁇ 10-14.
  • the vinyl acetate of the present invention has a 14 C / C of 1.0 ⁇ 10 -14 or more.
  • Total carbon is carbon including isotopes of all carbons.
  • 14 C / C is preferably 1.0 ⁇ 10 -13 or more, and more preferably 5.0 ⁇ 10 -13 or more.
  • the upper limit of 14 C / C is 1.2 ⁇ 10-12 , but 14 C / C of a blank natural product such as an oxalic acid standard is actually measured as appropriate. Then, the value may be set as the upper limit value.
  • a method using vinyl acetate derived from a natural product can be considered as described later. Since carbon-14 of artificial origin exists in nature and the concentration of carbon-14 in natural products varies from time to time, when vinyl acetate derived from natural products is used, the concentration of carbon-14 in natural products is appropriately corrected. 14 C / C in vinyl acetate can be obtained. The half-life of carbon-14 is 5,730 years, but the decrease in the amount of carbon-14 can be ignored considering the period from the manufacture of general chemical products to the market.
  • the target vinyl acetate is burned to obtain carbon dioxide, and then carbon dioxide or its reduced form, graphite, is subjected to accelerator mass spectrometry (accelerator mass spectrometry). It may be analyzed by the AMS method; Accelerator Mass Spectrometery). For example, the amounts of carbon-12 ions, carbon-13 ions, and carbon-14 ions are measured for graphite ionized by Cs beam irradiation, respectively.
  • 14 C / C is carbon dioxide or graphite as described above, and then carbon-14 content in oxalic acid, which is a standard substance prepared by the Accelerator Mass Spectrometry, for example, by the National Institute of Standards and Technology. Can be obtained by comparative measurement.
  • Vinyl acetate as described above can be synthesized, for example, as follows. Usually, vinyl acetate can be obtained by a gas phase reaction of ethylene, acetic acid and oxygen in the presence of a catalyst. At this time, by using ethylene or acetic acid containing a predetermined amount of carbon-14 in either or both of ethylene and acetic acid, vinyl acetate containing a predetermined amount of carbon-14 can be obtained. Examples of ethylene and acetic acid containing a predetermined amount of carbon-14 include biomass-derived ethylene or acetic acid.
  • the biomass is not a depleting resource, but an industrial resource derived from a living biological constituent substance, and is a renewable, biologically-derived organic resource excluding fossil resources.
  • Biomass takes in carbon dioxide in the atmosphere by photosynthesis during its growth process. Therefore, even if biomass is burned and carbon dioxide is emitted, the amount of carbon dioxide in the atmosphere does not increase as a whole. This property is called carbon neutral, and it is preferable to use biomass-derived ethylene and / or acetic acid from the viewpoint of the global environment.
  • the biomass may be derived from a single substance or may be a mixture.
  • cellulose-based crops such as pulp, kenaf, straw, rice straw, used paper, and papermaking residue, rapeseed oil, cottonseed oil, soybean oil, coconut oil, and oils and fats such as castor oil.
  • Biomass crops such as corn, potatoes, wheat, rice, rice husks, rice straw, old rice, cassava, sago palm, essential oils such as pine root oil, orange oil, eucalyptus oil, and wood, charcoal, compost, natural rubber, cotton, sugar cane, Examples include bagasse, buckwheat, soybean, pulp black liquor, and vegetable oil residue.
  • Biomass is not limited to biofuel harvests, but includes agricultural residues, urban waste, industrial waste, paper industry deposits, pasture waste, wood and forest waste, and the like.
  • the carbon derived from biomass indicates carbon that is present in vinyl acetate synthesized by incorporating carbon that was present as carbon dioxide in the atmosphere into plants and using it as a raw material. Since the atmosphere contains a certain amount of carbon-14, ethylene and acetic acid derived from biomass that has taken in carbon dioxide in the atmosphere contain a certain amount of carbon-14. Normally, biomass-derived ethylene and acetic acid contain carbon-14 in a ratio of 1.0 ⁇ 10-12 or more with respect to total carbon.
  • the obtained 14 C / C of vinyl acetate can be adjusted to a desired value.
  • ethylene derived from biomass, vinyl acetate obtained from acetic acid derived from biomass, ethylene derived from fossil resources, and vinyl acetate obtained from acetic acid derived from fossil resources are mixed so that 14 C / C becomes a desired value.
  • ethylene and / or acetic acid derived from biomass and ethylene and / or acetic acid derived from fossil resources may be used in a desired ratio to obtain vinyl acetate.
  • the carbon 12 (hereinafter sometimes referred to as 12 C) the molecular weight derived from ethylene 28.05, the molecular weight of the acid whereas a 60.05, ethylene and acetic acid containing a large amount of carbon-13 or carbon 14 Has a large molecular weight. Therefore, the boiling point of ethylene is usually ⁇ 103.7 ° C. and the boiling point of acetic acid is 117.9 ° C., whereas the boiling point is slightly higher. The amount of carbon 13 and carbon-14 can be adjusted by utilizing the difference in boiling points derived from this molecular weight ratio, that is, the smaller the molecular weight, the lower the boiling point.
  • ethanol which is a raw material for ethylene and acetic acid
  • ethylene obtained by the dehydration reaction of ethanol, and acetic acid obtained by the oxidation reaction of ethanol are distilled and purified, and ethanol is vaporized during vapor phase dehydration and vapor phase oxidation.
  • the desired content can also be carbon 13 or carbon 14.
  • the ratio of carbon-14 contained in vinyl acetate in the above range it can be discriminated from ordinary vinyl acetate obtained from ethylene derived from petroleum. Further, by appropriately changing the 14 C / C for each product, each lot, etc., it is possible to determine what kind of product was used even from the collected waste. Therefore, the vinyl acetate of the present invention can be traced after production.
  • the stable carbon isotope ratio (hereinafter, may be referred to as ⁇ 13 C) may be set in a specific range from the viewpoint of improving the accuracy of tracking. preferable.
  • the carbon stable isotope ratio means the ratio of carbon 13 to carbon 12 among the three isotopes of carbon atoms existing in nature, carbon 12, carbon 13, and carbon 14.
  • the carbon stable isotope ratio is expressed as a deviation from the standard substance, and is a value ( ⁇ value) defined by the following equation (3).
  • [( 13 C / 12 C) sample ] represents the stable isotope ratio of the measurement target
  • [( 13 C / 12 C) PDB ] represents the stable isotope ratio of the standard substance.
  • the subscript PDB is an abbreviation for "Pee Dee Belemnite” and means fossils of calcium carbonate (fossil fossils of arrow stones excavated from the PeeDee Formation in South Carolina as a standard substance) 13 C / 12 Used as a standard for C ratio.
  • the "carbon stable isotope ratio ( ⁇ 13 C)" is measured by the accelerator mass spectrometry method. Since the standard substance is rare, a working standard whose stable isotope ratio with respect to the standard substance is known can also be used.
  • biomass-derived ethylene and acetic acid When biomass-derived ethylene and acetic acid are used, as will be described later, biomass is roughly classified into C3 plants such as sweet potato, sugar cane, rice, trees and algae, and C4 plants such as corn, sugar cane and cassava. Both ⁇ 13 C are different.
  • Plants are classified into three types from the types of initial fixed products of carbon dioxide in the photosynthetic carbonic acid fixation pathway to C3 plants, C4 plants and succulent plant type photosynthetic (CAM / Crassulacean Acid Metabolism) plants (hereinafter, also referred to as CAM plants). being classified.
  • C3 plants including agriculturally useful plants such as rice, wheat, tobacco, wheat, potatoes and palm palms.
  • the enzyme involved in carbon dioxide fixation in the photosynthetic pathway of C3 plants is ribulose-1,5-diphosphate carboxylase, which has low affinity for carbon dioxide and conversely has high affinity for oxygen, so carbon dioxide fixation.
  • the efficiency of the reaction, and thus the photosynthetic reaction, is low.
  • a plant having only such a Calvin-Benson cycle is called a C3 plant.
  • the carbon stable isotope ratio ( ⁇ 13 C) of the obtained vinyl acetate made from ethylene and / or acetic acid is from the viewpoint of improving the tracking accuracy of the polymer using the vinyl acetate. Therefore, it is preferably -60 to less than -20 ⁇ , more preferably -50 to -22 ⁇ , further preferably -45 to -25 ⁇ , and -40 to -26 ⁇ . Is particularly preferable.
  • a C4 plant is a plant that performs C4 type photosynthesis, and is a form of photosynthesis having a C4 pathway for carbon dioxide enrichment in addition to the Calben-Benson circuit, which is a general carbon dioxide reduction circuit in the process of photosynthesis.
  • the enzyme involved in carbon dioxide fixation in the photosynthetic pathway of this C4 plant is phosphoenolpyruvate carboxylase. This enzyme is not affected by oxygen-induced activity inhibition, has a high carbon dioxide-fixing ability, and is characterized by the presence of developed chloroplasts in vascular bundle sheath cells.
  • Typical C4 plants include corn, sugar cane, cassaba, sorghum, pampas grass, guinea grass, rosegrass, foxtail millet, millet, Japanese millet, scorpionfish, and broom tree. Also called. Such C4 plants can efficiently immobilize carbon dioxide. Also, C3 plants have difficulty collecting carbon dioxide at high temperatures, but C4 plants do not. Moreover, photosynthesis can be sufficiently performed even with a small amount of water. It is a physiological adaptation for harsh climates for plants such as hot, dry, low carbon dioxide and poor nitrogen soils.
  • CAM plants have a photosynthetic system adapted to a dry environment, and this photosynthetic system is considered to be a kind of evolved form of C3 photosynthesis.
  • Examples of the CAM plant include cactus, Crassulaceae, and Euphorbiaceae.
  • the stable carbon isotope ratio of CAM plants is generally in the range of ⁇ 35 ⁇ to ⁇ 10 ⁇ , and these CAM plants can be used as raw materials in combination as necessary.
  • ⁇ 13 C of vinyl acetate mainly depends on ⁇ 13 C of the raw material
  • ethylene and / or acetic acid having different carbon isotope ratios are appropriately mixed to obtain ⁇ 13 C of vinyl acetate.
  • the value of ⁇ 13 C is appropriately adjusted to the value of 14 C.
  • the vinyl acetate polymer and its saponified product have trace amounts of cross-linking agents, additives, graft components, etc. used as necessary, they are usually the main components of the carbon source constituting these vinyl acetate polymer and its saponified product. Since 65% by mass or more is derived from vinyl acetate, by controlling ⁇ 13 C or 14 C / C of vinyl acetate, the vinyl acetate polymer obtained from the vinyl acetate and its saponified product ⁇ 13 C or 14 C / C can be controlled.
  • the vinyl acetate of the present invention may be 14 C / C, and if necessary, ⁇ 13 C, and vinyl acetate having different 14 C / C or ⁇ 13 C may be mixed and used in the above range.
  • C3 by using the raw material of plant origin as well get vinyl acetate indicating a predetermined [delta] 13 C, different [delta] 13 C given [delta] 13 C by mixing vinyl acetate, i.e., C3 achieved in a single plant the Impossible [delta] 13 C that were included, more particular [delta] 13 vinyl acetate polymer obtained by the C and it is possible to further increase the tracking accuracy of the saponified.
  • the statistical analysis values obtained by analyzing the stable carbon isotope ratios are unique and can be distinguished from other raw materials, and therefore.
  • the vinyl acetate polymer produced from such raw materials and the saponified product thereof, ⁇ 13 C also have unique analytical values, which facilitates identification and tracking.
  • the final product may be mixed at the stage of purified vinyl acetate, or the crude vinyl acetate which is the previous step is mixed and then distilled and purified. May be good. Further, different ethylene and / or acetic acid may be mixed and then reacted to obtain vinyl acetate.
  • a plurality of fossil raw materials and non-fossil raw materials are used as the vinyl acetate.
  • a method using a raw material source is preferred.
  • the mixing ratio in the above-mentioned production method may be constant, and may be changed over time or for each vinyl acetate polymer and its saponified product.
  • the obtained vinyl acetate polymer and its saponified product have a unique and specific 14 C / C. This is preferable because the tracking accuracy is further improved.
  • the ratio of the non-fossil raw material to the fossil raw material can be specified by quantifying 14 C / C of the obtained vinyl acetate polymer and its saponified product.
  • the vinyl acetate polymer obtained from the vinyl acetate and its saponified product are excellent in cost and stability of the raw material source, and can be widely used.
  • bioethanol or bioethylene obtained from bionaphtha is used as a non-fossil raw material for vinyl acetate, and ethylene derived from naphtha is used as a fossil raw material, the above-mentioned effects can be further expected.
  • the vinyl acetate having the specific carbon isotope ratio preferably further contains the following compounds.
  • the vinyl acetate of the present invention preferably contains sulfur content of more than 0 ppm and 100 ppm or less.
  • the vinyl acetate of the present invention can easily control 14 C / C and ⁇ 13 C by using biomass-derived ethylene and / or acetic acid as a raw material.
  • ethylene and / or vinyl acetate derived from biomass is used, vinyl acetate containing an organic sulfur compound derived from biomass can be obtained.
  • vinyl acetate derived from petroleum is desulfurized during cracking of naphtha, the sulfur content is lower than that of vinyl acetate derived from biomass. Therefore, it becomes easier to trace the biomass-derived vinyl acetate and vinyl acetate polymers by comparing the sulfur content.
  • biomass-derived vinyl acetate and vinyl acetate polymers contain dimethyl sulfide or dimethyl sulfoxide as sulfur content, vinyl acetate having dimethyl sulfide or dimethyl sulfoxide can be further easily traced.
  • the vinyl alcohol polymer obtained by copolymerizing vinyl acetate and ethylene in the coexistence of acetate and saponifying the polymer contains acetate from the viewpoint of improved melt extrusion stability and excellent hue. Is preferable.
  • R is an alkyl group having 4 or less carbon atoms
  • acetaldehyde If the content of acetaldehyde exceeds 200 ppm, the melt extrusion stability and melt moldability of the vinyl alcohol polymer may be deteriorated, and coloring and gel may be generated in the case of a molded product.
  • acetaldehyde acts as a chain transfer agent during polymerization and affects the degree of polymerization, degree of polymerization distribution, branching, etc. of the obtained ethylene-vinyl acetate copolymer.
  • melt extrusion stability and melt moldability of the ethylene-vinyl alcohol copolymer are adversely affected.
  • acetaldehyde condenses during polymerization of ethylene and vinyl acetate and changes to a condensate that easily causes coloring and gel, and the condensate cannot be removed even in the subsequent purification step of the polymer, and ethylene-vinyl alcohol.
  • the copolymer is used as a molded product, it is considered to be colored and manifested as a gel.
  • the transesterification reaction is an equilibrium reaction
  • the effect of suppressing the generation of acetaldehyde can be obtained by adding an acetate ester.
  • saturated acetate is preferable from the viewpoint of melt extrusion stability and hue.
  • the saturated acetate ester refers to an ester composed of acetic acid and a saturated aliphatic alcohol.
  • an ester of acetic acid and an aliphatic alcohol having 4 or less carbon atoms is preferable, and methyl acetate or ethyl acetate is more preferable.
  • the content of acetic acid ester with respect to vinyl acetate is preferably 10 ppm to 1,500 ppm, more preferably 30 ppm to 1,300 ppm, further preferably 50 ppm to 1,200 ppm, and particularly preferably 100 ppm to 1,000 ppm.
  • the acetic acid ester may be used as a mixture of a plurality of acetic acid esters. In this case, it is preferable that the total content of each acetic acid ester is in the above range.
  • the vinyl acetate of the present invention preferably contains a polymerization inhibitor.
  • the polymerization inhibitor include p-benzoquinone, tert-butylhydroquinone, 4-tert-butylpyrocatechol, cuperon, 2,6-di-tert-butyl-4-methylphenol, N, N-diethylhydroxytoluene, and hydroquinone.
  • examples thereof include p-methoxyphenol, N-nitroso-N-phenylhydroxylamine aluminum, phenothiazine, tert-butylhydroquinone, dibutylhydroxytoluene, 1,1-diphenyl-2-picrylhydrazyl and mequinol.
  • the content of the polymerization inhibitor is preferably more than 0 ppm and 100 ppm or less, more preferably more than 0 ppm and 50 ppm or less, further preferably more than 0 ppm and 30 ppm or less, and particularly preferably 1 ppm to 30 ppm. preferable.
  • a large amount of polymerization inhibitor may cause a delay in polymerization rate or coloring after production, and if it is too small, not only the storage stability of vinyl acetate may be lowered, but also the polymerization may be delayed.
  • the vinyl acetate of the present invention is a polyvalent carboxylic acid from the viewpoint of the hue of the ethylene-vinyl alcohol copolymer obtained by copolymerizing and saponifying vinyl acetate and ethylene and the generation of odor and fish eyes during film formation. It preferably contains at least one of an acid, a hydroxycarboxylic acid and a hydroxylactone compound.
  • polyvalent carboxylic acid and hydroxycarboxylic acid examples include malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid, glycolic acid, lactic acid, glycerin, malic acid, tartaric acid, citric acid and salicylic acid. This can be done, with citric acid being preferred.
  • the hydroxylactone compound is not particularly limited as long as it has a lactone ring and a hydroxyl group in the molecule, and examples thereof include L-ascorbic acid, erythorbic acid, and gluconodeltalactone acid, among which L- Ascorbic acid and erythorbic acid are preferable.
  • the content of the polyvalent carboxylic acid, the hydroxycarboxylic acid and the hydroxylactone compound is preferably 1 ppm to 1,000 ppm, more preferably 5 ppm to 500 ppm, and 10 ppm to 300 ppm with respect to vinyl acetate. Is even more preferable. If the content of the polyvalent carboxylic acid, hydroxycarboxylic acid and hydroxylactone compound is less than 1 ppm, the effect is small, and if it exceeds 1,000 ppm, the polymerization of vinyl acetate tends to be inhibited.
  • the polyvalent carboxylic acid, hydroxycarboxylic acid and hydroxylactone compound may be added to the polymerization system in advance, for example, a method of adding the vinyl acetate and the solvent at the same time to the polymerization system, or a method of adding the compound to the polymerization system as it is. Examples thereof include a method of pre-dissolving in a solvent used for polymerization and then adding to the polymerization system, a method of premixing with other additives and then adding, and a method of dividing and adding.
  • the vinyl acetate of the present invention preferably contains acetaldehyde dimethyl acetal from the viewpoint of controlling the variation in the average degree of polymerization of the vinyl acetate polymer and the hue and solubility of polyvinyl alcohol obtained by saponification.
  • the content of acetaldehyde dimethyl acetal is preferably 0.001 part by mass to 10 parts by mass, more preferably 0.01 part by mass to 7 parts by mass, and 0 by mass, with the content of vinyl acetate as 100 parts by mass. It is more preferably 1 part by mass to 5 parts by mass, and particularly preferably 1 part by mass to 5 parts by mass. If the content of acetaldehyde dimethyl acetal is less than 0.001 part by mass, the effect is small, and if it exceeds 10 parts by mass, the polymerization of vinyl acetate tends to be inhibited.
  • Acetaldehyde dimethyl acetal can be added to vinyl acetate in advance, added to the polymerization system at the same time as vinyl acetate and the polymerization solvent described later, added to the polymerization system as it is, or dissolved in the solvent used for polymerization in advance.
  • Examples thereof include a method of adding the solvent to the polymerization system, a method of adding the solvent after mixing it with another additive in advance, and a method of adding the solvent in divided portions.
  • a vinyl acetate polymer or a copolymer containing vinyl acetate as a monomer (hereinafter, the polymer and the copolymer are collectively referred to as a polymer) can be obtained.
  • the monomer to be copolymerized may be another monomer copolymerizable with vinyl acetate.
  • copolymerizable monomers include, for example, ethylene; olefins having 3 to 30 carbon atoms such as propylene, 1-butene, and isobutene; acrylic acid or salts thereof; methyl acrylate, ethyl acrylate, n-propyl acrylate.
  • Acrylic ester such as i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid or its Salts; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, methacrylic acid.
  • Methacrylate esters such as dodecyl and octadecyl methacrylate; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamide propanesulfonic acid or its salts, acrylamidepropyldimethylamine or its salts, Acrylamide derivatives such as N-methylolacrylamide or derivatives thereof; methacrylicamide, N-methylmethacrylate, N-ethylmethacrylate, methacrylicamide propanesulfonic acid or its salts, methacrylicamidepropyldimethylamine or its salts, N-methylolmethacrylicamide.
  • a methacrylicamide derivative such as a derivative thereof; N-vinylamide such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone; methylvinyl ether, ethylvinyl ether, n-propylvinyl ether, i-propylvinyl ether, n-butylvinyl ether, Vinyl ethers such as i-butyl vinyl ether, tert-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; vinyl cyanide such as acrylonitrile and methacrylonitrile; vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; acetic acid.
  • N-vinylamide such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone
  • methylvinyl ether ethylvin
  • Allyl compounds such as allyl and allyl chloride; maleic acid or salts thereof, esters or acid anhydrides; itaconic acid or salts thereof, esters or acid anhydrides; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate and the like.
  • an aliphatic alcohol having 4 or less carbon atoms As a polymerization solvent, it is preferable to use an aliphatic alcohol having 4 or less carbon atoms as a polymerization solvent.
  • an aliphatic alcohol having 5 or more carbon atoms, an aromatic alcohol, or the like is used, the effect of the present invention cannot be sufficiently obtained.
  • the fatty alcohol having 4 or less carbon atoms include methanol, ethanol, propanol and butanol, of which methanol, ethanol and propanol are preferable, methanol and ethanol are more preferable, and methanol is even more preferable.
  • the vinyl acetate of the present invention has a ratio of carbon-14 to total carbon of 1.0 ⁇ 10-14 or more. Therefore, carbon to total carbon in the vinyl acetate polymer obtained by polymerizing such vinyl acetate.
  • the ratio of 14 is 1.0 ⁇ 10-14 or more.
  • vinyl acetate having a stable carbon isotope ratio of ⁇ 20 ⁇ or more is used as vinyl acetate, the stable carbon isotope ratio in the obtained vinyl acetate polymer is ⁇ 20 ⁇ or more.
  • vinyl acetate having a stable carbon isotope ratio of less than ⁇ 20 ⁇ is used as vinyl acetate, the stable carbon isotope ratio in the obtained vinyl acetate polymer is less than ⁇ 20 ⁇ .
  • the sulfur content of the obtained vinyl acetate polymer exceeds 0 ppm and contains 100 ppm or less.
  • the sulfur content is preferably dimethyl sulfide or dimethyl sulfoxide from the viewpoint of facilitating tracking.
  • a vinyl alcohol polymer can be obtained by saponifying the polymer having vinyl acetate as a monomer unit.
  • carbon-14 when carbon-14 is used in a vinyl acetate polymer having a ratio of carbon-14 to total carbon of 1.0 ⁇ 10-14 or more, the ratio of carbon-14 to total carbon in the obtained vinyl alcohol polymer is 1.0. It becomes ⁇ 10-14 or more.
  • the carbon stable isotope ratio in the obtained vinyl alcohol polymer is ⁇ 20 ⁇ or more.
  • the stable carbon isotope ratio in the obtained vinyl alcohol polymer is less than ⁇ 20 ⁇ .
  • the sulfur content of the obtained vinyl alcohol polymer exceeds 0 ppm and contains 100 ppm or less.
  • the sulfur content is preferably dimethyl sulfide or dimethyl sulfoxide from the viewpoint of facilitating tracking.
  • the polymer having vinyl acetate as a monomer unit is a copolymer of vinyl acetate and another copolymerizable monomer
  • the vinyl acetate-ethylene copolymer in which the other copolymerizable monomer is ethylene is saponified.
  • a vinyl alcohol polymer containing an ethylene unit is preferable.
  • the content of ethylene units is preferably 1 mol% or more and 60 mol% or less, and more preferably 1 mol% or more and 55 mol% or less.
  • the saponification degree of the vinyl alcohol polymer is preferably 80 mol% or more, more preferably 85 mol% or more, still more preferably 90 mol% or more.
  • the degree of saponification is the ratio (mol%) of the number of moles of vinyl alcohol units to the total number of moles of structural units (typically vinyl ester monomer units) that can be converted to vinyl alcohol units by saponification. ) Means.
  • the degree of polymerization of the vinyl alcohol polymer is preferably 200 or more, more preferably 300 or more, still more preferably 500 or more, from the viewpoint of ensuring sufficient mechanical strength of the obtained film. Further, from the viewpoint of productivity and water solubility of the vinyl alcohol polymer, the degree of polymerization is preferably 5,000 or less, more preferably 3,000 or less.
  • the vinyl alcohol polymer preferably has a 1,2-glycol bond.
  • the content of the 1,2-glycol bond is preferably 0.2 mol% or more, more preferably 0.3 mol% or more, further preferably 0.4 mol% or more, and particularly preferably 0.5 mol% or more.
  • the content of the 1,2-glycol bond is preferably 2 mol% or less, more preferably 1.5 mol% or less, further preferably 1.3 mol% or less, and 1.0 mol%. The following are particularly preferred.
  • the vinyl alcohol polymer of the present invention contains ethylene units in the vinyl alcohol polymer in terms of the hue of the obtained film and the viscosity stability of the aqueous solution during film formation, in addition to the ease of tracking. It contains 1 mol% or more and 15 mol% or less with respect to a polymer unit, has a saponification degree of 85 mol% or more and 99.9 mol% or less, has a propylene unit at the end, and has the above-mentioned propyl relative to all monomer units.
  • a vinyl alcohol polymer having a group content of 0.0005 mol% or more and 0.1 mol or less (hereinafter, may be referred to as an ethylene-modified vinyl alcohol polymer) is preferable.
  • the viscosity average degree of polymerization of the ethylene-modified vinyl alcohol polymer is preferably 200 or more and 3,000 or less, more preferably 400 or more and 2,800 or less, and further preferably 450 or more and 2,500 or less.
  • the viscosity average degree of polymerization is a value obtained by measuring according to JIS K 6726: 1994 in the same manner as described above.
  • the saponification degree of the ethylene-modified vinyl alcohol polymer is preferably 80 mol% or more and 99.9 mol% or less, and more preferably 90 mol% or more and 99.9 mol% or less.
  • the ethylene-modified vinyl alcohol polymer preferably has 0.0005 mol% or more and 0.10 mol% or less of a propyl group at one end, more preferably 0.001 mol% or more and 0.08 mol% or less, and 0. It is more preferable to have .005 mol% or more and 0.05 mol% or less.
  • the method for introducing the propyl group for example, a method of reacting ethylene with vinyl acetate in the presence of an initiator having a propyl group and a chain transfer agent in the polymerization step is preferable.
  • an initiator having a propyl group and the chain transfer agent having a propyl group in combination an ethylene-modified vinyl alcohol polymer having a specific amount of propyl group introduced at one end can be efficiently produced.
  • Examples of the initiator having a propyl group include n-propylperoxydicarbonate, 1,1'-propane-1-nitrile, and the like.
  • the amount of the initiator having a propyl group is preferably 0.000125% by mass or more and 0.25% by mass or less, and 0.0003% by mass or more and 0. 2% by mass or less is more preferable, and 0.0005% by mass or more and 0.15% by mass or less is further preferable.
  • Examples of the chain transfer agent having a propyl group include propanethiol and propylaldehyde.
  • the concentration of the chain transfer agent having a propyl group in the system is preferably 0.0001% by mass or more and 0.005% by mass or less, preferably 0.0002% by mass or more, based on vinyl acetate in order to obtain the content of the propyl group. It is more preferably 0.004% by mass or less, and further preferably 0.0003% by mass or more and 0.003% by mass or less.
  • the polymerization temperature is not particularly limited, but is preferably 0 ° C to 180 ° C, more preferably 20 ° C to 160 ° C, and even more preferably 30 ° C to 150 ° C.
  • pressure-non-boiling polymerization is carried out under conditions where the solvent is not boiled under pressure, and pressure-boiling polymerization is carried out while the solvent is boiled under pressure. Both can be selected.
  • the ethylene pressure in the polymerization reactor in the polymerization step is not particularly limited, but is preferably 0.01 MPa to 0.9 MPa, more preferably 0.05 MPa to 0.7 MPa, and even more preferably 0.1 MPa to 0.65 MPa.
  • the polymerization rate of vinyl acetate at the outlet of the polymerization reactor is not particularly limited, but is preferably 10% to 90%, more preferably 15% to 85%.
  • the alkoxy group content of the vinyl alcohol polymer obtained by polymerizing the vinyl acetate of the present invention is the total structural unit (all monomer unit and alkoxy) constituting the vinyl alcohol polymer from the viewpoint of easy tracking. Based on the number of moles of the unit having a group), it is preferably 0.0005 mol% to 1 mol%, more preferably 0.0007 mol% or more, still more preferably 0.001 mol% or more. On the other hand, the content is preferably 0.5 mol% or less, more preferably 0.3 mol% or less.
  • Examples of the method for producing a vinyl alcohol polymer containing an alkoxy group include a method of saponifying a vinyl ester polymer obtained by copolymerizing the vinyl acetate of the present invention with an unsaturated monomer having an alkoxy group. Be done.
  • the monomer containing an alkoxy group is not particularly limited as long as it is an unsaturated monomer having an alkoxy group and copolymerizable with a vinyl ester, and is, for example, an alkyl vinyl ether, an alkyl allyl ether, or an N-alkoxyalkyl (. Examples thereof include meta) acrylamide, and N-alkoxyalkyl (meth) acrylamide is preferable.
  • the monomer containing an alkoxy group may be used alone or in combination of two or more, but the former is preferable.
  • the vinyl alcohol polymer has excellent viscosity stability at the initial stage of melting, can stabilize the melt molding process, and is used under high temperature and alkaline conditions such as 80 ° C. It is preferable from the viewpoint of color resistance.
  • the total content is more preferably 0.07 mol% or less, further preferably 0.05 mol% or less, and particularly preferably 0.02 mol% or less. On the other hand, the total content is more preferably 0.002 mol% or more.
  • the monomer unit in the vinyl alcohol polymer is a vinyl alcohol unit, a vinyl ester unit, an ethylene unit in the case of a copolymer with ethylene, and other single amounts to be copolymerized as necessary. It means a body unit, and the total monomer unit means the total amount of moles of each monomer unit.
  • the unit including the terminal structure represented by the structure (I) or the structure (II) is also included in the monomer unit for calculation.
  • Both the structure (I) and the structure (II) are structures derived from the polymerization initiator used in the polymerization step.
  • the structure (I) contains a cyclic ester structure formed by the reaction of the nitrile group derived from the polymerization initiator with the hydroxyl group in the same molecule, and the structure (II) is before such a reaction occurs. ..
  • the structure (I) can be introduced into the polymerization terminal by using an azonitrile-based compound containing an alkoxy group as the polymerization initiator.
  • the azonitrile-based compound containing an alkoxy group include 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) and 2,2'-azobis (4-ethoxy-2,4-dimethylvaleronitrile). Nitrile) and the like, with 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) being preferred.
  • the azonitrile-based compound containing these alkoxy groups is unlikely to undergo abnormal decomposition due to contact with a metal, and has a high decomposition rate at low temperatures. Therefore, by using the azonitrile compound, ethylene and vinyl ester can be copolymerized safely, efficiently and economically.
  • the vinyl alcohol polymer having the structures (I) and (II) at the end of the polymer preferably has an ethylene unit content of 1 mol% or more and 15 mol% or less from the viewpoint of the hydrophilicity of the vinyl alcohol polymer. It is more preferably 1 mol% or more and 10 mol% or less, further preferably 1 mol% or more and 8 mol% or less, and particularly preferably 1 mol% or more and 5 mol% or less.
  • the vinyl alcohol polymer having the structures (I) and (II) at the end of the polymer has a viscosity average degree of polymerization of 200 or more and 3,000 from the viewpoint of the water-resistant adhesive viscosity of the adhesive obtained from the vinyl alcohol polymer.
  • the following is preferable, 400 or more and 2,800 is more preferable, and 450 or more and 2,500 is even more preferable.
  • the vinyl alcohol polymer having the structures (I) and (II) at the end of the polymer has a saponification degree of 85 from the viewpoint of solubility in water and water resistance of the adhesive obtained from the vinyl alcohol polymer. It is preferably mol% or more and 99.9 mol% or less, and more preferably 90 mol% or more and 99.9 mol% or less.
  • the vinyl alcohol polymer having the structures (I) and (II) at the end of the polymer has a molar ratio R [I / (I + II)] of the structure (I) to the sum of the structures (I) and the structure (II).
  • Preferably satisfies the following formula (1). It is more preferable that the molar ratio R [I / (I + II)] satisfies the following formula (1-1), further preferably the following formula (1-2), and the following formula (1-3) is satisfied.
  • the molar ratio R [I / (I + II)] can be adjusted by washing the vinyl alcohol polymer after saponification.
  • the molar ratio R [I / (I + II))] is preferably 0.1 or more. This is because it is difficult to make it less than 0.1 due to the industrial manufacturing method of EVOH, which leads to an increase in manufacturing cost.
  • R ⁇ 0.92-Et / 100 (1) R ⁇ 0.90-Et / 100 (1-1)
  • Et is the ethylene unit content (mol%). ]
  • the molar ratio R [I / (I + II)] of the structure (I) to the sum of the structures (I) and the structure (II) satisfies the following formula (2), and the following formula (2-1) is used. It is more preferable to meet. 0.8 ⁇ R + Et / 100 (2) 0.9 ⁇ R + Et / 100 (2-1) [In equations (2) and (2-1), Et is the same as described above. ]
  • the large value on the right side means that the proportion of the nitrile group derived from the polymerization initiator converted into the cyclic ester structure is high, and the formula (2) 2-1) means that the ratio is even higher.
  • the vinyl alcohol polymer obtained by polymerizing the vinyl acetate and ethylene of the present invention the vinyl alcohol polymer having a block character of ethylene unit of 0.90 to 0.99 is from the viewpoint of ease of tracking.
  • the vinyl alcohol polymer when used as the coating agent, it is preferable from the viewpoint of the viscosity stability of the obtained coating agent and the barrier property of the obtained coated paper.
  • the block character is a numerical value representing the distribution of the vinyl alcohol unit generated by the saponification of the ethylene unit and the vinyl ester unit, and takes a value between 0 and 2. 0 indicates that the ethylene unit or vinyl alcohol unit is distributed completely in a block, and the alternation increases as the value increases, and 1 indicates that the ethylene unit and the vinyl alcohol unit are completely randomly present. Indicates that ethylene units and vinyl alcohol units are completely alternated.
  • the block character is obtained by 13 C-NMR as follows. First, the ethylene-vinyl alcohol copolymer is saponified to a saponification degree of 99.9 mol% or more, thoroughly washed with methanol, and dried under reduced pressure at 90 ° C. for 2 days.
  • the ethylene-vinyl ester copolymer having the block character uses a wide paddle blade in the polymerization tank, the stirring power Pv per unit volume is 0.5 to 10 kW / m 3 , and the fluid number Fr is 0.05 to 0. It can be obtained by contacting a solution containing vinyl ester with an ethylene-containing gas so as to have a value of 2.
  • the vinyl acetate of the present invention has a specific value of 14 C / C, unlike the conventional fossil raw material-derived ethylene and vinyl acetate obtained from acetic acid. Further, more preferably , in addition to 14 C / C, ⁇ 13 C also has a value different from that of conventional vinyl acetate. Therefore, the vinyl acetate polymer of the present invention, the vinyl acetate polymer having vinyl acetate obtained by polymerizing the vinyl acetate as a monomer unit, and the vinyl alcohol polymer which is a saponified product thereof are preferably 14 C / C in a specific range.
  • the method for tracking the vinyl acetate polymer and the vinyl alcohol polymer after production is as follows: 14 C / C of vinyl acetate, which is a raw material before polymerization, which was used in advance for producing the vinyl acetate polymer and its saponified vinyl alcohol polymer. If the results are analyzed and recorded, 14 C / C of the vinyl acetate polymer or vinyl alcohol polymer recovered after production or sale is measured, and the result and 14 C / of vinyl acetate, which is the raw material measured in advance, are measured. By comparing with C, it can be determined whether the recovered vinyl acetate polymer or vinyl alcohol polymer is an in-house product, and if it is an in-house product, the lot or the like can be specified. Further, by setting ⁇ 13 C to a certain range, these determinations become easier.
  • the vinyl acetate of the present invention further contains at least one of the acetate ester, a polymerization inhibitor, a polyhydric alcohol, a hydroxycarboxylic acid, a hydroxylactone compound and acetaldehyde dimethyl acetal in the above range. Easy to track.
  • the vinyl alcohol polymer which is a saponified product of the vinyl acetate polymer of the present invention obtained by polymerizing the vinyl acetate of the present invention and containing the vinyl acetate of the present invention as a monomer unit, has the above 1,2-glycol bond and the above polymer.
  • a propylene group or an alkoxy group By containing at least one of a propylene group or an alkoxy group, the structure (I) and the structure (II), and a block character in the above range at the terminal, tracking is facilitated and the characteristics of the obtained vinyl alcohol polymer are obtained. Can be suitably used for the intended use.
  • the raw material can be traced from the vinyl acetate polymer having vinyl acetate as a monomer unit and the vinyl alcohol polymer which is a saponified product thereof of the present invention, it was obtained from the vinyl acetate polymer or the vinyl alcohol polymer. It is possible to feed back from the quality of the molded product to the quality of vinyl acetate, which is the raw material. In addition, it becomes possible to easily investigate the production line of vinyl acetate polymer or vinyl alcohol polymer, which is the raw material of the molded product, and vinyl acetate.
  • the present invention is not limited to such exemplifications. Specifically, the present invention is not limited to each embodiment, and various modifications can be made within the scope of the claims, and the technical means disclosed in the different embodiments can be appropriately combined. Also included in the technical scope of the present invention. Further, unless otherwise specified, the exemplified substances may be used alone or in combination of two or more.
  • the carbon isotope ratios (14 C / 12 C ratio, 13 C / 12 C ratio) of the sample and standard were measured by accelerator mass spectrometry, and the 14 C concentration was calculated from the measurement results.
  • the mixing ratio of carbon derived from biomass and carbon derived from fossil resources was evaluated for the carbon contained in the sample.
  • the identification of the sulfur content was performed by using gas chromatography (GC) and gas chromatography-mass spectrometry (GC / MS).
  • GC gas chromatography
  • GC / MS gas chromatography-mass spectrometry
  • FPD flame photometric detector
  • Ethylene unit content and saponification degree of ethylene-vinyl alcohol copolymer Dimethyl sulfoxide (DMSO) -d containing tetramethylsilane as an internal standard and tetrafluoroacetic acid as an additive. It was dissolved in 6 and measured at 80 ° C. using 1 H-NMR (“JMTC-400 / 54 / SS” manufactured by Nippon Denshi Co., Ltd.) at 500 MHz to measure the ethylene unit content and the degree of saponification. Each peak in the spectrum of the measurement is assigned as follows.
  • the cooled liquid was transferred to a 50 mL volumetric flask (manufactured by TPX) and scalpel-up with pure water. Elemental analysis of this solution was performed with an ICP emission spectrophotometer (“OPTIMA4300DV” manufactured by PerkinElmer), and the amount of metal ions contained in the ethylene-vinyl alcohol copolymer pellets converted into metal atoms and the converted phosphorus compound into phosphorus atoms. The amount and the boron atom equivalent amount of the boron compound were determined.
  • the content of propyl group at one end of the vinyl alcohol polymer is determined from 1 H-NMR of the vinyl ester polymer which is a precursor of the vinyl alcohol polymer or a revinegared product. rice field.
  • the ethylene-modified vinyl ester polymer of the sample was reprecipitated and purified three times or more using a mixed solution of n-hexane and acetone, and then dried under reduced pressure at 80 ° C. for 3 days to obtain an ethylene-modified vinyl ester polymer for analysis. Make.
  • the ethylene-modified vinyl ester polymer for analysis was dissolved in DMSO-d 6, measured at 80 ° C.
  • Solubility of Resin Material 90 g of water, that is, 100 g of a 10% aqueous solution of the resin material is stirred at 90 ° C. for 5 hours at 300 rpm with respect to 10 g of the resin material, and then the whole amount is filtered with a 200 mesh wire mesh.
  • the 200 mesh corresponds to an opening of 75 ⁇ m in terms of the mesh of the JIS standard sieve.
  • the mesh opening of the sieve is determined in accordance with the nominal opening W of JIS Z 8801-1-2006.
  • Viscosity Stability of Aqueous Solution of Resin Material 100 g of a 10% aqueous solution of a resin material prepared under the above conditions was left at 5 ° C. to determine the viscosity c when the liquid temperature reached 5 ° C. and below 5 ° C.
  • the viscosity stability of the aqueous solution was determined from the ratio (viscosity ratio) d / c of the viscosity d when the mixture was left to stand for 48 hours. The larger the value of d / c, the larger the increase in viscosity when left at 5 ° C., which means that the viscosity stability is poor.
  • the viscosity (mPa ⁇ s) is a value measured using a B-type viscometer (“BLII” manufactured by Toki Sangyo Co., Ltd.) under the conditions of a rotor rotation speed of 60 rpm and a temperature of 20 ° C.
  • Hue of resin material was determined by the yellow index (YI) of the powder. After removing particles less than 100 ⁇ m and more than 1,000 ⁇ m using a sieve (opening: 100 ⁇ m, 1,000 ⁇ m), measurement was performed using a color meter (“SM-T-H1” manufactured by Suga Test Instruments Co., Ltd.). .. YI is a value measured and calculated according to JIS Z 8722: 2009 and JIS K 7373: 2006.
  • the peak of the methoxy group methyl hydrogen or the ethoxy group methylene hydrogen of the structure (I) and the peak of the methoxy group methyl hydrogen or the ethoxy group methylene hydrogen of the structure (II) are 3.07 ppm and 3 respectively. It was detected near .09 ppm.
  • the palladium / gold / carrier composition is immersed in an aqueous acetic acid solution and allowed to stand. Then, it is washed with water and dried. Then, it is impregnated with an aqueous solution corresponding to the amount of water absorbed by the carrier of potassium acetate and dried to obtain a vinyl acetate synthesis catalyst.
  • Bioethanol is obtained by treating rice straw, which is a C3 plant, through an alkali treatment step, a saccharification treatment step, and an ethanolization step. By dehydrating this bioethanol at 190 ° C. using mordenite as a catalyst, bioethylene derived from a C3 plant can be obtained.
  • Example 1 The catalyst obtained in Synthesis Example 1 was diluted with glass beads and filled in a SUS reaction tube, and a mixed gas of ethylene, oxygen, water, acetic acid, and nitrogen was circulated to carry out the reaction.
  • ethylene bioethylene (manufactured by Braskem SA) derived from sugar cane, which is a C4 plant, was used.
  • acetic acid was introduced into the reaction system by steam after vaporizing bioacetic acid derived from sugar cane, which is a C4 plant.
  • the yield and selectivity of vinyl acetate were obtained by analyzing the reaction outlet gas.
  • the obtained vinyl acetate was analyzed by the above method and 14 C / C and ⁇ 13 C, as well as sulfur content were measured.
  • the obtained vinyl acetate was designated as VAM-1, and the results are shown in Table 1.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that the total amount of bioacetic acid was changed to petroleum-derived acetic acid. By analyzing the reaction outlet gas, the yield and selectivity of vinyl acetate were obtained. The obtained vinyl acetate was analyzed by the above method and 14 C / C and ⁇ 13 C, as well as sulfur content were measured. The obtained vinyl acetate was designated as VAM-2, and the results are shown in Table 1.
  • Example 3 The reaction was carried out in the same manner as in Example 1 except that half of the bioethylene was changed to petroleum-derived ethylene and the total amount of bioacetic acid was changed to petroleum-derived acetic acid. By analyzing the reaction outlet gas, the yield and selectivity of vinyl acetate were obtained. The obtained vinyl acetate was analyzed by the above method and 14 C / C and ⁇ 13 C, as well as sulfur content were measured. The obtained vinyl acetate was designated as VAM-3, and the results are shown in Table 1.
  • Example 4 The reaction was carried out in the same manner as in Example 1 except that the total amount of bioethylene was changed to the C3 plant-derived ethylene obtained in Synthesis Example 2 and the total amount of bioacetic acid was changed to the C3 plant-derived acetic acid obtained in Synthesis Example 3. gone.
  • the reaction outlet gas By analyzing the reaction outlet gas, the yield and selectivity of vinyl acetate were obtained.
  • the obtained vinyl acetate was analyzed by the above method and 14 C / C and ⁇ 13 C, as well as sulfur content were measured.
  • the obtained vinyl acetate was designated as VAM-4, and the results are shown in Table 1.
  • Example 5 The reaction was carried out in the same manner as in Example 1 except that the total amount of bioethylene was changed to ethylene derived from the C3 plant obtained in Synthesis Example 2 and the total amount of bioacetic acid was changed to acetic acid derived from petroleum. By analyzing the reaction outlet gas, the yield and selectivity of vinyl acetate were obtained. The obtained vinyl acetate was analyzed by the above method and 14 C / C and ⁇ 13 C, as well as sulfur content were measured. The obtained vinyl acetate was designated as VAM-5, and the results are shown in Table 1.
  • Example 6> The same as in Example 1 except that half of the bioethylene was changed to ethylene derived from the C3 plant obtained in Synthesis Example 2, the remaining half was changed to ethylene derived from petroleum, and the entire amount of bioacetic acid was changed to acetic acid derived from petroleum. The reaction was carried out. By analyzing the reaction outlet gas, the yield and selectivity of vinyl acetate were obtained. The obtained vinyl acetate was analyzed by the above method and 14 C / C and ⁇ 13 C, as well as sulfur content were measured. The obtained vinyl acetate was designated as VAM-6, and the results are shown in Table 1.
  • Example 1 The reaction was carried out in the same manner as in Example 1 except that the total amount of bioethylene was changed to petroleum-derived ethylene and the total amount of bioacetic acid was changed to petroleum-derived acetic acid. By analyzing the reaction outlet gas, the yield and selectivity of vinyl acetate were obtained. The obtained vinyl acetate was analyzed by the above method and 14 C / C and ⁇ 13 C, as well as sulfur content were measured. The obtained vinyl acetate was designated as VAM-C1, and the results are shown in Table 1.
  • S is the content of sulfur in vinyl acetate.
  • the vinyl acetate obtained by the methods described in Examples 1 to 6 contained dimethyl sulfide and / or dimethyl sulfoxide as a sulfur content.
  • Example 7 720 parts by mass of vinyl acetate (VAM-1) and 280 parts by mass of methanol obtained in Example 1 were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen introduction tube and an addition port of a polymerization initiator, and nitrogen bubbling was performed. The inside of the system was replaced with nitrogen for 30 minutes. The temperature of the reactor was started to rise, and when the internal temperature reached 60 ° C., 0.13 part by mass of 2,2'-azobisisobutyronitrile was added to start polymerization. After polymerizing at 60 ° C. for 3 hours, the mixture was cooled to terminate the polymerization.
  • Example 8> The reaction was carried out in the same manner as in Example 7 except that the total amount of vinyl acetate was changed to VAM-2 to obtain a vinyl alcohol polymer (PVOH-2).
  • the physical characteristics of PVOH-2 are shown in Table 2.
  • Example 9 The reaction was carried out in the same manner as in Example 7 except that the total amount of vinyl acetate was changed to VAM-3 to obtain a vinyl alcohol polymer (PVOH-3).
  • the physical characteristics of PVOH-3 are shown in Table 2.
  • Example 10 The reaction was carried out in the same manner as in Example 7 except that half of the vinyl acetate was changed to VAM-1 and the remaining half was changed to VAM-C1 to obtain a vinyl alcohol polymer (PVOH-4).
  • the physical characteristics of PVOH-4 are shown in Table 2.
  • Example 11 The reaction was carried out in the same manner as in Example 7 except that the total amount of vinyl acetate was changed to VAM-4 to obtain a vinyl alcohol polymer (PVOH-5).
  • the physical characteristics of PVOH-5 are shown in Table 2.
  • Example 12 The reaction was carried out in the same manner as in Example 7 except that the total amount of vinyl acetate was changed to VAM-5 to obtain a vinyl alcohol polymer (PVOH-6).
  • the physical characteristics of PVOH-6 are shown in Table 2.
  • Example 13 The reaction was carried out in the same manner as in Example 7 except that the total amount of vinyl acetate was changed to VAM-6 to obtain a vinyl alcohol polymer (PVOH-7).
  • the physical characteristics of PVOH-7 are shown in Table 2.
  • Example 14 The reaction was carried out in the same manner as in Example 7 except that half of the vinyl acetate was changed to VAM-4 and the remaining half was changed to VAM-C1 to obtain a vinyl alcohol polymer (PVOH-8).
  • the physical characteristics of PVOH-8 are shown in Table 2.
  • vinyl acetate having different 14 C / C and ⁇ 13 C can be polymerized and saponified under the same conditions to obtain a vinyl alcohol polymer having the same physical characteristics.
  • Example 15 Manufacturing of ethylene-vinyl acetate copolymer 105 kg of VAM-1 and 32.3 kg of methanol were charged in a 250 L pressurized reaction vessel equipped with a jacket, a stirrer, a nitrogen inlet, an ethylene inlet and an initiator addition port, and the temperature was raised to 65 ° C. for 30 minutes. Nitrogen bubbling was performed to replace the inside of the reaction vessel with nitrogen. Next, ethylene was boosted and introduced so that the reaction vessel pressure (ethylene pressure) was 3.67 MPa. As ethylene, ethylene derived from sugar cane (manufactured by Braskem SA) was used.
  • the obtained ethylene-vinyl alcohol copolymer (EVOH-1) powder is put into an aqueous acetic acid solution of 1 L (1 g / L) of water (bath ratio 20, ratio of 10 kg of powder to 200 L of ion-exchanged water) with respect to 1 g of acetic acid. Then, it was stirred and washed for 2 hours. This was deflated, further added to a 1 g / L acetic acid aqueous solution (bath ratio 20), and stirred and washed for 2 hours. The deflated product was put into ion-exchanged water (bath ratio 20), stirred and washed for 2 hours, and the operation of deflating the liquid was repeated 3 times for purification. This was dried at 60 ° C. for 16 hours to obtain a crudely dried product of EVOH-1.
  • the water-containing pellets of EVOH-1 were put into an acetic acid aqueous solution (bath ratio 20) having a concentration of 1 g / L and washed by stirring for 2 hours. This was deflated, further added to a 1 g / L acetic acid aqueous solution (bath ratio 20), and stirred and washed for 2 hours. After the liquid was removed, the acetic acid aqueous solution was updated and the same operation was performed.
  • a water-containing pellet of EVOH-1 was obtained from which the methanol used at the time of strand precipitation was removed.
  • the water content of the obtained water-containing pellets of EVOH-1 was measured with a halogen moisture meter "HR73" manufactured by METTLER CORPORATION.
  • the obtained water-containing pellets of EVOH-1 were put into an aqueous solution (bath ratio 20) containing sodium acetate, acetic acid, phosphoric acid concentration and boric acid, and immersed for 4 hours with regular stirring.
  • the concentration of each component was adjusted so that the content of each component in the obtained EVOH-1 pellet was as shown in Table 3.
  • the liquid was drained and dried in air at 80 ° C. for 3 hours and in air at 130 ° C. for 7.5 hours to obtain EVOH-1 pellets containing sodium acetate, acetic acid, phosphoric acid and boric acid. ..
  • the physical characteristics are shown in Table 3.
  • Example 16 The reaction was carried out in the same manner as in Example 15 except that the total amount of vinyl acetate was changed to VAM-2 to obtain ethylene-vinyl alcohol copolymer (EVOH-2) pellets.
  • the physical characteristics are shown in Table 3.
  • Example 17 The reaction was carried out in the same manner as in Example 15 except that the total amount of vinyl acetate was changed to VAM-3 to obtain ethylene-vinyl alcohol copolymer (EVOH-3) pellets.
  • the physical characteristics are shown in Table 3.
  • Example 18 The reaction was carried out in the same manner as in Example 15 except that half of the vinyl acetate was changed to VAM-1 and the remaining half was changed to VAM-C1 to obtain ethylene-vinyl alcohol copolymer (EVOH-4) pellets. ..
  • the physical characteristics are shown in Table 3.
  • Example 19 The reaction was carried out in the same manner as in Example 15 except that the total amount of ethylene was changed to petroleum-derived ethylene to obtain ethylene-vinyl alcohol copolymer (EVOH-5) pellets.
  • EVOH-5 ethylene-vinyl alcohol copolymer
  • Example 20 The reaction was carried out in the same manner as in Example 15 except that half of ethylene was changed to petroleum-derived ethylene to obtain ethylene-vinyl alcohol copolymer (EVOH-6) pellets.
  • EVOH-6 ethylene-vinyl alcohol copolymer
  • Example 21 The reaction was carried out in the same manner as in Example 15 except that the total amount of ethylene was changed to ethylene derived from rice straw and the total amount of vinyl acetate was changed to VAM-4, and ethylene-vinyl alcohol copolymer (EVOH-7) pellets were carried out.
  • EVOH-7 ethylene-vinyl alcohol copolymer
  • Example 22 The reaction was carried out in the same manner as in Example 15 except that the total amount of ethylene was changed to ethylene derived from rice straw and the total amount of vinyl acetate was changed to VAM-5, and ethylene-vinyl alcohol copolymer (EVOH-8) pellets were carried out.
  • EVOH-8 ethylene-vinyl alcohol copolymer
  • Example 23 The reaction was carried out in the same manner as in Example 15 except that the total amount of ethylene was changed to ethylene derived from rice straw and the total amount of vinyl acetate was changed to VAM-6, and ethylene-vinyl alcohol copolymer (EVOH-9) pellets were carried out.
  • EVOH-9 ethylene-vinyl alcohol copolymer
  • Example 24 The reaction was carried out in the same manner as in Example 15 except that the total amount of ethylene was changed to ethylene derived from rice straw, half of vinyl acetate was changed to VAM-6, and the other half was changed to VAM-C1. Ethylene-vinyl alcohol copolymer weight. Combined (EVOH-10) pellets were obtained. The physical characteristics are shown in Table 3.
  • Example 25 The reaction was carried out in the same manner as in Example 15 except that the total amount of ethylene was changed to ethylene derived from petroleum and the total amount of vinyl acetate was changed to VAM-4, and ethylene-vinyl alcohol copolymer (EVOH-11) pellets were obtained. Obtained.
  • the physical characteristics are shown in Table 3.
  • Example 26 The reaction was carried out in the same manner as in Example 15 except that half of the ethylene was changed to ethylene derived from rice straw, the other half was changed to ethylene derived from petroleum, and the total amount of vinyl acetate was changed to VAM-4. Ethylene-vinyl alcohol Copolymer (EVOH-12) pellets were obtained. The physical characteristics are shown in Table 3.
  • 14 C / C and ⁇ 13 C of the obtained EVOH-1 to EVOH-6 and EVOH-C1 were measured by the above method.
  • the values are almost the same as the values of 14 C / C and ⁇ 13 C of vinyl acetate and ethylene used.
  • EVOH-C1 obtained by polymerizing vinyl acetate from the total amount of oil EVOH-6 from EVOH-1, ethylene - 14 C / C and [delta] 13 C vinyl alcohol copolymer It is possible to identify the raw material by measuring. Therefore, it is possible to trace the ethylene-vinyl acetate alcohol copolymer.
  • each EVOH composition of Examples 15 to 26 is comparable to the one derived only from fossil resources (EVOH composition of Comparative Example 3) while partially using plant-derived raw materials. It has a high oxygen barrier property.
  • Example 27 The reaction was carried out in the same manner as in Example 15 except that 500 ppm of methyl acetate was added to vinyl acetate to obtain ethylene-vinyl alcohol copolymer (EVOH-13) pellets.
  • EVOH-13 ethylene-vinyl alcohol copolymer
  • Example 28 The reaction was carried out in the same manner as in Example 15 except that 350 ppm of ethyl acetate was added to vinyl acetate and the polymerization solvent was changed from methanol to ethanol to obtain ethylene-vinyl alcohol copolymer (EVOH-14) pellets. Obtained. As a result of comparing the physical properties of EVOH-1 and EVOH-14, EVOH-14 improved the film forming defects and the coloration of the roll end. At this time, there was no difference in 14 C / C, ⁇ 13 C and oxygen permeability between EVOH-1 and EVOH-14.
  • Example 29> The reaction was carried out in the same manner as in Example 21 except that 500 ppm of methyl acetate was added to vinyl acetate to obtain ethylene-vinyl alcohol copolymer (EVOH-15) pellets.
  • EVOH-15 ethylene-vinyl alcohol copolymer
  • Example 30 The reaction was carried out in the same manner as in Example 21 except that 350 ppm of ethyl acetate was added to vinyl acetate and the polymerization solvent was changed from methanol to ethanol to obtain ethylene-vinyl alcohol copolymer (EVOH-16) pellets. Obtained. As a result of comparing the physical properties of EVOH-7 and EVOH-16, EVOH-16 improved the film forming defect and the coloration of the roll end. At this time, there was no difference in 14 C / C, ⁇ 13 C and oxygen permeability between EVOH-7 and EVOH-16.
  • Example 31 The reaction was carried out in the same manner as in Example 15 except that 50 ppm of L-ascorbic acid was added to vinyl acetate to obtain ethylene-vinyl alcohol copolymer (EVOH-17) pellets.
  • EVOH-17 ethylene-vinyl alcohol copolymer
  • Example 32 The reaction was carried out in the same manner as in Example 15 except that 50 ppm of erythorbic acid was added to vinyl acetate to obtain ethylene-vinyl alcohol copolymer (EVOH-18) pellets.
  • EVOH-18 ethylene-vinyl alcohol copolymer
  • Example 33 The reaction was carried out in the same manner as in Example 15 except that 50 ppm of glucono delta lactone was added to vinyl acetate to obtain ethylene-vinyl alcohol copolymer (EVOH-19) pellets.
  • EVOH-19 ethylene-vinyl alcohol copolymer
  • Example 34 The reaction was carried out in the same manner as in Example 21 except that 50 ppm of L-ascorbic acid was added to vinyl acetate to obtain ethylene-vinyl alcohol copolymer (EVOH-20) pellets.
  • EVOH-20 ethylene-vinyl alcohol copolymer
  • Example 35 The reaction was carried out in the same manner as in Example 21 except that 50 ppm of erythorbic acid was added to vinyl acetate to obtain ethylene-vinyl alcohol copolymer (EVOH-21) pellets.
  • EVOH-21 ethylene-vinyl alcohol copolymer
  • Example 36 The reaction was carried out in the same manner as in Example 21 except that 50 ppm of glucono delta lactone was added to vinyl acetate to obtain ethylene-vinyl alcohol copolymer (EVOH-22) pellets.
  • EVOH-22 ethylene-vinyl alcohol copolymer
  • vinyl acetate of the present invention is used, and vinyl acetate is used alone or with another monomer in the coexistence of a polyvalent carboxylic acid, a hydroxycarboxylic acid, a hydroxylactone compound and a polymerization initiator.
  • the ethylene-vinyl acetate copolymer obtained by copolymerizing with polymerization, particularly vinyl acetate and ethylene, is useful as a raw material for an ethylene-vinyl acetate copolymer saponified product, and ethylene obtained by saponifying such a copolymer.
  • the vinyl acetate copolymer saponified product can suppress fish eyes during film formation and has an excellent hue.
  • Example 37 The reaction was carried out in the same manner as in Example 7 except that 0.5 parts by mass of acetaldehyde dimethyl acetal was added to vinyl acetate to obtain a vinyl alcohol polymer (PVOH-9). As a result of visually confirming PVOH-1 and PVOH-9, PVOH-9 was whiter and had an excellent hue. At this time, there was no difference between 14 C / C and ⁇ 13 C between PVOH-1 and PVOH-9.
  • Example 38 The reaction was carried out in the same manner as in Example 7 except that 4 parts by mass of acetaldehyde dimethyl acetal was added to vinyl acetate to obtain a vinyl alcohol polymer (PVOH-10). As a result of visually confirming PVOH-1 and PVOH-10, PVOH-10 was whiter and had an excellent hue. At this time, there was no difference between 14 C / C and ⁇ 13 C between PVOH-1 and PVOH-10.
  • Example 39 The reaction was carried out in the same manner as in Example 7 except that 4 parts by mass of acetaldehyde dimethyl acetal and 5 ppm of citric acid were added to vinyl acetate to obtain a vinyl alcohol polymer (PVOH-11). As a result of visually confirming PVOH-1 and PVOH-11, PVOH-11 was whiter and had an excellent hue. At this time, there was no difference between 14 C / C and ⁇ 13 C between PVOH-1 and PVOH-11.
  • Example 40> The reaction was carried out in the same manner as in Example 7 except that 4 parts by mass of acetaldehyde dimethyl acetal and 10 ppm of citric acid were added to vinyl acetate to obtain a vinyl alcohol polymer (PVOH-12). As a result of visually confirming PVOH-1 and PVOH-12, PVOH-12 was whiter and had an excellent hue. At this time, there was no difference between 14 C / C and ⁇ 13 C between PVOH-1 and PVOH-12.
  • Example 41 The reaction was carried out in the same manner as in Example 11 except that 0.5 parts by mass of acetaldehyde dimethyl acetal was added to vinyl acetate to obtain a vinyl alcohol polymer (PVOH-13). As a result of visually confirming PVOH-5 and PVOH-13, PVOH-13 was whiter and had an excellent hue. At this time, there was no difference between 14 C / C and ⁇ 13 C between PVOH-5 and PVOH-13.
  • Example 42 The reaction was carried out in the same manner as in Example 11 except that 4 parts by mass of acetaldehyde dimethyl acetal was added to vinyl acetate to obtain a vinyl alcohol polymer (PVOH-14). As a result of visually confirming PVOH-5 and PVOH-14, PVOH-14 was whiter and had an excellent hue. At this time, there was no difference between 14 C / C and ⁇ 13 C between PVOH-5 and PVOH-14.
  • Example 43 The reaction was carried out in the same manner as in Example 11 except that 4 parts by mass of acetaldehyde dimethyl acetal and 5 ppm of citric acid were added to vinyl acetate to obtain a vinyl alcohol polymer (PVOH-15). As a result of visually confirming PVOH-5 and PVOH-15, PVOH-13 was whiter and had an excellent hue. At this time, there was no difference between 14 C / C and ⁇ 13 C between PVOH-5 and PVOH-15.
  • Example 44 The reaction was carried out in the same manner as in Example 11 except that 4 parts by mass of acetaldehyde dimethyl acetal and 10 ppm of citric acid were added to vinyl acetate to obtain a vinyl alcohol polymer (EVOH-15).
  • a vinyl alcohol polymer EVOH-15
  • PVOH-13 was whiter and had an excellent hue.
  • Example 45 A continuous polymerization tank equipped with a reflux condenser, a raw material supply line, a reaction liquid take-out line, a thermometer, a nitrogen inlet, an ethylene inlet and a stirring blade was used.
  • VAM-1 is continuously supplied to the continuous polymerization tank at 671 L / hr, methanol at 148 L / hr, and a 1% methanol solution of n-propylperoxydicarbonate as an initiator is continuously supplied at 1.0 L / hr using a metering pump. did.
  • the amount of n-propylperoxydicarbonate added was 0.00132% by mass with respect to VAM-1.
  • the ethylene pressure in the continuous polymerization tank was adjusted to 0.23 MPa.
  • ethylene ethylene derived from sugar cane (manufactured by Braskem SA) was used.
  • the polymerization liquid was continuously taken out from the continuous polymerization tank so that the liquid level in the continuous polymerization tank became constant.
  • the polymerization rate at the outlet of the continuous polymerization tank was adjusted to be 26%.
  • propanethiol as a chain transfer agent has an in-system concentration of 0.00042 mass% with respect to VAM-1 (concentration relative to that when the residual vinyl acetate in the polymer solution continuously extracted is 100).
  • the residence time of the continuous polymerization tank was 5 hours.
  • the temperature at the outlet of the continuous polymerization tank was 60 ° C.
  • the polymerization solution is recovered from the continuous polymerization tank, and the residual vinyl acetate is removed by introducing methanol vapor into the polymerization solution while heating at 75 ° C. in a warm water bath to remove the residual vinyl acetate, and the ethylene-modified vinyl ester polymer (hereinafter referred to as EVAc) is removed.
  • EVAc ethylene-modified vinyl ester polymer
  • a methanol solution concentration of EVAc 32%) was obtained.
  • the average residence time in the removal step was 2 hours, and the vinyl acetate remaining in the methanol solution of the obtained ethylene-modified vinyl ester polymer was 0.1%.
  • sodium hydroxide was used as a saponification catalyst at a water content of 0.5% and a molar ratio of 0.012 to the ethylene-modified vinyl ester polymer as a saponification catalyst, and the saponification reaction was carried out for 1 hour. gone.
  • the obtained polymer was immersed in methanol for washing. Then, the solvent was removed by centrifugation and then dried.
  • the ethylene unit content was 2 mol%
  • the viscosity average polymerization degree was 1,700
  • the saponification degree was 98.5 mol%
  • the 1,2-glycol bond was formed.
  • the main component is an ethylene-vinyl alcohol copolymer (EVOH-23) with an amount of 1.6 mol% and a propyl group content of 0.0061 mol% at one end, and the content of sodium acetate is 0.42.
  • EVOH-23 ethylene-vinyl alcohol copolymer
  • a composition in% by weight was obtained.
  • the solubility of EVOH-23 when heated at 90 ° C. for 5 hours, the viscosity stability of the aqueous solution, and the hue were measured.
  • the solubility, the viscosity stability of the aqueous solution, and the hue (YI) were good.
  • FIG. 1 A schematic diagram of the polymerization apparatus used is shown in FIG. 1, and a schematic diagram of the stirring blade is shown in FIG.
  • a 1% by mass methanol solution of -azobis- (4-methoxy-2,4-dimethylvaleronitrile) was introduced, respectively.
  • ethylene ethylene derived from sugar cane (manufactured by Braskem SA) was used.
  • VAM-1 containing liquid VAM-1: 777 L / hr, methanol: 170 L / hr was introduced into the polymerization tank 1 via the introduction pipe 10 and the heat exchanger 2. Further, the ethylene-containing gas was introduced from the polymerization tank 1 into the heat exchanger 2 via the conduit 3.
  • the VAM-1 containing liquid absorbed ethylene by flowing down along the surface of the pipe was poured into the polymerization tank 1 through the conduit 4, was mixed with the reaction liquid, and was subjected to continuous polymerization with ethylene.
  • the polymerization liquid was continuously taken out from the conduit 9 so that the liquid level in the polymerization tank 1 became constant.
  • the polymerization rate of VAM-1 at the outlet of the polymerization tank 1 was adjusted to 30%.
  • the stirring power Pv per unit volume was 2.2 kW / m 3 , and the Froude number Fr was adjusted to 0.13.
  • the reaction solution was stirred with the entire blade (paddle) immersed in the reaction solution and the liquid surface and the upper end of the blade (paddle) were in close proximity to each other.
  • the residence time of the reaction solution in the polymerization tank was 5 hours.
  • the temperature at the outlet of the polymerization tank was 60 ° C.
  • the unreacted vinyl acetate monomer was removed by introducing methanol vapor into the continuously taken-out polymer solution to obtain a methanol solution (concentration: 32% by mass) of the ethylene-vinyl acetate copolymer.
  • a methanol solution of sodium hydroxide (concentration: 4% by mass) was added to the methanol solution (concentration: 32% by mass) of the ethylene-vinyl acetate copolymer obtained in the polymerization step, and the ethylene-vinyl acetate copolymer was added. It was added so that the molar ratio of sodium hydroxide to the vinyl acetate unit in the mixture was 0.012. Further, a methanol solution of sorbic acid (concentration: 10% by mass) was added in an amount of 0.00018 parts by mass with respect to 100 parts by mass of the ethylene-vinyl acetate copolymer, and the obtained mixture was mixed with a static mixer and then belted.
  • ethylene-vinyl alcohol copolymer (EVOH-24).
  • EVOH-24 ethylene-vinyl alcohol copolymer
  • the content of ethylene unit was 2 mol%
  • the viscosity average degree of polymerization was 1,700
  • the saponification degree was 98.5 mol%
  • the content of structure (I) was 0.00114 mol%
  • the content of structure (II) was 0.
  • the block character of .0002 mol% and ethylene unit was 0.95.
  • Example 47 83.0 kg of VAM-1 and 26.6 kg of methanol were charged in a 250 L pressurized reaction vessel equipped with a jacket, a stirrer, a nitrogen inlet, an ethylene inlet and an initiator addition port, and the temperature was raised to 60 ° C. The inside of the reaction vessel was replaced with nitrogen by nitrogen bubbling for 30 minutes. Next, ethylene was boosted and introduced so that the reaction vessel pressure (ethylene pressure) was 3.6 MPa. As ethylene, ethylene derived from sugar cane (manufactured by Braskem SA) was used.
  • the obtained methanol solution of ethylene-vinyl acetate copolymer was charged into a saponification reactor, and 2 mol / L methanol solution of sodium hydroxide was added so as to be 3 equivalents with respect to the vinyl ester component in the copolymer. Then, methanol was added to adjust the copolymer concentration to 5%. The temperature of this solution was raised to 60 ° C., and the saponification reaction was carried out for 3 hours with stirring. At this time, for the last hour, an ultrasonic cleaner US CLEANER USK-2R was used to react with an output of 80 W and a frequency of 40 kHz while irradiating ultrasonic waves through the reactor.
  • ethylene-vinyl alcohol copolymer was precipitated.
  • the precipitated ethylene-vinyl alcohol copolymer was recovered and finely crushed to obtain a water-containing chip, washed with an aqueous acetic acid solution and ion-exchanged water, and further immersed in an aqueous solution containing sodium acetate and acetic acid.
  • the aqueous solution and the water-containing chip are separated and deliquescent, and then placed in a hot air dryer and dried at 80 ° C. for 3 hours and then at 110 ° C. for 35 hours to obtain an ethylene-vinyl alcohol copolymer (EVOH-25). Obtained as a dry chip.
  • the saponification degree was 99.9 mol% or more
  • the content of the structure (I) was 0.0071 mol%
  • the content of the structure (II) was 0.0027 mol%.
  • the contents of sodium and acetic acid were 180 ppm and 300 ppm, respectively.
  • ⁇ Example 48> Tracking is performed by the following method.
  • the barrier layer containing the ethylene-vinyl alcohol copolymer is taken out from 10 samples of a commercially available packaging container.
  • 14 C / C and ⁇ 13 C are determined by the above method.
  • Example 49 Films 1 to 6 were obtained by the above method using EVOH-1 to EVOH-6 obtained in Examples 8 to 13. The obtained films 1 to 6 were collected as packaging bags 1 to 6, respectively. When the values of 14 C / C and ⁇ 13 C of the recovered material were measured by the above method, they were in agreement with the values obtained in Examples 8 to 13.
  • the vinyl acetate of the present invention is different from the conventional vinyl acetate and has a different value of 14 C / C. Therefore, the vinyl acetate polymer containing vinyl acetate as a monomer unit obtained by polymerizing the vinyl acetate of the present invention and the vinyl alcohol polymer which is a saponified product thereof also have a value of 14 C / C different from that of the conventional product. .. Utilizing this difference, it is possible to determine whether the vinyl acetate polymer or vinyl alcohol polymer recovered from the market uses the vinyl acetate of the present invention, and it is possible to track the company's products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】追跡可能な酢酸ビニル、該酢酸ビニルを含有する重合体およびそのけん化物であるビニルアルコール重合体の提供すること。 【解決手段】全炭素に対する炭素14の比が1.0×10-14以上である酢酸ビニル、該酢酸ビニルを単量体単位として含有する酢酸ビニル重合体および該酢酸ビニル重合体をけん化してなるビニルアルコール重合体。

Description

酢酸ビニル、酢酸ビニル重合体およびビニルアルコール重合体
 本発明は、追跡可能な酢酸ビニル、該酢酸ビニルを単量体単位として含有する重合体およびそのけん化物に関する。
 酢酸ビニルは、酢酸ビニル樹脂やビニルアルコール樹脂の原料として、さらにエチレン、スチレン、アクリレート、メタクリレートなどとの共重合用モノマーとして用いられる。また得られる樹脂や共重合体は塗料、接着剤、繊維加工剤などの広い分野に用いられている重要な工業材料である。
 中でも酢酸ビニルを重合し、得られた重合体をけん化することで得られるビニルアルコール重合体(以下、PVOHと記すことがある)は、数少ない結晶性の水溶性高分子であり、その優れた水溶性や皮膜特性(強度、耐油性、造膜性、酸素ガスバリア性など)を利用して、乳化剤、懸濁剤、界面活性剤、各種バインダー、接着剤、繊維加工剤、紙加工剤、フィルム、繊維、布帛などに広く利用されている。
 また、酢酸ビニルとエチレンを共重合し、得られた共重合体をけん化することで得られるエチレン-ビニルアルコール共重合体(以下、EVOHと記すことがある)は、透明性、酸素などの各種ガスバリア性、保香性、耐溶剤性、耐油性、非帯電性、機械強度などに優れており、かかる特性を活かして、食品包装容器、医薬品包装容器、工業薬品包装容器、農薬包装容器などの各種包装容器をはじめとして、広く用いられている。このような成形品を製造する際には、エチレン-ビニルアルコール共重合体を溶融成形した後で、二次加工する場合が多い。例えば、機械的強度の向上を目指して延伸したり、容器形状にするためにエチレン-ビニルアルコール共重合体層を含む多層シートを熱成形したりすることが広く行われている。
 このようにビニルアルコール重合体やエチレン-ビニルアルコール共重合体は幅広い用途で使用されており、高品質の製品を市場へ供給することはサプライヤーの責務である。また、ブランディングのために自社製品と他社製品を識別する方法が求められている。
 例えば、市販の包装容器のガスバリア層に用いられているエチレン-ビニルアルコール共重合体は、熱成形により包装容器に成形されるが、熱成形時に受ける熱履歴によりエチレン-ビニルアルコール共重合体は溶媒に不溶なゲルを形成することがある。そのため、包装容器を回収し、使用されているエチレン-ビニルアルコール共重合体を溶媒で抽出して、その分子量を測定しようとしても、分子量を正確に測定することが困難な場合が多い。そのため、成形体を分析しただけでは自社のエチレン-ビニルアルコール共重合体であるか否かを判別することができない。
 したがって、製造された酢酸ビニルおよびそれから得られる重合体や共重合体ならびにそれらのけん化物が、多くの流通経路を経て、塗料、接着剤、繊維加工剤、紙加工剤、フィルム、繊維、布帛、食品包装容器、医薬品包装容器、工業薬品包装容器、農薬包装容器などに使用され、さらに廃棄された場合、かかる樹脂やその使用後の包装容器がどの工場、どの製造ラインから製造されたかの判別が困難である。また、使用時あるいは使用後の自社製品の品質調査や廃棄後の環境への影響や地中への分解性などの追跡も困難であった。
 自社製品の追跡方法の一つとして、例えば、ビニルアルコール重合体にトレーサー物質を添加する方法が考えられる。しかしながら、トレーサーの添加はコスト上昇やビニルアルコール重合体の性能低下を起こす場合があった。
 本発明者らは、酢酸ビニルに含まれる炭素の同位体に着目し、ある特定の炭素の同位体を一定量含有する酢酸ビニルを用いることで、得られる重合体および共重合体の追跡が可能であり、最終製品が廃棄されたとしてもその原料が自社品であるかどうかを判別することが可能であることを見出した。
 すなわち、本発明は、追跡可能な酢酸ビニル、該酢酸ビニルを単量体単位として含有する重合体およびそのけん化物であるビニルアルコール重合体の提供を目的とする。
 本発明は、以下に示す酢酸ビニル、ならびに該酢酸ビニルを単量体単位として含有する重合体およびそのけん化物を提供する。
[1]
 全炭素に対する炭素14の比が1.0×10-14以上である酢酸ビニル。
[2]
 炭素安定同位体比が-20‰以上である前記[1]に記載の酢酸ビニル。
[3]
 炭素安定同位体比が-20‰未満である前記[1]に記載の酢酸ビニル。
[4]
 硫黄分を0ppmを超えて100ppm以下含む、前記[1]から[3]のいずれかに記載の酢酸ビニル。
[5]
 硫黄分がジメチルスルフィドまたはジメチルスルホキシドである、前記[4]に記載の酢酸ビニル。
[6]
 酢酸エステルを10ppmから1,500ppm含む、前記[1]から[5]のいずれかに記載の酢酸ビニル。
[7]
 前記酢酸エステルが酢酸メチルおよび酢酸エチルの少なくとも1種である、前記[6]に記載の酢酸ビニル。
[8]
 重合禁止剤を0ppmを超えて100ppm以下含む、前記[1]から[7]のいずれかに記載の酢酸ビニル。
[9]
 多価カルボン酸、ヒドロキシカルボン酸、ヒドロキシラクトン系化合物から選択される少なくとも1種の化合物を1ppmから500ppm含む、前記[1]から[8]のいずれかに記載の酢酸ビニル。
[10]
 アセトアルデヒドジメチルアセタールを0.001質量部から10質量部含む、前記[1]から[9]のいずれかに記載の酢酸ビニル。
[11]
 前記[1]から[10]のいずれかに記載の酢酸ビニルを単量体単位として含有する酢酸ビニル重合体。
[12]
 前記[11]に記載の酢酸ビニル重合体をけん化してなるビニルアルコール重合体。
[13]
 さらにエチレン単位を含有し、その含有量が1モル%以上60モル%以下である、前記[12]に記載のビニルアルコール重合体。
[14]
 けん化度が80モル%以上である、前記[12]または[13]に記載のビニルアルコール重合体。
[15]
 粘度平均重合度が200以上5,000以下である、前記[12]から[14]のいずれかに記載のビニルアルコール重合体。
[16]
 1,2-グリコール結合の含有量が0.2モル%以上2モル%以下である、前記[12]から[15]のいずれかに記載のビニルアルコール重合体。
[17]
 全炭素に対する炭素14の比が1.0×10-14以上である、前記[12]から[16]のいずれかに記載のビニルアルコール重合体。
[18]
 炭素安定同位体比が-20‰以上である、前記[12]から[17]のいずれかに記載のビニルアルコール重合体。
[19]
 炭素安定同位体比が-20‰未満である、前記[12]から[17]のいずれかに記載のビニルアルコール重合体。
[20]
 硫黄分を0ppmを超えて100ppm以下含む、前記[12]から[19]のいずれかに記載のビニルアルコール重合体。
[21]
 硫黄分がジメチルスルフィドまたはジメチルスルホキシドである、前記[20]に記載のビニルアルコール重合体。
[22]
 エチレン単位含有量が1モル%以上15モル%以下、かつ、けん化度が85モル%以上99.9モル%以下であり、
 重合体末端にプロピル基を有し、全単量体単位に対する前記プロピル基の含有量が0.0005モル%以上0.1モル%以下である、前記[12]から[21]のいずれかに記載のビニルアルコール重合体。
[23]
 重合体末端にアルコキシ基を有し、全単量体単位に対する前記アルコキシ基の含有量が0.0005モル%以上1モル%以下である、前記[12]から[22]のいずれかに記載のビニルアルコール重合体。
[24]
 重合体末端に下記の構造(I)および構造(II)を有し、ビニルアルコール重合体を構成する全単量体単位に対する構造(I)および構造(II)の合計含有量が0.001モル%以上0.1モル%以下である、前記[12]から[23]のいずれかに記載のビニルアルコール重合体。
Figure JPOXMLDOC01-appb-C000003
(式中、Yは水素原子またはメチル基である。)
Figure JPOXMLDOC01-appb-C000004
(式中、Zは水素原子またはメチル基である。)
[25]
 エチレン単位含有量が1モル%以上15モル%以下、かつ、けん化度が85モル%以上99.9モル%以下であり、
 前記構造(I)および前記構造(II)の合計に対する構造(I)のモル比R[I/(I+II)]が下記式(1)
  R<0.92-Et/100   (1)
を満たす、前記[24]に記載のビニルアルコール重合体。
(式(1)中、Etは前記エチレン単位含有量(モル%)である。)
[26]
 エチレン単位のブロックキャラクターが0.90から0.99である、前記[13]、[22]または[25]のいずれかに記載のビニルアルコール重合体。
[27]
 エチレン単位含有量が15モル%以上60モル%以下、かつ、けん化度が85モル%以上99.9モル%以下であり、
 前記構造(I)および前記構造(II)の合計含有量が、ビニルアルコール重合体を構成する全単量体単位に対して0.002モル%以上0.02モル%以下であり、かつ、前記構造(I)および前記構造(II)の合計に対する構造(I)のモル比R[I/(I+II)]が、ビニルアルコール重合体におけるエチレン単位含有量Etを用いて表される下記式(2)
  0.8<R+Et/100   (2)
を満たす、前記[24]または[25]のいずれかに記載のビニルアルコール重合体。
[28]
 全炭素に対する炭素14の比が1.0×10-14以上である酢酸ビニルを用いた重合体の追跡方法。
[29]
 酢酸ビニルの炭素安定同位体比が-20‰以上である、前記[28]に記載の酢酸ビニルを用いた重合体の追跡方法。
[30]
 酢酸ビニルの炭素安定同位体比が-20‰未満である、前記[28]に記載の酢酸ビニルを用いた重合体の追跡方法。
[31]
 前記[28]から[30]のいずれかに記載の酢酸ビニルをモノマー単位として含有する酢酸ビニル重合体を用いた重合体の追跡方法。
[32]
 前記[31]に記載の酢酸ビニル重合体をけん化してなるビニルアルコール重合体を用いた重合体の追跡方法。
 本発明によれば、追跡可能な酢酸ビニル、該酢酸ビニルを含有する重合体およびそのけん化物のビニルアルコール重合体を提供することができる。
実施例46で用いた重合装置の概略図である。 実施例46で用いた撹拌翼の概略図である。
 以下、本発明に係る酢酸ビニル、ならびにそれを重合してなる酢酸ビニル重合体およびそのけん化物であるビニルアルコール重合体について詳しく説明する。
 従来の石油原料から得られる酢酸ビニルでは全炭素に対する炭素14(以下、14Cとも記す)の比(以下、14C/Cと記すことがある)が1.0×10-14未満であるのに対して、本発明の酢酸ビニルは14C/Cが1.0×10-14以上である。全炭素とは全ての炭素の同位体を含めた炭素のことである。
 追跡のしやすさの観点から、14C/Cは1.0×10-13以上であることが好ましく、5.0×10-13以上であることがより好ましい。ほぼ100質量%が非化石原料の場合、14C/Cの上限値は1.2×10-12であるが、適宜、例えば、シュウ酸標準体などのブランク天然物の14C/Cを実測して、その値を上限値としてもよい。
 前記のような14C/Cの範囲を制御する方法として、後述するように天然物由来の酢酸ビニルを用いる方法が考えられる。自然界には人工起源の炭素14が存在しており、天然物中の炭素14濃度は変動する時期があるので、天然物由来の酢酸ビニルを用いる場合、天然物中の炭素14の濃度を適宜補正して酢酸ビニル中の14C/Cを求めることができる。また、炭素14の半減期は5,730年であるが、一般的な化学製品の製造から市場に出回る期間を考えると、炭素14の量の減少は無視できる。
 炭素13(以下、13Cと記すことがある)および炭素14の定量は、目的とする酢酸ビニルを燃焼させて二酸化炭素とした後、二酸化炭素またはその還元体であるグラファイトを加速器質量分析法(AMS法;Accelerator Mass Spectrometry)で分析すればよい。例えば、Csビーム照射によってイオン化されたグラファイトについて、炭素12イオン、炭素13イオン、炭素14イオンの量がそれぞれ測定される。
 14C/Cは、前記のように二酸化炭素またはグラファイトとした後、加速器質量分析法によって、例えば、米国国立標準・技術研究所により作成された標準物質であるシュウ酸中の炭素14の含有量を比較測定することにより求めることができる。
 前記のような酢酸ビニルは、例えば、以下のようにして合成することができる。
通常、酢酸ビニルは、触媒存在下でエチレンと酢酸と酸素を気相反応させることで得ることができる。この時、エチレンまたは酢酸のいずれか、または両方に所定の量の炭素14を含むエチレンまたは酢酸を用いることで、所定の量の炭素14を含む酢酸ビニルが得られる。所定の量の炭素14を含むエチレンおよび酢酸としては、例えば、バイオマス由来のエチレンまたは酢酸が挙げられる。
 前記バイオマスとは、枯渇性資源ではない、現生生物構成体物質起源の産業資源のことをいい、再生可能な、生物由来の有機性資源で化石資源を除いたものをいう。
 バイオマスはその成長過程で光合成により大気中の二酸化炭素を取り込む。したがって、バイオマスを燃焼させ、二酸化炭素を排出しても、全体として見れば大気中の二酸化炭素量は増加しない。この性質をカーボンニュートラルといい、地球環境の観点からバイオマス由来のエチレンおよび/または酢酸を用いることが好ましい。
 バイオマスとしては単一由来でもよく、混合物でもよく、例えば、パルプ、ケナフ、麦わら、稲わら、古紙、製紙残渣などのセルロース系作物、菜種油、綿実油、大豆油、ココナッツ油、ヒマシ油などの油脂、トウモロコシ、イモ類、小麦、米、籾殻、米ぬか、古米、キャッサバ、サゴヤシなどの炭水化物系作物、松根油、オレンジ油、ユーカリ油などの精油、および木材、木炭、堆肥、天然ゴム、綿花、サトウキビ、おから、バガス、そば、大豆、パルプ黒液、植物油カスなどが挙げられる。また、バイオマスはバイオ燃料収穫物に限定されず、農業残渣、都市廃棄物、産業廃棄物、製紙工業の沈積物、牧草地の廃棄物、木材や森林の廃棄物などが挙げられる。
 前記バイオマス由来の炭素は、大気中に二酸化炭素として存在していた炭素が、植物中に取り込まれ、これを原料として合成された酢酸ビニル中に存在する炭素を示すものである。大気中には一定量の炭素14が含まれているため、大気中の二酸化炭素を取り込んだバイオマス由来のエチレンや酢酸には一定量の炭素14が含まれることになる。通常、バイオマス由来のエチレンや酢酸には全炭素に対して1.0×10-12以上の割合の炭素14が含まれている。
 一方、石油などの化石資源中には炭素14はほとんど含まれておらず、化石資源由来のエチレンや酢酸には全炭素に対して炭素14の割合は1.0×10-14未満である。したがって、酢酸ビニルの原料としてバイオマス由来のエチレンおよび酢酸と化石原料由来のエチレンおよび酢酸とを併用することで、得られた酢酸ビニルの14C/Cを所望の値に調整することできる。例えば、バイオマス由来のエチレンとバイオマス由来の酢酸から得られた酢酸ビニルと化石資源由来のエチレンと化石資源由来の酢酸から得られた酢酸ビニルを14C/Cが所望の値となるように混合してもよいし、バイオマス由来のエチレンおよび/または酢酸と化石資源由来のエチレンおよび/または酢酸とを所望の割合で用いて酢酸ビニルを得てもよい。
 また、炭素12(以下、12Cと記すことがある)由来のエチレンの分子量は28.05、酢酸の分子量は60.05であるのに対して、炭素13や炭素14を多く含むエチレンおよび酢酸は分子量が大きくなる。そのため、通常、エチレンの沸点は-103.7℃、酢酸の沸点は117.9℃であるのに対して沸点が若干高くなる。この分子量比由来の沸点差、すなわち分子量が小さい方が低沸点となることを利用して、炭素13や炭素14の量を調整することができる。具体的には、エチレンや酢酸の原料であるエタノール、エタノールの脱水反応で得られるエチレン、およびエタノールの酸化反応で得られる酢酸の蒸留精製やエタノールの気相脱水時や気相酸化時の気化により炭素13や炭素14を所望の含量とすることもできる。
 酢酸ビニルが含有する炭素14の割合を前記範囲とすることで、石油由来のエチレンから得られた通常の酢酸ビニルと判別できる。また、各製品、各ロットなどで、適宜、14C/Cを変えておくことで、回収された廃棄物からでもどのような製品に用いられたか判別することができる。したがって、前記本発明の酢酸ビニルは製造後の追跡が可能である。
 酢酸ビニルの炭素14の割合を前記範囲とすることに加えて、追跡の精度向上の観点から、炭素安定同位体比(以下、δ13Cと記すことがある)を特定の範囲とすることが好ましい。
 炭素安定同位体比とは、自然界に存在する炭素原子の3種類の同位体、炭素12、炭素13、炭素14のうち、炭素12に対する炭素13の割合を意味する。炭素安定同位体比は、標準物質に対する偏差で表され、以下の式(3)で定義される値(δ値)である。
[数1]
δ13C[‰]={(13C/12C)sample/(13C/12C)PDB-1.0}×1,000   (3)
 ここで、[(13C/12C)sample]は、測定対象の安定同位体比を表し、[(13C/12C)PDB]は標準物質の安定同位体比を表す。添え字のPDBは、「Pee Dee Belemnite」の略称であり、炭酸カルシウムからなる矢石類の化石(標準物質としては南カロリナ州のPeeDee層から出土した矢石類の化石)を意味し、13C/12C比の標準体として用いられる。また、「炭素安定同位体比(δ13C)」は加速器質量分析法によって測定される。なお、標準物質は希少なため、標準物質に対する安定同位体比が既知であるワーキングスタンダードを利用することもできる。
 前記δ13Cが-20‰以上である酢酸ビニル、または-20‰未満である酢酸ビニルを用いることで、追跡の精度をより向上することができる。δ13Cを前記範囲とする方法としては、上述したバイオマス由来のエチレンまたは酢酸を用いるのが簡便である。
 バイオマス由来のエチレンおよび酢酸を用いた場合、後述するように、バイオマスはサツマイモ、サトウダイコン、稲、樹木、藻類などのC3植物由来と、トウモロコシ、サトウキビ、キャッサバなどのC4植物由来に大別され、両者のδ13Cは異なる。
 植物は、その光合成炭酸固定経路における二酸化炭素の初期固定産物の種類から、C3植物、C4植物および多肉植物型光合成(CAM/Crassulacean Acid Metabolism)植物(以下、CAM植物とも記す。)の3種類に分類される。
 地球上の植物の90%以上はC3植物に属し、例えば、稲、ムギ、タバコ、小麦、ジャガ芋、パームヤシなどの農業的に有用な植物が含まれる。C3植物の光合成経路で二酸化炭素固定に関与する酵素は、リブロース-1,5-二リン酸カルボキシラーゼであり、二酸化炭素に対する親和性が低く、逆に酸素に対する親和性が高いために、二酸化炭素固定反応、ひいては光合成反応の効率が低い。このようなカルビン-ベンソン回路しか持たない植物をC3植物と呼ぶ。
 δ13Cを-20‰未満とする場合、これらC3植物やその混合物が炭素源として広く適用されるが、生産量やコストから、稲、小麦、ジャガ芋、パーム油が炭素源として好ましい。
 C3植物由来のバイオマスを用いる場合、得られるエチレンおよび/または酢酸を原料とする酢酸ビニルの炭素安定同位体比(δ13C)は、当該酢酸ビニルを用いた重合体などの追跡精度向上の観点から、-60から-20‰未満であることが好ましく、-50から-22‰であることがより好ましく、-45から-25‰であることがさらに好ましく、-40から-26‰であることが特に好ましい。
 C4植物とはC4型光合成を行う植物であり、光合成の過程で一般の二酸化炭素還元回路であるカルベン-ベンソン回路の他に二酸化炭素濃縮のためのC4経路を持つ光合成の一形態である。このC4植物の光合成経路における二酸化炭素固定に関与する酵素は、ホスホエノールピルビン酸カルボキシラーゼである。この酵素は、酸素による活性阻害を受けず、二酸化炭素の固定化能が高く、維管束鞘細胞にも発達した葉緑体が存在するのが特徴である。代表的なC4植物に、トウモロコシ、サトウキビ、キャッサバ、ソルガム、ススキ、ギニアグラス、ローズグラス、ニクキビ、アワ、ヒエ、シコウビエ、ホウキ木などがあり、ホウキ木は別称で、ほうき草、帚木、コキアグリーンとも呼ばれる。かかるC4植物は効率よく二酸化炭素を固定することができる。また、C3植物は高温の時に二酸化炭素を集めにくくなるが、C4植物はそういうことがない。しかも、水が少なくても光合成が十分に行える。高温や乾燥、低二酸化炭素、貧窒素土壌と言った植物には苛酷な気候下に対応するための生理的な適応である。
 δ13Cを-20‰以上とする場合、これらC4植物やその混合物が炭素源として広く適用されるが、生産量やコストから、トウモロコシ、サトウキビ、キャッサバが炭素源として好ましい。
 CAM植物は乾燥した環境に適応した光合成系を有しており、この光合成系は、C3光合成の一種の進化した形態と考えられている。CAM植物としては、例えば、サボテン(Cactaceae)、弁慶草(Crassulaceae)、トウザイクサ(Euphorbiaceae)などが挙げられる。CAM植物の炭素安定同位体比は、一般的に-35‰から-10‰の範囲であり、これらのCAM植物を原料として、必要により併用することができる。
 上述のように、酢酸ビニルのδ13Cは主に原料のδ13Cに依存するため、異なる炭素同位体比のエチレンおよび/または酢酸を適宜混合して、得られる酢酸ビニルのδ13Cを調整することができる。例えば、C4植物およびC3植物のバイオマスを原料とするエチレンおよび/または酢酸を用いて酢酸ビニルを製造し、両者を所定の比で混合すれば、前記14Cの値とともにδ13Cの値を適宜調整することができる。
 酢酸ビニル重合体およびそのけん化物は、必要により使用される微量の架橋剤や添加剤、グラフト成分などがあるものの、通常、これら酢酸ビニル重合体およびそのけん化物を構成する炭素源の主成分の65質量%以上が酢酸ビニル由来のため、酢酸ビニルのδ13Cや14C/Cを制御することで、該酢酸ビニルから得られる酢酸ビニル重合体およびそのけん化物のδ13Cや14C/Cを制御することができる。
 また、本発明の酢酸ビニルは14C/C、必要によりδ13Cを前記範囲で、異なる14C/Cやδ13Cを有する酢酸ビニルを混合して用いてもよい。
 例えば、C3植物由来の原料を用いて所定のδ13Cを示す酢酸ビニルを得るだけでなく、異なるδ13Cの酢酸ビニルを混合して所定のδ13C、すなわち、C3植物の単体では達成し得ないδ13Cを含め、より特定のδ13Cとすることで得られる酢酸ビニル重合体およびそのけん化物の追跡精度をさらに高めることができる。具体的には、異なるδ13Cの原料を用いると、その炭素安定同位体比を分析して得られる統計解析値は固有のものとなるため、他の原料と区別することができ、したがって、そのような原料から製造された酢酸ビニル重合体およびそのけん化物のδ13Cも固有の分析値を有することとなり、同定、追跡が容易となる。
 異なるδ13Cを有する複数の酢酸ビニルを混合して使用する場合、最終製品として精製酢酸ビニルの段階で混合してもよく、あるいはその前段階である粗製酢酸ビニルを混合した後に蒸留精製してもよい。また、異なるエチレンおよび/または酢酸を混合した後に反応させて酢酸ビニルとしてもよい。
 中でも微量成分の調整と原料の多様性の観点から、また、得られる酢酸ビニル重合体およびそのけん化物の追跡可能性をさらに高める観点からも、前記酢酸ビニルとして化石原料および非化石原料の複数の原料ソースを使用する方法が好ましい。前記製造方法での混合比率は一定でもよく、時間ごと、または酢酸ビニル重合体およびそのけん化物ごとに変化させてよい。
 また、100%化石原料由来の酢酸ビニルでもなく、100%非化石原料由来の酢酸ビニルでもないため、得られた酢酸ビニル重合体およびそのけん化物は独自かつ特定の14C/Cを有しており、さらに追跡精度が高まるので好ましい。非化石原料と化石原料の比率は得られた酢酸ビニル重合体およびそのけん化物について、14C/Cを定量することで特定できる。
 さらに、酢酸ビニルとして化石原料および非化石原料の複数の原料ソースを併用することで得られる樹脂の原料コストの変動を抑制することができる。前記酢酸ビニルから得られる酢酸ビニル重合体およびそのけん化物はコストや原料ソースの安定性に優れ、広く使用できる。例えば、酢酸ビニルの非化石原料としてバイオエタノールやバイオナフサから得られるバイオエチレンを使用し、化石原料としてはナフサ由来のエチレンを使用すれば、前記のような効果がさらに見込まれる。
 前記特定の炭素同位体比率を有する酢酸ビニルは、さらに以下のような化合物を含有することが好ましい。
 本発明の酢酸ビニルは硫黄分を0ppmを超えて100ppm以下含んでいることが好ましい。前記のように、本発明の酢酸ビニルはバイオマス由来のエチレンおよび/または酢酸を原料に用いることで簡便に14C/Cやδ13Cを制御できる。バイオマスに由来するエチレンおよび/または酢酸ビニルを用いた場合、バイオマスに由来する有機系硫黄化合物を含む酢酸ビニルが得られる。一方、石油由来の酢酸ビニルは、ナフサのクラッキング時に脱硫していることから、バイオマス由来の酢酸ビニルに比して硫黄分が少なくなる。そのため、硫黄分の含量を比較することでバイオマス由来の酢酸ビニルおよび酢酸ビニル重合体の追跡がより容易となる。特に、バイオマス由来の酢酸ビニルおよび酢酸ビニル重合体には、硫黄分として、ジメチルスルフィドまたはジメチルスルホキシドが含まれることから、ジメチルスルフィドまたはジメチルスルホキシドを有する酢酸ビニルはさらに追跡が容易となる。
 酢酸エステルの共存下で酢酸ビニルとエチレンを共重合し、けん化することで得られるビニルアルコール重合体は溶融押出安定性が改善され、色相にも優れる観点から、前記酢酸ビニルは酢酸エステルを含有していることが好ましい。
 酢酸ビニルを重合する際、重合溶媒として用いられる炭素数4以下の脂肪族アルコールと酢酸ビニルがエステル交換反応を起こし、下記式(4):
Figure JPOXMLDOC01-appb-C000005
 (式中、Rは炭素数4以下のアルキル基である。)によりアセトアルデヒドを生成する。アセトアルデヒドの含量が200ppmを超えると、ビニルアルコール重合体の溶融押出安定性および溶融成形性が悪化する場合があり、また、成形物とした場合に着色およびゲルが発生する場合がある。
 アセトアルデヒドに起因する悪影響の発現機構については必ずしも明らかではないが、アセトアルデヒドは重合中に連鎖移動剤として作用し、得られるエチレン-酢酸ビニル共重合体の重合度、重合度分布、分岐などに影響を及ぼし、その結果、エチレン-ビニルアルコール共重合体の溶融押出安定性および溶融成形性に悪影響を及ぼすと考えられる。また、アセトアルデヒドがエチレンと酢酸ビニルの重合中などにおいて縮合し、着色やゲルを生起し易い縮合物に変化し、その後の重合体の精製工程においても当該縮合物を除去できず、エチレン-ビニルアルコール共重合体を成形物とした場合に着色およびゲルとして顕在化すると考えられる。
 前記エステル交換反応は平衡反応であるから、酢酸エステルの添加によりアセトアルデヒドの発生を抑制する効果が得られる。
 酢酸エステルとしては溶融押出安定性と色相の観点から、飽和酢酸エステルが好ましい。飽和酢酸エステルとは、酢酸と飽和脂肪族アルコールとからなるエステルをいう。飽和酢酸エステルとしては、酢酸と炭素数4以下の脂肪族アルコールとのエステルが好ましく、酢酸メチルまたは酢酸エチルがより好ましい。
 酢酸ビニルに対する酢酸エステルの含有率は、10ppmから1,500ppmが好ましく、30ppmから1,300ppmがより好ましく、50ppmから1,200ppmがさらに好ましく、100ppmから1,000ppmが特に好ましい。
 酢酸エステルは、複数の酢酸エステルを混合して用いてもよい。この場合、各酢酸エステルの含有量の合計量が前記範囲であることが好ましい。
 保存安定性の観点から、本発明の酢酸ビニルは重合禁止剤を含有することが好ましい。重合禁止剤としては、p-ベンゾキノン、tert-ブチルヒドロキノン、4-tert-ブチルピロカテコール、クペロン、2,6-ジ-tert-ブチル-4-メチルフェノール、N,N-ジエチルヒドロキシルアミン、ヒドロキノン、p-メトキシフェノール、N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム、フェノチアジン、tert-ブチルヒドロキノン、ジブチルヒドロキシトルエン、1,1-ジフェニル-2-ピクリルヒドラジル、メキノールが挙げられる。
 重合禁止剤の含量は、0ppmを超えて100ppm以下が好ましく、0ppmを超えて50ppm以下であることがより好ましく、0ppmを超えて30ppm以下であることがさらに好ましく、1ppmから30ppmであることが特に好ましい。多量の重合禁止剤は重合速度遅延や製造後の着色が発生する場合があり、少なすぎると酢酸ビニルの保存安定性が低下するのみならず、重合が遅くなる場合もある。
 酢酸ビニルとエチレンを共重合しけん化することで得られるエチレン-ビニルアルコール共重合体の色相および製膜時の臭気やフィッシュアイの発生が抑制できるという観点から、本発明の酢酸ビニルは多価カルボン酸、ヒドロキシカルボン酸およびヒドロキシラクトン系化合物の少なくとも1種を含有していることが好ましい。
 多価カルボン酸およびヒドロキシカルボン酸としては、例えば、マロン酸、コハク酸、マレイン酸、フタル酸、シュウ酸、グルタル酸、グリコール酸、乳酸、グリセリン、リンゴ酸、酒石酸、クエン酸、サリチル酸などを挙げることができ、中でもクエン酸が好ましい。
 ヒドロキシラクトン系化合物としては、分子内にラクトン環と水酸基を有する化合物であれば特に限定されず、例えば、L-アスコルビン酸、エリソルビン酸、グルコノデルタラクトン酸などを挙げることができ、中でもL-アスコルビン酸、エリソルビン酸が好ましい。
 多価カルボン酸、ヒドロキシカルボン酸およびヒドロキシラクトン系化合物の含有量は、酢酸ビニルに対して1ppmから1,000ppmであることが好ましく、5ppmから500ppmであることがより好ましく、10ppmから300ppmであることがさらに好ましい。多価カルボン酸、ヒドロキシカルボン酸およびヒドロキシラクトン系化合物の含有量が1ppm未満では前記効果が小さく、1,000ppmを越えると酢酸ビニルの重合が阻害される傾向がある。
 多価カルボン酸、ヒドロキシカルボン酸およびヒドロキシラクトン系化合物は、例えば、酢酸ビニルに予め添加しておく方法、酢酸ビニルと溶媒と同時に一括で重合系に添加する方法、そのまま重合系に添加する方法、重合に用いる溶媒に予め溶かしてから重合系に添加する方法、他の添加剤に予め混合してから添加する方法、分割して添加する方法などが挙げられる。
 酢酸ビニル重合体の平均重合度のバラツキの制御、ならびにけん化することで得られるポリビニルアルコールの色相や溶解性の観点から、本発明の酢酸ビニルはアセトアルデヒドジメチルアセタールを含有していることが好ましい。
 アセトアルデヒドジメチルアセタールの含有量は、酢酸ビニルの含有量を100質量部として0.001質量部から10質量部であることが好ましく、0.01質量部から7質量部であることがより好ましく、0.1質量部から5質量部であることがさらに好ましく、1質量部から5質量部であることが特に好ましい。アセトアルデヒドジメチルアセタールの含有量が0.001質量部未満では前記効果が小さく、10質量部を越えると酢酸ビニルの重合が阻害される傾向がある。
 アセトアルデヒドジメチルアセタールは、例えば、酢酸ビニルに予め添加しておく方法、酢酸ビニルと後述する重合溶媒と同時に一括で重合系に添加する方法、そのまま重合系に添加する方法、重合に用いる溶媒に予め溶かしてから重合系に添加する方法、他の添加剤に予め混合してから添加する方法、分割して添加する方法などが挙げられる。
 前記本発明の酢酸ビニルを重合または共重合することで、酢酸ビニルを単量体として含有する酢酸ビニル重合体または共重合体(以下、重合体および共重合体を合わせて重合体と記す)が得られる。共重合する場合、共重合するモノマーは酢酸ビニルと共重合可能な他のモノマーであればよい。
 共重合可能な他のモノマーとしては、例えば、エチレン;プロピレン、1-ブテン、イソブテンなどの炭素数3から30のオレフィン;アクリル酸またはその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸tert-ブチル、アクリル酸2-エチルへキシル、アクリル酸ドデシル、アクリル酸オクタデシルなどのアクリル酸エステル;メタクリル酸またはその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸tert-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸ドデシル、メタクリル酸オクタデシルなどのメタクリル酸エステル;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸またはその塩、アクリルアミドプロピルジメチルアミンまたはその塩、N-メチロールアクリルアミドまたはその誘導体などのアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸またはその塩、メタクリルアミドプロピルジメチルアミンまたはその塩、N-メチロールメタクリルアミドまたはその誘導体などのメタクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドンなどのN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、tert-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテルなどのビニルエーテル;アクリロニトリル、メタクリロニトリルなどのシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデンなどのハロゲン化ビニル;酢酸アリル、塩化アリルなどのアリル化合物;マレイン酸またはその塩、エステルもしくは酸無水物;イタコン酸またはその塩、エステルもしくは酸無水物;ビニルトリメトキシシランなどのビニルシリル化合物;酢酸イソプロペニルなどが挙げられる。
 前記酢酸ビニルの重合においては、炭素数4以下の脂肪族アルコールを重合溶媒として用いることが好ましい。炭素数5以上の脂肪族アルコールまたは芳香族アルコールなどを用いた場合は本発明の効果が充分に得られない。炭素数4以下の脂肪族アルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノールを挙げることができ、中でもメタノール、エタノール、プロパノールが好ましく、メタノール、エタノールがより好ましく、メタノールがさらに好ましい。
 本発明の酢酸ビニルは前記のとおり、全炭素に対する炭素14の比が1.0×10-14以上であることから、かかる酢酸ビニルを重合して得られる酢酸ビニル重合体中の全炭素に対する炭素14の比は1.0×10-14以上となる。
 酢酸ビニルとして炭素安定同位体比が-20‰以上である酢酸ビニルを用いた場合、得られる酢酸ビニル重合体中の炭素安定同位体比は-20‰以上となる。また、酢酸ビニルとして炭素安定同位体比が-20‰未満である酢酸ビニルを用いた場合、得られる酢酸ビニル重合体中の炭素安定同位体比は-20‰未満となる。
 酢酸ビニルが硫黄分を0ppmを超えて100ppm以下含む場合、得られる酢酸ビニル重合体中の硫黄分は0ppmを超えて100ppm以下含む。含まれる硫黄分は前記のとおり、追跡が容易になる観点から、ジメチルスルフィドまたはジメチルスルホキシドが好ましい。
 前記酢酸ビニルを単量体単位として有する重合体をけん化することでビニルアルコール重合体が得られる。前記のとおり全炭素に対する炭素14の比は1.0×10-14以上である酢酸ビニル重合体中を用いた場合、得られるビニルアルコール重合体中の全炭素に対する炭素14の比は1.0×10-14以上となる。
 酢酸ビニル重合体として炭素安定同位体比が-20‰以上である酢酸ビニル重合体を用いた場合、得られるビニルアルコール重合体中の炭素安定同位体比は-20‰以上となる。また、酢酸ビニル重合体として炭素安定同位体比が-20‰未満である酢酸ビニル重合体を用いた場合、得られるビニルアルコール重合体中の炭素安定同位体比は-20‰未満となる。
 酢酸ビニル重合体が硫黄分を0ppmを超えて100ppm以下含む場合、得られるビニルアルコール重合体中の硫黄分は0ppmを超えて100ppm以下含む。含まれる硫黄分は前記のとおり、追跡が容易になる観点から、ジメチルスルフィドまたはジメチルスルホキシドが好ましい。
 酢酸ビニルを単量体単位として有する重合体が酢酸ビニルと共重合可能な他のモノマーとの共重合体の場合、共重合可能な他のモノマーがエチレンである酢酸ビニル-エチレン共重合体をけん化した、エチレン単位を含むビニルアルコール重合体が好ましい。ビニルアルコール重合体がエチレン単位を含む場合、エチレン単位の含有量は1モル%以上60モル%以下が好ましく、1モル%以上55モル%以下がより好ましい。
 ビニルアルコール重合体のけん化度は、80モル%以上が好ましく、85モル%以上がより好ましく、90モル%以上がさらに好ましい。けん化度は、けん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステルモノマー単位)とビニルアルコール単位との合計モル数に対して、ビニルアルコール単位のモル数が占める割合(モル%)を意味する。
 ビニルアルコール重合体のけん化度は、JIS K 6726:1994の記載に準じて測定することができる。具体的には、けん化度が99.5モル%以下の場合には、けん化度99.5モル%以上になるまでけん化したエチレン変性ビニルアルコール重合体について、水中、30℃で測定した極限粘度[η](リットル/g)を用いて下記式により粘度平均重合度(P)を求めた。
  P=([η]×10 4/8.29)(1/0.62)
 ビニルアルコール重合体の重合度は、得られるフィルムの十分な機械的強度を確保する観点から、200以上が好ましく、300以上がより好ましく、500以上がさらに好ましい。また、ビニルアルコール重合体の生産性や水溶性の観点から、重合度は5,000以下が好ましく、3,000以下がより好ましい。
 ビニルアルコール重合体は、1,2-グリコール結合を有するのが好ましい。1,2-グリコール結合の含有量は、0.2モル%以上が好ましく、0.3モル%以上がより好ましく、0.4モル%以上がさらに好ましく、0.5モル%以上が特に好ましい。また、1,2-グリコール結合の含有量は2モル%以下が好ましく、1.5モル%以下であることがより好ましく、1.3モル%以下であることがさらに好ましく、1.0モル%以下が特に好ましい。
 本発明のビニルアルコール重合体は、追跡のしやすさの観点に加えて、得られるフィルムの色相や製膜時の水溶液の粘度安定性の観点から、エチレン単位をビニルアルコール重合体中の全単量体単位に対して1モル%以上15モル%以下含有し、けん化度は85モル%以上99.9モル%以下であり、かつプロピレン単位を末端に有し、全単量体単位に対する前記プロピル基の含有量が0.0005モル%以上0.1モル以下であるビニルアルコール重合体(以下、エチレン変性ビニルアルコール重合体と記すことがある)が好ましい。
 前記エチレン変性ビニルアルコール重合体の粘度平均重合度は、200以上3,000以下であることが好ましく、400以上2,800以下がより好ましく、450以上2,500以下がさらに好ましい。粘度平均重合度は前記と同様、JIS K 6726:1994に準じて測定して得られる値である。
 エチレン変性ビニルアルコール重合体のけん化度は、80モル%以上99.9モル%以下が好ましく、90モル%以上99.9モル%以下がより好ましい。
 エチレン変性ビニルアルコール重合体は、片末端にプロピル基を0.0005モル%以上0.10モル%以下有することが好ましく、0.001モル%以上0.08モル%以下有することがより好ましく、0.005モル%以上0.05モル%以下有することがさらに好ましい。
 前記プロピル基の導入法は、例えば重合工程においてプロピル基を有する開始剤および連鎖移動剤の存在下で、エチレンと酢酸ビニルを反応させる方法が好ましい。このように、プロピル基を有する開始剤およびプロピル基を有する連鎖移動剤を併用することで、片末端に特定量のプロピル基が導入されたエチレン変性ビニルアルコール重合体を効率よく製造できる。
 プロピル基を有する開始剤としては、例えば、n-プロピルパーオキシジカーボネート、1,1’-プロパン-1-ニトリルなどが挙げられる。プロピル基を有する開始剤の使用量は、前記プロピル基の含有率を得るために、酢酸ビニルに対して0.000125質量%以上0.25質量%以下が好ましく、0.0003質量%以上0.2質量%以下がより好ましく、0.0005質量%以上0.15質量%以下がさらに好ましい。
 プロピル基を有する連鎖移動剤としては、例えば、プロパンチオール、プロピルアルデヒドなどが挙げられる。プロピル基を有する連鎖移動剤の系内濃度は、前記プロピル基の含有率を得るために、酢酸ビニルに対して0.0001質量%以上0.005質量%以下が好ましく、0.0002質量%以上0.004質量%以下がより好ましく、0.0003質量%以上0.003質量%以下がさらに好ましい。
 重合温度は特に限定されないが、0℃から180℃が好ましく、20℃から160℃がより好ましく、30℃から150℃がさらに好ましい。重合工程で使用する溶媒の沸点以下で重合する際は減圧下で溶媒を沸騰させながら重合を行う減圧沸騰重合、常圧下で溶媒を沸騰させない条件で重合を行う常圧非沸騰重合のいずれも選択できる。また、重合工程で使用する溶媒の沸点以上で重合する際は加圧下で溶媒を沸騰させない条件で重合を行う加圧非沸騰重合、加圧下で溶媒を沸騰させながら重合を行う加圧沸騰重合のいずれも選択できる。
 重合工程における重合反応器内のエチレン圧力は特に限定されないが、0.01MPaから0.9MPaが好ましく、0.05MPaから0.7MPaがより好ましく、0.1MPaから0.65MPaがさらに好ましい。
 重合反応器の出口での酢酸ビニルの重合率は特に限定されないが、10%から90%が好ましく、15%から85%がより好ましい。
 本発明の前記酢酸ビニルを重合して得られるビニルアルコール重合体のアルコキシ基含有率は、追跡のしやすさの観点から、ビニルアルコール重合体を構成する全構造単位(全単量体単位およびアルコキシ基を有する単位)のモル数に基づいて、0.0005モル%から1モル%であることが好ましく、0.0007モル%以上がより好ましく、0.001モル%以上がさらに好ましい。一方、前記含有率は、0.5モル%以下が好ましく、0.3モル%以下がさらに好ましい。
 前記アルコキシ基を含有するビニルアルコール重合体の製造方法は、本発明の前記酢酸ビニルとアルコキシ基を有する不飽和単量体を共重合させることにより得られたビニルエステル重合体をけん化する方法が挙げられる。アルコキシ基を含有する単量体は、アルコキシ基を有し、ビニルエステルと共重合可能な不飽和単量体であれば特に限定されず、例えば、アルキルビニルエーテル、アルキルアリルエーテル、N-アルコキシアルキル(メタ)アクリルアミドなどが挙げられ、N-アルコキシアルキル(メタ)アクリルアミドが好ましい。アルコキシ基を含有する単量体は1種を単独でまたは2種以上を組み合わせて使用することができるが、前者が好ましい。
 本発明の前記酢酸ビニルとエチレンとを重合して得られるビニルアルコール重合体の場合、重合体末端に下記構造式(I):
Figure JPOXMLDOC01-appb-C000006
(式中、Yは水素原子またはメチル基である。)
で示される構造(I)および下記構造式(II):
Figure JPOXMLDOC01-appb-C000007
 (式中、Zは水素原子またはメチル基である。)
で示される構造(II)を有し、全単量体単位に対する構造(I)および構造(II)の合計量が0.001モル%以上0.1モル%以下であるビニルアルコール重合体が、追跡のしやすさの観点に加えて、ビニルアルコール重合体の溶融開始初期の粘度安定性に優れ、溶融成形工程を安定化できるうえに、例えば、80℃のような高温およびアルカリ条件下での着色耐性の観点から好ましい。合計含有量は0.07モル%以下がより好ましく、0.05モル%以下がさらに好ましく、0.02モル%以下が特に好ましい。一方、前記合計含有量は0.002モル%以上がより好ましい。
 なお、本明細書において、ビニルアルコール重合体における単量体単位とは、ビニルアルコール単位、ビニルエステル単位、エチレンとの共重合体の場合はエチレン単位、その他必要に応じて共重合される単量体単位を意味し、全単量体単位とは、各々の単量体単位のモル数の合計量を意味する。このとき、構造(I)または構造(II)で示される末端構造を含む単位も単量体単位に含めて計算する。
 構造(I)および構造(II)はいずれも重合工程に用いる重合開始剤に由来する構造である。そのうち構造(I)は、重合開始剤由来のニトリル基と同一分子内のヒドロキシル基との反応により形成される環状エステル構造を含み、構造(II)はこのような反応が生じる前のものである。
 重合開始剤としては、アルコキシ基を含有するアゾニトリル系化合物を用いることで前記構造(I)を重合末端に導入することができる。アルコキシ基を含有するアゾニトリル系化合物としては、例えば、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-エトキシ-2,4-ジメチルバレロニトリル)などが挙げられ、中でも2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)が好ましい。これらのアルコキシ基を含有するアゾニトリル系化合物は、金属との接触による異常分解を起こしにくい上に、低温で高い分解速度を有する。したがって、前記アゾニトリル系化合物を用いることにより、安全で効率的かつ経済的にエチレンとビニルエステルを共重合できる。
 重合体末端に前記構造(I)および(II)を有する前記ビニルアルコール重合体は、ビニルアルコール重合体の親水性の観点から、エチレン単位の含有量は1モル%以上15モル%以下が好ましく、1モル%以上10モル%以下がより好ましく、1モル%以上8モル%以下がさらに好ましく、1モル%以上5モル%以下が特に好ましい。
 重合体末端に前記構造(I)および(II)を有する前記ビニルアルコール重合体は、ビニルアルコール重合体から得られる接着剤の耐水接着性粘度の観点から、粘度平均重合度が200以上3,000以下であることが好ましく、400以上2,800であることがより好ましく、450以上2,500であることがさらに好ましい。
 さらに重合体末端に前記構造(I)および(II)を有する前記ビニルアルコール重合体は、水への溶解性およびビニルアルコール重合体から得られる接着剤の耐水接着性の観点から、けん化度が85モル%以上99.9モル%以下であることが好ましく、90モル%以上99.9モル%以下であることがより好ましい。
 重合体末端に前記構造(I)および(II)を有する前記ビニルアルコール重合体は、構造(I)および構造(II)の合計に対する、構造(I)のモル比R[I/(I+II)]が下記式(1)を満たすのが好ましい。モル比R[I/(I+II)]が下記式(1-1)を満たすことがより好ましく、下記式(1-2)を満たすことがさらに好ましく、下記式(1-3)を満たすことが特に好ましい。モル比R[I/(I+II)]はけん化後のビニルアルコール重合体の洗浄によって調整することができる。一方、モル比R[I/(I+II))]は0.1以上であることが好ましい。これはEVOHの工業的製法上0.1未満にすることは困難であり、製造コストの増加を招くためである。
 R<0.92-Et/100   (1)
 R<0.90-Et/100   (1-1)
 R<0.88-Et/100   (1-2)
 R<0.85-Et/100   (1-3)
[式(1)から(1-3)中、Etは前記エチレン単位含有量(モル%)である。]
 また、構造(I)および構造(II)の合計に対する、構造(I)のモル比R[I/(I+II)]が下記式(2)を満たすのが好ましく、下記式(2-1)を満たすことがより好ましい。
0.8<R+Et/100 (2)
0.9<R+Et/100 (2-1)
[式(2)および(2-1)中、Etは前記と同じである。]
 前記式(1)から(1-3)において、モル比R[I/(I+II)]が前記式を満たさない場合、エチレン-ビニルアルコール共重合体の水溶性が低下したり、接着剤とした時、得られる接着剤の高速塗工性が低下したりする。
 また、前記式(2)および(2-1)において、右辺の値が大きいことは、重合開始剤由来のニトリル基が前記環状エステル構造に転換されたものの割合が高いことを意味し、式(2-1)は、その割合がさらに高いことを意味する。式(2)を満たすことで、ビニルアルコール重合体の溶融開始初期の粘度安定性が向上し、溶融開始から5分から20分後の溶融開始初期の急激な粘度増加を抑制できる。式(2-1)を満たせば、このような粘度増加がさらに抑制される。
 本発明の前記酢酸ビニルとエチレンとを重合して得られるビニルアルコール重合体の場合、エチレン単位のブロックキャラクターが0.90から0.99であるビニルアルコール重合体が、追跡のしやすさの観点に加えて、ビニルアルコール重合体をコーティング剤に用いた場合、得られるコーティング剤の粘度安定性と得られる塗工紙のバリア性の観点から好ましい。
 前記ブロックキャラクターとは、エチレン単位と、ビニルエステル単位のけん化によって生じるビニルアルコール単位の分布を表した数値であり、0から2の間の値をとる。0が完全にブロック的にエチレン単位またはビニルアルコール単位が分布しているということを示し、値が増加するにつれて交互性が増し、1がエチレン単位とビニルアルコール単位が完全にランダムに存在し、2がエチレン単位とビニルアルコール単位が完全に交互に存在することを示している。
 前記ブロックキャラクターは13C-NMRによって以下のとおり求められる。まずエチレン-ビニルアルコール共重合体をけん化度99.9モル%以上にけん化した後、メタノールで十分に洗浄を行い、90℃で2日間減圧乾燥させる。得られた完全けん化エチレン-ビニルアルコール共重合体をDMSO-dに溶解させた後、得られた試料を500MHzの13C-NMR(JEOL GX-500)を用いて80℃で測定する。得られたスペクトルチャートからT.Moritani and H.Iwasaki,11,1251-1259,Macromolecules(1978)に記載の方法で帰属、算出したビニルアルコール-エチレンの2単位連鎖のモル分率(AE)、ビニルアルコール単位のモル分率(A)、エチレン単位のモル分率(E)を用いて下記式よりエチレン単位のブロックキャラクター(η)が求められる。
       η=(AE)/{2×(A)×(E)}
 前記ブロックキャラクターを有するエチレン-ビニルエステル共重合体は、重合槽内でワイドパドル翼を用い、単位体積あたりの撹拌動力Pvが0.5から10kW/m、フルード数Frが0.05から0.2となるようにビニルエステルを含む溶液を撹拌しながらエチレン含有ガスと接触させることによって得ることができる。
 上述のとおり、本発明の酢酸ビニルは従来の化石原料由来のエチレンおよび酢酸から得られる酢酸ビニルとは異なり、特定の14C/Cの値を有している。またさらに好ましくは14C/Cに加えてδ13Cも従来の酢酸ビニルとは異なる値を有する。したがって、本発明の酢酸ビニルならびにそれを重合して得られる酢酸ビニルを単量体単位として有する酢酸ビニル重合体、およびそのけん化物であるビニルアルコール重合体は特定範囲の14C/C、さらに好ましくは特定範囲のδ13Cを有することから、市販ないし公知の酢酸ビニル、ならびにそれを重合してなる酢酸ビニル重合体およびそのけん化物と区別することができる。したがって本発明の酢酸ビニルを用いて得られる酢酸ビニル重合体およびビニルアルコール重合体は、製造後ないし販売後も追跡することができる。
 製造後の酢酸ビニル重合体およびビニルアルコール重合体の追跡方法は、予め酢酸ビニル重合体およびそのけん化物であるビニルアルコール重合体の製造に用いた重合前の原料である酢酸ビニルの14C/Cを分析、記録しておけば、製造後または販売後回収された酢酸ビニル重合体またはビニルアルコール重合体の14C/Cを測定し、その結果と予め測定した原料である酢酸ビニルの14C/Cとを比較することで、回収された酢酸ビニル重合体またはビニルアルコール重合体が自社製品であるかどうか判定でき、さらに自社製品であればそのロットなどを特定することができる。さらにδ13Cを一定の範囲とすることで、これら判定がより容易となる。
 さらに前記に加えて、本発明の酢酸ビニルは前記酢酸エステル、重合禁止剤、多価アルコール、ヒドロキシカルボン酸、ヒドロキシラクトン系化合物およびアセトアルデヒドジメチルアセタールの少なくともいずれかを前記範囲で含有することで、さらに追跡が容易となる。
 また、本発明の酢酸ビニルを重合し、本発明の酢酸ビニルを単量体単位として含有する酢酸ビニル重合体のけん化物であるビニルアルコール重合体は、前記1、2-グリコール結合、前記重合体末端にプロピレン基またはアルコキシ基、前記構造(I)および構造(II)、およびブロックキャラクターの少なくともいずれかを前記範囲で含有することで、追跡が容易になるとともに、得られるビニルアルコール重合体の特性が改良され、目的とする用途に好適に用いることができる。
 使用後回収された製品の14C/Cやδ13Cを測定することに加えて、前記1、2-グリコール結合、前記重合体末端にプロピレン基またはアルコキシ基、前記構造(I)および構造(II)、およびブロックキャラクターの少なくともいずれかを前記方法でそれぞれ測定することで、回収された製品中に自社のビニルアルコール重合体が含まれているかどうか、さらにはその製造ラインなどが判別できる。
 前記のとおり、本発明の酢酸ビニルを単量体単位として有する酢酸ビニル重合体およびそのけん化物であるビニルアルコール重合体から原料を追跡できるため、酢酸ビニル重合体またはビニルアルコール重合体から得られた成形品の品質から原料である酢酸ビニルの品質へフィードバックすることが可能となる。また、成形品からその原料である酢酸ビニル重合体またはビニルアルコール重合体の製造ラインや酢酸ビニルの調査などが容易にできるようになる。
 なお、以上の説明において、物質、条件、方法、数値範囲などを例示しているが、本発明はそのような例示に限定されない。具体的には、本発明は各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。また、例示される物質は、特に注釈がない限り、1種を単独で使用してもよいし2種以上を併用してもよい。
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。また、以下の例における測定および評価は次の方法にしたがった。
(1)酢酸ビニルの分析
 ガスクロマトグラフィーを用い、反応液6gに対して、内部標準として酢酸n-プロピルを1g添加したものを分析液とした。測定条件は以下のとおりとした。
 装置:株式会社島津製作所製GC-9A
 検出器:FID
 カラム:ジーエルサイエンス株式会社製TC-WAX(長さ30m、内径0.25mm、膜厚0.5μm)
 インジェクション温度:200℃
 検出器温度:200℃
 カラム温度:45℃(2分間保持)から昇温速度4℃/分で130℃まで昇温して15分間保持、その後昇温速度25℃/分で200℃まで昇温して10分間保持。
(2)炭素同位体比の測定
 米国材料試験協会(American Society of Testing and Materials)で規定される前処理方法(ASTM D6866/MethodB)により、試料を二酸化炭素に変換した後、鉄触媒を用いた完全還元処理によりグラファイト化し、加速器質量分析(Accelerator Mass Spectrometry)法により、炭素安定同位体比(δ13C)を求めた。なお、計算式については、前記式(3)により求められる。
 また、14C濃度の標準体として、米国国内率標準技術研究所が提供しているシュウ酸標準物質(HOxII)から合成したグラファイトを用いた。加速器質量分析によって試料および標準体の炭素同位体比(14C/12C比、13C/12C比)を測定し、それらの測定結果から14C濃度を算出した。測定により得られた試料の14C濃度を用いて、試料中に含まれる炭素について、バイオマス由来の炭素と化石資源由来の炭素の混合割合を評価した。
(3)硫黄分の測定
 硫黄分の定量は、三菱アナリテック製微量窒素硫黄分析装(TS-2100H型)を用いて行い、測定条件は以下の通りとした。
ヒーター温度 : Inlet 900℃, Outlet 900℃
ガス流量 : Ar,O 各300ml/min
[分析システム NSX-2100]
測定モード : TS
パラメータ : SD-210
測定時間(タイマー): 540秒(9分)
PMT感度 : 高濃度
(4)硫黄分の同定は、ガスクロマトグラフィー(GC)と、ガスクロマトグラフィー質量分析法(GC/MS)を用いて行った。GCの検出器としては、微量の硫黄化合物、リン化合物に対して高い感度を示すFPD(炎光光度検出器)を用いて行い、硫黄分が検出された保持時間で観測された質量成分を解析することで、同定を行った。
(5)ビニルアルコール重合体のけん化度および平均重合度
 重合後未反応酢酸ビニルモノマーを除去して得られたポリ酢酸ビニルのメタノール溶液を、アルカリモル比0.5でけん化した後、粉砕したものを60℃で5時間放置してけん化を進行させた。その後、メタノールソックスレーを3日間実施し、次いで80℃で3日間減圧乾燥を行って精製ビニルアルコール重合体を得た。この精製ビニルアルコール重合体のけん化度および平均重合度をJIS K6726:1994に準じて測定した。
(6)エチレン-ビニルアルコール共重合体のエチレン単位含有量およびけん化度
 エチレン-ビニルアルコール共重合体ペレットを内部標準物質としてテトラメチルシラン、添加剤としてテトラフルオロ酢酸を含むジメチルスルホキシド(DMSO)-dに溶解し、500MHzのH-NMR(日本電子株式会社製「JMTC-400/54/SS」)を用いて80℃で測定し、エチレン単位含有量およびけん化度を測定した。
 前記測定のスペクトル中の各ピークは、以下のように帰属される。
 0.6から1.9ppm:エチレン単位のメチレンプロトン(4H)、ビニルアルコール単位のメチレンプロトン(2H)、酢酸ビニル単位のメチレンプロトン(2H)
 1.9から2.0ppm:酢酸ビニル単位のメチルプロトン(3H)
 3.1から4.2ppm:ビニルアルコール単位のメチンプロトン(1H)
(7)カルボン酸の定量
 エチレン-ビニルアルコール共重合体ペレットまたは20gとイオン交換水100mLとを共栓付き200mL三角フラスコに投入し、冷却コンデンサーを付け、95℃で6時間攪拌抽出した。得られた抽出液にフェノールフタレインを指示薬としてN/50の水酸化ナトリウム水溶液で中和滴定し、カルボン酸のカルボン酸根換算の含有量を定量した。なお、リン化合物が含まれる場合は、後述の評価方法で測定されるリン化合物の含有量を加味して、カルボン酸量を算出した。
(8)金属イオン、リン酸化合物およびホウ素化合物の定量
 エチレン-ビニルアルコール共重合体ペレット0.5gをテフロン(登録商標)製圧力容器に入れ、ここに濃硝酸5mLを加えて室温で30分間分解させた。30分後蓋をし、湿式分解装置(アクタック社製「MWS-2」)により150℃で10分間、次いで180℃で5分間加熱することで分解を行い、その後室温まで冷却した。冷却後の液を50mLのメスフラスコ(TPX製)に移し純水でメスアップした。この溶液について、ICP発光分光分析装置(パーキンエルマー社製「OPTIMA4300DV」)により元素分析を行い、エチレン-ビニルアルコール共重合体ペレットに含まれる、金属イオンの金属原子換算量、リン化合物のリン原子換算量およびホウ素化合物のホウ素原子換算量を求めた。
(9)酸素透過度
 単軸押出装置(株式会社東洋精機製作所製「D2020」;D(mm)=20、L/D=20、圧縮比=3.0、スクリュー:フルフライト)を用い、エチレン-ビニルアルコール共重合体ペレットから平均厚み20μmの単層フィルムを作製した。このときの各条件は以下に示すとおりである。得られたフィルムを20℃/65%RHの条件下で調湿した後、酸素透過度測定装置(ModernControl社製「OX-Tran2/20」)を使用し、20℃/65%RHの条件下で酸素透過度を測定した。なお、測定はJIS K 7126-2(等圧法;2006年)ISO14663-2 annex C に準拠して実施した。
(単軸押出装置条件)
 押出温度:210℃
 スクリュー回転数:40rpm
 ダイス幅:30cm
 引取りロール温度:80℃
 引取りロール速度:3.1m/分
(10)外観評価
(10-1)単層フィルム製膜欠点評価
 前記と同じ条件で連続運転して単層フィルムを作製し、運転開始5時間後に作製された各フィルムについて、フィルム長17cm当たりの欠点数をカウントした。前記欠点数のカウントは、フィルム欠点検査装置(フロンティアシステム株式会社製「AI-10」) を用いて行った。なお、このフィルム欠点検査装置における検出カメラは、そのレンズ位置がフィルム面より195mmの距離となるように設置した。
(10-2)ロール端部の着色の評価
 運転開始5時間後に作製されたフィルム100mを紙管に巻き取ったロールを作製し、ロールの端部の黄変による着色の有無を目視で判定した。
(11)1,2-グリコール結合量
 ビニルアルコール重合体を内部標準物質としてテトラメチルシラン、添加剤としてテトラフルオロ酢酸を含むジメチルスルホキシド(DMSO)-dに溶解し、500MHzのH-NMR(日本電子株式会社製「JMTC-400/54/SS」)を用いて80℃で測定した。ビニルアルコール単位のメチンプロトン由来のピークは3.2から4.0ppm(積分値A)に、1,2-グリコール結合の1つのメチンプロトン由来のピークは3.15から3.35ppm付近(積分値B)に帰属され、次式で1,2-グリコール結合量を算出する。
  1,2-グリコール結合量(モル%)=B/A×100
(12)片末端のプロピル基の含有率
 ビニルアルコール重合体の片末端のプロピル基の含有率は、ビニルアルコール重合体の前駆体または再酢化物であるビニルエステル重合体のH-NMRから求めた。試料のエチレン変性ビニルエステル重合体の再沈精製をn-ヘキサンとアセトンの混合溶液を用いて3回以上行った後、80℃で3日間減圧乾燥して分析用のエチレン変性ビニルエステル重合体を作製する。分析用のエチレン変性ビニルエステル重合体をDMSO-dに溶解し、500MHzのH-NMR(日本電子株式会社製「JMTC-400/54/SS」)を用いて80℃で測定した。酢酸ビニルの主鎖メチンプロトンに由来するピーク(積分値R:4.7から5.2ppm)とプロピル基のメチルプロトンに由来するピーク(積分値S:0.7から1.0ppm)を用い次式によりプロピル基の含有率を算出する。
  プロピル基の含有率(モル%)=100×(S/3)/R
(13)樹脂材料の酢酸ナトリウムの含有量
 ビニルアルコール重合体を主成分とする樹脂材料における酢酸ナトリウムの含有量は、JIS K 6726:1994に記載の溶解電導度法にしたがって求める。 
(14)樹脂材料の溶解度
 樹脂材料10gに対して水90g、すなわち樹脂材料の10%水溶液100gを、90℃下、300rpmで5時間撹拌した後、200メッシュの金網で全量ろ過する。なお、200メッシュとはJIS標準篩のメッシュ換算では、目開き75μmに相当する。前記篩の目開きは、JIS Z 8801-1-2006の公称目開きWに準拠して求める。ろ過前の金網の質量をa(g)とする。金網ごと105℃で3時間乾燥する。乾燥後の金網と金網上に残存した物質の合計質量をb(g)とする。下記式を用いて樹脂材料の溶解度(%)を求める。
  溶解度(%)=100-100×{(b-a)/10}
(15)樹脂材料の水溶液の粘度安定性
 前記の条件で調製した樹脂材料の10%水溶液100gを5℃下で放置し、液温が5℃となった時点の粘度cを求め、5℃下で48時間放置した際の粘度dと比較し、それらの比(粘度比)d/cより、水溶液の粘度安定性を求めた。d/cの値が大きいほど、5℃下で放置した場合の粘度上昇が大きいことを示し、粘度安定性が悪いことを意味する。なお、粘度(mPa・s)はロータ回転数60rpm、温度20℃の条件で、B型粘度計(東機産業株式会社製「BLII」)を用いて測定した値である。
(16)樹脂材料の色相(YI)
 樹脂材料の色相は、粉末のイエローインデックス(YI)により求めた。篩(目開き:100μm、1,000μm)を用いて100μm未満および1,000μmを超える粒子を除去した後、カラーメーター(スガ試験機株式会社製「SM-T-H1」)を用いて測定した。なお、YIはJIS Z 8722:2009およびJIS K 7373:2006に準じて測定、計算された値である。
(17)構造(I)、(II)の含有量
 ビニルアルコール重合体を内部標準物質としてテトラメチルシラン、添加剤としてテトラフルオロ酢酸を含むジメチルスルホキシド(DMSO)-dに溶解し、500MHzのH-NMR(日本電子株式会社製「JMTC-400/54/SS」)を用いて45℃で測定した。エチレン単位、ビニルアルコール単位、ビニルエステル単位のピーク強度と構造(I)、(II)が有するメトキシ基のメチル水素またはエトキシ基のメチレン水素のピーク強度比より構造(I)、(II)の含有量を求めた。なお、構造(I)が有するメトキシ基のメチル水素またはエトキシ基のメチレン水素のピーク、および構造(II)が有するメトキシ基のメチル水素またはエトキシ基のメチレン水素のピークは、それぞれ3.07ppm、3.09ppm付近に検出された。
(18)エチレン-ビニルアルコール共重合体のエチレン単位のブロックキャラクター
 エチレン-ビニルアルコール共重合体を添加剤としてテトラフルオロ酢酸を含むジメチルスルホキシド(DMSO)-dに溶解し、500MHzの13C-NMR(日本電子株式会社製「JMTC-400/54/SS」)を用いて80℃で測定した。得られたスペクトルチャートからT.Moritani and H.Iwasaki,11,1251-1259,Macromolecules(1978)に記載の方法で帰属、算出したビニルアルコール・エチレンの2単位連鎖のモル分率(AE)、ビニルアルコール単位のモル分率(A)、エチレン単位のモル分率(E)を用いて下記式よりエチレン単位のブロックキャラクター(η)を求めた。
  η=(AE)/{2×(A)×(E)}
<合成例1:酢酸ビニル合成触媒の調製>
 シリカ球体担体に、テトラクロロパラジウム酸ナトリウム水溶液およびテトラクロロ金酸四水和物水溶液を含む担体吸水量相当の水溶液を含浸し、メタケイ酸ナトリウム9水和物を含む水溶液に浸漬し、静置する。続いて、ヒドラジン水和物水溶液を添加し、室温で静置した後、水中に塩化物イオンが無くなるまで水洗し、乾燥する。パラジウム/金/担体組成物を酢酸水溶液に浸漬し静置する。次いで、水洗し乾燥する。その後、酢酸カリウムの担体吸水量相当水溶液に含浸し、乾燥することで酢酸ビニル合成触媒が得られる。
 <合成例2:稲わら由来のバイオエチレンの製造>
 C3植物である稲わらを原料に、アルカリ処理工程、糖化処理工程、エタノール化工程を経て処理することにより、バイオエタノールを得る。このバイオエタノールを、モルデナイトを触媒とした190℃での脱水反応処理を行うことにより、C3植物由来のバイオエチレンが得られる。
 <合成例3:稲わら由来のバイオ酢酸の製造>
 合成例2で得たバイオエタノールを酸化することでC3植物由来のバイオ酢酸が得られる。
 <実施例1>
 合成例1で得た触媒をガラスビーズで希釈してSUS製反応管に充填し、エチレン、酸素、水、酢酸、および窒素の混合ガスを流通させ、反応を行った。エチレンはC4植物であるサトウキビ由来のバイオエチレン(Braskem S.A.製)を使用した。また、酢酸はC4植物であるサトウキビ由来のバイオ酢酸を気化させてから蒸気で反応系に導入した。反応出口ガスを分析することで酢酸ビニルの収量および選択率を得た。得られた酢酸ビニルを前記方法で分析し14C/Cおよびδ13C、ならびに硫黄分を測定した。得られた酢酸ビニルをVAM-1とし、結果を表1に記載した。
 <実施例2> 
 バイオ酢酸の全量を石油由来の酢酸に変更したこと以外は、実施例1と同様にして反応を行った。反応出口ガスを分析することで、酢酸ビニルの収量および選択率を得た。得られた酢酸ビニルを前記方法で分析し14C/Cおよびδ13C、ならびに硫黄分を測定した。得られた酢酸ビニルをVAM-2とし、結果を表1に記載した。
 <実施例3>
 バイオエチレンの半量を石油由来のエチレンに、バイオ酢酸の全量を石油由来の酢酸に変更したこと以外は、実施例1と同様にして反応を行った。反応出口ガスを分析することで、酢酸ビニルの収量および選択率を得た。得られた酢酸ビニルを前記方法で分析し14C/Cおよびδ13C、ならびに硫黄分を測定した。得られた酢酸ビニルをVAM-3とし、結果を表1に記載した。
 <実施例4>
 バイオエチレンの全量を合成例2で得たC3植物由来のエチレンに、バイオ酢酸の全量を合成例3で得たC3植物由来の酢酸に変更したこと以外は、実施例1と同様にして反応を行った。反応出口ガスを分析することで、酢酸ビニルの収量および選択率を得た。得られた酢酸ビニルを前記方法で分析し14C/Cおよびδ13C、ならびに硫黄分を測定した。得られた酢酸ビニルをVAM-4とし、結果を表1に記載した。
 <実施例5>
 バイオエチレンの全量を合成例2で得たC3植物由来のエチレンに、バイオ酢酸の全量を石油由来の酢酸に変更したこと以外は、実施例1と同様にして反応を行った。反応出口ガスを分析することで、酢酸ビニルの収量および選択率を得た。得られた酢酸ビニルを前記方法で分析し14C/Cおよびδ13C、ならびに硫黄分を測定した。得られた酢酸ビニルをVAM-5とし、結果を表1に記載した。
 <実施例6>
 バイオエチレンの半量を合成例2で得たC3植物由来のエチレンに、残る半量を石油由来のエチレンに、バイオ酢酸の全量を石油由来の酢酸に変更したこと以外は、実施例1と同様にして反応を行った。反応出口ガスを分析することで、酢酸ビニルの収量および選択率を得た。得られた酢酸ビニルを前記方法で分析し14C/Cおよびδ13C、ならびに硫黄分を測定した。得られた酢酸ビニルをVAM-6とし、結果を表1に記載した。
 <比較例1>
 バイオエチレンの全量を石油由来のエチレンに、バイオ酢酸の全量を石油由来の酢酸に変更したこと以外は、実施例1と同様にして反応を行った。反応出口ガスを分析することで、酢酸ビニルの収量および選択率を得た。得られた酢酸ビニルを前記方法で分析し14C/Cおよびδ13C、ならびに硫黄分を測定した。得られた酢酸ビニルをVAM-C1とし、結果を表1に記載した。
Figure JPOXMLDOC01-appb-T000008
 表1中、Sは酢酸ビニル中の硫黄分の含有量である。
 なお、実施例1から6に記載の方法で得られた酢酸ビニルには、硫黄分としてジメチルスルフィドおよび/またはジメチルスルホキシドが含まれていた。
 <参考例1>
 実施例1で得られた酢酸ビニル(VAM-1)に、重合禁止剤としてヒドロキノンを3ppm添加する。
 <参考例2>
 実施例1で得られた酢酸ビニル(VAM-1)に、重合禁止剤としてヒドロキノンを15ppm添加する。
 <実施例7>
 撹拌機、還流冷却管、窒素導入管および重合開始剤の添加口を備えた反応器に、実施例1で得た酢酸ビニル(VAM-1)720質量部およびメタノール280質量部を仕込み、窒素バブリングをしながら30分間系内を窒素置換した。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル0.13質量部を添加し重合を開始した。60℃で3時間重合した後、冷却して重合を停止した。続いて、30℃、減圧下でメタノールを時々添加しながら未反応の酢酸ビニルの除去を行い、酢酸ビニル重合体のメタノール溶液を得た。次に、このメタノール溶液にさらにメタノールを加えて調製した酢酸ビニル重合体のメタノール溶液に、水酸化ナトリウム濃度が10質量%のメタノール溶液9.2質量部を添加して、40℃でけん化を行った。水酸化ナトリウムのメタノール溶液を添加後約15分でゲル状物が生成するので、これを粉砕器にて粉砕し、さらに40℃で1時間放置してけん化を進行させた後、酢酸メチル500部を加え残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和が終了したことを確認した後、濾別して白色固体を得た。この白色固体にメタノール2,000部を加えて室温で3時間放置洗浄した。この洗浄操作を3回繰り返した後、遠心脱液して得られた白色固体を乾燥機にて120℃で4.5時間加熱処理してビニルアルコール重合体(PVOH-1)を得た。PVOH-1の物性を表2に示した。
 <実施例8>
 酢酸ビニルの全量をVAM-2に変更したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-2)を得た。PVOH-2の物性を表2に示した。
 <実施例9>
 酢酸ビニルの全量をVAM-3に変更したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-3)を得た。PVOH-3の物性を表2に示した。
 <実施例10>
 酢酸ビニルの半量をVAM-1に、残る半量をVAM-C1に変更したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-4)を得た。PVOH-4の物性を表2に示した。
 <実施例11>
 酢酸ビニルの全量をVAM-4に変更したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-5)を得た。PVOH-5の物性を表2に示した。
 <実施例12>
 酢酸ビニルの全量をVAM-5に変更したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-6)を得た。PVOH-6の物性を表2に示した。
 <実施例13>
 酢酸ビニルの全量をVAM-6に変更したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-7)を得た。PVOH-7の物性を表2に示した。
 <実施例14>
 酢酸ビニルの半量をVAM-4に、残る半量をVAM-C1に変更したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-8)を得た。PVOH-8の物性を表2に示した。
 <比較例2>
 酢酸ビニルの全量をVAM-C1に変更したこと以外は、実施例4と同様にして反応を行い、ビニルアルコール重合体(PVOH-C1)を得た。PVOH-C1の物性を表1に示した。
Figure JPOXMLDOC01-appb-T000009
 前記表2から明らかなように、異なる14C/Cおよびδ13Cを有する酢酸ビニルであっても、同条件で重合およびけん化すれば、同じ物性のビニルアルコール重合体が得られる。
 <実施例15> 
(エチレン-酢酸ビニル共重合体の製造)
 ジャケット、攪拌機、窒素導入口、エチレン導入口および開始剤添加口を備えた250L加圧反応槽に、VAM-1を105kg、およびメタノールを32.3kg仕込み、65℃に昇温した後、30分間窒素バブリングして反応槽内を窒素置換した。次いで反応槽圧力(エチレン圧力)が3.67MPaとなるようにエチレンを昇圧して導入した。エチレンには、サトウキビ由来のエチレン(Braskem S.A.製)を用いた。反応槽内の温度を65℃に調整した後、開始剤として16.8gの2,2’-アゾビス(2,4-ジメチルバレロニトリル)をメタノール溶液として添加し、重合を開始した。重合中はエチレン圧力を3.67MPaに、重合温度を65℃に維持した。3時間後に酢酸ビニルの重合率が45%となったところで冷却して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで減圧下で未反応の酢酸ビニルを除去した後、得られたエチレン-酢酸ビニル共重合体にメタノールを添加して20質量%メタノール溶液とした。
(けん化および洗浄)
 得られたエチレン-酢酸ビニル共重合体ジャケットの20質量%メタノール溶液250kgを、攪拌機、窒素導入口、還流冷却器および溶液添加口を備えた500L反応槽に入れ、かかる溶液に窒素を吹き込みながら60℃に昇温し、水酸化ナトリウム4kgを濃度2規定のメタノール溶液として添加した。水酸化ナトリウムの添加終了後、系内温度を60℃に保ちながら2時間攪拌してけん化反応を進行させた。2時間経過した後に、再度、同様の方法で水酸化ナトリウムを4kg添加し、2時間加熱攪拌を継続した。その後、酢酸を14kg添加してけん化反応を停止し、イオン交換水50kgを添加した。加熱攪拌しながら反応槽外にメタノールと水を留出させ反応液を濃縮した。3時間経過した後、さらにイオン交換水50kgを添加し、エチレン-ビニルアルコール共重合体を析出させた。デカンテーションにより析出したエチレン-ビニルアルコール共重合体を収集し、ミキサーで粉砕した。得られたエチレン-ビニルアルコール共重合体(EVOH-1)粉末を酢酸1gに対して水1L(1g/L)の酢酸水溶液(浴比20、イオン交換水200Lに対し粉末10kgの割合)に投入して2時間攪拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。これを脱液したものを、イオン交換水(浴比20)に投入して攪拌洗浄を2時間行い脱液する操作を3回繰り返して精製を行った。これを60℃で16時間乾燥させることでEVOH-1の粗乾燥物を得た。
(含水ペレットの製造)
 得られたEVOH-1の粗乾燥物25kgを、ジャケット、攪拌機および還流冷却器を備えた100L攪拌槽に入れ、さらに水20kgおよびメタノール20gを加え、70℃に昇温して溶解させた。この溶解液を径3mmのガラス管を通して5℃に冷却した質量比で水/メタノール=90/10の混合液中に押し出してストランド状に析出させ、このストランドをストランドカッターでペレット状にカットすることでEVOH-1の含水ペレットを得た。このEVOH-1の含水ペレットを濃度1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。脱液後、酢酸水溶液を更新し同様の操作を行った。酢酸水溶液で洗浄してから脱液したものを、イオン交換水(浴比20)に投入して攪拌洗浄を2時間行い脱液する操作を3回繰り返して精製を行い、けん化反応時の触媒残渣とストランド析出時に使用したメタノールが除去された、EVOH-1の含水ペレットを得た。得られたEVOH-1の含水ペレットの含水率をメトラー社のハロゲン水分計「HR73」で測定した。
(ペレットの製造)
 得られたEVOH-1の含水ペレットを酢酸ナトリウム、酢酸、リン酸濃およびホウ酸が含まれる水溶液(浴比20)に投入し、定期的に攪拌しながら4時間浸漬さた。なお、各成分の濃度は、得られたEVOH-1ペレットにおける各成分の含有量が表3に記載のとおりとなるように調整した。浸漬後に脱液し、空気下で80℃、3時間、および空気下で130℃、7.5時間乾燥することにより、酢酸ナトリウム、酢酸、リン酸およびホウ酸を含むEVOH-1ペレットを得た。物性を表3に示した。
 <実施例16>
 酢酸ビニルの全量をVAM-2に変更したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-2)ペレットを得た。物性を表3に示した。
 <実施例17>
 酢酸ビニルの全量をVAM-3に変更したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-3)ペレットを得た。物性を表3に示した。
 <実施例18>
 酢酸ビニルの半量をVAM-1に、残る半量をVAM-C1に変更したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-4)ペレットを得た。物性を表3に示した。
 <実施例19>
 エチレンの全量を石油由来のエチレンに変更した以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-5)ペレットを得た。物性を表3に示した。
 <実施例20>
 エチレンの半量を石油由来のエチレンに変更した以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-6)ペレットを得た。物性を表3に示した。
 <実施例21>
 エチレンの全量を稲わら由来のエチレンに、酢酸ビニルの全量をVAM-4に変更したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-7)ペレットを得た。物性を表3に示した。
 <実施例22>
 エチレンの全量を稲わら由来のエチレンに、酢酸ビニルの全量をVAM-5に変更したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-8)ペレットを得た。物性を表3に示した。
 <実施例23>
 エチレンの全量を稲わら由来のエチレンに、酢酸ビニルの全量をVAM-6に変更したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-9)ペレットを得た。物性を表3に示した。
 <実施例24>
 エチレンの全量を稲わら由来のエチレンに、酢酸ビニルの半量をVAM-6、残り半量をVAM-C1に変更したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-10)ペレットを得た。物性を表3に示した。
 <実施例25>
 エチレンの全量を石油由来のエチレンに、酢酸ビニルの全量をVAM-4に変更したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-11)ペレットを得た。物性を表3に示した。
 <実施例26>
 エチレンの半量を稲わら由来のエチレンに、残り半量を石油由来のエチレンに、酢酸ビニルの全量をVAM-4に変更したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-12)ペレットを得た。物性を表3に示した。
 <比較例3>
 酢酸ビニルの全量をVAM-C1に、エチレンの全量を石油由来のエチレンに変更した以外は、実施例8と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-C1)ペレットを得た。物性を表3に示した。

 
Figure JPOXMLDOC01-appb-T000010
 前記得られたEVOH-1からEVOH-6、およびEVOH-C1の14C/Cおよびδ13Cを前記方法で測定したところ。使用した酢酸ビニルおよびエチレンの14C/Cおよびδ13Cの値とほぼ同じ値を示す。またEVOH-1からEVOH-6の14C/Cおよびδ13Cは全量石油由来の酢酸ビニルを重合したEVOH-C1とは異なり、エチレン-ビニルアルコール共重合体の14C/Cおよびδ13Cを測定することで、その原料を特定すること可能である。したがって、エチレン-酢酸ビニルアルコール共重合体の追跡が可能である。
 表3に示すように、実施例15から26の各EVOH組成物は、植物由来の原料を一部に用いていながら、化石資源由来のみのもの(比較例3のEVOH組成物)と遜色のない高い酸素バリア性を有している。
 <実施例27>
 酢酸ビニルに対して酢酸メチルを500ppm添加したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-13)ペレットを得た。EVOH-1とEVOH-13の物性を比較した結果、EVOH-13の方が製膜欠点およびロール端部着色が改善した。このとき、14C/C、δ13Cおよび酸素透過度はEVOH-1とEVOH-13で差は見られなかった。
 <実施例28>
 酢酸ビニルに対して酢酸エチルを350ppm添加し、重合溶媒をメタノールからエタノールに変更したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-14)ペレットを得た。EVOH-1とEVOH-14の物性を比較した結果、EVOH-14の方が製膜欠点およびロール端部着色が改善した。このとき、14C/C、δ13Cおよび酸素透過度はEVOH-1とEVOH-14で差は見られなかった。
 <実施例29>
 酢酸ビニルに対して酢酸メチルを500ppm添加したこと以外は、実施例21と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-15)ペレットを得た。EVOH-1とEVOH-15の物性を比較した結果、EVOH-15の方が製膜欠点およびロール端部着色が改善した。このとき、14C/C、δ13Cおよび酸素透過度はEVOH-1とEVOH-15で差は見られなかった。
 <実施例30>
 酢酸ビニルに対して酢酸エチルを350ppm添加し、重合溶媒をメタノールからエタノールに変更したこと以外は、実施例21と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-16)ペレットを得た。EVOH-7とEVOH-16の物性を比較した結果、EVOH-16の方が製膜欠点およびロール端部着色が改善した。このとき、14C/C、δ13Cおよび酸素透過度はEVOH-7とEVOH-16で差は見られなかった。
 <実施例31>
 酢酸ビニルに対してL-アスコルビン酸を50ppm添加したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-17)ペレットを得た。EVOH-1とEVOH-17の物性を比較した結果、EVOH-17の方が製膜欠点およびロール端部着色が改善した。このとき、14C/C、δ13Cおよび酸素透過度はEVOH-1とEVOH-17で差は見られなかった。
 <実施例32>
 酢酸ビニルに対してエリソルビン酸を50ppm添加したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-18)ペレットを得た。EVOH-1とEVOH-18の物性を比較した結果、EVOH-18の方が製膜欠点およびロール端部着色が改善した。このとき、14C/C、δ13Cおよび酸素透過度はEVOH-1とEVOH-17で差は見られなかった。
 <実施例33>
 酢酸ビニルに対してグルコノデルタラクトンを50ppm添加したこと以外は、実施例15と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-19)ペレットを得た。EVOH-1とEVOH-19の物性を比較した結果、EVOH-19の方が製膜欠点およびロール端部着色が改善した。このとき、14C/C、δ13Cおよび酸素透過度はEVOH-1とEVOH-19で差は見られなかった。
 <実施例34>
 酢酸ビニルに対してL-アスコルビン酸を50ppm添加したこと以外は、実施例21と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-20)ペレットを得た。EVOH-7とEVOH-20の物性を比較した結果、EVOH-20の方が製膜欠点およびロール端部着色が改善した。このとき、14C/C、δ13Cおよび酸素透過度はEVOH-7とEVOH-20で差は見られなかった。
 <実施例35>
 酢酸ビニルに対してエリソルビン酸を50ppm添加したこと以外は、実施例21と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-21)ペレットを得た。EVOH-7とEVOH-21の物性を比較した結果、EVOH-21の方が製膜欠点およびロール端部着色が改善した。このとき、14C/C、δ13Cおよび酸素透過度はEVOH-7とEVOH-21で差は見られなかった。
 <実施例36>
 酢酸ビニルに対してグルコノデルタラクトンを50ppm添加したこと以外は、実施例21と同様にして反応を行い、エチレン-ビニルアルコール共重合体(EVOH-22)ペレットを得た。EVOH-7とEVOH-22の物性を比較した結果、EVOH-22の方が製膜欠点およびロール端部着色が改善した。このとき、14C/C、δ13Cおよび酸素透過度はEVOH-1とEVOH-22で差は見られなかった。
 実施例15、21および31から36より、本発明の酢酸ビニルを用い、さらに多価カルボン酸、ヒドロキシカルボン酸、ヒドロキシラクトン系化合物および重合開始剤の共存下に酢酸ビニルを単独あるいは他のモノマーと重合、特に酢酸ビニルとエチレンを共重合させると、得られるエチレン-酢酸ビニル共重合体は、エチレン-酢酸ビニル共重合体けん化物の原料として有用で、かかる共重合体をけん化して得られるエチレン-酢酸ビニル共重合体けん化物は、製膜時にフィッシュアイが抑制でき、さらに色相に優れる。
 <実施例37>
 酢酸ビニルに対してアセトアルデヒドジメチルアセタールを0.5質量部添加したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-9)を得た。PVOH-1とPVOH-9を目視確認した結果、PVOH-9の方がより白色であり、色相に優れていた。このとき、14C/Cおよびδ13CはPVOH-1とPVOH-9で差は見られなかった。
 <実施例38>
 酢酸ビニルに対してアセトアルデヒドジメチルアセタールを4質量部添加したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-10)を得た。PVOH-1とPVOH-10を目視確認した結果、PVOH-10の方がより白色であり、色相に優れていた。このとき、14C/Cおよびδ13CはPVOH-1とPVOH-10で差は見られなかった。
 <実施例39>
 酢酸ビニルに対してアセトアルデヒドジメチルアセタールを4質量部、クエン酸を5ppm添加したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-11)を得た。PVOH-1とPVOH-11を目視確認した結果、PVOH-11の方がより白色であり、色相に優れていた。このとき、14C/Cおよびδ13CはPVOH-1とPVOH-11で差は見られなかった。
 <実施例40>
 酢酸ビニルに対してアセトアルデヒドジメチルアセタールを4質量部、クエン酸を10ppm添加したこと以外は、実施例7と同様にして反応を行い、ビニルアルコール重合体(PVOH-12)を得た。PVOH-1とPVOH-12を目視確認した結果、PVOH-12の方がより白色であり、色相に優れていた。このとき、14C/Cおよびδ13CはPVOH-1とPVOH-12で差は見られなかった。
 <実施例41>
 酢酸ビニルに対してアセトアルデヒドジメチルアセタールを0.5質量部添加したこと以外は、実施例11と同様にして反応を行い、ビニルアルコール重合体(PVOH-13)を得た。PVOH-5とPVOH-13を目視確認した結果、PVOH-13の方がより白色であり、色相に優れていた。このとき、14C/Cおよびδ13CはPVOH-5とPVOH-13で差は見られなかった。
 <実施例42>
 酢酸ビニルに対してアセトアルデヒドジメチルアセタールを4質量部添加したこと以外は、実施例11と同様にして反応を行い、ビニルアルコール重合体(PVOH-14)を得た。PVOH-5とPVOH-14を目視確認した結果、PVOH-14の方がより白色であり、色相に優れていた。このとき、14C/Cおよびδ13CはPVOH-5とPVOH-14で差は見られなかった。
 <実施例43>
 酢酸ビニルに対してアセトアルデヒドジメチルアセタールを4質量部、クエン酸を5ppm添加したこと以外は、実施例11と同様にして反応を行い、ビニルアルコール重合体(PVOH-15)を得た。PVOH-5とPVOH-15を目視確認した結果、PVOH-13の方がより白色であり、色相に優れていた。このとき、14C/Cおよびδ13CはPVOH-5とPVOH-15で差は見られなかった。
 <実施例44>
 酢酸ビニルに対してアセトアルデヒドジメチルアセタールを4質量部、クエン酸を10ppm添加したこと以外は、実施例11と同様にして反応を行い、ビニルアルコール重合体(EVOH-15)を得た。PVOH-5とPVOH-15を目視確認した結果、PVOH-13の方がより白色であり、色相に優れていた。このとき、14C/Cおよびδ13CはPVOH-5とPVOH-15で差は見られなかった。
 実施例7、14および37から44より、アセトアルデヒドジメチルアセタールを添加した酢酸ビニルを用いることで、良好な品質の酢酸ビニル重合体を得ることができ、かかる重合体は、色相に優れたビニルアルコール重合体を得るための原料としても有用である。
 <実施例45>
 還流冷却器、原料供給ライン、反応液取出ライン、温度計、窒素導入口、エチレン導入口および撹拌翼を備えた連続重合槽を用いた。連続重合槽にVAM-1を671L/hr、メタノールを148L/hr、開始剤としてn-プロピルパーオキシジカーボネートの1%メタノール溶液を1.0L/hr、それぞれ定量ポンプを用いて連続的に供給した。n-プロピルパーオキシジカーボネートの添加量はVAM-1に対して0.00132質量%であった。連続重合槽内のエチレン圧力が0.23MPaになるように調整した。エチレンには、サトウキビ由来のエチレン(Braskem S.A.製)を用いた。連続重合槽内の液面が一定になるように連続重合槽から重合液を連続的に取り出した。連続重合槽の出口での重合率が26%になるように調整した。この時、連鎖移動剤としてプロパンチオールをVAM-1に対して0.00042質量%の系内濃度(連続的に抜き取る重合液中の残存酢酸ビニルを100とした際のそれに対する濃度)となるように連続的に添加した。連続重合槽の滞留時間は5時間であった。連続重合槽の出口の温度は60℃とした。連続重合槽より重合液を回収し、温水浴で75℃に加熱しながら重合液にメタノール蒸気を導入することで残存する酢酸ビニルの除去を行い、エチレン変性ビニルエステル重合体(以下、EVAcと記すことがある)のメタノール溶液(EVAcの濃度32%)を得た。除去工程での平均滞留時間は2時間、得られたエチレン変性ビニルエステル重合体のメタノール溶液中に残存する酢酸ビニルは0.1%であった。
 続いて、40℃で、けん化工程に供する含水率を0.5%、けん化触媒としてエチレン変性ビニルエステル重合体に対してモル比0.012の割合で水酸化ナトリウムを用い、1時間けん化反応を行った。得られる重合体をメタノールに浸漬し洗浄を行った。次いで溶媒を遠心分離で除去したのち乾燥を行い、計算上、エチレン単位の含有率が2モル%、粘度平均重合度が1,700、けん化度が98.5モル%、1,2-グリコール結合量が1.6モル%、片末端でのプロピル基の含有率が0.0061モル%のエチレン-ビニルアルコール共重合体(EVOH-23)を主成分とし、酢酸ナトリウムの含有量が0.42質量%である組成物を得た。
 得られる組成物を用いて、EVOH-23の90℃で5時間加熱した際の溶解度、水溶液の粘度安定性、色相を測定した。溶解度、水溶液の粘度安定性、色相(YI)は良好であった。
 <実施例46>
 使用した重合装置の概略図を図1に、撹拌翼の概略図を図2に示す。撹拌翼8としてマックスブレンド翼[株式会社神鋼環境ソリューション製、撹拌翼径(直径)d:1.1m、翼(パドル)幅b:1.5m]を備えた略円柱状の重合槽1[容量:7,000L、槽内径D:1.8m]に、槽内エチレン圧力が0.23MPaとなるように導管5からエチレンを、3L/hrの速度で導管6から重合開始剤の2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)の1質量%メタノール溶液を、それぞれ導入した。エチレンには、サトウキビ由来のエチレン(Braskem S.A.製)を用いた。また、導入管10と熱交換器2とを介して、VAM-1含有液(VAM-1:777L/hr、メタノール:170L/hr)を重合槽1に導入した。また、エチレン含有ガスを重合槽1から導管3を介して熱交換器2に導入した。VAM-1含有液は管の表面に沿って流下することでエチレンを吸収し、導管4を介して重合槽1に注ぎ込まれ、反応液と混合され、エチレンとの連続重合に供された。重合槽1内の液面が一定になるように導管9から重合液を連続的に取り出した。重合槽1出口におけるVAM-1の重合率が30%になるよう調整した。また、単位体積あたりの撹拌動力Pvは2.2kW/mであり、フルード数Frは0.13となるように調整した。翼(パドル)全体が反応液に浸かり、かつ、液面と翼(パドル)の上端とが近接した状態で反応液を撹拌した。重合槽における反応液の滞留時間は5時間であった。重合槽出口の温度は60℃であった。連続的に取り出した重合液にメタノール蒸気を導入することで未反応の酢酸ビニルモノマーの除去を行い、エチレン-酢酸ビニル共重合体のメタノール溶液(濃度32質量%)を得た。
 続いて、前記重合工程で得られたエチレン-酢酸ビニル共重合体のメタノール溶液(濃度32質量%)に、水酸化ナトリウムのメタノール溶液(濃度4質量%)を、前記エチレン-酢酸ビニル共重合体中の酢酸ビニルユニットに対する水酸化ナトリウムのモル比が0.012となるように添加した。さらに、ソルビン酸のメタノール溶液(濃度10質量%)を、前記エチレン-酢酸ビニル共重合体100質量部に対して0.00018質量部添加し、得られた混合物をスタティックミキサーで混合した後、ベルト上に載置し、40℃で18分保持してけん化反応を進行させた。その後、前記混合物を粉砕、乾燥し、エチレン-ビニルアルコール共重合体(EVOH-24)を得た。分析の結果、エチレン単位の含有量2モル%、粘度平均重合度1,700、けん化度98.5モル%、構造(I)の含有量0.00114モル%、構造(II)の含有量0.0002モル%、エチレン単位のブロックキャラクターは0.95であった。
 <実施例47>
 ジャケット、攪拌機、窒素導入口、エチレン導入口および開始剤添加口を備えた250L加圧反応槽に、VAM-1を83.0kg、およびメタノールを26.6kg仕込み、60℃に昇温した後、30分間窒素バブリングして反応槽内を窒素置換した。次いで反応槽圧力(エチレン圧力)が3.6MPaとなるようにエチレンを昇圧して導入した。エチレンには、サトウキビ由来のエチレン(Braskem S.A.製)を用いた。反応槽内の温度を60℃に調整した後、開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)の2.5g/Lのメタノール溶液を初期供給量362mL、連続供給量1,120mL/hrで供給した。重合中はエチレン圧力を3.6MPaに、重合温度を60℃に維持した。酢酸ビニルの重合率が約40%となったところでソルビン酸を添加し、冷却して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで減圧下で未反応の酢酸ビニルを除去した後、得られたエチレン-酢酸ビニル共重合体にメタノールを添加して20質量%メタノール溶液とした。
 得られたエチレン-酢酸ビニル共重合体のメタノール溶液をけん化反応器に仕込み、水酸化ナトリウムの2モル/Lメタノール溶液を、共重合体中のビニルエステル成分に対して3当量となるように添加し、メタノールを加えて共重合体濃度が5%になるように調製した。この溶液を60℃に昇温し、攪拌しながら3時間けん化反応させた。この際、最後の1時間は超音波洗浄器US CLEANER USK-2Rを用いて、出力80W、周波数40kHzで、超音波を反応器を介して照射しながら反応させた。その後、酢酸と水を添加してけん化反応を停止させるとともに、エチレン-ビニルアルコール共重合体を析出させた。析出したエチレン-ビニルアルコール共重合体を回収し、細かく砕いて含水チップを得た後、酢酸水溶液およびイオン交換水を用いて洗浄し、さらに酢酸ナトリウムおよび酢酸を含む水溶液で浸漬処理を行った。この水溶液と含水チップを分離して脱液した後、熱風乾燥機に入れて80℃で3時間、次いで110℃で35時間乾燥を行って、エチレン-ビニルアルコール共重合体(EVOH-25)を乾燥チップとして得た。分析の結果、けん化度99.9モル%以上、構造(I)の含有量0.0071モル%、構造(II)の含有量0.0027モル%であった。また、ナトリウムおよび酢酸の含有量はそれぞれ180ppm、300ppmであった。
 <実施例48>
 以下の方法で追跡を行う。
 市販の包装容器10サンプルからエチレン-ビニルアルコール共重合体を含有するバリア層を取り出す。
 このサンプルについて、14C/Cとδ13Cを前記方法により求める。得られた値と製造時に予め記録しておいた14C/Cとδ13Cとの値を比較することで自社製品であるか否かを判定する。
<実施例49>
 前記実施例8から13で得られたEVOH-1からEVOH-6を用いて前記方法にてフィルム1から6を得た。得られたフィルム1から6をそれぞれ包装袋1から6として回収した。回収物の14C/Cおよびδ13Cの値を前記方法により測定したところ、実施例8から13で得られた値と一致した。
 本発明の酢酸ビニルは従来の酢酸ビニルとは異なり、14C/Cの値が異なる。したがって、本発明の酢酸ビニルを重合して得られる酢酸ビニルを単量体単位として含む酢酸ビニル重合体およびそのけん化物であるビニルアルコール重合体も従来品とは異なる14C/Cの値を有する。この違いを利用して市場から回収した酢酸ビニル重合体またはビニルアルコール重合体が本発明の酢酸ビニルを用いたものかどうか判定が可能であり、自社製品の追跡が可能となる。
 1 重合槽
 2 熱交換器
 3から7 導管
 8 撹拌機
 9 反応液導出管
 10 ビニルエステル導入管
 11、12 冷媒管
 13 気体排出管
 21 マックスブレンド翼

Claims (32)

  1.  全炭素に対する炭素14の比が1.0×10-14以上である酢酸ビニル。
  2.  炭素安定同位体比が-20‰以上である請求項1に記載の酢酸ビニル。
  3.  炭素安定同位体比が-20‰未満である請求項1に記載の酢酸ビニル。
  4.  硫黄分を0ppmを超えて100ppm以下含む、請求項1から3のいずれか一項に記載の酢酸ビニル。
  5.  硫黄分がジメチルスルフィドまたはジメチルスルホキシドである、請求項4に記載の酢酸ビニル。
  6.  酢酸エステルを10ppmから1,500ppm含む、請求項1から5のいずれか一項に記載の酢酸ビニル。
  7.  前記酢酸エステルが酢酸メチルおよび酢酸エチルの少なくとも1種である、請求項6に記載の酢酸ビニル。
  8.  重合禁止剤を0ppmを超えて100ppm以下含む、請求項1から7のいずれか一項に記載の酢酸ビニル。
  9.  多価カルボン酸、ヒドロキシカルボン酸、ヒドロキシラクトン系化合物から選択される少なくとも1種の化合物を1ppmから500ppm含む、請求項1から8のいずれか一項に記載の酢酸ビニル。
  10.  アセトアルデヒドジメチルアセタールを0.001質量部から10質量部含む、請求項1から9のいずれか一項に記載の酢酸ビニル。
  11.  請求項1から10のいずれか一項に記載の酢酸ビニルを単量体単位として含有する酢酸ビニル重合体。
  12.  請求項11に記載の酢酸ビニル重合体をけん化してなるビニルアルコール重合体。
  13.  さらにエチレン単位を含有し、その含有量が1モル%以上60モル%以下である、請求項12に記載のビニルアルコール重合体。
  14.  けん化度が80モル%以上である、請求項12または13に記載のビニルアルコール重合体。
  15.  粘度平均重合度が200以上5,000以下である、請求項12から14のいずれか一項に記載のビニルアルコール重合体。
  16.  1,2-グリコール結合の含有量が0.2モル%以上2モル%以下である、請求項12から15のいずれか一項に記載のビニルアルコール重合体。
  17.  全炭素に対する炭素14の比が1.0×10-14以上である、請求項12から16のいずれか一項に記載のビニルアルコール重合体。
  18.  炭素安定同位体比が-20‰以上である、請求項12から17のいずれか一項に記載のビニルアルコール重合体。
  19.  炭素安定同位体比が-20‰未満である、請求項12から17のいずれか一項に記載のビニルアルコール重合体。
  20.  硫黄分を0ppmを超えて100ppm以下含む、請求項12から19のいずれか一項に記載のビニルアルコール重合体。
  21.  硫黄分がジメチルスルフィドまたはジメチルスルホキシドである、請求項20に記載のビニルアルコール重合体。
  22.  エチレン単位含有量が1モル%以上15モル%以下、かつ、けん化度が85モル%以上99.9モル%以下であり、
     重合体末端にプロピル基を有し、全単量体単位に対する前記プロピル基の含有量が0.0005モル%以上0.1モル%以下である、請求項12から21のいずれか一項に記載のビニルアルコール重合体。
  23.  重合体末端にアルコキシ基を有し、全単量体単位に対する前記アルコキシ基の含有量が0.0005モル%以上1モル%以下である、請求項12から22のいずれか一項に記載のビニルアルコール重合体。
  24.  重合体末端に下記の構造(I)および構造(II)を有し、ビニルアルコール重合体を構成する全単量体単位に対する構造(I)および構造(II)の合計含有量が0.001モル%以上0.1モル%以下である、請求項12から23のいずれか一項に記載のビニルアルコール重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Yは水素原子またはメチル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Zは水素原子またはメチル基である。)
  25.  エチレン単位含有量が1モル%以上15モル%以下、かつ、けん化度が85モル%以上99.9モル%以下であり、
     前記構造(I)および前記構造(II)の合計に対する構造(I)のモル比R[I/(I+II)]が下記式(1)
      R<0.92-Et/100   (1)
    を満たす、請求項24に記載のビニルアルコール重合体。
    (式(1)中、Etは前記エチレン単位含有量(モル%)である。)
  26.  エチレン単位のブロックキャラクターが0.90から0.99である、請求項13、22または25のいずれか一項に記載のビニルアルコール重合体。
  27.  エチレン単位含有量が15モル%以上60モル%以下、かつ、けん化度が85モル%以上99.9モル%以下であり、
     前記構造(I)および前記構造(II)の合計含有量が、ビニルアルコール重合体を構成する全単量体単位に対して0.002モル%以上0.02モル%以下であり、かつ、前記構造(I)および前記構造(II)の合計に対する構造(I)のモル比R[I/(I+II)]が、ビニルアルコール重合体におけるエチレン単位含有量Etを用いて表される下記式(2)
      0.8<R+Et/100   (2)
    を満たす、請求項24または25に記載のビニルアルコール重合体。
  28.  全炭素に対する炭素14の比が1.0×10-14以上である酢酸ビニルを用いた重合体の追跡方法。
  29.  酢酸ビニルの炭素安定同位体比が-20‰以上である、請求項28に記載の酢酸ビニルを用いた重合体の追跡方法。
  30.  酢酸ビニルの炭素安定同位体比が-20‰未満である、請求項28に記載の酢酸ビニルを用いた重合体の追跡方法。
  31.  請求項28から30のいずれか一項に記載の酢酸ビニルをモノマー単位として含有する酢酸ビニル重合体を用いた重合体の追跡方法。
  32.  請求項31に記載の酢酸ビニル重合体をけん化してなるビニルアルコール重合体を用いた重合体の追跡方法。
PCT/JP2021/024729 2020-06-30 2021-06-30 酢酸ビニル、酢酸ビニル重合体およびビニルアルコール重合体 WO2022004782A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/003,775 US20230257491A1 (en) 2020-06-30 2021-06-30 Vinyl acetate, vinyl acetate polymer, and vinyl alcohol polymer
DE112021003449.9T DE112021003449T5 (de) 2020-06-30 2021-06-30 Vinylacetat, vinylacetatpolymer und vinylalkoholpolymer
BR112022027048A BR112022027048A2 (pt) 2020-06-30 2021-06-30 Acetato de vinila, polímero de acetato de vinila e polímero de álcool vinílico
JP2022534077A JPWO2022004782A1 (ja) 2020-06-30 2021-06-30
CN202180046097.8A CN115996962A (zh) 2020-06-30 2021-06-30 乙酸乙烯酯、乙酸乙烯酯聚合物及乙烯醇聚合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-112959 2020-06-30
JP2020112959 2020-06-30
JP2021-075727 2021-04-28
JP2021075727 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022004782A1 true WO2022004782A1 (ja) 2022-01-06

Family

ID=79316298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024729 WO2022004782A1 (ja) 2020-06-30 2021-06-30 酢酸ビニル、酢酸ビニル重合体およびビニルアルコール重合体

Country Status (7)

Country Link
US (1) US20230257491A1 (ja)
JP (1) JPWO2022004782A1 (ja)
CN (1) CN115996962A (ja)
BR (1) BR112022027048A2 (ja)
DE (1) DE112021003449T5 (ja)
TW (1) TW202212313A (ja)
WO (1) WO2022004782A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166930A1 (ja) * 2023-02-07 2024-08-15 三菱ケミカル株式会社 樹脂組成物、成形品、多層構造体、及び樹脂組成物の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12054645B2 (en) * 2018-04-17 2024-08-06 Kuraray Co., Ltd. Ethylene-vinyl alcohol copolymer, method for producing same, and use thereof
CN112384367B (zh) * 2018-07-18 2022-12-20 株式会社可乐丽 多层结构体
US20240247114A1 (en) 2022-12-28 2024-07-25 Monosol, Llc Hybrid starch/pvoh films with bio-content

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136237A1 (ja) * 2010-04-26 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)、ポリアクリル酸(塩)系吸水性樹脂及びその製造方法
JP2016145263A (ja) * 2013-05-31 2016-08-12 株式会社クラレ ポリビニルアルコール及びそれを含有する紙用コーティング剤
JP2019151341A (ja) * 2018-02-28 2019-09-12 三菱ケミカル株式会社 深絞り成形用多層フィルム、深絞り成形体、および、深絞り包装体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663842B2 (ja) * 2000-03-10 2011-04-06 日本合成化学工業株式会社 ポリビニルアルコール系フィルム及びその製造方法
TW593350B (en) * 2000-10-18 2004-06-21 Kuraray Co The method for preparing ethylene-vinylacetate copolymer as well as the saponification substance obtained by this way and the moldings containing it
DE10321942A1 (de) * 2003-05-15 2004-12-09 Wacker Polymer Systems Gmbh & Co. Kg Verfahren zur Herstellung von pulverförmigen Ethylen-Vinylalkohol-Mischpolymerisaten
WO2011132592A1 (ja) * 2010-04-20 2011-10-27 株式会社クラレ ポリビニルアルコール系重合体フィルム
CN102858815B (zh) * 2010-04-26 2016-07-06 株式会社日本触媒 聚丙烯酸(盐)、聚丙烯酸(盐)系吸水性树脂及其制造方法
CN103201656B (zh) * 2010-11-10 2015-05-27 住友化学株式会社 偏振性层叠膜及偏振板的制造方法
JP5851787B2 (ja) * 2011-09-30 2016-02-03 帝人株式会社 ポリオレフィン複合繊維および不織布
WO2014179451A1 (en) * 2013-05-01 2014-11-06 Avery Dennison Corporation Multilayer film
JP2017127975A (ja) * 2016-01-18 2017-07-27 セイコーエプソン株式会社 焼結造形方法及び焼結造形物
JP6682101B2 (ja) * 2016-06-08 2020-04-15 日本電信電話株式会社 レーザ分光式安定同位体比分析法、装置、および多地点安定同位体比分析システム
TWI799607B (zh) * 2018-06-29 2023-04-21 日商可樂麗股份有限公司 聚乙烯醇薄膜、偏光薄膜及此等之製造方法、以及薄膜卷
CN109879996B (zh) * 2019-03-21 2021-11-05 广西中连智浩科技有限公司 一种利用甘蔗渣制备聚乙烯醇的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136237A1 (ja) * 2010-04-26 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)、ポリアクリル酸(塩)系吸水性樹脂及びその製造方法
JP2016145263A (ja) * 2013-05-31 2016-08-12 株式会社クラレ ポリビニルアルコール及びそれを含有する紙用コーティング剤
JP2019151341A (ja) * 2018-02-28 2019-09-12 三菱ケミカル株式会社 深絞り成形用多層フィルム、深絞り成形体、および、深絞り包装体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAITO, SHOJI: "About multipurpose use of sugar -Use as an intermediate chemical raw material obtained by fermentation", AGRICULTURE & LIVESTOCK INDUSTRIES CORPORATION [ ONLINE, 2010, pages 1 - 9, XP055895861, Retrieved from the Internet <URL:https://sugar.alic.go.jp/japan/example_03/example0808a.htm?print=true&css=> [retrieved on 20210727] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166930A1 (ja) * 2023-02-07 2024-08-15 三菱ケミカル株式会社 樹脂組成物、成形品、多層構造体、及び樹脂組成物の製造方法

Also Published As

Publication number Publication date
US20230257491A1 (en) 2023-08-17
CN115996962A (zh) 2023-04-21
DE112021003449T5 (de) 2023-04-13
JPWO2022004782A1 (ja) 2022-01-06
TW202212313A (zh) 2022-04-01
BR112022027048A2 (pt) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2022004782A1 (ja) 酢酸ビニル、酢酸ビニル重合体およびビニルアルコール重合体
US10640593B2 (en) Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same
US10640588B2 (en) Polyacrylic acid (salt), polyacrylic acid (salt)-based water-absorbing resin, and process for producing same
CN1293262C (zh) 用于纤维素基材的具有改进的阻隔性能的聚合物乳液涂料
EP3521327B1 (en) Modified vinyl alcohol polymer powder having reduced methanol content and production method therefor, and water-soluble film and packaging material
Goliszek et al. Investigation of accelerated aging of lignin-containing polymer materials
JP7072129B1 (ja) ポリビニルアルコール樹脂フィルム、ポリビニルアルコール樹脂フィルムの判別方法、及びポリビニルアルコール樹脂フィルムの製造方法
CN106170501B (zh) 制备支链聚合物的方法、支链聚合物和该聚合物的应用
CN106854255A (zh) 一种改性聚乙烯醇及其制备方法
CN109071692A (zh) 提供用于制备氯化聚氯乙烯的聚氯乙烯粒子的方法
NO142672B (no) Fremgangsmaate for fremstilling av nedbrytbare polymerisater av etylen, karbonmonoksyd og en ytterligere olefinisk umettet forbindelse
CN111100219A (zh) 低voc醋酸乙烯-乙烯共聚乳液的制备方法
FR2459817A1 (fr) Produits d&#39;interaction alcool polyvinylique/resine melamine-formaldehyde
RU2825863C1 (ru) Пленка из смолы поливинилового спирта, способ различения пленки из смолы поливинилового спирта и способ производства пленки из смолы поливинилового спирта
JP7549553B2 (ja) 樹脂組成物
TW201400510A (zh) 聚乙烯醇及其製法
AU2016340267A1 (en) Biodegradable absorbent material and method of manufacture
TW583203B (en) Process and reactive system for continuously preparing ethylene-vinyl acetate copolymer
JP2024121814A (ja) エチレン-ビニルエステル系共重合体の製造方法およびエチレン-ビニルアルコール系共重合体
JP4428938B2 (ja) 水性組成物とその製法
JPS5876403A (ja) 架橋性基を有する変性ポリビニルアルコ−ル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534077

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022027048

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022027048

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221229

WWE Wipo information: entry into national phase

Ref document number: 202317005181

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 21834587

Country of ref document: EP

Kind code of ref document: A1